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Abstract 

Extensive research has been done within the field of finance to better predict future volatility 

and anticipate changes in financial market uncertainty. The advent of more advanced machine 

learning methods, such as artificial neural networks, has led to ground-breaking 

improvements to modeling capabilities across many fields and industries, including finance 

and volatility forecasting. These advances have led to rendering some of the previous state of 

the art models obsolete. Even though it has been established that artificial neural networks are 

capable of outperforming traditional finance forecasting models when it comes to volatility 

forecasting, it remains an open question whether a more advanced machine learning algorithm 

can benefit from incorporating the strengths of specialized volatility forecasting models. In 

this study, we seek to uncover whether traditional finance volatility forecasting models, such 

as GARCH type models, contain unique information that when combined with artificial 

neural networks can lead to more capable models and improved prediction accuracy.  

We will explore these effects by looking into S&P 500 one-day-ahead volatility using 

GARCH type models to generate volatility forecasts and include those into different artificial 

neural networks to measure improvements in forecasting capabilities. GARCH forecasts will 

be added into the different artificial neural networks in the form of two different types of 

ensemble models. One approach being a stacked ensemble, and the other an averaging 

ensemble. We find evidence to suggest that even though the GARCH type models 

consistently underperform compared to artificial neural networks, there is sufficient grounds 

to conclude that there is great potential in combining different volatility forecasting models to 

attain better volatility predictions. 
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1. Introduction 

The volatility of stock market returns is an important topic in finance literature. Volatility is 

regarded as an indicator for the risk and uncertainty in the stock market and can have a crucial 

function in many investment decisions. This can for example be illustrated through Modern 

Portfolio Theory (MPT), which was first introduced in 1952 by Harry Markowitz. The 

essence of MPT is that an investor would always like to choose the portfolio that provides the 

highest expected return, while having the lowest amount of risk (Bodie et al., 2021). 

However, it’s not always simple to decide on which investment portfolio to choose when the 

risk is increasing along with the expected return. In MPT, it is assumed that each investor has 

a utility function that is increasing with higher expected returns and decreasing with higher 

volatility. This allows investors with a varying degree of risk aversion, to select portfolios 

based on their calculated utility score. Good estimations of volatility are needed for investors 

to make informed investment decisions when selecting a portfolio. 

Volatility is also a major component for the pricing of some derivative instruments, as for 

example, in option pricing theory. To price an option, you must know the current volatility 

estimate of the underlying asset up until the option expires. This results in a need to accurately 

estimate and make good forecasts of volatility.  

There exists a vast number of ways to forecast volatility, and new models are still being 

introduced, especially due to the increase in the use of machine learning methods (Ge et al., 

2022). It has been widely established that modern machine learning methods, such as neural 

networks, are able to consistently outperform GARCH type models when predicting financial 

market volatility (Charef & Ayachi, 2016). However, can we still benefit from incorporating 

the properties of GARCH type models into more advanced machine learning methods in order 

to achieve improved accuracy? To test this concept, we will make use of two different types 

of ensemble models to explore whether or not we can leverage GARCH outputs to further 

improve the results of a neural network model. 

We will start by giving a definition of volatility, where we also explain the different ways 

volatility can be estimated. Then we will introduce some statistical models for time series data 

that are commonly used in volatility forecasting. Some of the standard tools we are going to 

use are the ARCH/GARCH models as well as ordinary least squares (OLS). We will then 
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select a benchmark model that we will use for comparison between different models. Next, 

we will present some machine learning models, in the form of artificial neural networks 

(ANN) used for volatility forecasting and explore whether these outperform GARCH type 

models. Finally, we will attempt to combine the benefits of GARCH type models and 

artificial neural networks in order to see whether the combination yields an even better model. 

Essentially, we are testing whether GARCH type models contains some additional 

information that a more advanced neural network model would not be able to identify on its 

own. 
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2. Volatility 

2.1 Defining volatility 

Volatility is commonly defined as a statistical measure of the dispersion of returns for a given 

security or market index over a specified period of time. For example, the higher the price 

fluctuates from its average, the higher the volatility. This measure of dispersion can be 

calculated in different ways, but most often it is calculated using standard deviation (denoted 

by σ) of logarithmic returns (Poon & Granger, 2003). This method of calculating volatility is 

known as historical volatility and it can be formulated as   

 

𝜎𝜎 =  √1𝑛𝑛∑ (𝑟𝑟𝑡𝑡 − 𝜇𝜇)2𝑛𝑛
𝑡𝑡=1 ,              (2.1) 

where 𝑟𝑟𝑡𝑡 is the log return in time period t. The parameter 𝜇𝜇 represents the mean (expected) 

return, and n is the number of observations that are being used. The logarithmic returns are 

used instead of daily closing prices because the former follows a normal distribution. Let 𝑃𝑃𝑡𝑡 
denote the stock price at the end of time period t. Assuming that there are no dividends paid 

between time t and time t-1 (Tsay, 2013). Then, the simple net return of a given stock can be 

defined as 

𝑅𝑅𝑡𝑡 =
𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡−1
𝑃𝑃𝑡𝑡−1

= %𝛥𝛥𝑃𝑃𝑡𝑡.    (2.2) 

The log return, which is known as the continuously compounded return, can then be 

calculated as 

 

𝑟𝑟𝑡𝑡 = log(1 + 𝑅𝑅𝑡𝑡) = log (
𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1
) = log(𝑃𝑃𝑡𝑡) − log(𝑃𝑃𝑡𝑡−1).  (2.3) 

The log return can be obtained by taking the first difference of the logarithmic prices. 
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2.2 Realized volatility 

One of the main problems in volatility forecasting is that volatility is not directly observable, 

even ex-post (Patton, 2011). This particular aspect of volatility complicates the evaluation and 

comparison of forecasting models. A common solution to this problem is to use volatility 

proxies as a measurement of the ex-post volatility. This could be implemented by 

incorporating range-based volatility estimators, using high frequency data, or simply using the 

squared returns as a volatility proxy. It is important to note that there are some potential 

drawbacks in using these volatility proxies, which we will highlight. 

 

High-frequency data has been increasingly accessible over the years. However, it can in some 

cases be quite costly and time consuming to collect this type of data. Like historical volatility, 

realized volatility is a backward-looking measure, which depends on the past price history. 

However, realized volatility is utilizing high frequency intraday return data as a measurement 

of volatility. This is proven to provide accurate forecasts, especially for the one-day-ahead 

horizon (Andersen & Bollerslev, 1998). Barndorff-Nielsen and Shephard (2002), show that 

realized volatility is a more efficient estimator of the conditional variance in comparison with 

daily squared returns. Let t denote the time measured in days, and N is the total number of 

intervals within a day, where (i = 1, 2, …, N). The intraday return can be calculated as the 

difference between the log prices at the i-th interval and the previous interval, i-1 within day t. 

Thus, it can be written as 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝑝𝑝𝑖𝑖,𝑡𝑡 − 𝑝𝑝𝑖𝑖−1,𝑡𝑡.     (2.4) 

The realized variance for a given day t, can be calculated as the sum of the squared intraday 

returns, and is given by 

𝑅𝑅𝑅𝑅𝑡𝑡 = ∑ 𝑟𝑟𝑖𝑖,𝑡𝑡2𝑁𝑁
𝑖𝑖=1 .                      (2.5) 

We can then obtain the realized volatility, by taking the square root of the realized variance. 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑟𝑟 =  √∑ 𝑟𝑟𝑖𝑖,𝑡𝑡2𝑁𝑁
𝑖𝑖=1     (2.6) 

The sampling frequency for the intraday observations are often set between 5 to 30-minute 

intervals. One should be aware of the trade-off between using a few observations a day and 

having high frequency return data (e.g., every minute). By increasing the sampling frequency, 
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it has been proven to give more accurate ex-post volatility measurements (Andersen & 

Bollerslev, 1998). However, one drawback from using too frequently sampled returns is 

potential market microstructure noise (Aït-Sahalia & Yu, 2009). This noise component 

captures a lot of the trading frictions in the market, such as bid-ask bounce, price jumps, and 

non-synchronous trading. 

2.3 Squared returns 

The squared daily returns is a commonly used proxy for the true conditional variance, as it is 

quite simple to implement. The squared returns is considered a conditionally unbiased 

estimator of the true unobserved conditional variance, under the assumption that the mean 

return is zero (Patton, 2011). However, as noted by Andersen & Bollerslev (1998) and Hansen 

& Lunde (2005), the squared return is considered a noisy proxy for the true conditional 

variance. 

 

While the daily returns itself show little signs of serial correlation, the squared returns, on the 

other hand, exhibit positive signs of serial correlation (Triacca, 2007). These positive signs 

indicate the presence of volatility clustering, which refers to the observation that “large 

changes tend to be followed by large changes, of either sign, and small changes tend to be 

followed by small changes” (Mandelbrot, 1963). 

2.4 Annualized volatility 

As illustrated above, volatility can be measured in various ways. However, volatility is often 

expressed in annual terms and will therefore need to be annualized. This can be done as 

follows: 

𝜎𝜎𝑟𝑟𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 =
𝜎𝜎𝑇𝑇
√𝑇𝑇     (2.7) 

Where 𝜎𝜎𝑟𝑟𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 is the annualized volatility, which can be expressed as the standard deviation 

of yearly logarithmic returns. The notation, 𝜎𝜎𝑡𝑡 is the standard deviation over a single time 

period, while T denotes the number of periods in a year for a specified unit of time. For 
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indicate the presence of volatility clustering, which refers to the observation that "large
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As illustrated above, volatility can be measured in various ways. However, volatility is often
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Oannualy
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Where Oannuay is the annualized volatility, which can be expressed as the standard deviation

of yearly logarithmic returns. The notation, o, is the standard deviation over a single time

period, while T denotes the number of periods in a year for a specified unit of time. For
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instance, if we have calculated the daily volatility and want to express this in annual terms, we 

can do the following:  

𝜎𝜎𝑟𝑟𝑛𝑛𝑛𝑛𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 =  𝜎𝜎𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑎𝑎 ∙ √252           (2.8) 

In the formula above we use 252 daily time periods, which is a common assumption to make 

since the average number of trading days within a year is close to this number. 

2.5 Implied volatility 

Implied volatility (IV) is estimated based on current market prices of options as opposed to 

historical and realized volatility, which depends on historical data (Danielsson, 2011). 

Therefore, this estimation method is said to be forward-looking. Implied volatility is not 

directly observable, and it is based on the market’s expectations of how the price will 

fluctuate over a given time period. Thus, it is important to note that the IV is just an estimate 

of what the volatility will be in the future. IV can be determined from an option pricing 

model, such as the Black and Scholes (1973) option pricing model. By using the observed 

transaction price of a European option, and then applying the Black-Scholes formula, you are 

able to back out the implied volatility. An important assumption of the Black and Scholes 

theorem is that there are no dividends paid out during the life of the option (Bodie et al., 

2021). 

The Black and Scholes pricing formula for a European call option is given by 

𝐶𝐶0 = 𝑆𝑆0𝑁𝑁(𝑑𝑑1) − 𝑋𝑋𝑋𝑋−𝑟𝑟𝑇𝑇𝑁𝑁(𝑑𝑑2)           (2.9) 

where 

       𝑑𝑑1 =
ln(𝑆𝑆0𝑋𝑋 )+(𝑟𝑟+

𝜎𝜎2
2 )𝑇𝑇

𝜎𝜎√𝑇𝑇            

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√𝑇𝑇                       (2.10) 
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Implied volatility (IV) is estimated based on current market prices of options as opposed to

historical and realized volatility, which depends on historical data (Danielsson, 2011).

Therefore, this estimation method is said to be forward-looking. Implied volatility is not

directly observable, and it is based on the market's expectations of how the price will

fluctuate over a given time period. Thus, it is important to note that the IV is just an estimate

of what the volatility will be in the future. IV can be determined from an option pricing

model, such as the Black and Scholes (1973) option pricing model. By using the observed

transaction price of a European option, and then applying the Black-Scholes formula, you are

able to back out the implied volatility. An important assumption of the Black and Scholes

theorem is that there are no dividends paid out during the life of the option (Bodie et al.,

2021).

The Black and Scholes pricing formula for a European call option is given by

(2.9)

where

»(%)(r+)
av7

(2.10)

and
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𝐶𝐶0 = Call option price 

𝑆𝑆0 = Current stock price 

N(d) = Risk-adjusted probabilities that the call option will expire in the money 

X = Exercise price (or strike price) 

r = Continuously compounded risk-free interest rate 

T = Time to expiration of the option 

𝜎𝜎 = Standard deviation of log returns (volatility). 

All of the inputs except for the implied volatility are observable, either from the option 

contract itself, the stock market or from using some form of proxy. For example, as a proxy 

for the risk-free interest rate it is common to use the money market rate for a maturity equal to 

that of the option (Bodie et al. 2021). By performing some algebraic operations, we are then 

able to get an estimate of the implied volatility.  

The main drawback of implied volatility estimations is that the estimates are highly dependent 

on the accuracy of the Black-Scholes model, which relies on the assumption that the volatility 

remains constant over the option’s life (Danielsson, 2011). This is not necessarily true in 

reality, because volatility can fluctuate over different time periods. This is related to a 

phenomenon known as volatility smile, which can be described as the pattern of implied 

volatility for a series of options that have the same underlying asset, the same expiration date, 

but different strike price. When the IV is plotted against the strike price we get a line that 

slopes upward at either end, hence the term volatility smile. Volatility smiles should not occur 

according to standard Black-Scholes option price theory, which requires a straight horizontal 

line. 

2.6 The CBOE Volatility Index 

The CBOE volatility index (VIX) is one of the most recognized volatility measures of stock 

market volatility. The index was created by the Chicago Board Options Exchange in 1993 

(CBOE, 2021). The VIX is commonly referred to as the “fear gauge” because the volatility 

index tends to go up when the stock prices are falling. The VIX index is constructed based on 

C= Call option price
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N(d) = Risk-adjusted probabilities that the call option will expire in the money

X = Exercise price (or strike price)

r= Continuously compounded risk-free interest rate
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The main drawback of implied volatility estimations is that the estimates are highly dependent

on the accuracy of the Black-Scholes model, which relies on the assumption that the volatility

remains constant over the option's life (Danielsson, 2011). This is not necessarily true in

reality, because volatility can fluctuate over different time periods. This is related to a

phenomenon known as volatility smile, which can be described as the pattern of implied

volatility for a series of options that have the same underlying asset, the same expiration date,

but different strike price. When the IV is plotted against the strike price we get a line that

slopes upward at either end, hence the term volatility smile. Volatility smiles should not occur

according to standard Black-Scholes option price theory, which requires a straight horizontal

line.

2.6 The CBOE Volatility Index

The CBOE volatility index (VIX) is one of the most recognized volatility measures of stock

market volatility. The index was created by the Chicago Board Options Exchange in 1993

(CBOE, 2021). The VIX is commonly referred to as the "fear gauge" because the volatility

index tends to go up when the stock prices are falling. The VIX index is constructed based on
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the 30-day expected volatility of the S&P 500 Index (SPX). Only SPX option contracts with 

more than 23 days and less than 37 days to expiration are used to calculate the VIX index. 

