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Abstract 
 

As the access to broader and better data increases, data analytics, statistical modeling, 

and data science generally find ever-growing interest in sports analytics, including 

association football. It is no secret that both clubs and even higher governing bodies in 

the sport implement data-driven strategies to give them insights and a competitive 

advantage in play. Recognizing the importance of the sport as a fan and from the point 

of view of an analyst, this work seeks to contribute to the current body of literature by 

offering a thorough investigation of one of the most elegant approaches to sports 

analytics in association football; The Poisson goal model. Based on the simple and 

intuitive idea that goals in football are rare discrete events that follow the Poisson 

distribution while conditional on team performance, the concept has been appealing to 

many researchers. At the same time, a simplistic idea at its core, its application to real-

world data, has been met with much discussion regarding underlying assumptions and 

methodology. Much of the discussion in the last 40 years since the idea was formalized 

concerns addressing assumptions such as the applicability of the Poisson distribution, 

score interdependence, overdispersion, and parameter stability. In the present work, we 

take a step back and reexamine the idea, methodology, and assumptions in the light of 

the most recent data from Europe’s major leagues. Furthermore, we examine sone novel 

concept such as considering xG (expected goals). Overall, some changing dynamics are 

revealed and some of the propositions made for the model do not hold given the recent 

developments in the sport. 
 
 

 

Key words: Poisson distribution; Goal model; Football; Prediction; xG 

P a g e I ii

Abstract

As the access to broader and better data increases, data analytics, statistical modeling,

and data science generally find ever-growing interest in sports analytics, including

association football. It is no secret that both clubs and even higher governing bodies in

the sport implement data-driven strategies to give them insights and a competitive

advantage in play. Recognizing the importance of the sport as a fan and from the point

of view of an analyst, this work seeks to contribute to the current body of literature by

offering a thorough investigation of one of the most elegant approaches to sports

analytics in association football; The Poisson goal model. Based on the simple and

intuitive idea that goals in football are rare discrete events that follow the Poisson

distribution while conditional on team performance, the concept has been appealing to

many researchers. At the same time, a simplistic idea at its core, its application to real-

world data, has been met with much discussion regarding underlying assumptions and

methodology. Much of the discussion in the last 40 years since the idea was formalized

concerns addressing assumptions such as the applicability of the Poisson distribution,

score interdependence, overdispersion, and parameter stability. In the present work, we

take a step back and reexamine the idea, methodology, and assumptions in the light of

the most recent data from Europe's major leagues. Furthermore, we examine sone novel

concept such as considering xG (expected goals). Overall, some changing dynamics are

revealed and some of the propositions made for the model do not hold given the recent

developments in the sport.

Key words: Poisson distribution; Goal model; Football; Prediction; xG



P a g e  | iii 
 

 
 

Contents 
 

Acknowledgments............................................................................................... i 
Abstract .............................................................................................................. ii 
Contents ........................................................................................................... iii 
List of Figures ................................................................................................... iv 
List of Tables ..................................................................................................... v 
Terms and Abbreviations .................................................................................. vi 
 

1. Introduction .............................................................................................. 1 
2. Literature Review..................................................................................... 4 

2.1. Background ....................................................................................... 4 
2.2. History and Development ................................................................. 5 

3. Theoretical Framework ............................................................................ 9 
3.1. The Poisson Distribution .................................................................. 9 

3.1.1. Poisson Regression ...................................................................... 10 
3.2. The Poisson Goal Model ................................................................ 11 
3.3. Modifications to the Model ............................................................ 13 

3.3.1. Score Corrections ........................................................................ 14 
3.3.2. Poisson Bivariate Model ............................................................. 15 
3.3.3. Skellam Distribution ................................................................... 17 
3.3.4. Score Dispersion ......................................................................... 18 
3.3.5. Bookies’ Odds as Covariates....................................................... 19 
3.3.6. Time Dynamic Models ................................................................ 19 

4. Data and Methodology ........................................................................... 21 
4.1. Data Overview ................................................................................ 21 
4.2. Methodology ................................................................................... 22 

4.2.1. Model Estimation ........................................................................... 22 
4.2.2. Strategy and Technical Implementation ........................................ 24 
4.2.3. Evaluation ...................................................................................... 25 

5. Results .................................................................................................... 28 
5.1. Model Assumptions .............................................................................. 28 

5.1.1. HFA and parameter stability .......................................................... 28 
5.1.2. Poisson Distribution Fit ................................................................. 30 
5.1.3. Score Dependence .......................................................................... 32 

5.2. Weighting Scheme ................................................................................ 34 
5.3. Model Performance ............................................................................... 36 

6. Conclusions ............................................................................................ 40 
References ........................................................................................................ 43 
Appendix .......................................................................................................... 47 
 

 

 

P a g e I iii

Contents
Acknowledgments i
Abstract .ii
Contents iii
List of Figures .iv
List of Tables v
Terms and Abbreviations vi

l . Introduction l
2. Literature Review 4

2. l . Background 4
2.2. History and Development 5

3. Theoretical Framework 9
3. l. The Poisson Distribution 9

3.1.1. Poisson Regression l 0
3.2. The Poisson Goal Model 11
3.3. Modifications to the Model 13

3.3.1. Score Corrections 14
3.3.2. Poisson Bivariate Model 15
3.3.3. Skellam Distribution 17
3.3.4. Score Dispersion 18
3.3.5. Bookies' Odds as Covariates 19
3.3.6. Time Dynamic Models 19

4. Data and Methodology 21
4. l. Data Overview 21
4.2. Methodology 22

4.2.1. Model Estimation 22
4.2.2. Strategy and Technical Implementation 24
4.2.3. Evaluation 25

5. Results 28
5.1. Model Assumptions 28

5.1.1. HFA and parameter stability 28
5.1.2. Poisson Distribution Fit 30
5.1.3. Score Dependence 32

5.2. Weighting Scheme 34
5.3. Model Performance 36

6. Conclusions 40
References 43
Appendix 47



P a g e  | iv 
 

 
 

List of Figures 

Figure 1. Histograms of (a) home and (b) away goals in 924 matches in the Premier League, 
1993 – 1995. From Rue and Salvesen, 2000 ........................................................................... 11 

 
Figure 2. Relative change in the probability of a draw for different levels of correlation between 
the two scores, when  𝜆𝜆𝑖𝑖 = 1 and 𝜆𝜆𝑗𝑗 ≔ 0.1: 2. From Karlis and Ntzoufras, 2003 .................. 16 

 
Figure 3. The average number of goals scored by the home and away teams; by league and 
season ...................................................................................................................................... 29 

 
Figure 4. Distribution of average rates of change in scoring intensities across seasons at the 
team level ................................................................................................................................. 29 

 
Figure 5. Skewness and Kurtosis graph of Bundesliga away goals (2011 – 2020) ................ 31 

 
Figure 6. 𝜉𝜉 against 𝑆𝑆(𝜉𝜉) - Dixon-Coles model ....................................................................... 35 

 
Figure 7. Pseudo – R2 across leagues and models .................................................................. 37 

 
Figure 8. Brier Score across leagues and models ................................................................... 37 

 
Figure 9. Model average ROI vs. decision threshold across leagues ..................................... 39 

 
Figure 10. Pseudo – R2 across leagues and models (xG dropped for larger N) ..................... 47 

 
Figure 11. Brier score across leagues and models (xG dropped for larger N) ...................... 47 
 

 

 

 

 

 

 

 

 

 

 

P a g e I iv

List of Figures

Figure I. Histograms of (a) home and (b) away goals in 924 matches in the Premier League,
1993 - 1995. From Rue and Salvesen, 2000 11

Figure 2. Relative change in the probability of a draw for different levels of correlation between
the two scores, when Nl= 1and l, := 0.1:2. From Karlis and Nzoufras, 2003.................. 16

Figure 3. The average number of goals scored by the home and away teams; by league and
season 29

Figure 4. Distribution of average rates of change in scoring intensities across seasons at the
team level 29

Figure 5. Skewness and Kurtosis graph of Bundesliga away goals (201I - 2020) 31

Figure 6. against S ( ) - Dixon-Coles model.................................................................. 35

Figure 7. Pseudo R across leagues and models 37

Figure 8. Brier Score across leagues and models 37

Figure 9. Model average ROI vs. decision threshold across leagues 39

Figure I0. Pseudo R across leagues and models (xG dropped for larger N) 47

Figure 11. Brier score across leagues and models (xG dropped for larger N) 47

file:///C:/Users/vkurt/Desktop/Thesis%20Models/Thesis%20Draft.docx%23_Toc105014279


P a g e  | v 
 

 
 

List of Tables 

Table 1. Dataset summary ....................................................................................................... 22 
 

Table 2. Models and features (grey areas denote possible combinations) .............................. 24 
 

Table 3. Summary Statistics & Test (based on training samples) ........................................... 28 
 

Table 4. Distribution and goodness–of–fit test ........................................................................ 30 
 

Table 5. Bootstrapped Pairwise Correlations of home and away goals ................................. 33 
 

Table 6. Bundesliga ratio of empirical bivariate probabilities to empirical independent 
bivariate probabilities (dark grey for significant overrepresentation; light gray for significant 
underrepresentation) ............................................................................................................... 33 

 
Table 7. La Liga ratio of empirical bivariate probabilities to empirical independent bivariate 
probabilities............................................................................................................................. 33 

 
Table 8. Premier League ratio of empirical bivariate probabilities to empirical independent 
bivariate probabilities ............................................................................................................. 33 

 
Table 9. Serie A ratio of empirical bivariate probabilities to empirical independent bivariate 
probabilities............................................................................................................................. 34 

 
Table 10. Weight optimization for 𝜉𝜉∗and changes on model fit from 𝜉𝜉 = 0 ........................... 35 

 
Table 11. Average Brier Score and Pseudo – R2 across models ............................................. 36 

 
Table 12. Model terminology .................................................................................................. 48 
 

 

 

 

 

 

 

 

 

 

 

P a g e [v

List of Tables

Table I. Dataset summary 22

Table 2. Models and features (grey areas denote possible combinations) 24

Table 3. Summary Statistics & Test (based on training samples) 28

Table 4. Distribution and goodness-of-fit test 30

Table 5. Bootstrapped Pairwise Correlations of home and away goals 33

Table 6. Bundesliga ratio of empirical bivariate probabilities to empirical independent
bivariate probabilities (dark grey for significant overrepresentation; light gray for significant
underrepresentation) 33

Table 7. La Liga ratio of empirical bivariate probabilities to empirical independent bivariate
probabilities 33

Table 8. Premier League ratio of empirical bivariate probabilities to empirical independent
bivariate probabilities 33

Table 9. Serie A ratio of empirical bivariate probabilities to empirical independent bivariate
probabilities 34

Table I0. e i g h t optimization for " a n d changes on model fit from = 0........................... 35

Table 11. Average Brier Score and Pseudo R< across models............................................. 36

Table 12. Model terminology 48



P a g e  | vi 
 

 
 

Terms and Abbreviations 

hfa Home Ground/Field Advantage 
hg Home Team Goal 
ag Away (Visiting) Team Goal 
DS Dixon - Coles Model 
RS Ruse - Salvesen Model 
CMP Conway–Maxwell–Poisson Distribution 
Skellam Distribution Poisson Difference Distribution 
DP Double Poisson Distribution 
BP Bivariate Poisson Distribution 
SD Semi-Dynamic Model 
TD Time-Dynamic Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P a g e /vi

Terms and Abbreviations

hfa
hg
ag
DS
RS
CMP
Skellam Distribution
DP
BP
SD
TD

Home Ground/Field Advantage
Home Team Goal
Away (Visiting) Team Goal
Dixon - Coles Model
Ruse - Salvesen Model
Conway-Maxwell-Poisson Distribution
Poisson Difference Distribution
Double Poisson Distribution
Bivariate Poisson Distribution
Semi-Dynamic Model
Time-Dynamic Model



P a g e  | 1 
 

 
 

1. Introduction 

As one of the most popular and followed sports globally, football has gone well 

beyond just the competitive aspect for many people. Played in over 200 countries and 

with over 200 million active players, it has often revealed itself as an inseparable aspect 

of the very culture and background of the particular society where it is embedded. 

Individual and team play patterns may be distinctive to specific cultures. As an 

example, it is a long-held tradition of Brazilian players to have particular dribbling 

skills as a characteristic of the “way we play” thus showing itself as an aspect of Brazil’s 

cultural identity (Araújo and Davids, 2016; Uehara et al., 2018) 

 

Given the incredible popularity of the sport and its significant economic impact, 

an entire industry is built around it worldwide. Like other industries, modern data 

engineering and computerization play an ever-increasing role in the sports industry. In 

all aspects of the sports industry data-based, decision making is becoming a 

fundamental focus point (Mondello & Kamke, 2014). Such practices are encountered 

from the highest governing bodies of football, such as national federations, down to 

individual clubs. Clubs use statistical modeling to decide on ticket pricing, player 

rotation, injury prevention, and winning chances (Link, 2018). Even national 

federations and FIFA use modeling to reach important decisions (Monks & Husch, 

2009). The gambling industry especially stands at the forefront of such developments, 

given the need to optimize odds and maintain their edge (Pearson, 2017). Various 

predictive models based on in-game team performance have shown promise in 

simulated settings. In the modern sport of football, monetization, professionalism, and 

optimization have shifted into primary focus and affected the game in many aspects. 

As the sport draws more high-paid and motivated professionals, the disparity between 

teams increases. These factors have made the game even more unbalanced and more 

predictable (Maimone and Yasseri, 2021) 

 

Although a variety of analytical methods used in football target many indicators, 

this work at this time concerns modeling the final results of a single match between the 

P a g e [I

l. Introduction

As one of the most popular and followed sports globally, football has gone well

beyond just the competitive aspect for many people. Played in over 200 countries and

with over 200 million active players, it has often revealed itself as an inseparable aspect

of the very culture and background of the particular society where it is embedded.

Individual and team play patterns may be distinctive to specific cultures. As an

example, it is a long-held tradition of Brazilian players to have particular dribbling

skills as a characteristic of the "way we play" thus showing itself as an aspect of Brazil's

cultural identity (Araujo and Davids, 2016; Uehara et al., 2018)

Given the incredible popularity of the sport and its significant economic impact,

an entire industry is built around it worldwide. Like other industries, modem data

engineering and computerization play an ever-increasing role in the sports industry. In

all aspects of the sports industry data-based, decision making is becoming a

fundamental focus point (Mondello & Kamke, 2014). Such practices are encountered

from the highest governing bodies of football, such as national federations, down to

individual clubs. Clubs use statistical modeling to decide on ticket pricing, player

rotation, injury prevention, and winning chances (Link, 2018). Even national

federations and FIFA use modeling to reach important decisions (Monks & Husch,

2009). The gambling industry especially stands at the forefront of such developments,

given the need to optimize odds and maintain their edge (Pearson, 2017). Various

predictive models based on in-game team performance have shown promise in

simulated settings. In the modem sport of football, monetization, professionalism, and

optimization have shifted into primary focus and affected the game in many aspects.

