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Abstract

This thesis investigates the potential applicability of machine learning techniques in

predictive modelling on corporate insurance customers. The focus is on predicting a

binary classification of claim occurrences and a customer’s total claim size. Additionally,

to illustrate practical usage, the respective best performing models were combined in an

experimental setting to predict total expected cost and to identify good customers.

The data set is supplied by Frende Forsikring and consist of aggregated customer data.

The aggregated data summarizes a company’s characteristics, total premiums, number of

claims, claim sizes and the policies they hold. Prior to data preprocessing the data consist

of 26 293 different companies totaling 116 219 observations and 436 variables.

The study is split in two. First, the machine learning techniques CART, Random Forest,

XGBoost and Neural Networks are compared with a benchmark GLM. Secondly, the thesis

explores the predictive gain of aggregated data by using three input groups: the premium,

using the initial aggregated data and using aggregated data with feature engineered time

variables.

The results show that all machine learning models outperformed GLM when classifying

claim occurrences. Additionally, all models showed an increase in predictive capabilities

when including aggregated data, but little to no gain including time variables. XGBoost

was the best performing model with an ROC-AUC of 0.8457. Resampling techniques

did not contribute significantly to the performance to any of the models. In terms of

predicting total claim size, no models produced satisfactory results. XGBoost performed

best with a RMSE of 271725. The majority of the models performed best with premium as

the only feature, indicating that the usage of aggregated data is not suited for predicting

the response.

Overall, this study shows that machine learning can increase the predictive performance

compared to GLMs. The results also indicate that aggregated data have the potential in

terms of predicting claim occurrences, and can be used as a supplement in the actuarial

world of risk assessment.
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1 Introduction

“There were 5 exabytes of information created between the dawn of civilization through

2003, but that much information is now created every two days.”

- Eric Schmidt, Executive Chairman at Google, 2010

Insurance as a concept can be dated back to ancient times in human history, where so-

called bottomry contracts were granted by Babylons in ancient times. Bottomry contracts

were loans granted with shipments as security. The loan was dropped if the shipment was

lost during its voyage, and therefore the interest covered the insurance risk (Trenerry,

2009). Through the development of large economies and established financial institutions,

the insurance industry established itself as one of the building blocks of modern society.

Today, the insurance industry generates a global gross premium of $5.23 trillion a year

(OECD, 2020a).

Insurance companies offer economic protection to its customers in exchange for a yearly

fixed premium, often determined through differentiated pricing. It is therefore crucial

for companies to assess aggregated risk and total expense related to the customer

and the underlying individual policy. The insurance market is characterized by fierce

competition, both internationally and in Norway, with companies perceived homogeneous

by policyholders. It is therefore important for an insurer to offer fair premiums whilst still

being able to cover its expenses. If one sets prices to high, one either risk losing customers

to competing companies, or expose oneself to only obtaining customers with high risk,

known as adverse selection.

The insurance industry is particularly data driven, and new big data technology can

greatly influence the way insurance companies manage and analyze their data (Boodhun

and Jayabalan, 2018). Generalized Linear Models has been the conventional method

utilized in actuarial science, both for predicting claim probabilities and claim severity

(size). According to McKinsey Global Institute, the insurance industry has lagged behind

with regards to applying big data analytics compared to other industries in the financial

sector (Clarke and Libarikian, 2014).

With a significant increase in computational power over the past decades, and a great

potential in the usage of big data, there has been a great interest in applying machine
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learning algorithms to challenge the actuarial comfort zone of Generalized Linear Models.

In this thesis we will therefore apply machine learning techniques to classify claim

occurences and estimate claim size using aggregated data on corporate insurance customers,

employing data provided by Frende Forsikring. Additionally, we will use the predictive

models to possibly identify preferable or non-preferable customers with respect to both

risk and potential profitability gains.
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2 Background

2.1 Background and Motivation

Frende Forsikring is an insurance company located in the western part of Norway. The

company consists of two subsidiaries, Frende Skadeforsikring AS and Frende Livsforsikring

AS. Frende was founded in June 2007 and has since experienced a substantial growth,

with a total of 250 000 customers in the private and corporate markets.

Today, Frende utilize Generalized Linear Models and have well-performing models,

especially for private policyholders. Additionally, Frende has also experimented with

advanced machine learning models for this customer group. The corporate insurance

market is, on the other hand, a market with a greater potential for improvement in

terms of predictive modelling and risk assessment. Thus, this thesis covers an analysis on

Frende’s corporate policyholders.

The risk assessment of a customer, and consequently setting the premium, is conducted

on an individual policy level. For instance, the premium for a company car with collision

damage waiver is set by applying risk assessment models developed specifically for that

underlying policy type, with the relevant input information from the respective customer.

Consequently, the total premium for a single customer is the sum of all individual premiums

retrieved from the individual assessment models. The total premium is accordingly related

to the total expected cost of a customer, thus this amount encaptures the probability of

claim(s) and the severity if such claim(s) were to take place.

Through talks with Frende, we gained insights into the possibilities of using aggregated

company characteristics and insurance data to assess the company’s overall claim

probability and total claim severity. We were motivated to explore whether such data,

which we have termed aggregated data, could also be used to potentially identify good or

dissatisfactory customers with respect to future profitability through predictive modelling

using different machine learning methods. Aggregated data is, in this case, data that

summarizes a company’s characteristics, total premiums, number of claims, claim sizes

and the policies they hold.

The first goal of this thesis is ultimately to explore whether company characteristics

3

2 Background

2.1 Background and Motivation

Frende Forsikring is an insurance company located in the western part of Norway. The

company consists of two subsidiaries, Frende Skadeforsikring AS and Frende Livsforsikring

AS. Frende was founded in June 2007 and has since experienced a substantial growth,

with a total of 250 000 customers in the private and corporate markets.

Today, Frende utilize Generalized Linear Models and have well-performing models,

especially for private policyholders. Additionally, Frende has also experimented with

advanced machine learning models for this customer group. The corporate insurance

market is, on the other hand, a market with a greater potential for improvement in

terms of predictive modelling and risk assessment. Thus, this thesis covers an analysis on

Frende's corporate policyholders.

The risk assessment of a customer, and consequently setting the premium, is conducted

on an individual policy level. For instance, the premium for a company car with collision

damage waiver is set by applying risk assessment models developed specifically for that

underlying policy type, with the relevant input information from the respective customer.

Consequently, the total premium for a single customer is the sum of all individual premiums

retrieved from the individual assessment models. The total premium is accordingly related

to the total expected cost of a customer, thus this amount encaptures the probability of

claim(s) and the severity if such claim(s) were to take place.

Through talks with Frende, we gained insights into the possibilities of using aggregated

company characteristics and insurance data to assess the company's overall claim

probability and total claim severity. We were motivated to explore whether such data ,

which we have termed aggregated data, could also be used to potentially identify good or

dissatisfactory customers with respect to future profitability through predictive modelling

using different machine learning methods. Aggregated data is, in this case, data that
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The first goal of this thesis is ultimately to explore whether company characteristics



4 2.1 Background and Motivation

on an aggregated level have any additional predictive capabilities in terms of predictive

modelling on corporate insurance customers, compared to only applying risk assessment

on individual policy levels. Under the assumption that a corporate customer’s individual

policy risk is substantially represented through the premium, we will do this by building

predictive machine learning models that models a customer’s claim occurrence and total

claim severity. This will allow us to assess whether aggregated data contributes with

additional explanatory power, compared to predicting the response with premium as the

only input variable. Modelling claim occurrences will be treated as a binary classification

problem and denoted as Claim (α) throughout the thesis, whilst the claim serverity will

be modelled as a continuous variable denoted Claim size (β). The terms Claim and claim

occurrences will be used interchangebly throughout, and the same applies for Claim size

and claim severity.

To explore the potential gains of using yearly company characteristic data and historic

records of the customers, we apply every model on three sets of input variables: one

containing only the premium, one containing the aggregated data, and one with both

aggregated data and feature engineered time variables. The foremost will be denoted

Yearly premium whilst the two latter will be referred to as Yearly variables and

Yearly + time variables , respectively.

The second goal of this study is to evaluate the additional gain of implementing machine

learning algorithms compared to traditional method of Generalized Linear Models. To

assess this CARTs, Random Forest, XGBoost and Neural Networks will be implemented

in addition to GLM as a benchmark model.

Along with the research objectives, the study will touch upon the practical utilization

of the selected best performing models through a experimental setup. This will be

executed by combining the two models and assessing the resulting predictions. Combining

the classification and regression models allows the exploration of whether company

characteristics on an aggregated level have any additional predictive capabilities in terms

of predicting total expected costs C. The combined model can be defined as the following:

Ci = αi ∗ βi where α ∈ {0, 1} and β > 0 (2.1)
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Essentially the total cost only encaptures the costs of corporate customers that are related

to claims. In cases where there are no claims (α is equal to 0), there are by this definition

no total cost related to the customer. Whilst, if one or several claims occurs (α is equal

to 1), the total cost will be equal to the Claim Size β.

To illustrate practical usage of the predictive models, we will investigate the combined

model’s (Equation 2.1) ability to identify good customers. In order to do this, we must

define what a good customer is in the context of Frende’s operations. The perfect customer

is one that has no claims. However, a customer with claims can still be viewed as profitable

if the premium outweighs the claim size. Through talks with Frende, we got presented a

rule of thumb saying that, through their domain knowledge, a customer with total costs

(in terms of claims) less than 70% of the premium is deemed profitable. We therefore

introduce the following model for identifying a good customer:

Premium ∗ 70% > αi ∗ βi (2.2)

It is important to note that the implementation of the combined model is experimental.

The combined model and corresponding analysis, is included to enhance the overall

comprehension of machine learning techniques and aggregated data in relation to the two

main research goals.

Whilst the motivation for the work and the data is related to Frende’s operations,

this thesis aims to contribute in assessing predictive modelling on corporate insurance

customers for the industry as a whole. To summarize, the problem statement of this

thesis is split in two as follows:

(1)Does aggregated data containing company characteristic variables and time variables

provide any additional information to the insurance premium when predicting claim

occurrences and claim severity?

(2)Can machine learning increase the predictive modelling of corporate insurance

customers compared to traditional GLMs?
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2.2 Related Work

Looking ahead, several insurance companies are exploring the possible value of different

forms of data and machine learning for predicting claims and risk assessment in general

(OECD, 2020b). This includes Frende, which is currently using models on aggregated

customer data in their B2C market as a supplement to the individual risk assessment

models. However, there is a substantial gap between what is currently explored internally

among the insurance companies and published research material on the topic. Thus, the

relevant available published work in this field is related mostly to the use of machine

learning in predictive modelling on an individual policy level.

Blier-Wong et al. (2020) reviews current publications investigating the applications of

machine learning models on ratemaking and reserving within property and casualty

insurance (P&C). Their overview of related work presents 77 publications from 2015 to

August 2020, with an increasing trend, especially after 2017. This comprehensive review,

also touching upon, among others, studies from Frees et al. (2014), highlights significant

individual differences among the insurance holders, and that machine learning models are

useful in capturing this heterogeneity. Subsequently, they can be helpful for computing

the premiums to reflect the true individual risk accurately. In addition to published work,

the results of insurance pricing in competitions hosted on Kaggle have also been reviewed.

This work presents XGBoost and Gradient Boosting Trees as the most popular pricing

frameworks (Blier-Wong et al., 2020).

One of the earlier and larger studies related to the use of machine learning in predicting

expected claim size is presented by Dugas et al. (2003). This study compares several

statistical methods for ratemaking for automobile insurance. The work includes models in

the families of linear regression, Generalized Linear Models, Decision Trees, Support Vector

Machines and Neural Networks. The results showed promising results for Neural Networks,

and the author encourage actuaries to include Neural Networks in their ratemaking models

for car insurance. However, it took more than ten years after the work was published for

Neural Networks to significantly experience an increase in popularity (Blier-Wong et al.,

2020).
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Guelman (2012) explored the usage of Gradient Boosted Trees compared to conventional

GLM for loss cost insurance pricing modelling within the field of auto insurance. The

research was conducted by solving both regression and classification problems with a high

dimensional dataset. The gradient boosted predictions were higher than that of GLM and

the author argued that gradient boosting might be preferable to other machine learning

methods such as Neural Networks and Support Vector Machines due to the interpretability

of the former and the black-box nature of the latter. Therefore, gradient boosting were

presented as a good alternative to GLMs in terms of building loss cost models.

There has also been published work related to the probability of claim or claim frequency.

Several studies treat claim occurrences as a binary classification problem. One of these

studies is the research done by Bärtl and Krummaker (2020) on predicting claims for

export credit insurance. Their research was performed on data from The Berne Union

with the aim to accurately predict insurance claims. The study utilized four machine

learning models being Random Forest, CARTs, Neural Networks and Probabilistic Neural

Networks, and analyzed their performance among binary claim classification and claim

ratio (defined as claim vs exposure). Random forest performed significantly better than

the other prediction methods on all response variables. However, the authors expressed

that the prediction for claim ratios were dissatisfactory.

Hanafy and Ming (2021) have performed a similar analysis as Bärtl and Krummaker

(2020) for auto insurance. The research was performed on data provided by Porto Seguro,

a large Brazilian automotive company, containing 59 variables and 1 488 028 observations.

The observations included customer information and details about the respective insured

car(s), over the years of the customer relationship. Predicting claim occurrences was

treated as a binary classification problem, with the response variable holding the variable

1 if there had been a claim occurrence and 0 otherwise. The results show that Random

Forest significantly outperformed logistic regression, Decision Tree, XGBoost, naïve Bayes

and K-NN models with an AUC of 0.84.

In total, the list of literature related to predicting claim size and probability of claim with

machine learning is small, but growing. It is also important to note that this review is

by no means exhaustive, however, the most important topics related to this thesis are

included. This thesis will contribute to this increasing list by utilizing complex tree-based
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algorithms and Neural Networks whilst comparing these methods to the generalized linear

models when predicting claim occurrences and severities. Additionally, it contributes to

the research of whether aggregated company data provides any additional information

on the customer‘s risk profile, compared to setting the premiums through individual risk

assessment. Thus, investigates if company characteristics adds explanatory power when

predicting the risk associated with corporate customers.
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3 Theory

Artificial intelligence (AI), machine learning and deep learning are terms that have

gained considerable traction during the last couple of decades. Although often used

interchangeably, there are key differences between them. AI is an umbrella term for

systems or machines that imitate human intelligence. Machine learning is a subgroup

of AI which provides systems and models that learn from data without being explicitly

programmed (Chollet, 2021). Within the field of statistics, machine learning often falls

under the definition of statistical learning through algorithmic modelling.

Machine learning can be divided into two main categories: supervised and unsupervised

learning. Supervised learning train on labelled data where a set of inputs have influence

over a set of outputs. In contrast, unsupervised learning trains models and learns from

non-labelled data by utilizing for example clustering. This thesis falls within the aspects

of supervised learning. With supervised learning, variables are often characterized as

qualitative or quantitative. Predicting a qualitative and quantitative response is often

referred to as classification and regression, respectively (Hastie et al., 2009) . We will use

these terms throughout our thesis.