The generalized formula to calculate the VIX index is given by: 

𝜎𝜎2 = 2𝑇𝑇 ∑
∆𝐾𝐾𝑖𝑖
𝐾𝐾2𝑖𝑖
𝑋𝑋𝑅𝑅𝑇𝑇𝑄𝑄(𝐾𝐾𝑖𝑖) − 

1
𝑇𝑇 [
𝐹𝐹
𝐾𝐾0
− 1]

2
𝑖𝑖                  (2.11) 

Where T indicates the time to expiration, F denotes the forward index level derived from 

index option prices, 𝐾𝐾0 is the first strike price below the forward index level, 𝐾𝐾𝑖𝑖 is the strike 

price of the i-th out-of-the-money option, ∆𝐾𝐾𝑖𝑖 is the interval between strike prices, R is the 

risk-free interest rate to expiration and 𝑄𝑄(𝐾𝐾𝑖𝑖) is the midpoint of the bid-ask spread for each 

option with strike 𝐾𝐾𝑖𝑖. 

2.7 Characteristics of volatility 

There have been confirmed in countless studies that volatility in financial time series exhibits 

various characteristics (Knight & Satchell, 2007). In this section, we will present some of 

these features and discuss its relevance in forecasting.  

A common assumption in financial theory is that the distribution of stock returns are 

following a normal distribution. However, as first documented by Mandelbrot in 1963, the 

distribution of stock returns exhibit fatter tails than the normal distribution. What this means 

in practice is that we are more likely to observe extreme outlier values (Tsay, 2013). This can 

be described as a leptokurtic distribution which has kurtosis greater than three. Kurtosis is the 

fourth standardized moment, which describes to what extent a distribution is heavy-tailed or 

light-tailed relative to a normal distribution. A normal distribution has kurtosis equal to three, 

thus a leptokurtic distribution which has kurtosis greater than three is said to have excess 

kurtosis.  

Next, we have volatility clustering, which is a well-known concept in financial time-series 

and was first introduced by Mandelbrot in 1963 and later documented by Fama (1965). 

Volatility clustering can be described as the tendency that volatility changes persists over 

time. Thus, if volatility is considered high (low) today, then it is more likely that volatility 

will be high (low) tomorrow.  

the 30-day expected volatility of the S&P 500 Index (SPX). Only SPX option contracts with

more than 23 days and less than 37 days to expiration are used to calculate the VIX index.
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Where T indicates the time to expiration, F denotes the forward index level derived from
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these features and discuss its relevance in forecasting.

A common assumption in financial theory is that the distribution of stock returns are

following a normal distribution. However, as first documented by Mandelbrot in 1963, the

distribution of stock returns exhibit fatter tails than the normal distribution. What this means

in practice is that we are more likely to observe extreme outlier values (Tsay, 2013). This can

be described as a leptokurtic distribution which has kurtosis greater than three. Kurtosis is the

fourth standardized moment, which describes to what extent a distribution is heavy-tailed or

light-tailed relative to a normal distribution. A normal distribution has kurtosis equal to three,

thus a leptokurtic distribution which has kurtosis greater than three is said to have excess

kurtosis.

Next, we have volatility clustering, which is a well-known concept in financial time-series

and was first introduced by Mandelbrot in 1963 and later documented by Fama (1965).

Volatility clustering can be described as the tendency that volatility changes persists over

time. Thus, if volatility is considered high (low) today, then it is more likely that volatility

will be high (low) tomorrow.
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There has also been evidence showing signs that volatility exhibits mean-reverting behavior 

(Knight & Satchell, 2007). Eventually, there will be a time where volatility goes back to its 

long-term average level of volatility, and this behavior is known as mean-reversion. In the 

long run it is assumed that forecasts will converge to this average level of volatility, 

independently of the starting point of the forecast.  

The leverage effect is another stylized fact about volatility which refers to the negative 

relationship between stock returns and future volatility. High (low) levels of volatility are 

typically followed by decreasing (increasing) returns. Explanations of this negative 

relationship have been proposed and documented by Black (1976) and Christie (1982). As the 

price of a stock is decreasing, the equity value of a company goes down, but the value of the 

debt remains the same. This means that the company will have a higher debt-to-equity ratio, 

which will make the stock become riskier, which also implies that the volatility should 

increase. The asymmetric structure of volatility also refers to the fact that a volatility increase 

due to a price increase tends to have a greater impact than a price increase of the same 

magnitude (Francq & Zakoian, 2010). 

Lastly, there has also been evidence of volatility co-movements among different stock 

markets. López-García et al. (2021) found that stocks that are more similar in terms of 

volatility show a tendency to have greater co-movement than stocks of different volatility. 

The authors also show results confirming that the co-movement of volatility is greater during 

periods of crisis  

There has also been evidence showing signs that volatility exhibits mean-reverting behavior

(Knight & Satchell, 2007). Eventually, there will be a time where volatility goes back to its

long-term average level of volatility, and this behavior is known as mean-reversion. In the

long run it is assumed that forecasts will converge to this average level of volatility,

independently of the starting point of the forecast.

The leverage effect is another stylized fact about volatility which refers to the negative

relationship between stock returns and future volatility. High (low) levels of volatility are

typically followed by decreasing (increasing) returns. Explanations of this negative

relationship have been proposed and documented by Black (1976) and Christie (1982). As the

price of a stock is decreasing, the equity value of a company goes down, but the value of the

debt remains the same. This means that the company will have a higher debt-to-equity ratio,

which will make the stock become riskier, which also implies that the volatility should

increase. The asymmetric structure of volatility also refers to the fact that a volatility increase

due to a price increase tends to have a greater impact than a price increase of the same

magnitude (Francq & Zakoian, 2010).

Lastly, there has also been evidence of volatility co-movements among different stock

markets. Lopez-Garcia et al. (2021) found that stocks that are more similar in terms of

volatility show a tendency to have greater co-movement than stocks of different volatility.

The authors also show results confirming that the co-movement of volatility is greater during

periods of crisis
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3. Econometric models 

3.1 The ARCH Model 

The ARCH model stands for autoregressive conditional heteroskedasticity, and it is one of the 

most popular tools in the literature of volatility forecasting. The model was first developed by 

Robert F. Engle in 1982. The autoregressive (AR) term of the ARCH process indicates that 

current values are dependent on past values. The ARCH model is conditionally 

heteroskedastic, which refers to the time-varying aspect of the conditional variance. The 

traditional econometric models, such as linear regression, assume that the residuals have 

constant variance for all values of the independent variables (Engle, 2001). This is also known 

as homoskedasticity. However, as noted by many researchers, the presence of 

heteroskedasticity in time series is not uncommon. As previously mentioned, volatility 

clustering is a phenomenon that occurs in financial time series, and it indicates that there are 

some time periods that are riskier than others. Heteroskedasticity does not cause ordinary least 

squares (OLS) coefficient estimates to be biased. However, it can cause the estimated 

variances of the regression coefficients to be biased, which leads to lower precision. The 

ARCH model has the property of time-varying conditional variance and is therefore designed 

to deal with this issue. 

 

To understand how the ARCH model works, we will start by formulating and explaining the 

first order ARCH(1) process: 

 

𝑟𝑟𝑡𝑡 =  𝜇𝜇𝑡𝑡 + 𝜖𝜖𝑡𝑡,     (3.1) 

𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡,   𝑧𝑧𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(0,1)                (3.2) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12                     (3.3) 

𝜔𝜔 > 0, 𝛼𝛼1 ≥ 0,                (3.4) 

where ∈𝑡𝑡 denotes the error term at the present time period, which is expressed in equation 

(3.2) as a sequence of independent and identically distributed (iid) random variables, 𝑧𝑧𝑡𝑡, 
which has zero mean and variance equal to 1, multiplied by the conditional time dependent 
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some time periods that are riskier than others. Heteroskedasticity does not cause ordinary least

squares (OLS) coefficient estimates to be biased. However, it can cause the estimated

variances of the regression coefficients to be biased, which leads to lower precision. The

ARCH model has the property of time-varying conditional variance and is therefore designed

to deal with this issue.

To understand how the ARCH model works, we will start by formulating and explaining the

first order ARCH(l) process:

r= + € ,

e= o z , z i i d N(0,1)

a =o+a,€_
0 > 0 , a , > O ,

(3.1)

(3.2)

(3.3)

(3.4)

where Ee denotes the error term at the present time period, which is expressed in equation

(3.2) as a sequence of independent and identically distributed (iid) random variables, Z t ,

which has zero mean and variance equal to l, multiplied by the conditional time dependent
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volatility, 𝜎𝜎𝑡𝑡. In practice, 𝑧𝑧𝑡𝑡 is commonly assumed to follow the standard normal distribution 

or a standardized student-t distribution (Tsay, 2013). It is also possible that the observed asset 

returns can be skewed, thus in some cases it can be relevant to assume that we have a skewed 

distribution. The conditional mean of the model is represented by 𝜇𝜇, which is often assumed 

to be constant and equal to zero. However, in some applications it can be useful to determine 

the conditional mean by an autoregressive-moving-average (ARMA) model.  

 

The time varying conditional variance in equation (3.3) is a linear function of the squared 

error term at time t – 1. The omega parameter, ω, denotes the variance intercept. The 

persistence of the autocorrelations are expressed by the parameter alpha. This parameter can 

also be interpreted as how the volatility reacts to market movements. For instance, large 

values of 𝛼𝛼, indicates that market movements have a significant effect on future volatility.  

Lastly, the constraint in equation (3.4) is required to make sure that the variance cannot be 

negative.  

 

The omega parameter in equation (3.3) can also be decomposed as a constant, 𝛾𝛾 (gamma) 

multiplied with the long-run variance (𝑅𝑅𝐿𝐿), which is also referred to as the unconditional 

variance. By doing so, we will get the following equation for the conditional variance: 

 

  𝜎𝜎𝑡𝑡2 = 𝛾𝛾𝑅𝑅𝐿𝐿 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 .         (3.5) 

The conditional variance is generated by the history of past errors, denoted by ∈𝑡𝑡−1. The long-

run variance can then be derived from the following equations: 

𝜎𝜎𝑡𝑡2 = 𝐸𝐸(𝜖𝜖𝑡𝑡2|𝜖𝜖𝑡𝑡−1)      (3.6) 

𝑅𝑅𝐿𝐿 = 𝐸𝐸(𝜖𝜖𝑡𝑡2) = 𝐸𝐸[𝐸𝐸(𝜖𝜖𝑡𝑡2|𝜖𝜖𝑡𝑡−1)]    (3.7) 

                = 𝐸𝐸(𝜔𝜔 + 𝛼𝛼1 + 𝜖𝜖𝑡𝑡−12 )      (3.8) 

     = 𝜔𝜔 + 𝛼𝛼1𝑅𝑅𝐿𝐿.      (3.9) 

volatility, o. In practice, z is commonly assumed to follow the standard normal distribution

or a standardized student-t distribution (Tsay, 2013). It is also possible that the observed asset
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persistence of the autocorrelations are expressed by the parameter alpha. This parameter can
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a?= yV, +ad_. (3.5)
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run variance can then be derived from the following equations:

(3.6)

(3.7)

(3.8)

(3.9)
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The ARCH process is said to be stationary if the sum of the positive autoregressive 

parameters is less than one (Bollerslev et al., 1994). In the case of an ARCH(1) process, the 

long-run variance is given by: 

𝑅𝑅𝐿𝐿 =  
𝜔𝜔
1−𝛼𝛼1

   (if 0 < 𝛼𝛼1 < 1).     (3.10) 

 

Then we have the ARCH(q) model which extends the autocorrelation structure of the 

ARCH(1) model, and it takes the following form: 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 + 𝛼𝛼2𝜖𝜖𝑡𝑡−22 + ∙∙∙  + 𝛼𝛼𝑞𝑞𝜖𝜖𝑡𝑡−𝑞𝑞2  ,         (3.11) 

where q is the length of the ARCH lags. By including more lags in the model, we allow 

changes in the variance to occur more slowly (Knight & Satchell, 2007). To ensure that the 

conditional variance remains positive, we need to include the following constraint:  

 

𝜔𝜔 > 0,  𝛼𝛼1 ≥ 0, 𝛼𝛼2 ≥ 0,… , 𝛼𝛼𝑞𝑞 ≥ 0.             (3.12) 

 

As mentioned above, the ARCH model is simple to use and is able to capture some of the 

important features of financial time series, such as volatility clustering and mean reversion. 

However, the model still has some drawbacks. When forecasting volatility using the ARCH 

model it will often require a large number of lags to be included in the model. This leads to a 

large number of parameters that need to be estimated, which in turn makes the process more 

complex. 

3.2 The GARCH Model 

The generalized autoregressive conditional heteroskedasticity (GARCH) model was proposed 

by Bollerslev (1986). The model differs from the ARCH model by allowing lagged values of 

the conditional variances to be included in the equation for the current conditional variance. 

This generalization allows for a more parsimonious representation of the conditional variance 

than the ARCH model. The GARCH model also has a more flexible lag structure, which 

allows changes in the variance to occur at a slower rate (Knight & Satchell, 2007). 

 

The ARCH process is said to be stationary if the sum of the positive autoregressive

parameters is less than one (Bollerslev et al., 1994). In the case of an ARCH(l) process, the

long-run variance is given by:

( i f0 < a , < 1). (3.10)

Then we have the ARCH(q) model which extends the autocorrelation structure of the

ARCH(l) model, and it takes the following form:

o?= o + a,e_+ a+ + a - a (3.11)

where q is the length of the ARCH lags. By including more lags in the model, we allow

changes in the variance to occur more slowly (Knight & Satchell, 2007). To ensure that the

conditional variance remains positive, we need to include the following constraint:

(3.12)

As mentioned above, the ARCH model is simple to use and is able to capture some of the

important features of financial time series, such as volatility clustering and mean reversion.

However, the model still has some drawbacks. When forecasting volatility using the ARCH

model it will often require a large number of lags to be included in the model. This leads to a

large number of parameters that need to be estimated, which in tum makes the process more

complex.

3.2 The GARCH Model

The generalized autoregressive conditional heteroskedasticity (GARCH) model was proposed

by Bollerslev (1986). The model differs from the ARCH model by allowing lagged values of

the conditional variances to be included in the equation for the current conditional variance.

This generalization allows for a more parsimonious representation of the conditional variance

than the ARCH model. The GARCH model also has a more flexible lag structure, which

allows changes in the variance to occur at a slower rate (Knight & Satchell, 2007).
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The GARCH(p,q) model can be formulated as 

 

𝑟𝑟𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡,      𝑧𝑧𝑡𝑡 ~ 𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(0,1) 

𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖2𝑞𝑞
𝑖𝑖=1 + ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑝𝑝

𝑗𝑗=1     

𝜔𝜔 > 0,  𝛼𝛼𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,… , 𝑞𝑞,  𝛽𝛽𝑗𝑗 ≥ 0, 𝑗𝑗 = 1,… , 𝑝𝑝 ,           (3.13) 

where q refers to the number of autoregressive lags or ARCH terms, while p denotes the 

number of past conditional variances, which often is referred to as GARCH terms (Engle, 

2001). The coefficient 𝛽𝛽 can be interpreted as the degree of volatility persistence. For 

instance, a large 𝛽𝛽 value indicates that the conditional variance decays slowly. The GARCH 

process is also assumed to be wide-sense stationary (WSS) if the sum of the two parameters, 

𝛼𝛼 and 𝛽𝛽 < 1 (Bollerslev, 1986). The term WSS implies that the mean and the autocorrelation 

functions are time invariant. The value of the three parameters 𝜔𝜔, 𝛼𝛼, and 𝛽𝛽 can be obtained 

using Maximum Likelihood Estimation (MLE), which we will describe in section 3.4.  

