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Abstract 

The citation count of an academic article is of great importance to researchers and readers. 

Due to the large increase in the publication of academic articles every year, it may be difficult 

to recognize the articles which are important to the field. This thesis collected data from 

Scopus with the purpose to analyze how paper, journal, and author related variables performed 

as drivers of article impact in the marketing field, and how well they could predict highly cited 

articles five years ahead in time. Social network analysis was used to find centrality metrics, 

and citation count one year after publication was included as the only time dependent variable. 

Our results found that citations after one year is a strong driver and predictor for future 

citations after five years. The analysis of the co-authorship network showed that closeness 

centrality and betweenness centrality are drivers of future citations in the marketing field, 

indicating that being close to the core of the network and having brokerage power is important 

in the field. With the use of machine learning methods, we found that a combination of paper, 

journal, and author related drivers perform better at predicting highly cited articles after five 

years, compared to using only one type of driver.  
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1. Introduction 

In the last decade, the number of marketing-related articles have had a rapid increase. With 

the rising amount of new scientific articles being published, there is a growing need to identify 

the potentially impactful articles from the less impactful ones (Yan et al., 2011). It is 

impossible to track all new research articles. Therefore, an important but challenging task in 

academia is to predict the future impact of a published paper on the research field (Ma et al., 

2021; Abrishami & Aliakbary, 2019; Cao et al., 2016).  

Impact can be estimated through various measures, but citation count is regarded as the most 

important indicator for this purpose (Didegah & Thelwall, 2013; Oppenheim, 1995). This 

thesis interprets the term impact as “the actual influence on surrounding research activities at 

a given time”, as defined by Aksnes et al. (2019). Hence, impact gives an estimation of how 

significant an article is to its respective field, which reflects the utility of research. Since 

citations is recognized as a proxy of impact, this thesis will use citations as the measure of 

article impact.  

Identifying and utilizing the drivers of future article impact, is not only of importance to 

authors of articles, but also to researchers, journals, and other entities who need to stay updated 

on a field. For the readers of articles, citations work as a tool to find relevant and high-quality 

articles. For researchers, citations can affect their salary, funding, and their position in the 

field. Citations can also impact the position of a journal in a field (Stremersch et al., 2007). 

The greater the impact, the more established the reputation of the scholar (Li et al., 2013). This 

gives incentives to the producers and publishers of research articles to maximize the number 

of citations they can get. Furthermore, understanding the drivers behind future article citations 

can help researchers understand how research drives the field.  

There are many different factors that can affect the number of citations. It is possible to split 

the variables into categories. The categories typically group variables related to the paper 

itself, the journal it is published in, or characteristics of the author of the article. Furthermore, 

social networks, such as co-authorship networks, have recently been seen as useful for 

predicting article impact (Colladon, 2020). The network created of relationships between 

authors give valuable information and knowledge of social interactions. Factors like having a 

strong position and being important in the author network, has previously shown to have a 

positive effect on citations. In addition, social relations of authors have an important role in 
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the recognition of their research. Actors in the network can benefit by gaining more knowledge 

and a wider horizon, and possibly receive better outcomes (Li et al., 2013), such as enhanced 

quality of the research (Katz and Martin, 1997). 

There has been substantial research done on the prediction of future citation counts and highly 

cited articles (Ma et al., 2021). However, there has not been a large focus within the field of 

marketing. Hence, we will in this thesis first study what drives the citations of marketing 

articles, before using this information to predict highly cited academic marketing articles after 

five years. The thesis aims to answer the following research question: 

What are relevant drivers of marketing article impact between 1992 and 2022, and how can 

these drivers be utilized to predict highly cited marketing articles five years after publication? 

With this research question, we aim to identify drivers of article citations through a literature 

review, test relevant drivers with the use of data from the period 1992-2022, and investigate 

how well these drivers predict whether an article will be a highly cited article five years after 

publication. We will test the drivers by classifying marketing articles from 2015 and 2016 as 

either highly cited or non-highly cited five years after publication. To test this, we will be 

using the most promising predictive methods today. We have chosen to predict citations five 

years after publication as this is a sufficient time interval to identify article impact due to most 

articles having a determining citation path by then (Abramo et al., 2011). It is also a standard 

timeframe for prediction of citation counts, which means that we can compare our results with 

previous work in citation count predictions.    

To identify potential drivers, we have done an extensive literature review which includes 

important research that has been done on the subject. In addition, we have collected articles 

from 75 English-written marketing journals published between 1992 and 2022 for analysis 

purposes. Marketing articles from this time-period are covered to a great extent and generally 

have good metadata quality compared to articles prior to the 1990s. By looking at a broad 

timeframe, we have the possibility to find patterns of how marketing articles gain citations as 

well as having better ability to increase the robustness of the testing. It is also important that 

we have enough data from previous years to test the quality of our predictions. As we need 

citation data from five years after publication, the latest article we can test predictions on are 

from 2016.  
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In the following section, we will present a literature review to provide knowledge about 

existing research on drivers of article impact within marketing research and the citation count 

prediction problem. Based on found gaps in the literature from the literature review, we will 

form specific hypotheses to test. Further, a methods section presents the methods used to 

achieve our results, followed by a data section that explains how we have collected and 

prepared our data for analysis. After the data collection section, we present our results, before 

discussing how well the results managed to answer our hypotheses. Within the discussion we 

also include the implications for authors and readers of marketing articles. Finally, we 

conclude with how our results contribute to the field, and we discuss the limitations and 

possible future research possibilities.  
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2. Literature Review 

This section contains past work done on citations and predictions of future citations, which we 

find necessary as a foundation to answer our research question. We will in this part present 

the important research done within 1) what citations represents, 2) drivers of citations, and 3) 

previous attempts to predict future article citations. The first part discusses importance of 

citations to researchers and readers, as well as what it represents. The second part examines 

the different types of drivers, and how they affect citation counts. In the last part, previous 

solution proposals to the citation count prediction problem are discussed, and we look at how 

social network metrics have been used in previous research to measure article impact.  

2.1 Article Citations  

Citations was primarily intended for helping researchers more effectively search through the 

literature (Mingers & Leydesdorff, 2015). The number of citations is the most frequently used 

measure to evaluate the quality of articles (Tahamtan et al., 2016). However, it has been 

primarily shown to reflect aspects of impact (Aksnes et al., 2019). Although research has found 

that the citation count is not necessarily correlated with article quality, many citations can 

indicate the utility an article has for others, and followingly the academic impact of the article 

(Nightingale & Marshall, 2012).  

There are many reasons why a researcher cites the work of other researchers in their own 

articles (Tahamtan, 2016).  It could be to support their own claims, methodology or findings, 

or to present a different point of view of other researchers. Some papers are cited to be 

criticized, while others are cited as positive or negative examples.  

Article citations can affect the career and salary of an academic researcher (Stremersch et al., 

2007). However, in Norway, citations do not affect funding opportunities or research policy 

decisions (Aksnes & Rip, 2009). Instead, having a highly cited article can give important 

collaboration opportunities and scientific positions. Bhandari et al. (2007) found that 

researchers tend to seek being published by high-impact journals to become more frequently 

cited. Research has found that a weak article that does not contribute with anything new may 

receive many citations if published in a journal with many readers (Callaham, 2002). This 

suggests that academic network matters for promotion of articles.  
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2.2 Drivers of Article Citations 

The question of what influences citations have been studied in numerous aspects, such as the 

importance of time, authors, and journals (Ma et al., 2021). In this thesis, a driver of article 

impact is defined as a factor that is influencing citations. According to Tahamtan et al. (2016), 

the drivers of article citations can be divided into three categories: paper related, journal 

related, and author related drivers. As Tahamtan et al. (2016) does not define these categories, 

we provide definitions based on the types of content found in the different categories in this 

paper. We define paper related drivers as drivers based on either the content of an article or 

related to the content of it. We define journal related drivers as metrics related to the journal 

the article is published in. Lastly, we define author related drivers as characteristics and 

metrics related to the authors of an article.   

In this section, we will elaborate on the research done within these three categories. A tabular 

overview of the drivers tested and on which fields can be seen in Appendix A3. 

2.2.1 Paper Related Drivers 

Increasing quality of a paper is found to increase the number of citations of an article 

(Tahamtan et al., 2016). Peer reviewed papers, and longer review times is found to result in 

increased article quality and higher number of citations (Tahamtan et al., 2016). Stremersch et 

al. (2007) found article order in journal, editorial journal awards, and article length to have a 

positive effect on article citations. These are factors which can reflect scientific value, as 

journal editors may order and allocate the placement of an article after their perceived 

scientific value. Furthermore, papers which introduce novel connections between clusters of 

co-cited references tend to generate more citations (Chen et al., 2010). Innovative and novel 

subjects in articles is often seen as a quality measure.  

The question of whether the complexity, length, or sentiment of a paper affect citation count 

has been investigated in multiple studies. Text length has been studied both in terms of title, 

abstract, and paper length. While title length has been found to affect citations in some fields, 

it has not been found to affect citations in marketing (Stremersch et al., 2007). Bornmann et 

al. (2014) found that the number of pages impacted citations during the first few years after 

the publication of the paper. Other research finds no effect of number of pages (Royle et al., 

2013). Furthermore, longer abstracts can lead to more citations than shorter abstracts (van 
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Wesel et al., 2014). In terms of complexity, Colladon et al. (2020) found that articles with high 

lexical diversity tend to attract more citations. In addition, they found that sentiment of abstract 

can impact citations. Warren et al. (2021) investigated the abstraction, technical language, and 

passive writing in marketing articles and found that articles with high degree of such 

characteristics made them less likely to be cited. In other words, when articles are written 

clearly, they will be more easily understood, which increases the probability of making an 

impact. 

Several research papers found accessibility and visibility to be related to citations (Henneken 

et al., 2006; Yu and Wilson, 2004). However, there are a few papers that have a contradicting 

result. Moreover, articles which are published in open-access journals are found to be cited 

more compared to non-open-access journals, given that they are published in a top-50 journal 

(Tahamtan et al., 2016).  The opposite effect takes place for bottom-ranked journals. 

Furthermore, diversity and number of keywords in a paper are found to increase number of 

citations (Chakraborty et al. 2014; Rostami et al., 2013; So et al. 2014). It has also been found 

that the number of references, the variety of references, as well as their prestige, can increase 

citations (Tahamtan et al., 2016).  

Time-based paper related drivers 
Early-stage citation count has been shown as an effective predictor of future citation counts in 

several research publications (Ma et al., 2021; Ruan et al., 2019; Abrishami & Aliakbary, 

2019; Abramo et al., 2019, Stegehuis et al., 2015). Early-stage citation counts can tell 

something about the future pattern of citations of an article as they reveal the articles initial 

reception from the research community. While there exists a lot of patterns, they are generally 

based on when and for how long the knowledge become useful for researchers. There are two 

major types of successful article patterns based on when a paper become useful: “Classics” 

(van Raan, 2004) and “Shooting star” (Ye & Bornmann, 2017). The classics gets a substantial 

number of citations quickly and obtain a considerable number of citations even several years 

after publication, indicating that their content has relevance for a long period (Baumgartner & 

Leydesdorff, 2013). The shooting stars peak in yearly citations quickly (3-4 years), but fade 

quickly as well, indicating a transitional relevance of the knowledge it contains.  

Early-stage citation counts should be used with caution as papers published early in a year has 

a significant additional timeframe compared to those published late in a year (Levitt & 

Thelwall, 2011). Increasing the time-window for collecting early-stage citation counts 
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improves long-term predictions (Aksnes et al., 2019). However, this comes at a cost of having 

to wait longer before articles can be predicted.  

Although variables based on number of citations in early years can be considered as a paper 

related variable, it is important to be aware of the time aspect. Being able to collect information 

after the date of publication can be a huge advantage, as the variable will have some 

information about the initial true impact of the article. In addition, it can absorb the effect of 

other types of variables that has an effect on early-stage citations. This makes these variables 

different from other paper related drivers.  

2.2.2 Journal Related Drivers 

In the quest for more citations, researchers try to get their articles published in journals with 

high impact (Tahamtan, 2016). Bornmann et al. (2013) and Bornmann et al. (2014) found that 

journal variables are significant characteristics to include when predicting article impact. The 

impact factor of the journal in which the article is published could be considered as an indicator 

for the quality of the article. If the quality of the paper is high, the higher are the chances of it 

being published by credible journals, leading to a higher probability of it getting attention. In 

addition, the prestige of a journal can be a measure of the article quality (Dervos and Kalkanis, 

2005). Garner et al. (2014) found that articles that are published in high-impact journals tend 

to have a closer and faster citation rate than articles published in journals with lower impact. 

A weak article may get a relatively higher number of citations when published by a high-

impact journal (Callaham et al. 2002). However, Bornmann and Williams (2013) found that 

an article with a broader topic can receive more citations even when they are published in low-

impact journals. 

Although there are several studies that support that journal impact factor increase citations, 

there are studies that have contradicting results. Various studies have not found a positive 

correlation between journal impact factor and number of citations in articles (Willis et al., 

2011; Leimu and Koricheva, 2005). Whether the journal impact factor is influencing citations 

or not might therefore depend on other factors and vary within fields of research.  

Only a few studies have been investigating SCImago Journal Rank (SJR) or other journal 

rankings as drivers of citations. Sohrabi & Iraj (2016) found that the SCI quartile had a 

statistically significant effect. Using quartile 1 as the base level, all the other quartiles, in a 
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descending order, had an increasingly negative coefficient. Hu et al. (2020) also used SJR as 

one of their journal related drivers that they compared with keyword popularity features.  

2.2.3 Author Related Drivers 

Many studies have shown that there is a positive correlation between the number of authors of 

a paper and the number of citations a paper gets. A broader social network to spread the 

knowledge within gives a wider audience to promote the paper (Tahamtan et al., 2016). This 

is contrary to what is shown in the marketing domain where Stremersch et al. (2007) argue 

that increasing amounts of authors has a negative effect on citations. Further, they argue that 

increasing amounts of authors can reduce the intellectual ownership, and hence decrease the 

willingness to promote the article. Since natural science articles can have significantly more 

authors than marketing papers due to technological complexity, the negative effect of 

diminishing ownership to promote research may for marketing papers therefore be greater than 

the increased potential knowledge diffusion effect of having many authors.  

Social Network Drivers 

Social influence aspects, such as the social network of an author, may impact citations. An 

example is that articles from widely connected authors have been found to have a higher 

probability of being cited (Chakraborty et al. 2014). A proxy to authors social network can be 

author productivity. High productivity researchers are more likely to have a greater social 

network, which in turn leads to more citations (Tahamtan et al., 2016).  Similarly, if a paper 

has authors from several organizations, then it is found to be cited significantly more than 

those from one organization (Puuska et al., 2013). International collaboration has also been 

found to positively impact citations. However, impact can vary depending on domain, and 

what type of network generating the highest citations differs between fields of research 

(Tahamtan et al., 2016).  

Rosenzweig et al. (2016) found that social network has an impact on marketing research 

articles, and that female researchers and researchers originating from less economically 

advanced countries are more likely to utilize their social network. Another research found that 

the more connected scholars in coauthor networks in the marketing discipline are more 

important (Goldenberg et al., 2006). Thus, their work can transfer more easily in the network, 

and they can get more citations.  
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2.3 Prediction of Article Impact 

The prediction of article impact can be divided into two tasks; 1) predicting the future citation 

counts of each specific article and 2) identifying future highly cited papers (Wang et al., 2019). 

The primary differences between these tasks are the methods applied, where task 1) is a 

regression problem and task 2) is a binary classification task. However, variables which are 

important in one task are likely important in the other as both problems are based around 

predicting future citation counts, where the binary problem is predicting whether the article 

will have citation counts above or below a given threshold. The prediction window varies but 

are typically five or six years after publication (Ma et al. 2021; Hu et al. 2020; Sarigöl et al., 

2014).  

According to Ma et al. (2021) the citation count prediction task was first brought to light by 

Yan et al. (2011) and has since then got attention from numerous researchers. A majority of 

research papers are hardly cited at all, while a few are cited considerably (Tahamtan et al., 

2016). Knowing what drives article citations and being able to identify the highly impactful 

articles early is therefore of high value.  

2.3.1 Prediction of Highly Cited Articles 

The task of identifying highly cited papers is defined as a classification problem. Many 

previous efforts have been done, and it has become clear that there are numerous drivers which 

contribute to article impact, as presented in 2.2.  

There have been tested numerous drivers of article citations on prediction. In terms of paper 

related drivers, semantic and sentiment text analysis of abstract has been tested with promising 

results (Colladon, 2020). Using early-stage citation counts, both alone and combined with 

other variables, has improved predictions (Steighuis, 2015; Ma et al., 2021). Hu et al. (2020) 

extracted keywords from marketing articles, and retrieved keyword popularity metrics from 

Google Trends, Google Scholar, and ResearchGate. They found that using journal and author 

variables were better than including keywords-based popularity features. The three journal 

variables that were tested were Journal Impact Factor (JIF), 5-year journal impact factor (5-

JIF), and SCImago Journal Rank (SJR), while the author related variable included was h-

index. Another research found that social network variables created with centrality metrics 

from author collaboration networks have been found to improve predictions (Colladon, 2020).  
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A crucial question in the prediction of highly cited articles is the definition of what a highly 

cited article is. This definition determines the difficulty of achieving precise predictions. A 

higher threshold results in fewer highly cited articles to be identified, which leads to a more 

imbalanced and ultimately a harder classification problem due to less examples of the highly 

cited articles to learn from (Haixiang et al., 2017). The definition a highly cited article has 

varied greatly. Some have defined a percentage threshold such as the 10% most cited articles 

(Sarigol et al., 2014) or 25% most cited articles (Hu et al., 2020). Others have used average 

citations in a field as the threshold (Newman, 2014), the percentage of total citation counts 

(Wang et al., 2019), or a given amount of the most cited articles in a field, such as the 100 

most cited articles (Abrishami & Aliakbary, 2019).  

2.3.2 Machine Learning for Prediction of Future Citations 

Various machine learning methods have been used for predicting article citations. The increase 

in computing power and advancements in machine learning methods have contributed to 

improvements in predictions of article citations. In recent years, neural network approaches 

have achieved promising results. Hu et al. (2020) tested various machine learning methods to 

predict whether marketing papers in three top marketing journals, Journal of Marketing, 

Journal of Marketing Research, and Marketing Science, were among the top 25% cited papers 

or not. Their results found Artificial Neural Nets (ANN) to perform best among Logistic 

Regression, C4.5, and Support Vector Machine (SVM). Furthermore, using the 5-year citation 

count as dependent variable, and not as a result of a predicted sequence, has yielded better 

results when using neural networks on citation count prediction (Ruan et al., 2020).  

Tree-based methods have generally performed well. Sarigöl et al. (2014) found Random Forest 

to perform better than Naïve Bayes on a dataset of 36 000 articles. Similarly, Wang et al. 

(2019) found Random Forest to perform better than Naïve Bayes and KNN. Support Vector 

Machine (SVM) has also shown promising performances (Chakraborty et al., 2014; Xu et al. 

2019). Finally, Logistic Regression has performed well, placing second among ANN, C4.5, 

and SVM (Hu et al., 2020). 

2.3.3 Social Network Analysis for Predicting Future Citations 

Research on networks can be tracked back to a well-known publication by Granovetter (1973), 

which is cited over 64,500 times. Through the years, social network analysis has become 

popular, and it has been used for studies of everything from organizations, countries (Quan-
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Haase & Wellman, 2006), and journal articles (White et al., 2003), to twitter content (Yao et 

al., 2021), and friendship (Mutoh et al., 2016). The interest of using network analysis spans 

across all social sciences and is increasingly used in physics, biology, and other fields (Borgatti 

& Halgin, 2011). It has also been a popular tool in the marketing field (Webster & Morrison, 

2004). 

Different types of social network analysis can be applied to create variables for predicting 

future article impact. Co-authorship networks has been used to create centrality metrics which 

were able to predict with high precision the articles that were highly cited five year after 

publication (Sarigöl et al., 2014). Colladon et al. (2020) used social network analysis in 

combination with natural language processing of the abstract to understand which variables 

that were drivers of impact and could predict future success of chemical engineering papers. 