The methods utilized in this thesis vary in flexibility and interpretability. Flexibility can

be seen as a model’s capability to represent an output function f through a range of shapes

(James et al., 2013). Linear regression through least squares is a model that has relatively

low flexibility, but is highly interpretable in terms of understanding the relationship

between the predictors. In contrast, deep learning with Neural Networks is a highly

flexible method as it can generate a wider range of possible shapes for the output function

f at the cost of interpretability with regards to the relationship between the predictors.

In short, less flexible methods are often easier to interpret and are preferred if inference is

the goal. Therefore, it is often a trade-off between flexibility and interpretability (James

et al., 2013). Consequently, this thesis focuses on the predictive capabilities of the models

such that we do not put emphasis on a model’s interpretability.

The following subsections will briefly present the main ideas between the machine learning

methods applied in this thesis. The models are presented in ascending order in terms

of flexibility: Generalized Linear Models, Classification And Regression Trees (CART),

g
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Random Forest, XGBoost and Neural Networks. Lastly, this section will present the

challenge of an data set imbalance and suggest methods to overcome this issue.

3.1 Generalized Linear Models

Generalized Linear Models (GLM) was first introduced by Nelder and Wedderburn (1972),

and is an expansion of linear regression by utilizing flexible generalization. GLM often

refers to a large class of models that allows the response variable to follow a probability

distribution from the exponential family, usually referred to as the distribution family.

GLMs consist of three components: a random component, a systematic component and a

link function (Dobson and Barnett, 2018). The random component connects the response

variable with a distribution family. The systematic component is the linear combination

of the explanatory variables. Lastly, the link function η connects the random and the

systematic component by specifying the relationship of the expected value of the response

(regarding the probability distribution) with the linear combination of predictors. To

exemplify, simple linear regression falls within the GLM framework with the random

component assumed to be normal distribution, a linear combination of the explanatory

variables and an identity link function η = E(Y ). Estimation of a GLM is, in this thesis,

done through maximum likelihood estimation using IRLS (iteratively reweighted least

squares).

GLMs can be used with both binary and continuous response variables (Dobson and

Barnett, 2018). Logistic regression is a subcategory in the GLM framework and is often

used on classification problems, thus it will be used for modelling claim in this thesis.

Logistic regression assumes a binomial probability distribution (random component) and

a log-odds link function η = log( πi

1−πi
), where the expected value of the response variable

has a probability of π. The logistic regression can be written as:

log(
πi

1− πi

) = β0 + βixi (3.1)

Furthermore, this thesis also utilizes GLMs on a continuous response variable. Due

to uncertainty regarding the nature of the variable and with domain knowledge from

Frende, this thesis will evaluate both inverse gaussian and gamma as distribution families.
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Examples of the distributions are displayed in Figure 3.1, whilst the respective link

functions are presented in Table 3.1 (note that two link functions are tested for each

distribution family). In terms of feature selection there are several methods that can be

applied, however, this study will conduct L1 regularization with lasso regression. Lasso

regression use a penalty term λ that shrinks the coefficient parameters towards zero, thus

can be seen as a form of variable selection (James et al., 2013).

Figure 3.1: Distribution families

Distribution family Link function

Gamma 1
µ

and lnµ

Inverse Gaussian 1
µ2 and lnµ

Table 3.1: Link functions

Generalized linear models have several advantages. Firstly, it allows for different probability

distribution compared to regular linear regression and allows for domain knowledge of

the response to play part in the modelling process. Secondly, the choice of link function

may differ from the random component, yielding more flexibility. Lastly, the methodology

allows for nonlinearity in the explanatory variables and can improve modelling when

the actual relationships between the response and predictors are nonlinear (Dobson and

Barnett, 2018).

3.2 Tree-Based Methods

Tree-based algorithms are highly popular and have been shown to perform well with

different supervised learning applications such as regression and classification. In their

initial state they are highly interpretable and simple to implement. The simplest form

of tree-based algorithms is classification and regression trees (CART), although they are

often outperformed by more advanced methods (Alpaydin, 2020). Therefore, this section

will also introduce two advanced tree-based ensembles: Random Forest and XGBoost.
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3.2.1 Classification and Regression Trees (CART)

These algorithms revolve around segmenting the predictor space into sub-regions, resulting

in a model that is similar to that of a tree. To build a tree the algorithms searches the

predictor and split that is the most informative of the target variable and constructs

the tree in a top-down perspective. The top of the tree is called the root and represents

the entire set of data, the points or splits along the tree is known as internal nodes.

The sub-regions created are known as terminal nodes (leaves) and indicates the response

(prediction) for an observation that falls within the region, every observation that falls

within a region receives the same prediction (see e.g., Hastie et al., 2009).

Figure 3.2: Example of a decision tree

When constructing for instance a regression tree, the goal is to segment the predictor

space into R1, ..., RJ regions that minimizes the residual sum of squares:

RSS =
J∑

j=1

∑
i∈Rj

(yi − ŷRj
)2 (3.2)

In Equation 3.2, ŷRj
refers to the mean of the training observations that lie within region

j. Furthermore, the tree is built using binary recursive splitting, meaning that each split

is decided by the one that has the greatest reduction to the residual sum of squares at

that point. Consequently, future potential splits that give better performance overall are

ignored. Classification trees are constructed in a similar manner, however, the predictor
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In Equation 3.2, in, refers to the mean of the training observations that lie within region

j. Furthermore, the tree is built using binary recursive splitting, meaning that each split

is decided by the one that has the greatest reduction to the residual sum of squares at

that point. Consequently, future potential splits that give better performance overall are

ignored. Classification trees are constructed in a similar manner, however, the predictor
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space is segmented by gini impurity rather than residual sum of squares (James et al.,

2013).

The process of building decision trees often returns good predictions on training data,

but often overfits the data. This is likely due to a too complex model, leading to a poor

performance with regards to the test set (Hastie et al., 2009). Therefore, one often seeks

a less complex tree to lower the variance and increase the bias. Cost complexity pruning

provides an option for controlling the size of a decision tree. This technique initiates with

a large tree and prunes the tree (creates a sub-tree) with a complexity tuning parameter

α and a tree’s complexity value |T |. The optimal α constructs a subtree that through

cross validation returns the lowest prediction error (James et al., 2013). The process of

building and pruning a regression tree can be described as following:

Algorithm 1 Building a regression tree with pruning (quoted from (James et al., 2013,
p. 309))

1. Use recursive binary splitting to grow a large tree on the training data, stopping
only when each terminal node has fewer than some minimum number of observations

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of
best subtrees, as a function of α

3. Use K-fold cross validation to choose α
(a) Repeat Steph 1 and 2 on all but kth fold of the training data
(b) Evaluate the mean squared prediction error on the data in the left-out kth fold,

as a function α

Average the results for each value of α, and pick α to minimize the average error

4. Return the subtree from Step 2 that corresponds to the chosen value of α

One of the key downsides to using regular CARTs is that they, despite the usage of pruning,

tend to overfit and provide poor generalized errors, as mentioned above. Therefore,

ensemble methods are often used to provide better results (Alpaydin, 2020).

3.2.2 Random Forest

Ensemble methods are techniques that combine multiple machine learning models to

produce a more powerful model. Random Forest, introduced by Breiman (2001), use a

modification of a technique called bootstrap aggregation (bagging) to build a collection of
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decorrelated trees. Bagging is a technique that has the purpose to reduce the variance of a

machine learning method by averaging multiple samples of the same model. This is done

by bootstrapping i.e., selecting random samples of the training data with replacement.

For instance, using bagging regression trees is done by selecting B bootstrapped training

sets and training B trees and averaging the results (see e.g., Hastie et al., 2009).

Random Forest introduces a slight modification to the bagging procedure with the aim

of decorrelating the trees constructed. This is done by selecting a random subsample of

the total number of predictors m as candidates for each split of the tree. This method

combats overfitting and contributes such that every variable has influence regardless of

their initial perceived predictive power. To select the final prediction for an observation

the majority vote of the ensemble is selected in the classification case, whilst the average

is taken in the regression case (Hastie et al., 2009). The process of Random Forest can be

described as follows:

Algorithm 2 Random Forest (quoted from (Hastie et al., 2009, p. 588))

1. for b = 1 to B :

(a) Draw a bootstrap sample Z∗ of size N from the training data

(b) Grow a Random Forest tree Tb to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the
minimum node size nmin is reached

i. Select m variables at random from the p variables

ii. Pick the best variable/split-point among the m

iii. Split the node into two daughter nodes

2. Output the ensemble of trees {Tb}B1

3.2.3 Gradient Boosting and XGBoost

Like Random Forest and bagging, boosting is an ensemble method with a different strategy.

The main idea is to build new models in the ensemble sequentially. At each sequence, a

weak learner is introduced to accommodate for the errors (pseudo-residuals) produced by

the model up until that point (Natekin and Knoll, 2013). A weak learner is an algorithm

that do not perform well by itself, but still performs significantly better than random

guessing. CARTs are frequently used as the weak learner (Zhang et al., 2019). The
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resulting prediction from boosting is the sum of predictions made from weak learners in

the ensemble.

Boosting algorithms vary in their design. Friedman (2001) introduced a gradient boosting

machine as a further development of the established boosting algorithms at that time.

Gradient boosting machines (GBM) utilize optimization of a differential loss function

L(y, f(x)) to identify the pseudo-residuals rim of the weak learners m by taking the

derivative of the loss function with respect to a predicted value. For a set of pseudo-

residuals, a new output value γ is calculated such that the loss function is minimized

based on both previous predictions f(m−1) and the prediction for the residuals. The total

prediction fm is then updated with the additional weak learner. The concept of gradient

boosting with regression tree as weak learner is showcased with the following algorithm

provided by (Hastie et al., 2009):

Algorithm 3 Gradient boosted regression tree (partly quoted from (Hastie et al., 2009,
p. 361))

1. Initialize with a constant value: f0(x) = arg minγ

∑N
i=1 L(yi, γ)

2. For m = 1 to M :

(a) for i = 1, 2, ..., N compute the pseudo-residuals

rim = −
[
δL(yi, f(xi))

δf(xi

]

(b) Fit a regression tree to the pseudo-residuals rim giving terminal regions
Rim, j = 1, 2, ..., Jm

(c) For j = 1, 2, ..., Jm compute the output of the regression tree

γjm = arg minγ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm)

3. Output f̂(x) = fM(x)

XGBoost (eXtreme Gradient Boosting) is a further developed implementation of the

gradient boosting algorithm and was first introduced by Cheng & Guestrin (2016). It has

been one of the most popular machine learning methods in recent years, and has been

among the best performing algorithms in multiple Kaggle competitions (Mello, 2020).

XGBoost is an advanced machine learning algorithm with multiple features and nuances.
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Consequently, the following will briefly present the main ideas of the algorithm.

XGBoost introduces CARTs as the weak learner, however, in contrast to the methodology

presented in Section 3.2.1 it uses similarity and gain measures as split criterions in the

tree construction process. Another key difference between Friedman’s gradient boosting

machine (Friedman, 2001) and XGBoost is that the latter utilizes both L1 and L2

regularization to avoid overfitting, thus improving the model’s performance (Chen and

Guestrin, 2016). XGBoost can be expressed mathematically by minimizing:

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

whereΩ(fk) = γT +
1

2
λ∥ω∥2

(3.3)

In Equation 3.3, l represents a differentiable loss function similar to that of gradient

boosting machines, and Ω(fk) is the penalization term that regularize the complexity of

the model. Each tree is represented by fk where T is the number of leaves in a tree and

ω represents the scores of the leaves. The regularization parameters λ and γ reduce the

complexity of the model and represents L1 and L2 regularization, respectively (Chen and

Guestrin, 2016).

One of the most important benefits of using XGBoost compared to gradient boosting is

its scalability, as it can be less computationally demanding compared to previous gradient

boosting techniques. Additionally, the system is designed to be able to handle sparsity in

data, such as missing values and inflation of zero-values. Lastly, XGBoost introduce a vast

amount of hyperparameters that can be tuned to further optimize model performance.

(Chen and Guestrin, 2016)

3.3 Neural Networks

Deep learning has experienced vast progress in the last decade and has been applied to

several different challenges such as image, text and voice recognition, as well as predictive

modelling including classification, regression and time series analysis. Neural Networks

are the foundation of deep learning, and its start can be dated back to 1943 (McCulloch

and Pitts, 1943). Neural Networks are included in this thesis because they have shown
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the ability to handle complex and non-linear problems (James et al., 2013).

Neural Networks are network systems that are vaguely inspired by the field of neuroscience

(Goodfellow et al., 2016). Today feedforward Neural Networks utilize an architecture that

consist of one or several layers (Deep Neural Network). A Deep Neural Network can be

broken down into an input layer with Xp predictors, hidden layers Ln and output layers

fm(X). Within each layer there are K artificial neurons (or nodes), each of which has

some learnable weights (wn) connecting it to all the nodes in the previous layer. The

inputs into a layer and the layers’ corresponding weight matrix form a linear combination;

To introduce non-linearity, a differential non-linear function, referred to as an activation

function g, is applied to the linear combination. In a feed-forward manner the input is

passed down the network, layer by layer, until finally the network forms a prediction

in the output layer. Initially, the sigmoid activation function was common, however, in

recent years the ReLU activation function is frequently used (Agarap, 2018). A method

of fitting the parameters is the backpropagation algorithm, which uses partial derivatives

and gradient descent to minimize a given loss function (see e.g., Hastie et al., 2009). An

example of a Neural Network is shown in Figure 3.3:

Figure 3.3: Neural Network illustrative example

Neural Networks have performed well in terms of pattern recognition, although they are

often prone to overfit the training data, and therefore require substantial tuning. In terms

of interpretability, Neural Networks can be seen as a black-box model, meaning that
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the model’s complexity leads to low transparency of the predictors’ relationship to the

response (Goodfellow et al., 2016).

3.4 Imbalanced Data

Most of the statistical learning methods applied in this thesis assume that the underlying

class is balanced with regards to the binary response variable (Krawczyk, 2016). In the

context of binary classification imbalanced data refers to data in which one class is greatly

overrepresented compared to the other. These classes are referred to as the majority

and minority class, respectively (Fernández et al., 2018). In the presence of imbalance,

machine learning methods can yield sub-optimal results, and frequently used performance

measures might be deceiving (Chawla et al., 2004). The minority class is usually the

one of interest. One of the reasons why a classifier returns sub-optimal results is due to

possible overfitting to the majority class and the minority class being treated as noise in

the data (Haixiang et al., 2017).

Furthermore, regular metrics used for validating a classification model’s performance, such

as accuracy, can be misleading in depicting a model’s actual performance. This is known

as the accuracy paradox. For instance, consider a situation where the majority class

represents 95% of the observations, but the minority class is of considerable importance.

If one were to implement a simple model predicting every observation as the majority

class, it would return an accuracy of 95% which in some cases is deemed a good prediction

score. In addition, with less information about the minority class, it becomes harder to

retrieve substantially good predictions (Brownlee, 2020b).