 

The GARCH(1,1) model is a popular specification of the GARCH(p,q) model, due to its 

simplicity and robustness. In comparison with other volatility models there has been evidence 

that the GARCH(1,1) model is quite hard to beat, as examined by Hansen and Lunde (2005). 

The GARCH(1,1) model can be expressed as: 

 

  𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 + 𝛽𝛽1𝜎𝜎𝑡𝑡−12 .             (3.14) 

However, it is worth noting that the standard GARCH models have some drawbacks. If we 

consider the GARCH(p,q) model shown in equation (2.7), we can see that the conditional 

variance is a function of squared innovations, which means that it disregards the sign of the 

returns (Knight & Satchell, 2007). However, it is quite unlikely that positive and negative 

shocks in the price of a given security will have the same effect on volatility. Thus, we can 

conclude that the standard GARCH models are not able to capture the asymmetry and 

leverage effects that are observed in stock returns.  

 

The GARCH(p,q) model can be formulated as

r = + o z . z i i dN(0,1)

2 @ .2 P , -°ot = 0 + = 4 € h 2 j = 1 ' j 0 - j

o > 0 , a , > 0 , i = 1 . . . , q ,B,>0,j=1,...,p• (3.13)

where q refers to the number of autoregressive lags or ARCH terms, while p denotes the

number of past conditional variances, which often is referred to as GARCH terms (Engle,

2001). The coefficient /3can be interpreted as the degree of volatility persistence. For

instance, a large /3value indicates that the conditional variance decays slowly. The GARCH

process is also assumed to be wide-sense stationary (WSS) if the sum of the two parameters,

a and /3< l (Bollerslev, 1986). The term WSS implies that the mean and the autocorrelation

functions are time invariant. The value of the three parameters o, a, and p can be obtained

using Maximum Likelihood Estimation (MLE), which we will describe in section 3.4.

The GARCH(l,1) model is a popular specification of the GARCH(p,q) model, due to its

simplicity and robustness. In comparison with other volatility models there has been evidence

that the GARCH(l,1) model is quite hard to beat, as examined by Hansen and Lunde (2005).

The GARCH(l,1) model can be expressed as:

(3.14)

However, it is worth noting that the standard GARCH models have some drawbacks. If we

consider the GARCH(p,q) model shown in equation (2.7), we can see that the conditional

variance is a function of squared innovations, which means that it disregards the sign of the

returns (Knight & Satchell, 2007). However, it is quite unlikely that positive and negative

shocks in the price of a given security will have the same effect on volatility. Thus, we can

conclude that the standard GARCH models are not able to capture the asymmetry and

leverage effects that are observed in stock returns.
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There exist many different extensions of the standard GARCH model, all of which have 

different properties. For example, we have regime switching GARCH models, which can take 

into account the sudden changes in the state of the market. Other popular extensions include 

the asymmetric GARCH models, such as the GJR-GARCH and exponential GARCH 

(EGARCH) model. 

3.3 Exponential GARCH Model 

The exponential GARCH model was first proposed by Daniel B. Nelson in 1991. Recall that 

we had to impose a non-negative constraint on the standard ARCH and GARCH model to 

ensure that the conditional variance remains positive. The EGARCH model specifies the 

conditional variance in logarithmic form, and we therefore do not need to include the non-

negative constraint (Poon & Granger, 2003). The standard GARCH models only consider the 

magnitude of a shock, while disregarding if the shock is positive or negative (Nelson, 1991). 

 

The EGARCH(p,q) model can be written in the following manner: 

 

{
  𝜖𝜖𝑡𝑡 =  𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡                                                                        
  𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 + ∑ 𝛼𝛼𝑖𝑖𝑞𝑞

𝑖𝑖=1 𝑙𝑙(𝑧𝑧𝑡𝑡−𝑖𝑖) + ∑ 𝛽𝛽𝑗𝑗𝑝𝑝
𝑗𝑗=1 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝑡𝑡−𝑗𝑗2  ,       (3.15) 

where 

𝑙𝑙(𝑧𝑧𝑡𝑡) = 𝜃𝜃𝜖𝜖𝑡𝑡 + 𝛾𝛾(|𝑧𝑧𝑡𝑡| − 𝐸𝐸|𝑧𝑧𝑡𝑡|).                    (3.16) 

The weighted innovation, described by the function 𝑙𝑙(𝑧𝑧𝑡𝑡) allows the model to respond 

asymmetrically to positive and negative values of asset returns. (Tsay, 2013). In equation 

(3.16) the parameters, 𝜃𝜃 (theta) and 𝛾𝛾 (gamma) are real constants. Both the absolute residuals 

and the expectation of the absolute residuals are zero-mean iid sequences with continuous 

distributions. 

There exist many different extensions of the standard GARCH model, all of which have

different properties. For example, we have regime switching GARCH models, which can take

into account the sudden changes in the state of the market. Other popular extensions include

the asymmetric GARCH models, such as the GJR-GARCH and exponential GARCH

(EGARCH) model.

3.3 Exponential GARCH Model

The exponential GARCH model was first proposed by Daniel B. Nelson in 1991. Recall that

we had to impose a non-negative constraint on the standard ARCH and GARCH model to

ensure that the conditional variance remains positive. The EGARCH model specifies the

conditional variance in logarithmic form, and we therefore do not need to include the non-

negative constraint (Poon & Granger, 2003). The standard GARCH models only consider the

magnitude of a shock, while disregarding if the shock is positive or negative (Nelson, 1991).

The EGARCH(p,q) model can be written in the following manner:

where

(3.15)

(3.16)

The weighted innovation, described by the function g(z,) allows the model to respond

asymmetrically to positive and negative values of asset returns. (Tsay, 2013). In equation

(3.16) the parameters, 0 (theta) and y (gamma) are real constants. Both the absolute residuals

and the expectation of the absolute residuals are zero-mean iid sequences with continuous

distributions.
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3.4 Estimation of ARCH and GARCH Models 

In this section we will explain how to estimate the parameters in the ARCH and GARCH 

models. The simplest way to estimate an ARCH model is by using ordinary least squares 

(OLS). Although this is a simple estimation method, the OLS estimators are inefficient in the 

presence of heteroskedasticity (Francq & Zakoian, 2010). There exists an alternative 

estimation method which performs better in the presence of heteroskedasticity and non-

linearity, and this method is known as Maximum Likelihood Estimation (MLE). This 

estimation method is typically used by both ARCH and GARCH models. In MLE, the 

parameter values are obtained by maximizing a likelihood function in such a way that the 

observed data is most probable. When performing MLE we need to make an important 

assumption which states that the data needs to be identically and independently distributed. In 

other terms, it means that a sample of n random variables must share the same probability 

distribution and that all of the samples are independent events. As previously mentioned, it is 

commonly assumed that the returns follow a normal distribution. However, the returns will in 

many cases have fatter tails than suggested by the normal distribution. This indicates that an 

ARCH or GARCH model can be improved by instead assuming a heavy-tailed distribution, 

such as the student-t distribution. 

 

The return data is assumed to be generated from a known density function, as follows:  

𝑧𝑧 ~ 𝑓𝑓(𝑟𝑟𝑡𝑡|𝑟𝑟𝑡𝑡−1, 𝑟𝑟𝑡𝑡−2, … ; 𝜃𝜃)            (3.17) 

Where 𝑟𝑟𝑡𝑡 is the sample data of returns, which depends on the parameter known as theta. The 

parameter theta, denoted by 𝜃𝜃, is a parameter vector which contains a set of unknown 

parameters that needs to be estimated.  

 
Given the fact that our data is assumed to be iid, we can construct the following likelihood 

and joint density function: 

 
𝐿𝐿(𝜃𝜃|𝑧𝑧) =  ∏ 𝑓𝑓(𝑧𝑧1, … , 𝑧𝑧𝑡𝑡|𝜃𝜃)𝑇𝑇

𝑡𝑡=1           (3.18) 

The likelihood function denoted by 𝐿𝐿(𝜃𝜃|𝑧𝑧) is a function of the parameter 𝜃𝜃, and it must not be 

confused with the probability density function, which is a function of each observation of 𝑧𝑧𝑡𝑡 
with the parameter 𝜃𝜃 fixed. In practice, it is often more convenient to use the log-likelihood 

3.4 Estimation of ARCH and GARCH Models

In this section we will explain how to estimate the parameters in the ARCH and GARCH

models. The simplest way to estimate an ARCH model is by using ordinary least squares

(OLS). Although this is a simple estimation method, the OLS estimators are inefficient in the

presence ofheteroskedasticity (Francq & Zakoian, 2010). There exists an alternative

estimation method which performs better in the presence ofheteroskedasticity and non-

linearity, and this method is known as Maximum Likelihood Estimation (MLE). This

estimation method is typically used by both ARCH and GARCH models. In MLE, the

parameter values are obtained by maximizing a likelihood function in such a way that the

observed data is most probable. When performing MLE we need to make an important

assumption which states that the data needs to be identically and independently distributed. In

other terms, it means that a sample of n random variables must share the same probability

distribution and that all of the samples are independent events. As previously mentioned, it is

commonly assumed that the returns follow a normal distribution. However, the returns will in

many cases have fatter tails than suggested by the normal distribution. This indicates that an

ARCH or GARCH model can be improved by instead assuming a heavy-tailed distribution,

such as the student-t distribution.

The return data is assumed to be generated from a known density function, as follows:

z f ( r / re -BT-2» . . .50) (3.17)

Where r, is the sample data of returns, which depends on the parameter known as theta. The

parameter theta, denoted by 0 , i s a parameter vector which contains a set of unknown

parameters that needs to be estimated.

Given the fact that our data is assumed to be iid, we can construct the following likelihood

and joint density function:

(3.18)

The likelihood function denoted by L (0Iz) is a function of the parameter 0, and it must not be

confused with the probability density function, which is a function of each observation of Zt

with the parameter 0 fixed. In practice, it is often more convenient to use the log-likelihood
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instead of the original likelihood function. This is because it is usually easier to work with a 

sum rather than the products of densities. The natural logarithm is a monotonically increasing 

function which ensures that the maximum value of the log-likelihood function occurs at the 

same point as the original likelihood. We can then express the log-likelihood function as 

following: 

log 𝐿𝐿(𝜃𝜃|𝑧𝑧) = ∑ log 𝑓𝑓(𝑧𝑧1, … , 𝑧𝑧𝑡𝑡|𝜃𝜃)𝑇𝑇
𝑡𝑡=1                    (3.19) 

3.4.1 Normal Distribution 

By assuming that our data follows a normal distribution we can express equation (3.18) as: 

 

𝐿𝐿(𝜃𝜃|𝑧𝑧) =  ∏ 𝑓𝑓(𝑧𝑧1, … , 𝑧𝑧𝑡𝑡|𝜃𝜃)𝑇𝑇
𝑡𝑡=1 = ∏ [ 1

√2𝜋𝜋𝜎𝜎𝑡𝑡2
 𝑋𝑋𝑒𝑒𝑝𝑝 (− 𝑟𝑟𝑡𝑡2

2𝜎𝜎𝑡𝑡2
)]𝑇𝑇

𝑡𝑡=1         (3.20) 

The log-likelihood function is then given by: 

 

𝐿𝐿(𝜃𝜃|𝑧𝑧) =  ∑ [− 12 log(2𝜋𝜋) −
1
2 log(𝜎𝜎𝑡𝑡

2) − 12
𝑟𝑟𝑡𝑡2

𝜎𝜎𝑡𝑡2
]𝑇𝑇

𝑡𝑡=1         (3.21) 

We can then simplify the equation by ignoring the constant values since they do not impact 

the solution (Danielsson, 2011). The equation can then be written as: 

 

𝐿𝐿(𝜃𝜃|𝑧𝑧) =  ∑ [− 12 log(𝜎𝜎𝑡𝑡
2) − 12

𝑟𝑟𝑡𝑡2

𝜎𝜎𝑡𝑡2
]𝑇𝑇

𝑡𝑡=1 =  − 12∑ [log(𝜎𝜎𝑡𝑡2) +
𝑟𝑟𝑡𝑡2

𝜎𝜎𝑡𝑡2
]𝑇𝑇

𝑡𝑡=1       (3.22) 

To specify the log-likelihood function for the ARCH and GARCH models, we can simply 

substitute the conditional variance with the terms expressed in equation (3.11) and (3.13). For 

example, if we want to estimate the parameters of a GARCH(1,1) model we obtain the 

following equation: 

    𝐿𝐿(𝜃𝜃|𝑧𝑧) = − 12∑ [log(𝜔𝜔 + 𝛼𝛼1𝜖𝜖𝑡𝑡−12 + 𝛽𝛽1𝜎𝜎𝑡𝑡−12 ) +
𝑟𝑟𝑡𝑡2

𝜔𝜔+𝛼𝛼1𝜖𝜖𝑡𝑡−12 +𝛽𝛽1𝜎𝜎𝑡𝑡−12
]𝑇𝑇

𝑡𝑡=1        (3.23) 

instead of the original likelihood function. This is because it is usually easier to work with a

sum rather than the products of densities. The natural logarithm is a monotonically increasing

function which ensures that the maximum value of the log-likelihood function occurs at the

same point as the original likelihood. We can then express the log-likelihood function as

following:

log L(@\z)= q l o g f , , · , z 1 0 ) (3.19)

3.4.1 Normal Distribution

By assuming that our data follows a normal distribution we can express equation (3.18) as:

The log-likelihood function is then given by:

(3.20)

(3.21)

We can then simplify the equation by ignoring the constant values since they do not impact

the solution (Danielsson, 2011). The equation can then be written as:

(3.22)

To specify the log-likelihood function for the ARCH and GARCH models, we can simply

substitute the conditional variance with the terms expressed in equation (3.11) and (3.13). For

example, if we want to estimate the parameters of a GARCH(l, l) model we obtain the

following equation:

(3.23)
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3.4.2 Student-t Distribution 

As noted previously, observed returns will often have fatter tails than implied by the normal 

distribution. Hence, a conditionally fat distribution such as the student-t distribution can lead 

to a better fit. We assume that the innovation in returns, denoted 𝑧𝑧𝑡𝑡 takes the following form: 

 

𝑧𝑧𝑡𝑡 ~ 𝑡𝑡(𝑣𝑣)                 (3.24) 

Where, the degrees of freedom are denoted by v and 𝑡𝑡(𝑣𝑣) represents a student-t distribution. 