Furthermore, social network analysis has been used to identify which young researchers who 

are most likely to become successful measured by their h-index (Billah & Gauch, 2015).  

The centrality measures in co-authorship networks describe the position of an author relative 

to others in a network (Costenbader & Valente, 2003). The centrality of an author can say 

something about how influential they are, or how important their field of research is. Among 

the most used centrality metrics are degree centrality, closeness centrality, betweenness 

centrality, and eigenvector centrality. Centrality can be used as an important measure to find 

powerful and impactful authors in a network (Das et al., 2018). Only a few studies have 

focused on the way centrality of authors affect the citations of articles, and whether it is a 

driver of impact. Matveeva and Poldin (2016) found a positive relationship of the citation 

counts of scholars and the centrality of an author. Yan and Ding (2009) found that closeness, 

betweenness, and degree centrality correlated with the citation counts. Other research found 

that none of the centrality measures they investigated could accurately predict the future 

citation success of an author alone (Sarigöl et al., 2014). Biscaro and Giupponi (2014) found 

that centrality measures influence the early-stage citation counts. Work on citation prediction 

based on centrality measures for term-document networks found that document centrality 

measures offer a fairly high performance in identifying articles that contain a large number of 

impactful keywords (Klimek et al., 2016). Furthermore, Li et al. (2013) found that 

betweenness centrality had the most important role in using non-redundant resources in co-

authorship networks, and therefore had a significant effect on citations.  
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3. Hypotheses 

The literature review presented the extensive research that is done on drivers of citations for 

academic articles and the prediction of citations. However, there are some areas within the 

marketing field that still have not been investigated, and thus are valuable to explore. 

Followingly, we introduce three hypotheses that we will test. We introduce the gap in the 

literature, the motivation behind studying the hypotheses, and how we will test them.   

Hypothesis 1 

As presented in our literature review, previous studies have found strong evidence that early 

citation counts are a strong driver and predictor of accumulated citation counts in the following 

years. However, there is a gap in the previous research. As far as we have found, early citation 

counts, as a driver for future citations, have not been investigated in the field of marketing 

research.  

The more time after publication we allow for, the more information we have about the article 

and its future impact. However, there is a trade-off with having to wait longer for this 

information. Since citation counts usually are monitored yearly, we therefore focus on the 

earliest full year of new citations after publication, and form the following hypothesis:  

H1) Citations received the following year after publication highly influence the citation count 

of marketing articles five years after publication. 

The motivation for testing this hypothesis is based on the availability and ease to check yearly 

citation counts for the readers of an article. If this hypothesis is confirmed true, then 1) the 

readers can use this as a tool to find articles with high future impact, and 2) authors of 

marketing articles can better understand the importance of early citations.  

To test H1, we will use Spearman’s rank correlation and multiple linear regression. The 

correlation will show us the strength of correlation between new citations after one year and 

citations after five years. The multiple regression will tell us whether the variable has a 

statistically significant effect on citations after five years. We will also compare the multiple 

linear regression with a linear regression using only citations after one year as the independent 

variable. By comparing the regression models, we can compare the effect of this variable 

compared to the other variables.  
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Hypothesis 2 

From previous literature on the use of social network analysis for predicting citation counts, 

we found that centrality measures have an impact on future citation counts in other research 

fields. In addition, previous research has shown that author visibility and promotion is 

important to receive citations in the marketing domain (Stremersch et al., 2007). In several 

fields, centrality metrics has been shown to have a positive effect on the citations of 

publications. Hence, mapping the co-author network of authors in marketing looks promising.  

The motivation for testing whether co-author network matters for five-year citation counts is 

that it can benefit authors of marketing articles to know how co-author collaboration affect 

article impact. In addition, there is little research on the effect of centrality measures on future 

citation count of marketing articles. Social network analysis can give valuable information 

about the structure in a collaboration network. As research has shown the benefits of using 

social network analysis in several fields, we are finding it advantageous to utilize it to look at 

the effects a collaboration network has on article impact on the marketing field. 

Previous research by Sarigöl et al. (2014) have pointed out that a single network metric is not 

enough to capture the effect of social influence on article impact. Therefore, we want to look 

at the four most commonly used centrality measures: degree-, closeness-, betweenness-, and 

eigenvector centrality. The first three centrality measures have been included in several 

research articles with varying results. However, eigenvector centrality has rarely been 

investigated as a driver for article citation. We therefore formulate the following hypothesis:  

H2) The value of centrality measures from co-authorship networks at the time of publication 

are drivers for marketing article citation count five years after publication  

We use the same techniques as for H1 to test H2. With Spearman’s rank correlation we can 

see if there are any monotonic correlation between the centrality measures and citations after 

five years. In addition, a multiple linear regression will be used to investigate if there is a 

significant effect between any of the centrality measures and citations after five years.  

Hypothesis 3 

After studying relevant drivers of article impact, we are interested in how well these perform 

as variables for predicting future highly cited articles. There has been widespread research on 

which variables that are useful when predicting article impact. The variables can normally be 
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split into three categories; paper, journal, and author related variables. Paper related drivers 

have been tested in several fields, often with results showing that variables like abstract length, 

sentiment, or lexical diversity are predictive for future citations. Both author- and journal 

related drivers have also been successfully used in combination to predict highly cited articles 

from three top marketing journals (Hu et al., 2020).  

We argue that it is more relevant for the readers of marketing articles to know which articles 

will be highly impactful or not, than to know a given number of citations. By narrowing the 

number of articles that a reader needs to consider reading, less time is required to find new, 

impactful articles. As variables from all three categories of drivers individually has proved to 

be important to predict highly cited articles, it is interesting to investigate whether they work 

better in a combination. Hence, we present the following hypothesis:  

H3) Using a combination of paper, journal, and author related drivers better predict the 5% 

most cited marketing articles five years after publication, compared to using drivers from only 

one of the categories 

With a combination, we mean either using a combination of two or three driver categories. 

We chose to set the threshold for highly cited articles at top 5% for it to be a manageable 

number of articles to be suggested. We assume that it is limited how many articles one person 

is interested in considering reading. With over 2000 new articles yearly the last few years, and 

over 4000 in 2021, we argue that predicting the top 5% of those articles gives a manageable 

selection of articles to consider, and therefore is a relevant task to improve. 

To test H3, we will create predictive models using four different methods. By using four 

different methods, we get a more accurate overview of the true predictive ability of the variable 

categories. We will create seven models per method; three for each of the separate categories, 

three where we combine two of the categories in all possible combinations, and one where we 

combine all the categories. This will make it possible to compare the variable categories, and 

test whether our hypothesis is true or not. The methods we use will be presented in the 

following section. 
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4. Methodology 

This section includes an elaboration on the methods we have used to answer the hypotheses. 

It includes the regression model used to answer H1 and H2, and the classification models used 

to answer H3, with its corresponding metrics to assess the classification models and the 

validity of H3. Lastly, we describe the network metrics present in H2 and H3. We also explain 

the application of social network metrics for predictive purposes.  

4.1 Machine Learning Models 

A machine learning (ML) model is an expression of an algorithmic method applied to a 

specified type of observations (Parsons, 2021). There are a wide variety of models for creating 

a representation of a defined task, ranging from simple, two-dimensional, linear functions 

created by linear regression to complex, non-linear, high dimensional functions created by 

neural networks. What differentiates the ML models is how they estimate the expression, and 

how interpretable they are. Interpretability usually comes with the cost of having a more 

restrictive model in terms of how well it can shape to the patterns in the data. In our analysis, 

we will use a highly interpretable regression model to answer H1 and H2. We will then use 

multiple different classification models to account for the possibly different patterns and 

relationships our variables can have to empirically test H3. We will in this section go through 

our models of choice for these tasks. The terms variable and feature will be used 

interchangeably depending on what is used in the theory.   

4.1.1 Multiple Linear Regression 

To help us answer H1 and H2, this thesis will use multiple linear regression. The goal is to 

find the linear relationship between different variables (explanatory variables) and the citation 

count after five years (response variable). The multiple linear regression is a parametric model 

which has a high interpretability, and it can be defined as: 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝛽𝛽2𝑋𝑋2 + ⋯+  𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝 + 𝜀𝜀,  

where 𝛽𝛽𝑝𝑝 is a coefficient which signal the effect each increase in value of variable X has on 

the outcome Y (James et al., 2013).  
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Multiple linear regression has the benefit of being able to look at several potentially important 

variables in one model. This may lead to a more accurate interpretation of the relationship of 

each individual variable with the response variable. In this way, it is possible to look at 

relationship of both paper, journal, and author related drivers with number of citations after 

five years.  

As the regression coefficients are unknown, they must be estimated. Given estimates 

�̂�𝛽0, �̂�𝛽1, … , �̂�𝛽𝑝𝑝, we can use the following formula to make predictions: 

�̂�𝑦 = �̂�𝛽0 + �̂�𝛽1𝑥𝑥1 + �̂�𝛽2𝑥𝑥2 + ⋯+ �̂�𝛽𝑝𝑝𝑥𝑥𝑝𝑝 

The parameters are estimated by using a least squares approach where the coefficients are 

chosen to minimize the sum of squared residuals: 

𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑(𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1
 

=∑(𝑦𝑦𝑖𝑖 − �̂�𝛽0 − �̂�𝛽1𝑥𝑥1. �̂�𝛽2𝑥𝑥2 −⋯− �̂�𝛽𝑝𝑝𝑥𝑥𝑝𝑝)
2

𝑛𝑛

𝑖𝑖=1
 

The fit of a linear regression can be explained by R-squared (James et al., 2013). R-squared 

explains the proportion of variance explained, and can have a value between 0 and 1, where 1 

means the fit is perfect. R-squared can be defined as: 

𝑅𝑅2 = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑅𝑅𝑅𝑅 

where TSS = (𝑦𝑦𝑖𝑖 − �̅�𝑦)2 and explains the total variance in the data, while RSS explains the 

explained variance of the regression line.   

Multiple linear regression has multiple assumptions (James et al., 2013). First, it assumes that 

the relationship between the variables and response are linear. Second, it assumes that the error 

terms are uncorrelated. If this assumption is violated, then the estimated true standard errors 

tend to be underestimated, meaning that p-values will be lower than they should be. Third, it 

assumes non-constant variance of error terms, often referred to as heteroscedasticity. Violating 

this assumption, means that the estimated true standard errors can be too wide or narrow. 

Additionally, there are several considerations such as outliers, high leverage points, and 

collinearity. Both high leverage points and outliers can skew the fit to become less 
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representative for most observations. Finally, presence of collinearity can pose difficulties in 

terms of separating the effects of individual colinear variables towards the dependent variable. 

This can result in a growth in standard deviation, and the p-value becoming higher than it 

should be. 

4.1.2 Logistic Regression 

To test H3, we will predict the articles that are among the top 5% cited articles after five years. 

While linear regression models are well suited when having a continuous dependent variable, 

it is not recommended for a binary classification problem. The logistic regression was 

therefore selected as one of the four models to test H3. Logistic regression is computationally 

efficient to fit to data and the results are easy to interpret. In previous research, logistic 

regression is used as a supervised classification method with good results for average success 

rate for prediction of citations (Ibanez et al., 2009). Hu et al., (2020) used logistic regression 

to investigate whether journal, author, or keyword-related features could better predict highly 

cited papers in highly rated marketing journals, and logistic regression performed well with 

all variable categories included.  

Logistic regression calculates the probability that Y belongs to one of two categories (James 

et al., 2013). The difference from a linear model is that the response variable in a logistic 

regression is binary (Hosmer & Lemeshow, 2013). For example, the probability of a marketing 

article being one in the 5% most cited marketing articles after five years given its journal 

ranking can be written as:  

Pr(5% 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖| 𝐽𝐽𝑚𝑚𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢 𝑇𝑇𝑢𝑢𝑢𝑢𝑟𝑟𝑖𝑖𝑢𝑢𝑟𝑟) 

This gives a probability between 0 and 1, where we can set a threshold in which the classifier 

will classify into a certain category beyond the threshold probability. The logistic regression 

uses the logistic function, which can be written as:  

𝑝𝑝(𝑋𝑋) =  𝑖𝑖
𝛽𝛽0+𝛽𝛽1𝑋𝑋1+⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝

1 + 𝑖𝑖𝛽𝛽0+𝛽𝛽1𝑋𝑋1+⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝
 

where 𝛽𝛽𝑝𝑝 is the coefficient value for predictor 𝑝𝑝 with value 𝑋𝑋. The benefit of the logistic 

function is that we always get a value between 0 and 1, meaning that it works well for 

estimating probabilities. The coefficients, 𝛽𝛽𝑝𝑝 are found by maximizing the likelihood function, 

where the likelihood function can be written as: 
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ℓ(𝛽𝛽0, 𝛽𝛽1, . . , 𝛽𝛽𝑝𝑝) = ∏ 𝑝𝑝(𝑥𝑥𝑖𝑖) ∏ (1 − 𝑝𝑝(𝑥𝑥𝑖𝑖)),
𝑖𝑖′:𝑦𝑦𝑖𝑖′=0𝑖𝑖:𝑦𝑦𝑖𝑖=1

 

where 𝑝𝑝(𝑥𝑥𝑖𝑖) is the observed probability for 𝑥𝑥𝑖𝑖 to happen. By maximizing this function, we are 

maximizing the likelihood of observing the observations (X) in our data. Hence, if our training 

data reflects our test data, the logistic regression will generally work well.   

4.1.3 Support Vector Machine (SVM) 

The second model we will use to test H3 is Support Vector Machine (SVM). SVM is a method 

for drawing a hyperplane to separate two classes by the largest margin. A hyperplane is 

essentially a boundary separating n-dimensions into two parts (James et al., 2013). This 

method has performed well in various settings and is good at handling large number of features 

on less amounts of data. Therefore, we want to test it to classify which articles are among the 

top 5% most cited. SVM models accurately predicted whether a biomedical article got a given 

number of citations within a threshold (Fu & Aliferis, 2010). Furthermore, Yan et al. (2012) 

found that support vector regression, a regression version of SVM, was one of the best methods 

for predicting citations.  

SVM is a computationally effective way of enlarging the feature space for the support vector 

classifier to perform classification of two classes (James et al., 2013). The idea behind SVM 

is to choose a hyperplane that give the best generalization capacity, before finding the 

maximum margin between the two categories (Adankon & Cheriet, 2015). The solution to the 

support vector classifier is to calculate the following:  

𝑓𝑓(𝑥𝑥) = 𝛽𝛽0 +∑𝛼𝛼𝑖𝑖〈𝑥𝑥, 𝑥𝑥𝑖𝑖〉
𝑖𝑖∈𝑆𝑆

, 

where S contains the collection of indices of the non-zero vectors of the inner products of pairs 

of training observations. Note that 𝛼𝛼𝑖𝑖 is only nonzero for the support vectors, which is why 

SVM is so computationally effective – it does not have to calculate all points.  

SVM draws the hyperplane based on its kernel, which can either be linear or non-linear. In 

this thesis we will be using the linear kernel as this is the kernel which has performed by far 

the best in early testing of our data. A kernel is made up of a generalization of the inner product 

(𝐾𝐾〈𝑥𝑥, 𝑥𝑥𝑖𝑖′〉) in the form of a function which quantifies the similarity of two observations. The 

idea of kernels is the possibility to map training data in a higher-dimensional feature space 
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where pa@) is the observed probability for x to happen. By maximizing this function, we are

maximizing the likelihood of observing the observations (X) in our data. Hence, if our training

data reflects our test data, the logistic regression will generally work well.
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where S contains the collection of indices of the non-zero vectors of the inner products of pairs
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SVM is so computationally effective - it does not have to calculate all points.

SVM draws the hyperplane based on its kernel, which can either be linear or non-linear. In

this thesis we will be using the linear kernel as this is the kernel which has performed by far

the best in early testing of our data. A kernel is made up of a generalization of the inner product

(K(x,xu)) in the form of a function which quantifies the similarity of two observations. The

idea of kernels is the possibility to map training data in a higher-dimensional feature space
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through a mapping function (Adankon & Cheriet, 2015). The linear kernel of two 

observations, 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖′ can be defined as: 

𝐾𝐾(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖′) =∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑥𝑥𝑖𝑖′𝑖𝑖 

where n is the number of variables (dimensions). The benefit of using a kernel instead of an 

enlarged feature space with functions, is the computational benefit of avoiding working 

explicitly in the enlarged feature space. However, a weakness of SVM is that it does not 

perform very well with large data sets, due to rapidly increasing computation requirements 

(Nalepa & Kawulok, 2018).  

SVM usually performs better than logistic regression when the classes are well separated, 

while logistic regression is often preferred in more overlapping scenarios. Hence, we include 

SVM to account for the possibility of the classes (top 5% vs non-top 5%) being well separated.  

4.1.4 LightGBM 

The third model we will use to test H3 is a Gradient Boosting Model (GBM), called 

LightGBM. Gradient boosting combines the use of gradient descent with the boosting tree 

algorithm. GBM are decision-tree based models. This means that the feature space is divided 

into sections by splits (James et al., 2013). GBM are shown to be good at predicting article 

impact, and we therefore expect it to provide a representative result. Akella et al. (2021) used 

gradient boosting with good results to investigate how well altmetric features could be used to 

predict whether an article would receive more than a median number of citations. It was also 

used by Galli & Guizzardi (2020), where gradient boosting was the best of three models to 

find the top drivers for prediction of citations. 

One of our main reasons for testing H3 with this method is that it is non-parametric, meaning 

that it does not take assumptions about the distributions of our data, and nor does it classify 

the data into a theoretical distribution such as Logistic Regression. Instead, it learns the 

distribution by trial and error. This gives us a novel use of our variables. In GBM, trees are 

grown sequentially to iteratively improve the fit based on gradient information regarding the 

error from previously grown trees. This way, the model learns the importance of each feature. 

The sequential trees grown are weak learners. Weak learners are producing hypotheses about 

the data which are slightly better than random guessing and can with enough trials learn almost 
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the entire distribution of the training data (Schapire, 1990). The way GBM learns is by creating 

new weak learners to be maximally correlated with the negative gradient of the loss function 

(Natekin & Knoll, 2013). A loss function is a function of the error of the predicted versus true 

outcomes of training observations. The gradient is the steepness of the slope of the loss 

function, and therefore tells the model whether it is improving from previous trees, and how 

steep the change of the loss is. If the gradient is negative, then the model is improving and 

descending to either a saddle point, a local optimum, or a global optimum depending on the 

specified hyperparameters, training data, and variables (Lee et al., 2016). The model change 

is determined by multiplying the gradient value with the learning rate specified. If the rate of 

change is small enough, then the model will end the search and the best model will be returned.  

In this thesis we will use a GBM called LightGBM as it has better categorical variable support, 

while in general being faster than the other gradient boosting models (Bentéjac et al., 2020). 

LightGBM is created by Ke et al. (2017) and is a gradient boosting model developed by 

Microsoft. Usage areas include ranking, classification, and other machine learning projects. It 

has not previously been used to classify highly cited articles. However, it has been used for 

prediction within several different fields like chemical-toxicity, blood glucose, wind power, 

and cryptocurrency price trend (Zhang et al., 2019; Wang & Wang, 2020; Ju et al., 2019; Sun 

et al., 2020).  

The primary benefit of LightGBM is the computational efficiency. Gradient Boosting can be 

very time consuming to use when handling big data, due to the high number of splits, data 

instances, and dimensions to consider. LightGBM reduces the computational complexity of 

all three tasks. The time spent on finding the optimal splits was reduced by implementing a 

histogram-based decision tree learning algorithm (Ke et al., 2017). The issue of data instances 

was reduced through Gradient-Based One-Sided Sampling (GOSS). GOSS excludes a 

significant part of data instances with small gradients and use the rest to estimate information 

gain. It can obtain quite accurate estimations of the information gain with a smaller data size 

because the larger gradients contain most of the information. The issue of high dimensionality 

was reduced with Exclusive Feature Bundling (EFB). EFB bundle mutually exclusive features 

to reduce the number of dimensions in the calculations. In sum, these improvements have 

created a significantly faster gradient boosting model.  