There are several techniques to overcome the issue of class imbalance, such as collecting

more data, resampling the data or utilize different performance metrics (Johnson and

Khoshgoftaar, 2019). Resampling is one of the most common methods used to handle

dataset imbalance and refers to either removing (undersampling) or adding (oversampling)

samples to rebalance the dataset. At the simplest form this is done by either randomly

removing samples of the majority class or randomly replicating samples of the minority

class to the point where the proportion of each is equal. Although easy to implement,

random oversampling might lead to overfitting of the replicated samples, whilst random

undersampling might omit relevant observations from the majority class (He and Ma,
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2013).

Due to these drawbacks, more advanced resampling techniques, such as Synthetic Minority

Resampling Technique (SMOTE), are used to resample datasets (Brownlee, 2020b).

SMOTE creates synthetic observations by interpolating n minority samples and randomly

selecting a point between the samples to generate an additional observation. Furthermore,

a resampling strategy of applying SMOTE in combination with a undersampling strategy

has shown to produce better results than oversampling alone (Chawla et al., 2002).

To illustrate, in a scenario with a 90% majority class, SMOTE can be used to partly

oversample the minority class, whilst an undersampling technique completes the resampling

by removing observations to a point where the data is balanced. This thesis will utilize

SMOTE in combination with random undersampling as the resampling strategy.
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4 Methodology

4.1 Data

The original data set from Frende contains 116 219 observations and 436 variables for

each observation. There are 26 293 different companies represented in the data, with

yearly observations ranging from 2008 to 2021. The variables can be categorized into

explanatory and response variables. The explanatory variables are information available

to Frende when calculating the insurance premiums for a given year, and the response

variables are data that are not available until after the year has ended. All variables

should be interpreted as variables for company i in year t.

Features included in machine learning models should be relevant and easy for the models

to process (Zheng and Casari, 2018). Additional features have been generated through

feature engineering to optimize the models’ performance. This includes generating new

variables as well as applying techniques to make the data compatible with machine

learning algorithms. To further investigate the underlying data prior to pre-processing and

modeling, Section 4.1.2 will present descriptive statistics of the most essential features.

4.1.1 Overview of Variables

A complete overview of the original variables is shown in Table 4.1 and 4.3. Additionally,

Table 4.2 and 4.4 present the feature engineered variables. The complete overview of the

data set after feature engineering and data pre-processing can be found in the appendix

A1.

4.1.1.1 Response Variables

Original data set

The data set contains three response variables, as shown in Table 4.1. Total cost refers to

the total amount paid out to company i in year t related to its claim, meaning that the

variable represent the response variable of the combined model. Number of claims refers

to the claims that are filed for, and Approved claims are the number of claims that Frende

pays out. Henceforth, the latter is deemed the appropriate response used to determine
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the binary classification of Claim.

Response variable Description

Total cost Total amount paid out to the company, can consist of more
than one claim, 0 when there are no claims

Number of claims Number of filed claims
Approved claims Number of claims accepted

Table 4.1: Response variables from the original data set

Engineered response variables

From the initial response and explanatory variables four additional response variables

have been generated and are presented in Table 4.2. Claim is a binary value that holds

the value 1 if approved claims is greater than 0, and 0 otherwise. Therefore, Claim

forms the response variable for the binary classification models. Claim size represents

the claim severity of the observations with claims, and is the response variable for the

regression models. The potential claim severities of observations that have no claims are

consequently unknown. The remaining three variables Claim frequency, Claim probability

and Claim percentage describe the relative amount of recurrences and severity of the

claim(s). These can be viewed as relevant historical explanatory variables that later will

be feature engineered as time variables for a given observation.

Response variable Description

Claim 1 if approved claims > 0, 0 otherwise
Claim size Equal to Total cost when Claim is 1,

undefined otherwise (when there are no claims)
Claim frequency Approved claims /Number of policies
Claim probability For each company in year y:

Number years with claim/Number of years as a customer
Claim percentage Claim size / Insurance premium

Table 4.2: Engineered response variables

4.1.1.2 Explanatory Variables

Original data set

The data set contains 433 explanatory variables, whereas Insurance premium is expected to

have significant explanatory value. Additionally, there are variables providing information

on which policies a customers holds and company-specific variables, such as the number
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of employees and type of industry the business operates within. All variables are defined

in Table 4.3, apart from all insurance policies. The data set has 412 variables representing

the insurance policies. The variable values represent the number of policies from the

specific product group an observation holds.

Explanatory variable Description

Year Year of observation

Insurance premium Premium paid to Frende

Policy years Sum policy years. Per policy;1 if the
insurance is held in a whole year, 0.5
for 6 month etc.

Business type E.g., joint-stock, foundation, county

Distribution channel Where the customer was obtained

County Location of company

Number of employees Number of employees in the company

Noted customer 1 if abnormal claim size or claim frequency
in the past, and/or missing payments, 0 otherwise

Foundation date Foundation of company

Vat Registered 1 if Vat registered, 0 otherwise

Non-Profit Organizations 1 if registered, 0 otherwise

Credit score Scored from 1-5 when the customer
is obtained

Latest submitted annual accounting Year of last submitted annual accounting

Business Address Land Code Two letter country code

Bankrupt 1 if bankrupt, 0 otherwise

Under settlement 1 if under settlement (bankrupt), 0 otherwise

Insurances 412 types of insurance products,
each as variable represents the amount
of policies company i has of product x

Industrial Classification Category Name of classification subcategory (NACE)

Has claim last three years prior to Frende 1 is claim prior to being a customer,
0 otherwise

Register of business enterprise 1 if registered, 0 otherwise

Foundation registered 1 if registered as foundation, 0 otherwise

Table 4.3: Explanatory variables from the original data set
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Engineered explanatory variables

Additional explanatory variables have been generated through feature engineering, some

as supplementary variables and some to replace the initial variables, as they would have

been significantly correlated otherwise. All engineered variables are presented in Table

4.4.

Explanatory variable Description

Main industrial classification category A-U, NACE
Company age Year - foundation date
Total number of policies Sum insurance policies
Customer length Number of years as a Frende-customer
Number of policies t-1
Approved claims t-1
Claim size t-1
Claim frequency t-1
Claim percentage t-1
Number of policies t-2
Approved claims t-2
Claim size t-2
Claim frequency t-2
Claim percentage t-2
Prior three years average claim frequency
Prior three years average claim percentage
Prior three years probability of claim
Prior three years average number of policies
Prior three years average number of claims
Prior three years average claim size Only included defined claim sizes when averaging
Defined number of employees
Delta number of policies y-1 Number of policies today – last year
Delta number of policies y-2 Number of policies today – two years ago

Table 4.4: Feature engineered explanatory variables

Instead of having 572 industrial classification categories, these have been replaced with

their main NACE code (ranging from A-U), to bring forth fewer instances. Foundation

date has been replaced with Company age, as it is easier to interpret. In addition the

variable Total number of policies has been created and indicates the total number of

policies the customer i holds in year t. Customer length indicates the number of years

each company has been a customer.

The insurance products are represented in a total of 412 variables. All insurance policies

are represented in terms of subcategories of larger insurance categories. As there is a

substancial number of insurance policies, the policies with less than 5% representation have
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been combined to collective subcategory within each main insurance category. To illustrate,

take for example the main category of fire insurance. Within this category are policies

such as fire insurance - building, fire insurance - commercial building and fire insurance -

agriculture. Each of the two latter subcategories had less than 5% representation and have

been combined into a fire insurance other subcategory. The two original variables have

consequently been removed from the data set. Subsequently, the variables representing

insurance policies are represented through 130 variables compared to the original 412. A

complete overview of all included insurance products in the modelling of Claim and Claim

size can be found in appendix A2.1.

To investigate whether historical data are of value in predicting the response variables,

several time variables have been created using the responses from previous years. Variables

ending with t_1 and t_2 in Table 4.4 are the response variables from last year and two

years ago, respectively. In addition, both Delta Number Of Policies variables (y_1 and

y_2 ) describes the increase or decrease in insurance policies compared to one or two years

ago. The last category of time variables is the average of the response variables of the

prior three years. These are created due to the expectation that the last three years could

depict a representative picture of an observation’s trend if such a trend exists.

4.1.2 Descriptive Statistics

Descriptive statistics is useful to further investigate the data set prior to data cleaning

and modeling. Descriptive statistics offers great insight into the available data, helps

discover potential issues with the data, and is an important step in making sure the

data is compatible with the intended models (Brownlee, 2016). First, we will introduce

descriptive statistics for the numeric variables, before going further in depth with our

most relevant features.

Table 4.5 shows descriptive statistics for numeric variables. Both Insurance premium and

Claim size contain large amounts of variation. As expected this variation is notably larger

for Claim size than for Insurance premium, as Insurance premium encaptures prediction

for Claim size, thus Claim Size can have higher potential values. Approved claims >0,

shows that if there exist at minimum one claim, the number of claims in the majority

of the observations are 1 or 2. In addition, the maximum values for Claim percentage
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and Claim frequency are seemingly extreme, and should be addressed further. This could

indicate that there exist some observations with extreme values for Claim size, Approved

claims or Insurance premium that should potentially be removed. There also seem to

exist some values in Insurance premium and for Claim size that are lower than expected,

which will be addressed in the data cleaning section.

Variable Median Mean St. dev. Min 25% 75% Max

Total cost 0 11777 140045 0 0 0 13452680
Claim size 19538 83882 365567 0.001 6502 57438 13452680
Approved claims 0 0.21 0.86 0 0 0 72
Approved claims (>0) 1 1.52 1.81 1 1 2 72
Claim percentage 0 0.56 8.03 0 0 0 694
Claim frequency 0 0.14 1.40 0 0 0 365
Insurance premium 9746 21312 73565 2.95 3759 22488 7304019
Policy years 1.63 2.61 3.57 0.002 0.97 3.00 121
Credit score 3 2.83 1.55 1 2 4 5
Company age 8 13 19 0 5 12 217
Customer length 2 2.80 2.73 0 1 4 13
Number of employees 0 3.57 16.82 0 0 3 1621

Table 4.5: Descriptive statistic of all numeric variables

There is also relevant information related to the explanatory variables. 50% of the

customers have around 1-3 policy years. Credit score looks to be normally distributed.

A large fraction of companies (>25%) are businesses that have been operating for at

least 5 years, and there is a fairly large variation within this feature (Company age). In

75% of the data, the customer relationship (Customer length) has a duration larger than

one year. Hence, these companies will have time variables of t-1 for at least one of their

observations. Most observations will also have values for t-2, and representative values for

the average of the prior three years. The Number of employees is 0 in the majority of the

observations, with the largest company having 1 621 employees. The corporate customers

in the data set are mainly small and medium enterprises. Some observations are expected

to have 0 employees, however, the amount is a lot larger than expected. Consequently,

this will be further addressed in the data cleaning section.

4.1.2.1 Response Variables

The respective distributions of Claim and Claim size are displayed in Figure 4.1, and

illustrates that only 14% of all observations have one or more claims. This results in an
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imbalanced data set. For that reason, this needs to be further addressed with regards

to data partitioning, additionally, potential need for resampling techniques should be

assessed.

Figure 4.1: Response variables distribution

Figure 4.1 shows that Claim size has a steep and right skewed distribution. From the

< 95% quantile, the probability is seemingly close to the gamma and inverse gaussian

distribution refered to in Section 3.1. As shown in Table 4.5, the median for Claim size is

19538, whilst the mean is 83882, as a consequence of the skewed distribution. Furthermore,

95% of the observations are claims with an aggregated size less than 300 000, but the

standard deviation is 365 567. The high standard deviation is a consequence of the

variation in the largest 5-10% of the data.

4.1.2.2 Explanatory Variables

The data set contains a substantial amount of explanatory variables that have all

been investigated thoroughly. In this section the assumed most important features are
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Figure 4.1: Response variables distribution

Figure 4.1 shows that Claim size has a steep and right skewed distribution. From the

< 95% quantile, the probability is seemingly close to the gamma and inverse gaussian

distribution refered to in Section 3.1. As shown in Table 4.5, the median for Claim size is

19538, whilst the mean is 83882, as a consequence of the skewed distribution. Furthermore,

9 5 % o f the observations are claims with an aggregated size less than 300 000, but the

standard deviation is 365 567. The high standard deviation is a consequence of the

variation in the largest 5-10% of the data.

4.1.2.2 Explanatory Variables

The data set contains a substantial amount of explanatory variables that have all

been investigated thoroughly. In this section the assumed most important features are
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represented and discussed, including Years, Insurance premium and insurance products.

These are important for modeling, in addition to further understand the context of

predicting the response variables.

Years

Frende has experienced a linear and large growth from 2008 to 2021, more than doubling

its customer base from 2012, as illustrated by Figure 4.2. Consequently, the data set will

have fewer observations from the year 2008, and an increasing number of observations

going towards 2021.

Figure 4.2: Development of response variables and number of companies from 2008-2021

There is a significant increase in both claims and the average number of claims after

2009. This might be explained by Frende taking on more riskier customers and/or offering

products with a higher risk profile. There are some differences for these variables between

the years after 2009, but seemingly without any trends for the share of claims, averaging

at around 14%. The same is true for the average number of claims per company, which is

around 0,20 after 2009. Claim size per company, given that there has been an approved
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There is a significant increase in both claims and the average number of claims after

2009. This might be explained by Frende taking on more riskier customers and/or offering

products with a higher risk profile. There are some differences for these variables between

the years after 2009, but seemingly without any trends for the share of claims, averaging

at around 14%. The same is true for the average number of claims per company, which is

around 0,20 after 2009. Claim size per company, given that there has been an approved
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claim, varies between the years, seemingly more than the number of claims and share of

companies with claims. This could be random or related to different years having different

severity in their claims, as a consequence of for example extreme weather. However, there

seems to be a positive trend in the claim sizes, which could be due to for example economic

factors, thus making Year a relevant explanatory variable.

Insurance Premium

The distribution of Insurance premium, a boxplot of Claim percentage and Insurance

premium vs. Claim size is displayed in Figure 4.3. This visual analysis confirms the

observations from Table 4.5. Most insurance premiums are below 74 000 (95% quantile),

but there are also customers paying insurance premiums closer to 1 000 000 and above.

In addition to what is displayed in Figure 4.3 of the insurance premiums larger than the

95% quantile, 27 observations have insurance premium ranging from 1 000 000 to

7 304 019, which have been removed from the plot to make it more readable.

Figure 4.3: Insurance premium distribution and premium in relation to claim size
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Given that there exists a claim, the median for Claim percentage is 67%. A customer is

considered profitable if the claim size is less than 70% of the insurance premium, hence

most companies with claims are in fact still profitable. However, Claim percentage has

a mean 393%, and there exist cases with a claim percentage close to 70 000%, which is

abnormally high.

From the scatter plot one can observe that there is not a perfect relationship between claim

sizes and premiums, and it is unclear how correlated the variables are. The correlation

value between Insurance premium and Claim size is 0.39. A correlation between 0.3 and

0.5 is often defined as low/modest positive correlation (Taylor, 1990).

Insurance products

To further investigate the various insurance products, these are displayed visually below.