As the sport draws more high-paid and motivated professionals, the disparity between

teams increases. These factors have made the game even more unbalanced and more

predictable (Maimone and Yasseri, 2021)

Although a variety of analytical methods used in football target many indicators,

this work at this time concerns modeling the final results of a single match between the



P a g e  | 2 
 

 
 

home and vising side in terms of goals scored. Conceptually there are two ways of 

framing a final result prediction model in football. While one way is to model and 

forecast the potential number of goals that each team may score in 90 minutes, the other 

uses a classification algorithm to fit the likely outcome, such as a home win, irrespective 

of the goals scored. The classification models either fit a three-way result (home, draw, 

away) with ordered regressions (Koning, 2000) or make use of logistic regression and 

other classification algorithms to predict the likelihood of a particular single result such 

as home win or over 2.5 goals (Carpita et al., 2015, 2019; Prasetio and Harlili 2016). 

Although these models may be straightforward, have a simpler structure, and avoid 

interdependence, they are nested within the goal-based framework. It is clear that goals 

scored by the two sides determine the final match result, but from the point of view of 

the classification algorithms, results such as 1 – 0, 5 – 0, or 3 – 2 all result in home 

wins. Intuitively enough, one can conclude that it’s possible to derive the outcome of 

the classification algorithms from that of the goal models, but the contrary isn’t. (Egidi 

& Torelli, 2020).  

 

It has been a long-established tradition since Maher (1982) to model the goal-

scoring process of the home and away teams as Poisson random variables. The Poisson 

model is mainly adopted by linking team performance with distribution parameters and 

taking the notion that it reflects their average scoring rate in the length of a typical 

match. More specifically, the practice implies formulating the intensity parameter or 

expected goals as a function of team performance, home-field advantage, and other 

covariates while tuning for interdependence and parameter stability over time (Egidi & 

Torelli, 2020). This conceptualization becomes quite intuitive if one thinks of goals in 

football as rare discrete events, primarily dependent on the relative strength of the two 

sides facing each other. Although this simple approach offers an almost elegant 

alternative to modeling scores in football, several arguments rise regarding some 

fundamental aspects and assumptions. First, there is the argument of interdependence 

between the two teams. While some authors consider conditional independence (Maher, 

1982), others modify the model to introduce parameter dependence between the scores 

(Dixon and Coles, 1997; Rue and Salvesen, 2000). Other functional structures that deal 

with score dependence include bivariate Poisson distribution (Karlis and Ntzoufras, 
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2003) or conditional independence within hierarchical Bayesian models (Baio and 

Blangiardo, 2010; Egidi et al.; 2018). The second major aspect discussed is parameter 

stability over time. While earlier models are static or use weighting to prioritize recent 

results (Dixon and Coles, 1997), more recent work introduces time dynamic models 

within either a frequentist or Bayesian approach. 

 

Considering the vast interest, the sport generates and the quite elegant approach 

offered by the Poisson-based models in football prediction, the primary aim of this work 

is to provide a closer look and a review of the underlying assumptions these models 

build on and how current they are. As the concept spans the better part of the last 40 

years many iterations have been proposed passed on the points laid out above and many 

concern data which is 10 to 20 years old. In the present work we reexamine much of 

the proposed models in terms of methodology and assumptions and test how they do in 

light of the latest data from Europe’s leading football leagues. Furthermore, an attempt 

is made to introduce novel concepts such as xG to the models to improve predictability. 

The data used is the most recently available, spanning the last 12 seasons of the Premier 

Leagues, La Liga, Bundesliga, and Serie A. Results reconfirm some of the most basic 

concepts of the idea including the clear existence of a consistent hfa. In accordance with 

most of the literature the direct applicability of the Poisson distribution is brought into 

question, but the current findings are at odds with some of the solutions. More precisely 

there are discrepancies between some of the assumptions made in the literature and 

evidence from the latest data especially in terms of score dependence.  

 

In section 2, the literature review provides an overview of the study and its evolution. 

Section 3 presents a formal framework built on theory focused on model specification 

and assumptions. Section 4 gives an overview of the data and estimation procedures. 

Section 5 presents the results from assumptions check and model accuracy, and finally, 

section 6 includes closing remarks and potential future research. 
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2. Literature Review 

2.1. Background 

Thomson (1975) proposed for the first time an approach similar to what would 

be used later for Poisson modeling in football. He uses maximum likelihood estimators 

to optimize team matching and quantifies other key team metrics. However, these 

attempts regard the 1973 season of NFL rather than European football. After Moroney 

(1956) indicated the applicability of the Poisson distribution to scoring in football, 

Maher (1982) introduced a similar approach linking the concept to team skills. MLE 

optimizes four parameters; home attack (𝛼𝛼𝑖𝑖), home defense (𝛽𝛽𝑖𝑖), away attack (𝛼𝛼𝑗𝑗), and 

away defense (𝛽𝛽𝑗𝑗) quantifying relative team strength in the context of the Poisson 

distribution. Another essential element that is clear to anyone who knows football is the 

so-called home-field advantage (𝛾𝛾). When looking at historical data, evidence from the 

early 80’ and 90’ points to hfa, linking primarily to crowd support, especially the size 

and density (Barnett, 1993). This approach has been widely used to predict the number 

of goals scored in football and served as a basis for several related works (Boshnakov 

et al., 2017; Koopman and Lit, 2015; Koopman and Lit, 2019; Owen, 2011). 

 

The Poisson framework estimates the outcome probabilities after linking the 

scoring capabilities with the team’s performance parameters and hfa. This connection 

is considered natural within the literature, as goals in football are regarded as discrete 

and rare events (Boshnakov et al., 2016). Based on goal interdependence, Egidi and 

Torelli (2020) broadly group Poisson based models into three main categories: Skellam 

or Poisson difference (Karlis & Ntzoufras 2009); compound Poisson distribution 

(Maher, 1982; Baio & Blangiardo, 2010; Egidi et al., 2018) and bivariate Poisson 

distribution (Dixon and Coles, 1997; Karlis and Ntzoufras, 2003). A secondary 

distinction is also made by considering parameter stability over time and diving the 

models into static or time dynamic (Egidi et al., 2018). With the advent of technology, 

much play data is recorded, and in-game analysis of every action is possible. From the 

analysis of every possible shot taken, the concept of xG (expected goals) arises as to 

P a g e ]4

2. Literature Review

2.1. Background

Thomson (1975) proposed for the first time an approach similar to what would

be used later for Poisson modeling in football. He uses maximum likelihood estimators

to optimize team matching and quantifies other key team metrics. However, these

attempts regard the 1973 season of NFL rather than European football. After Moroney

(1956) indicated the applicability of the Poisson distribution to scoring in football,

Maher (1982) introduced a similar approach linking the concept to team skills. MLE

optimizes four parameters; home attack ( a ) , home defense ( B ) , away attack (a , ) , and

away defense ( [ , ) quantifying relative team strength in the context of the Poisson

distribution. Another essential element that is clear to anyone who knows football is the

so-called home-field advantage (y). When looking at historical data, evidence from the

early 80' and 90' points to hfa, linking primarily to crowd support, especially the size

and density (Barnett, 1993). This approach has been widely used to predict the number

of goals scored in football and served as a basis for several related works (Boshnakov

et al., 2017; Koopman and Lit, 2015; Koopman and Lit, 2019; Owen, 2011).

The Poisson framework estimates the outcome probabilities after linking the

scoring capabilities with the team's performance parameters and hfa. This connection

is considered natural within the literature, as goals in football are regarded as discrete

and rare events (Boshnakov et al., 2016). Based on goal interdependence, Egidi and

Torelli (2020) broadly group Poisson based models into three main categories: Skellam
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models into static or time dynamic (Egidi et al., 2018). With the advent of technology,

much play data is recorded, and in-game analysis of every action is possible. From the

analysis of every possible shot taken, the concept of xG (expected goals) arises as to
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the probability of a single shot resulting in a goal based on the characteristics and events 

leading up to it. However, expected goals are a more general performance metric as the 

final result alone seldom doesn’t reflect all that happened on the pitch (Schmidt, 2020). 

These distinctions in assumptions are the primary target for evaluation in the present 

work.  In the subsequent subsection a broader view of the development history is given 

alongside the main point each author makes and how we approach them.  

 

2.2. History and Development 

The application of goal-based modeling in sports analytics has a long history, 

and it’s not only limited to football. Earlier work mainly favors adopting the negative 

binomial or “modified” Poisson as a better approximation for the distribution of scores, 

particularly by taking care of what sometimes appeared to be an overdispersion of 

results (Pollard, 1985). Such models apply to various ball games, including basketball 

and volleyball (Reep et al.; 1971). Maher (1982) is the first iteration where the Poisson 

distribution is used to model goals scored around a team’s performance in football. The 

author examines the concept, assuming score independence and lacking it, resulting in 

good data approximation. Furthermore, Maher (1982) argues about the applicability of 

the Poisson distribution recognizing the fact that score dependence would affect the 

rates. Later this fact becomes a theme in many discussions, including the present work. 

 

Dixon and Coles (1997) make a general review of the research on sports 

analytics and recognize the apparent dichotomy of long-run vs. short-run predictions. 

They take the position that, although many factors do indeed contribute to the evident 

noise we see in the results of a single match, it is still possible to model relative team 

strengths within the setting of a match. The authors look assumptions and applicability 

of the Poisson distribution and, except for minor corrections in the low scores, conclude 

that the home and away goals are generally mutually independent. Both the first and 

subsequent authors, such as Karlis and Ntzoufras (2003), consider positive correlations 

among sores which, according to them, inflate the probability of draws. Thus, a positive 

correlation is a prerequisite for their adjustment. Testing these assumptions is part of 
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the aims of the present work. The introduction of weighting schemes and time-

dependent variation to the models reflects each team’s change in parameters. The 

corpus of this work remains relevant in score modeling and especially for optimizing 

betting strategies. Dixon and Coles (1997) propose an easy-to-implement modeling 

strategy that provides a semi-dynamic structure to parameter stability over time. It is 

one of the most popular reference papers in football modeling (Lindstrøm, 2014). Rue 

and Salvesen (2000) continue this approach by adding adjustments to the goals scoring 

intensities for the home and away teams. The authors add two main adjustments to their 

system, namely an adjustment for the intensity parameter for the home and away team 

capturing psychological effects and introducing a time-dynamic component to the 

model with Gaussian priors. These two elements are considered separately in this work, 

with the psychological extension added to the DS model as an additional covariate. 

Time-dynamic models are treated alongside the propositions of Egidi et al.; (2018). 

 

One of the most critical underlying assumptions presented so far is the lack of 

interdependence between the scoring expectations of the home and away teams. Further 

modifications to the Poisson framework can address the assumption entirely. Karlis and 

Ntzoufras (2003) suggest using a bivariate Poisson distribution to manage the joint 

probability of the home and away team having a specific score, rather than considering 

them as separate processes. Misspecification introduced in the model as wrongly 

assumed independence introduces bias, especially for low score draws. Karlis and 

Ntzoufras (2008) revisit the issue of interdependence and propose a novel approach by 

using the Skellam distribution. Modeling the goal difference instead of the goals allows 

the removal of any residual correlation between the two teams. Estimation follows prior 

work with Bayesian analysis in count data (Karlis & Ntzoufras, 2006). This approach 

examples the correlation framework compared to Dixon and Coles (1997), making it 

more generalizable but to the assumes a positive correlation. On the other hand, a 

Bayesian approach is valuable for modeling outcomes since it incorporates information 

about a game using prior distributions. Such information in the model can be based on 

historical data and consider many factors. Finally, the Bayesian approach offers a 

unique advantage in the case of sports predictions with the posterior predictive 

distribution. The posterior distribution allows a probabilistic forecast of future games, 
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making possible even the simulation of an entire tournament or season. A Bayesian 

inference to sports analytics and football appears in various research papers focusing 

on national and supranational competitions (Suzuki et al., 2010; Rue and Salvesen, 

2000; Owen, 2011). In the present work, the Skellam and bivariate setups are tested 

under a Bayesian approach 

 

Most recently, Egidi et al.; (2018) made an extensive overview of the proposed 

models and adjustments in goal modeling and Poisson distribution. They look into 

model assumptions by addressing goal interdependence and scoring stability over time. 

First, by following previous research, they propose a hierarchal Bayesian model to 

address the interdependence of scores. Baio and Blangiardo (2010) suggest hierarchical 

Bayesian models allow for correlation since the observed scores mix at an upper level. 

Empirical evidence points to a slight positive correlation or no correlation between any 

two teams in national leagues (McHale & Scarf 2011). The second important aspect 

addressed is the temporal stability of the parameters used to calculate the attack and 

defense values for the home and away teams, alongside the hfa. A dynamic model 

addresses time variability, and the authors adopt an autoregressive model with a team 

fixed effect. After addressing the usual issues of interdependence and parameter 

stability, introducing further covariates may improve the model’s predictive power. 

Consequently, the widespread use of betting odds in sports modeling is not a surprise 

since they are the most accurate information on probability estimation for match results 

(Štrumbelj, 2014). However, accessing any potential information held within the 

bookies’ odds may not be straightforward. First, one needs to derive scoring intensities 

expressed in the implicit probabilities contained in the inverse betting odds. Then, as 

betting companies offer unfair odds, normalization better reflects implicit probabilities.  

 

Models considered in the literature compute relative team strength parameters 

such as attack, defense, and hfa using past results in their computational framework. 

With the advent of technology and better access to databases and computational power, 

much more data on football matches are easier to obtain and process. This enormous 

information can be accessed and modeled, resulting in better predictions. Within 

computational science and statistical machine learning framework, AI and neural 
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networks may detect powerful patterns and estimate complex and otherwise difficult-

to-detect relations. These methods are particularly suitable for this problem as available 

data is vast in numbers, quality, and multidimensionality. Examples of the most used 

and popular algorithms used are Artificial Neural Network (ANN) and Support Vector 

Machine (SVM). One of such metrics that has found great application in recent years 

is xG (expected goal) computation. This metric is similar, especially to the expected 

goal metric used in the Poisson Model but computed using machine learning from 

thousands of in-game metrics such as shots, passes, corners, goal attempts, penalties, 

and even individual player performances (Umami et al., 2021). In general terms, xG is 

the probability of a particular shot resulting in a goal based on a statistical model with 

parameters such as the distance and angle, type of shot or set-piece, and many more. 

There is much potential in the application of xG as it gives a complete overview of the 

team play and chances. One such rendering of the data is also known as a shot map 

which shows the locations of shots, passes, assists, and other vital actions about goal-

scoring in the form of a heatmap. This procedure allows the xG approach to be an all-

encompassing indicator for team performance (Schmidt, 2020). The usefulness of the 

xG approach becomes apparent when one considers that just the final score of a match 

may not always tell the whole story in terms of preparation and performance gap. In the 

present work, xG is used to model scoring intensities which then are used to calculate 

outcome probabilities based on the double Poisson approach.  
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3. Theoretical Framework 

This section explores and explains the various formal models tackling goal-

scoring models in football, starting from the basic formulation of the Poisson 

distribution. As discussed during the literature review, most models follow the general 

concept of Maher (1982) by framing four parameters; home attack (𝛼𝛼𝑖𝑖), away defense 

(𝛽𝛽𝑗𝑗), home defense (𝛽𝛽𝑖𝑖), and away attack (𝛼𝛼𝑗𝑗) in the context of expected goals and the 

Poisson distribution. Observed differences in literature stem from how various models 

address specifications and assumptions to maximize prediction accuracy. 