A potential shortcoming with using LightGBM is that there is a risk of overfitting (TechLeer, 

2018). This is because LightGBM split the tree leaf-wise, which can produce much more 
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complex trees which are too specialized to the training data. However, overfitting is mostly a 

problem if the data it is trained on is very small. Our dataset should be large enough to avoid 

this shortcoming. More technical details about LightGBM can be found in Appendix A4. 

4.1.5 TabNet 

The fourth and final model we will use to test H3 is a deep neural network model (DNN) called 

TabNet (Arik & Pfister, 2020). Gradient boosting models have been considered to be the best 

practice for tabular data (Shafi, 2021). However, in 2019, Google came with TabNet. This 

complex model is using neural network methods and was shown to outperform the tree-based 

models across several benchmarks. TabNet has not been used to predict article impact 

previously. However, it has recently been tested on forecasting of electric load, prediction of 

hospital no-show, and long-term rainfall with good results (Borghini & Giannetti, 2021; 

Boughorbel & Kadri, 2021; Xu et al., 2020; Yan et al., 2021).  

TabNet seeks to improve the data representation capacity and the feature importance abilities 

of GBM (Arik & Pfister, 2020). To do this, they combine the advantageous feature space 

splitting from sequential decision trees with the data representation capacity of a DNN 

attention model. TabNet is inspired by the decision tree functionality of splitting the feature 

space into regions through decision boundaries, formerly presented in 4.1.4. TabNet creates 

hyperplane-like decision boundaries through creating linear combinations of features, where 

the coefficients of the hyperplanes are determined by sequences of attention. Attention, often 

called transformer, is a deep learning architecture which was first introduced by Vaswani et 

al. (2017). The primary strength of attention is its ability to compute data representations and 

identify the important parts of a sequence (Doshi, 2021). In TabNet, the sequence is a set of 

variables, which in our case is our paper, journal, and author variables which will be presented 

in 5.4. TabNet uses sequential attention on each observation to determine the variables which 

should contribute to each decision step. The feature selection is done for each observation and 

can be different for each output. The attention is done in sequence to make the model learn 

and reason why the variables with contributions from the previous sequence were contributing. 

The decision boundaries are then drawn based on the aggregated contribution of the variables 

from the sequences of attention, where the vote from each sequence is equally important. The 

aggregated contribution explains, like GBM, which features are more and less important.  In 

sum, TabNet creates output predictions which are based on learning from the most 

contributing variables of each observation in the training set.  
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In sum, this creates a novel platform for testing our variables in H3 as it with its sequential 

attention structure may utilize variables and connections between variables different compared 

to Logistic Regression, SVM, and GBM.  

4.1.6 Predictive Evaluation Metrics 

To evaluate the predictive performance of our models to determine the validity of H3, we will 

be using several well-known classification metrics, namely ROC AUC, F1, Precision, Recall, 

and Accuracy.  

ROC AUC  

ROC AUC is combining the true positive rate with the false positive rate (Burkov, 2019).  One 

of the primary benefits of using it is that it is easy to evaluate if the model is better than a 

random classifier. An AUC higher than 0.5 means that the classifier is better than a random 

classifier, and the higher the AUC value is, the better the model generally performs. An 

additional benefit of ROC AUC is that it is differentiable, meaning that a model can use it as 

a loss function.  

F1 

The F1 score is the harmonious mean of precision and recall (Taha & Hanbury, 2015). It can 

be defined as: 

𝐹𝐹1 =  2 ∗ 𝑃𝑃𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢 ∗ 𝑅𝑅𝑖𝑖𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑃𝑃𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢 + 𝑅𝑅𝑖𝑖𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢 

F1 is useful when recall and precision is equally important, as their importance is balanced. 

The F1 score is therefore highly useful to test H3 as we would like a model which both can 

find as many of the top 5% articles as possible, while avoiding predicting many articles which 

will not become one of the top 5% cited articles.  

Precision 

Precision is the proportion of the predicted true cases which is correct (Burkov, 2019). It can 

also be interpreted as the probability that a predicted true positive in fact is a true positive. 

Precision can be defined as: 
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Precision * Recall
Fl = 2 * - - - - - - - -Precision+ Recall
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The Fl score is therefore highly useful to test H3 as we would like a model which both can

find as many of the top 5% articles as possible, while avoiding predicting many articles which
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𝑃𝑃𝑇𝑇𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢 ≝  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃, 

where TP is true positives, and FP is false positives.  

Precision is useful to measure in the cases where there is a high value in having correctly 

predicted true cases. In our case, having a high precision would mean having suggested less 

articles which will not become one of the top 5% most cited articles after five years. A higher 

precision is therefore highly useful in our case as it means that we have a more precise pool 

of true top 5% article predictions to consider reading through. Typically, a higher precision 

comes at the expense of lower recall and vice versa. Whether precision or recall is more 

valuable depends on whether the cost of missing a potential highly cited article is higher than 

the time usage cost of having to go through more suggestions.  

Recall 

Recall specifies how many of the true cases the model managed to predict (Burkov, 2019), 

and can be defined as:   

𝑅𝑅𝑖𝑖𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢 ≝  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹, 

where TP is true positives and FN is false negatives.  

In our case, a higher recall means that the model identifies more of the most impactful articles 

five years ahead. Having a higher recall typically comes at the expense of a lower precision 

score. This highlights the importance in our case of calculating a score which balances Recall 

and Precision, such as F1.  

Accuracy 

Accuracy is the proportion of correct predictions, where correct predictions are true positive 

and true negative cases (Burkov, 2019). Accuracy can be defined as:  

𝐴𝐴𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑢𝑢𝑐𝑐𝑦𝑦 ≝  𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹, 

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives. 

 

The benefit of Accuracy is that it explains how well the model performs on predicting both 

true and false cases correctly. However, accuracy explain less about the performance of the 
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model in cases where a model is set to predict an unbalanced dataset. If a dataset has two 

classes, where one class is 90% of the dataset and the other class is 10% of the dataset, the 

model would have got an accuracy of 90% by only predicting the largest class. This would not 

be better than simply having a random person guess the largest class each time. As a result, 

using Accuracy on an imbalanced dataset should be a supporting measure, and not the main 

measure of focus.  

4.2 Social Network Metrics 

In this section we will elaborate on social network metrics. Previous research has shown that 

the patterns in the network of authors can influence the number of citations an article gets. The 

centrality an author has in the network can therefore be an interesting variable to include in 

this thesis. In this section, we will describe what a social network is and why co-authorship 

networks can be a helpful tool, elaborate on how the measures are created, and lastly, we will 

describe the applicability of the centrality measures in our thesis. 

Brass (2002) claims that network theory is about the consequences of variables in the network. 

Social network analysis aims to predict and test theories about the structure of relationships 

among social entities (Butts, 2008; Wasserman & Faust, 1994). A social network consists of 

a set of nodes that are tied by one or more relations (Wasserman & Faust, 1994). Nodes are 

also called network actors and can be defined as units that are connected by the relations of 

the pattern that are being studied. Any unit that can be connected to other units can be studied 

as nodes, but the most common units are either persons or organizations (Marin & Wellman, 

2010). The relational ties are connecting the nodes, and can be the transfer of resources, 

friendship, web links, or any possible connection.  

In a co-authorship network, the relational ties reflect the collaboration between two authors. 

The ties form paths that indirectly link nodes by interconnecting through shared endpoints. It 

is the patterns created in a network that may be used for analysis and prediction (Borgatti & 

Halgin, 2011). The network can be used to create centrality measures. Where citation counts 

can be a measure of impact of articles, centrality can express the impact of an author on the 

field (Yan & Ding, 2009). The centrality of an author says something about how central, or 

powerful, the author is in the network of authors. Furthermore, having a strong centrality have 

in some cases been shown to have an impact on article citations.  
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To perform a co-authorship network analysis the co-authorship must be formatted into specific 

adjacency matrices, edge lists, or adjacency lists, to map the relationships between the nodes 

(Fonseca et al., 2016). When a pair of nodes share authorship of the same article, the 

intersection gets the number 1. Otherwise, it gets the number 0. When authors collaborate 

more than once, the number is equal to the total articles co-authored. Furthermore, the data 

can be visualized as a network or statistical analysis, and metrics can be calculated and 

interpreted.  

4.2.1 Centrality in Networks 

The position of individual actors in a network can provide important insights. The position of 

a node can reflect power or prestige, depending on the characteristics of the linkages (Giuliani 

& Pietrobelli, 2011). Nodes that are central may be in advantageous positions, relative to less 

central nodes (Freeman, 1979). Centrality can be a useful measure of the impact of a node. 

The higher the centrality, the stronger the influence. The centrality measures have shown to 

work as drivers of impact in some scientific fields. We use centrality measures to test H2. 

Thus, we look closer at four centrality measures: degree centrality, betweenness centrality, 

closeness centrality, and eigenvector centrality. These centrality metrics are commonly used 

to find central actors in networks.  

Degree centrality 
One of the most central methods of measuring centrality is by counting the number of direct 

ties a node has to other nodes in the network, called degree centrality. It represents the total 

strength of the direct connections of a node. The equation for degree centrality is as follows: 

𝐶𝐶𝐷𝐷(𝑢𝑢𝑖𝑖) =  𝑖𝑖(𝑢𝑢𝑖𝑖), 

where 𝑖𝑖(𝑢𝑢𝑖𝑖) is the degree of author 𝑢𝑢𝑖𝑖.  

Degree centrality can be used to find nodes who quickly connect with the wider network, and 
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to knowledge creation in a higher scale than other authors. Thus, degree centrality can help 

identifying the authors in the marketing field that are contributing with knowledge and 

innovation. 

Betweenness centrality 
In certain situations, the perks of being central is due to the control a node have over the flow 

of information. Betweenness centrality measures how many times a node lies in-between the 

shortest network paths that connect the other nodes (Wasserman & Faust 1994). The power of 

the centrality is related to being essential to the network in the terms of flow of information. 

A high betweenness centrality serve as an indirect connection between pairs, leading to the 

high brokage power (Borgatti et al., 2013). Betweenness centrality formula is as follows: 

𝐵𝐵𝑖𝑖𝑚𝑚𝐵𝐵𝑖𝑖𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖𝑢𝑢𝑚𝑚𝑇𝑇𝑢𝑢𝑢𝑢𝑖𝑖𝑚𝑚𝑦𝑦 =∑
𝑟𝑟𝑖𝑖𝑗𝑗(𝑖𝑖)
𝑟𝑟𝑖𝑖𝑗𝑗j<k
, 

where 𝑟𝑟𝑖𝑖𝑗𝑗(𝑖𝑖) is the number of the shortest paths that includes node i. To normalize the formula, 

it can be divided by its maximum (𝑢𝑢 − 1)(𝑢𝑢 − 2)/2.  

The betweenness centrality of an author can be seen as a driver of impact, as it has been shown 

in research that it correlates with the citation count (Uddin et al., 2013; Yan & Ding, 2009). 

Authors with high degree centrality are likely to have access to rich knowledge, which in turn 

can increase the quality of their publications. Betweenness centrality can therefore show us 

which authors within the field of marketing research that have control of information flow, 

and we will test whether it is an important driver of the citations of a marketing article.  

Closeness centrality 
To measure the embeddedness of a node in a network, one can use closeness centrality. Short 

distances means that the closeness is higher (Freeman, 1978). The closeness is measured as 

the reciprocal of the sum of the length of the shortest paths between the node and all other 

nodes in the graph. The formula for closeness centrality is as following: 

𝐶𝐶𝑢𝑢𝑚𝑚𝑚𝑚𝑖𝑖𝑢𝑢𝑖𝑖𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖𝑢𝑢𝑚𝑚𝑇𝑇𝑢𝑢𝑢𝑢𝑖𝑖𝑚𝑚𝑦𝑦 = 1
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

, 
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where 𝑖𝑖𝑖𝑖𝑖𝑖 is the length of the shortest path that are connecting the nodes i and j. To 

normalize the closeness centrality, one can multiply its value by the maximum (𝑢𝑢 − 1) 
(Colladon et al., 2020).  

Closeness centrality is measuring network property rather than academic impact, and several 

studies has shown that closeness centrality has low or no significant influence on citation 

counts (Yan & Ding, 2009; Uddin et al., 2013). This thesis will test if this is the case for 

marketing research, or if the positioning of an author has a significant effect on the future 

citation count of a marketing article.  

Eigenvector centrality 
Eigenvector centrality is a metric used to measure the influence of a node within a network 

(Golbeck, 2013). A node in the network is more central when the nodes connected to 

themselves are well-connected. Connections to more influential nodes are more important 

than the connections to less influential nodes (Zhang et al., 2021). To find the eigenvector 

score one has to solve the following equation: 

𝐴𝐴 × 𝑐𝑐 = 𝜆𝜆 × 𝑐𝑐, 

where A is the adjacency matrix for a graph, c is a vector of the degree centralities of each 

node (eigenvector) , and 𝜆𝜆 is a scalar (eigenvalue) (Cimenler et al., 2014). The eigenvector 

centrality has been found to have a positive effect on productivity of authors (Ariel Xu et al., 

2020). In addition, it computes the importance of an author by how frequently they 

collaborate with other important authors (Diallo et al., 2016). However, we were not able to 

find previous research on the effect it has on article impact. Thus, we want to test whether it 

influences the number of citations.  

4.2.2 Application of Centrality Measures 

Given the promising usage of co-author collaboration network by Colladon (2020) on 

Chemical Engineering paper citation prediction, we find it promising to represent the social 

network of an author in a co-author network to investigate H2 and H3. In this section we will 

therefore explain how we apply the theory about centrality measures to our thesis.   

We created yearly co-author collaboration networks from 1992 to 2016 of all authors of our 

33 754 marketing papers published between 1992 and 2016. The networks were created yearly 

to avoid information leakage about future social network of an author This data is further 
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explained in section 5. This allowed us to calculate each authors centrality scores for each 

year. Thus, we created in total 25 co-author networks. The scores were then linked up with the 

authors of articles based on the publication year of the articles. 

In the cases where there was more than one author on an article, we considered only the best 

centrality scores across the centrality scores from all authors of the article. Hence, the best 

degree, betweenness, closeness, or eigenvector centrality could come from different authors. 

The intuition behind this is that we assume that the author group utilize the network strengths 

of the author(s) within the author group. In addition, to make it easier to compare the values 

we have chosen to normalize all the measures between 0 and 1. This is further explained in 

section 5.3.  Moreover, each of the different centrality measures will be introduced again when 

we present our author related variables in section 5.4.3 Author related variables. 
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5. Data  

5.1 Software 

To carry out our analysis, we have used the programming languages R (4.0.4) and Python 

(3.7.1). R have been used through RStudio, and Python have been used through Visual Studio 

Code (VScode). All parts of our data preparation and cleaning have been done with R libraries, 

which can be found in section A1 in the appendix. All predictions have been done in Python 

through libraries which can be viewed in appendix A2.  

5.2 Data Collection 

In this part we will present the data we used and where we retrieved it from. Since our field of 

interest is marketing, we first had to find which articles we would consider as marketing 

articles. There are numerous overviews of journals such as Financial Times, Journal Citation 

Reports (JCR), SCImago Journal Rank (SJR), the Source Normalized Impact per Paper 

(SNIP), Citescore, and The Chartered Association of Business Schools (ABS). However, 

Financial Times provides only a small selection of top journals. JCR, SJR, SNIP, and Citescore 

on the other hand, provide a large selection of journals, but they are only quantitatively based. 

ABS, however, has a large selection of 76 reviewed and ranked marketing journals. Their 

primary differentiation is that they combine metrics from JCR, SJR, SNIP, and Citescore with 

peer-review, editorial, and expert judgements of each journal’s research standard (Chartered 

Association of Business Schools, 2021). We therefore selected journals based on the ABS list 

of marketing journals as it provided both a wide selection of journals and a thorough 

quantitative and qualitative selection process.   

Today there are three primary sources for collecting Scientometric data about scholarly 

articles: Google Scholar (GS), Web of Science (WoS), and Scopus (Mingers & Leydesdorff, 

2015). Each source comes with its own benefits and disadvantages. The main benefits of GS 

are the citation coverage, and the larger amounts of total articles available (Martín-Martín et 

al., 2018). However, GS suffers from a lower quality data for scientometric research (Mongeon 

& Paul-Hus, 2015; Mingers & Leydesdorff, 2015). WoS has the primary benefit of having 

article coverage dating back to 1900 (Web of Science Group, 2019), but has a significant 

underrepresentation of journals within marketing according to the 2021 ABS list of journals. 
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In addition, all the marketing journals which can be found in WoS, are also present in the 

Scopus database. While Scopus only has article coverage until the 1970s, it has similar data 

quality to WoS (Mongeon & Paul-Hus, 2015), but a significantly larger journal coverage for 

marketing journals in the ABS list. In fact, we found Scopus to have all 76 marketing journals 

in the ABS list, while WoS only was listed to have 42 (Academic Journal Guide 2021, n.d). 

In addition, Scopus is one of the most popular databases, created by Elsevier which is a highly 

acknowledged publisher of quality journals. It has a large coverage, is up to date, and offers 

rich metadata. As a result, we chose to use Scopus as our data source.  

The data used for this thesis was retrieved from Scopus and ABS, with the final dataset being 

a merge of four datasets: two article datasets, an ABS-list ranking dataset, and a yearly citation 

count dataset. The data from Scopus was retrieved using a query, specified in appendix A5, 

where we specifically requested articles written in English from the 76 marketing journals in 

the ABS list. The main article data was imported to a data frame using the convert2df function 

in the Bibliometrix R library as this gave us the correct data format to later create co-author 

networks in this package (Aria & Cuccurullo, 2022). To get more details on the publication 

date of an article, and whether an article is open-access or not, we retrieved a second dataset 

with additional data from Scopus through the Rscopus package (Muschelli, 2019). The third 

dataset we imported was the yearly citation count data containing data about new citations 

retrieved each year from 1992 to 2022. Details about the Scopus datasets can be seen in 

appendix A6.  The fourth and final dataset was imported from ABS (Academic Journal Guide 

2021, n.d) to create our ABS Academic Journal Guide (AJG) variable. The contents of this 

dataset can be seen in appendix A7. 

5.3 Merging and Pre-processing the Datasets 

Given that we had in total four datasets merged to create all variables which we wanted to 

analyze, pre-processing steps and decisions were required. Since some articles had missing 

data, several pre-processing steps were necessary to get an accurate data set for further 

analysis.  

Merging 

First, the four datasets were merged to one dataset. The yearly citation dataset and article 

datasets were merged by DOI, as this is a unique identifier for each article. The ABS dataset 

was merged by ISSN, as this is a unique identifier for journal publications.   
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Missing Values 

Missing values (NA) can signal at least four things: 1) that information is missing but existing 

elsewhere, i.e., on WoS but not Scopus, 2) that information has been lost in merging or pre-

processing issues, 3) that the information simply does not exist, or 4) that the missing values 

reflect a zero value. There are numerous removal or imputation options for observations with 

missing values, depending on whether the missing value is missing at random (MAR), missing 

completely at random (MCAR), or missing from the subpopulation (Acock, 2005).  

We removed articles which were missing one or more of the following variables: 1) DOI, 2) 

citations used in article, 3) page number, 4) open-access info, 5) publication month, and 6) 

author. These variables are seen as vital to the quality of the data, and imputing values for 

variables such as author or page-number would not be feasible. Furthermore, we could not 

find the missing values to have a systematic pattern and therefore assumed that these were 

MCAR and that removal of these would therefore not bias our dataset in a major way. The 

removal of missing values reduced our dataset from 35 409 articles to 33 754 articles and it 

went from having articles from 76 to 75 journals. The journal that was removed contained 

articles without DOI and were only a small subset with translated articles, as its original 

language was not English.  

Furthermore, we imputed NA values under author keywords to 0 as we found articles with NA 

values to not have published author keywords. In addition, we kept articles with missing 

abstract as we found most of the articles with NA value in abstract to not have an abstract in 

their article. However, there were articles with missing abstracts on Scopus which had 

abstracts in their pdf text. Our solution to this was to create a dummy variable 

contains_scopus_abstract to account for this.  