As the data is aggregated, it is difficult to untangle all details related to which claim is

associated with which product. E.g., a data observation i can be a company having both

product x and y and one claim z, and we cannot draw conclusions as to which of the

products x or y that covers claim z. For descriptive statistics purposes all observations

have been grouped in product types, meaning that all observations that have one or

more policies of each of the 130 insurance products are grouped. Essentially the data

observation i will be included both in the grouping of product x and for y with the claim

z, even though in reality the claim is covered from x and with no connections to product

y. The visualization of the products will give an indication of the most common insurance

products and the products probability of claim. However, the implication of aggregated

data is that this can also give a misleading picture of some of the product’s types, such as

for y in our example, thus conclusions from the figures should be drawn with care.

Figure 4.4 displays the most common insurance products among the observations in the

data set. Subtypes within the categories business insurance, occupational injury insurance

and vehicle insurances are the most frequent.
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Figure 4.4: Top 15 most frequent insurance products

The insurance products with the largest number of related observations with (one or

several) claims is shown in Figure 4.5. In the figure we see that several of the most

common insurance products from Figure 4.4 are present. It makes sense that several of the

most frequent products also have the most claims in absolute terms. Vehicular insurances

are the products with the most related claims. In total close to 17 500 observations have

car insurances for company cars and also have one or more claims. Approximately 45 000

observations are related to the most popular car insurance products (showed in Figure 4.5),

meaning that the share of companies with claims of these insurance groups are getting

close to 40%.
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Figure 4.5: Top 15 insurance products with the most related claims

Figure 4.6: Top 15 insurance products in terms of largest shares of claims

Figure 4.6 illustrates the relative occurrences of claims for observations with the various

insurance products in the data set. Less frequent insurance types are thus represented,
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Figure 4.6 illustrates the relative occurrences of claims for observations with the various

insurance products in the data set. Less frequent insurance types are thus represented,
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with valuable articles insurance having the largest shares of claims. Insurance products

related to vehicles are also present among the top 15.

4.1.3 Data Cleaning for Machine Learning

The data has been cleaned to enable compatibility with machine learning models and

to eliminate errors in the data. In addition to simple data cleaning, such as removing

duplicates, irrelevant variables and securing correct data types, we have focused on

handling missing variables, outliers and categorical variables.

4.1.3.1 Missing Values

The data contains several variables with missing values. This study’s predictive

modeling techniques, apart from XGBoost, are incompatible with missing values and it is

recommended to address this prior to the modelling (Brownlee, 2020a). One can handle

missing data accordingly; remove the observation, remove the feature, impute the values,

and/or create an indicative Boolean variable (Harrison, 2019). All methods have been

applied in this thesis depending on the nature of the variable.

Removing observations

The simplest way of dealing with missing values is to remove the observation (Brownlee,

2020a). As several variables have a significant amount of missing values, removing all

those observations would ultimately affect the amount of data severely. Hence, only the

observations with missing values in the response variable Total cost were removed.

Removing variables

LatestSubmittedAnnualAccounts, VatRegistered, RegisterOfBusinessEnterprise, Non-profit

organizations, FoundationRegistered are variables with more than 34% of missing values.

Close to all observations that do not have missing values are registered in VAT and Business

enterprise, and nearly none are registered as non-profit organizations or foundation. These

are not expected to provide any essential information, especially as the variable Business

type capture a lot of the same information. As a consequence of a high missing value rate,

these variables are removed.
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Imputing values

Imputing values is replacing the missing data with an estimated value, such that one can

use the complete data as if the imputed values were actually observed values. Therefore,

one must evaluate what one believe to be a suitable substitute value, as imputed values

can introduce significant bias (Donders et al., 2006).

For the categorical variables Credit score, Main industrial classification category and

Business address landcode, there are 0.3%, 1% and 26% missing values, respectively. These

have been replaced by a new category__missingvalues__, which allows for the missing

value information to be kept in the modelling process. Missing values within the binary

features Bankrupt and Under Settlement have been replaced by the mode which in both

cases are 0.

Company Age/Foundation date has 34% missing values, however, the feature is expected

to have useful information. Therefore, the missing values have been predicted using

K-nearest neighbors(KNN). This method is applied with the aim of reducing the bias

compared to replacing the values with the mean or median. KNN has been proven to

be an efficient imputation algorithm, replacing the missing data with the mean of the k

nearest neighbors (Beretta and Santaniello, 2016). The KNN regressor is implemented

with k equal to 5, using the Euclidean distance metric for calculating the distance between

data points.

The feature engineered time variables have missing values when the observation has no

historical record. To get a representative value for these instances, the variables have been

replaced with the median of the relevant year. Meaning that e.g., for a company that

became a customer in 2016, the variable Claim size t-1 in 2016 was given the median of

all defined Claim size t-1 in 2016.

Indicative Boolean variable

For the Number of employees, 60% of the data points have the value 0. Although some

observations are expected to have 0 employees, the amount is a lot larger than expected.

This suggests that large parts of these observations are missing data. As this could be

a relevant explanatory variable when predicting Claim and Claim size, and since the

possibly missing value rate is this high, the problem was solved by including a new variable;

Defined number of employes. The variable holds the value 1 if the Number of employees is
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larger than 0, and 0 otherwise.

Categorical Variables

The data set contains several categorical variables. These have to be transformed to

numeric variables, as is the requirement for some machine learning methods (Zheng and

Casari, 2018). The respective categorical variables have been one-hot encoded, meaning

that all categories within a variable are represented as dummy variables. This has been

performed on the variables Business type, Credit Score, Distribution Channel, County and

Business address landcode.

Categorical variables can also be encoded by replacing categories with integers. This

depends on whether the variable can be treated as a continuous variable or not (Müller

and Guido, 2016). With the exception of Year and Credit score, the categorical variable’s

nature suggests that it is more proper to treat them as discrete values, hence, dummy

variables. Credit score is a categorical variable, but as the score is from 1-5, with a higher

score being the better score, one can argue to make this a numeric variable. However,

under the suspicion that there might be a larger difference between a customer scored

with 2 & 3 vs. 3 & 4, this variable has also been one-hot encoded. Year is on the other

hand treated as a numeric value.

4.1.3.2 Outliers

The descriptive statistics in Section 4.1.2 showcased values in Claim frequency, Claim

percentage, Claim size and Insurance premium that seemed abnormally high or low. The

abnormal and extreme cases referred to in this thesis are cases that are considered to be

so abnormal that there is a very high likelihood of errors in the data.

Then there is, however, the question of what should be considered an extreme value. A

claim size larger than the 99,99% quantile is not necessarily extreme or abnormal, as

it could be reflected in the company´s traits and risk assessment of the customer and

insurance product, thus also reflected in a high insurance premium. Claim Percentage,

representing the relative difference between Insurance premium and Claim size, is a better

variable to evaluate. Moreover, Claim frequency is describing the relative amount of

Approved claims compared to the Policy years, making it an interesting variable for the

purpose of finding true outliers.
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For skewed data, an interquartile range method is often recommended to identify outliers

(Brownlee, 2020a). However, using this approach on Claim Percentage for observations

with approved claims, identifies more than 12% of all observations with claims as outliers,

which is suboptimal with regards to the framework of this thesis. Alternatively, one can

also use anomaly detection for outlier detection, but the data set has too many features

for this to be implemented in an efficient way. In other words, there is no precise way of

identifying and defining outliers in every data set as the definition of an outlier is highly

dependent on the underlying data. Therefore, one must interpret the data and decide

which values are deemed outliers (Brownlee, 2020a).

Based on the findings in Section 4.1.2 of descriptive statistics, performing in depth analysis

of the data and with domain knowledge from Frende, we have defined the following as

extreme cases with high likelihood of errors:

1. Claim percentage > 20 000%

2. Claim frequency > 100

3. Very small insurance premiums (<100 (NOK))

4. Very small claims sizes (<100 (NOK))

These identified abnormal cases have been further investigated to confirm that it is

reasonable to remove the observations. Based on the definitions, 37 observations were

identified as abnormally large in terms of Claim percentage and Claim frequency, and

618 observations were identified as having a too small Insurance premium or Claim size.

In total, removing these instances results in 655 observations being dropped out of the

total 116 219 observations. Hence, there is a penalty when eliminating possible outliers,

as the data set is already imbalanced and the imbalance is increased further by losing

more observations of the minority class. This trade-off is important to consider, especially

as tree-based machine learning models are in fact robust to outliers (Hastie et al., 2009).

This is, however, also why the removal of outliers is as restricted as it is. Neural networks

are somewhat more sensitive to outliers, which will be addressed in the modelling by

standardizing the features (Goodfellow et al., 2016).
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4.2 Evaluation of Models

There are several metrics that can be used to quantify a model’s predictive performance.

Unfortunately, there is no optimal metric for every situation and each metric has their

individual strengths and weaknesses. However, depending on the problem at hand, some

evaluation metrics generally performs better than others. Quantification of a model’s

performance is different in the context of classification and regression, such that our two

response variables have different metrics applied to evaluate our model’s performance.

4.2.1 Classification Metrics

In order to assess a binary classification model’s performance there are several metrics

that can be used. Among these are, for instance, metrics derived from a confusion matrix

and the Receiver Operating Area Under the Curve, shortened ROC-AUC (see e.g., Hossin

and Sulaiman, 2015). A confusion matrix is a visual representation of the predictive

performance of a classification model. For a two class model, the confusion matrix consists

of a two by two table that divides predictions into four categories: true positives (TP),

false positives (FP), true negatives (TN) and false negatives (FN). True positives refers

to the number of observations that are correctly classified as the positive class, whilst

false negative are the number of observations that are incorrectly classified as the negative

class. Analogically, the same applies for true negatives and false positives. The following

figure describes a two-by-two confusion matrix:

Actual Negative Actual Positive

Predicted Negative TN FN
Predicted Positive FP TP

Table 4.6: Illustration of a confusion matrix

The objective of a classification model is to maximize the fraction of true negatives and

true positives, thereby minimizing misclassifications. Accuracy is the most interpretable

metric derived from the confusion matrix and details the percentage of the observations

that are correctly classified:
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Accuracy =
TN + TP

TN + FN + TP + FN
(4.1)

The main advantage of accuracy is its interpretability. However, accuracy falls short when

dealing with an imbalanced distribution of the predicted classes. This can be showcased

using an example of predicting heart disease, where only 10% of the observations have

the disease. By simply predicting every observation to not have heart disease would yield

a 90% accuracy. A model with an accuracy of 90% would, with a balanced data set, be

deemed a good model, but in this example the metric does not depict the model’s true

predictive capability. Precision and recall are two metrics that combat the disadvantage

of solely using accuracy as a performance measure. Precision refers to the proportion of

actual positive classification and is calculated as the ratio of correctly classified positives

by the total of positive classified observations. In contrast, recall (sensitivity) refers the

proportion of actual positive classes that are classified in the positive class (Hossin and

Sulaiman, 2015).

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)

Maximizing precision and recall will minimize the number of false positive errors and false

negative errors, respectively. Therefore, precision may be an appropriate metric where

false positives are of importance, whilst recall may be appropriate when false negatives

are of importance (Brownlee, 2020b). It is important to note, however, that even though

one error has importance, the other one should not be disregarded. To take both into

concern one can utilize F-beta measure:

Fβ =
(1− β2 ∗ Precision ∗Recall)

β2 ∗ Precision ∗Recall
(4.4)

A β-value of 1 refers to the F1-measure and treats the balance between precision and

recall as equally important. If one sets a β-value of 0.5 precision is of more importance,

whilst the opposite is true for a β-value of 2.

The receiver operating characteristics (ROC) is a probability curve and performance

measure that is often used in machine learning. The ROC-curve plots the true positive
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rate versus the false positive rate at various probability thresholds for a given model,

and summarizes the performance with respect to the positive class. The true positive

rate (TPR) is equal to that of recall above, but is often termed as sensitivity in the

context of ROC. The false positive rate is equal to 1− specificity and is the proportion

of observations that were misclassified as positive. The false positive rate (FPR) can be

written as:

FPR = 1− specificity = 1− TN

TN + FP
(4.5)

Each point along the ROC-curve represents the false positive rate and the true positive

rate at a given threshold between 0 and 1. Intuitively, each point also represents a distinct

confusion matrix and corresponding measures derived from it. Examples of a ROC-curves

is displayed in Figure 4.7. A ROC curve A is said to be dominative of another if it is above

and to the left of curve B. However, there is often not a clear distinction between curves

as they often perform differently compared to each other along the curve (Huang and

Ling, 2005). This is illustrated in Figure 4.7 where ROC-curve A dominates B initially,

but is outperformed with increasing FPR:

Figure 4.7: Example of ROC-curves where each performs best at different
stages

38 4.2 Evaluation of Models

rate versus the false positive rate at various probability thresholds for a given model,

and summarizes the performance with respect to the positive class. The true positive

rate (TPR) is equal to that of recall above, but is often termed as sensitivity in the

context of ROC. The false positive rate is equal to l - specificity and is the proportion

of observations that were misclassified as positive. The false positive rate (FPR) can be

written as:

TN
F P R = l - specificity= l - T N + FF (4.5)

Each point along the ROC-curve represents the false positive rate and the true positive

rate at a given threshold between Oand l. Intuitively, each point also represents a distinct

confusion matrix and corresponding measures derived from it. Examples of a ROC-curves

is displayed in Figure 4.7. A ROC curve A is said to be dominative of another if it is above

and to the left of curve B. However, there is often not a clear distinction between curves

as they often perform differently compared to each other along the curve (Huang and

Ling, 2005). This is illustrated in Figure 4.7 where ROC-curve A dominates B initially,

but is outperformed with increasing FPR:

1
T P R

0 . 8

0 . 6

0 .4

0 . 2

D 0.2 0 . 4 0.6 0 .8 1
F P R

Figure 4.7: Example of ROC-c rves where each performs best at different
stages



4.2 Evaluation of Models 39

To better distinguish between models, one of the most utilized measures is the area

under the curve (AUC), which is calculated as the area under a given ROC-curve. The

ROC AUC represents a model’s ability to distinguish between classes for all probability

thresholds (James et al., 2013). The ROC AUC has values between 0 and 1, where values

close to 1 indicate a model with perfect ability to distinguish between the two classes.

The higher the score, the better a model predicts the correct classes. Compared to a

ROC-curve, the AUC summarizes a classifiers performance overall, and is therefore a great

measure to compare different classifiers across all threshold values (Hossin and Sulaiman,

2015).

4.2.2 Regression Metrics

In contrast to classification problems, one cannot use the metrics presented above to

evaluate regression problems on continuous variables. However, regression metrics are

mostly easier to implement, interpret and understand. The most common evaluation

metrics for numeric responses are mean squared error (MSE), root mean squared error

(RMSE) and mean absolute error (MAE) (James et al., 2013).