 

3.1. The Poisson Distribution 

Named after French mathematician Siméon Denis Poisson, who proposed it in 

1837, the Poisson distribution is a class of discrete probability distributions in statistics 

that frames event frequency over a specified period (Hayes, 2021). Occurrences happen 

with a known average rate over the specified period, and each event is considered 

independent of the previous ones. By considering goal scoring in football as a rare and 

discrete event expected to happen a certain number of times within a specified time 

frame, say a match, the parallels with the Poisson distribution become apparent. Thus, 

a discrete random variable X (ex. Goals scored) is said to follow a Poisson distribution 

with parameter λ > 1 if it has a probability mass function: 

 

𝑓𝑓(𝑘𝑘, 𝜆𝜆) = 𝑃𝑃𝑃𝑃(𝑋𝑋(𝑡𝑡) = 𝑘𝑘) = 𝑒𝑒
−𝜆𝜆𝜆𝜆(𝜆𝜆𝜆𝜆)𝑘𝑘
𝑘𝑘!  

𝜆𝜆 > 0 
 

(1) 

where 

• k is the number of discrete occurrences (k = 0, 1, 2 … etc.) 
• e is Euler’s number 
• t is the time interval within which the occurrences happen 
• 𝜆𝜆 is the intensity parameter, which shows the expected number of occurrences 

per unit of time. 
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Within the contest of goal modeling, the general formulation above naturally 

simplifies. The models concern the expected number of goals in one match; thus, the 

time parameter always is t = 1. This fact reduces equation (1) above to the more familiar 

form: 𝑃𝑃𝑃𝑃(𝑋𝑋(1) = 𝑘𝑘) = 𝑒𝑒
−𝜆𝜆𝜆𝜆𝑘𝑘
𝑘𝑘! , giving the probability of any k goals scored within the 

length of one match by either side. Another defining aspect of the distribution is that 

the intensity parameter 𝜆𝜆 is not just the expected value of the random discrete variable 

X but also its variance: 

 
𝜆𝜆 = 𝐸𝐸(𝑋𝑋) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋) (2) 

 

3.1.1. Poisson Regression 

Using the Poisson distribution entails an additional advantage for estimation as 

it belongs to the family of exponential distributions. By rewriting (1) in exponential 

terms and using the log–link function, the concept of Poisson regression arises in the 

context of generalized linear models. In the case of the least squared regression, the 

parameter of interest is the average response 𝜇𝜇𝑖𝑖 for each observation 𝑖𝑖 where the average 

response formulates as a linear combination of factors. Analogously, in the Poisson 

regression, the shift is moved from the average response 𝜇𝜇𝑖𝑖 to the intensity parameter 

𝜆𝜆𝑖𝑖, and it is modeled as a linear combination of different factors. Nonetheless, several 

issues arise when trying to fit the intensity parameter directly as a linear combination 

of factors, such as the one done for OLS. A setting like 𝜆𝜆𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 doesn’t work 

for Poisson-generated data. This setting causes issues related to potential values of  𝜆𝜆𝑖𝑖, 
which in this formulation may be negative for specific values of 𝑥𝑥𝑖𝑖. This fact violates 

both the Poisson parameter value constraint (𝜆𝜆 > 0) and the equality of mean and 

variance (2). A log–link functional form instead may consider these issues (Roback and 

Legler, 2020): 

 
 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 (3) 

 
 

By formulating 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖) as a linear function of covariates instead of 𝜆𝜆𝑖𝑖 solves 

the problem of negative values and potentially addresses the mean variance equality. 
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However, like with other models, to make estimations with Poisson regression, several 

assumptions are required: 

 

a) The dependent variable 𝑌𝑌𝑖𝑖 is random and follows the Poisson distribution 

b) Observations are independent of each other 

c) Equality of mean and variance 

d) Linearity of parameters, 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖) is a linear combination of the covariates.  

 

3.2. The Poisson Goal Model 

The premise presented in the goal-scoring model follows the formulation of the 

Poisson regression in (3). By assuming an independent and Poisson distributed process 

for goal–scoring in football, the log scoring rate, 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖) of each team is a linear 

combination of that team’s and its opponent’s relative strengths. Many authors describe 

the goal-scoring process as Poisson random variables based on empirical data. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 1. Histograms of (a) home and (b) away goals in 924 matches in the Premier League, 
1993 – 1995. From Rue and Salvesen, 2000 
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The conceptualization of goal-scoring models based on the Poisson distribution 

encompasses a set of features required from the statistical model (Dixon and Coles, 

1997): 

 

a) The model should consider the differences between the two teams and link 

them to the outcome in a meaningful way. 

b) Reasonably, the model should weigh the teams’ recent performances. 

c) The model should allow for a distinct advantage for the home team, as 

demonstrated by the empirical evidence from the game. 

d) The model should quantify the team performance in numerous aspects, such as 

attack and defense strengths. 

e) A team performance metric should consider the quality of recently faced 

teams. 

 

Based on the points above, the basic model outlined in Maher (1982) formulates 

that the number of goals scored by each side are random Poisson variables, with means 

determined by each side’s respective attack and defense parameters. More specifically, 

by making use of equation (1), if teams I and j face each other in a match, then the 

expected goals of each side 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑖𝑖𝑖𝑖 are:  

 
𝑥𝑥𝑖𝑖𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛾𝛾) 
𝑦𝑦𝑖𝑖𝑖𝑖 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼𝑗𝑗𝛽𝛽𝑖𝑖) 

 
𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖 > 0 ∀ 𝑖𝑖 
𝛼𝛼𝑗𝑗𝛽𝛽𝑗𝑗 > 0 ∀ 𝑗𝑗 
𝛾𝛾 > 0 

(4) 

 
 

Where  𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑖𝑖𝑖𝑖 are independent variables, and parameters α denote each 

team’s attack metric and β each team’s defense metric while 𝛾𝛾 indicates the home team 

advantage. Although simplified in terms of assumptions, the setting in (4) is a suitable 

generalization of the conceptual model, to which further modifications are applied. 

Expressing such a setting in terms of the Poisson regression shown in (3) gives: 
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The conceptualization of goal-scoring models based on the Poisson distribution

encompasses a set of features required from the statistical model (Dixon and Coles,

1997):

a) The model should consider the differences between the two teams and link

them to the outcome in a meaningful way.

b) Reasonably, the model should weigh the teams' recent performances.

c) The model should allow for a distinct advantage for the home team, as

demonstrated by the empirical evidence from the game.

d) The model should quantify the team performance in numerous aspects, such as

attack and defense strengths.

e) A team performance metric should consider the quality of recently faced

teams.

Based on the points above, the basic model outlined in Maher (1982) formulates

that the number of goals scored by each side are random Poisson variables, with means

determined by each side's respective attack and defense parameters. More specifically,

by making use of equation (l) , if teams I and j face each other in a match, then the

expected goals of each side xii and YiJ are:

3q P o i s s o n ( a j 1 )
yy - P o i s s o n ( a , )

a[,>0 v i«,,>0j
y > 0

(4)

Where xii and YiJ are independent variables, and parameters a denote each

team's attack metric and / each team's defense metric while y indicates the home team

advantage. Although simplified in terms of assumptions, the setting in (4) is a suitable

generalization of the conceptual model, to which further modifications are applied.

Expressing such a setting in terms of the Poisson regression shown in (3) gives:
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log(𝜆𝜆𝑖𝑖) = 𝑐𝑐0′ +  𝛾𝛾 + 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑗𝑗 
log(𝜆𝜆𝑗𝑗) = 𝑐𝑐0′′ + 𝛼𝛼𝑗𝑗 − 𝛽𝛽𝑖𝑖 

(5) 
 

  

It follows from (4) and (5) that the probability of observing any combination of 

scores (x, y) from home and away teams I, j is: 

 

𝑃𝑃(𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥, 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦) =
𝑒𝑒−𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖𝑥𝑥
𝑥𝑥!

𝑒𝑒−𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗𝑦𝑦
𝑦𝑦!  

 
𝜆𝜆𝑖𝑖 = 𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛾𝛾 
𝜆𝜆𝑗𝑗 = 𝛼𝛼𝑗𝑗𝛽𝛽𝑖𝑖 

(6) 

 
 

3.3. Modifications to the Model 

The basic model conceptualization for goal-scoring in 4.2.1 and parameter 

estimation in 4.2.2 are good and easy-to-follow generalizations for the Poisson model 

in football. Nonetheless, there remain two issues regarding the model’s assumptions 

and features.  

 

First, the model needs to account for goal interdependence. According to the 

formulation in (4), the goal-scoring process needs to be completely independent for the 

two teams and solely dependent on their respective play parameters. As seen in the 

literature, several authors challenge this assumption and propose various modifications 

to address it. For example, some authors suggest departing from the assumption of 

independence and applying alternative Poisson model approximations such as the 

bivariate Poisson (Maher, 1982; Karlis and Ntzoufras, 2003; Boshnakov et al., 2016). 

Other authors favor relaxing this assumption by introducing corrections for lower-end 

scores (Dixon and Coles, 1997; Rue and Salvesen, 2000) or implementing conditional 

independence with Bayesian hierarchical models (Baio and Blangiardo, 2010; Egidi et 

al., 2018). At the same time, several extensions capture additional factors impacting the 

scoring capabilities. Secondly, there is the issue of parameter stability in time. The basic 

premise in (5) considers static models with unchanging parameters. However, this may 
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l o g ? ) =c+ y + a - B,
log(3,) =c + a- B (5)

It follows from (4) and (5) that the probability of observing any combination of

scores (x, y) from home and away teams 1,j is:

(6)
Mi= a [ /
l , = a,

3.3. Modifications to the Model

The basic model conceptualization for goal-scoring in 4.2.1 and parameter

estimation in 4.2.2 are good and easy-to-follow generalizations for the Poisson model

in football. Nonetheless, there remain two issues regarding the model's assumptions

and features.

First, the model needs to account for goal interdependence. According to the

formulation in (4), the goal-scoring process needs to be completely independent for the

two teams and solely dependent on their respective play parameters. As seen in the

literature, several authors challenge this assumption and propose various modifications

to address it. For example, some authors suggest departing from the assumption of

independence and applying alternative Poisson model approximations such as the

bivariate Poisson (Maher, 1982; Karlis and Ntzoufras, 2003; Boshnakov et al., 2016).

Other authors favor relaxing this assumption by introducing corrections for lower-end

scores (Dixon and Coles, 1997; Rue and Salvesen, 2000) or implementing conditional

independence with Bayesian hierarchical models (Baio and Blangiardo, 2010; Egidi et

al., 2018). At the same time, several extensions capture additional factors impacting the

scoring capabilities. Secondly, there is the issue of parameter stability in time. The basic

premise in (5) considers static models with unchanging parameters. However, this may
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not be the case as team performance may vary considerably within a season and even 

match to match. Various modifications adjust for this fact varying from weighting 

schemes emphasizing recent results (Dixon and Coles, 1997) to dynamic models with 

time components in more recent years.  

 

3.3.1. Score Corrections 

As discussed earlier, Dixon and Coles (1997) introduce an adjustment for low 

scores (at most 1), addressing interdependence and a weighting scheme to give more 

weight to recent performance. Therefore, the formulation in (6) is modified to allow for 

such corrections: 

 

𝑃𝑃(𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥, 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑦𝑦) = 𝜏𝜏𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗(𝑥𝑥, 𝑦𝑦)
𝑒𝑒−𝜆𝜆𝑖𝑖𝜆𝜆𝑖𝑖𝑥𝑥
𝑥𝑥!

𝑒𝑒−𝜆𝜆𝑗𝑗𝜆𝜆𝑗𝑗𝑦𝑦
𝑦𝑦!  

 
𝜆𝜆𝑖𝑖 = 𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛾𝛾 
𝜆𝜆𝑗𝑗 = 𝛼𝛼𝑗𝑗𝛽𝛽𝑖𝑖 

 

𝜏𝜏𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗(𝑥𝑥, 𝑦𝑦) =

{
 
 
 
 1 − 𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝜌𝜌     𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑦𝑦 = 0 1 + 𝜆𝜆𝑖𝑖𝜌𝜌       𝑖𝑖𝑖𝑖 𝑥𝑥 = 0, 𝑦𝑦 = 0
1 + 𝜆𝜆𝑗𝑗𝜌𝜌       𝑖𝑖𝑖𝑖 𝑥𝑥 = 0, 𝑦𝑦 = 1
1 − 𝜌𝜌           𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑦𝑦 = 1
1             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

(7) 

 
 

The adjustment 𝜏𝜏𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗  corrects the probability of encountering any given score 

combination based on 𝜌𝜌, the dependence parameter. The correction works in such a 

way as to allow complete independence for any score combination different from 𝑥𝑥 ≤
1 and 𝑦𝑦 ≤ 1, in which cases probabilities alter. Furthermore, the authors propose a 

weighting function for parameter estimation in (5). The weighting scheme proposed is 

dynamic and allows down weighting of past matches based on internal optimization: 

 

𝐿𝐿(𝑘𝑘 | 𝛼𝛼𝑒𝑒, 𝛽𝛽𝑒𝑒, 𝛾𝛾) =∏{𝜏𝜏𝜆𝜆𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗𝑗𝑗𝑒𝑒−𝜆𝜆𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖
𝑥𝑥𝑥𝑥𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗𝜆𝜆𝑗𝑗𝑗𝑗𝑦𝑦𝑦𝑦}

𝜑𝜑(𝑡𝑡)
𝑁𝑁

𝑘𝑘=1
 

 
𝜑𝜑(𝑡𝑡) =  𝑒𝑒−𝜉𝜉𝜉𝜉 

(8) 
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not be the case as team performance may vary considerably within a season and even

match to match. Various modifications adjust for this fact varying from weighting

schemes emphasizing recent results (Dixon and Coles, 1997) to dynamic models with

time components in more recent years.

3.3.1. Score Corrections

As discussed earlier, Dixon and Coles (1997) introduce an adjustment for low

scores (at most l), addressing interdependence and a weighting scheme to give more

weight to recent performance. Therefore, the formulation in (6) is modified to allow for

such corrections:

e a , e n , °
P ( a ] = 1 , = y ) = , ( 0 y ) " I

l J x! y!

Til- i l .( x , y) =
l J

l 7 = a / y
l , = a,p,

1 - l y p
1 + M p
1 + l y p
1 - p

1

(7)
if x= y = 0

if x= O,y = 0
if x= O,y = 1
if x= y = 1
otherwise

The adjustment r i l i i l j corrects the probability of encountering any given score

combination based on p, the dependence parameter. The correction works in such a

way as to allow complete independence for any score combination different from x<
1 and y < 1 , in which cases probabilities alter. Furthermore, the authors propose a

weighting function for parameter estimation in (5). The weighting scheme proposed is

dynamic and allows down weighting of past matches based on internal optimization:

(8)
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The weighting scheme works around the selection of the 𝜉𝜉 parameter, which 

ensures an exponential decay for past match importance as the time horizon t moves 

forward. This case considers 𝜉𝜉 > 0, with the static model (6) arising for 𝜉𝜉 = 0. The 

parameter can be estimated internally to maximize prediction accuracy. 