Tokenization 

To create natural language processing (NLP) variables from the abstract, we had to create a 

separate tokenized data frame of each articles abstract. Tokens are words, groups of characters, 

numbers, or special characters. They are found by splitting a text into countable, unique pieces 

of text elements. We used the function unnest_tokens from tidytext (De Queiroz & Fay, 2021) 

to create a tokenized data frame.   
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Tokenizing a text can result in non-meaningful tokens, which neither represents sentiment, 

complexity, or diversity of a text, such as a group of numbers, or special characters. We 

therefore chose to remove digits by filtering out any digits through a regular expression.  

Standardization 

To help with interpreting the coefficients of the average sentiment of the article abstract, we 

used standardization. This was possible since the variable were approximately normally 

distributed, but not around zero, while we wanted to center the distribution around zero. This 

allowed us to interpret whether having a more positive or negative abstract than the majority 

of marketing papers are positively or negatively correlated with citation counts. To do this, we 

used the Z-score normalization formula as mentioned by Patro & Sahu (2015) on all abstract 

sentiment scores i:  

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝜇𝜇
𝜎𝜎 , 

where 𝜇𝜇 = mean abstract sentiment, and 𝜎𝜎 = standard deviation. Variables which have been 

standardized contain the word standardized in the variable name. 

Normalization 

Since the co-author centrality variables had different absolute value ranges, we used 

normalization to be able to compare the coefficients of our co-authorship centrality variables. 

Normalization scales all values to become between 0 and 1, where 0 is the lowest value and 1 

is the highest value of a variable. Normalizing observation 𝑖𝑖 of a variable x can be written as: 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 =
𝑥𝑥𝑖𝑖 − min (𝑥𝑥)

max(𝑥𝑥) − min (𝑥𝑥) 

5.4 Variables 

Based on promising drivers from the literature review, we created variables based on our pre-

processed and merged dataset. From our background research it became evident that article 

citations can be explained from three major categories of drivers: paper, journal, and author 

related drivers. We wanted to have variables which approximate the most important aspects 

discussed in 2.2 Drivers of Article Citations. Hence, the following tables present the selected 

variables within each driver category.   
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sentiment scores i: -' s c a l e d } - O

where µ = mean abstract sentiment, and CJ = standard deviation. Variables which have been
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Normalization scales all values to become between Oand l, where Ois the lowest value and l

is the highest value of a variable. Normalizing observation i of a variable x can be written as:

x , - min (a)
x - - - - - - - -

sca led t max(g)- min (a)
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5.4.1 Paper Related Variables 

Variable name Description  Creation 
First_page Represents paper quality. The 

placement of an article in a journal 
has been proposed to signal its 
perceived quality and importance 
in the journal.  

Created by splitting 
PP (Pages from-to in 
journal) into two 
columns and used 
the from-page 
column. 

PAGES Represents paper importance. 
From the literature review, we 
found that number of pages can 
indicate the quality and 
importance of an article, where a 
longer article is perceived to be of 
better quality and importance as 
journals can often be restricted by 
length.  

𝑓𝑓𝑖𝑖𝑇𝑇𝑚𝑚𝑚𝑚 𝑝𝑝𝑢𝑢𝑟𝑟𝑖𝑖 − 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚 𝑝𝑝𝑢𝑢𝑟𝑟𝑖𝑖 

Keyword_number Represents paper content. 
Increasing number of keywords 
has previously been shown to 
impact article citations.  

Created by counting 
the number of words 
separated by a 
semicolon. 

AB_words Represents abstract content. In our 
literature review we found 
research from a more generalized 
dataset that suggested that the 
length of abstract may impact 
citation count, and we therefore 
wanted to test this on a marketing 
dataset.  

Created by counting 
the number of words 
in abstract separated 
by space. 

Lexical_diversity_normalized  Represents the complexity of 
reading the paper content. While 
increasing lexical diversity in 
abstract has been found to 
positively impact citations in a 
technical field, we are curious as 
to whether the same can be said 
for a non-technical field such as 
marketing.  

𝑇𝑇𝑢𝑢𝑖𝑖𝑢𝑢𝑇𝑇𝑖𝑖 𝑢𝑢𝑎𝑎𝑚𝑚𝑚𝑚𝑇𝑇𝑢𝑢𝑐𝑐𝑚𝑚 𝐵𝐵𝑚𝑚𝑇𝑇𝑖𝑖𝑚𝑚
𝑢𝑢𝑎𝑎𝑚𝑚𝑚𝑚𝑇𝑇𝑢𝑢𝑐𝑐𝑚𝑚 𝐵𝐵𝑚𝑚𝑇𝑇𝑖𝑖𝑚𝑚  

This result in a 
normalized score 
between 0 and 1, 
where 1 means that 
all words are 
different, and a score 
of 0 means that all 
words are the same. 

citations_in_article Represents the solidity and 
plausibility of the paper. 
As presented in the literature 
review, more citations in an article 
can mean that more thorough 
research is done and therefore be a 
proxy of solidity and plausibility.  

Created by counting 
the number of 
references separated 
by semicolon. 

ave_sentiment_standardized Represents the paper content. As 
we presented in the literature 
review, sentiment of abstract has 

The sentiment was 
calculated by using 
the sentiment_by 

33

5.4.1 Paper Related Variables

Variable name Description Creation
First_page Represents paper quality. The Created by splitting

placement of an article in a journal PP (Pages from-to in
has been proposed to signal its journal) into two
perceived quality and importance columns and used
in the journal. the from-page

column.
PAGES Represents paper importance. f irst page- last page

From the literature review, we
found that number of pages can
indicate the quality and
importance of an article, where a
longer article is perceived to be of
better quality and importance as
journals can often be restricted by
len th.

Keyword_number Represents paper content. Created by counting
Increasing number of keywords the number of words
has previously been shown to separated by a
impact article citations. semicolon.

AB words Represents abstract content. In our Created by counting
-

literature review we found the number of words
research from a more generalized in abstract separated
dataset that suggested that the by space.
length of abstract may impact
citation count, and we therefore
wanted to test this on a marketing
dataset.

Lexical diversity_normalized Represents the complexity of unique abstract words
reading the paper content. While abstract words
increasing lexical diversity in This result in a
abstract has been found to normalized score
positively impact citations in a between Oand l,
technical field, we are curious as where l means that
to whether the same can be said all words are
for a non-technical field such as different, and a score
marketing. of Omeans that all

words are the same.
citations in article Represents the solidity and Created by counting

plausibility of the paper. the number of
As presented in the literature references separated
review, more citations in an article by semicolon.
can mean that more thorough
research is done and therefore be a
proxy of solidity and plausibility.

ave sentiment standardized Represents the paper content. As The sentiment was
- -

we presented in the literature calculated by using
review, sentiment of abstract has the sentiment by



 34 

been implied as a variable which 
impacts future citation counts.  

function in the 
package sentiment 
(Rinker, 2021). We 
also standardized it 
as mentioned in 
4.3.4 
standardization.  

pub_month 
 

Represents the publication month 
of the paper. To compensate for 
the lack of monthly citation data, 
we included month of publication 
as a variable. This variable is 
created to correct for the head start 
article gets when they are 
published early in a year in terms 
of having more time to 
accumulate citations.  

Created by 
extracting the month 
from the publication 
date variable.  

openaccess Represents the availability of the 
paper as our literature review 
found documents which were 
more easily available were more 
likely to be cited.  

Retrieved from 
Scopus 

contains_scopus_abstract Represents the availability of the 
paper content. Our data showed 
that several articles had missing 
abstract on Scopus. To account for 
this, we created a dummy 
variable.  

Created by setting a 
value 1 if the article 
has NA value on 
abstract and 0 if not. 

Table 1: Paper Related Variables 

 

Time-Based Paper Related Variables 

Variable name Description Creation 

new_citations_after_1y The number of new citations 
received the year after 
publication. 

Retrieving the new 
citations received the 
year after the 
publication year 

Table 2: Time-Based Paper Related Variables 
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that several articles had missing
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Time-Based Paper Related Variables

Variable name Description Creation

new_citations after Iy The number of new citations
received the year after
publication.

Retrieving the new
citations received the
year after the
publication year

Table 2: Time-Based Paper Related Variables
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5.4.2 Journal Related Variables 

Variable name Description Creation 

AJG2021 Represents journal ranking, impact, 
and quality. From our literature 
review, we found that journal ranking, 
and impact were found to be 
predictors of article citations on a 
wide range of academic fields, 
including marketing. While the 
metrics purely based on weighted 
average of journal metrics has been 
well tested, using rankings based on 
peer review, editorial and expert 
judgements assessments has yet to be 
done. Hence, we test ABS AJG as a 
measure for journal quality and 
impact.  

Data retrieved from: 
https://charteredabs.org  

We then merged the 
score by ISSN number. 

 

Table 3: Journal Related Variables 

 

5.4.3 Author Related Variables 

Variable name Description Creation 
Author_count Accounts for the increased 

probability of having a better 
author network due to being 
more authors on a paper.  

Counted the author 
names separated by 
semicolon. 

normalized_AU_degree Represents the general 
academic network of each 
author up to a given year. 
Higher degree centrality means 
that an author has written 
articles with more people in the 
network. 

See 4.2.2 

normalized_AU_betweenness Represents knowledge and 
brokerage power of the 
academic network of each 
author up to a given year. A 
higher betweenness centrality 
means that an author has a 
higher brokerage power in 
terms of information flow, as 
more people must go through 
this author to get in contact with 
other people. 

See 4.2.2 
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normalized_AU_closeness Represents the proximity to 
other in the academic network 
of each author up to a given 
year. Lower closeness centrality 
means that an author has a 
shorter path to all other 
marketing academics in the 
network. 

See 4.2.2 

normalized_AU_eigenvector Represents the connectivity an 
author has to other authors with 
great academic network of each 
author up to a given year. A 
higher eigenvector centrality 
means that an author has written 
with many well-connected 
people in the marketing 
academia. 

See 4.2.2 

Table 4: Author Related Variables 

 

5.5 Data Validation 

Since we want to predict future values, it is essential to avoid information leakage from years 

beyond the years which the models are trained on. This is to ensure that a model is not getting 

help from future events, leading to an artificially high performance. Therefore, for the 

variables which are time sensitive, we try to ensure that they are created based on the data 

which was available up to the publication year of the different articles. For instance, the co-

author network variables are created for each year, with data only about their co-author 

collaborations up to the publication year, to avoid their future collaborations to impact their 

scores. We have, however, included one variable from the future on all observations from 

1992 to 2022 and that is the ABS journal ranking. The reason for using the 2021 ranking on 

all years is first and foremost that there is no AJG ranking prior to 2010, meaning that we 

would have uncertain AJG values for the articles in the 1990s even with using AJG2010. 

Secondly, the rankings have stayed almost identical from 2010 to 2022 and we therefore 

consider the journal rankings to be lowly biased from future events. An additional reason is 

that the AJG2021 ranking has rankings for more journals compared to AJG2018, AJG2015, 

and AJG2010.   
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5.5.1 The Validation Set Approach 

To ensure validity when testing H3, we will be using the validation set approach. The 

validation set approach means that we will train the model on a training set and test it on a 

separate test set (James et al., 2013). This is done to estimate the predictive ability of the model 

on data which it has not been fitted on.  

5.5.2 The Training and Test Set 

To test the third hypothesis, we tested the predictive models on articles published in 2015 and 

2016. This allowed us to test the models on yearly variations, while avoiding sacrificing 

training data size too much. To prevent training a model with citation data from a time-period 

which we are predicting the test error on, we avoided training the models on data five years 

prior to the test set articles. This meant that we could only use data from 1992 to 2009. The 

reason for not using articles after 2009 is that articles from 2010 received their fifth-year 

citation count in 2015, which is included in the test set. Including this citation count in the 

training set would therefore reveal information about the citation behavior present in the test 

set.   

Our training set contains 17802 articles, and the test set contains 4993 articles, meaning that 

we had a 77/23 split. The test set contains marketing articles published on Scopus in 2015 and 

2016 in 75 marketing journals. 525 of the test set articles have above 44 citations and were 

categorized as top 5% cited articles after five years, while 4468 were not. This is the data set 

used to test H3.  

5.5.3 The Full Dataset 

The full dataset consisted of 33 754 marketing articles published between 1992 and 2016 from 

75 of the 76 ABS-ranked marketing journals available on Scopus. It also contained five-year 

citation count for all articles. The full dataset contained 21 columns, and an overview of these  

columns can be seen in appendix A8. The descriptive statistics about each column can be seen 

in appendix A9. This is the dataset used to test H1 and H2.  
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6. Results  

In this part, we present the results from the descriptive and predictive part of our analysis. In 

the first part, we will investigate our drivers and how they affect article citations after five 

years. From this part, we will draw conclusions on our first and second hypothesis. In the 

predictive part, we will investigate our third hypothesis by predicting the 5% most cited 

marketing articles five years post publication. From our dataset, we found that the 95th 

percentile of five-year citations of articles published between 1992 and 2016 were 44 citations. 

Hence, for an article to be among the 5% most cited articles after five years it must have above 

44 citations.  

In Figure 1, we present our data on the yearly number of English-written marketing articles 

published on Scopus from any of the 76 ABS listed journals published between 1992 and 

2022. We find that the increase in new marketing articles per year has increased with almost 

70% in the last five years from 2646 new articles in 2016 to 4489 new articles in 2021. This 

shows the increased importance of predicting future highly impactful articles.  

 
Figure 1: Number of marketing articles published in ABS ranked journals in Scopus per year 
according to our data. 
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Figure I: Number of marketing articles published in ABS ranked journals in Seopus per year
according to our data.
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6.1 Identifying drivers of five-year citation count 

To identify the promising drivers of five-year citation count for academic marketing articles, 

we first looked at the correlation between our variables and the five-year citation count, as this 

method can reveal strong predictors. Secondly, we made multiple linear regression models to 

examine the variables joint linear relationships and statistical significance. In this section, we 

will be using the full dataset of marketing articles published between 1992 and 2016, which is 

the dataset presented in in 5.5.3 containing 33 754 articles from the 75 marketing journals.  

6.1.1 Correlation of Variables 

Since we had categorical variables and outliers, we chose to use Spearman’s rank correlation. 

This correlation is monotonic, which makes it less sensitive to outliers and able to handle 

categorical variables. Monotonic correlation has previously been used to identify promising 

variables (Ruan et al., 2020; Chakraborty et al., 2014). The correlation plot will give us an 

impression of which variables have a strong relationship with the dependent variable.  

 
Figure 2: Spearman rank correlation of our selected variables 

A correlation above 0.3 is considered moderate, while a correlation above 0.6 can be 

categorized as strong (Akoglu, 2018). In the correlation bar plot, the blue color represents a 

positive correlation, while the grey color represents a negative correlation. We see from Figure 
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2 that new citations after one year is strongly correlated to citations after five years, followed 

by AJG2021, citations in article, and eigenvector centrality at a moderate correlation. As 

citations after one year is a part of the total citations after five years, it is no surprise that it is 

highly correlated. The results therefore encourage that H1 might be true.  

6.1.2 Regression Results 

To get an understanding of our variables and help us answer the first part of our research 

question, we divided the multiple linear regression into six different regressions: new citations 

after one year, all variables, paper related, author related, journal related, and paper-,  

journal-, and author related combined. The regressions are created to identify their linear 

significance given the interactions with each other, as well as alone within their category. From 

the regressions, we will also determine the validity of H1 and H2.  

New citations after 1y regression results 

To understand the individual effect of citations obtained the year after publication, we created 

a linear regression, which could be formulated as following: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑛𝑛𝑠𝑠𝑛𝑛_𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠𝑎𝑎_1𝑦𝑦 + 𝜀𝜀  

 
Table 5: Regression results using one year citation count 

When only using the new citations after one year variable we get an adjusted R-squared of 

0.6251. This value is quite high, meaning that the variable explains much of the variance in 

citations after five years. Thus, the explanatory power is relatively high, even when only 

having one variable. From Table 5, we see that the coefficient estimate is a 11.12 increase in 

total citations after five years for each additional new citation the following year after 

publication. This result in, combination with the Spearman’s rank correlation, indicates that 

this variable is a significant driver of total marketing article citation count after five years, 

supporting H1. In addition, it is a promising variable for our predictions.  
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having one variable. From Table 5, we see that the coefficient estimate is a 11.12 increase in

total citations after five years for each additional new citation the following year after

publication. This result in, combination with the Spearman's rank correlation, indicates that

this variable is a significant driver of total marketing article citation count after five years,

supporting H l . In addition, it is a promising variable for our predictions.
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Full regression results 

To understand the added effect of paper, journal, and author variables, we created a full 

regression including both new citations after one year and all the variables from the other 

categories. The regression is expressed as following: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + β1X𝑛𝑛𝑠𝑠𝑛𝑛_𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠_𝑠𝑠𝑎𝑎𝑐𝑐𝑠𝑠𝑎𝑎_1𝑦𝑦 + β2X𝑎𝑎𝑖𝑖𝑎𝑎𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠 +
β3Xa𝑣𝑣𝑠𝑠_𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐_𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + β4XLe𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑖𝑖𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑐𝑐𝑦𝑦_𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + β5X𝐾𝐾𝑠𝑠𝑦𝑦𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑎𝑎 +
β6X𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠_𝑖𝑖𝑛𝑛_𝑠𝑠𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + β7X𝐴𝐴𝐴𝐴_𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 + β8X𝑐𝑐𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + β9X𝑝𝑝𝑛𝑛𝑛𝑛_𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐ℎ +
β10Xc𝑐𝑐𝑛𝑛𝑐𝑐𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠_𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 + 𝛽𝛽11𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴2021 + 𝛽𝛽12𝑋𝑋𝐴𝐴𝑛𝑛𝑐𝑐ℎ𝑐𝑐𝑎𝑎_𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 +
𝛽𝛽13𝑋𝑋𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_AU_closeness + 𝛽𝛽14𝑋𝑋𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝐴𝐴𝐴𝐴_𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽15𝑋𝑋𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝐴𝐴𝐴𝐴_𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠 +
𝛽𝛽16𝑋𝑋𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝐴𝐴𝐴𝐴_𝑠𝑠𝑖𝑖𝑝𝑝𝑠𝑠𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎 + 𝜀𝜀   

 
Table 6: Full regression results from 1992-2016 

The regression had an adjusted R-squared of 0.6283, which is only slightly higher than the R-

squared of 0.6251 from only including citations after one year. We notice that new citations 

after one year, placement in journal, abstract sentiment, lexical diversity, number of citations 

in article, open-access, month of publication, and closeness centrality is significant below a 

5% level. Closeness centrality is the only centrality score variable which is significant. 

Surprisingly, the AJG ranking have a p-value slightly above 5%. 
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Full regression results

To understand the added effect of paper, journal, and author variables, we created a full

regression including both new citations after one year and all the variables from the other

categories. The regression is expressed as following:

total_citations_after_5y = p + B q e v _citations after_1y + B X r r s t _ p a g e

B4ace_sent iment_standardizea + [qkteicat_diversi ty_normalizea + [ 4 k e y w o r d _ n u m b e r t

[ a c t u a t i o n sin _article + B ; A s _ w o r a s + [ s k o p e a c c e s s + Bo}pub_montn h

B k e o n t a i n ss c o u s abstract + p 4 ' a y c 2 o z 1 + b i 3 4 u t n o r_count h

b43normalized_AU_closeness E [44normal i zed_AU_betweenness E [ jg 'normal ized_AU_degree h

4 n o r m a l i z e d _ A U eigenvector ±

Variables Estimate Std. Error t value Pr(>t1) Significance

lntercepl -196265 081014 -242262 001541

new_citations_after_1y 11.05439 0.04989 221.56216 000000

first_page 0.00154 0.00040 3.87763 0.00011

ave_sentiment_standardized 0.46436 0.10194 4.55515 0.00001

Lexical_diversity_normalized -2.49659 1.23773 -2.01707 0.04370

citations_in_article 0.02005 0.00368 5.45457 000000

Keyword_number -0.08755 0.04718 -1.85551 0.06353

AB_words -0.00215 0.00205 -1.05108 0.29323

openaccess 5.45765 0.89082 6.12653 000000

pub_month 0.28561 0.02797 10.24729 000000

contains_scopus_abstract 0.94157 0.60278 1.56203 0.11829

AJG2021 0.20340 0.10786 1.88583 0.05933

normaIized_AU_closeness 2.08344 0.85833 2.42730 0.01522

normalized_AU_betweenness 1.19641 1.83585 0.65169 0.51460

normalized_AU_degree 0.08896 1.93359 0.04601 0.96331

normalized_AU_eigenvector -1.26013 1.98437 -0.63503 0.52541

Author_count 0.17755 0.10221 1.73717 0.08237

Table 6: Full regression results from 1992-2016

The regression had an adjusted R-squared of 0.6283, which is only slightly higher than the R-

squared of O.6251 from only including citations after one year. We notice that new citations

after one year, placement in journal, abstract sentiment, lexical diversity, number of citations

in article, open-access, month of publication, and closeness centrality is significant below a

5% level. Closeness centrality is the only centrality score variable which is significant.