Mean squared error (MSE) represents the average squared difference between the predicted

and actual values (see e.g., James et al., 2013). MSE measures the goodness of fit, and

the higher the error a model returns, the higher the MSE. It is is calculated by averaging

the squared difference between observed value yi and the predicted value ŷi. Root mean

squared error represents the square root of MSE. RMSE is used more frequently compared

to MSE due to interpretability. In some cases, MSE can become quite large number

making relatability difficult. RMSE combats this by taking the square root, bringing

the values back down to their original level. Additionally, large deviations are penalized

more than smaller deviations and is therefore especially important if one does not want

to emphasize such deviations. RMSE can be formulated as:

RMSE =
√
MSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (4.6)

Mean absolute error is an alternative performance measure to the MSE and RMSE, and is

a more direct representation of the errors a model produce. MAE represents the absolute
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deviation between the observed value and the predicted value. In contrast to RMSE,

MAE does not penalize larger deviation, but rather treat all deviations equally. Using the

same notation as above, MAE can be formulated as:

MAE =
1

N

N∑
i=1

|yi − ŷi| (4.7)

RMSE is often preferred compared to MAE due to the usage of absolute value in the

latter. Many machine learning models optimize its parameters through minimizing the

differentiated loss function which is easily done by using MSE or RMSE. Optimization

of MAE requires usage of different methods such as gradient descent which can be

computationally demanding (Chai and Draxler, 2014).

4.3 Implementation

This section outlines the implementation of the presented models. This includes splitting

of data, hyperparameter tuning, sampling techniques, as well as the software utilized. The

process of writing this thesis has accumulated thousands of lines of code which in turn

have been reviewed and corrected extensively to ensure the validity of our results. Lastly,

the implementation is inspired by both academic literature and suggestions or solutions

proposed on various forums such as Stack Overflow and GitHub.

4.3.1 Software

All technical aspects of this thesis, such as building models and processing data, have been

applied mainly using Python. In addition, programming packages such as scikit-learn

(Pedregosa et al., 2011), Pytorch (Paszke et al., 2019) and XGBoost (Chen and Guestrin,

2016) have been applied to implement the models. Specifically, scikit-learn has been

used for pre-processing, cross validation, resampling, GLM (classification), CARTs and

Random Forest. The Pytorch and XGBoost packages have been used for Neural Networks

and XGBoost, respectively. All models have been implemented using Python. However,

due to lack of flexibility and implementation difficulties, the GLM with Claim size as

response had to be implemented in R with the glmnet library (Friedman et al., 2010).

In this case, we ensured that the same training, validation and test sets were used by
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exporting them from our python scripts rather than doing the split in R itself.

4.3.2 Partitioning of Data

Evaluation of machine learning methods require both data to train and fit the model,

and data to test the model’s predictive capabilities on unseen data. If one were to both

train and test models on the same data, the resulting evaluation scores would not depict

that of reality. This means that the model is most likely overfit to the training data and

consequently will not showcase its real predictive capability on new and independent data.

Therefore, data are often split into a training set, a validation set and a test set. The

training set is used to fit the model with optimized parameters that minimizes a selected

loss function. The validation set is then used to evaluate the performance of the model.

The test set is used to find the general error of the best performing model. In terms of

model selection (comparing performance of different models), the validation set is used

rather than the test set, such that the final chosen model does not underestimate the

generalized test error (Hastie et al., 2009).

Typically, one would randomly select the data-splits by fractions of the total observations

such that a 40-40-20 split refers to 40% used for training set, 40% used for validation set

and 20% used as test set. There are several methods for choosing an appropriate split

(see e.g., James et al., 2013). In this thesis we wanted to utilize a split such that we could

implement our experimental model to analyze the potential gain from the models for a

given year. Therefore, the last year (2021) of our data set is taken out in its entirety as

our test set for the experimental model whilst a validation set is used to examine the

predictive capabilities of our individual models.

For predicting Claim (classification), the remaining observations are split into a training

set and a validation set by a fraction of 80% and 20% respectively. As a result, 65.46% of

the total observations comprise the training set, 21.82% the validation set and 12.71%

the test set. The same pseudo random number generator has been used such that the

splits are equal for every model implemented across all scripts. Additionally, the split is

stratified such that the proportion of claims in each data set remain equal. For predicting

Claim size (regression), all observations that do not include response for Claim size (a

value of 0) are removed such that the models train on relevant responses. Meaning that,
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as shown in Section 4.1.2.1, only 14% of the observations in the complete data set are

included in the modelling process of Claim size.

The training data is used for fitting and hyperparameter tuning through cross validation.

This process is further explained in the following section. The validation set is used for

model selection for models predicting Claim and Claim size. The two selected models

(from the validation set), are then combined and utilized on the test set. To be precise,

the test set (data for 2021) is only utilized in the experimental setup to get an less biased

estimate of the combined model’s performance.

4.3.3 Hyperparameter Tuning

A vast majority of machine learning methods require some form of hyperparameter tuning

in order to optimize the fit of a model and its corresponding predictive capability (Probst

et al., 2019). Hyperparameters are parameters that are set manually by the user, meaning

that they are not estimated by a model, but rather set prior to the model being fit. Machine

learning methods have different set of hyperparameters, and the number of parameters

varies. In short, hyperparameters restricts how the model learns and fits the data. A

challenge with hyperparameters is that there is no initial “go-to” solution for a given

problem, such that an optimal solution must be derived. Examples of hyperparameters

are the number of trees in a random forest, the learning rate in XGBoost or the number

of hidden layers in a neural network.

There are several methods to tune hyperparameters, but in this thesis we have utilized a

grid search with 10th-fold cross validation. A grid search, in this case, takes a predetermined

subset of the parameters and iterates through every combination of the parameters in a

10th-fold cross validation, and returns the average of a specified evaluation metric from

each fold. Tuning hyperparameters using the grid search method is computationally

challenging, especially with smaller increments in the subset of parameters. As a result, we

cannot guarantee that the resulting parameters are optimal across all possible combination

of parameters. However, they can still be assumed to produce results close to that of the

optimal solution.
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4.3.4 Model Development

This section will provide a brief overview of model implementation. The hyperparameters

that returned the highest AUC for classification and RMSE for regression were selected

for every respective model. A full description of the tuning process and consequent grid

searches conducted are shown in the appendix A3.

In our models for GLM, we have used the l1-lasso regularization in order to reduce the

number of variables in the fitted model. For classification, the logistic regression was

used. When applying GLM on Claim size both the gamma and inverse gaussian were

potential distribution families. Without the proper domain knowledge regarding the

proper distribution family, both were tested and evaluated using RMSE. In contrast to

other advanced machine learning algorithms, GLMs require little tuning efforts, however,

we determined the penalty parameter λ through cross validation.

CARTs usually presents several hyperparameters to be tuned. However, they have been

implemented through cost complexity pruning, resulting in a single hyperparameter

α (pruning parameter). As CARTs are less computationally demanding compared to

advanced machine learning techniques, the optimal α was found through several hundred

candidates.

The Random Forest and XGBoost algorithms have multiple hyperparameters that can

greatly affect the performance of the models. Therefore, the hyperparameters have been

tuned extensively across a vast interval for each parameter. The following parameters

were tuned for the Random Forest (note that they are denoted in the practical sense,

not the theoretical): Maximum depth, number of features selected, number of trees in

the ensemble, minimum number of samples at each split and the minimum number of

samples in each resulting leaf. For XGBoost, we tuned: Learning rate, maximum depth

of a tree, the minimum sum of weights of all observations required in a child, gamma (the

minimum loss reduction required to make a split), subsamples, fraction of columns to be

randomly sampled for each tree, lambda (L2 regularization term on weights) and alpha

(L1 regularization term on weight).

The Neural Networks offers great flexibility and complex in terms of tuning. The models

in this thesis have been tuned on learning rate, number of layers and number of neurons(in
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each layer).

We have developed all classification models both with and without resampling. The

resampling has been conducted by using a combination of oversampling and undersampling,

employing SMOTE and random undersampling, respectively. During hyperparameter

tuning, resampling has been applied within the cross validation process, meaning that for

each fold, the training data was resampled whilst the out-of-sample fold was kept as is.

Lastly, the entire training data was resampled to fit the parameters of each specific model

with optimized hyperparameters. It is important to note that our resampling strategy

could also be treated as hyperparameters. However, due to already computationally

demanding techniques, we have kept the strategy constant. Therefore, the training data

was first oversampled making the proportion of the minority class (claim occurences)

35% of the total observations. Subsequently, the majority class was then randomly

undersampled, matching the fraction of the majority class equal to that of the minority

class i.e., a balanced data set.
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5 Analysis of Results

This section will present the results for the classification models predicting Claim and the

regression models predicting Claim size. Both classification and regression models will be

presented and evaluated with the three different input-groups defined in Section 2.1:

Yearly premium – Insurance premium is the only explanatory variable

Yearly variables – Yearly premium + all variables related to the company and its

products

Yearly + time variables – Yearly variables + feature engineered time variables

A complete overview of which of the variables presented in section 4.1.1 that are included

in each of the three input-groups can be found in appendix A1.

The differences among the prediction results using the various input-groups will indicate

if there is valuable information in company-specific characteristics, insurance products

and time variables. This is in addition to information related to both claim severities and

claim occurrences that is assumed represented indirectly in the Insurance premium.

5.1 Claim Occurrences

Predicting Claim is a binary classification problem, and is estimated with and without

resampling techniques. The ROC AUC scores will be presented which will be the foundation

for the model evaluation. As the outputs of the predictions will be binary, a threshold

must be selected for classifying the observation into 1 and 0. Recall and precision metrics

on the validation set will be presented after applying the optimal threshold in terms of

F1-score and a less conservative threshold maximizing the F0.5-score. Both thresholds

were selected in the training process to provide less biased results. Additionally, the

variable importance for the preferred machine learning models for Yearly variables

and Yearly + time variables will be presented as it will provide information on which

features are the most important when predicting claim occurrences.
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5.1.1 AUC Comparison

Table 5.1 shows the results in terms of AUC when predicting Claim without resampling

techniques. The results of applying SMOTE and undersampling are shown in Table 5.2.

In total these tables show that there are very modest differences among the two groups

of models. Almost all algorithms and input-groups have marginally better performances

when resampling is not applied. Nevertheless, in regards to AUC, there is no gain for the

models to introduce resampling.

Model Yearly Premium Yearly variables Yearly + Time variables

GLM binomial 0.7804 0.8198 0.8257
Classification Tree 0.7493 0.8011 0.8023
Random Forest 0.7390 0.8411 0.8425
XGBoost 0.7792 0.8413 0.8457
Neural Network 0.7803 0.8319 0.8335

Table 5.1: AUC results comparison without resampling techniques

Model Yearly Premium Yearly variables Yearly + Time variables

GLM binomial 0.7804 0.8201 0.8255
Classification Tree 0.7502 0.7991 0.8019
Random Forest 0.7319 0.8402 0.8413
XGBoost 0.7789 0.8406 0.8434
Neural Network 0.7804 0.8300 0.8326

Table 5.2: AUC results comparison with resampling techniques

Predicting Claim solely on the basis of Yearly premium yields relatively acceptable

results, with the AUC being above 0.73 for all algorithms. Including Yearly variables

results in a substantial increase in performance for all algorithms. Meaning that when

predicting Claim, there seems to exist explanatory power in the individual company-

specific characteristics and/or insurance products. However, more surprisingly, there is

only a small performance improvement when including the time variables for all algorithms.

GLM(without resampling) has the largest improvement of 0.0059, and for comparison

going from only Yearly Premium to including yearly variables yields an improvement of

0.0394. XGBoost without resampling, being the best performing machine learning model,

only achieves an improvement of 0.0044 in terms of AUC when including time variables.

This indicates that the likelihood of Claim is not that affected by prior years, i.e., there

is likely no strong company-specific trends. It could also be related to a weakness in
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the imputation of the time variables when values are missing, affecting the performance

of the features. Both Yearly variables and Yearly + time variables includes the

variable Has Claim Last Three Years Prior To Frende, indicating that there could be

some company-specific trend being captured in this variable as well.

The difference in the performance of the various machine learning models, visualized in

Figure 5.1, is as expected when including all variables. Classification tree is the worst

performing of the models, aligning with the empiric referred to in Section 3.2. The other

models outperform the GLM model in terms of AUC when including additional variables

to Yearly premium , possibly indicating that the data has complex relationships that

are easier for the more complex machine learning models to capture. Random Forest and

XGBoost are very similar in their performance, with a slight edge to XGBoost. Neural

network has a lower performance than the two complex tree-based ensembles.

Figure 5.1: ROC-curve comparison modelling Claim

In total we see that XGBoost has the best performance and is marginally better when

including time variables as opposed to only Yearly variables . With an AUC of 0.8457

without using resampling techniques, we can conclude that the model is doing a reasonably

good job at discriminating the two distinct classes.
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Figure 5.1: ROC-curve comparison modelling Claim

In total we see that XGBoost has the best performance and is marginally better when

including time variables as opposed to only Yearly variables. With an AUC of 0.8457

without using resampling techniques, we can conclude that the model is doing a reasonably

good job at discriminating the two distinct classes.
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5.1.2 Confusion Matrix & Metrics

To further investigate the effect of resampling and how well XGBoost classifies Claim, the

confusion matrices for the models with and without resampling are presented with their

corresponding metrics.

The thresholds maximizing the F1-score on the training set predictions are 0.332 with

and 0.292 without resampling. The results applying these thresholds on the validation set

are displayed in Table 5.3 and Figure 5.2 (a and c). If the value of precision is larger

than recall, F-score with the beta 0.5 is more suitable to optimize. The latter gives the

resampled model an optimal threshold of 0.592, whilst without resampling the data yields

an optimal threshold of 0.443. Table 5.4 and Figure 5.2 (b and d) show the validation

results for these, less conservative, thresholds.

Recall Precision Specificity Negative predictive value F1-score F0.5-score

Resampling 0.5565 0.4649 0.8952 0.9250 0.5066 0.4807
No resampling 0.4992 0.5232 0.9256 0.9187 0.510 0.5182

Table 5.3: Confusion matrix metrics applying thresholds maximizing the F1 score (0.332
and 0.292 with and without resampling, respectively)

Recall Precision Specificity Negative predictive value F1-score F0.5-score

Resampling 0.3168 0.6905 0.9768 0.8973 0.4343 0.5586
No resampling 0.3484 0.6670 0.9716 0.9011 0.4577 0.5639

Table 5.4: Confusion matrix metrics applying thresholds maximizing the F0.5 score
(0.592 and 0.443 with and without resampling, respectively)

The resampled model, with its optimal threshold in terms of F1-score, identifies 55.65% of

the observations that will have one or several claims. However, the downside is that less

than half (46.49%) of the predicted positives were actually correctly labeled. Alternatively,

a more conservative threshold, such as maximizing the F0.5-score, can be applied. This

results in a recall rate of 31.68% and precision rate of 69.05%. The precision increases,

but the model identifies fewer of the data observations with claims.

48 5.1 Claim Occurrences

5.1.2 Confusion Matrix &zMetrics

To further investigate the effect ofresampling and how well XGBoost classifies Claim, the

confusion matrices for the models with and without resampling are presented with their

corresponding metrics.