The density function for the student-t distribution is given by 

𝑓𝑓𝑡𝑡(𝑧𝑧1, … , 𝑧𝑧𝑡𝑡|𝜃𝜃) =
𝛤𝛤(𝜈𝜈+12 )

((𝑣𝑣−2)𝜋𝜋)
1
2𝛤𝛤(𝜈𝜈2)

(1 + 𝑟𝑟𝑡𝑡
2

𝜈𝜈−1)
−𝑣𝑣+12 ,   𝜈𝜈 > 2.          (3.25) 

where (г) denotes the gamma function. As the degrees of freedom are increasing towards 

infinity, the student-t distribution approaches the normal distribution with mean zero and 

variance equal to one (Danielsson, 2011). 

 

The log-likelihood function for the student-t distribution is then given by 

𝐿𝐿𝑆𝑆𝑡𝑡𝑎𝑎𝑟𝑟𝑟𝑟𝑛𝑛𝑡𝑡 = 𝑇𝑇 [𝑙𝑙𝑙𝑙𝑙𝑙 𝛤𝛤 (
𝜈𝜈 + 1
2 ) − 𝑙𝑙𝑙𝑙𝑙𝑙 𝛤𝛤 (

𝜈𝜈
2) −

1
2 𝑙𝑙𝑙𝑙𝑙𝑙[𝜋𝜋(𝜈𝜈 − 2)]] 

= −12∑ [log (𝜎𝜎𝑡𝑡2) + (𝜈𝜈 + 1) log (1 +
𝑟𝑟𝑡𝑡2

𝜈𝜈−2)]
𝑇𝑇
𝑡𝑡=1  .        (3.26) 

 

3.4.2 Student-t Distribution

As noted previously, observed returns will often have fatter tails than implied by the normal

distribution. Hence, a conditionally fat distribution such as the student-t distribution can lead

to a better fit. We assume that the innovation in returns, denoted z, takes the following form:

- t) (3.24)

Where, the degrees of freedom are denoted by v and tev) represents a student-t distribution.

The density function for the student-t distribution is given by
v+1r(2±±) 2=fz....,zlo)= = · ( 1 + , ) , v > 2

((v-2)rr)2rG) v - l
(3.25)

where (r) denotes the gamma function. As the degrees of freedom are increasing towards

infinity, the student-t distribution approaches the normal distribution with mean zero and

variance equal to one (Danielsson, 2011).

The log-likelihood function for the student-t distribution is then given by

Ls,udent = T [log rC;1)- log%)heat«o-z]
=-;EI[oetcb)++ 1 t o e ( 1 + ) ] (3.26)
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4. Machine Learning Models 

4.1 Artificial Neural Networks 

Neural networks have been gaining increasing popularity over the years, especially due to 

successful applications in many areas of industry, such as robotics, automotive industry, 

power plants, aircraft control, medical systems, and others (Schumann et al. 2010). Other 

typical tasks performed by neural networks include classification, prediction, clustering, and 

pattern recognition. There exists a large variety of neural network structures, and in this 

chapter, we are going to present some of them, emphasizing on volatility forecasting. 

 

Artificial neural networks (ANNs), commonly just referred to as neural networks (NNs), are 

computational models inspired by the biological nervous system. Neural networks were first 

proposed by McCulloch and Pitts (1943), where they created a model that simulates how the 

neurons function in the human brain. An Artificial neural network is typically made up of 

multiple layers, where the neurons from one layer connect with the neurons in the preceding 

and following layers. A neural network with a single layer is called a perceptron and a neural 

network with multiple layers is called an artificial neural network. Most linear relationships 

can be accurately modeled by a perceptron, but more complex artificial neural networks are 

required for more difficult problems.  

 

 

Figure 4.1: Artificial neural network without any hidden layers. 
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Neural networks have been gaining increasing popularity over the years, especially due to
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multiple layers, where the neurons from one layer connect with the neurons in the preceding
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required for more difficult problems.
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Figure 4.1: Artificial neural network without any hidden layers.
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Figure 4.1 shows one of the simplest versions of an artificial neural network, one without any 

hidden layers. Each unit’s output is the result of applying the chosen activation function to a 

summing node shown in equation (4.1). Where 𝑎𝑎𝑗𝑗 is the incoming sum for processing unit j 

after applying the activation value for unit j, and 𝑤𝑤𝑗𝑗𝑖𝑖 is the weight from unit i to unit j. 

𝑎𝑎𝑗𝑗 = 𝑓𝑓(∑ 𝑤𝑤𝑗𝑗𝑖𝑖𝑛𝑛
𝑖𝑖=0 𝑎𝑎𝑛𝑛)    (4.1) 

In artificial neural networks, the coefficients attached to each predictor are instead called 

weights and the algorithm uses randomness to find a good enough set of weights for the 

specific mapping function from the inputs to outputs (Dayhoff & DeLeo, 2001). However, 

using a simple artificial neural network, like the one shown in figure 4.1 can be the equivalent 

of a very inefficient approach to achieving the same results as ordinary least squares or a 

logistic regression. 

 
A common approach for artificial networks is to make use of a deep neural network (DNN). 

Deep neural networks often start with the input layer which receives the input variables and 

passes them to the rest of the network. The next type of layer is referred to as the hidden layer 

and is located between the input and output layer. The number of hidden layers can be zero or 

more. Lastly, we have the output layer which is providing the estimated dependent variable. 

In figure 3.1 which is presented below, you can see a typical representation of a fully 

connected deep neural network with a single hidden layer. The purpose of the hidden layer is 

to grant flexibility to the model to find relationships that are not based on just the input values 

and are instead limited to the weights established by the input layer. The hidden layer can 

come up with entirely new weights based solely on weights from the previous layer, a hidden 

layer is the main reason why neural networks are able to fit very complex problems with 

multiple layers of information, while other models would require more supervision to achieve 

a good fit. 

Figure 4.1 shows one of the simplest versions of an artificial neural network, one without any

hidden layers. Each unit's output is the result of applying the chosen activation function to a

summing node shown in equation (4.1). Where a is the incoming sum for processing unit j

after applying the activation value for unit j, and wq is the weight from unit i to unitj.

(4.1)

In artificial neural networks, the coefficients attached to each predictor are instead called

weights and the algorithm uses randomness to find a good enough set of weights for the

specific mapping function from the inputs to outputs (Dayhoff & DeLeo, 2001). However,

using a simple artificial neural network, like the one shown in figure 4.1 can be the equivalent

of a very inefficient approach to achieving the same results as ordinary least squares or a

logistic regression.

A common approach for artificial networks is to make use of a deep neural network (DNN).

Deep neural networks often start with the input layer which receives the input variables and

passes them to the rest of the network. The next type of layer is referred to as the hidden layer

and is located between the input and output layer. The number of hidden layers can be zero or

more. Lastly, we have the output layer which is providing the estimated dependent variable.

In figure 3. l which is presented below, you can see a typical representation of a fully

connected deep neural network with a single hidden layer. The purpose of the hidden layer is

to grant flexibility to the model to find relationships that are not based on just the input values

and are instead limited to the weights established by the input layer. The hidden layer can

come up with entirely new weights based solely on weights from the previous layer, a hidden

layer is the main reason why neural networks are able to fit very complex problems with

multiple layers of information, while other models would require more supervision to achieve

a good fit.
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Figure 4.2: Single hidden layer deep neural network 

 

This type of neural network consists of two phases: forward propagation and back 

propagation. Forward propagation entails multiplying feature values with assigned weights 

and applying activation functions to each neuron. Back propagation on the other hand updates 

the weights by partially differentiating gradients of the loss function. An optimization 

function is required to perform back propagation. The purpose of an optimizer is to establish a 

relationship between the loss function and the model weights. The optimizer dictates how the 

learning and improvements take place and at what rate, this entails the different optimizers 

and learning rates must be tested to find the best specifications to achieve the best out-of-

sample performance. We will mainly work with Stochastic gradient descent (SGD), since it 

has been proven to be a reliable optimizer, superior to more modern approaches such as Adam 

(Wilson et al., 2017). 

 

Stochastic gradient descent (SGD) is a convex function whose output is the partial derivative 

of the weights of its inputs (Bottou & Bousquet, 2008). The formulation of the SGD can be 

seen in equation 4.2. Where w denotes the weight, while t stands for the current iteration, the 

parameter η refers to the learning rate, and ℓ stands for the current loss.  

 

𝑤𝑤(𝑡𝑡 + 1) = 𝑤𝑤(𝑡𝑡) − 𝜂𝜂𝑡𝑡
𝜕𝜕ℓ
𝜕𝜕𝜕𝜕     (4.2) 
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Figure 4.2: Single hidden layer deep neural network

This type of neural network consists of two phases: forward propagation and back

propagation. Forward propagation entails multiplying feature values with assigned weights

and applying activation functions to each neuron. Back propagation on the other hand updates

the weights by partially differentiating gradients of the loss function. An optimization

function is required to perform back propagation. The purpose of an optimizer is to establish a

relationship between the loss function and the model weights. The optimizer dictates how the

learning and improvements take place and at what rate, this entails the different optimizers

and learning rates must be tested to find the best specifications to achieve the best out-of-

sample performance. We will mainly work with Stochastic gradient descent (SGD), since it

has been proven to be a reliable optimizer, superior to more modem approaches such as Adam

(Wilson et al., 2017).

Stochastic gradient descent (SGD) is a convex function whose output is the partial derivative

of the weights of its inputs (Bottou & Bousquet, 2008). The formulation of the SGD can be

seen in equation 4.2. Where w denotes the weight, while t stands for the current iteration, the

parameter rt refers to the learning rate, and f stands for the current loss.

w @ + 1 ) = w @ o - % ! # ; (4.2)
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The greater the gradient, the steeper the slope and learning rate. Gradient descent is run 

iteratively to find the optimal values of the weights to lead to the minimum possible value of 

the given loss function. The SGD convergence is essentially limited by the stochastic noise 

induced by the random choice of one example at each iteration. For simple regression 

problems, a faster learning rate would be ideal to reach the global minima quicker, while more 

complex problems may require a slower fitting process to detect subtle improvements at the 

expense of speed. 

4.2 Activation functions 

The purpose of an activation function is to introduce non-linearity to the data. Introducing 

non-linearity helps to identify more complex underlying patterns within the data. It is also 

used to scale the value to a particular interval. For example, the sigmoid activation function, 

shown in equation (4.3), scales the value between 0 and 1. If an activation function is not 

applied, the output signal becomes a simple linear function, which in some cases is the ideal 

approach.  

 

Given that realized volatility is a continuous value, we will instead be using activation ReLU, 

as well as linear activation. ReLU stands for rectified linear activation unit, while linear 

activation is essentially multiplying coefficients with weights. 

 

Sigmoid:  𝑓𝑓(𝑒𝑒) = 1
1+𝑟𝑟−𝑥𝑥    (4.3) 

        ReLU:  𝑓𝑓(𝑒𝑒) = { 0    𝑓𝑓𝑙𝑙𝑟𝑟 𝑒𝑒 < 0 𝑒𝑒    𝑓𝑓𝑙𝑙𝑟𝑟 𝑒𝑒 ≥ 0     

               = 𝑚𝑚𝑎𝑎𝑒𝑒{0, 𝑒𝑒}    (4.4) 

                                   Linear:        𝑓𝑓(𝑒𝑒) = 𝑒𝑒      (4.5) 
 

The main advantage of making use of neural networks is the fact that they are able to model 

complex non-linear relationships, as well as variable interactions to identify relationships that 

would be impossible for a human or would require extensive feature engineering for 

The greater the gradient, the steeper the slope and learning rate. Gradient descent is run

iteratively to find the optimal values of the weights to lead to the minimum possible value of

the given loss function. The SGD convergence is essentially limited by the stochastic noise

induced by the random choice of one example at each iteration. For simple regression

problems, a faster learning rate would be ideal to reach the global minima quicker, while more

complex problems may require a slower fitting process to detect subtle improvements at the

expense of speed.

4.2 Activation functions

The purpose of an activation function is to introduce non-linearity to the data. Introducing

non-linearity helps to identify more complex underlying patterns within the data. It is also

used to scale the value to a particular interval. For example, the sigmoid activation function,

shown in equation (4.3), scales the value between Oand l. If an activation function is not

applied, the output signal becomes a simple linear function, which in some cases is the ideal

approach.

Given that realized volatility is a continuous value, we will instead be using activation ReLU,

as well as linear activation. ReLU stands for rectified linear activation unit, while linear

activation is essentially multiplying coefficients with weights.

Sigmoid:
1

f a ) = ,a- (4.3)

ReLU:

Linear:

ro-{% for x < 0
for x> 0

= max{O,x} (4.4)

f ( x ) = x (4.5)

The main advantage of making use of neural networks is the fact that they are able to model

complex non-linear relationships, as well as variable interactions to identify relationships that

would be impossible for a human or would require extensive feature engineering for
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traditional machine learning methods to detect and model. The downside however is that even 

though artificial neural networks assign interpretable weights/coefficients to each variable just 

like a regular regression model, artificial neural networks rely on sets of relationships within 

each neuron that lead to very complex, in some cases unnecessarily complex, large sets of 

weights that often times are far too many for it to be interpretable beyond its final answer, 

which leads to the issue of Blackbox solutions which are very difficult to interpret (Dayhoff & 

DeLeo, 2001). 

4.3 Recurrent Neural Networks 

Recurrent neural networks (RNN) are a type of neural network which has the additional 

feature of being able to take into consideration previous output of the model as additional 

input to search for relationships between past predictions and the next prediction in the time 

series. Recurrent neural networks are especially useful when dealing with time series data or 

natural language processing data because of its inherent ability to incorporate previous 

predictions to forecast based on the regressors, as well as establish a relationship between 

previous predictions and future predictions (Gers et al., 2002). 

 

 
Figure 4.3: Illustration of a recurrent neural network and a feedforward neural network. 

 

For example, if we were to train a model to predict the dietary patterns of an individual, the 

main difference between a neural network and a recurrent neural network would be that the 

traditional machine learning methods to detect and model. The downside however is that even

though artificial neural networks assign interpretable weights/coefficients to each variable just

like a regular regression model, artificial neural networks rely on sets of relationships within

each neuron that lead to very complex, in some cases unnecessarily complex, large sets of

weights that often times are far too many for it to be interpretable beyond its final answer,
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DeLeo, 2001).
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Recurrent neural networks (RNN) are a type of neural network which has the additional

feature of being able to take into consideration previous output of the model as additional

input to search for relationships between past predictions and the next prediction in the time

series. Recurrent neural networks are especially useful when dealing with time series data or

natural language processing data because of its inherent ability to incorporate previous

predictions to forecast based on the regressors, as well as establish a relationship between

previous predictions and future predictions (Gers et al., 2002).
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Figure 4.3: Illustration of a recurrent neural network and a feedforward neural network.

For example, if we were to train a model to predict the dietary patterns of an individual, the

main difference between a neural network and a recurrent neural network would be that the
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standard NN would only be able to predict based on the available variables, while the RNN 

would also be able to incorporate previous predictions as part of its input if deemed useful. 

This additional feature of recurrent neural networks allows us to access additional information 

generated by the model, similar to GARCH type models. This added feature of recurrent 

neural networks makes them specially qualified for working with time series data. 