Surprisingly, the AJG ranking have a p-value slightly above 5%.
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Another observation from this regression is the large coefficient value of the new citations 

after one year variable compared to the other variables. The regression containing only 

citations after one year as a variable had only a slightly lower R-squared value compared to 

the full regression. This indicates that the new citations after one year variable is explaining 

most of the variance of the variables included. Therefore, the results further support H1 which 

states that citations after one year is a highly influential driver for article citations after five 

years. 

Paper related regression results 

To investigate the specific significance of our paper related variables, we constructed a 

multiple linear regression which could be formulated in the following:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑎𝑎𝑖𝑖𝑎𝑎𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠 +  𝛽𝛽2𝑋𝑋𝑠𝑠𝑣𝑣𝑠𝑠_𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐_𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 +
𝛽𝛽3𝑋𝑋𝐿𝐿𝑠𝑠𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑖𝑖𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑐𝑐𝑦𝑦_𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽4𝑋𝑋𝐾𝐾𝑠𝑠𝑦𝑦𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠_𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛𝑠𝑠𝑎𝑎 + 𝛽𝛽5𝑋𝑋𝑠𝑠𝑖𝑖𝑐𝑐𝑠𝑠𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠_𝑖𝑖𝑛𝑛_𝑠𝑠𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽6𝑋𝑋𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +
𝛽𝛽7𝑋𝑋𝑐𝑐𝑝𝑝𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽𝛽8𝑋𝑋𝑝𝑝𝑛𝑛𝑛𝑛_𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐ℎ + 𝛽𝛽9𝑋𝑋𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠_𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 + 𝜀𝜀   

 
Table 7: Paper related regression results 

The multiple regression of paper related variables has an adjusted R-squared of 0.04264. From 

Table 7, we find all variables except number of keywords to be significant below a 5% level. 

The results support some of the findings of research in other fields, and it finds that these 

variables can also be considered as drivers of impact in the marketing field.   
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Another observation from this regression is the large coefficient value of the new citations

after one year variable compared to the other variables. The regression containing only

citations after one year as a variable had only a slightly lower R-squared value compared to

the full regression. This indicates that the new citations after one year variable is explaining

most of the variance of the variables included. Therefore, the results further support Hl which

states that citations after one year is a highly influential driver for article citations after five

years.

Paper related regression results

To investigate the specific significance of our paper related variables, we constructed a

multiple linear regression which could be formulated in the following:

total_citations_after_5y = p + B X r r s t _ p a g e [ a c e _ s e n t i m e n t_standardizea +
[ 4 e i c a t_diversity_normattzea + b 4 k e y w o r d _ n u m b e r + p g ' r a t i o n sin_article + p g 4 B r a s '

[ k a p e n a c c e s s ± [a'pub_month + b o o n t a i n s_scopus abstract ±

Variables Estimate Std. Error t value Pr(>[t/) Significance

Intercept 3.79945 1.17663 3.22909 0.00124

first_page 0.00255 0.00061 4.20364 0.00003

ave_sentiment_standardized 0.97254 0.16339 5.95241 0.00000

Lexical_diversity_normalized -8.58762 1.97903 -4.33931 0.00001

Keyword_number 0.11173 0.07064 1.58172 0.11372

citations_in_article 0.18475 0.00573 32.23560 0.00000

AB_words -0.01125 0.00326 -3.45086 0.00056

openaccess 13.11970 1.42815 9.18648 0.00000

pub_month -0.23415 0.04409 -5.31096 0.00000

contains_scopus_abstract 5.96978 0.95770 6.23344 0.00000

Table 7: Paper related regression results

The multiple regression of paper related variables has an adjusted R-squared of0.04264. From

Table 7, we find all variables except number of keywords to be significant below a 5% level.

The results support some of the findings of research in other fields, and it finds that these

variables can also be considered as drivers of impact in the marketing field.
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Journal related regression results 

The purpose of the journal related regression was to first understand the importance and 

significance of AJG2021, and secondly understand which AJG ranking increase gives the 

highest increase in expected citations after five years. To understand the first aspect, we 

included AJG2021 as a single variable:  

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴2021 + 𝜀𝜀   

 
Table 8: Journal related regression results 

We find AJG2021 to be significant below 5%. Publishing in a higher ranked journal leads to 

a positive increase in total citations after five years with an expected increase of 5.7 more 

citations per ranking increase. The adjusted R-squared was 0.04118, which is almost the same 

as all paper related variables combined. This signals that our journal related variable is 

explaining close to the same amount of variance as our paper related variables.  

To identify the second aspect, we regressed the AJG2021 as a factor with dummy variables on 

each ranking level as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝛽𝛽2𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴3 + 𝛽𝛽3𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴4 + 𝜀𝜀,  

where 𝛽𝛽0 is AJG1 and 𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is binary. 

 
Table 9: Regression model for journal related variables as factor 

The results shows that publishing in an AJG 2 ranked journal is expected to lead to an increase 

of 4.4 citations, while publishing in an AJG 3 ranked journal gives an expected increase of 

10.2 citations, compared to publishing in an AJG 1 ranked journal. Publishing in an AJG 4 

ranked journal leads to the largest increase in expected citations, of 17.7. The adjusted R-
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Journal related regression results

The purpose of the journal related regression was to first understand the importance and

significance of AJG2021, and secondly understand which AJG ranking increase gives the

highest increase in expected citations after five years. To understand the first aspect, we

included AJG2021 as a single variable:

total_citations_after_5y = p + BXayc2o21 + €

Variables

Intercept

AJG2021

Estimate

0.70895

5.73874

Std. Error

0.36944

0.15068

t value

1.91898

38.08614

Pr(>t))

0.055

0.000

Significance

Table 8: Journal related regression results

We find AJG2021 to be significant below 5%. Publishing in a higher ranked journal leads to

a positive increase in total citations after five years with an expected increase of 5.7 more

citations per ranking increase. The adjusted R-squared was 0.04118, which is almost the same

as all paper related variables combined. This signals that our journal related variable is

explaining close to the same amount of variance as our paper related variables.

To identify the second aspect, we regressed the AJG2021 as a factor with dummy variables on

each ranking level as follows:

total_citations_after_5y =[ + B y c 2 + B a c a + B a / c a + €,

where D is AJGI and Kjaris binary.

Variables Estimate Std. Error t value Pr(>[t/) Significance

Intercept 7.03503 0.28060 25 07128 0

as.factor(AJG2021)2 4.40218 0.40986 10.74057 0

as.factor(AJG2021)3 10.18839 0.45197 22.54219 0

as.factor(AJG2021)4 17.67352 0.48872 36.16306 0

Table 9: Regression model for journal related variables as factor

The results shows that publishing in an AJG 2 ranked journal is expected to lead to an increase

of 4.4 citations, while publishing in an AJG 3 ranked journal gives an expected increase of

10.2 citations, compared to publishing in an AJG J ranked journal. Publishing in an AJG 4

ranked journal leads to the largest increase in expected citations, of 17.7. The adjusted R-
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squared in this regression increased from 0.04118 to 0.04173, showing that having AJG2021 

as a dummy variable slightly improved explanation of variance.   

The regression results presented in Table 8 and Table 9 show that AJG ranking is a significant 

driver of article citations after five years. This also gives us the impression that it can be a 

qualified variable to use in the prediction of highly cited articles after five years to test H3.  

Author related regression results 

To investigate author related variables in isolation and directly test H2, we created a regression 

containing only author related variables. The number of authors works as a correction for the 

increased probability of having an author with higher centrality score. This regression can be 

formulated as the following: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝐴𝐴𝑛𝑛𝑐𝑐ℎ𝑐𝑐𝑎𝑎_𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 + 𝛽𝛽2𝑋𝑋𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_AU_closeness +
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Table 10: Author related regression results 

From the multiple regression of author related variables presented in Table 10, we find that all 

variables except eigenvector centrality are significant below a 5% level. The adjusted R-

squared is 0.01745, meaning that these variables explain relatively less of the variation in 

citations after five years compared to the paper and journal variables. Higher values increase 

total citations after five years for betweenness and degree centrality, while lower values of 

closeness centrality increase the number of expected citations after five years. Importantly, we 

find the eigenvector centrality to have a p-value of 0.92, which indicates that it is highly 

insignificant. Since the centrality variables are normalized, we can compare their coefficient 

sizes. We see that closeness and betweenness centrality has the largest impact on citations, 

while author count has a very small effect, and eigenvector centrality has a non-significant 

effect on the total number of citations after five years.  
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squared in this regression increased from 0.04118 to 0.04173, showing that having AJG2021

as a dummy variable slightly improved explanation of variance.

The regression results presented in Table 8 and Table 9 show that AJG ranking is a significant

driver of article citations after five years. This also gives us the impression that it can be a

qualified variable to use in the prediction of highly cited articles after five years to test H3.

Author related regression results

To investigate author related variables in isolation and directly test H2, we created a regression

containing only author related variables. The number of authors works as a correction for the

increased probability of having an author with higher centrality score. This regression can be

formulated as the following:

total_citations_after_5y = p + p k A u t n o r_count + [ n o r m a l i z e d_AU_closeness ±

[4normalized_AU_betweenness ± b4normal i zed_AU_degree [ 5 n o r m a l i z e d_AU_eigenvector

Variables Estimate Std. Error t value Pr(>[t)) Significance

Intercept 10.81912 0.42374 25.53237 000000

Author_count 1.73711 0.16440 10.56664 000000

normalized_AU_closeness -19.93134 1.29481 -15.39331 000000

normalized_AU_betweenness 15.60349 2.97778 5.23997 000000

normalized_AU_degree 7.16544 3.12349 2.29405 0.02179

normalized_AU_eigenvector -0.31232 3.22307 -0.09690 0.92281

Table JO: Author related regression results

From the multiple regression of author related variables presented in Table l 0, we find that all

variables except eigenvector centrality are significant below a 5% level. The adjusted R-

squared is 0.01745, meaning that these variables explain relatively less of the variation in

citations after five years compared to the paper and journal variables. Higher values increase

total citations after five years for betweenness and degree centrality, while lower values of

closeness centrality increase the number of expected citations after five years. Importantly, we

find the eigenvector centrality to have a p-value of 0.92, which indicates that it is highly

insignificant. Since the centrality variables are normalized, we can compare their coefficient

sizes. We see that closeness and betweenness centrality has the largest impact on citations,

while author count has a very small effect, and eigenvector centrality has a non-significant

effect on the total number of citations after five years.
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Our second hypothesis (H2) was that the values from centrality measures are drivers of 

citations after five years. All the centrality measures except eigenvector centrality was 

significant in some degree. We therefore find support for the hypothesis in these results.  

Paper, journal, and author related variables combined  

To compare the effect of all variables without information about the impact the year after 

publication to the effect of all variables with this information, we created a multiple linear 

regression of all variables but new citations after one year. This regression can be expressed 

as: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑢𝑢_𝑐𝑐𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚_𝑢𝑢𝑓𝑓𝑚𝑚𝑖𝑖𝑇𝑇_5𝑦𝑦 = β0 + β1Xfi𝑎𝑎𝑠𝑠𝑐𝑐_𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠 +  β2Xa𝑣𝑣𝑠𝑠_𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑛𝑛𝑐𝑐_𝑠𝑠𝑐𝑐𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 +
β3XLe𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑖𝑖𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑐𝑐𝑦𝑦_𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 + β4XKeyword_number + β5Xcita𝑐𝑐𝑖𝑖𝑐𝑐𝑛𝑛𝑠𝑠_𝑖𝑖𝑛𝑛_𝑠𝑠𝑎𝑎𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠 +
β6X𝐴𝐴𝐴𝐴_𝑛𝑛𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠 + β7Xopenaccess + β8X𝑝𝑝𝑛𝑛𝑛𝑛_𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐ℎ + β9Xc𝑐𝑐𝑛𝑛𝑐𝑐𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠_𝑠𝑠𝑠𝑠𝑐𝑐𝑝𝑝𝑛𝑛𝑠𝑠_𝑠𝑠𝑛𝑛𝑠𝑠𝑐𝑐𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 +
β10𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴2021 + β11𝑋𝑋𝐴𝐴𝑛𝑛𝑐𝑐ℎ𝑐𝑐𝑎𝑎_𝑠𝑠𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐 + β12𝑋𝑋normalized_AU_closeness +
β13𝑋𝑋normalized_𝐴𝐴𝐴𝐴_𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 + β14𝑋𝑋normalized_𝐴𝐴𝐴𝐴_𝑠𝑠𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠 + β15𝑋𝑋normalized_𝐴𝐴𝐴𝐴_𝑠𝑠𝑖𝑖𝑝𝑝𝑠𝑠𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎 +
𝜀𝜀   

 
Table 11: Regression results for paper, journal, and author related variables combined 

When regressing paper, journal, and author related variables we get an adjusted R-squared of 

0.0875. Table 11 show that lexical diversity, abstract length, publication month, Scopus 

abstract, degree centrality, eigenvector centrality, and author count are not significant. 
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Our second hypothesis (H2) was that the values from centrality measures are drivers of

citations after five years. All the centrality measures except eigenvector centrality was

significant in some degree. We therefore find support for the hypothesis in these results.

Paper, journal, and author related variables combined

To compare the effect of all variables without information about the impact the year after

publication to the effect of all variables with this information, we created a multiple linear

regression of all variables but new citations after one year. This regression can be expressed

as:

total_citations_after_5y = B + BXmrst_page ± B , X e _ s e n t i m e n t_standardizea +
[ 4 k e t c a t _ d i v e r s i t y _normattzea + [ q k e y w o r d _ n u m b e r + [gkitations_in_articte

[a}As_words + B k 6 p e n a c c e s s + pg}pub_month + [ c o n t a i n s_scopus abstract ±

[oAjczo21 + [ ' a u t n o r count + [ + n o r m a l i z e d_AU closeness h

p43normalized_AU_betweenness ± [q4'normalized_AU_degree ± p=normal ized_AU_eigenvector t

E

Variables Estimate Std. Error t value Pr(>[tI) Significance

lntercepl -9.44202 1.26325 -7.44490 0.00000

first_page -0.004B0 0.00062 -7.72523 0.00000

ave_sentiment_standardized 1.04522 0.15967 6.54590 0.00000

Lexical_diversity_normalized -3.09107 1.93933 -1.59389 0.11097

citations_in_article 0.15416 0.00568 27.14164 0.00000

Keyword_number 0.60636 0.07377 8.22014 0.00000

AB_words 0 00221 0 00321 0 68777 0 49160

openaccess 13.87318 1.39451 9.94844 0.00000

pub_month -0.02667 0.04377 -0.60944 0.54223

contains_scopus_abstract 0.59623 0.94446 0.63129 0.52785

AJG2021 6.10419 0.16377 37.27400 0.00000

normaIized_AU_closeness -10.37187 1.34199 -7.72873 0.00000

normalized_AU_betweenness 8.12620 2.87607 2.82546 0.00472

normalized_AU_degree -1.68228 3.02961 -0.55528 0.57871

normaIized_AU_eigenvector -2.82314 3.10919 -0.90800 0.36389

Author_count 1.04978 0.16002 6.56023 0.00000

Table l I: Regression results for paper, journal, and author related variables combined

When regressing paper, journal, and author related variables we get an adjusted R-squared of

0.0875. Table 11 show that lexical diversity, abstract length, publication month, Scopus

abstract, degree centrality, eigenvector centrality, and author count are not significant.
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Compared to the full regression, removing the adjustment for citations one year after 

publication result in betweenness centrality, AJG2021, number of keywords, and author count 

becoming significant as well, while lexical diversity loses its statistical significance. We 

observe that both closeness and betweenness centrality is still significant, which supports H2.  

The concluding remarks from the regression analysis is that new citations after one year is a 

dominant driver of article citations obtained after five years, supporting H1. We also find co-

author centrality measures to be a significant driver of article citations in all regressions 

present. Hence, we find support for H2. The slightly higher R-squared value from the full 

regression indicates that other variables may help correct the outcome variable slightly and 

can therefore still be useful predictors. From the multiple linear regressions, we do not know 

their non-linear interactions or exactly how well the variables other than new citations after 

one year will translate into predictive performance. This will therefore be the topic in section 

6.2.    

Test of Regression Validity 

To check the validity of the multiple regression assumptions, we visualized the residual plots 

versus the fitted regression. From Figure 3, we see no clear non-linear pattern of residual error, 

except when including new citations after one year, which approaches exponential error 

increase with fitted values above 500. 
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Compared to the full regression, removing the adjustment for citations one year after

publication result in betweenness centrality, AJG2021, number of keywords, and author count

becoming significant as well, while lexical diversity loses its statistical significance. We

observe that both closeness and betweenness centrality is still significant, which supports H2.

The concluding remarks from the regression analysis is that new citations after one year is a

dominant driver of article citations obtained after five years, supporting H l . We also find co-

author centrality measures to be a significant driver of article citations in all regressions

present. Hence, we find support for H2. The slightly higher R-squared value from the full

regression indicates that other variables may help correct the outcome variable slightly and

can therefore still be useful predictors. From the multiple linear regressions, we do not know

their non-linear interactions or exactly how well the variables other than new citations after

one year will translate into predictive performance. This will therefore be the topic in section

6.2.

Test of Regression Validity

To check the validity of the multiple regression assumptions, we visualized the residual plots

versus the fitted regression. From Figure 3, we see no clear non-linear pattern ofresidual error,

except when including new citations after one year, which approaches exponential error

increase with fitted values above 500.
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Figure 3: Linear Fit of the Residuals versus the Fitted Values of the Regression. 

We do see indications of non-constant variance of error terms (Heteroscedasticity) for all but 

the author related regression in the form of an increase in error with the increase in fitted 

values.  This is concerning for the interpretation of the regression results in these regressions. 

However, they do not change the conclusions to H1 and H2 as the author regression is 

homoscedastic, and the new citations after one year variable is extremely significant and 

highly unlikely to become much less significant even after correcting for the 

heteroscedasticity. However, it means that the standard-error and therefore the p-values from 

the paper, paper-journal-author, and journal regressions are dubious, and likely lower than 

true.  

While we do see a few outliers and high leverage points, we do not consider these as data 

errors, as they represent valid examples of unusual citation counts after five years. However, 

it is worth noticing, as it indicates that the model does not capture all observations perfectly. 

The issue of multicollinearity was checked though a correlation plot of the variables. From 

Figure 4 we see that eigenvector centrality, betweenness centrality, degree centrality, and 
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Figure 3: Linear Fit of the Residuals versus the Fitted Values of the Regression.

We do see indications of non-constant variance of error terms (Heteroscedasticity) for all but

the author related regression in the form of an increase in error with the increase in fitted

values. This is concerning for the interpretation of the regression results in these regressions.

However, they do not change the conclusions to Hl and H2 as the author regression is

homoscedastic, and the new citations after one year variable is extremely significant and

highly unlikely to become much less significant even after correcting for the

heteroscedasticity. However, it means that the standard-error and therefore the p-values from

the paper, paper-journal-author, and journal regressions are dubious, and likely lower than

true.