The thresholds maximizing the Fl-score on the training set predictions are 0.332 with

and 0.292 without resampling. The results applying these thresholds on the validation set

are displayed in Table 5.3 and Figure 5.2 (a and c). If the value of precision is larger

than recall, F-score with the beta 0.5 is more suitable to optimize. The latter gives the

resampled model an optimal threshold of 0.592, whilst without resampling the data yields

an optimal threshold of 0.443. Table 5.4 and Figure 5.2 (b and d) show the validation

results for these, less conservative, thresholds.

Recall Precision Specificity Negative predictive value Fl-score F0.5-score

Resampling 0.5565 0.4649
No resampling 0.4992 0.5232

0.8952
0.9256

0.9250
0.9187

0.5066
0.510

0.4807
0.5182

Table 5.3: Confusion matrix metrics applying thresholds maximizing the Fl score (0.332
and 0.292 with and without resampling, respectively)

Recall Precision Specificity Negative predictive value Fl-score F0.5-score

Resampling 0.3168 0.6905
No resampling 0.3484 0.6670

0.9768
0.9716

0.8973
0.9011

0.4343
0.4577

0.5586
0.5639

Table 5.4: Confusion matrix metrics applying thresholds maximizing the F0.5 score
(0.592 and 0.443 with and without resampling, respectively)

The resampled model, with its optimal threshold in terms of Fl-score, identifies 55.65% of

the observations that will have one or several claims. However, the downside is that less

than half (46.49%) of the predicted positives were actually correctly labeled. Alternatively,

a more conservative threshold, such as maximizing the F0.5-score, can be applied. This

results in a recall rate of 31.68% and precision rate of 69.05%. The precision increases,

but the model identifies fewer of the data observations with claims.



5.1 Claim Occurrences 49

(a) Resampling - F1 threshold(0.332) (b) Resampling - F0.5 threshold(0.592)

(c) Without resampling - F1 threshold(0.292) (d) Without resampling - F0.5 threshold(0.443)

Figure 5.2: Confusion matrices for the XGBoost model (including Yearly + Time variables)
with and without resampling applying thresholds maximizing the F1-score and F0.5-score

Choosing the threshold is facing the trade-off between false positives (type 1 error) and

false negatives (type 2 error). Essentially, it comes down to if one wants to be certain that

customers predicted with Claim = 0 will actually have no claims, thus a high precision,

or that the customers with Claim = 1 actually are going to have a claim – hence a high

recall and negative predicted value. Cancer classification is a typical example of where

one would prefer a low false negative, thus aiming for a high recall rate. Applying this

logic for insurance, one would want to identify as many customers with claims as possible.

However, Figure 5.2 (a) showcases that for the resampled model that this will yield more
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false positives than true positives. Consequently, it makes more sense for an insurance

company to value both precision and recall, with a slight edge to precision. If the latter is

in fact most important, the threshold needs to be increased, compared to optimizing for

the F1-score, in order to apply the model in an experimental setting. In an experimental

setting looking at profit, the threshold would essentially, to an extent, reflect the cost of

taking on an unprofitable customer vs. the cost of losing a profitable customer.

Both models (with and without resampling) show similar results and tendencies as the

threshold increases. For both thresholds, the resampled model values recall more, in

the trade-off between precision and recall, than the model without resampling. The

latter model scores best in terms of F1 and F0.5 score for both tresholds, in addition to

having the highest AUC score. Meaning that for predicting Claim, the XGBoost without

resampling is deemed the better model. Even though the observations are not resampled

in the training process, the dataset imbalance is addressed by using AUC and F-scores as

our comparison metrics, rather than accuracy.

5.1.3 Variable Importance

One of the trade-offs with machine learning models compared to conventional statistical

methods is interpretability (Alpaydin, 2020). However, there are some options to provide

some insights into the importance of the explanatory variables. The tree-based methods

can provide variable importance. The neural network can also theoretically be visualized

in terms of variable importance, but due to its complexity it is often not that insightful

to interpret (Goodfellow et al., 2016).

The variable importance for XGBoost is displayed in Figure 5.3 and 5.4, for the input-

groups Yearly variables and Yearly + Time variables, respectively. The figures

illustrate that the variable importance for the two models is very similar, with the biggest

difference being that Prior Three Years Average Number Of Claims is included for Yearly

+ Time variables. This variable was feature engineered and is among the top five most

important features for the model. The XGBoost model including time variables weights

insurance premium as more important. As there is only a marginal difference in the ROC

AUC score when using XGBoost on Yearly variables vs. Yearly + Time variables,

it makes sense that there are no vast differences in the variable importance. Both models
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have Has claim last three years prior to Frende in their top five most important features,

indicating that previous records are relevant.

Figure 5.3: Variable importance for XGBoost with Yearly variables and no resampling

Figure 5.4: Variable importance for XGBoost with Yearly + Time variables and no
resampling

In total we see that it is the data related to insurance types, rather than what kind of

business the customer is, that is affecting the probability of claim. Firmabilforsikring –

delkasko, being a car insurance with partial casco, is the most important feature. From the

descriptive statistics of insurance products in Section 4.1.2.2 we observed that vehicular

insurance products were represented in terms of most frequent products, total observations

with claims and with relatively high shares of Claim among its related observations. It

makes sense that there exist a high probability of claims having this type of insurance
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makes sense that there exist a high probability of claims having this type of insurance
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product, thus it is most likely included in the pricing of the product (Insurance premium).

The severity might, however, not be extreme, meaning that these customers can still

be profitable. The explanatory power of company-specific data apart from its chosen

products and historic records, seems to be of a very limited value.

5.2 Claim Size

Predicting the Claim size if one or more claims takes place is a continuous problem, thus,

regression models are used. We will represent the RMSE and MAE metrics for the model

from evaluating on the validation set.

5.2.1 RMSE & MAE Comparison

The results from the validation set in terms of RMSE and MAE is displayed in Table

5.5 and 5.6, respectively. All models are performing unsuccessfully with high RMSE and

MAE errors. The algorithms are performing better than predicting the mean and/or

median of the training set in terms of RMSE, indicating that Insurance Premium have

some explanatory power. However, more surprisingly the models are performing poorer,

or only with marginal improvements, when including the additional input groups – both

Yearly variables and Yearly + Time variables in terms of RMSE. This indicates

that the company-specific variables are not of importance, and that the number of

irrelevant variables is in this case lowering the performance of the algorithms, possibly as

a consequence of overfitting.

Model Yearly Premium Yearly variables Yearly + Time variables

Mean1 323148 323148 323148
Median2 328065 328065 328065
GLM inverse gaussian 273076 276200 287941
Regression Tree 290146 296348 291433
Random Forest 290603 283243 282697
XGBoost 271725 283386 280618
Neural network 322648 322166 321446

Table 5.5: RMSE model comparison

52 5.2 Claim Size

product, thus it is most likely included in the pricing of the product (Insurance premium).

The severity might, however, not be extreme, meaning that these customers can still

be profitable. The explanatory power of company-specific data apart from its chosen

products and historic records, seems to be of a very limited value.

5.2 Claim Size

Predicting the Claim size if one or more claims takes place is a continuous problem, thus,

regression models are used. We will represent the RMSE and MAE metrics for the model

from evaluating on the validation set.

5.2.1 RMSE & MAE Comparison

The results from the validation set in terms of RMSE and MAE is displayed in Table

5.5 and 5.6, respectively. All models are performing unsuccessfully with high RMSE and

MAE errors. The algorithms are performing better than predicting the mean and/or

median of the training set in terms of RMSE, indicating that Insurance Premium have

some explanatory power. However, more surprisingly the models are performing poorer,

or only with marginal improvements, when including the additional input groups - both

Yearly variables and Yearly 4 T i m e variables in terms of RMSE. This indicates

that the company-specific variables are not of importance, and that the number of

irrelevant variables is in this case lowering the performance of the algorithms, possibly as

a consequence of overfitting.

Model Yearly Premium Yearly variables Yearly + Time variables

Mean' 323148 323148 323148
Median2 328065 328065 328065
GLM inverse gaussian 273076 276200 287941
Regression Tree 290146 296348 291433
Random Forest 290603 283243 282697
XGBoost 271725 283386 280618
Neural network 322648 322166 321446

Table 5.5: RMSE model comparison



5.2 Claim Size 53

Model Yearly Premium Yearly variables Yearly + Time variables

Mean1 91516 91516 91516
Median2 67518 67518 67518
GLM inverse gaussian 86377 83252 83951
Regression Tree 84001 83468 85994
Random Forest 87552 83252 83951
XGBoost 80299 79634 79993
Neural Network 77096 75871 77718

Table 5.6: MAE model comparison

There seems to be a trade-off between RMSE and MAE. Several of the models with the

highest RMSE, have the lowest MAE. Table 5.7, displaying the summary statistics for the

observations and the various predictions performed by the models with Yearly premium

as input group, can provide some insight to this.

Min. 1st Qu. Median 3rd Qu. Max.

Observed 148 6300 18575 55482 10079260

GLM inverse gaussian 42 34397 58829 92949 6338867
Regression Tree 480 17401 23774 36178 6693063
Random Forest 7321 33204 55312 87579 6489996
XGBoost 3335 42158 53945 86492 4714608
Neural Network 52677 52757 52921 53223 127783

Table 5.7: Summary statistics of model predictions

From the summary statistics section we see that there is a large variation in the top 5-10%

of the observed values of Claim size, and we clearly see this within the validation set with

its values ranging from 148 to 10 079 260. The models seem to be struggling with finding

patterns to explain the variation. This is especially true for the Neural Network which is

for more than 75% of the cases predicting the claim sizes to be within the small range of

52 000 – 54 000. XGBoost seems to capture more of the variance, but for the majority

of the observations it seems to overestimate the claim sizes. This also applies for GLM,

Regression Tree and Random Forest which have larger max values, indicating that there

is a larger variation in their predictions.

As seen in Table 5.6, the Neural Network model is the best performing algorithm when

considering MAE. This can be explained by RMSE penalizing major deviations more than
1Always predict the mean of the training set
2Always predict the median of the training set
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MAE. When the Neural Network model is always predicting relatively small claim sizes

(< 130 000), it will on average get relatively small absolute errors. The infrequent and

more extreme values influence MAE substantially less than RMSE as MAE is a linear

error function. This is also why predicting the median of the training set minimizes MAE

more than all the complex algorithms. However, predicting the same value, or close to

the same value, for each observation is suboptimal. Thus RMSE, which seems to lead

models to have larger spans in their predictions, looks to be a more suitable error metric

in this case.

The various algorithms are performing with similar errors in terms of RMSE. XGBoost

is performing best on the Yearly Premium having a RMSE of 271 725, with the

GLM model following very closely. When including Yearly variables GLM is the best

performing model, and moreover when taking the additional time variables into account

Random Forest have the lowest RMSE score. Neural Network is as expected the worst

performing in regards to RMSE . The Regression Tree is outperforming Random Forest

on the Yearly premium, similar to classification tree for with the same input group, but

have the highest RMSE error of all three-based methods for the other input-groups.

In total we observe that the models are struggling with predicting the severity of the

claims. All models are seemingly weak, but out of the group the best performing model

on the validation set in terms of RMSE is the XGBoost model with Yearly Premium as

input group. One should not put too much emphasis on this, as XGBoost performing the

best could be random, when the differences among the models are relatively small and

seems slightly arbitrary. In addition, the XGBoost model only yields a marginally lower

RMSE error than GLM.
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6 Experimental Implementation

6.1 Combined Model

The final model combines the classification model predicting Claim and the regression

model predicting Claim Size for more experimental purposes, with the goal of predicting

a customers total expected cost, as follows:

Total expected cost = Claim ∗ Claim size (6.1)

From Claim Occurrences (Section 5.1) and Claim Size (Section 5.2), we selected XGBoost

for both classification (without resampling) and regression, with the input-groups Year +

Time variables and Yearly premium, respectively. Meaning that the combined model

is the following:

Combined model = XGBoost (Claim) ∗XGBoost (Claim size) (6.2)

As can be observed in chapter 5, modelling Claim seems to be more successful than

predicting the severity if such a claim takes place. The error metrics RMSE and MAE are

useful for comparing the various algorithms and input-groups when predicting Claim size.

However, it can be hard to grasp how well the model performs for its purpose, which is to

identify profitable corporate customers by predicting Total expected cost. To assess the

combined model, we will introduce results from a more experimental application of the

model on the test set which is the data from 2021.

Using Frende’s definition of a profitable customer (defined in the Section 2.1), we can label

all corporate customers with a total expected cost larger than 70%*Insurance premium as

“Not profitable”.

For experimental purposes we can cut all observations that are labeled as “Not profitable”

from Frende’s customer portfolio for their respective year. In reality, one would not drop a

customer that is expected to be unprofitable, but rather adjust the premium accordingly.

Adjusting the premium, would, however, depend on the regression model performing
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For experimental purposes we can cut all observations that are labeled as "Not profitable"

from Frende's customer portfolio for their respective year. In reality, one would not drop a

customer that is expected to be unprofitable, but rather adjust the premium accordingly.

Adjusting the premium, would, however, depend on the regression model performing
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better, such that it can facilitate prices that are not possibly obscure. The simplified

experimental version, dropping the customers, will still provide some insight as to the

model’s ability to identify good or bad corporate customers.

6.2 Optimal Threshold for Claim in Terms of Profit

Predicting Claim, we observed that the threshold for classifying the predictions greatly

affected the rates of false positives and false negatives in terms of having a claim or

not. There are three considerations related to the combined model that makes this

threshold influential and complicated; (1) True positives can be identified in Claim, and

as a consequence of a poorly performing regression model the claim severity might be

overestimated. From the descriptive statistics we observed that the majority of customers

with claims are still profitable. However, if the severity is wrongly predicted to be more

than 70% of the insurance premium, the customer is falsely labeled as “Not profitable”.

Hence, if applying the combined model, one would be better off not identifying this

customer as going to have a claim. (2) The prediction of Claim can also yield a large

amount of false positives. False positives can be predicted to have a claim severity larger

than 70% of the insurance premium, classifying the customers wrongly as “Not profitable”.

(3) If false positives were predicted to have low severities, the wrong labelling in the

classification model would ultimately not affect the labelling of “Profitable” vs. “Not

profitable”.

In total, the threshold for Claim is important for the combined model and is increasingly

important as the regression model is subpar. The optimal threshold in terms of profit is

the threshold at which the prediction of Claim is such that, when applying the combined

model, the profitability is maximized in terms of not letting go of too many good customers

and not taking on too many bad customers.

An insurance customer with a claim size higher than 70% of its paid insurance premium

is defined as not profitable. Essentially in terms of profits, a simplification is to represent

the remaining 30% of the insurance premium as other costs, which can be administrative,

but also a too small margin to be worth the risk. Furthermore, we can use this to define

a very simplified profit equation for each customer showed in Equation 6.3. The customer

portifolios total profits is defined in Equation 6.4.

56 6.2 Optimal Threshold for Claim in Terms of Profit

better, such that it can facilitate prices that are not possibly obscure. The simplified

experimental version, dropping the customers, will s t i l l provide some insight as to the

model's ability to identify good or bad corporate customers.