4.4 Ensemble Models 

In traditional machine learning, models use cleaned and sometimes normalized inputs, as well 

as engineered features to generate the best fit to reduce the chosen loss function. Ensemble 

modeling on the other hand is a process where multiple different models are used to predict an 

outcome. The motivation for using ensemble models is to reduce the generalization error of 

the prediction as well as reduce overfitting. Going beyond relying on one single model has 

proven to further improve model forecasting performance (Hölldobler et al., 2017). 

incorporating predictions from different models into a larger model can add additional 

information beyond the data itself. For instance, an example of how capable the combination 

of models can be is the case of AlphaGo, which was the first model to be able to win a game 

of Go at a professional level and was achieved with an ensemble of different neural networks 

focusing on different tasks  

To leverage the information provided by GARCH and improve volatility predictions, we will 

use two different approaches to combine our models. One approach will be using ensemble 

averaging, and the second approach will be to use stacked ensemble models. 

 

4.4.1 Ensemble Averaging Models 

Ensemble models can reduce the chance of overfitting by combining different model strengths 

while reducing modeling method biases. However, the decrease in predicting error should only 

arise if the models used are diverse and independent. An easy way to produce ensemble models 

is to generate an average estimate from all the models used, which is done by generating out-

of-sample predictions for different models and calculating the average prediction. An operation 

as simple as the average of different model predictions can oftentimes lead to superior models 

(Disorntetiwat & Dagli, 2000). 

standard NN would only be able to predict based on the available variables, while the RNN

would also be able to incorporate previous predictions as part of its input if deemed useful.

This additional feature of recurrent neural networks allows us to access additional information

generated by the model, similar to GARCH type models. This added feature of recurrent

neural networks makes them specially qualified for working with time series data.
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In traditional machine learning, models use cleaned and sometimes normalized inputs, as well

as engineered features to generate the best fit to reduce the chosen loss function. Ensemble

modeling on the other hand is a process where multiple different models are used to predict an

outcome. The motivation for using ensemble models is to reduce the generalization error of

the prediction as well as reduce overfitting. Going beyond relying on one single model has

proven to further improve model forecasting performance (Hölldobler et al., 2017).

incorporating predictions from different models into a larger model can add additional

information beyond the data itself For instance, an example of how capable the combination

of models can be is the case of AlphaGo, which was the first model to be able to win a game

of Go at a professional level and was achieved with an ensemble of different neural networks

focusing on different tasks

To leverage the information provided by GARCH and improve volatility predictions, we will

use two different approaches to combine our models. One approach will be using ensemble

averaging, and the second approach will be to use stacked ensemble models.

4.4.1 Ensemble Averaging Models

Ensemble models can reduce the chance of overfitting by combining different model strengths

while reducing modeling method biases. However, the decrease in predicting error should only

arise if the models used are diverse and independent. An easy way to produce ensemble models

is to generate an average estimate from all the models used, which is done by generating out-

of-sample predictions for different models and calculating the average prediction. An operation

as simple as the average of different model predictions can oftentimes lead to superior models

(Disomtetiwat & Dagli, 2000).
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4.4.2 Stacked Models 

Even though combining predictions is a good option to incorporate different models, we will 

also be making use of stacked models, which is a different form of ensemble models. 

In model stacking, we don’t combine multiple outputs to produce a final estimate, we instead 

forecast separate predictions with several different models, and then use those predictions as 

features for a higher-level meta model. It can work especially well by combining several 

varied types of lower-level learners, all contributing their different strengths to the final meta 

model (Ramos-Pérez et al., 2019). Model stacks can be built in many ways, and there isn’t 

one “correct” way to use stacking. However, if our model achieves better results than one 

single model, then we can safely say we benefited from the additional information the other 

models contained.  

  

The main difference between Ensemble Averaging and Stacking is that the Averaging 

approach calculates an average of the final outputs of different models to generate a combined 

prediction which could lead to better out of sample performance compared to any of the single 

models. On the other hand, stacked models would instead incorporate these predictions as 

additional inputs for a final model that would predict based on the actual data, as well as what 

other models forecasted. 

 

4.4.2 Stacked Models

Even though combining predictions is a good option to incorporate different models, we will

also be making use of stacked models, which is a different form of ensemble models.

In model stacking, we don't combine multiple outputs to produce a final estimate, we instead

forecast separate predictions with several different models, and then use those predictions as

features for a higher-level meta model. It can work especially well by combining several

varied types of lower-level learners, all contributing their different strengths to the final meta

model (Ramos-Perez et al., 2019). Model stacks can be built in many ways, and there isn't

one "correct" way to use stacking. However, if our model achieves better results than one

single model, then we can safely say we benefited from the additional information the other

models contained.

The main difference between Ensemble Averaging and Stacking is that the Averaging

approach calculates an average of the final outputs of different models to generate a combined

prediction which could lead to better out of sample performance compared to any of the single

models. On the other hand, stacked models would instead incorporate these predictions as

additional inputs for a final model that would predict based on the actual data, as well as what

other models forecasted.
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5. Preliminary data analysis 

5.1 Data description 

In this study we use daily logarithmic returns of the S&P 500 Index. The S&P 500 Index is a 

stock market index, which consists of 500 large-cap companies, all of which are listed on 

stock exchanges in the United States. The reason why we use the returns instead of the closing 

prices has to do with the common assumption of stationarity in time series. The observed 

prices of a stock or an index are typically non-stationary, and thus have to be transformed into 

a stationary time series. This can be achieved by applying a method known as differencing, 

which computes the difference between consecutive observations (Hyndman & 

Athanasopoulos, 2018). The reason why we do this is to eliminate trends and seasonality in 

our time series. Taking the logarithm of the returns is another technique used to stabilize the 

variance of our time series. Let 𝑃𝑃𝑡𝑡 be the closing price of a financial asset at a specified time 

period given by the subscript t. The logarithmic return of an asset can then be formulated as: 

 

𝑟𝑟𝑡𝑡 = log (
𝑃𝑃𝑡𝑡
𝑃𝑃𝑡𝑡−1
) = log(𝑃𝑃𝑡𝑡) − log(𝑃𝑃𝑡𝑡−1)  (5.1) 

These returns are calculated based on adjusted closing prices, which is considered to be more 

accurate and reliable than using the raw closing prices. The data is obtained from Yahoo 

Finance, and it includes 10 years of historical data. The stock markets are not open during 

weekends or holidays. Thus, our data only contains the number of trading days over the 10-

year period. Our sample period starts from 01.03.2012 to 01.03.2022, and the total sample 

size is equal to 2505 observations. 

5.1.1 Volatility proxy 

The volatility proxy we are going to use in this study is realized volatility, which is computed 

based on squared intraday returns. The data is obtained from the Oxford-Man Institute’s 

realized library. On their website, we could choose between using a sampling frequency of 

either 5 or 10 minutes for the realized variance. We decided to use a sampling frequency of 10 

minutes, to reduce some of the potential market microstructure noise. Since we are interested 

in the realized volatility, we had to take the square root of the realized variance estimates. The 
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realized variance data for our selected 10-year period were missing 12 daily observations, 

therefore we decided to exclude these observations from our data set. Afterwards, we merged 

the realized variance data frame with the S&P 500 Index data in order to make the data points 

match. 

5.1.2 Descriptive statistics 

A summary of the descriptive statistics of the S&P 500 Index and the daily realized volatility 

is presented in Table 5.1. As shown in the table, we can see that the S&P 500 Index had a 

positive average return of around 0.05% per day. The standard deviation of daily return is 

about 1.05%, which corresponds to an average annualized volatility of around 0.167%. By 

observing the skewness and kurtosis we can assess the distribution of our data. As presented 

in the table, the daily returns have a skewness of around -0.96 which means that we have 

slight negative skewness in our data. In other terms, this suggests that the tail of the 

distribution is longer on the left side, than what is assumed by a normal distribution. Next, we 

can see that the kurtosis coefficient is very large, which indicates that our distribution is 

heavy-tailed and that it has a high peak at the mean. As a reference point, the normal 

distribution has a kurtosis value of 3 and a skewness of zero, thus our results suggest that a 

gaussian distribution is unlikely. These results are further confirmed by the Jarque-Bera test, 

which is a goodness-of-fit test to find out whether the skewness and excess kurtosis is 

significantly different from zero. The value of the Jarque-Bera test statistic is around 46050, 

and the null hypothesis is rejected at a 1% significance level. This also indicates that our data 

does not fit a normal (gaussian) distribution.  

 

The Augmented Dickey-Fuller test (ADF) is being used to test whether our time series of 

returns is stationary or not. A stationary process is characterized by having a constant mean, a 

constant variance and a covariance structure that is stable over time. The null hypothesis of 

the ADF test is that the time series is non-stationary. As we can observe in the table below, 

the null hypothesis of the ADF test is rejected at a 1% significance level, which suggest that 

our data is indeed stationary. 
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Table 5.1: Descriptive statistics of S&P 500 Index and RV for the past 10 years. 

 
 

Figure 5.1 displays the daily returns and price level of the S&P 500 Index over a 10-year period. 

The graph on the left shows evidence that the volatility of returns varies over time. Upon further 

inspection, we can also observe that our time series has a mean-reverting behavior, where the 

returns tend to stay around zero in the long run. 

 

   
 
Figure 5.1: S&P 500 Index of returns and closing prices from 01.03.2012 to 01.03.2022. 

 
 

5.1.3 Autocorrelation 

The autocorrelation function (ACF) is a useful tool when analyzing time series, as it can 

display the serial correlation between the returns and their lagged values (Hyndman & 

Table 5.1: Descriptive statistics of S&P 500 Index and RV for the past 10 years.

Close price Daily rehun Realized volatility
Sample size 2505 2505 2505
Mean 2518 0 . 0 4 % 7.75 %
Std 849.96 1.05 % 2.39 %
Min 1278 -12.77% 3.38 %
25 % 1937 -0.34 % 6.13 %
50 % 2342 0.06 % 7.29 %
75 % 2914 0.52 % 8 . 8 4 %
Max 4797 8.97 % 26.00 %
Skewness 0.88 -0.96 1.89
Kurtosis 0.12 20.92 7.34
Jarque Bera test 316,68 46050° 7116
ADF test -2.09 -13,45 -6,602
Note: • a n d indicate significance at 1%, 5%, and 10% level, respectively.

Figure 5.1 displays the daily returns and price level of the S&P 500 Index over a 10-year period.

The graph on the left shows evidence that the volatility ofreturns varies over time. Upon further

inspection, we can also observe that our time series has a mean-reverting behavior, where the

returns tend to stay around zero in the long run.
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Figure 5.1: S&P 500 Index ofreturns and closing prices from 01.03.2012 to 01.03.2022.

5.1.3 Autocorrelation

The autocorrelation function (ACF) is a useful tool when analyzing time series, as it can

display the serial correlation between the returns and their lagged values (Hyndman &

27



28 
 

Athanasopoulos, 2018). If none of the lags in a time series display significant autocorrelation, 

then the series is considered to be white noise (WN). 

 

The sample ACF plot and partial ACF plot of returns can be used to determine the order of 

autoregressive (AR) and moving average (MA) lags in our time series. By observing the 

correlograms in figure 5.2 we can observe that both the sample ACF plot and partial ACF 

have several significant spikes outside of the confidence interval, which suggests that our 

series is unlikely to be white noise (Hyndman & Athanasopoulos, 2018). We can use the 

information displayed in table 5.2 to identify which type of model is suggested by the ACF 

and PACF plots. Both the sample ACF and partial ACF plots display a pattern of gradual 

decay towards zero, as the lags are increasing. This suggests that an ARMA(p,q) model would 

be an appropriate structure for our time series. Determining the order of an ARMA(p,q) 

model can be difficult from just inspecting the ACF and PACF plots. As seen in Brockwell & 

Davis (1991), a common approach among practitioners is to try out different variations of 

ARMA models and see which one provides the smallest value for the Akaike information 

criterion (AIC). These results can be found in Appendix B. 

 

Table 5.2: Identifying the order of an ARMA model. 

 
 

 
Figure 5.2: Sample ACF and Partial ACF plot of daily S&P 500 returns. The dashed blue 
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Figure 5.2: Sample ACF and Partial ACF plot of daily S&P 500 returns. The dashed blue
lines indicate whether the correlations are significantly different from zero.
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The ACF plots of squared and absolute returns can be used to identify if there are any signs of 

volatility clustering in our data. From observing the two plots in figure 5.3, we can clearly see 

that most of the lags are outside of the 95% confidence interval. This indicates that we do 

have volatility clustering in our time series, which motivates the use of the GARCH class of 

models. 

 
Figure 5.3: ACF of squared and absolute returns for the S&P 500 Index. 

 

5.1.4 Normal Q-Q plot and histogram 

Figure 5.4 displays a quantile-to-quantile (Q-Q) plot and a histogram of the S&P 500 Index 

returns. The normal Q-Q plot is being used to test our assumption that the returns follow a 

normal distribution. From observing the Q-Q plot, we can see that many data points are 

deviating in the tails from the reference line. Moreover, we can see that the Q-Q plot yields an 

inverted S shape, which indicates a heavy-tailed distribution. This indicates that the returns do 

not seem to follow a normal distribution. The same conclusion can be drawn from inspecting 

the histogram of the returns from the S&P 500 Index. We can clearly see that the daily returns 

have a much higher peak at the mean than suggested by the normal distribution. 
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Figure 5.3: ACF of squared and absolute returns for the S&P 500 Index.

5.1.4 Normal Q-Q plot and histogram

Figure 5.4 displays a quantile-to-quantile (Q-Q) plot and a histogram of the S&P 500 Index

returns. The normal Q-Q plot is being used to test our assumption that the returns follow a

normal distribution. From observing the Q-Q plot, we can see that many data points are

deviating in the tails from the reference line. Moreover, we can see that the Q-Q plot yields an

inverted S shape, which indicates a heavy-tailed distribution. This indicates that the returns do

not seem to follow a normal distribution. The same conclusion can be drawn from inspecting

the histogram of the returns from the S&P 500 Index. We can clearly see that the daily returns

have a much higher peak at the mean than suggested by the normal distribution.
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Figure 5.4: Normal Q-Q plot and histogram of the S&P 500 Index returns. The red line in the 
histogram indicates an estimated kernel density function of the returns, while the blue line is a 
fitted normal distribution with the mean and standard deviation of the returns. 
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Figure 5.4: Normal Q-Q plot and histogram of the S&P 500 Index returns. The red line in the
histogram indicates an estimated kernel density function of the returns, while the blue line is a
fitted normal distribution with the mean and standard deviation of the returns.
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6. Methodology 

To explore the potential to improve the already established time series predictive properties of 

neural networks, we will incorporate GARCH type models into our neural networks by 

making use of ensemble models to better predict the one-day ahead volatility. We will be 

using Ordinary least squares (OLS) as our benchmark, and study different ways of combining 

GARCH type models with artificial neural networks (ANN) and Recurrent Neural networks 

(RNN). Other methods, such as support vector machines (SVM) and Gradient Boosting, could 

have also been incorporated into the study. However, neural networks were chosen as the 

method to study the combination of models due to its inherent ability to adapt to complex data 

to achieve high performance models without much feature engineering. 