While we do see a few outliers and high leverage points, we do not consider these as data

errors, as they represent valid examples of unusual citation counts after five years. However,

it is worth noticing, as it indicates that the model does not capture all observations perfectly.

The issue of multicollinearity was checked though a correlation plot of the variables. From

Figure 4 we see that eigenvector centrality, betweenness centrality, degree centrality, and
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betweenness centrality have a high degree of correlation. The variables with a high degree of 

correlation can therefore result in growth of the estimated standard deviation, causing a higher 

p-value for the correlated variables. However, since H2 is considering the effect of any 

centrality measures rather than individual centrality measure effects, we do not consider the 

multicollinearity to be a critical issue.  

 
Figure 4: Correlation plot of all variables 

6.2 Predictive results 

To test our third hypothesis, which involves predicting whether a marketing article will be 

among top 5% most cited articles five years after publishing or not, we test each variable group 

and combination of the group on four different models. The first model is logistic regression, 

the second is SVM, followed by Light GBM, and finally we test TabNet. An interesting point 

about these models is that they use the variables in different ways and therefore likely perform 

differently on the same subsets. This will therefore strengthen the robustness of our results. In 

this section we will be using the training and test set presented in 5.5.2. 

48

betweenness centrality have a high degree of correlation. The variables with a high degree of

correlation can therefore result in growth of the estimated standard deviation, causing a higher

p-value for the correlated variables. However, since H2 is considering the effect of any

centrality measures rather than individual centrality measure effects, we do not consider the

multicollinearity to be a critical issue.

en
-0 U en .8<D <D <D enN cN c en O t,U ro <D <D <D <D g>, >, ro E <D c •<D <D cI,() :=1 -0 l; 5 <D en

-' 0 <n .0c c <D <D 0 Ol OJ<D <D g <D 6 act='. ct='. I 5 @5 .0 -0 I
OJ OJ <n z, I I I I en

I I • Go Ee .0 ::) ::) ::) ::) :::J
en en c OJ E <l'. <l'. <l'. <l'. Cl_= 5 0c c <D I :::J en I I I I O0 0 f; :::J E >> c c <n en -0 -0 -0 -0 enr r5 c 0 <D 5 --

I I <D <D <D <D <D I2 2 ;:::; O 0) -0 -0 u en0 -' (f) I en 5 5 N N N N
G ·c:, E 0 OJ <D ro c O ro ro ro c

I I N 0 Cl. w <n O 0 z =,OJ OJ roz I (') .c I (') I s c E E E E tis .0 5 <l'. <D 5 >, rn <D 6 6 5 6<D :::J ---, » <D <D Cl. 0.8 c Cl. <l'. <l'. ¢- [l_ OJ _J 5 Y'. <l'. 0 c c c c O

total_citations_after_5y

new_citations_after_1y

pub_month

AJG2021

Author_count

first_page

PAGES

ave_sentiment_standardized

Lexical_diversity_normalized

citations_in_article

Keyword_number

AB_words

openaccess

normalized_AU_betweenness

normalized_AU_degree

normalized_AU_closeness

normalized_AU_eigenvector

contains_scopus_abstract

•• • • • • ••• • • ••• • • • • • • •• •• •• • •• • •• •• •• • • • • • • • • •• •••• • •• • • •••• • ••• •• • •••••• ••••• • • •• • •• •-• • • • • •• • •

0.8

0.6

0.4

0 2

-0.2

-0.4

-0.6

-0.8

-1

Figure 4: Correlation plot of all variables

6.2 Predictive results

To test our third hypothesis, which involves predicting whether a marketing article will be

among top 5% most cited articles five years after publishing or not, we test each variable group

and combination of the group on four different models. The first model is logistic regression,

the second is SVM, followed by Light GBM, and finally we test TabNet. An interesting point

about these models is that they use the variables in different ways and therefore likely perform

differently on the same subsets. This will therefore strengthen the robustness of our results. In

this section we will be using the training and test set presented in 5.5.2.
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6.2.1 Variable Selection Strategy 

Since some models take quite a lot of time to estimate, it is impossible to test all possible 

combinations of the variables as this would have resulted in 4*(215-1) = 262 143 models to 

train. As a result, we created a variable testing strategy to test our third hypothesis. With the 

variable testing strategy, we trained one model for each subset, where the variable testing 

subsets can be seen in Table 12. The model was then tested on an unseen dataset containing 

marketing articles from 2015 and 2016 as explained in 5.5.2. To ensure neutrality in our model 

performance, we consider precision and recall to be equally important. Hence, we calculated 

the probability threshold for the maximum F1 value for each trained model on the test set. This 

way, we could get a sense of how well the models could possibly perform in a use case scenario 

and ensure an equal model comparison on the metrics related to F1 (Accuracy, Recall, and 

Precision). The maximum F1 value was calculated by looping through all threshold values 

between 0.001 and 0.9 with a 0.001 step size. The F1, Accuracy, Precision, and Recall from 

the calculated optimal threshold value are reported in Table 13.   

 
Table 12: Variables contained in the different subset groups 

Testing the different categories of variables is an approach which has previously been used to 

test how various variable categories affect predictive performance on different models (Hu et 

al., 2020). To be able to test H3, we made subsets with each category separated. We tested all 
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6.2.1 Variable Selection Strategy

Since some models take quite a lot of time to estimate, it is impossible to test all possible

combinations of the variables as this would have resulted in 4*(215-1) = 262 143 models to

train. As a result, we created a variable testing strategy to test our third hypothesis. With the

variable testing strategy, we trained one model for each subset, where the variable testing

subsets can be seen in Table 12. The model was then tested on an unseen dataset containing

marketing articles from 2015 and 2016 as explained in 5.5.2. To ensure neutrality in our model

performance, we consider precision and recall to be equally important. Hence, we calculated

the probability threshold for the maximum Fl value for each trained model on the test set. This

way, we could get a sense of how well the models could possibly perform in a use case scenario

and ensure an equal model comparison on the metrics related to Fl (Accuracy, Recall, and

Precision). The maximum Fl value was calculated by looping through all threshold values

between 0.001 and 0.9 with a 0.001 step size. The F l , Accuracy, Precision, and Recall from

the calculated optimal threshold value are reported in Table 13.

Variable p J A P+J P+A J+A P+J+A N1Y ALL

New citations after 1 y x x
first_page x x x x x
ave_sentiment_standardized x x x x x
Lexical_diversity_normalized x x x x x
citations_in_article x x x x x
PAGES x x x x x
Keyword_number x x x x x
AB_words x x x x x
open7access x x x x x
pub_month x x x x x
contains_scopus_abstract x x x x x
AJG2021 x x x x x
normalized_AU_closeness x x x x x
normalized_AU_betweenness x x x x x
normalized_AU_degree x x x x x
normalized_AU_eigenvector x x x x x
Author_count x x x x x

Table 12: Variables contained in the different subset groups

Testing the different categories of variables is an approach which has previously been used to

test how various variable categories affect predictive performance on different models (Hu et

al., 2020). To be able to test H3, we made subsets with each category separated. We tested all
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possible combinations of the three categories, where they only had data available at the 

publication date to ensure an equal comparison. For performance comparison, we made a 

subset consisting of only new citations after one year and one subset with all variables 

including new citations after one year. This would allow us to see the additional effect of 

paper, journal, and author variables with new citations after one year.  

6.2.2 Variable Testing Results 

To predict the 5% most cited marketing articles, we applied our four selected methods and 

created nine different models for each of them. For each model we measured the ROC AUC, 

F1, Precision, Recall, and Accuracy metrics which we will compare and analyze. We will 

primarily compare ROC AUC, F1, Precision, and Accuracy, as Recall can be artificially high 

when the model is not working.  

 
Table 13: Results from the variable group testing. Bold markings show the best performing 
model (of paper, journal, and author combinations) on metrics across the variable subsets. 
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possible combinations of the three categories, where they only had data available at the

publication date to ensure an equal comparison. For performance comparison, we made a

subset consisting of only new citations after one year and one subset with all variables

including new citations after one year. This would allow us to see the additional effect of

paper, journal, and author variables with new citations after one year.

6.2.2 Variable Testing Results

To predict the 5% most cited marketing articles, we applied our four selected methods and

created nine different models for each of them. For each model we measured the ROC AUC,

Fl, Precision, Recall, and Accuracy metrics which we will compare and analyze. We will

primarily compare ROC AUC, F l , Precision, and Accuracy, as Recall can be artificially high

when the model is not working.

LogReg p J A P+J P+A J+A P+J+A N1Y ALL

AUC 0.622 0.674 0563 0.730 0.630 0.682 0.732 0.918 0.923

F1 0.238 0.272 0.207 0.333 0.240 0.277 0.345 0.639 0.638

Precision 0.149 0.177 0.135 0.279 0.151 0.181 0.285 0.672 0.663

Recall 0.590 0.587 0.450 0.413 0.574 0.587 0.436 0.610 0.615

Accuracy 0.604 0.670 0.640 0.826 0.617 0.678 0.826 0.927 0.927

SVM p J A P+J P+A J+A P+J+A N1Y ALL

AUC 0.404 0.410 0.501 0.639 0.401 0.404 0.643 0.500 0.925

F1 0.190 0.190 0.190 0.295 0.190 0.190 0.294 0.190 0.648

Precision 0.105 0.105 0.105 0.237 0.105 0.105 0.250 0.105 0.651

Recall 1.000 1.000 1.000 0.391 1.000 0.105 0.358 1.000 0.646

Accuracy 0.105 0.105 0.105 0.804 0.105 0.105 0.819 0.105 0.926

LightGBM p J A P+J P+A J+A P+J+A N1Y ALL

AUC 0.652 0.674 0.561 0.725 0.657 0.663 0.727 0.918 0.923

F1 0.259 0.272 0.202 0.336 0.259 0.271 0.336 0.639 0.646

Precision 0178 0 177 0121 0 274 0178 0178 0.299 0 6 7 2 0622

Recall 0.474 0.587 0.619 0.434 0.474 0.573 0.383 0.610 0.672

Accuracy 0.714 0.670 0.487 0.819 0.714 0.680 0.841 0.928 0.923

TabNet p J A P+J P+A J+A P+J+A N1Y ALL

AUC 0.644 0.676 0.570 0.734 0.649 0.682 0.727 0.919 0.924

F1 0.245 0.272 0.208 0.335 0.259 0.292 0.335 0.639 0.647

Precision 0.157 0.177 0.134 0.259 0.175 0.207 0.280 0.672 0.641

Recall 0.554 0.586 0.478 0.467 0.495 0.491 0.417 0.610 0.653

Accuracy 0.640 0.670 0.619 0.802 0.702 0.748 0.826 0.927 0.925

Table 13: Results from the variable group testing. Bold markings show the best performing
model (of paper, journal, and author combinations) on metrics across the variable subsets.
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From the results in Table 13, we can see that combining a group of drivers gives a considerably 

higher ROC AUC, F1, Precision, and Accuracy on all models. Combining paper, journal, and 

author related variables achieves a higher ROC AUC on all models except Light GBM. 

Furthermore, it achieves a higher F1 score on all models except SVM. The TabNet model had 

the highest ROC AUC value of 0.737. Light GBM had a F1 score of 0.336, a precision score 

of 0.299, and an accuracy of 0.841, which was the highest compared to the other paper,  

journal, and author related models. The result from the testing therefore supports our third 

hypothesis (H3), which says that using a combination of either paper, author, and journal 

related drivers will give more accurate predictions compared with using variables from only 

one category.  

In addition, we wanted to show that it is possible to utilize the drivers presented in the first 

part to predict highly cited articles. In the first part of the results, we found that new citations 

after one year is a strong driver of citations after five years. When including it in the predicting 

models we notice that it performs extremely well, both as the only variable, but even better in 

combination with all the other variables. The accuracy of the predictions further supports H1. 

Our results show that the drivers we found to be impactful in the first part are useful to predict 

the future highly cited articles. Again, it supports that a combination of variables is the best 

option for prediction of highly cited articles (H3).  
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7. Discussion 

The discussion includes findings from previous literature and from our results, the 

interpretation made by the authors of this thesis, as well as its implications for marketing 

researchers.   

7.1 Drivers of Citations in the Marketing Field 

By investigating the drivers of citations in the marketing field, we found that the number of 

new citations received in the first year after the publication year was the largest driver of 

citations. This supports our first hypothesis and previous research findings from other fields 

publications (Ma et al., 2021; Ruan et al., 2019; Abrishami & Aliakbary, 2019; Abramo et al., 

2019, Stegehuis et al., 2015). However, this variable differs from the others by being time 

dependent. One will have to wait one year after publication before being able to use the number 

of citations to predict citations after another four years. Hence, it will not be possible to use 

the variable on articles that has been published before this citation variable is available. This 

may possibly lead to important and current articles being ignored early after publication. 

Citation count after one year is therefore not a suitable variable to use when the goal is to find 

the most impactful recently published research in a field.  

When running the full regression, we notice that the effect of new citations after one year is 

very high compared to the other drivers, which confirms our hypothesis (H1) that this variable 

has a high influence on article citation after five years in the marketing field. In addition, this 

variable has a considerably higher correlation to total citations after five years compared to 

the other variables. Why is it that the number of citations received the year after publication is 

a strong driver for total citations obtained four years later? One explanation can be found in 

the study field of citation trajectories of successful papers. Baumgartner & Leydesdorff (2013) 

found that citation trajectories of breakthrough papers as well as “excellent” papers were 

expected to show high levels of citations from the beginning. In other words, the papers with 

high impact were found to immediately be recognized as major contributions to the field. Their 

results were found on natural science papers, and our results now supports that this effect is 

true for marketing papers as well.  

Looking at the author related drivers, we find the number of authors of an article, degree 

centrality, betweenness centrality, and closeness centrality to influence article citations. Both 
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betweenness centrality and degree centrality have in previous research been found to be a 

significant driver (Colladon et al., 2020; Yan & Ding, 2009). However, when combining 

paper, journal, and author related drivers in a regression, degree centrality no longer has any 

significant effect on citations after five years. Closeness centrality, betweenness centrality, 

and author count are still showing a significant effect. From our results it appears that having 

a low closeness centrality value, and thus a short path to other authors, can be a driver of article 

impact. This is contradicting with previous research that found low or no significant influence 

on citation counts (Yan & Ding, 2009; Uddin et al., 2013). However, these studies were 

performed on publications from the field of steel structure, and library and information 

science, which may have different network effects compared to the marketing field. The 

research also found that betweenness centrality correlated with citation counts, which is 

supported in our results. The network of an author may therefore have some importance when 

it comes to the impact of their published articles. Both position among other authors, how 

much an author controls the information flow, and having more connectivity can lead to an 

article having more impact.  

When including citations one year after publication, only closeness centrality was shown to 

have a significant effect on citations after five years. In a study by Biscaro and Giupponi 

(2014) they found that degree centrality and betweenness centrality had a positive effect on 

citations in the first two years after publication. This might therefore explain these centrality 

measures are not significant when we include a variable with citation count after one year. 

Since the new citation after one year variable already contain information about the initial 

impact, the non-significance when including the citations after one year variable suggests that 

degree and betweenness centrality does not have any additional significant impact on article 

citations beyond the year after publication. 

Both the author related regression and the regression with a combination of paper, journal, and 

author related drivers supports the hypothesis that value of centrality measures are drivers of 

citations five year ahead (H2). Including only a few variables and comparing the different 

centrality measures, we see that three out of four measures have a significant effect in the 

author related regression. However, including other types of variables in a larger regression 

lessens the importance of the centrality measures. Even though only closeness centrality and 

betweenness centrality have a significant effect in the combination regression, we still think 

the results are solid enough to conclude that co-author centrality measures are drivers in the 

marketing field.  
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To answer the first two hypotheses, we looked at the drivers in separate categories and 

combined in a full regression. These results can be used to give an indication of whether the 

variables will be suitable for prediction purposes as well, and thus important before answering 

our third hypothesis. We found that several variables within each category were significant, 

and thus considered to be drivers of article citation. Paper related variables, as article 

placement in journal and the abstract sentiment, had a positive significant effect on article 

citations after five years, which is supporting the findings of previous research (Stremersch et 

al., 2007; Colladon et al., 2020). AJG ranking was the only journal related variable that we 

included. It has not been used much in research on citation counts. The variable did show to 

be a driver of article impact and could therefore be important when predicting highly cited 

articles after five years. Lastly, as author count, closeness centrality, and betweenness 

centrality had statistically significant effect on citations after five years, we assumed that these 

would also be important for prediction purposes.  

7.2 Prediction of Highly Cited Marketing Articles 

In the predictive part of our thesis we used Logistic Regression, SVM, LightGBM, and TabNet 

to predict highly cited marketing articles after five years. The threshold was set based on the 

95th percentile of five-year citation counts from marketing articles published between 1992 

and 2016. Hence, the target was to predict the 5% most cited articles. Our results showed that 

most of our models had the best performance measure when having a combination  of paper, 

journal, and author related drivers. Some of the models had a few of the measures performing 

better when using a combination of paper and journal related drivers, but these were primarily 

on the recall measure, which is prone to increase when the model is performing poorly. 

Interestingly, Hu et al. (2020) investigated three top marketing journals and found that a 

combination of journal and author related drivers worked well. However, they did not test any 

combinations with paper related drivers. In our thesis, we have included substantially more 

journals. In addition, we included other variables which might be the reason we obtain a better 

performance using a different combination. Overall, as all our methods created models that 

performed substantially better when combining different drivers, this supports our hypothesis 

proposing that a combination of drivers from paper, journal, or author related drivers are better 

than using drivers from only one of the categories (H3). 
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We emphasize that the combination of all three categories and the paper-journal combination 

did have a substantially better result than the combinations journal-author and paper-author. 

The latter two combinations did not have a strong difference in performance compared to the 

models with variables from only one category. This means that not all combinations of 

variables from different categories can give a better result. Although this does not exclusively 

support H3, we still think that the great improvement in performance in two of the models is 

enough to strongly support our hypothesis. In addition, the results points to the importance of 

using the right combination of drivers. None of the models with only one category of variables 

came close to the results in the two combinations which gave the best results.  

To utilize the impact of the drivers that we found in the first part of the thesis, we made two 

additional prediction models; one that used only citations after one year as a variable, and one 

that added citations after one year to the combined paper, journal, author model. The results 

showed that all our four methods are considerably better at predicting the top 5% most highly 

cited marketing articles after five years when including this variable. The results indicate that 

there is a clear advantage of waiting one year to include citations after one year. The most 

prominent practical benefit is the increase is in the precision of correct predictions of top 5% 

articles, which changes from less than 0.3 to over 0.6. Using only citations after one year as a 

variable works well for all models except SVM, but we argue that the poor performance from 

SVM is due to the method not being designed for only one variable (Nalepa & Kawulok, 

2018).  Including citations after one year in a full model give great performance using all 

methods. The results support H1, as the predictions get considerably better when including the 

variable. This is a clear indication that the citations after one year highly influence citations 

after five years. 

Both the TabNet and the Logistic Regression models have best prediction results when using 

variables from both paper, journal, and author related drivers. Hence, we recommend using 

one of these models if the goal is to predict highly cited articles and using variables from all 

categories. Logistic regression is the only one of our four models that have been previously 

used for prediction of citations in the marketing field (Hu et al., 2020). Our findings indicate 

that it is a decent model to use to predict highly cited articles. TabNet is the newest model that 

we use in our tests, and it has not been tested on citation prediction before. However, it is made 

to perform well on tabular data, and have been presenting good results when predicting 

rainfall, among other things (Xu et al., 2020). We therefore conclude that TabNet is a suitable 

model for predicting highly cited articles in the marketing field. 
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7.3 Implications for Marketing Researchers 

Our results can primarily impact two groups; the readers and the authors of marketing articles. 