 

Rue and Salvesen (2000) introduce different modifications to account for 

additional effects and correct extreme scores. The first modification is introduced to the 

setting in (5) and serves as a modifier to the estimated intensities. It intends to capture 

any potential effects of the gap on paper between the two sides. Let ∆𝑖𝑖𝑖𝑖=
𝛼𝛼𝑖𝑖+𝛽𝛽𝑖𝑖−𝛼𝛼𝑗𝑗−𝛽𝛽𝑗𝑗

2   

be the average strength difference between the teams then: 

 
log(𝜆𝜆𝑖𝑖) = 𝑐𝑐0′ + 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑗𝑗 − 𝛿𝛿∆𝑖𝑖𝑖𝑖 
log(𝜆𝜆𝑗𝑗) = 𝑐𝑐0′′ + 𝛼𝛼𝑗𝑗 − 𝛽𝛽𝑖𝑖 + 𝛿𝛿∆𝑖𝑖𝑖𝑖 

(9) 

 
 

In a given match, if team 𝑖𝑖 is stronger than team 𝑗𝑗 on paper, they may tend to 

underestimate them, 𝛿𝛿 > 0. Although 𝛿𝛿 captures this type of misjudgment of stronger 

teams, it also can be negative if the weaker team is so perplexed as to develop an 

inferiority complex from the stronger team.  

 

3.3.2. Poisson Bivariate Model 

The models presented above still operate under a double Poisson setup, claiming 

independence of the scoring intensities. Therefore, modifications proposed to address 

potential deviations from independence mainly come as adjustments for certain score 

bands. Nonetheless, as shown by Karlis and Ntzoufras (2003), wrongly assuming 

independence will bias estimates complementarily to the correlation between the two 

teams. Moreover, empirical data from some authors claim a significant correlation 

between the scoring processes of the two sides (Lee, 1997; Karlis and Ntzoufras, 2003). 

 

Figure 2 details the bias introduced in the probabilities of a draw for different 

levels of correlation 𝜆𝜆𝑖𝑖𝑖𝑖 between the two sides as calculated by the authors in the reference 
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The weighting scheme works around the selection of the f parameter, which

ensures an exponential decay for past match importance as the time horizon t moves

forward. This case considers f > 0, with the static model (6) arising for f = 0. The

parameter can be estimated internally to maximize prediction accuracy.

Rue and Salvesen (2000) introduce different modifications to account for

additional effects and correct extreme scores. The first modification is introduced to the

setting in (5) and serves as a modifier to the estimated intensities. It intends to capture
a , + p - a . - [

any potential effects of the gap on paper between the two sides. Let = - -
be the average strength difference between the teams then:

l o g ? ) =c + a- B,- 0A,
log(2,) = c + a,-B+ öA]

(9)

In a given match, if team i is stronger than team j on paper, they may tend to

underestimate them, o> 0. Although ocaptures this type of misjudgment of stronger

teams, it also can be negative if the weaker team is so perplexed as to develop an

inferiority complex from the stronger team.

3.3.2. Poisson Bivariate Model

The models presented above still operate under a double Poisson setup, claiming

independence of the scoring intensities. Therefore, modifications proposed to address

potential deviations from independence mainly come as adjustments for certain score

bands. Nonetheless, as shown by Karlis and Ntzoufras (2003), wrongly assuming

independence will bias estimates complementarily to the correlation between the two

teams. Moreover, empirical data from some authors claim a significant correlation

between the scoring processes of the two sides (Lee, 1997; Karlis and Ntzoufras, 2003).

Figure 2 details the bias introduced in the probabilities of a draw for different

levels of correlation ÅiJ between the two sides as calculated by the authors in the reference
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paper. Calculations use a fixed rate for the home team 𝜆𝜆𝑖𝑖 = 1 and a varying rate for the away 

team 𝜆𝜆𝑗𝑗 ≔ 0.1: 2. It is evident from the calculations that even marginal levels of correlation 

between 0.1 and 0.2 do affect the probability of a draw considerably (10% - 20%), especially 

for matches with low score expectations. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Relative change in the probability of a draw for different levels of correlation 
between the two scores, when 𝝀𝝀𝒊𝒊 = 𝟏𝟏 and 𝝀𝝀𝒋𝒋 ≔ 𝟎𝟎. 𝟏𝟏: 𝟐𝟐. From Karlis and Ntzoufras, 2003 
 

Alternatively, considering a model where the goal–scoring process follows a 

bivariate instead of a double Poisson distribution may address the correlation problem 

(Kocherlakota, 1992). In this setup, the marginal distributions remain Poisson, but the 

two teams are allowed to have a level of correlation. Maher (1982) argued for using the 

bivariate Poisson distribution, but at the time, there were difficulties in estimating the 

results. If two random variables are such that 𝑥𝑥𝑖𝑖 = 𝑋𝑋1 + 𝑋𝑋2 and 𝑦𝑦𝑖𝑖 = 𝑋𝑋2 + 𝑋𝑋3, where 

𝑋𝑋𝑘𝑘 are independent random Poisson variables. Then 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 follow a bivariate Poisson 

distribution 𝑃𝑃𝑃𝑃(𝜆𝜆𝑖𝑖, 𝜆𝜆𝑗𝑗, 𝜆𝜆𝑖𝑖𝑖𝑖) with a joint probability function: 

 
 

𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑒𝑒−(𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑗𝑗 + 𝜆𝜆𝑖𝑖𝑖𝑖) 𝜆𝜆𝑖𝑖
𝑥𝑥

𝑥𝑥!
𝜆𝜆𝑗𝑗𝑦𝑦

𝑦𝑦! ∑ (𝑥𝑥𝑘𝑘) (
𝑦𝑦
𝑘𝑘)

min (𝑥𝑥,𝑦𝑦)

𝑘𝑘=0
𝑘𝑘! (

𝜆𝜆𝑖𝑖𝑖𝑖
𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗 
)
𝑘𝑘

 (10) 
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paper. Calculations use a fixed rate for the home team l = 1 and a varying rate for the away

team 2l, =0.1: 2. It is evident from the calculations that even marginal levels of correlation

between 0.1 and 0.2 do affect the probability of a draw considerably (l 0% - 20%), especially

for matches with low score expectations.
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Figure 2. Relative change in the probability of a draw for different levels of correlation
between the two scores, when Ai= 1 and Aj:= 0 .1: 2. From Karlis and Nzoufras, 2003

Alternatively, considering a model where the goal-scoring process follows a

bivariate instead of a double Poisson distribution may address the correlation problem

(Kocherlakota, 1992). In this setup, the marginal distributions remain Poisson, but the

two teams are allowed to have a level of correlation. Maher (1982) argued for using the

bivariate Poisson distribution, but at the time, there were difficulties in estimating the

results. If two random variables are such that xi = X1 + X2 and Yi = X2 + X3, where

Xk are independent random Poisson variables. Then xi andYi follow a bivariate Poisson

distribution PB( M y , l j ) with a joint probability function:

min (a ,y ) k

} c tP(a,y) = e = @ + r + h p ) ' k! "
x! y! k. k. 2l ,

k = O

(10)
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The formulation above allows for dependence between the two variables. 

Marginally the two random variables continue to be Poisson, while λij = cov(x, y) 
measures their dependence magnitude. It is evident that in case λij = 0 the two variables 

are independent, and double Poisson applies. In terms of sports analytics parameters λi 
and λj reflect the net scoring ability of the two teams as we saw earlier, while λij may 

represent other outside factors, which can modify the former two (Karlis and Ntzoufras, 

2003).  A third equation model added to the formulation in (5) estimates the covariance 

parameter λij: 

 
 

The formulation above allows for various linear estimations for the covariance 

parameter 𝜆𝜆𝑖𝑖𝑖𝑖. Parameters 𝛿𝛿1 and 𝛿𝛿2 are dummy variables that take values 0 or 1. If 

both are 0, the covariance parameter is constant and the same for all matches and teams. 

Alternatively, it can vary based on home or away team conditions based on weather 𝛿𝛿1 
and 𝛿𝛿2 take values of 1. Consequently, 𝜆𝜆𝑖𝑖𝑖𝑖 is interpreted as a random effect that impacts 

the marginal scoring averages by reflecting the game conditions. 

 

3.3.3. Skellam Distribution 

The Skellam distribution, also known as the Poisson difference distribution, is 

a discrete probability distribution reflecting the difference in count data. It derives from 

the difference between two independent Poisson random variables with expected values  

λ2 and λ1. The expected value for the resulting difference distribution is K = λ2 − λ1 
(Skellam, 1946). Although the distribution usually applies to random variables from 

independent populations, Karlis and Ntzoufras (2003) show that it can also apply to 

dependent variables when the two have a common additive contribution, which is 

canalled by differencing. In a similar setting to (10), for any pair of variables 𝑥𝑥𝑖𝑖 = 𝑋𝑋1 +
𝑋𝑋2 and 𝑦𝑦𝑖𝑖 = 𝑋𝑋2 + 𝑋𝑋3, if 𝑋𝑋1 and 𝑋𝑋2 are Poisson distributed with intensities 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑗𝑗 then 

their difference 𝑍𝑍 = 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 is a random variable with probability function: 

 

log(𝜆𝜆𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛿𝛿1𝛽𝛽ℎ + 𝛿𝛿2𝛽𝛽𝑎𝑎 (11) 
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The formulation above allows for dependence between the two variables.

Marginally the two random variables continue to be Poisson, while Aij = cov(x, y)

measures their dependence magnitude. It is evident that in case = 0 the two variables

are independent, and double Poisson applies. In terms of sports analytics parameters Ai

and Aj reflect the net scoring ability of the two teams as we saw earlier, while Aij may

represent other outside factors, which can modify the former two (Karlis and Ntzoufras,

2003). A third equation model added to the formulation in (5) estimates the covariance

parameter 2;:

(11)

The formulation above allows for various linear estimations for the covariance

parameter l y . Parameters 0, and 8 are dummy variables that take values 0 or 1. If

both are 0, the covariance parameter is constant and the same for all matches and teams.

Alternatively, it can vary based on home or away team conditions based on weather o1
and Oztake values of l. Consequently, AiJ is interpreted as a random effect that impacts

the marginal scoring averages by reflecting the game conditions.

3.3.3. Skellam Distribution

The Skellam distribution, also known as the Poisson difference distribution, is

a discrete probability distribution reflecting the difference in count data. It derives from

the difference between two independent Poisson random variables with expected values

a n d 2. The expected value for the resulting difference distribution is K =,-
(Skellam, 1946). Although the distribution usually applies to random variables from

independent populations, Karlis and Ntzoufras (2003) show that it can also apply to

dependent variables when the two have a common additive contribution, which is

canalled by differencing. In a similar setting to (10), for any pair of variables xi = X,+
Kandy= , + X,, if X, and are Poisson distributed with intensities / and l, then

their difference Z = x- y is a random variable with probability function:

https://www.statisticshowto.com/discrete-probability-distribution/
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The Poisson difference can be applied to football to model the difference in 

scores between two teams. While the formulation in (12) addresses the expected goal 

difference, parameters 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑗𝑗 are again calculated as a linear combination of team 

metrics (5). 

 

3.3.4. Score Dispersion 

The Negative Binomial model offers a more flexible approach by allowing higher 

variance than the Poisson model. Although generally similar to the Poisson model in 

terms of scoring intensities, it can correct for overdispersion in the scores. Since the 

early days of the study, it has been one of the primary alternatives offered to model goal 

scoring in football (Moroney, 1956). The number of goals a team is expected to score 

given by the negative binomial distribution is:  

 
 
In this formulation, x is the number of goals scores with probability q before a failure 

occurs. Thus, the PDF of the negative binomial depends on 𝜇𝜇 = 𝑟𝑟(1−𝑝𝑝)𝑝𝑝  and 𝜎𝜎 = √𝑟𝑟(1−𝑝𝑝)𝑝𝑝 . 

Pollard (1956) suggests a better fit of the negative binomial if the average score rate 

varies considerably, which he argues is also the case due to other factors that impact 

the game, such as the hfa. On the other hand, Conway–Maxwell–Poisson distribution 

(CMP) is an even more generalized approach to the Poisson distribution, correcting for 

both over and under dispersion, while the negative binomial addresses just the former 

(Shmueli, 2004).  

𝑍𝑍(𝑧𝑧| 𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗) = 𝑒𝑒−(𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑗𝑗) (
𝜆𝜆𝑖𝑖 
𝜆𝜆𝑗𝑗
)
𝑧𝑧
2
𝐼𝐼|𝑥𝑥|(2√𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗 ) 

 
𝐸𝐸(𝑍𝑍) = 𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑍𝑍) = 𝜆𝜆𝑖𝑖 + 𝜆𝜆𝑗𝑗 

(12) 

𝑃𝑃(𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥) = (
𝑟𝑟 + 𝑥𝑥 − 1
𝑥𝑥 ) 𝑝𝑝𝑟𝑟𝑞𝑞𝑥𝑥 (13) 
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(12)
E(Z) = ,- 1,

Var(Z) = 1 , + 2 ,

The Poisson difference can be applied to football to model the difference in

scores between two teams. While the formulation in (12) addresses the expected goal

difference, parameters l and , are again calculated as a linear combination of team

metrics (5).
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variance than the Poisson model. Although generally similar to the Poisson model in

terms of scoring intensities, it can correct for overdispersion in the scores. Since the

early days of the study, it has been one of the primary alternatives offered to model goal

scoring in football (Moroney, 1956). The number of goals a team is expected to score

given by the negative binomial distribution is:
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In this formulation, x is the number of goals scores with probability q before a failure

occurs. Thus, the PDF of the negative binomial depends onµ = r ( l - p ) and CJ = -
P p

Pollard (1956) suggests a better fit of the negative binomial if the average score rate

varies considerably, which he argues is also the case due to other factors that impact

the game, such as the hfa. On the other hand, Conway-Maxwell-Poisson distribution

(CMP) is an even more generalized approach to the Poisson distribution, correcting for

both over and under dispersion, while the negative binomial addresses just the former

(Shmueli, 2004).
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3.3.5. Bookies’ Odds as Covariates 

Bookies’ odds are considered one of the most accurate and publicly available 

sources of information on the probabilities of a match. Moreover, given many games, 

bet combinations, teams, and competitions, bookmakers try to be as efficient as possible 

in making the best prediction and keeping their edge (Štrumbelj, 2014). Therefore, it is 

possible within the setting of the Poisson regression to introduce information from the 

historic odds as covariates in the intensity regressions (5) in reverse form. 

 

On the other hand, the odds need to be normalized before they can be used to 

accurately represent the probabilities of a specific outcome in a match. For instance, the 

posted odds of a particular bookie in the match Inter – Genoa played on 21/08/2021 for 

Serie A’s 2021/2022 season were 1.33 for a home win, 5.25 for a draw, and 9 for an 

away win. However, as the odds represent the inverted perceived probabilities, they are 

75.19%, 19.05%, and 11.11% for each result. Noticeably the sum of these probabilities 

is not 100% as expected, but 105.35%. This imbalance emerges because the odds posted 

by the bookies are ‘unfair’ as they seek to keep an edge on the punters, which in this 

case is 5.35%. Therefore, to normalize the probabilities and eliminate the bookie’s 

edge, it’s enough to divide each probability with the booksum. This procedure is known 

as simple normalization, and it’s one of the most used methods precisely because of its 

simplicity (Štrumbelj, 2014). 