6.2 Optimal Threshold for Claim in Terms of Profit

Predicting Claim, we observed that the threshold for classifying the predictions greatly

affected the rates of false positives and false negatives in terms of having a claim or

not. There are three considerations related to the combined model that makes this

threshold influential and complicated; ( l ) True positives can be identified in Claim, and

as a consequence of a poorly performing regression model the claim severity might be

overestimated. From the descriptive statistics we observed that the majority of customers

with claims are st i l l profitable. However, if the severity is wrongly predicted to be more

than 70% of the insurance premium, the customer is falsely labeled as "Not profitable".

Hence, if applying the combined model, one would be better off not identifying this

customer as going to have a claim. (2) The prediction of Claim can also yield a large

amount of false positives. False positives can be predicted to have a claim severity larger

than 70% of the insurance premium, classifying the customers wrongly as "Not profitable".

(3) If false positives were predicted to have low severities, the wrong labelling in the

classification model would ultimately not affect the labelling of "Profitable" vs. "Not

profitable".

In total, the threshold for Claim is important for the combined model and is increasingly

important as the regression model is subpar. The optimal threshold in terms of profit is

the threshold at which the prediction of Claim is such that , when applying the combined

model, the profitability is maximized in terms of not letting go of too many good customers

and not taking on too many bad customers.

An insurance customer with a claim size higher than 70% of its paid insurance premium

is defined as not profitable. Essentially in terms of profits, a simplification is to represent

the remaining 30% of the insurance premium as other costs, which can be administrative,

but also a too small margin to be worth the risk. Furthermore, we can use this to define

a very simplified profit equation for each customer showed in Equation 6.3. The customer

portifolios total profits is defined in Equation 6.4.



6.3 Confusion Matrix of Profitable Customers 57

Profit = Insurance premium − Other costs − Total cost

where Other Costs = Insurance Premium ∗ 30%
(6.3)

Total profit =
∑

Insurance premium ∗ 70% −
∑

Total cost (6.4)

The relationship between total actual profits and thresholds for Claim is displayed in

Figure 6.1 for the XGBoost model with Year + Time Variables as input group using

the validation set. The optimal threshold for classifying Claim in terms of profits on the

validation set is 0.8. This threshold is significantly higher than the threshold maximizing

the F0.5 score, found in the training process of Claim, of 0.592. Nevertheless, in terms of

profit, the high threshold indicates that the precision is even more favored compared to

recall, than what the F0.5 score allows for.

Figure 6.1: Profit in validation set vs. threshold when classifying Claim

6.3 Confusion Matrix of Profitable Customers

The confusion matrix in Figure 6.2 shows the relationship between the predicted

profitability labels (applying 0.8 as a threshold for Claim) and the true labels in the

validation set. Among the predicted “Not profitable” there is a precision of 27.16 %, and

a recall of 7.93%. Thus, as expected, we see that precision is more important than recall,

such that one does not misclassify too many of the actual profitable customers. Both

metrics are low, suggesting that the optimal solution based on this combined model, is

struggling with the identification of “Not profitable” customers.
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Figure 6.2: Confusion matrix of predicted vs. actual profitable and not profitable
customers in the validation set

Cutting the predicted unprofitable customers would essentially result in dropping 497

of the corporate customers in the validation set. This includes 135 actual unprofitable

customers, and 362 customer that would have been profitable as shown in Figure 6.2.

Meaning, that in terms of the trade-off between the gain of dropping bad customers vs.

loosing good customers, in general, the cost of one bad customer is higher than the income

gained from one good customer. Otherwise, the optimal threshold would have been close

to 1, indicating that no customer should be labeled with “Claim”, as it could lead them to

being labeled as unprofitable (if the expected claim severity were relatively high). The

recall rate for “Not profitable” would have been higher if a lower threshold was applied.

However, in terms of profits it would have been too expensive having a larger group of

falsely labeled “Not profitable”.

To get a less biased result of how well the model is able to identify profitable and

unprofitable customers, this needs to be further investigated using the test-set.

6.4 Alternative Profitability in 2021

Combing the model with the newly defined optimal threshold (0.8) for binary classification

we can use the predictions to cut unprofitable customers for 2021. The XGBoost combined

model is essentially competing against what Frende is currently doing. Consequently,
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the company’s earnings is derived by applying Equation 6.4 on the corporate customer

portfolio for 2021. Table 6.1 shows what happened in 2021 vs. the alternative truth which

essentially is cutting the customers the combined model predicts to be unprofitable.

Model 2021 Frende 2021 Net effect
(Frende – model)

Sum insurance premium (70%) 209 066 136 233 991 693 -24 925 557
Sum paid out claims 163 644 082 190 660 641 +27 016 559
Total profits 45 422 053 43 331 052 +2 091 001

Table 6.1: Profitability in 2021 vs. alternative profitability applying the XGBoost model

There is, as expected from our model, a drop in both the sum of insurance premiums and

claim sizes. The net effect is an increase in profits of 2 091 001 NOK, which is a relative

increase in profits of 4.8%.

From the confusion matrix in Figure 6.3 we see that Frende would have dropped 80

unprofitable customers, but also losing the premiums of 160 customers that would not

have required any pay-outs. In total, the model is able to identify some unprofitable

customers, and at the same time not let go of too many good customers when doing so,

as we get a net positive result. However, 93% of the unprofitable customers were not

identified.

Figure 6.3: Confusion matrix of predicted vs actual profitable and not profitable
customers for 2021
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In the customer portifolio of 2021 8.85% of the customers are unprofitable, whilst the

precision among the 240 observations labeled “Not profitable” is 33.33%. This essentially

indicates that the XGBoost combined model has a substantial better performance in

identifying unprofitable customers, than if one were to draw 240 observations randomly.

The results are interesting, but there should not be put too much emphasis on this model

assessment. It is an experimental application of the combined model with a considerable

simplification of the insurance business. The regression model is evaluated to be performing

relatively poorly, thus this will greatly affect the combined model. In addition, there is a

significant amount of false negatives and false positives in the classification model.
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7 Discussion & Conclusion

7.1 Discussion

The modelling of Claim returned, with the inclusion of all available variables, relatively

satisafactory results for several models. XGBoost was the best performing model of the

machine learning algorithms and outperformed the GLM benchmark model. This is in

line with a lot of previous work in the insurance field, highlighting the benefits of the more

advanced tree-based methods. However, despite the fact that several studies( referred

to in Section 2.2) show promising results for using Neural Networks in the context of

ratemaking, the Neural Network model for claim occurrences was not as promising. It is

important to note, however, that the potential for further optimization of the deep-learning

model could potentially improve the results. There are many architecture and tuning

efforts to apply, and the ones used in this method are not necessarily optimal.

Additionally, the modelling of Claim also touched upon resampling methods. The applied

combination of SMOTE and undersampling did not yield any gain, but rather marginally

inferior performance for the algorithms compared to the models without resampling.

Nevertheless, resampling could still be of significant value as the resampling strategy of

this thesis is constant and there are further sampling methods to explore.

Moreover, the modelling of Claim investigated whether aggregated data could provide

more explanatory value than solely predicting Claim on the basis of yearly premium. The

results show that there was a relatively large increase in the models’ performance when

introducing Yearly variables , but only a marginal improvement after including the time

variables. The variable importance shows that the explanatory power of company-specific

data, apart from its chosen products and historical records, seems to be of limited value.

Meaning that company characteristics such as the number of employees, company age,

location and the operational industry do not seem to have a significant effect on how

likely the customer is to make a claim for the upcoming year.

The ability of predicting the severity of claims proved difficult as showed in the results from

the Claim size predictions. The aggregated data did not seem to provide any explanatory

power. The inclusion of additional variables, compared to predicting solely using the
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insurance premium as the input variable, rather seemed to contribute with noise worsening

the performance. The weak regression models essentially reflects that the identification of

profitable/unprofitable customers is limited. The models are doing a reasonably good job

identifying customers that will have claims, but are struggling with predicting the claim

sizes of these incidents.

The experimental applied approach of the combined model is limited with regards to

its simplicity and the errors in both the classification and regression model. In reality,

Frende would not cut a customer. The insurance premiums would rather be adjusted to

a size in which the corporate customer would be expected to be profitable. Essentially

setting a too high price for customers would potentially lead Frende to lose customers to

competitors. Additionally, we must add to the discussion that the pricing and acquisition

of customers, is highly affected by internal politics and strategy.

The findings from the experimental approach with respect to profitability is still interesting.

It shows that the data provided contained information enough to increase profitability for

Frende in 2021 by applying their "rule of thumb" definition of profitability and subsequent

profits. Information with regards to insurance products should already be represented

in the insurance premiums, and we have observed that the most important features are

these variables. Thus, our results could also indicate that there exist some potential for

improvement as to how the individual insurance premiums are set. The potential for

improvement could then, of course also be a result of internal politics, strategy and volume

discounts.

Another interesting point the modelling touched upon, is the trade-off between false

positive and false negatives. The findings from the experimental approach showed that in

order for the business itself to be most profitable, one cannot be too strict in excluding

possibly unprofitable customers. The total profitability of the customer portfolio will be

highest if one takes a substantial amount of risk. Thereby, knowing that several of the

companies in the customer base will be unprofitable. This is due to the alternative cost of

not receiving the premiums from the profitable wrongly labeled customers is higher.
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7.2 Conclusion

This thesis aimed to provide insights to the usefulness of aggregated data in predicting

Claim and Claim size, thus also predicting a customer’s expected cost and finally identify

profitable customers through an experimental setting. The results showed that the

aggregated data did not add any additional information to insurance premium in terms of

predicting Claim size, but rather contributed to worsen the predictions in terms of RMSE.

For predicting Claim the aggregated data did improve the AUC substantially through a

binary classification of Claim.

Aggregated data improved the models’ performance, but the company-specific

characteristics were not deemed important in terms of variable importance. The insurance

products and historical records were, together with insurance premium, the most important.

Ultimately, through the experimental setup, the models were partly able to identify

profitable customers by identifying several of the customers with claim occurrences,

although the identification of profitable customers was limited mainly due to the difficulties

with predicting the associated severities.

To conclude, this thesis provides a small step in disrupting the actuarial comfort zone of

”business as usual”. The results support the several studies arguing the benefits of tree-

based models compared to the generalized linear models. XGBoost was the best achieving

model for both predicting Claim and Claim size. Even though the implemented Neural

Networks were outperformed by several of the tree-based methods, the flexibility offered

by deep-learning models make them highly relevant, and with many more architectures

and tuning efforts to explore. Regardless, this thesis shows that both tree-based models

and Neural Networks can improve upon the predictive capabilities offered by Generalized

Linear Models.

7.3 Further Research

The thesis utilizes in total 45 different models through five algorithms, three input-groups

and resampling in the classification case. Essentially this means that the thesis aims to

investigate a wide spectrum of responses and machine learning models. This is done to

answer the research questions related to the predictive capabilities of machine learning
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methods on aggregated data. The drawback of this is the need to make restrictions on

optimization of the models, in order to answer the comprehensive problem statement

within a temporal and computational budget.

A limitation is the applied data, both in terms of feature engineered variables and the

available data retrieved from Frende. Aggregated data improved the models’ performance

in the classification case, but the company characteristics were not deemed important.

Including more and different types of company characteristics, the conclusion might be

that some companies based on their characteristics do in fact have a higher likelihood

of claim and larger claim sizes. It would especially be interesting to include financial

data such as liquidity and annual results for the companies. We have experimented with

including financial data from Proff (Norwegian database), but the resulting data had close

to 60% missing values among several metrics. This would have demanded substantial

work in terms of both time and computational effort. However, it is definitely a path that

is worth exploring.

The study could potentially benefit from applying more advanced imputation methods,

especially regarding Company age and the feature engineered time variables. This thesis

applied imputation mainly through KNN or using the median of the none missing values.

However, more advanced multiple imputation methods could be applied, such as using

Random Forest as the imputation estimator. This could generate substitute values closer

to the true values of the missing data. As discussed in the thesis, the time variables

only contributed to a modest performance improvement for the classification models

and yielding higher RMSE for the regression models. These results could be related to

historical records not being of substantial importance, or it could also be a consequence

of the current imputation causing significant bias.

This study touched upon several machine learning techniques, but there exist a vast of

opportunities related to including more machine learning algorithms and improving the

current models. Models such as LightGMB, Support Vector Machines or Weighted Random

Forests are models worth exploring further. To introduce time series analysis into the

predictions, one could explore models such as Recurrent Neural Networks. Furthermore,

the performance of the current models are subject to further improvement through

additional tuning efforts as the hyperparameter are tuned with somewhat limited grid
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searches. We particularly suspect large possibilities for improvement in terms of the

resampled models and the Neural Networks. The resampling was, in this study, limited

due to a constraint on computational resources, and we believe that there could be

additional gain through different forms of sampling methods and parameters. Neural

Networks offer great flexibility, but are rather complex in terms of tuning. Thus, model

performance might increase by taking additional advantage of this flexibility.

There are several limitations to the combined model and the chosen responses in this

thesis. As seen in the descriptive chapter (Section 4.1.2, the claims often consist of one
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As discussed thoroughly in this thesis, the evaluation of the combined model is notably

experimental with some limitations. Firstly, the simplicity of cutting expected unprofitable

customers does not necessarily reflect actual practice as the usual approach would be to

adjust the premiums. Moreover, the definition of when a customer is deemed profitable

is significantly impactful for the results. By exploring additional profit definitions, one
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Appendix

A1 Complete Overview of Data

The complete overview of the explanatory variables included in the modelling of both

classification and regression models are displayed in Table A1.1. The response variables

used in the models are displayed in Table A1.2.

Variable Description Type Yearly premium Yearly variables Yearly + time variables

Insurance premium Premium paid to Frende for its products Nummeric x x x
Year Nummeric x x
Total number of policies Sum insurance products Nummeric x x
Policy years Sum policies years. Per policy;1 if the insurance is held in a whole year, 0.5 for 6 month etc. Numeric x x
Business type Categoric x x
Distribution channel Where the customer was obtained Categoric x x
County Categoric x x
Number Of Employees Nummeric x x
Defined Number Of Employees Binary x x
Noted customer 1 if abnormal claim size or claim frequency, and/or missing payments, 0 otherwise Binary x x
Credit score Scored from 1-5 when becoming a Frende costumer Categoric x x
Business Address Land Code Two letter country code Categoric x x
Bankrupt 1 if bankrupt, 0 otherwise Binary x x
Under settlement 1 if under settlement (bankrupt), 0 otherwise Binary x x
Insurances 412 types of insurance products, each as a variable with how many polices company x has of product y Multiple numeric variables x x
Has Claim Last Three Years Prior To Frende 1 is claim prior to being a customer, 0 otherwise Binary x x
Main Industrial Classification Category A-U, NACE Categoric x x
Company age Year - foundation date. Nummeric x x
Customer length Number of years as a Frende- customer Nummeric x x
Number Of Policies t-1 Nummeric x
Approved Claims t-1 Nummeric x
Claim Size t-1 Nummeric x
Claim Frequency t-1 Nummeric x
Claim Percentage t-1 Nummeric x
Number Of Policies t-2 Nummeric x
Approved Claims t-2 Nummeric x
Claim Size t-2 Nummeric x
Claim Frequency t-2 Nummeric x
Claim Percentage t-2 Nummeric x
Prior Three Years Average Claim Frequency Nummeric x
Prior Three Years Average Claim Percentage Nummeric x
Prior Three Years Probability Of Claim Nummeric x
Prior Three Years Average Number Of Policies Nummeric x
Prior Three Years Average Number Of Claims Nummeric x
Prior Three Years Average Claim Size Only included claim sizes > 0 when averaging Nummeric x

x
Delta Number Of Policies y-1 Number of policies today – last year Nummeric x
Delta Number Of Policies y-2 Number of policies today – two years ago Nummeric x

Table A1.1: Complete overview of all explanatory variables included in predicting Claim
and Claim size

Reponse variable Description Data type

Claim size Total amount paid out to the company, can consist of more than one claim. 0 when not defined. Nummeric
Claim 1 approved claims> 0, 0 otherwise Binary

Table A1.2: Response variables for the predictive regression and classification models
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The complete overview of the explanatory variables included in the modelling of both

classification and regression models are displayed m Table A l . l . The response variables

used m the models are displayed m Table Al .2.