For the readers of marketing papers, the predictive results provide two key takeaways. First, 

if the paper has a citation count from the first full year after publication, then simply looking 

at the number of new citations the article got the year after publication is highly effective for 

identifying articles which will be impactful five years after publication. We would argue that 

there are diminishing returns on using additional data to identify impactful articles if enough 

time has passed to use the new citation after one year variable. Second, if the article is too 

recent for this to be available, using a machine learning model can help identifying impactful 

articles after five years with using a combination of paper and journal related variables. Which 

model to use would depend on the types of variables available, and preferred area of 

performance. If the reader has a strong knowledge of marketing papers, then using a model 

with higher recall performance such as Logistic Regression or TabNet may be preferred as the 

reader would be more able to filter out the false positives from the suggestions. On the opposite 

side, if the reader is less known with marketing papers, using a model with higher precision 

such as LightGBM may be preferred, as the reader would be less required to filter out the false 

positive suggestions.  

For the authors of marketing articles, we have four key takeaways with regards to impact on 

marketing academia. First, getting citations in the year after the publication year yields a 

significant return on later impact, where each additional citation is expected to result in eleven 

additional citations five years after publication. Second, having a short path to other marketing 

academics and being the connection between other authors, is beneficial for impacting the 

field of academic marketing research. Third, which journal the article is published in matters. 

Isolated from other variables, the higher AJG ranked the journal an article is published in, the 

higher impact is expected. We argue that this is especially important for receiving early 

citations. Our results shows that all increase in journal ranking is positive, however the biggest 

increase in expected citations is achieved by publishing in an AJG 4 ranked journal. One final 

takeaway is that making the article open-access is expected to lead to more impact, as the 

results found that it had a positive effect on citations after five years. Having open access to 

an article makes it easier for people to access it. Most people will not have access to every 

journal, meaning they will miss out on some potentially important articles. As a result, 

publishing an article with open access can lead to more citations.  
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8. Conclusion 

This thesis has studied the important drivers of article impact in the marketing field and tested 

the ability of the drivers to predict highly cited articles after five years. To investigate what 

impacts article citation we have used data from 75 different marketing journals across a time-

period of 30 years. Specifically, the aim of the thesis was to find relevant drivers of impact in 

articles published within marketing journals. Further, we wanted to use these drivers to predict 

highly cited articles five years after publication.  

To do this, we have done an extensive literature review on the drivers of citations and 

prediction of article citations. Based on the literature review, we found gaps in the research 

which were the foundation for our hypotheses. The experiments on our three hypotheses were 

performed using both traditional and innovative machine learning methods to confirm or reject 

our hypotheses. To the best of our knowledge, this is the first research of its kind on articles 

from all English-written journals in the ABS journal ranking, as previous research only has 

focused on articles from a few top marketing journals. This research will therefore be relevant 

to a broader research audience within marketing academia.  

Our research found several statistically significant drivers of impact on marketing articles. 

New citations one year after publication was the strongest driver of impact in academic articles 

within the marketing field. For paper related drivers, placement of article in journal, sentiment 

of abstract, citations in article, number of keywords, and open access had a statistically 

significant impact on citations. Furthermore, we found that the journal related variable that 

takes journal ranking based on expert assessment (AJG2021) is a significant driver of article 

citations. Regarding our author related variables, we find author count, closeness centrality 

and betweenness centrality to be significant drivers.  

Our research found promising results regarding the predictive ability of our drivers. We found 

that combining paper, author, and journal related drivers resulted in promising predictive 

results. After comparing subsets with different groups of variables, we found only a marginal 

contribution by adding author variables to a model with paper and journal variables. However, 

combining variables from the different categories still performed considerably better 

compared to using variables from only one category. Furthermore, having one year to gather 

information leads to a significantly better model. In fact, using only citations after one year on 

any model other than SVM leads to a better model than only using paper, journal, or author 
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combining variables from the different categories still performed considerably better

compared to using variables from only one category. Furthermore, having one year to gather

information leads to a significantly better model. In fact, using only citations after one year on

any model other than SVM leads to a better model than only using paper, journal, or author



 58 

related drivers combined. Combining all the variables gives an even better performance. The 

performance from the best model makes it possible for readers who want to stay updated on 

the marketing field to find highly impactful articles to read, without guessing among the 

thousands of articles published every year. 

This thesis has used both acknowledged methods and methods that have never been tested on 

citation count predictions before. Although Light GBM and TabNet have not been tested on 

prediction of article citation previously, they show that they can perform better than other 

traditional machine learning methods if data about citation counts after one year is not yet 

available. The results are a contribution to the research of articles in the marketing field, as we 

have analyzed a large dataset with a broad range of marketing journals. Many of our variables 

has not been tested as drivers of impact in the marketing field earlier, but our results support 

the use of found drivers for future prediction purposes. Furthermore, this research has tested 

methods not previously used in prediction of highly cited articles with promising results.   

8.1 Limitations and Future Research 

This thesis has limitations that should be considered in future work. The primary limitation is 

that we have only considered documents of the type “article”. Due to computational 

restrictions, we therefore excluded conference papers and other forms which still may contain 

new research. Our results will therefore not fully apply to conference papers, reviews, books 

and book chapters, editorials, letters, and other document types as the type of document has 

been shown to be affecting citations (Fu and Aliferis, 2010; Stegehuis et al., 2015). In addition, 

we only used one data source, Scopus, for getting article data. This means that our results 

primarily apply to Scopus data. If Scopus is missing data or have faulty data about an article, 

our data will be less accurate than if we cross checked the data from other sources. Future 

research can therefore cross check article data with other sources to ensure even better data 

accuracy and test the hypotheses on other document types.  

Another limitation of our thesis is that we have only tested one journal metric as a journal 

related variable. This means there are journal related drivers and aspects which we have not 

considered, which may further improve the predictive ability of journal related variables in 

H3. Hence, in future research it would be useful to compare the predictive power of AJG2021 

with other journal metrics such as Journal Citation Reports (JCR), SCImago Journal Rank 
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(SJR), the Source Normalized Impact per Paper (SNIP), Citescore, as well as combinations of 

these.    

Another limitation is that the observations from early 1990s may not be as correct as the 

observations from after 2000. This may be due to the co-authorship network being calculated 

from 1992. For authors publishing in the 90s, we exclude their potential collaborations prior 

to 1992. The centrality measures might therefore not be representative for authors that had 

their publishing peak before 1992. Future research should therefore correct for this.  

Lastly, given the importance of early citations in marketing articles, future research should 

study the drivers of early citations in marketing to improve predictions right after publication. 

Our results, in addition to previous research, points to journal and author related variables 

being more important for citations early after publication. However, other variables may be 

even more important, and could be an interesting subject to further explore. 
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Appendix 

A1 R Libraries 

Tidyverse - https://www.tidyverse.org/ 

Tidytext - https://cran.r-project.org/web/packages/tidytext/index.html 

Sentimentr - https://cran.r-project.org/web/packages/sentimentr/sentimentr.pdf 

Bibliometrix - https://cran.r-project.org/web/packages/bibliometrix/index.html 

Rscopus - https://cran.r-project.org/web/packages/rscopus/index.html 

Data.table - https://cran.r-project.org/web/packages/data.table/data.table.pdf 

Skimr - https://cran.r-project.org/web/packages/skimr/index.html 

Corrplot - https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html 

A2 Python Libraries 

Pytorch – https://pytorch.org/ 

ScikitLearn – https://scikit-learn.org/stable/ 

Optuna - https://optuna.org/ 

Pandas - https://pandas.pydata.org/ 

Numpy - https://numpy.org/ 
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A3 Overview of Drivers of Citations 

Table A1: Overview of our literature review. A plus sign signals that it is a driver in the 
specified study and field, while a minus sign signals that it is not proven to be a driver in the 
listed study. 

Group Driver Study Field 
Paper  + Early-stage citation count Ma et al. (2021),  

Ruan et al. (2019),  
Abrishami & Aliakbary 
(2019),  
Abramo et al. (2019),  
Stegehuis et al. (2015) 

Science and 
Technology, 
Economics, 
Library-,  
Law-, Political-, 
Social-, Science  

 + Abstract sentiment 
+ Lexical diversity 

Colladon et al. (2020) Chemical 
Engineering 

 - Keyword popularity Hu et al. (2020) Marketing 
 + Open access 

+ Number of references 
+ Reference variety 
+ Reference prestige 
+ Editorial Journal Awards 
+ Review-Times 
+ Peer-Reviewed 

Tahamtan et al. (2016) 
 

General 

 + Language Complexity  Warren et al. (2021) Marketing 
   Article length  - Royle et al. (2013),  

+ Bornmann et al. (2014) 
Medicine, 
General 

 + Article order 
- Title length 

Stremersch et al. (2007) Marketing 

 + Abstract length Van Wesel et al. (2013) Applied Physics 
 + Novel co-cited reference connections Chen et al. (2010) Information- 

Science 
 + Number of keywords Chakraborty et al. (2014), 

So et al. (2014), 
Rostami et al. (2013) 

Science and 
Technology, 
Computer Science 

Journal Journal Impact Factor 
 

+ Hu et al. (2020),  
+ Tahamatan et al. (2016),  
+ Garner et al. (2014),  
- Willis et al. (2011),  
- Leimu & Koricheva (2005) 

Marketing, General,  
Social-, Natural 
science,  
Urology,  
Ecology 

 + Journal Impact 
+ Journal Ranking 
+ Journal Prestige 
+ Journal Topic Broadness 

Callaham (2002) 
Sohrabi & Iraj (2016) 
Garner et al. (2014) 
Bornmann & Williams (2013) 

Medicine 
Education 
HSD 
Medical-, Natural-, 
Engineering 
Science 

Author + Previous number of citations 
+ Author productivity 

Tahamtan et al. (2016) General 

 + Number of Authors Tahamtan et al. (2016), 
Stremersch et al. (2007) 

General, 
Marketing 

 + Author social network Chakraborty et al. (2014) Science and 
Technology 

 + Number of organizations represented Puuska et al. (2013) General (Finland) 
 
 

+ Co-Author closeness 
+ Co-Author betweenness 
+ Co-Author degree 

Colladon et al. (2020) 
 

Chemical 
Engineering 
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Table A l : Overview of our literature review. A plus sign signals that it is a driver in the
specified study and field, while a minus sign signals that it is not proven to be a driver in the
listed stud .

Group Driver Study Field
Paper + Early-stage citation count Ma et al. (2021), Science and

Ruan et al. (2019), Technology,
Abrishami & Aliakbary Economics,
(2019), Library-,
Abramo et al. (2019), Law-, Political-,
Stegehuis et al. (2015) Social-, Science

+ Abstract sentiment Colladon et al. (2020) Chemical
+ Lexical diversity Engineering
- Keyword popularity Hu et al. (2020) Marketing
+ Open access Tahamtan et al. (2016) General
+ Number of references
+ Reference variety
+ Reference prestige
+ Editorial Journal Awards
+ Review-Times
+ Peer-Reviewed
+ Language Complexity Warren et al. (2021) Marketing

Article length - Royle et al. (2013), Medicine,
+ Bornmann et al. (2014) General

+ Article order Stremersch et al. (2007) Marketing
- Title length
+ Abstract length Van Wesel et al. (2013) Applied Physics
+ Novel co-cited reference connections Chen et al. (2010) Information-

Science
+ Number of keywords Chakraborty et al. (2014), Science and

So et al. (2014), Technology,
Rostami et al. (2013) Computer Science

Journal Journal Impact Factor + Hu et al. (2020), Marketing, General,
+ Tahamatan et al. (2016), Social-, Natural
+ Gamer et al. (2014), science,
- Willis et al. (2011), Urology,
- Leimu & Koricheva (2005) Ecology

+ Journal Impact Callaham (2002) Medicine
+ Journal Ranking Sohrabi & Iraj (2016) Education
+ Journal Prestige Gamer et al. (2014) HSD
+ Journal Topic Broadness Bornmann & Williams (2013) Medical-, Natural-,

Engineering
Science

Author + Previous number of citations Tahamtan et al. (2016) General
+ Author productivity
+ Number of Authors Tahamtan et al. (2016), General,

Stremersch et al. (2007) Marketing
+ Author social network Chakraborty et al. (2014) Science and

Technology
+ Number of organizations represented Puuska et al. (2013) General (Finland)
+ Co-Author closeness Colladon et al. (2020) Chemical
+ Co-Author betweenness Engineering
+ Co-Author degree
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A4 Details about LightGBM 

Figure A1: Illustration of splitting a feature space. In this case the feature space is two-
dimensional, and is made up of two variables, years, and hits. The green line is the splits 
creating the sections which will get the same predictions. Taken from James et al. (2013). 

 

Ke et al. (2017) explains how the LightGBM model is created. Primarily it uses decision trees 

to learn a function from the input space 𝑋𝑋𝑠𝑠 to the gradient space 𝐺𝐺. Imagine a training set with 

𝑢𝑢 instances {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛}, where each 𝑥𝑥𝑖𝑖 is a vector with dimension 𝑚𝑚 in space 𝑋𝑋𝑠𝑠. The negative 

gradients of the loss function are denoted as {𝑟𝑟1,… , 𝑟𝑟𝑛𝑛} in each iteration. The information 

gain is measured by the variance after splitting, as defined below. 

𝑉𝑉𝑖𝑖|𝑂𝑂(𝑖𝑖) =
1
𝑢𝑢𝑂𝑂
(
(∑{𝑥𝑥𝑖𝑖∈𝑂𝑂:𝑥𝑥𝑖𝑖𝑖𝑖<𝑠𝑠}𝑟𝑟𝑖𝑖)

2

𝑢𝑢𝑠𝑠|𝑂𝑂
𝑖𝑖 (𝑖𝑖)

+
(∑{𝑥𝑥𝑖𝑖∈𝑂𝑂:𝑥𝑥𝑖𝑖𝑖𝑖>𝑠𝑠}𝑟𝑟𝑖𝑖)

2

𝑢𝑢𝑎𝑎|𝑂𝑂
𝑖𝑖 (𝑖𝑖)

), 

𝐵𝐵ℎ𝑖𝑖𝑇𝑇𝑖𝑖 𝑢𝑢𝑂𝑂 = ∑𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂], 𝑢𝑢𝑠𝑠|𝑂𝑂
𝑖𝑖 (𝑖𝑖) = ∑𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂 ∶ 𝑥𝑥𝑖𝑖𝑖𝑖 < 𝑖𝑖] 𝑢𝑢𝑢𝑢𝑖𝑖 𝑢𝑢𝑎𝑎|𝑂𝑂

𝑖𝑖 (𝑖𝑖) = ∑𝐼𝐼[𝑥𝑥𝑖𝑖 ∈ 𝑂𝑂: 𝑥𝑥𝑖𝑖𝑖𝑖 > 𝑖𝑖]. 

O is the training dataset on a fixed node of the decision tree. For feature 𝑗𝑗, the decision tree 

algorithm selects 𝑖𝑖𝑖𝑖∗ = 𝑢𝑢𝑇𝑇𝑟𝑟𝑚𝑚𝑢𝑢𝑥𝑥𝑠𝑠𝑉𝑉𝑖𝑖(𝑖𝑖) and calculated the largest 𝑉𝑉𝑖𝑖(𝑖𝑖𝑖𝑖∗). The data is then split 

according feature 𝑗𝑗∗ at point 𝑖𝑖𝑖𝑖∗ into the left and right child nodes.  

In the GOSS method, the training instances are ranked according to their absolute values of 

their gradients in a descending order. Then, the top 𝑢𝑢 × 100% instances with the larger 

gradients are kept in an instance subset 𝐴𝐴. For the remaining set 𝐴𝐴𝑠𝑠 consisting of 

(1 − 𝑢𝑢) × 100% instances with smaller gradients, a subset 𝐵𝐵 is randomly sampled with size 
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Ke et al. (2017) explains how the LightGBM model is created. Primarily it uses decision trees

to learn a function from the input space X5 to the gradient space G. Imagine a training set with

n instances {a4, ...,a4}, where each x is a vector with dimension s in space X". The negative

gradients of the loss function are denoted as {gi, ... ,Bn} in each iteration. The information

gain is measured by the variance after splitting, as defined below.

1 ((L{x·EO:x·<d}Bi)2 (L{x·EO:x·•>d}Bi)2)V. ( d ) =- l l] + l l]j\0 7 7

no n , @ ) nk (@)

0 is the training dataset on a fixed node of the decision tree. For feature j, the decision tree

algorithm selects d] = argmaxV, (d) and calculated the largest Vy(d,). The data is then split

according feature j at point d into the left and right child nodes.

In the GOSS method, the training instances are ranked according to their absolute values of

their gradients in a descending order. Then, the top a x 100% instances with the larger

gradients are kept in an instance subset A. For the remaining set Ac consisting of

( 1 - a) x 100% instances with smaller gradients, a subset B is randomly sampled with size
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𝑎𝑎 × |𝐴𝐴𝑠𝑠|. Lastly, instances are split according to the estimated variance gain 𝑉𝑉�̃�𝑗(𝑖𝑖) over the 

subset 𝐴𝐴 ∪ 𝐵𝐵, as shown below: 

�̃�𝑉𝑖𝑖(𝑖𝑖) =
1
𝑢𝑢(
(∑𝑥𝑥𝑖𝑖∈𝐴𝐴𝑙𝑙𝑟𝑟𝑖𝑖 +

1 − 𝑢𝑢
𝑎𝑎 ∑𝑥𝑥𝑖𝑖∈𝐴𝐴𝑙𝑙𝑟𝑟𝑖𝑖)

2

𝑢𝑢𝑠𝑠
𝑖𝑖(𝑖𝑖)

+
(∑𝑥𝑥𝑖𝑖∈𝐴𝐴𝑤𝑤𝑟𝑟𝑖𝑖 +

1 − 𝑢𝑢
𝑎𝑎 ∑𝑥𝑥𝑖𝑖∈𝐴𝐴𝑤𝑤𝑟𝑟𝑖𝑖)

2

𝑢𝑢𝑎𝑎
𝑖𝑖(𝑖𝑖)

), 

Where 𝐴𝐴𝑠𝑠 = {𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴: 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑖𝑖}, 𝐴𝐴𝑎𝑎 = {𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴: 𝑥𝑥𝑖𝑖𝑖𝑖 > 𝑖𝑖}, 𝐵𝐵𝑠𝑠 = {𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵: 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑖𝑖}, 𝐵𝐵𝑎𝑎 = {𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵: 

𝑥𝑥𝑖𝑖𝑖𝑖 > 𝑖𝑖} and the coefficient 1−𝑠𝑠𝑛𝑛  is used to normalize the sum of gradients over 𝐵𝐵 back to the 

size of 𝐴𝐴𝑠𝑠. 

EFB can be done by first constructing a graph with weighted edges. Then the features are 

sorted by their degrees in the graph in a descending order. Lastly, each feature in the ordered 

list is checked and either assigned to an existing bundle with a small conflict, or a new bundle 

is created. The algorithm can bundle many exclusive features with more dense features, and 

thus avoiding unnecessary computation for zero feature values. The basic histogram-based 

algorithm can be optimized towards ignoring the zero feature values by the use of a table for 

each histogram building for each feature to record the data with nonzero values. 
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b x IAcl. Lastly, instances are split according to the estimated variance gain , ( d ) over the

subset A U B, as shown below:

Where A = {a e A : x ] < d } , A , = {e A : x j > d } , B , = {xeB:a<d} ,B ,= { e B :

x i j > d} and the coefficient 1 : a is used to normalize the sum of gradients over B back to the

size of 4° .