 

3.3.6. Time Dynamic Models 

Lastly, it is essential to consider the time stability of the estimated parameters. 

Rue and Salvesen (2000) propose a generalized linear Bayesian model for parameter 

estimation and stability. Each of the team’s metrics at time 𝑡𝑡 draws randomly from a 

normal distribution centered around values at time 𝑡𝑡 − 1. Time dynamic models depart 

from the ad – hoc modification in (8), with the parameters of attack and defense allowed 

to vary based on past matches for any team 𝑖𝑖. Variance is inflated gradually for further 

back matches to ensure a loss of information. Egidi et al. (2018) follow a similar 

approach but generalize the concept to an entire season rather than just the previous 
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match. In this case, the parameters of attack and defense of each team in season 𝑡𝑡 are 

allowed to vary around the values of season 𝑡𝑡 − 1, plus some constant: 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛼𝛼𝑖𝑖𝑖𝑖 ~ 𝑁𝑁(𝜇𝜇𝛼𝛼 + 𝛼𝛼𝑖𝑖𝑖𝑖−1, 𝜎𝜎𝛼𝛼𝛼𝛼2 ) 
 

𝜇𝜇𝛼𝛼 ~ 𝑁𝑁(0,10) 
𝜎𝜎𝛼𝛼𝛼𝛼2  ~ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(0.001, 0.001) 

(14) 
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allowed to vary around the values of season t - 1, plus some constant:

- N(0,10)
o- InvGamma(0.001, 0.001)
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4. Data and Methodology 

4.1. Data Overview 

The football data used in this work primarily concerns final match results in 

terms of scored goals and includes information on metrics such as shots, xG, or odds. 

Data is retrieved online on sites like https://www.football-data.co.uk/, which offers free 

access to a wide range of game metrics from various major leagues spanning over 30 

years. Most of the data come from the link above, except for xG scores retrieved from 

FBRef, through “worldfootballR1“. In addition, match statistics used in modeling are 

identified and filtered during data preparation: 

 

• Date when the game took place 
• Name of the league and season the game pertains to 
• Names of the home and away teams 
• Number of goals scored by the home and away teams 
• Number of shots attempted by the home and away teams 
• xG of the home and away teams 
• Average markets odds for each three-way result 

 

The English Premier League is considered the most prestigious competition in 

the World, and hence most papers and articles refer to it for prediction modeling. 

Nonetheless, the concepts apply to other leagues, so we consider four major European 

competitions: The English Premier Leagues, Spanish La Liga, German Bundesliga, and 

Italian Serie A. Although modeled separately, it is valuable to compare them. 

 

As the primary objective of this work is to optimize estimated parameters and 

compare prediction accuracy across models, available data is split into three sets based 

on seasons. The latest season, 2021 – 2022, is the target for prediction, thus making it 

the test sample. Most models are trained on a sample of 10 seasons from 2011 to 2020, 

while 2021 serves as a validation set. Validation is needed to optimize aspects of some 

models, such as weight allocation in Dixon and Coles (11). On the other hand, models 

 
1 https://github.com/JaseZiv/worldfootballR 
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1 https://github.com/JaseZiv/worldfootballR

https://www.football-data.co.uk/
https://fbref.com/en/
https://github.com/JaseZiv/worldfootballR
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estimated using xG have fewer observations as data is available only from 2018 

onwards. In its entirety, the sample contains data on 17,338 matches across four leagues 

and twelve seasons. Table 1 below gives a comprehensive summary of available data 

and samples. The differences in observations are due to differences of league size. 

 
League Sample No. Seasons  No. Matches  

Bundesliga 
Train 10                      3,060  
Validation 1                         306  
Test 1                         306  

La Liga 
Train 10                      3,800  
Validation 1                         380  
Test 1                         380 

Premier League 
Train 10                      3,800  
Validation 1                         380  
Test 1                         366  

Serie A 
Train 10                      3,800  
Validation 1                         380  
Test 1                         380  

Total                    17,338  
Table 1. Dataset summary 
 

4.2. Methodology 

4.2.1. Model Estimation 

The Poisson regression is part of a class of models that do not allow for a direct 

relationship between the dependent variable and other covariates in the model. As 

pointed out earlier, the functional form expresses 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆𝑖𝑖) and not 𝜆𝜆𝑖𝑖 as a linear 

combination of other covariates, and for this class of nonlinear models, estimators such 

as OLS don’t apply; instead, a maximum likelihood estimation is necessary in such 

cases. In statistical estimations, MLE is a technique used to estimate a model’s 

parameters based on available data by fitting parameter values so that the likelihood of 

encountering those observations maximizes. MLE is a case of the maximum a posteriori 

estimation (MAP), assuming a uniform prior distribution of the parameters. As an 

estimator, MLE is both efficient and consistent, and as data tends to approach the actual 

population, MLE will approach the actual parameters (Balaban, 2018).  

 

Given a certain model specification 𝜃𝜃, it is derived from (3) that the mean of the 

Poisson distribution dependent variable 𝑌𝑌𝑖𝑖 is 𝜆𝜆 ≔ 𝐸𝐸(𝑌𝑌|𝑥𝑥) = 𝑒𝑒𝜃𝜃𝜃𝜃. In this case, the model 
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encountering those observations maximizes. MLE is a case of the maximum a posteriori

estimation (MAP), assuming a uniform prior distribution of the parameters. As an

estimator, MLE is both efficient and consistent, and as data tends to approach the actual

population, MLE will approach the actual parameters (Balaban, 2018).

Given a certain model specification 0, it is derived from (3) that the mean of the

Poisson distribution dependent variable Y is? =E(YI) = e " . I nthis case, the model
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specification 𝜃𝜃 is the target for MLE estimation. Given a set of potential covariates 𝑥𝑥𝑖𝑖 
and a potential Poisson target variable 𝑌𝑌𝑖𝑖, the probability of observing this data given 𝜃𝜃 

is: 

𝐿𝐿(𝜃𝜃|𝑥𝑥, 𝑌𝑌) = 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) =∏
𝑒𝑒𝑦𝑦𝑖𝑖𝜃𝜃𝑥𝑥𝑖𝑖𝑒𝑒−𝜃𝜃𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖!

𝑚𝑚

𝑖𝑖=1
          𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝜖𝜖 1…𝑚𝑚 (15) 

 
 

In this way, the likelihood function 𝐿𝐿(𝜃𝜃|𝑥𝑥, 𝑌𝑌) is set in terms of 𝜃𝜃, for which the 

right-hand side of the equation gives the largest possible probability. It is practical to 

take the log of (4) and maximize the log-likelihood, but in practice, the optimization of 

𝜃𝜃 is done by computerized means. Using MLE to estimate team parameters, in this case, 

is quite natural as the aim is to fit the best estimators, which may explain the scores we 

see. Parameter estimation for the attack and defense metrics is done at a team level, 

while usually, the home team advantage is the same for the entire league. For any given 

league, there is the same number of attack parameters {𝛼𝛼1 …𝛼𝛼𝑛𝑛} and defense parameters 

{𝛽𝛽1 …𝛽𝛽𝑛𝑛} along with a home advantage parameter 𝛾𝛾 to estimate.  

 

In a league with n teams playing each other in k matches with corresponding 

scores (𝑥𝑥𝑘𝑘𝑦𝑦𝑘𝑘), the likelihood function for the parameters of each team m are: 
 

𝐿𝐿(𝑘𝑘 | 𝛼𝛼𝑚𝑚, 𝛽𝛽𝑚𝑚, 𝛾𝛾) =∏𝑒𝑒−𝜆𝜆𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑒𝑒−𝜆𝜆𝑗𝑗𝑗𝑗𝜆𝜆𝑗𝑗𝑗𝑗𝑦𝑦𝑦𝑦
𝑁𝑁

𝑘𝑘=1
 

∀ 𝑚𝑚 ∈ 𝑍𝑍 ∓ 
 

𝜆𝜆𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗𝛾𝛾 
𝜆𝜆𝑗𝑗 = 𝛼𝛼𝑗𝑗𝑗𝑗𝛽𝛽𝑖𝑖𝑖𝑖 

 
s.t. 

∑𝛼𝛼𝑖𝑖 =∑𝛼𝛼𝑗𝑗 =∑𝛽𝛽𝑖𝑖 =∑𝛽𝛽𝑗𝑗 = 0
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
 

(16) 

 
 

Estimation methods vary in the literature depending on the nature of the model, 

being either static or dynamic. Static models usually use MLE estimation, while time 

dynamic approaches favor a Bayesian estimation with Monte Carlo simulations (Egidi 
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specification 0 is the target for MLE estimation. Given a set of potential covariates xi

and a potential Poisson target variable Y,, the probability of observing this data given 0

1s:
mne Y i 0 x i e - 0 x i

L(0Ix ,Y) = p l x ) = ,,
i = i V

for i E 1 ... m (15)

In this way, the likelihood function L(0 Ix,Y) is set in terms of 0, for which the

right-hand side of the equation gives the largest possible probability. It is practical to

take the log of (4) and maximize the log-likelihood, but in practice, the optimization of

0 i s done by computerized means. Using MLE to estimate team parameters, in this case,

is quite natural as the aim is to fit the best estimators, which may explain the scores we

see. Parameter estimation for the attack and defense metrics is done at a team level,

while usually, the home team advantage is the same for the entire league. For any given

league, there is the same number of attack parameters ( a . . .a n }and defense parameters

{/31 . . . /3n} along with a home advantage parameter y to estimate.

In a league with n teams playing each other in k matches with corresponding

scores ( a y ) , the likelihood function for the parameters of each team m are:

N

L(k I a m , f3m, y) =ne-Åik;\_ik xke-Å jk ; \_ j kyk

k = 1
Vm E Z +

l ,=a n Y
l , = «nae (16)

s.t.
m m m m

+-2+-2-2%-
i = 1 i = 1 i = 1 i = 1

Estimation methods vary in the literature depending on the nature of the model,

being either static or dynamic. Static models usually use MLE estimation, while time

dynamic approaches favor a Bayesian estimation with Monte Carlo simulations (Egidi
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et al., 2018). A Bayesian approach is also very useful as it can predict the results as part 

of posterior probabilities and includes information as a part of a priori distributions.  

 

4.2.2. Strategy and Technical Implementation 

The estimation strategy resolves around the typology of the considered models 

and builds a framework for comparison primarily regarding their prediction accuracy. 

The first distinction regards parameter stability between static and time dynamic 

models. Nonetheless, adding weights offers the opportunity for a semi-dynamic 

approach. The second dimension considers the different distribution types: double 

Poisson, Skellam, bivariate Poisson, and Negative Binomial. Finally, static models are 

further re-estimated using xG and adding bookie’s odds as covariates. Ultimately, this 

strategy aims to check model assumptions as stated in the literature review, optimize 

model estimation and features, and see how they affect prediction accuracy. The table 

below gives a summary of models to be estimated and their features:  

 

Category Distribution / Specification 
Features 

No Covariates CMP Odds xG 

Semi-Dynamic (Weights) 
Double Poisson     

Bivariate Poisson / Dixon - Coles     

Bivariate Poisson / Ruse - Salvesen     

Time-Dynamic 
Double Poisson     

Bivariate Poisson     

Skellam     

Table 2. Models and features (grey areas denote possible combinations) 
 
 

Alongside testing for model assumptions, we fit over 50 models across four 

leagues, two model time categories, five distribution types, and various features. Many 

of these models in the literature come as a solution to some underlying assumptions. 

Considering a wide range of results and combining them with what we see from the 

data allows us to conclude how well they address assumptions. Categorization into 

semi-dynamic and dynamic addresses parameter stability. In case there are significant 

differences between the two signifies that time variation is an important aspect. On the 

other hand, different distributions and specifications address the various forms of score 

dependence, such as complete independence for the double Poison to score corrections 
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in the DC model. CMP addresses issues of dispersion, while additional covariates and 

xG are novel propositions to achieve better accuracy. All these models are estimated 

using the training sample as above. Weights for semi-dynamic models are determined 

in the validation sample, and model accuracy across the board is asserted with the test 

sample. 

 

From the computational side, this work uses R – programming in all analytical 

procedures carried throughout, and model estimation primarily revolves around two 

packages specialized in football goal modeling; goalmodel2 and footBayes3. The first 

package offers a wide range of specific models such as Dixon – Coles, Rue – Salvesen, 

and more generalized models such as negative binomial and CMP. These models are 

static, but there is the option of fitting weights, adding covariates, and estimating with 

xG. The second package is based mainly on the work of Egidi et al.; (2018) and focuses 

on the type of underlying distribution rather than on specific model formulations. The 

package estimates double Poisson, Skellam, and bivariate Poisson distributions through 

MLE in static form. In addition, it allows for Hamiltonian Monte Carlo (HMC) 

estimation for time dynamic models with various a priori distributions. The second 

point is particularly interesting to this work in estimating time-dynamic models. For 

HMC, we implement four chains with 300 replications in each case, and in addition, 

hypothesis testing related to the assumptions uses bootstrapped inference. 

 

4.2.3. Evaluation 

Ultimately, the model evaluation focuses on prediction accuracy for the matches 

played in each selected league’s 2021 – 2022 season. As goal models return estimated 

probabilities for any goal combination, they potentially aggregate in estimates for a 

three-way result. Based on the literature, we implement two widespread measurements 

for prediction accuracy, pseudo-R2 (Egidi and Torelli, 2020; Dobson et al., 2001) and 

the Brier score (Brier 1950; Egidi and Torelli, 2020; da Costa et al., 2021). These two 

 
2 https://github.com/opisthokonta/goalmodel 
3 https://github.com/LeoEgidi/footBayes 
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in the DC model. CMP addresses issues of dispersion, while additional covariates and

xG are novel propositions to achieve better accuracy. All these models are estimated

using the training sample as above. Weights for semi-dynamic models are determined

in the validation sample, and model accuracy across the board is asserted with the test

sample.

From the computational side, this work uses R - programming in all analytical

procedures carried throughout, and model estimation primarily revolves around two

packages specialized in football goal modeling; goalmodel and footBayes3. The first

package offers a wide range of specific models such as Dixon - Coles, Rue - Salvesen,

and more generalized models such as negative binomial and CMP. These models are

static, but there is the option of fitting weights, adding covariates, and estimating with

xG. The second package is based mainly on the work ofEgidi et al.; (2018) and focuses

on the type of underlying distribution rather than on specific model formulations. The

package estimates double Poisson, Skellam, and bivariate Poisson distributions through

MLE in static form. In addition, it allows for Hamiltonian Monte Carlo (HMC)

estimation for time dynamic models with various a priori distributions. The second

point is particularly interesting to this work in estimating time-dynamic models. For

HMC, we implement four chains with 300 replications in each case, and in addition,

hypothesis testing related to the assumptions uses bootstrapped inference.