6.1 Forecast horizon 

Volatility forecasting is extremely important to professional as well as individual portfolio 

managers, getting an accurate understanding of what the future volatility will be could mean 

the difference between a successfully hedged portfolio during uncertain times and a wasteful 

arbitrary purchase of derivatives based on market swings. There are multiple time horizon 

options for predicting volatility, both long-term and short-term offer different advantages and 

disadvantages. For this study, we will focus on one-day-ahead realized volatility to avoid 

exposure to macroeconomic events or events that are not contained within the time series 

data, and instead focus entirely on how previous returns and volatility can be used to predict 

future volatility. Given that short-term forecasting has shown to be more reliable than long-

term forecasting due to reduced chance of unquantifiable events that are not reflected in the 

data, yet can affect the dependent variable (Nissi et al., 2020). 

 

Additionally, it used to be very difficult and costly to access meaningfully large intraday price 

datasets to study short term market behavior. Today, there is more and more data made 

available to the general public by institutions as well as companies. This will likely lead to 

more accurate forecasts of future volatility.  
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6.2 Model implementation 

All of the models used in this thesis are implemented in the open-source programming 

language known as R. We will start with the implementation of an ARMA model, to 

determine the number of lags we should use in the conditional mean of the GARCH models. 

The ARMA model is fitted to the realized volatility proxy, and we test with different orders 

for the AR and MA lags. We would prefer to use a parsimonious model to avoid overfitting, 

therefore we will start with a low order of lags. We examine the residual ACF plots to check 

if the residuals look like white noise. A time series is considered to be white noise if more 

than 95% of the lags in the ACF lie within ±2/√𝑇𝑇, where T is the length of the series 

(Hyndman & Athanasopoulos, 2018). Additional AR and MA terms are added if the residual 

ACF plots display large significant spikes outside of the confidence interval, or if more than 

5% of the lags are outside these bounds. We end up with selecting an ARMA(1,1) model, and 

the residual ACF plot for that model is shown in figure 6.1 below. The autocorrelation of lag 

zero will always be equal to 1 and can therefore be ignored. From the figure we can observe 

that there are three spikes that are slightly outside of the confidence bands. Based on these 

observations, we conclude that our series can be approximated as white noise.  
 

 
Figure 6.1: ACF plot of ARMA(1,1) residuals. 
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Figure 6.1: ACF plot of ARMA(l,1) residuals.
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6.2.1 Implementation of GARCH models without external regressor 

All of our GARCH models are built using the “rugarch” package by Ghalanos (2022), which 

is an open-source software created for univariate GARCH modelling. We are going to 

implement a standard GARCH model and an exponential GARCH model under different 

distributional assumptions. Then we will examine which of these model specifications has the 

best in-sample fit and later see which model performs the best at forecasting the volatility of 

the daily returns in the S&P 500 stock index. At first, we are going to see how the models 

perform without the inclusion of an external regressor in the variance equation. During our 

initial analysis of the conditional variance, we find that the models performed well with a low 

order of lags. As mentioned previously, we would prefer to select the more parsimonious 

model, thus we specify the number of GARCH and ARCH terms (p,q) to be equal to (1,1). 

Usually, the GARCH models do not benefit from additional lag terms, unless you have data 

that extends over a long period of time, such as several decades of daily data (Engle, 2001). 

 

When we fit the models, we specify that we want to use the “hybrid” solver in order to avoid 

situations where the solver would fail to converge. The data is split into both training and test 

data to prevent overfitting. It is important that we have sufficient training data. A common 

way of dividing the data is by selecting 80% of the data for training and the remaining 20% as 

test data. In our study we specify that the last 488 observations in our data will be held out for 

out-of-sample forecasting. Thus, the remaining 2017 observations in the data set are selected 

as training data, which is being used for fitting the models.  

 

Before we can move on to forecasting, we make sure that the standardized residuals resemble 

white noise. Figure 6.2 presents the correlograms of the standardized residuals and the 

squared standardized residuals of our standard GARCH(1,1) model. From inspecting the ACF 

plot of the standardized residuals we observe that the 17th lag is slightly outside of the 

confidence interval, but overall, we conclude that the series behave like white noise. We can 

also examine the correlogram of the squared standardized residuals, to see if the volatility 

model has sufficiently captured all of the persistence in the variance of the returns (Knight & 

Satchell, 2007). From the plot of the squared standardized residuals, we can observe a small 

spike at the 10th lag, but the majority of the lags are not significantly different from zero. 

Thus, we can conclude that the residuals behave like white noise and that our chosen model is 
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adequate. We also observe similar results when we check the ACF of the residuals for the 

EGARCH(1,1) model. Results from the EGARCH model can be found in Appendix C. 

 

 
Figure 6.2: Correlograms of standardized residuals and the standardized squared residuals of 
an ARMA(1,1)-sGARCH(1,1) model. 

 
The Ljung-Box test is another statistical tool we use to test for autocorrelation in the 

standardized residuals of our GARCH models (Tsay, 2013). The null hypothesis of the Ljung-

Box test is that the residuals are independently distributed. The alternative hypothesis is that 

the residuals are not independently distributed and that they exhibit serial correlation. Table 

6.1 presents the results from the Weighted Ljung-Box test, which is tested on various lags. 

From the table we can see that the p-values are not statistically significant for any of the lags 

tested. Thus, we fail to reject the null hypothesis and cannot conclude that the autocorrelations 

are significantly different from zero. 
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Figure 6.2: Correlograms of standardized residuals and the standardized squared residuals of
an ARMA(l,1)-sGARCH(l,1) model.

The Ljung-Box test is another statistical tool we use to test for autocorrelation in the

standardized residuals of our GARCH models (Tsay, 2013). The null hypothesis of the Ljung-

Box test is that the residuals are independently distributed. The alternative hypothesis is that

the residuals are not independently distributed and that they exhibit serial correlation. Table

6.1 presents the results from the Weighted Ljung-Box test, which is tested on various lags.

From the table we can see that the p-values are not statistically significant for any of the lags

tested. Thus, we fail to reject the null hypothesis and cannot conclude that the autocorrelations

are significantly different from zero.

Table 6.1: Weighted Ljung-Box Test: (a) Standardized residuals, (b) Standardized squared
residuals.

Lag sGARCH EGARCH
Statistic p-value Statistic p-value

Lag[1] 0.0239 0.8771 0.2684 0.6044
Lag[5) 1.3438 0.9995 1.4610 0.9985
Lag9) 2.5102 0.9507 2.5706 0.9448

Lag sGARCH EGARCH
Statistic p-value Statistic p-value

Lag[1] 0.1537 0.6951 0.5287 0.4672
Lag[5) 0.8290 0.8970 0.9872 0.8626
Lag[9] 1.9093 0.9155 1.6582 0.9416

(a)

(b)
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To assess the validity of the distributional assumptions in our models we can examine the 

quantile-to-quantile (Q-Q) plots of the standardized residuals (Tsay, 2013). If the sample 

quantiles and theoretical quantiles lie on a straight line, then we can conclude that the 

assumed distribution is correct. The first plot (a) in figure 6.3 displays a normal Q-Q plot, 

which is negatively skewed to the left. This clearly indicates that the standardized residuals 

are not normally distributed. In the second plot (b) we instead assume that the innovations 

follow a student-t distribution. In this case, we also see some deviations in the tails of the 

distribution. In the final plot (c) we assume that the residuals follow a skewed student-t 

distribution. We can observe that the majority of the data points lie close to the line, but there 

are still some outliers in the tails. Overall, the skewed student-t distribution seems to be the 

best fit. Similar observations were found for the EGARCH model, and these can be found in 

Appendix D. 

 

(a) 

(b) 
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(c) 

Figure 6.3: Quantile-to-quantile plots for the standardized residuals. An ARMA(1,1)-
sGARCH(1,1) model with different innovation distributions: (a) Gaussian, (b) student-t, and 
(c) skewed student-t. 

 

6.2.2 Implementation of Artificial Neural Networks 

Artificial Neural Networks were chosen as the representative model to test whether a 

combination of both GARCH type models and more advanced machine learning tools would 

lead to improved performance. Both standard ANN as well as RNN were included in the 

experiment.  

 

The packages used to implement the artificial neural networks were TensorFlow and Keras, 

both libraries were originally developed for python, but have been ported into R packages. 

Each model with different inputs is hyperparameter tuned independently in order to find the 

best model parameters for each situation using the options shown in table 6.2, as opposed to 

using the same model specifications for all artificial neural networks. This is done because 

every different input could require a slightly different model. 

 
Table 6.2: NN tuning options 
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Figure 6.3: Quantile-to-quantile plots for the standardized residuals. An ARMA(l, l)-
sGARCH(l,1) model with different innovation distributions: (a) Gaussian, (b) student-t, and
(c) skewed student-t.

6.2.2 Implementation of Artificial Neural Networks

Artificial Neural Networks were chosen as the representative model to test whether a

combination of both GARCH type models and more advanced machine learning tools would

lead to improved performance. Both standard ANN as well as RNN were included in the

experiment.

The packages used to implement the artificial neural networks were TensorFlow and Keras,

both libraries were originally developed for python, but have been ported into R packages.

Each model with different inputs is hyperparameter tuned independently in order to find the

best model parameters for each situation using the options shown in table 6.2, as opposed to

using the same model specifications for all artificial neural networks. This is done because

every different input could require a slightly different model.

Table 6.2: NN tuning options

Parameters Tested options
Number of lags
Dense layer uni ts
Activation
opt imize learning rate
callback patience
loss monitor

2,5,10,20
1,4,8,16,32,64,128

Linear, ReLu, Sigmoid
0.001, 0.01, 0.05, 0.01

200, 400
MSE, MAE
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No regularization techniques will be implemented in order to keep the models relatively 

simple. All models involved three layers, one of which is a hidden layer, but the option of 

only using two layers is also included in event that the problem did not benefit from having a 

hidden layer. Each model is given 1000 epochs and the best validation performance is chosen 

as the superior model to be used for the test set RMSE measurement.  

 

In order to incorporate GARCH forecasts into the model, an additional GARCH forecast 

variable is added into a stacked model input to allow the model to take into consideration 

what GARCH predicts. Additionally, an ensemble model in the form of calculating the 

average prediction between the neural network without GARCH as input and GARCH 

predictions are used as a different way to combine the two different models.  

 

6.2.3 Adding realized volatility as an external regressor 

In this study, we are interested to know if the intraday returns can provide additional 

information that could benefit our existing forecasting models. We are going to investigate the 

effect of incorporating realized volatility as an external regressor in our models. The external 

regressor is essentially an explanatory variable that will be added to the variance equation of 

our GARCH models and will therefore have no impact on the conditional mean. Several 

previous studies, such as Zhang and Hu (2013), have explored this topic, however their 

findings are quite mixed. They find that for some stocks in the Chinese stock market, their 

models can benefit from the additional information contained in realized volatility, but for 

other stocks there seems to be no gain from incorporating the realized volatility measure. 

 

The realized volatility we are going to use is calculated based on the 10-minute realized 

variance of the S&P 500 Index. When we add the external regressor to our models, we make 

sure that it is a time lag of one period. In this study we will compare the models with and 

without the realized volatility as an additional explanatory variable. We will first investigate 

the estimated fit of the models, and later compare the forecast performance of the various 

models. 
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6.3 Cross validation 

To prevent overfitting, we use the hold-out cross validation approach. The data is split into 

60% train data, 20% validation data, and 20% test data. The training data is used to find the 

best model fit for our dependent variable realized volatility, the validation set is used to 

evaluate and select which model performed best outside of the training data to avoid 

overfitting, and the final test set is reserved for evaluating our overall out-of-sample 

performance. The data will not be split randomly and instead based on chronological order, 

the training data being the first 60%, validation the next 20%, and the test set being the last 

20% data points. Splitting the data in this fashion also allowed us to take advantage of models 

that incorporate recent predictions, such as RNN, to make a more accurate estimate of the 

future.  

 

6.4 Model estimation 

For all GARCH models, an expanding window is used in order to allow GARCH to use all 

data available until the current one-step ahead forecast. Neural networks on the other hand 

were given a choice between different moving windows from table 6.1. However, the 

predominant number of NN lags for all inputs is 5 lags per each different input for every 

moving window.  

 

Both GRACH and neural network model estimation will be done only using training data to 

then compute a one-step ahead forecast on the test set without re-estimation. In other words, 

the model is given new lag windows to produce out-of-sample forecasts using the best 

performing models from the training and validation sets. For all ensemble and stacked neural 

network models which include GARCH forecasts as input, a moving window of one-step 

ahead forecasts is used instead of incorporating the fitted values as input (Ramos-Pérez et al., 

2019). 

 

6.3 Cross validation

To prevent overfitting, we use the hold-out cross validation approach. The data is split into

60% train data, 20% validation data, and 20% test data. The training data is used to find the

best model fit for our dependent variable realized volatility, the validation set is used to

evaluate and select which model performed best outside of the training data to avoid

overfitting, and the final test set is reserved for evaluating our overall out-of-sample

performance. The data will not be split randomly and instead based on chronological order,

the training data being the first 60%, validation the next 20%, and the test set being the last

20% data points. Splitting the data in this fashion also allowed us to take advantage of models

that incorporate recent predictions, such as RNN, to make a more accurate estimate of the

future.

6.4 Model estimation

For all GARCH models, an expanding window is used in order to allow GARCH to use all

data available until the current one-step ahead forecast. Neural networks on the other hand

were given a choice between different moving windows from table 6.1. However, the

predominant number of NN lags for all inputs is 5 lags per each different input for every

moving window.

Both GRACH and neural network model estimation will be done only using training data to

then compute a one-step ahead forecast on the test set without re-estimation. In other words,

the model is given new lag windows to produce out-of-sample forecasts using the best

performing models from the training and validation sets. For all ensemble and stacked neural

network models which include GARCH forecasts as input, a moving window of one-step

ahead forecasts is used instead of incorporating the fitted values as input (Ramos-Perez et al.,

2019).
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6.5 Benchmark Model 

The Benchmark model at all times is the equivalent neural network or recurrent neural 

network without GARCH forecasts as input. If a model that included GARCH forecast as 

input is able to outperform a neural network without GARCH, then this would be an 

important sign that GARCH models contain useful information unavailable to the neural 

networks. Additionally, to the non-GARCH neural networks an OLS regression is 

incorporated as a reference point of what a simple model would achieve under these 

circumstances. OLS is given all the same inputs as the Neural Networks and compared on 

equal terms. Even though it is likely that the OLS will fail to keep up with the machine 

learning models, it is important to track what could be achieved with one of the simplest 

models. All OLS regressions were also implemented using Keras. 

6.6 Forecast evaluation 

As previously stated, our data is divided into a training and test set. Forecast accuracy can be 

evaluated both in-sample and out-of-sample, but in general we are more interested in the out-

of-sample accuracy. The reason is that we would like to consider how well a model performs 

when it is applied to the previously unseen test data that were not used when fitting the model. 