EFB can be done by first constructing a graph with weighted edges. Then the features are

sorted by their degrees in the graph in a descending order. Lastly, each feature in the ordered

list is checked and either assigned to an existing bundle with a small conflict, or a new bundle

is created. The algorithm can bundle many exclusive features with more dense features, and

thus avoiding unnecessary computation for zero feature values. The basic histogram-based

algorithm can be optimized towards ignoring the zero feature values by the use of a table for

each histogram building for each feature to record the data with nonzero values.
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A5 Scopus Query 

ISSN({1547-7185}) OR ISSN({1532-7663}) OR ISSN({1537-5277}) OR ISSN({1547-7193}) OR 

ISSN({1552-7824}) OR ISSN({1526-548X}) OR ISSN({1873-8001}) OR ISSN({1873-3271}) OR 

ISSN({1758-7123}) OR ISSN({1873-2062}) OR ISSN({1758-6763}) OR ISSN({1557-7805}) OR 

ISSN({1740-1909}) OR ISSN({1520-6653}) OR ISSN({1547-7215}) OR ISSN({1547-7207}) OR 

ISSN({1573-059X}) OR ISSN({1741-301X}) OR ISSN({1520-6793}) OR ISSN({1573-711X}) OR 

ISSN({1477-223X}) OR ISSN({1422-8890}) OR ISSN({1759-3948}) OR ISSN({1470-6431}) OR 

ISSN({2515-2173}) OR ISSN({1758-6690}) OR ISSN({1479-1803}) OR ISSN({2052-1189}) OR 

ISSN({1547-0628}) OR ISSN({1745-6606}) OR ISSN({1479-1838}) OR ISSN({1552-6534}) OR 

ISSN({1472-1376}) OR ISSN({1069-6679}) OR ISSN({1557-7813}) OR ISSN({1873-1384}) OR 

ISSN({0887-6045}) OR ISSN({1466-4488}) OR ISSN({1352-2752}) OR ISSN({1758-4248}) OR 

ISSN({1441-3582}) OR ISSN({1356-3289}) OR ISSN({1479-1889}) OR ISSN({1545-0864}) OR 

ISSN({1758-5937}) OR ISSN({1741-8100}) OR ISSN({1479-103X}) OR ISSN({1758-4248}) OR 

ISSN({1441-3582}) OR ISSN({1356-3289}) OR ISSN({1479-1889}) OR ISSN({1545-0864}) OR 

ISSN({1758-5937}) OR ISSN({1741-8100}) OR ISSN({1479-103X}) OR ISSN({1741-8798}) OR 

ISSN({1466-4402}) OR ISSN({1865-1992}) OR ISSN({1363-254X}) OR ISSN({0736-3761}) OR 

ISSN({2164-7313}) OR ISSN({1758-7433}) OR ISSN({1479-1846}) OR ISSN({2325-4483}) OR 

ISSN({1528-6975}) OR ISSN({1525-2019}) OR ISSN({2050-3318}) OR ISSN({1540-7039}) OR 

ISSN({1466-4445}) OR ISSN({1540-7144}) OR ISSN({1540-6997}) OR ISSN({2054-1643}) OR 

ISSN({1533-2675}) OR ISSN({2040-7130}) OR ISSN({2042-6771}) OR ISSN({1758-8049}) OR 

ISSN({1546-5616}) OR ISSN({1533-2977}) OR ISSN({1539-4093}) OR ISSN({1758-7212}) ISSN({1057-

7408}) OR ISSN({0093-5301})  OR ISSN ({0167-8116}) OR ISSN({0022-4359}) OR ISSN({0309-0566}) OR 

ISSN({0019-8501}) OR ISSN({0265-1335}) OR ISSN({0091-3367}) OR ISSN({0265-2323}) OR 

ISSN({1361-2026}) OR ISSN({1061-0421}) OR ISSN({2040-7122}) OR ISSN({0263-4503}) OR 

ISSN({0959-0552}) OR ISSN({0885-8624}) OR ISSN({0969-6989}) OR ISSN({00222437}) OR 

ISSN({1069031X}) OR ISSN({08858624}) OR ISSN({00989258}) OR ISSN({14707853}) OR 

ISSN({18698182}) OR ISSN({08841241}) OR ISSN({10495142}) OR ISSN({18698182})  OR 

ISSN({13527266}) OR ISSN({14747979}) OR ISSN({20515707}) OR ISSN({20503318})AND PUBYEAR 

AFT 1991 AND ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  

AND PUBYEAR AFT 1991 AND ( LIMIT-TO ( DOCTYPE ,  "ar" ) )  AND  ( LIMIT-TO ( LANGUAGE ,  

"English" ) )  
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ISSN({1547-7185}) OR ISSN({1532-7663}) OR ISSN({1537-5277}) OR ISSN({1547-7193}) OR

ISSN({1552-7824}) OR ISSN({1526-548X}) OR ISSN({1873-8001}) OR ISSN({1873-3271}) OR

ISSN({1758-7123}) OR ISSN({1873-2062}) OR ISSN({1758-6763}) OR ISSN({1557-7805}) OR

ISSN({1740-1909}) OR ISSN({1520-6653}) OR ISSN({1547-7215}) OR ISSN({1547-7207}) OR

ISSN({1573-059X}) OR ISSN({l 741-301X}) OR ISSN({1520-6793}) OR ISSN({1573-711X}) OR

ISSN({1477-223X}) OR ISSN({1422-8890}) OR ISSN({1759-3948}) OR ISSN({1470-6431}) OR

ISSN({2515-2173}) OR ISSN({1758-6690}) OR ISSN({1479-1803}) OR ISSN({2052-1189}) OR

ISSN({1547-0628}) OR ISSN({1745-6606}) OR ISSN({1479-1838}) OR ISSN({1552-6534}) OR

ISSN({1472-1376}) OR ISSN({1069-6679}) OR ISSN({1557-7813}) OR ISSN({1873-1384}) OR

ISSN({0887-6045}) OR ISSN({1466-4488}) OR ISSN({1352-2752}) OR ISSN({1758-4248}) OR

ISSN({1441-3582}) OR ISSN({1356-3289}) OR ISSN({1479-1889}) OR ISSN({1545-0864}) OR

ISSN({1758-5937}) OR ISSN({1741-8100}) OR ISSN({1479-103X}) OR ISSN({1758-4248}) OR

ISSN({1441-3582}) OR ISSN({1356-3289}) OR ISSN({1479-1889}) OR ISSN({1545-0864}) OR

ISSN({1758-5937}) OR ISSN({1741-8100}) OR ISSN({1479-103X}) OR ISSN({1741-8798}) OR

ISSN({1466-4402}) OR ISSN({1865-1992}) OR ISSN({1363-254X}) OR ISSN({0736-3761}) OR

ISSN({2164-7313}) OR ISSN({1758-7433}) OR ISSN({1479-1846}) OR ISSN({2325-4483}) OR

ISSN({1528-6975}) OR ISSN({1525-2019}) OR ISSN({2050-3318}) OR ISSN({1540-7039}) OR

ISSN({1466-4445}) OR ISSN({1540-7144}) OR ISSN({1540-6997}) OR ISSN({2054-1643}) OR

ISSN({1533-2675}) OR ISSN({2040-7130}) OR ISSN({2042-6771}) OR ISSN({1758-8049}) OR

ISSN({l546-5616}) OR ISSN({l533-2977}) OR ISSN({l539-4093}) OR ISSN({l758-7212}) ISSN({l057-

7408}) OR ISSN({0093-5301}) OR ISSN ({0167-8116}) OR ISSN({0022-4359}) OR ISSN({0309-0566}) OR

ISSN({0019-8501}) OR ISSN({0265-1335}) OR ISSN({0091-3367}) OR ISSN({0265-2323}) OR

ISSN({1361-2026}) OR ISSN({1061-0421}) OR ISSN({2040-7122}) OR ISSN({0263-4503}) OR

ISSN({0959-0552}) OR ISSN({0885-8624}) OR ISSN({0969-6989}) OR ISSN({00222437}) OR

ISSN({106903 lX}) OR ISSN({08858624}) OR ISSN({00989258}) OR ISSN({14707853}) OR

ISSN({18698182}) OR ISSN({08841241}) OR ISSN({10495142}) OR ISSN({18698182}) OR

ISSN({l3527266}) OR ISSN({l4747979}) OR ISSN({20515707}) OR ISSN({20503318})AND PUBYEAR

AFT 1991 AND ( LIMIT-TO ( DOCTYPE, "ar")) AND ( LIMIT-TO (LANGUAGE, "English"))

AND PUBYEAR AFT 1991 AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( LANGUAGE ,

"English" ) )
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A6 Primary Scopus Data 

Table  A2: The article and metadata dataset as imported from Bibliometrix 

Variable name Description Value 
AU The authors who 

wrote the article 
SURNAME INITIALS; SURNAME INITIALS 
Datatype: Character 

DE The author made 
keywords about the 
article 

KEYWORD; KEYWORD 
Datatype: Character 

C1 Author address ADDRESS; ADDRESS 
Datatype: Character 

CR Cited references in 
article 

REFERENCE; REFERENCE 
Datatype: Character 

JI ISO Source 
Abbreviation 

ISO; ISO 
Datatype: Character 

AB The abstract of the 
article 

TEXT INPUT 
Datatype: Character 

RP Reprint address REPRINT; REPRINT 
Datatype: Character 

DT Document type ARTICLE 
Datatype: Character 

DI The DOI of the 
article 

10.1287/mksc.2021.123 
Datatype: Character 

FU Funding Agency and 
Grant Number 

NEW YORK UNIVERSITY 
Datatype: Character 

SN ISSN Serial number 
of the journal 

00222429 
Datatype: Character 

SO Journal name JOURNAL OF MARKETING 
Datatype: Character 

LA The written language 
of the article 

ENGLISH 
Datatype: Character 

TC Total number of 
citations 

115 
Datatype: Numeric  

PN The number of pages 
the article has 

5 
Datatype: Numeric  

PP The page numbers 
where the article is in 
the journal 

48-66 
Datatype: Character 

PU The name of the 
publisher 

SPRINGER 
Datatype: Character 

DB Database retrieved 
from 

SCOPUS 
Datatype: Character 

TI Title of the article TITLE 
Datatype: Character 

url SCOPUS URL to the 
article 

https://www.scopus.com/inward/record.uri?eid=2-s2.0-8510 
Datatype: Character 

VL Journal volume 86 
Datatype: Numeric 

PY The publication year 
of the article 

2022 
Datatype: Numeric 

FX Funding text FUNDING TEXT 
Datatype: Character 

AU_UN The author’s 
affiliations 

UNIVERSITY; UNIVERSITY 
Datatype: Character 

AU1_UN Corresponding 
author’s affiliation 

AFFILIATION; AFFILIATION 
Datatype: Character 

SR_FULL Short full reference TSAI YL, 2021, MARK SCI 
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article Datatype: Character

VL Journal volume 86
Datatype: Numeric

py The publication year 2022
of the article Datatype: Numeric

FX Funding text FUNDING TEXT
Datatype: Character

AU UN The author's UNIVERSITY; UNIVERSITY
affiliations Datatype: Character

AUl UN Corresponding AFFILIATION; AFFILIATION
author's affiliation Datatype: Character

SR FULL Short full reference TSAI YL, 2021, MARK SCI

https://www.scopus.com/inward/record.uri?eid=2-s2.0-8510


 77 

Datatype: Character 
SR Short reference TSAI YL, 2021, MARK SCI 

Datatype: Character 
 

 

Table  A3: Subset of the yealy citation dataset from 2022-2021 

Variable name Description Value 

doi DOI of the article 10.1287/mksc.2021.123 
Datatype: Character 

title Title of the article Title 
Datatype: Character 

X2022 New citations in 2022 7 
Datatype: Numeric 

X2021 New citations in 2021 5 
Datatype: Numeric 

total Total citations at the retrieved 

date 

12 
Datatype: Numeric 

 

 

Table  A4: The dataset used to get the publication month of an article 

Variable name Description Value 
prism.doi  The DOI of an article 10.1177/02761467211062504 

Datatype: Character 
prism.coverDate Publication date of an article in 

the journal 
2022-03-01 
Datatype: Unknown 

openaccess Whether an article is available for 
free 

1 or 0 
Datatype: Numeric 

 

A7 ABS AJG Data 

Table  A5: The ABS AJG dataset 

Variable name Description Value 

ISSN ISSN of the journal 1526-548X 

Datatype: Character 

Field The academic field of the journal MKT 

Datatype: Character 

Journal Title The title of the journal MARKETING SCIENCE 

Datatype: Character 

Publisher Name The publisher of the journal Emerald 

Datatype: Character 
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Datatype: Character
SR Short reference TSAI YL, 2021, MARK SCI

Datatype: Character

Table A3: Subset of the yealy citation dataset from 2022-2021

Variable name Description Value

doi DOI of the article 10.1287/mksc.2021.123
Datatype: Character

title Title of the article Title
Datatype: Character

X2022 New citations in 2022 7
Datatype: Numeric

X2021 New citations in 2021 5
Datatype: Numeric

total Total citations at the retrieved 12

date Datatype: Numeric

Table A4: The dataset used to get the publication month of an article

Variable name Description Value
prism.doi The DOI of an article 10.1177/02761467211062504

Datatype: Character
prism.coverDate Publication date of an article in

the journal
2022-03-01
Datatype: Unknown

openaccess Whether an article is available for
free

l or 0
Datatype: Numeric

A7 ABS AJG Data

Table A5: The ABS AJG dataset

Variable name Description Value

ISSN ISSN of the journal 1526-548X

Datatype: Character

Field The academic field of the journal MKT

Datatype: Character

Journal Title The title of the journal MARKETING SCIENCE

Datatype: Character

Publisher Name The publisher of the journal Emerald

Datatype: Character
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AJG 2021 The AJG 2021 score 4 

Datatype: Numeric 

AJG 2018 The AJG 2018 score 4 

Datatype: Numeric 

AJG 2015  The AJG 2015 score 4 

Datatype: Numeric 

ABS 2010 The ABS 2010 score 4 

Datatype: Numeric 

Journal Citescore The journal citescore 11 

Datatype: Numeric 

SNIP rank The SNIP rank 9 

Datatype: Numeric 

SJR rank The SJR rank 3 

Datatype: Numeric 

Citescore rank The Citescore rank 9 

Datatype: Numeric 

 

A8 Datset Variable Overview 

Table  A6: Variable overview in dataset 

Variable name Description Value 

DI DOI of the article 10.1287/mksc.2021.123 
Datatype: Character 

TI Title of the article Title 
Datatype: Character 

PY Publication year 1992 
Datatype: Integer 

pub_month The month the article was 
published 

5 
Datatype: Integer 

total_citations_after_5y Total citations five years after 
the publication year 

56 
Datatype: Integer 

new_citations_after_1y New citations obtained the year 
after the publication year 

6 
Datatype: Integer 

AJG 2021 The AJG 2021 score 4 
Datatype: Integer 

Author_count The number of authors 
contributing to the article 

2 
Datatype: Integer 

first_page The starting page of the article in 
the journal 

16 
Datatype: Integer 

PAGES The articles’ number of pages  6 
Datatype: Integer 

ave_sentiment_standardized Standardized sentiment of the 
abstract of the article 

-0,16 
Datatype: Float 
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AJG 2021 The AJG 2021 score 4

Datatype: Numeric

AJG 2018 The AJG 2018 score 4

Datatype: Numeric

AJG 2015 The AJG 2015 score 4

Datatype: Numeric

ABS 2010 The ABS 2010 score 4

Datatype: Numeric

Journal Citescore The journal citescore 11

Datatype: Numeric

SNIP rank The SNIP rank 9

Datatype: Numeric

SJRrank The SJRrank 3

Datatype: Numeric

Citescore rank The Citescore rank 9

Datatype: Numeric

AB Datset Variable Overview

Table A6: Variable overview in dataset

Variable name Description Value

DI DOI of the article 10.1287/mksc.2021.123
Datatype: Character

TI Title of the article Title
Datatype: Character

py Publication year 1992
Datatype: Integer

pub_month The month the article was 5
published Datatype: Integer

total_citations_after_Sy Total citations five years after 56
the publication year Datatype: Integer

new_citations_after_ ly New citations obtained the year 6
after the publication year Datatype: Integer

AJG 2021 The AJG 2021 score 4
Datatype: Integer

Author count The number of authors 2
contributing to the article Datatype: Integer

first_page The starting page of the article in 16
the journal Datatype: Integer

PAGES The articles' number of pages 6
Datatype: Integer

ave sentiment standardized Standardized sentiment of the -0,16- -
abstract of the article Datatype: Float
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Lexical_diversity_normalized The lexical diversity of the 
articles’ abstract 

0,04 
Datatype: Float 

citations_in_article The number of citations in the 
article 

25 
Datatype: Integer 

Keyword_number The number of author keywords 5 
Datatype: Integer 

AB_words The number of abstract words 200 
Datatype: Integer 

openaccess Whether the article is open-
access or not 

1 
Datatype: Boolean 

normalized_AU_betweenness The highest betweenness 
centrality between all authors of 
the article 

0.4 
Datatype: Float 

normalized_AU_degree The highest degree centrality 
between all authors of the article 

0.3 
Datatype: Float 

normalized_AU_closeness The lowest closeness centrality 
between all authors of the article 

0.7 
Datatype: Float 

normalized_AU_eigenvector The highest eigenvector 
centrality between all authors of 
the article 

0.8 
Datatype: Float 

Contains_scopus_abstract 
 

Whether the article has an 
abstract on Scopus 

0 
Datatype: Boolean 

 

A9 Dataset Statistics Overview 

Table A7: Summary statistics of the dataset 
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Lexical_diversity_normalized The lexical diversity of the
articles' abstract

0,04
Datatype: Float

citations in article The number of citations in the
article

25
Datatype: Integer

Keyword_number The number of author keywords 5
Datatype: Integer

AB words The number of abstract words 200
Datatype: Integer

openaccess Whether the article is open-
access or not

l
Datatype: Boolean

normalized AU betweenness The highest betweenness
centrality between all authors of
the article

0.4
Datatype: Float

normalized_AU_degree The highest degree centrality
between all authors of the article

0.3
Datatype: Float

normalized AU closeness The lowest closeness centrality
between all authors of the article

0.7
Datatype: Float

normalized_AU_eigenvector The highest eigenvector
centrality between all authors of
the article

0.8
Datatype: Float

Contains_scopus_abstract Whether the article has an
abstract on Scopus

0
Datatype: Boolean

A9 Dataset Statistics Overview

Table A7: Summary statistics of the dataset

Variable Mean SD Min P25 P50 p75 Max

total_citations_after_5y 13.3542691 30.3993057 0.000000 3.0000000 7.0000000 16.0000000 3462.000000

new_citations_after_1y 1.0913966 2.1608026 0.000000 0.0000000 0.0000000 1.0000000 136.000000

py 2007.4086923 6.7768873 1992.000000 2003.0000000 2009.0000000 2013.0000000 2016.000000

pub_month 4.8989453 3.9213534 1.000000 1.0000000 4.0000000 9.0000000 12.000000

AJG2021 2.2035018 1.0752940 1.000000 1.0000000 2.0000000 3.0000000 4.000000

Author_count 2.3326717 1.0941168 1.000000 2.0000000 2.0000000 3.0000000 19.000000

first_page 285.7476151 269.7805197 1.000000 73.0000000 207.0000000 394.7500000 2269.000000

PAGES 13.9170469 25.5739958 -1583.000000 9.0000000 13.0000000 17.0000000 4009.000000

ave_sentiment_standardized 0 0000000 1 0000000 -6.478781 -0.5938142 -0.0000002 0.5597361 7.438692

Lexical_diversity_normalized 0.4390913 0.1202033 0.000000 0.3583005 0.4390914 0.5157546 1.000000

citations_in_article 50.6238964 29.6174237 1.000000 30.0000000 46.0000000 66.0000000 976.000000

Keyword_number 3 3747408 2 5758939 0000000 00000000 40000000 50000000 23000000

AB_words 164.7081235 82.7991765 1.000000 113.0000000 153.0000000 208.0000000 1246.000000

openaccess 0.0130355 0.1134282 0.000000 0.0000000 0.0000000 0.0000000 1.000000

normalized_AU_betweenness 0.0333991 0.0771140 0.000000 0.0000000 0.0047646 0.0312469 1.000000

normalized_AU_degree 0.0740854 0.0835883 0.000000 0.0167464 0.0481285 0.1010698 1.000000

normaIzed_AU_closeness 0.1287934 0.1476735 0.000000 0.0701797 0.0948064 0.1452320 1.000000

normaIzed_AU_eigenvector 0.0061935 0.0527392 0.000000 0.0000000 0.0000006 0.0003996 1.000000

contains_scopus_abstract 0.9539610 0.2095727 0.000000 1.0000000 1.0000000 1.0000000 1.000000
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Figure A2: Variable distributions 
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Figure A2: Variable distributions
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