4.2.3. Evaluation

Ultimately, the model evaluation focuses on prediction accuracy for the matches

played in each selected league's 2021 - 2022 season. As goal models return estimated

probabilities for any goal combination, they potentially aggregate in estimates for a

three-way result. Based on the literature, we implement two widespread measurements

for prediction accuracy, pseudo-R2 (Egidi and Torelli, 2020; Dobson et al., 2001) and

the Brier score (Brier 1950: Egidi and Torelli, 2020; da Costa et al., 2021). These two

2 https:/lgithub.com/opisthokonta/goalmodel
3 https:/lgithub.com/LeoEgidil[ootBayes

https://github.com/opisthokonta/goalmodel
https://github.com/LeoEgidi/footBayes
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measurements are flexible and popular for measuring the accuracy of various prediction 

strategies in football.  

 

The pseudo-R2 is the geometric mean of all the probabilities assigned to the 

correct score by the model. For a set of m predictions with associated probabilities 𝑝𝑝𝑚𝑚 

assigned to the actual true outcome, the pseudo-R2 is: 

 

pseudo − 𝑅𝑅2 = (∏𝑝𝑝𝑚𝑚
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The second measurement used is the Brier score, defined as a mean squared 

error of the forecast. The variant used in this case is the multi-category Brier score, 

which accounts for multiple potential outcomes in multiple predictions. In this case, 

final results predictions in multiple matches. For a set of n predictions with a set of k 

potential outcomes and associated probabilities 𝑝𝑝𝑛𝑛𝑛𝑛 assigned to any potential outcome, 

the Brier Score (BRS) is: 

 

𝐵𝐵𝐵𝐵𝐵𝐵 = 1𝑛𝑛∑∑(𝑝𝑝𝑛𝑛𝑛𝑛 − 𝑜𝑜𝑛𝑛𝑛𝑛)
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𝑘𝑘

1

𝑛𝑛
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𝑜𝑜𝑛𝑛𝑛𝑛 = {
1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛, 𝑘𝑘 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
0, 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                     

 
 

Building a betting strategy that can postnatally beat the market is the focus of a 

wide range of works concerning football score modeling (Dixon and Coles, 1997; Rue 

and Salvesen, 2000; Štrumbelj, 2014; Egidi et al., 2018; da Costa et al., 2021). These 

strategies vary from value betting, based on the Kelly criterion (Kelly, 2011), to more 

complex systems involving Shin’s method for odds normalization (Shin, 1993). 

Although building a betting strategy is not part of the aims of the current work, a simple 

setup can be valuable for model comparison. The proposed betting strategy revolves 

around bets for final results (home/draw/away) based on the estimated probabilities of 

each model. The evaluation considers a varying cut–off point for result categorization. 
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strategies vary from value betting, based on the Kelly criterion (Kelly, 2011), to more

complex systems involving Shin's method for odds normalization (Shin, 1993).

Although building a betting strategy is not part of the aims of the current work, a simple

setup can be valuable for model comparison. The proposed betting strategy revolves

around bets for final results (home/draw/away) based on the estimated probabilities of

each model. The evaluation considers a varying cut-off point for result categorization.
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By assuming a pragmatic punter, a bet of 1$ is made in each case the probability of a 

result from a particular model is above the given threshold. In instances where two 

results are above the threshold, the most likely is selected. In this case, models may be 

compared on different sets of matches because different models may potentially result 

in different betting slips. For instance, one model may assign a 0.52 probability for a 

home win, while another 0.48, with a 0.5 threshold. This intends to capture the fact that 

a rational pointer would put in their betting slip whatever bets they feel safe with. 
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5. Results 

5.1. Model Assumptions 

As addressed in the literature review and theoretical framework, there is a series 

of assumptions that each formulation of the model considers the scoring process of the 

home and away team. Such assumptions regard important properties such as the hfa, 

parameter stability over time, score interdependence, and even the applicability of the 

Poisson distribution to the scores. These assumptions are checked against available data 

in the four leagues in this subsection.  

 

5.1.1. HFA and parameter stability 

An overview of the data given by descriptive statistics offers an insightful view 

into critical aspects of the analysis, especially when considering home and away goals. 

In addition, a comparison between the average home and away goals, along with a 

longitudinal view of the data, will offer insights into the hfa and parameter stability. 

 

Table 3. Summary Statistics & Test (based on training samples) 
 
 

First, descriptive statistics support the idea of goals being rare events in football 

(Arastey, 2019). In over 14,000 matches, there are just over 1.5 goals scored by the 

home team per game and just over 1.2 by the away team. Secondly, the data provide 

strong evidence for a significant and consistent hfa effect in all four leagues. In round-

robin tournaments, each team plays with each other side once at home and away. This makes 

it possible to compare the goals a team scores in the first leg against an opponent with the 

score of the same team against the same opponent in the second leg. In addition, this allows 

League Matches Home Goals Away Goals Paired Samples t-test 
Mean StdDev Mean StdDev Diff. 95% Low 95% High 

Bundesliga 3,060 1.65 1.36 1.30 1.22 0.35*** 0.29 0.41 
La Liga 3,800 1.59 1.37 1.13 1.16 0.46*** 0.40 0.51 
Premier League 3,800 1.55 1.30 1.19 1.17 0.36*** 0.31 0.41 
Serie A 3,799 1.52 1.26 1.19 1.14 0.33*** 0.28 0.38 
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score of the same team against the same opponent in the second leg. In addition, this allows
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the comparison of the home and away goals within a repeated sample setting by observing 

the same team at home and away. By taking advantage of this setup, a bootstrapped paired-

samples t-test with is implemented (Table 3). Results indicate that when a team plays at 

home, they consistently score more on average than when they play away, which is in line 

with the entire corpus of literature. 

 

 
Figure 3. The average number of goals scored by the home and away teams; by league and 
season 
 

 
Figure 4. Distribution of average rates of change in scoring intensities across seasons at the 
team level4 

 
4 Considers only teams that appear in at least 5 seasons 
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The panel above, shown in Figures 3 and 4, displays a longitudinal view of the 

goals scored at home and away by the teams in the four leagues. Again, the average 

score rate at home is consistently higher than the away rate in all the leagues across all 

seasons. Additionally, both rates seem relatively stable over time and don’t show much 

variation. This aspect is further explored at the team level, as displayed in figure 4. 

Concerning the home rate, out of 91 teams, 74 (81.32%) of them vary within ±5%, and 

89 (97.80%) within ±10%. Regarding the away scoring rate, these proportions are 70 

(76.92%) and 90 (98.9%), respectively. Nonetheless, results indicate a time competent 

impacting scoring intensities at the league and team level.  These variations are in line 

with the corpus of literature arguing for time dynamic models. 

 

5.1.2. Poisson Distribution Fit 

First proposed by Moroney (1956), the Poisson distribution and negative 

binomial have been argued as a good fit for scores in football. Later the framework was 

expanded and formalized, as seen in the literature review. The R package fitdistrplus5 

provides functions to fit univariate distributions for both continuous and count data. 

Estimation methods use MLE with robust estimates based on resampling techniques. 

The package estimates distributions and tests their fit (Delignette-Muller and Dutang, 

2015). Following Cullen and Frey (1999), a skewness and kurtosis graph may be an 

exploratory tool to examine likely distributions. Both Poisson and negative binomial 

distributions are considered based on preliminary fit and theory. 

 

League Position 
Poisson Negative Binomial 

λ χ2 Size µ χ2 

Bundesliga 
hg 1.65 16.22*** 13.43 1.65 1.00 
ag 1.30 33.4*** 8.55 1.30 3.16 

La Liga hg 1.59 53.52*** 9.30 1.59 4.66 
ag 1.13 61.88*** 6.69 1.13 9.95** 

Premier League 
hg 1.55 11.31** 18.14 1.55 1.02 
ag 1.19 39.73*** 8.10 1.19 5.93 

Serie A hg 1.52 7.83* 33.87 1.52 4.45 
ag 1.19 13.46*** 13.26 1.19 1.19 

Table 4. Distribution and goodness–of–fit test 
 

 
5 https://cran.r-project.org/web/packages/fitdistrplus/index.html 
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First proposed by Moroney (1956), the Poisson distribution and negative

binomial have been argued as a good fit for scores in football. Later the framework was

expanded and formalized, as seen in the literature review. The R package fitdistrplus5

provides functions to fit univariate distributions for both continuous and count data.

Estimation methods use MLE with robust estimates based on resampling techniques.
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2. z Size rµ
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ag 1.30 33.4*** 8.55 1.30 3.16

La Liga
hg 1.59 53.52*** 9.30 1.59 4.66
ag 1.13 61.88*** 6.69 1.13 9.95**

Premier League
hg 1.55 11.31** 18.14 1.55 1.02
ag 1.19 39.73*** 8.10 1.19 5.93

Serie A
hg 1.52 7.83* 33.87 1.52 4.45
ag 1.19 13.46*** 13.26 1.19 1.19

Table 4. Distribution and goodness-of-fit test

5 https://cran.r-project.org/web/packages/fitdistrplus/index.html

https://cran.r-project.org/web/packages/fitdistrplus/index.html
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Figure 5. Skewness and Kurtosis graph of Bundesliga away goals (2011 – 2020) 
 

Goodness–of–fit test (χ2) suggests that the negative binomial distribution is a 

better fit for both the home and away goals in all leagues. These results may indicate 

that there is overdispersion present in the score distribution and that equality of mean 

and variance (2) is likely not to hold.  

 

Preliminary results from the goodness-of-fit test seem to support the part of the 

literature arguing against the Poisson distribution (Pollard, 1985; Boshnakov, 1996). 

Nonetheless, these results only take into account the univariate distribution. Karlis and 

Ntzoufras (2005) argued that significant correlation present in the scores might lead to 

overdispersed data. Pollard (1985) argues against the Poisson distribution precisely 

because the hfa causes variation in the scoring rate. Maher (1982) recognizes the issue, 

while Dixon and Coles (1997) argue that after controlling for score dependencies, the 

general structure laid out in (4) still holds. Ultimately, the empirical deviation from the 

Poisson distribution may result from other factors not accounted for in the univariate 

analysis, such as score correlations. 
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Figure 5. Skewness and Kurtosis graph of Bundesliga away goals (2011 - 2020)

Goodness-of-fit test () suggests that the negative binomial distribution is a

better fit for both the home and away goals in all leagues. These results may indicate

that there is overdispersion present in the score distribution and that equality of mean

and variance (2) is likely not to hold.

Preliminary results from the goodness-of-fit test seem to support the part of the

literature arguing against the Poisson distribution (Pollard, 1985; Boshnakov, 1996).

Nonetheless, these results only take into account the univariate distribution. Karlis and

Ntzoufras (2005) argued that significant correlation present in the scores might lead to

overdispersed data. Pollard (1985) argues against the Poisson distribution precisely

because the hfa causes variation in the scoring rate. Maher (1982) recognizes the issue,

while Dixon and Coles (1997) argue that after controlling for score dependencies, the

general structure laid out in (4) still holds. Ultimately, the empirical deviation from the

Poisson distribution may result from other factors not accounted for in the univariate

analysis, such as score correlations.
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5.1.3. Score Dependence 

Score dependence is one of the main issues in the goal model, and it has been 

addressed empirically and methodologically in various instances (McHale and Scarf, 

2011). For example, Dixon and Coles (1997) consider the empirical to marginal 

distribution ratio up to four goals. For any possible outcome (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) the ratio is given 

as 𝑟𝑟 = 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)
𝑓𝑓(𝑥𝑥𝑖𝑖)𝑓𝑓(𝑦𝑦𝑖𝑖)

 with the denominator indicating the product of marginal empirical 

probabilities. This work follows McHale and Scarf (2011), considering unusual 

proportions that fall over/under two standard errors of 1, signifying an over/under-

representation of certain results. In addition, a high number of significant departures 

from unity indicates a high score dependence. Robust estimates come from Monte Carlo 

simulations. The tables below show empirical ratios with bootstrapped standard errors 

in parenthesis and pairwise correlations.  

 

The Bundesliga shows the highest number of significant deviations from r = 1, 

especially for results involving multiple goals by both sides. These results indicate a 

high degree of score correlation in the league. On the other hand, the Premier League 

shows an over-representation of once-sided results and under-representation of one-

goal wins. La Liga likewise has an over-representation of deep one-sided matches but 

a lower number of significant deviations than the first two mentioned leagues. Lastly, 

Serie A has the least number of significant deviations, which mostly seem to amount to 

sampling error rather than anything else. Different results across leagues indicate 

different levels and dependence structures between scores. Results from the pairwise 

correlations in Table 5 serve as a general check for the following individual tables. As 

expected, no significant correlation is encountered in Serie A, while all other leagues 

show very significant negative correlations with the magnitude proportional to the 

number of unusual values in the following tables.  

 

Observed correlations differ from observations made in the literature, but at the 

same time, different levels of correlations are stated even within the literature. Dixon 

and Coles (1997) detect significant correlation only in the lower scores and hence 

correct for them. McHale and Scarf (2011) find a significant negative correlation in 
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scores of national teams while not finding any significant correlation in the Premier 

League during 2001 – 2005 in their previous work (McHale and Scarf, 2007). Karlis 

and Ntzoufras (2003) base their bivariate Poisson model on observations of weak but 

significant correlations in Serie A (1997 – 1998). Lastly, Egidi et al.; (2018) recognize 

the issue and argues for an implicit correction within hierarchical Bayesian models. 

Overall, in certain aspects, these results continue the trend found in literature and reveal 

new changing dynamics in score dependencies in different leagues at different points 

in time.  

 
League Pearson’s r Kendall’s τ Spearman’s ρ 

Bundesliga -0.129*** -0.096*** -0.116*** 
La Liga -0.076*** -0.051*** -0.06*** 
Premier League -0.099*** -0.069*** -0.083*** 
Serie A -0.024 -0.014 -0.016 

               Table 5. Bootstrapped Pairwise Correlations of home and away goals 
 
 

Home Goals Away Goals 
0 1 2 3 4+ 

0 1.001 (0.055) 0.837 (0.049) 1.062 (0.07) 1.209 (0.111) 1.391 (0.158) 
1 0.807 (0.039) 1.044 (0.038) 1.02 (0.053) 1.231 (0.084) 1.26 (0.116) 
2 1.052 (0.049) 1.041 (0.045) 1.019 (0.064) 0.784 (0.09) 0.799 (0.12) 
3 1.106 (0.073) 1.059 (0.062) 0.908 (0.084) 0.984 (0.129) 0.446 (0.132) 

4+ 1.346 (0.097) 1.026 (0.081) 0.884 (0.109) 0.344 (0.108) 0.62 (0.183) 
Table 6. Bundesliga ratio of empirical bivariate probabilities to empirical independent 
bivariate probabilities (dark grey for significant overrepresentation; light gray for significant 
underrepresentation) 
 

Home Goals Away Goals 
0 1 2 3 4+ 

0 0.966 (0.042) 0.945 (0.041) 0.972 (0.057) 1.177 (0.114) 1.593 (0.16) 
1 0.986 (0.032) 0.984 (0.032) 1.098 (0.05) 0.941 (0.084) 0.877 (0.112) 
2 0.914 (0.038) 1.065 (0.039) 1.028 (0.057) 1.049 (0.106) 0.956 (0.136) 
3 1.137 (0.061) 1.003 (0.06) 0.882 (0.084) 0.823 (0.146) 0.689 (0.176) 

4+ 1.18 (0.073) 1.015 (0.071) 0.81 (0.095) 0.871 (0.176) 0.489 (0.174) 
Table 7. La Liga ratio of empirical bivariate probabilities to empirical independent bivariate 
probabilities 
 

Home Goals 
Away Goals 

0 1 2 3 4+ 
0 0.979 (0.042) 0.883 (0.043) 0.976 (0.058) 1.272 (0.098) 1.619 (0.17) 
1 0.926 (0.033) 1.012 (0.034) 1.086 (0.048) 0.982 (0.071) 1.124 (0.123) 
2 0.996 (0.04) 1.022 (0.04) 1.087 (0.057) 0.916 (0.086) 0.607 (0.122) 
3 1.038 (0.061) 1.144 (0.061) 0.854 (0.08) 0.835 (0.12) 0.613 (0.17) 

4+ 1.312 (0.085) 0.978 (0.079) 0.68 (0.098) 0.831 (0.157) 0.595 (0.217) 
Table 8. Premier League ratio of empirical bivariate probabilities to empirical independent 
bivariate probabilities 
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scores of national teams while not finding any significant correlation in the Premier

League during 2001 - 2005 in their previous work (McHale and Scarf, 2007). Karlis

and Ntzoufras (2003) base their bivariate Poisson model on observations of weak but

significant correlations in Serie A (1997 - 1998). Lastly, Egidi et al.; (2018) recognize

the issue and argues for an implicit correction within hierarchical Bayesian models.