 

6.6.1 Evaluation metrics 

There exists many different statistical measures to calculate the accuracy of a model. The root 

mean squared error (RMSE) and mean absolute error (MAE) are two of the most commonly 

used metrics for evaluating forecasting models. These two measures can be formulated as the 

following: 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = √1𝑛𝑛∑ (𝜎𝜎𝜎𝑡𝑡 − 𝜎𝜎𝑡𝑡)2𝑛𝑛
𝑡𝑡=1      (6.1) 

𝑅𝑅𝑀𝑀𝐸𝐸 = 1𝑛𝑛∑ |𝜎𝜎𝜎𝑡𝑡 − 𝜎𝜎𝑡𝑡|𝑛𝑛
𝑡𝑡=1             (6.2) 

6.5 Benchmark Model

The Benchmark model at all times is the equivalent neural network or recurrent neural

network without GARCH forecasts as input. If a model that included GARCH forecast as

input is able to outperform a neural network without GARCH, then this would be an

important sign that GARCH models contain useful information unavailable to the neural

networks. Additionally, to the non-GARCH neural networks an OLS regression is

incorporated as a reference point of what a simple model would achieve under these

circumstances. OLS is given all the same inputs as the Neural Networks and compared on

equal terms. Even though it is likely that the OLS will fail to keep up with the machine

learning models, it is important to track what could be achieved with one of the simplest

models. All OLS regressions were also implemented using Keras.

6.6 Forecast evaluation

As previously stated, our data is divided into a training and test set. Forecast accuracy can be

evaluated both in-sample and out-of-sample, but in general we are more interested in the out-

of-sample accuracy. The reason is that we would like to consider how well a model performs

when it is applied to the previously unseen test data that were not used when fitting the model.

6.6.1 Evaluation metrics

There exists many different statistical measures to calculate the accuracy of a model. The root

mean squared error (RMSE) and mean absolute error (MAE) are two of the most commonly

used metrics for evaluating forecasting models. These two measures can be formulated as the

following:

RMSE = 15 (a )2
7 t = 1 O O (6.1)

(6.2)
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6.6.2 Diebold-Mariano test 

We are also going to employ the Diebold-Mariano (DM) test to compare the forecast accuracy 

between some of our models. The DM tests whether two competing forecasts have equal 

forecasting accuracy (Diebold & Mariano, 1995). The null hypothesis is that the two forecasts 

have equal predictive accuracy. If the p-value from the pairwise DM test is significant, we can 

reject the null hypothesis, and conclude that the two forecasts have different forecast 

accuracy. 

6.6.2 Diebold-Mariano test

We are also going to employ the Diebold-Mariano (DM) test to compare the forecast accuracy

between some of our models. The DM tests whether two competing forecasts have equal

forecasting accuracy (Diebold & Mariano, 1995). The null hypothesis is that the two forecasts

have equal predictive accuracy. If the p-value from the pairwise DM test is significant, we can

reject the null hypothesis, and conclude that the two forecasts have different forecast

accuracy.
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7. Results and discussion 

7.1 In-sample results 

Table 7.1 presents the estimated GARCH models without the addition of an external 

regressor. The estimation period that was used to obtain the in-sample results is from 

01.03.2012 to 12.03.2020. The GARCH type models are estimated under different 

distributional assumptions, such as the normal distribution (norm), student-t distribution (std) 

and the skewed student-t distribution (sstd). It is also important to note that the p-values 

presented in the two tables below correspond to the robust (white) standard errors.  

 

By inspecting the sGARCH models we can see that almost all of the estimated coefficients are 

significant on a 5% level, except for the omega parameter with the assumption of a student-t 

distribution or a skewed student-t distribution. We can also observe that the combined value 

of the parameters alpha and beta vary between 0.945 to 0.980. This implies that the volatility 

is highly persistent.  

 

If we instead look at the EGARCH models we can see that all of the estimated parameters are 

significant on a 5% level. In the table we also display the akaike information criterion (AIC) 

for each model, and the models that perform the best are marked in bold. We can observe that 

the assumption of a student-t distribution leads to a substantial improvement over the normal 

distribution in terms of model fit. A smaller improvement can be seen when we move from 

the student-t distribution to the skewed student-t distribution. Both the sGARCH and 

EGARCH models perform the best with the skewed student-t distribution. However, the AIC 

values seem to be generally lower for the EGARCH models, which suggest that the models 

can benefit from capturing the asymmetric effects in the S&P 500 stock returns. 

 
 
 
 
 
 
 
 
 

7. Results and discussion

7. l In-sample results

Table 7.1 presents the estimated GARCH models without the addition of an external

regressar. The estimation period that was used to obtain the in-sample results is from

01.03.2012 to 12.03.2020. The GARCH type models are estimated under different

distributional assumptions, such as the normal distribution (norm), student-t distribution (std)

and the skewed student-t distribution (sstd). It is also important to note that the p-values

presented in the two tables below correspond to the robust (white) standard errors.

By inspecting the sGARCH models we can see that almost all of the estimated coefficients are

significant on a 5% level, except for the omega parameter with the assumption of a student-t

distribution or a skewed student-t distribution. We can also observe that the combined value

of the parameters alpha and beta vary between 0.945 to 0.980. This implies that the volatility

is highly persistent.

If we instead look at the EGARCH models we can see that all of the estimated parameters are

significant on a 5% level. In the table we also display the akaike information criterion (AIC)

for each model, and the models that perform the best are marked in bold. We can observe that

the assumption of a student-t distribution leads to a substantial improvement over the normal

distribution in terms of model fit. A smaller improvement can be seen when we move from

the student-t distribution to the skewed student-t distribution. Both the sGARCH and

EGARCH models perform the best with the skewed student-t distribution. However, the AIC

values seem to be generally lower for the EGARCH models, which suggest that the models

can benefit from capturing the asymmetric effects in the S&P 500 stock returns.
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Table 7.1: Estimated coefficients for the S&P 500 return series, associated p-values and 
Akaike information criteria. GARCH model specifications without an external regressor. 

 

In table 7.2 we display the in-sample results of our GARCH models with the addition of 

realized volatility as an external regressor in the variance equation. The external regressor 

parameter is displayed as vxreg1 in the table, and as we can see the associated p-values are 

non-significant for all the standard GARCH models.  

 

Let us first compare the estimated coefficients and p-values of the sGARCH models with the 

previous results from table 7.1. With the addition of an external regressor the coefficient 

estimates for the alpha and beta parameters tend to be lower, except for the sGARCH model 

with a student-t distribution as the p-value of the vxreg1 parameter is close to being 1. If we 

look at the associated AIC values, we can see some minor improvements for the sGARCH 

models. There is a bigger improvement in terms of AIC value when the external regressor is 

added to the sGARCH model with a skewed student-t distribution. However, based on the 

insignificant p-values for the external regressor we do not have much evidence that the 

external regressor adds any value to the sGARCH models.  

 

Moving to the EGARCH models we can observe much higher coefficient values for the 

external regressor, and the corresponding p-values are highly significant (P<.001). The AIC 

values are also substantially lower compared to the EGARCH models which excludes the 

information contained in the realized volatility. This indicates that realized volatility provides 

Table 7.1: Estimated coefficients for the S&P 500 return series, associated p-values and
Akaike information criteria. GARCH model specifications without an external regressar.

Model mu ar1 mal omega alpha1 beta1 gamma1 skew shape AIC

SGARCH(1,1worn 0,00068 0,95520 -0,98217 0,00001 0,21902 0,72593
(0,00000) (0,00000) (0,00000) (0,000208) (0,00000) (0,00000) -6,9614

sGARCH(L,1),a 0,00074 0,93920 -0,97584 0,00000 0,21719 0,76258 4,92709
(0,00000) (0,00000) (0,00000) (0,49937) (0,00000) (0,00000) (0,00000) -7,0330

sGARCH(L,1),ca 0,00066 0,92683 -0,97147 0,00000 0,19357 0,77255 0,87095 5,67247
(0,00000) (0,00000) (0,00000) (0,46923) (0,00000) (0,00000) (0,00000) (0,00000) -7,0406

EGARCH(1,1),ar 0,00042 0,51836 -0,55825 -0,70571 -0,24796 0,92794 0,18142
(0,00003) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) -7,0357

EGARCH(1,1)a 0,00053 0,31054 -0,35313 -0,62037 -0,25819 0,93784 0,17907 6,15923
(0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) -7,0840

EGARCH(L,1)a 0,00032 0,30149 -0,34851 -0,62980 -0,25262 0,93599 0,17401 0,84426 6,90588
(0,00519) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) -7,0973

In table 7.2 we display the in-sample results of our GARCH models with the addition of

realized volatility as an external regressar in the variance equation. The external regressar

parameter is displayed as vxregl in the table, and as we can see the associated p-values are

non-significant for all the standard GARCH models.

Let us first compare the estimated coefficients and p-values of the sGARCH models with the

previous results from table 7. l. With the addition of an external regressar the coefficient

estimates for the alpha and beta parameters tend to be lower, except for the sGARCH model

with a student-t distribution as the p-value of the vxregl parameter is close to being l. I fwe

look at the associated AIC values, we can see some minor improvements for the sGARCH

models. There is a bigger improvement in terms of AIC value when the external regressar is

added to the sGARCH model with a skewed student-t distribution. However, based on the

insignificant p-values for the external regressar we do not have much evidence that the

external regressar adds any value to the sGARCH models.

Moving to the EGARCH models we can observe much higher coefficient values for the

external regressar, and the corresponding p-values are highly significant (P<.001). The AIC

values are also substantially lower compared to the EGARCH models which excludes the

information contained in the realized volatility. This indicates that realized volatility provides
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additional information to the estimation process of the EGARCH models. Again, we can 

observe that the best fit is obtained under the assumption of a skewed student-t distribution. 

 
Table 7.2: Estimated coefficients for the S&P 500 return series, associated p-values and 
Akaike information criteria. GARCH model specifications with the inclusion of realized 
volatility as an external regressor. 

 

7.2 Out-of-sample evaluation 

7.2.1 Forecast evaluation for GARCH models 

In this section, we will present the results of the out-of-sample forecasts, in which we will 

compare the different GARCH models. The best performing GARCH specification with and 

without an external regressor will be selected to be included into both the standard ANN and 

RNN models. We compute the RMSE and MAE of the different GARCH specifications, and 

the results are shown in table 7.3. The models that perform the best out-of-sample are 

highlighted using bold numbers. Let us first consider the GARCH models without the realized 

volatility as an explanatory variable. We can observe that the EGARCH(1,1) model with a 

normal distribution provides the lowest values in terms of both RMSE and MAE. 

 

When the realized volatility is introduced in the variance equation of our GARCH models, we 

obtain even lower RMSE and MAE measures for some of the models. The model that gives 

the lowest error metrics is the sGARCH(1,1) model with a normal distribution. We find that 

the models with the lowest out-of-sample performance do not correspond to the models which 

additional information to the estimation process of the EGARCH models. Again, we can

observe that the best fit is obtained under the assumption of a skewed student-t distribution.

Table 7.2: Estimated coefficients for the S&P 500 return series, associated p-values and
Akaike information criteria. GARCH model specifications with the inclusion of realized
volatility as an external regressar.

Model mu ar1 ma1 omega alpha l betal gamma1 vxregl skew shape AIC

sGARCH(1,1)or 0,00057 0,96378 -0,98345 0,00000 0,16634 0,49540 0,00360
(0,00000) (0,00000) (0,00000) (1,00000) (0,00010) (0,17829) (0,30048) -7,0080

SGARCH(1D,a 0,00074 0,93917 -0,97585 0,00000 0,21716 0,76236 0,00000 4,92465
(0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,99996) (0,00000) -7,0320

sGARCH(1.1),ca 0,00060 0,92505 -0,96775 0,00000 0,14792 0,58839 0,00276 0,84887 6,54725
(0,00010) (0,00000) (0,00000) (1,00000) (0,23945) (0,61044) (0,78699) (0,00000) (0,10935) -7,0689

EGARCH(11),or 0,00028 0 ,17156 0,14063 -1,96028 0,24186 0,82310 0,05291 35,09878
(0,04435) (0,00000) (0,00000) (0,00000) (0,00000) (0,00000) (0,01650) (0,00000) -7,0631

EGARCH(L,1),a 0,00048 -0,11539 0,08252 -2,05456 0 ,26612 0,81692 0,03134 38,72127 6,75952
(0,00003) (0,78292) (0,84230) (0,00000) (0,00000) (0,00000) (0,11101) (0,00000) (0,00000) -7,1091

EGARCH(1,1)..ea 0,00027 -0,01651 -0,01614 -1,97199 -0,25708 0,82284 0,03448 36,16123 0,84058 7,86797
(0,05578) (0,21057) (0,15851) (0,00000) (0,00000) (0,00000) (0,11733) (0,00000) (0,00000) (0,00000) -7,1222

7.2 Out-of-sample evaluation

7.2.1 Forecast evaluation for GARCH models

In this section, we will present the results of the out-of-sample forecasts, in which we will

compare the different GARCH models. The best performing GARCH specification with and

without an external regressar will be selected to be included into both the standard ANN and

RNN models. We compute the RMSE and MAE of the different GARCH specifications, and

the results are shown in table 7.3. The models that perform the best out-of-sample are

highlighted using bold numbers. Let us first consider the GARCH models without the realized

volatility as an explanatory variable. We can observe that the EGARCH(l,1) model with a

normal distribution provides the lowest values in terms of both RMSE and MAE.

When the realized volatility is introduced in the variance equation of our GARCH models, we

obtain even lower RMSE and MAE measures for some of the models. The model that gives

the lowest error metrics is the sGARCH(l, l) model with a normal distribution. We find that

the models with the lowest out-of-sample performance do not correspond to the models which
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had the best in-sample fit. However, a good fit does not necessarily lead to good out-of-

sample forecasting performance (Hyndman & Athanasopoulos, 2018). A possible explanation 

for this behavior could be the bias-variance tradeoff (James et al, 2013). The EGARCH model 

with a skewed student-t distribution is a more flexible model, as it has a greater number of 

parameters that needs to be estimated. As the flexibility of a model increases, the variance 

will increase and the bias decreases. This could potentially lead to the risk of overfitting the 

data, which means that a model fits too closely to the training data, while performing poorly 

on the test data. 

 

Table 7.3: Out-of-sample forecast performance for the different GARCH models. 

 

A visual representation of the best performing GARCH models against the realized volatility 

can be shown in figure 7.1. We can observe that both the EGARCH(1,1) model and the 

sGARCH(1,1) model with the addition of realized volatility seem to overestimate the future 

volatility. We can also clearly see some delay in the predictions for the GARCH models, 

which is to be expected. Upon further inspection of the graphs, we can also observe that the 

GARCH models fail to properly capture the large spikes in future volatility.  

 

had the best in-sample fit. However, a good fit does not necessarily lead to good out-of-

sample forecasting performance (Hyndman & Athanasopoulos, 2018). A possible explanation

for this behavior could be the bias-variance tradeoff (James et al, 2013). The EGARCH model

with a skewed student-t distribution is a more flexible model, as it has a greater number of

parameters that needs to be estimated. As the flexibility of a model increases, the variance

will increase and the bias decreases. This could potentially lead to the risk of overfitting the

data, which means that a model fits too closely to the training data, while performing poorly

on the test data.

Table 7.3: Out-of-sample forecast performance for the different GARCH models.