Variable

Insurance premium
Year
Total number of policies
Polioy years
Busin e wtype
Dil!;ributionohannel

Noted customer
Oredit oore 
Business Address Land Code
Bankrupt
Under settlement
Insurancæ
Has Claim Last Three Years Prior To Frende
Main Industrial Classification Category
Company g , 0
Oust omer length
Number OfPolioie t-1 

Claims t - l

Description

Premium paid to Frende for its products

T y p e Yearly p r e m i u m Yearly var iables Yearly + t ime var iables

Nummeric
Nummeric

Sum insurance products Nummeric
Sum policies y e a s . Per policy;l if the insurance is held in a whole year, 0. for 6 month etc Numeric

Oategorio
Where the customer was obtained Oategorio

Oategorio
Nummeric
Binary
Binary
Oategorio
Oategorio
Binary

(bankrupt), 0 otherwise Binary
4l types of insuraoe produots, oh ea a variable with how many polices company x has of product y Multiple numeric variables
l i claim prior to being a 0U1tomer, 0 otherwise Binary
A-U, NAOE Oategorio
Year-foundation date Nummeric
Number of years as a Frende- customer

Claim Frequency t- l
Olaim Percentage t - l
Number O! Poli0is t . 2
Apprond Claims t -2
Olaim Sise t-2
Claim Frequencyt-2
ClaimPercentaget-2
Prior Three Years r e r a g e Olasim Frequency
Prior Three Yes Arerage Olaim P e r n t a g e
Prior Three Y s s Probability O! Claim
Prior Three Years r e r a g e Number O! Policies
Prior Three Years Average Number Of Claims
Prior Three Years Average Claim Size Only included claim sizæ > 0 when averaging

Number of policies today - l e t year
Number of poliois today - two yen ago

Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric
Nummeric

Nummeric
Nummeric

Table A l . l : Complete overview of all explanatory variables included in predicting Claim
and Claim size

Reponse variable

Claim size
Claim

Description

Total amount paid out to the company, can consist of more than one claim. 0 when not defined.
l approved claims> 0, 0 otherwise

Data type

Nummeric
Binary

Table A l . 2 : Response variables for the predictive regression and classification models
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A2 Complete Overview of All Included Insurance

Products

Table A2.1 displays all 130 included products as nummeric variables holding the amount

of policies of the respective insurance product that the customer i holds in year t.

Insurance products Insurance products Insurance products

UlykkesforsikringAnnet Fritidsbåtforsikring Arbeidsmaskinforsikring-Fører- og passasjerulykke
LandbruksforsikringAnnet Gruppeliv eierbank Arbeidsmaskinforsikring-Kasko 1.risiko
DyreforsikringAnnet Hesteforsikring Bedriftforsikring-Ambulerende verktøy
HytteforsikringAnnet Huseierforsikring Bolig Bedriftforsikring-Avbruddstap fullverdi
CampingvognforsikringAnnet Huseierforsikring Næringsbygg Bedriftforsikring-Bedriftsansvar - Norden
BilforskringAnnet Husforsikring Bedriftforsikring-Kasko
Kollektiv ulykkesforsikringAnnet Hytteforsikring Bedriftforsikring-Naturskade
FirmabilforsikringAnnet Innboforsikring Bedriftforsikring-Panthaver
BedriftsforsikringAnnet Kollektiv ulykkesforsikring Bedriftforsikring-Produktansvar - Norden
CyberforsikringAnnet Lastebilforsikring Bedriftforsikring-Tingdekning på fast forsikringssted
BrannforsikringAnnet Maskinforsikring Firmabilforsikring-Ansvar
FlåteAnnet Mopedforsikring Firmabilforsikring-Delkasko
GruppelivAnnet Motorsykkelforsikring Firmabilforsikring-Fører- og passasjerulykke
InnboforsikringAnnet Prosjektforsikring Firmabilforsikring-Kasko
Huseierforsikring NæringsbyggAnnet Prøveskiltforsikring Firmabilforsikring-Leasing
Huseierforsikring BoligAnnet Reiseforsikring Bedrift Firmabilforsikring-Leiebil
HesteforsikringAnnet Tilhengerforsikring Bedrift Firmabilforsikring-Panthaver
FritidsbåtforsikringAnnet Tilhengerforsikring Huseierforsikring Bolig-Naturskade
AnsvarsforsikringAnnet Tilleggsnæringforsikring Huseierforsikring Bolig-Standard
HusdyrforsikringAnnet Ulykkesforsikring Huseierforsikring Næringsbygg-Naturskade
MaskinforsikringAnnet Uregistrerte kjøretøy Huseierforsikring Næringsbygg-Standard
MopedforsikringAnnet Verdigjenstandforsikring Prosjektforsikring-Bygg, anlegg og montasje
MotorsykkelforsikringAnnet Veterankjøretøyforsikring Prosjektforsikring-Naturskade
YrkesskadeforsikringAnnet Yrkesskadeforsikring Prosjektforsikring-Verktøy og utstyr
Annen sykdom eierbankAnnet Arbeidsmaskinforsikring-Arbeidsmaskin Reiseforsikring Bedrift-Ansvar og rettshjelp
FjørfeforsikringAnnet Bedriftforsikring-Ansvar risiko Reiseforsikring Bedrift-Avbestilling
EnkeltprosjektforsikringAnnet Bedriftforsikring-Maskiner/inventar/løsøre/varer Reiseforsikring Bedrift-Forsinkelse
PrøveskiltforsikringAnnet Bilforsikring-Bil Reiseforsikring Bedrift-Reisegods
TilhengerforsikringAnnet Cyberforsikring-Cyberforsikring Reiseforsikring Bedrift-Reisesyke
Reise fortsettelsesforsikringAnnet Firmabilforsikring-Firmabil Reiseforsikring Bedrift-Reiseulykke
ReiseforsikringAnnet Huseierforsikring Bolig-Huseier Bolig Tilhengerforsikring Bedrift-Brann/Tyveri 1.risiko
LastebilforsikringAnnet Huseierforsikring Næringsbygg-Huseier Næringsbygg Tilhengerforsikring Bedrift-Kasko 1.risiko
TrumfVisaReiseAnnet Lastebilforsikring-Lastebil Tilleggsnæringforsikring-Driftstap Ulykke
Uregistrerte kjøretøyAnnet Motorsykkelforsikring-Motorsykkel Verdigjenstandforsikring-Standard
VeterankjøretøyforsikringAnnet Prosjektforsikring-Bygge-, anleggs- og montasjearbeid Yrkesskadeforsikring-Fritidsulykke død
ArbeidsmaskinforsikringAnnet Reiseforsikring Bedrift-Tjeneste- og Fritidsreise m/familie Yrkesskadeforsikring-Fritidsulykke invaliditet
Ansvarsforsikring Tilhengerforsikring Bedrift-Person-/Varebiltilhenger Yrkesskadeforsikring-Fritidsulykke uførhet
Arbeidsmaskinforsikring Tilleggsnæringforsikring-Tilleggsnæring Yrkesskadeforsikring-Ulykke v/reise til/fra arbeid
Bedriftforsikring Verdigjenstandforsikring-Verdigjenstand Yrkesskadeforsikring-Yrkesinvaliditet under 15Bilforsikring
Yrkesskadeforsikring-Yrkesskade - ansatte Yrkesskadeforsikring-Yrkesskade Sykdom
Brannforsikring Yrkesskadeforsikring-Yrkesskade - selvst. næringsdriv. Yrkesskadeforsikring-Yrkesskade Sykdom - Lovpålagt
Cyberforsikring Arbeidsmaskinforsikring-Arbeidsmaskinansvar Yrkesskadeforsikring-Yrkesskade Ulykke
Firmabilforsikring Arbeidsmaskinforsikring-Bilansvar Yrkesskadeforsikring-Yrkesskade Ulykke - Lovpålagt
Arbeidsmaskinforsikring-Brann/Tyveri 1.risiko

Table A2.1: Overview of all included insurance products
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Products

Table A2.1 displays all 130 included products as nummenc variables holding the amount

of policies of the respective msurance product that the customer i holds m year t.

Insurance products Insurance products

DyreforsikringAnnet
HytteforsikringAnnet
CampingvognforsikringAnnet
BilforskringAnnet
Kollektiv ulykkesforsikringAnnet
FirmabilforsikringAnnet
BedriftsforsikringAnnet
CyberforsikringAnnet
BrannforsikringAnnet
FlateAnnet
GruppelivAnnet

Ansvarsforsikring
Arbeidsmaskinforsikring

- ansatte

Huseierforsikring Bolig
Huseierforsikring Næringsbygg
Husforsikring

Maskinforsikring
Mopedforsikring
Motorsykkelforsikring
Prosjektforsikring
Praveskiltforsikring

Bedrift

Bedriftforsikring-Ansvar risiko

Insurance products

Arbeidsmaskinforsikring-Fører- og passasjerulykke
U U I Q B I I I K I I H I O I B I K r I I n & K o l risiKo

verkty
Bedriftforsikring-Avbruddstap fullverdi
Bedriftforsikring-Bedriftsansvar - Norden
Bedriftforsikring-Kasko
Bedriftforsikring-Naturskade
Bedriftforsikring- Panth aver
Bedriftforsikring-Produktansvar - Norden

på fast forsikringssted

Firmabilforsikring-Delkasko
Firmabilforsikring-Fører- og passasjerulykke
Firmabilforsikring-Kasko

Firmabilforsikring-Panthsver
Huseierforsikring Bolig-Naturskade
Huseierforsikring Bolig-Standard
Huseierforsikring
Huseierforsikring

og utstyr
og rettshjelp

Reiseforsikring Bedrift-Avbestilling
Reiseforsikring Bedrift-Forsinkelse
Reiseforsikring Bedrift-Reisegods
Reiseforsikring

Brannforsikring

Arbeidsmaskinforsikring-Brann/Tyveri l risiko
Arbeidsmaskinforsikring-Bilansvar

arbeid
15Bilforsikring

Yrkesskadeforsikring-Yrkesskade Sykdom - Lovpålagt
Yrkesskadeforsikring-Yrkesskade Ulykke
Yrkesskadeforsikring-Yrkesskade Ulykke - Lovpålagt

Table A2.1: Overview of all included msurance products
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Table A3.1 shows an overview of the initial grid searches when tuning hyperparamteres

for the respective models.

Model Hyperparameters Grid search

GLM Lambda (lasso) [2, ... , 0.001]
RF Max depth [20, 40, ... , 120]
RF Number of features selected (classification) [20, 40, 60, 80, √p]
RF Number of features selected (regression) [20, 40, 60, 80, p

3
]

RF Number of trees in the ensemble [200, 300, ... , 1000]
RF Min number of samples in each split [2, 5, 10, 20]
RF Min number of samples in each leaf [2, 4, 8, 12]
XGB Learning rate [0.001, 0.01, 0.02, 0.03]
XGB Max depth [4, 6, 8, 10]
XGB Min child weight [1, 3, 7, 10]
XGB Reg lambda [0, 10, 20]
XGB Reg alpha [5, 8, 10, 15, 20]
XGB Gamma [0, 0.5, 1]
XGB Subsample [0.5, 0.7, 1]
XGB Colsample bytree [0.5, 0.7, 1]
NN Learning rate [0.001, 0.01, 0.01]
NN Layers [3, 5]
NN Neurons [32, 64, 96]

Table A3.1: Initial grid search for tuning hyperparameters

The GLM models have been tuned by looping through possible values for λ i.e., the

shrinkage parameter (lasso). CARTs have been tuned in a similar manner, but with

the effective alphas returned by scikit-learn’s cost_complexity_pruning_path function

resulting in roughly 1 000 candidates.

XGBoost and Random Forest was tuned using the grid searches displayed in Table A3.1

in the first round. The parameters were then further tuned in a second round. The

second grid search explored the values closer to the returned optimal value for each of the

parameters from the initial search. In the case of Random Forest, the second round put

emphasis on the Number of trees and Number of features parameters. This was done as the

alternative, expanding the initial grid searches, would have exceeded the computational

capacity available.
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Table A3.1 shows an overview of the initial grid searches when tuning hyperparamteres

for the respective models.

Model

GLM
RF
RF
RF
RF
RF
RF
XGB
XGB
XGB
XGB
XGB
XGB
XGB
XGB
NN
NN
NN

Hyperparameters

Lambda (lasso)
Max depth
Number of features selected (classification)
Number of features selected (regression)
Number of trees in the ensemble
Min number of samples in each split
Min number of samples in each leaf
Learning rate
Max depth
Min child weight
Reg lambda
Reg alpha
Gamma
Subsample
Colsample bytree
Learning rate
Layers
Neurons

Grid search

[2, . . . , 0 . 001 ]
[20, 40, ... , 120]
[20, 40, 60, 80, «/pl
[20, 40, 60, 80, E%]
[200, 300, ... , 1000/
[2, 5, 10, 20]
[2, 4, 8, 12]
[0.001, 0.01, 0.02, 0.03]
[4, 6, 8, 10]
[1, 3, 7, 10]
[0, 10, 20]
[5, 8, 10, 15, 20]
[0, 0.5, 1]
[0.5, 0.7, 1]
[0.5, 0.7, 1]
[0.001, 0.01, 0.01]
[3, 5]
[32, 64, 96]

Table A3.1: Initial grid search for tuning hyperparameters

The GLM models have been tuned by looping through possible values for ,\ i.e., the

shrinkage parameter (lasso). CARTs have been tuned in a similar manner, but with

the effective alphas returned by scikit-learn's cost_ complexity_pruning_path function

resulting in roughly l 000 candidates.

XGBoost and Random Forest was tuned using the grid searches displayed in Table A3.1

in the first round. The parameters were then further tuned in a second round. The

second grid search explored the values closer to the returned optimal value for each of the

parameters from the initial search. In the case of Random Forest, the second round put

emphasis on the Number of trees and Number of features parameters. This was done as the

alternative, expanding the initial grid searches, would have exceeded the computational

capacity available.
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Neural Networks were tested with some different learning rates, layers and neurons. As

deep Neural Networks offer great flexibility, there are a vast of more combinations that

could be explored.
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