Overall, in certain aspects, these results continue the trend found in literature and reveal

new changing dynamics in score dependencies in different leagues at different points

in time.

League Pearson's r Kendall's T Spearman's p
Bundesliga -0.129*** -0.096*** -0.116***
La Liga -0.076*** -0.051*** -0.06***
Premier League -0.099*** -0.069*** -0.083***
Serie A -0.024 -0.014 -0.016

Table 5. Bootstrapped Pairwise Correlations of home and away goals

Home Goals Awa Goals
0 l 2 3 4+

0 1.001 (0.055) 0.837 (0.049) 1.062 (0.07) 1.209 0.111 1.391 (0.158)
l 0.807 (0.039) 1.044 (0.038) 1.02 (0.053) 1.231 (0.084) 1.26 0.116
2 1.052 (0.049) 1.041 (0.045) 1.019 (0.064) 0.784 (0.09) 0.799 (0.12)
3 1.106 0.073 1.059 (0.062) 0.908 (0.084) 0.984 (0.129) 0.446 (0.132)

4+ 1.346 (0.097) 1.026 (0.081) 0.884 (0.109) 0.344 (0.108) 0.62 (0,183)
Table 6. Bundesliga ratio of empirical bivariate probabilities to empirical independent
bivariate probabilities (dark grey for significant overrepresentation; light gray for significant
underrepresentation)

Home Goals Awa Goals
0 l 2 3 4+

0 0.966 (0.042) 0.945 (0.041) 0.972 (0.057) 1.177 (0.114) 1.593 (0.16)
l 0.986 (0.032) 0.984 (0.032) 1.098 (0.05) 0.941 (0.084) 0.877 (0.112)
2 0.914 (0.038)l 1.065 (0.039) 1.028 (0.057) 1.049 (0.106) 0.956 (0.136)
3 1.137 (0.061) 1.003 (0.06) 0.882 (0.084) 0.823 (0.146) 0.689 (0.176)

4+ 1.18 0.073 1.015 0.071 0.81 0.095 0.871 0.176 0.489 0.174
Table 7. La Liga ratio of empirical bivariate probabilities to empirical independent bivariate
probabilities

Home Goals
Away Goals

0 l 2 3 4+
0 0.979 (0.042) 0.883 (0.043) 0.976 (0.058) 1.272 (0.098) 1.619 (0.17)
l 0.926 (0.033) 1.012 (0.034) 1.086 (0.048) 0.982 (0.071) 1.124 (0.123)
2 0.996 (0.04) 1.022 (0.04) 1.087 (0.057) 0.916 (0.086) 0.607 (0.122)
3 1.038 (0.061) 1.144 (0.061) 0.854 (0.08) 0.835 (0.12) 0.613 (0.17)

4+ 1.312 (0.085) 0.978 (0.079) 0.68 (0.098) 0.831 (0.157) 0.595 (0.217)
Table 8. Premier League ratio of empirical bivariate probabilities to empirical independent
bivariate probabilities
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Home Goals 
Away Goals 

0 1 2 3 4+ 
0 1.056 (0.045) 0.941 (0.04) 0.995 (0.059) 0.977 (0.093) 1.166 (0.15) 
1 0.932 (0.037) 0.996 (0.033) 1.036 (0.048) 1.163 (0.079) 1.036 (0.119) 
2 1.001 (0.042) 1.072 (0.041) 0.995 (0.057) 0.737 (0.082) 0.955 (0.136) 
3 1.063 (0.061) 0.936 (0.054) 0.957 (0.086) 1.155 (0.149) 0.944 (0.209) 

4+ 1.002 (0.087) 1.072 (0.083) 0.955 (0.114) 1.003 (0.196) 0.558 (0.206) 
Table 9. Serie A ratio of empirical bivariate probabilities to empirical independent bivariate 
probabilities 
 

5.2. Weighting Scheme 

The weighting scheme introduces a semi-dynamic structure to the static models, 

such as Dixon and Coles (1997). Optimal weights are dependent on 𝜉𝜉, which is also the 

target for optimization. Previous work suggests testing values between 0 and 0.008 

(Boshnakov et al., 2017). In the present work, the validation sample (season 2020 – 

2021) is used to optimize the value of 𝜉𝜉. All model parameter estimations happen on 

the training set with different weights as determined by 𝜉𝜉, and selection criteria are 

based on validation sample predictability. More precisely, we seek to maximize the log-

likelihood of the semi-dynamic model through the function 𝑆𝑆(𝜉𝜉), given 𝑘𝑘 matches in 

the validation sample: 

 

𝑆𝑆(𝜉𝜉) =∑[ℎ ∗ log(𝑝𝑝ℎ𝑘𝑘) + 𝑎𝑎 ∗ log (𝑝𝑝𝑎𝑎𝑎𝑎)]
𝑘𝑘

1
 

 
 

Where 𝑝𝑝ℎ𝑘𝑘 and 𝑝𝑝𝑎𝑎𝑎𝑎 are the estimated probabilities for a home or away win from 

the training model, while ℎ and 𝑎𝑎 take the value one if the match resulted in a home 

win or away win, respectively, and zero otherwise. Essentially 𝑆𝑆(𝜉𝜉) is the sum of 

estimated (log) probabilities of the actual results. This work considers a weighting 

scheme for the double Poisson, Dixon-Coles (DS), and Rue-Salvesen models (RS). 

Usually, weighting is applied to the DC model, but the concept expands to the double 

Poisson and RS models, which is an extension of the DC. 

 

Figure 6 below displays the relationship between 𝜉𝜉 and 𝑆𝑆(𝜉𝜉) for each of the four 

leagues in the DC model. While this is a graphical display of the process, the complete 
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Home Goals
Away Goals

0 2 3 4+
0
l
2
3

4+

1.056 (0.045)
0.932 (0.037)
1.001 (0.042)
1.063 (0.061)
1.002 (0.087)

0.941 (0.04)
0.996 (0.033)
1.072 (0.041)
0.936 (0.054)
1.072 (0.083)

0.995 (0.059)
1.036 (0.048)
0.995 (0.057)
0.957 (0.086)
0.955 (0.114)

0.977 (0.093)
1.163 (0.079)
0.737 (0.082)
1.155 (0.149)
1.003 (0.196)

1.166 (0.15)
1.036 (0.119)
0.955 (0.136)
0.944 (0.209)
0.558 (0.206)

Table 9. Serie A ratio of empirical bivariate probabilities to empirical independent bivariate
probabilities

5.2. Weighting Scheme

The weighting scheme introduces a semi-dynamic structure to the static models,

such as Dixon and Coles (1997). Optimal weights are dependent on f, which is also the

target for optimization. Previous work suggests testing values between O and 0.008

(Boshnakov et al., 2017). In the present work, the validation sample (season 2020 -

2021) is used to optimize the value of f. All model parameter estimations happen on

the training set with different weights as determined by f, and selection criteria are

based on validation sample predictability. More precisely, we seek to maximize the log-

likelihood of the semi-dynamic model through the function S ( ) , given k matches in

the validation sample:

k

s @ ) = ) , - t o s s ) + a · t o e cool
l

Where pn and paa are the estimated probabilities for a home or away win from

the training model, while h and a take the value one if the match resulted in a home

win or away win, respectively, and zero otherwise. Essentially S ( ) is the sum of

estimated (log) probabilities of the actual results. This work considers a weighting

scheme for the double Poisson, Dixon-Coles (DS), and Rue-Salvesen models (RS).

Usually, weighting is applied to the DC model, but the concept expands to the double

Poisson and RS models, which is an extension of the DC.

Figure 6 below displays the relationship between and S ( ) for each of the four

leagues in the DC model. While this is a graphical display of the process, the complete
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picture is given in Table 9, which displays optimal values of 𝜉𝜉 for all leagues and model 

combinations and the impact on model fit. As suggested by the literature, optimal values 

of ξ fall between 0 and 0.008, and in most cases, there is a clear improvement in model 

fit when prioritizing recent matches. La Liga is the only instance where the weighting 

scheme doesn’t affect the model fit. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. 𝝃𝝃 against 𝑺𝑺(𝝃𝝃) - Dixon-Coles model 
 

League Model 𝝃𝝃∗ 𝑺𝑺(𝝃𝝃∗) ΔR2 ΔLog-Lik ΔAIC 

Bundesliga 
Dixon - Coles 0.0045 -172.82 4.15% 8,539.04 -17078.07 
Double Poisson 0.0035 -167.59 3.38% 8,385.49 -16770.98 
Rue - Salvesen 0.0050 -172.85 4.52% 8,595.21 -17190.41 

La Liga 
Dixon - Coles - -200.51 0.00% - - 
Double Poisson 0.0003 -199.17 -0.55% 3,756.62 -7513.23 
Rue - Salvesen - -200.53 0.00% - - 

Premier League 
Dixon - Coles 0.0023 -247.38 4.96% 9,703.43 -19406.86 
Double Poisson 0.0033 -240.98 6.03% 10,101.91 -20203.83 
Rue - Salvesen 0.0025 -247.37 5.25% 9,832.78 -19665.55 

Serie A 
Dixon - Coles 0.0023 -207.94 3.89% 9,570.16 -19140.33 
Double Poisson 0.0070 -199.95 11.55% 10,422.76 -20845.53 
Rue - Salvesen 0.0023 -207.93 3.89% 9,570.17 -19140.33 

Table 10. Weight optimization for 𝝃𝝃∗ and changes on model fit from 𝝃𝝃 = 𝟎𝟎 
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picture is given in Table 9, which displays optimal values of f for all leagues and model

combinations and the impact on model fit. As suggested by the literature, optimal values

of fall between 0 and 0.008, and in most cases, there is a clear improvement in model

fit when prioritizing recent matches. La Liga is the only instance where the weighting

scheme doesn't affect the model fit.

Bundesliga La Liga

-174 -202

-176 -204

-206
-178

-208- 0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008u---D Premier League Serie A
-247.5 -207.5

-250.0 -210.0

-252.5 -212.5

-255.0 -215.0

-257.5
-217.5

0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008

€
Figure 6. a g a i n s t S() - Dixon-Coles model

League Model {* s&) AR? 4Log-Lik 4A4IC
Dixon - Coles 0.0045 -172.82 4.15% 8,539.04 -17078.07

Bundesliga Double Poisson 0.0035 -167.59 3.38% 8,385.49 -16770.98
Rue - Salvesen 0.0050 -172.85 4.52% 8,595.21 -17190.41
Dixon - Coles -200.51 0.00%

La Liga Double Poisson 0.0003 -199.17 -0.55% 3,756.62 -7513.23
Rue - Salvesen -200.53 0.00%
Dixon - Coles 0.0023 -247.38 4.96% 9,703.43 -19406.86

Premier League Double Poisson 0.0033 -240.98 6.03% 10,101.91 -20203.83
Rue - Salvesen 0.0025 -247.37 5.25% 9,832.78 -19665.55
Dixon - Coles 0.0023 -207.94 3.89% 9,570.16 -19140.33

Serie A Double Poisson 0.0070 -199.95 11.55% 10,422.76 -20845.53
Rue - Salvesen 0.0023 -207.93 3.89% 9,570.17 -19140.33

Table 10. e i g h t optimization for and changes on model fit from = 0
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5.3. Model Performance 

Accuracy is primarily addressed at the model level using the Brier score and 

Pseudo – R2, and further comparisons consider how these indicators change across 

leagues. The same consideration applies when looking at the average income from the 

betting strategy above. Results indicate that differences across leagues are the main 

aspect to consider when modeling scores. Table 11 shows the average results in terms 

of accuracy across model types. When excluding league variation from the results, 

accuracy is very similar across all models, and differences are only marginal. These 

results are consistent with Egidi & Torelli (2020), finding minor differences across 

various models with similar magnitudes of BRS score and Pseudo – R2. Subsequent 

panels give a broader picture of the differences in accuracy across leagues. Variation in 

model accuracy across leagues is due to the differences noted in league parameters 

during the assumptions check. Subsequent panels display differences across leagues, 

alongside the number of matches used to calculate accuracies. The way the package 

goalmodel works makes it impossible to predict games it has never encountered in 

previous years, reducing the number of matches used for testing. Nonetheless, we 

ensure that all models are tested on the same matches, and even after dropping the xG 

model, which has the least number of available predictions, the results do not change6.  

 

Type Model Measure 
BRS Pseudo – R2 

SD 

SD_DC_Base 0.6053 0.3634 
SD_DC_CMP 0.6058 0.3631 
SD_DC_Odds 0.6057 0.3631 
SD_DP_Base 0.6075 0.3625 
SD_DP_CMP 0.6091 0.3616 
SD_DP_Odds 0.6081 0.3621 
SD_DP_xG 0.6029 0.3654 
SD_RS_Base 0.6061 0.3630 
SD_RS_CMP 0.6066 0.3626 
SD_RS_Odds 0.6064 0.3627 

TD 
TD_BP_Base 0.6045 0.3642 
TD_DP_Base 0.6026 0.3649 
TD_Skellam_Base 0.6046 0.3636 

                Table 117. Average Brier Score and Pseudo – R2 across models 
 

 
6 See figures 10, 11 in the appendix 
7 Model names are abbreviated. See Table 12 in the appendix for complete names 
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Accuracy is primarily addressed at the model level using the Brier score and

Pseudo - R2, and further comparisons consider how these indicators change across

leagues. The same consideration applies when looking at the average income from the

betting strategy above. Results indicate that differences across leagues are the main

aspect to consider when modeling scores. Table 11 shows the average results in terms

of accuracy across model types. When excluding league variation from the results,

accuracy is very similar across all models, and differences are only marginal. These

results are consistent with Egidi & Torelli (2020), finding minor differences across

various models with similar magnitudes of BRS score and Pseudo - R2. Subsequent

panels give a broader picture of the differences in accuracy across leagues. Variation in

model accuracy across leagues is due to the differences noted in league parameters

during the assumptions check. Subsequent panels display differences across leagues,

alongside the number of matches used to calculate accuracies. The way the package

goalmodel works makes it impossible to predict games it has never encountered in

previous years, reducing the number of matches used for testing. Nonetheless, we

ensure that all models are tested on the same matches, and even after dropping the xG

model, which has the least number of available predictions, the results do not change".