Excl external regressor Incl. external regressor
Model RMSE MAE RMSE MAE

sGARCH(1,1)nor 0.00569 0.00396 0.00368 0.00292
sGARCH(l , l ) s td 0.00650 0.00440 0.00649 0.00440
sGARCH(1,1 )sstd 0.00610 0.00417 0.00370 0.00297
EGARCH(l,1)no·rm 0.00474 0.00333 0.03938 0.00946
EGARCH(l,J..)std. 0.00549 0.00362 0.05205 0.01167
EGARCH(l,1)sstd 0.00511 0.00349 0.04492 0.01048

A visual representation of the best performing GARCH models against the realized volatility

can be shown in figure 7.1. We can observe that both the EGARCH(l,1) model and the

sGARCH(l, l) model with the addition of realized volatility seem to overestimate the future

volatility. We can also clearly see some delay in the predictions for the GARCH models,

which is to be expected. Upon further inspection of the graphs, we can also observe that the

GARCH models fail to properly capture the large spikes in future volatility.
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Figure 7.1: Comparing the out-of-sample forecasts of the best performing GARCH models 
against the realized volatility. sGARCH-RV is an abbreviation for the best performing 
sGARCH model with the realized volatility included. 

 

7.2.2 Forecast evaluation excluding external regressor 

Table 7.4 contains the best performing models calculated exclusively using log returns as 

input. The table also includes the best performing neural networks, as well as the neural 

network GARCH ensemble models. The GARCH model incorporated into the neural network 

models is the EGARCH(1,1) normal distribution from table 7.3, as it is the best performing 

model between all the GARCH type models that did not include the external regressor. 

 

Table 7.4: Out-of-sample results excluding external regressor.  
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Figure 7.1: Comparing the out-of-sample forecasts of the best performing GARCH models
against the realized volatility. sGARCH-RV is an abbreviation for the best performing
sGARCH model with the realized volatility included.

7.2.2 Forecast evaluation excluding external regressor

Table 7.4 contains the best performing models calculated exclusively using log returns as

input. The table also includes the best performing neural networks, as well as the neural

network GARCH ensemble models. The GARCH model incorporated into the neural network

models is the EGARCH(l,1) normal distribution from table 7.3, as it is the best performing

model between all the GARCH type models that did not include the external regressar.

Table 7.4: Out-of-sample results excluding external regressar.

Excl. extemal regressor
Model RMSE MAE

OLS
EGARCH(1,1)#arm
NN
RNN
Staeke d GARCH NN
Staeke d GARCH RNN
Averaging GARCH NN
Averaging GARCH RNN

0.00696 0.00417
0.00474 0.00333
0.00383 0.00255
0.00375 0.00250
0.00396 0.00250
0.0038 0.00251

0.00376 0.00264
0.00377 0.00267
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We can see in table 7.4 that the best performing model is the RNN that does not include 

GARCH as part of its input. However, the RNN results are only slightly better than the other 

models. Based on these findings, we can conclude that artificial neural networks do perform 

better than GARCH models when it comes to calculating daily realized volatility. Regarding 

our study on whether incorporating GARCH output into an artificial neural network, there is 

no evidence to conclude that GARCH models are able to add any additional value. The 

artificial neural network models were able to capture the information in the S&P 500 log 

returns on their own. It is important to note that even though the best performing model is a 

regular RNN without any additional data, the second and third best performing models in 

regard to RMSE were the averaging NN GARCH, followed by the averaging RNN GARCH. 

Additionally, when looking at the MAE, the best performing models were instead the stacked 

GARCH NN and the RNN, followed by the Stacked GARCH RNN. 

 

Even though the ensemble approach did not produce the best results and did not show any 

signs of containing information that is unavailable to the regular artificial neural networks, the 

ensemble models did consistently produce some of the best performances. 

7.2.3 Forecast evaluation including external regressor 

To make use of all data available within the time series and achieve the best possible realized 

volatility predictions, we repeat the previous exercise and include the lags of realized 

volatility itself as input into our models.  

 

 
Table 7.5: Out-of-sample results including external regressor. 

 

We can see in table 7.4 that the best performing model is the RNN that does not include

GARCH as part of its input. However, the RNN results are only slightly better than the other

models. Based on these findings, we can conclude that artificial neural networks do perform

better than GARCH models when it comes to calculating daily realized volatility. Regarding

our study on whether incorporating GARCH output into an artificial neural network, there is

no evidence to conclude that GARCH models are able to add any additional value. The

artificial neural network models were able to capture the information in the S&P 500 log

returns on their own. It is important to note that even though the best performing model is a

regular RNN without any additional data, the second and third best performing models in

regard to RMSE were the averaging NN GARCH, followed by the averaging RNN GARCH.

Additionally, when looking at the MAE, the best performing models were instead the stacked

GARCH NN and the RNN, followed by the Stacked GARCH RNN.

Even though the ensemble approach did not produce the best results and did not show any

signs of containing information that is unavailable to the regular artificial neural networks, the

ensemble models did consistently produce some of the best performances.

7.2.3 Forecast evaluation including external regressor

To make use of all data available within the time series and achieve the best possible realized

volatility predictions, we repeat the previous exercise and include the lags of realized

volatility itself as input into our models.

Table 7.5: Out-of-sample results including external regressar.

Incl. extemal regressor·

Model RMSE MAE
0LS
sGARCH(1,1)»er
NN
RNN

0.00369 0.00250
0.00368
0.00362
0.00352

0.00292
0.00240
0.00247

Staeke d GARCH NN
Staeke d GARCH RNN
Averaging GARCH NN
Averaging GARCH RNN

0.00362
0.00352
0.00324
0.00343

0.00239
0.00248
0.00240
0.00260
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Table 7.5 shows that every model performed better when including realized volatility lags as 

part of the input. The results also reveal that when we use all information available within the 

time series, we are able to obtain better forecasting accuracy by using ensemble models. The 

best performing RMSE model is the ensemble model which combines the outputs of GARCH 

and a deep neural network, while the best MAE performance is achieved by the stacked NN 

GARCH model. In both cases, the best results were achieved by an ensemble model. In the 

case of the RMSE results, the second-best model is the ensemble model which combines the 

outputs of GARCH and a recurrent neural network.  

 

 

Figure 7.2: Comparison of out-of-sample forecasts for the NN model and averaging GARCH 
NN model including the external regressor, against the realized volatility proxy. 

 

We can see from figure 7.2 that our best performing model, the Averaging GARCH NN, 

tends to overestimate volatility when compared with the regular NN. This makes sense 

because the Averaging GARCH NN is the average forecast between the NN, and the 

sGARCH-RV shown in figure 7.1. sGARCH-RV has the tendency to overshoot its volatility 

forecasts when there is a volatility spike. This could be interpreted as a weakness due to the 

worsened performance. However, when sGARCH-RV is combined with a regular NN, which 

has the tendency to underestimate volatility spikes, we end up with a better model which can 

more accurately predict volatility spikes, as seen in table 7.2. 
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Figure 7.2: Comparison of out-of-sample forecasts for the NN model and averaging GARCH
NN model including the external regressar, against the realized volatility proxy.

We can see from figure 7.2 that our best performing model, the Averaging GARCH NN,

tends to overestimate volatility when compared with the regular NN. This makes sense

because the Averaging GARCH NN is the average forecast between the NN, and the

sGARCH-RV shown in figure 7.1. sGARCH-RV has the tendency to overshoot its volatility

forecasts when there is a volatility spike. This could be interpreted as a weakness due to the

worsened performance. However, when sGARCH-RV is combined with a regular NN, which

has the tendency to underestimate volatility spikes, we end up with a better model which can

more accurately predict volatility spikes, as seen in table 7.2.
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Table 7.6: Pairwise Diebold-Mariano tests. 

 

In order to get a better understanding of what our forecasts are actually doing, we employ the 

Diebold-Mariano test to determine if the forecast accuracy of the best ensemble models are 

significantly different from the forecast accuracy of the NN and RNN models. In table 7.6 we 

can see the results from the pairwise DM tests. From the table we can observe that the p-value 

for the stacked models are insignificant on a 5% level. This means that we accept the null 

hypothesis of equal forecasting accuracy. As for the ensemble models, the p-values are 

significant on a 5% level, hence we reject the null hypothesis that the pairwise forecasts have 

equal accuracy. This result suggest that the averaging ensemble models are performing better 

than the neural network models. However, we do not have enough evidence to say that the 

stacked models are better than the neural network models. 

 

Table 7.6: Pairwise Diebold-Mariano tests.

Pairwise DMtests Coef. p-valllue
NN vs Stacked GARCH NN -1.3075 0.1917
RNNvs Stacked GARCH RNN -1.7312 0.0912
NN vs Averaging GARCH NN 4.2656 0.0000
RNNvs Averaging GARCH RNN 4.6654 0.0000
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for the stacked models are insignificant on a 5% level. This means that we accept the null

hypothesis of equal forecasting accuracy. As for the ensemble models, the p-values are

significant on a 5% level, hence we reject the null hypothesis that the pairwise forecasts have

equal accuracy. This result suggest that the averaging ensemble models are performing better

than the neural network models. However, we do not have enough evidence to say that the

stacked models are better than the neural network models.
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8. Conclusion 

We set out to explore if combining GARCH type models and artificial neural networks can 

lead to better performance than when the different models working independently and relying 

exclusively on the data within the time series. Two different ensemble methods were used to 

combine the different models' predictive capabilities. One method was a stacked artificial 

neural network which included GARCH forecasts as part of its input, and the other was an 

averaging ensemble of the outputs of the best performing GARCH model and the outputs of 

an artificial neural network. 

Regarding forecasting realized volatility relying exclusively on log return lags, we were 

unable to find any evidence that an ensemble model could take advantage of the additional 

information introduced by incorporating GARCH forecasts into an artificial neural network. 

In other words, the artificial neural networks could, without any additional information 

besides past log returns, achieve better results than any of the GARCH type models. However, 

it is important to note that our best performing model for both RMSE and MAE was the 

recurrent neural network, which is known to be capable of outperforming regular artificial 

neural networks due to its additional attribute of being able to incorporate the previous 

prediction as additional information to produce better forecasts, although the better 

forecasting performance of the RNN was only slightly better than the second-best performing 

model.  

When it comes to incorporating realized volatility lags as input for our models, we found that 

all out-of-sample forecasting performance for models including external regressor was better 

than when not including the external regressor. Additionally, we found evidence to suggest 

that ensemble artificial neural networks have the potential to outperform artificial neural 

networks and GARCH type. Overall, the ensemble models consistently outperformed the 

regular artificial neural networks regarding out-of-sample forecast RMSE, and somewhat 

consistently for the out-of-sample forecast MAE. More specifically, the best RMSE model 

was the Averaging GARCH NN, and the best MAE model was the Stacked GARCH NN. 

Moreover, we were able to, with the use of the Diebold-Mariano test, reject the null 

hypothesis and conclude that the ensemble models were making statistically different 

forecasts than the original models from which they were derived. 
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Regarding whether ensemble models were superior to regular artificial neural networks, we 

did not find conclusive evidence that ensemble models were the ideal approach. We did 

however identify a tendency for ensemble models to be among the top performing models. 

This does however make sense because any subtle improvement to volatility forecasting 

should be extremely difficult and would require a much more powerful model than simply 

adding a single GARCH type model to a machine learning model. It is important to note 

however that, when including the external regressor, we encountered consistent evidence that 

ensemble models, with just a simple ensemble, on average performed better than artificial 

neural network models. 
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9. Further research 

Based on our findings, we were able to conclude that there is potential for more accurate 

estimations of future realized volatility with the use of ensemble models. Given that we only 

used GARCH forecasts are additional regressors into our models, and we only worked with 

S&P 500 daily returns, there is an immense potential for different approaches and objectives. 

One important addition would be to include additional machine learning models, such as 

XGBoost, and support vector machines. This could be done both parallel to neural networks 

and in the form of a larger ensemble model that seeks to take advantage of the strengths of 

different machine learning techniques, as well as reduce the effect of any individual model. 

Furthermore, exploring different indexes, commodities, and individual stocks could lead to 

completely different results and perhaps even more interesting findings that would not be 

present in a highly liquid and not so volatile indexes, such as the S&P500. 
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Appendix 

Appendix A: General process of forecasting using an ARIMA model (Hyndman 

& Athanapoloulos, 2018). 

 

Figure A.1: General process of forecasting 
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Figure A.l: General process of forecasting
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Appendix B: AIC values for sGARCH(1,1) model 
 
 

 
 
 
 
 
 
 
 
 
 
 

Appendix B: AIC values for sGARCH(l,1) model

Normal distribution
Varianoe modeJ AnnaOrder AJC Log-li:elihood
sGARCH(1,1) 0,0 -6,956 7019,28
sGARCH(1,1) 1,0 -6,9'57 7020,62
sGARCH(1,1) 0,1 -6,957 7020,66
sGARCH(1,1) 1,1 -6,961 7026,60
sGARCH(1,1) 2,1 -6,961 70'17,02
sGARCH(1,1) 1 ,2 -6,961 7027,11
sGARCH(1,1) 2,2 -6,958 7025,21

Student-t distribution
Varianoe modeJ AnnaOrder AJC Log-likelihood
sGARCH(1,1) 0,0 -7,024 7088,43
sGARCH(1,1) 1,0 -7,025 709'1,08
sGARCH(1,1) 0,1 -7,02:6 7091,18
sGARCH(1,1) 1,1 -7,033 7099,78
sGARCH(1,1) 2,1 -7,033 7100,57
sGARCH(1,1) 1 ,2 -7,033 7100,75
sGARCH(1,1) 2,2 -7,032 7100,58

Skewed student-t distribution
Varianoe modeJ AnnaOrder AJC Log-likelihood
sGARCH(1,1) 0,0 -7,028 7093,88
sGARCH(1,1) 1,0 -7,031 7098,09'
sGARCH(1,1) 0,1 -7,032 7098,43
sGARCH(1,1) 1,1 -7,041 7108,45
sGARCH(1,1) 2,1 -7,041 7110,11
sGARCH(1,1) 1 ,2 -7,042 7110,43
sGARCH(1,1) 2,2 -7,041 7110,47
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Appendix C: ACF plot of standardized residuals and squared standardized 
residuals for the EGARCH model. 
 

 
 

 
 
Figure C.1: Correlograms of standardized residuals and the squared standardized residuals of 
an ARMA(1,1)-EGARCH(1,1) model. 
 
 

 

 
 

Appendix C: ACF plot of standardized residuals and squared standardized
residuals for the EGARCH model.
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Figure C.l: Correlograms of standardized residuals and the squared standardized residuals of
an ARMA(l,1)-EGARCH(l,1) model.
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Appendix D: Q-Q plots for the EGARCH model. 
 

(a) 

(b) 

(c) 

Figure D.1: Quantile-to-quantile plots for the standardized residuals. An ARMA(1,1)-
EGARCH(1,1) model with different innovation distributions: (a) Gaussian, (b) student-t, and 
(c) skewed student-t. 
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Figure D.l: Quantile-to-quantile plots for the standardized residuals. An ARMA(l,1)-
EGARCH(l,1) model with different innovation distributions: (a) Gaussian, (b) student-t, and
(c) skewed student-t.
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