Type Model Measure
BRS Pseudo --R?

SD DC Base 0.6053 0.3634
SD DC CMP 0.6058 0.3631
SD DC Odds 0.6057 0.3631
SD DP Base 0.6075 0.3625

SD SD DP CMP 0.6091 0.3616
SD DP Odds 0.6081 0.3621
SD DP xG 0.6029 0.3654
SD RS Base 0.6061 0.3630
SD RS CMP 0.6066 0.3626
SD RS Odds 0.6064 0.3627
TD BP Base 0.6045 0.3642

TD TD DP Base 0.6026 0.3649
TD Skellam Base 0.6046 0.3636

Table 11. Average Brier Score and Pseudo - R across models

6 See figures 10, 11 in the appendix
7 Model names are abbreviated. See Table 12 in the appendix for complete names
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Figure 7. Pseudo – R2 across leagues and models 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Brier Score across leagues and models 
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Bundesiga (N=134) La Lga (NV=222) Premier League (N=187)

TD_SKellam_Base
TD_DP_Base
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Figure 7. Pseudo - R2across leagues and models

Bundeslga (NV=134) La Liga (N=222) Premier League (N=187)

TD_Skellam_Base TD_Skellam_Base TD_Skellam_Base
TD_DP_Base TD_DP_Base TD_DP_Base
TD_BP_Base TD_BP_Base TD_BP_Base
SD_RS_Odds SD_RS_Odds SD_RS_Odds
SD_RS_CMP SD_RS_CIP SD_RS_CMP
SD_RS_Base SD_RS_Base SD_RS_Base

SD_DP_xG SD_DP_xG SD_DP_xG
SD_DP_Odds SD_DP_Odds SD_DP_Odds
SD_DP_CMP SD_DP_CMP SD DP CMP

SD_DP_Ease SO_DP_Base SD_OP_Base
SD_DC_Odds SD_DC_Odds SD_DC_Odds
SD_DC_CMP SD_DC_CMP SD_DC_CMP

SO_DC_Base SD_DC_Base SO_OC_Base

0.40 0.45 0.50 0.55 0.60 0.65 0.40 0.45 0.50 0.55 0.60 0.65 0.40 0.45 0.50 0.55 0.60 0.65

SerieA(N=172) Tota/ (N=715)

TD_Skellam_Base
TD_DP_Base
TD_BP_Base
SD_RS_Odds
SD_RS_CMP

SO_RS_Base
SD_DP_xG

S_DP_Odds
SD_DP_CMP
SD_DP_Base
SD_DC_Odds
SD_DC_CMP

SO_DC_Base
c . - , - - - - - - - - r

0.40 0.45 0.50 0.55 0.60 0.65

T_Skellam_Base
TD DP Base
TD_BP_Base
SD_RS_Odds
SD_RS_CMP
SO_RS_Base

SD_DP_xG
S_DP_Odds
SD_DP_CMP

SD_DP_Base
SD_DC_Odds
SD_DC_CMP
SD_DC_Base

c . - , - - - - - -

0.40 0.45 0.50 0.55 0.60 0.65
DRS

•
Figure 8. Brier Score across leagues and models
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Da Costa et al. (2021) noted that accuracy variations, with specific models 

performing better in particular leagues. Accuracy results are consistent, with higher 

values of predictability (Pseudo – R2) associated with lower values of average error 

(Brier score). Time dynamic models have the best performance within the Bundesliga, 

outperforming all other formulations, but with no differences across the three types of 

distributions (Skellam, Double Poisson, Bivariate Poisson). In La Liga, time-dynamic 

double Poisson and bivariate Poisson models performed the best, but with no significant 

difference compared to any other model. The English Premier League is the only 

instance where the semi-static models seem to outperform the time dynamic models, 

especially regarding the Dixon – Coles formulation. There is no distinction between 

dynamic and semi-dynamic models regarding Serie A, but there is an unusually low 

accuracy regarding double Poisson models.  Except for a relatively good performance 

of the xG model in Bundesliga and La Liga, no other model containing additional 

covariates or accounting for dispersion (CMP) has any particular performance in any 

leagues. Lastly, as seen earlier, totals provide no new information as they simply 

average out differences present across leagues.  

 

Figure 9 displays the results from the betting strategy elaborated at the end of 

section 4. Again, the betting strategy reflects accuracy results, and no method yields 

any profitability in the long run across leagues and considering different thresholds. In 

the Bundesliga, the only instances of some profitable bets involve the time dynamic, 

which shows the best accuracy in this league with the broadest margin observed overall. 

Even using a safer threshold at 70% doesn’t ensure any consistent returns; instead, 

results point to the fact that profitability is connected to unique strategies applied to a 

specific number of teams or leagues. The same results are seen in Da Costa et al. (2021), 

where overall betting strategies are not profitable except for certain combinations of 

models and leagues. Serie A yields interesting results with a higher threshold associated 

with lower ROI. As a higher threshold means safer bets put on stronger sides, the 

negative correlation may suggest a higher number of unexpected results, such as the 

underdogs winning or drawing. 
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Da Costa et al. (2021) noted that accuracy variations, with specific models

performing better in particular leagues. Accuracy results are consistent, with higher

values of predictability (Pseudo - R2) associated with lower values of average error

(Brier score). Time dynamic models have the best performance within the Bundesliga,

outperforming all other formulations, but with no differences across the three types of

distributions (Skellam, Double Poisson, Bivariate Poisson). In La Liga, time-dynamic

double Poisson and bivariate Poisson models performed the best, but with no significant

difference compared to any other model. The English Premier League is the only

instance where the semi-static models seem to outperform the time dynamic models,

especially regarding the Dixon - Coles formulation. There is no distinction between

dynamic and semi-dynamic models regarding Serie A, but there is an unusually low

accuracy regarding double Poisson models. Except for a relatively good performance

of the xG model in Bundesliga and La Liga, no other model containing additional

covariates or accounting for dispersion (CMP) has any particular performance in any

leagues. Lastly, as seen earlier, totals provide no new information as they simply

average out differences present across leagues.

Figure 9 displays the results from the betting strategy elaborated at the end of

section 4. Again, the betting strategy reflects accuracy results, and no method yields

any profitability in the long run across leagues and considering different thresholds. In

the Bundesliga, the only instances of some profitable bets involve the time dynamic,

which shows the best accuracy in this league with the broadest margin observed overall.

Even using a safer threshold at 70% doesn't ensure any consistent returns; instead,

results point to the fact that profitability is connected to unique strategies applied to a

specific number of teams or leagues. The same results are seen in Da Costa et al. (2021),

where overall betting strategies are not profitable except for certain combinations of

models and leagues. Serie A yields interesting results with a higher threshold associated

with lower ROI. As a higher threshold means safer bets put on stronger sides, the

negative correlation may suggest a higher number of unexpected results, such as the

underdogs winning or drawing.
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6. Conclusions 

This work offers a comprehensive look at Poisson-based prediction models as 

applied to association football. The intuitive and straightforward idea that the scoring 

process of the home and away team in football is associated with basic metrics such as 

team attack and defense come naturally to anyone who knows or follows the sport. 

Furthermore, what has come as natural to many researchers studying the sport has been 

linking this process to some underlying statistical distribution.  Moroney (1956) first 

proposed the Poisson distribution for the goal-scoring process, and Maher (1985) 

formalized it in terms of relative team strength. Many more researchers suggested 

various ways to improve the model in light of new data and findings. This work 

contributes to this line of work by offering a thorough look at current and past 

developments. The review is not only in terms of model specification but by empirically 

testing and arguing the underlying assumptions and how they hold against the latest 

data from four of the major competitions in Europe and the World.  

 

The direct connection between the Poisson distribution and the scoring process 

has been questioned because empirical evidence suggests a correlation between scores 

and overdispersion (Pollard, 1971; Maher, 1985; Dixon and Coles, 1997; Karlis and 

Ntzoufras, 2003). The current work agrees with these conclusions, and results show a 

consistent departure from the Poisson distribution in all considered leagues, at least 

when looking at the univariate goal distribution.  

 

Arguably, many of the modifications and alternative propositions come from 

the departure from the Poisson distribution. Thus, understanding the structure of this 

departure has been vital in addressing it. In some aspects, the results from the current 

work disagree with the underlying assumption made in some of these modifications. 

For example, Dixon and Coles (1997) base their correction on the empirical fact that 

scores show a positive correlation, thus inflating the occurrences of draws. Karlis and 

Ntzoufras (2003) also share this conclusion. Our results are opposed and show a 

significant negative correlation in all the leagues but Serie A, which shows no score 
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correlation. Negative score correlations indicate one-sided results and league disparity, 

which is consistent with the fact that an ever-smaller number of clubs dominates the 

sport (Maimone and Yasseri, 2021). For instance, Bayern München has won the last 

ten league titles practically unopposed in the German Bundesliga, where we also see 

the single largest negative score correlation.  More general solutions are considered by 

Karlis and Ntzoufras (2003, 2008) by bivariate Poisson distribution and subsequently 

Skellam (Poisson difference) to account for positive correlation in general. Our results 

do not indicate any particular improvement in accuracy while considering these cases 

against the other models. In fact, not even the CMP model which supposedly accounts 

for both under and over dispersion shows any particular result. 

 

The second most important aspect discussed in the literature is the question of 

adding a time component to parameter estimation. Results show variation is present 

both in the home and away scores in all leagues across seasons, although in moderate 

levels. While there is a clear improvement to model fit when moving from static to semi 

-dynamic models (Dixon and Coles, 1997), the advantage from semi-dynamic to time-

dynamic models (Egidi et al., 2018; Rue & Salvesen 2000) is not quite clear. Time-

dynamic models showed the best performance by far in the Bundesliga, but performed 

marginally worse compared to semi-dynamic models in the English Premier League. 

On the other hand, no major differences in performance were noted in La Liga and Serie 

A.  Finally, beside addressing the various corrections and alternatives to the Poisson 

model alongside considering the time dimensions, this work attempts a limited novel 

approach by introducing bookies’ odds and estimations via xG to the semi – dynamic 

models. The introduction of odds in the current form as covariates doesn’t seem to 

contribute significantly in the current framework. In the same light considering 

estimates with xG, appears to yield conflicting results. While in terms of accuracy the 

xG model performs no differently to any other, its expected returns are significantly 

lower and more irregular.  

 

In general results from this work agree with the conclusions of Egidi & Torelli 

(2020) who warn the reader in taking the results of any particular work in score 

modeling at face value especially concerning betting strategies. As we have shown the 
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distinction and underlying assumptions made in many cases are not so straightforward 

when faced with the data, and some of the conclusions analyzed concern only one 

league and are seldom over 10 or 20 years old. On the other hand, in terms of future 

research there are some aspects that do need improvement. First, there was a technical 

issue that estimations from the goalmodel package could not predict some of the 

matches from the test sample, thus reducing it in size. This problem was further made 

worse by the xG data which was sparser compared to regular result data. Although this 

ultimately turned out not to be a major issue, certainly a better approach would improve 

estimations. Secondly, the approach of considering extra covariates and also the xG 

estimates can be improved by also including them into a time-dynamic perspective. 

Ultimately the single most significant unifier across leagues was the apparent negative 

distribution in the scores, thus a model addressing it would be a good starting point for 

future research. 
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Figure 10. Pseudo – R2 across leagues and models (xG dropped for larger N) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 11. Brier score across leagues and models (xG dropped for larger N) 
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Appendix
Bundes l i g a (N-240) La Lige (N-342) Premier League (N+30€)

TD_Skellam_Base
TD_DP_Base
TD_BP_Base
SD_RS_Odds
SD_RS_CMP
SD_RS_Base
SD_DP_Odds
SD_DP_CIP
SD_OP_Base
SD_DC_Odds
SDD C _CMP
SD_DC_Base

Serie A (NV=269) Total ( - 1 1 5 7 ) 0.25 0.30 0.35 0.40
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SD_RS_Odds
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SD_DC_CMP
SD_DC_Base
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Figure l 0. Pseudo R across leagues and models (xG dropped for larger N)

Bundes l i g a (N-240) La Lige (N-342) Premier League (N-306)
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SD_RS_CMP
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SD_DP_Base
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- - - - - - - - - - - - - -
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Figure 11. Brier score across leagues and models (xG dropped/or larger N)
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              Table 12. Model terminology 

 

 

Abbreviation Long Name 
SD_DC_Base Semi - Dynamic Dixon - Coles Model with no Covariates 
SD_DC_CMP Semi - Dynamic Dixon - Coles Model with CMP correction 
SD_DC_Odds Semi - Dynamic Dixon - Coles Model with Covariate Odds 
SD_DP_Base Semi - Dynamic Double Poisson Model with no Covariates 
SD_DP_CMP Semi - Dynamic Double Poisson Model with CMP correction 
SD_DP_Odds Semi - Dynamic Double Poisson Model with Covariate Odds 
SD_DP_xG Semi - Dynamic Double Poisson Model with xG 
SD_RS_Base Semi - Dynamic Rue - Salvesen Model with no Covariates 
SD_RS_CMP Semi - Dynamic Rue - Salvesen Model with CMP correction 
SD_RS_Odds Semi - Dynamic Rue - Salvesen Model with Covariate Odds 
TD_BP_Base Time - Dynamic Bivariate Poisson Model with no Covariates 
TD_DP_Base Time - Dynamic Double Poisson Model with no Covariates 
TD_Skellam_Base Time - Dynamic Skellam Model with no Covariates 
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Abbreviation Long Name
SD DC Base
SD DC CMP
SD DC Odds
SD DP Base
SD DP CMP
SD DP Odds
SD DP xG
SD RS Base
SD RS CMP
SD RS Odds

Semi - Dynamic Dixon - Coles Model with no Covariates
Semi - Dynamic Dixon - Coles Model with CMP correction
Semi - Dynamic Dixon - Coles Model with Covariate Odds
Semi - Dynamic Double Poisson Model with no Covariates
Semi - Dynamic Double Poisson Model with CMP correction
Semi - Dynamic Double Poisson Model with Covariate Odds
Semi - Dynamic Double Poisson Model with xG
Semi - Dynamic Rue - Salvesen Model with no Covariates
Semi - Dynamic Rue - Salvesen Model with CMP correction
Semi - Dynamic Rue - Salvesen Model with Covariate Odds

TD BP Base
TD DP Base
TD Skellam Base- -

Time - Dynamic Bivariate Poisson Model with no Covariates
Time - Dynamic Double Poisson Model with no Covariates
Time - Dynamic Skellam Model with no Covariates

Table 12. Model terminology


