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Abstract 

We construct a Malmquist productivity index based on stochastic non-parametric envelopment 

of data (StoNED) method, and we study how the distributional assumptions in the second 

StoNED stage affect productivity change and its decompositions. Our discussion show that the 

distributional assumptions do not affect the estimates of overall productivity change and scale 

efficiency change, but that estimates of efficiency change and technical change are affected. 

Data on Norwegian electricity distribution companies is used to illustrate our discussion. 

Key words: Productivity and competitiveness, StoNED, Malmquist productivity index, Wrong 

skewness issue 
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1.  Introduction 

During the past decades, many methods have been developed to study efficiency and 

productivity development. These methods are often classified as parametric and non-parametric 

methods. Parametric methods such as stochastic frontier analysis (SFA) estimate a cost or 

production function, whose functional form should be specified. In contrast, it is not necessary 

to estimate the cost and production function when using non-parametric methods. DEA is a 

non-parametric method that is capable of handling multiple inputs and multiple outputs. 

However, DEA, which does not consider the uncertainty in observations, only measures the 

inefficiency. Thus the estimated efficiency will not reflect the true performance of the units in 

question if there is any uncertainty in the dataset. In order to modify the measurement 

limitations in the DEA and SFA approach, Johnson and Kuosmanen (2011) proposed stochastic 

non-parametric envelopment of data (StoNED), combining the virtues of both DEA and SFA. 

This approach has been applied to the Finnish electricity distribution regulation (Kuosmanen 

and Kortelainen, 2012; Kuosmanen, 2012). Unlike SFA, StoNED has the advantage that the 

functional form of the production function or cost function does not need to be specified, 

except for some general assumptions about monotonicity, homogeneity and concavity. 

Compared to DEA, StoNED is also non-parametric in nature, and captures not only noise but 

also inefficiency.  

In parametric stochastic frontier models, as well as in StoNED, the residual is specified as the 

sum of a two-sided noise component and a one-sided inefficiency component. A common 

assumption is that noise is normally distributed, while the inefficiency distribution is usually 

half-normal, exponential or truncated normal (Aigner et al., 1977; Meeusen and van den 

Broeck, 1977; Stevenson, 1980). In the widely used normal and half-normal model, the half-

normal distribution on inefficiency implies that the residual distribution is skewed in one 

direction. However, in practice, the estimated residuals may display skewness in the wrong 

direction in finite samples (Waldman, 1982). This is often termed the “wrong skewness issue”. 

When the wrong skewness issue occurs, possible solutions are to increase the size of the sample 

or to respecify the model (Carree, 2002; Almanidis et al., 2011, Feng et al., 2012).  

The main contribution of our paper is to apply the StoNED approach to estimate Malmquist 

productivity (Grifell-Tatje and Lovell., 1995 and 1999b; Pastor and Lovell., 2005), and to 

investigate the consequences of distributional assumptions, in the second stage of the StoNED 

procedure, on the productivity indices. We show that productivity change and scale efficiency 
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change are not affected by the distributional assumptions, while efficiency change and 

technical change are affected. This means that estimates of productivity change and scale 

efficiency change can be based on the average-practice frontier for which the distributional 

assumptions play no role. Also, if the relative distance between the best-practice frontier and 

the average-practice frontier is constant over time, i.e., if the average inefficiency in the 

industry is constant, then efficiency change and technical change may also be based on the 

average-practice frontier. We illustrate our discussion with results based on a data for 

Norwegian electricity distribution companies in the period 2004-2013. 

The remainder of the paper proceeds as follows: In Sections 2 and 3 we present the Malmquist 

and StoNED methodologies, respectively, and in Section 4 we explain how they can be 

combined in order to analyze productivity change. Section 5 discusses the impact of the 

distributional assumptions in StoNED on the Malmquist productivity index and its 

decompositions. An empirical illustration is presented in Section 6, and Section 7 concludes. 

2. The Malmquist productivity index and its decomposition 

The concept of the Malmquist productivity index originated from Caves et al. (1982a). In order 

to define it we need the specify the production technology as 

:	 	can	produce	 ,                                          (1) 

where  and  represent the input vector and output vector at each time period , 1,⋯ , , 

respectively. The set  is assumed to be non-empty, closed, convex and bounded. It 

satisfies strong disposability of inputs and outputs, and also contains all input vectors that can 

produce output . A functional representation of the technology is constructed by Shephard's 

(1970) input distance function 

, sup : / ∈ , 0 .                             (2) 

The function ,  represents the maximum proportional contraction of inputs given 

outputs at each period	 . The distance function satisfies , 1, with , 1 if 

and only if ∈ Isoq : ∈ , ∉ , 1 . The function 

,  is defined in terms of period  dataset and technology, and adjacent-period input 

distances using period  or 1 data and period 1 or  technology are defined as 

, sup : / ∈ , 0                           (3) 
and 
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, sup : / ∈ , 0 ,                       (4) 

respectively (Grifell-Tatje and Lovell, 1995). 

Following Färe and Primont (1995), the input distance function ,  is reciprocal to 

Farrell’s input oriented measure of efficiency, which is 

, min : ∈ , 0 .                                (5) 

The efficiencies for the adjacent-period input distance functions can be obtained as  

, min : ∈ , 0                             (6) 
and 

, min : ∈ , 0 .                       (7) 

The Malmquist productivity index between period  and 1 can be expressed as 

, , ,
,

,

,

,
⋅ ⋅ ,         (8) 

where   is the efficiency under constant returns to scale (CRS). Equation (8) also shows that 

the productivity index can be decomposed into efficiency change (EC), technical change (TC) 

and scale efficiency change (SEC) (Ray and Desli., 1997). We define  as efficiency under 

variable returns to scale (VRS), as well as 

,

,
,                                                              (9) 

,

,

,

,
, and                                    (10) 

,

,

,

,

,

,

,

,

.                                        (11) 

Productivity growth (decline) corresponds to  , , ,   greater (smaller) than 

one, and productivity is constant if , , , 1 . Efficiency change (EC) 

greater (smaller) than unity indicates that the company has moved closer to the frontier from 

period 1 to period , and a value of unity means that the distance to the frontier is the same 

in the two periods. For technical change (TC) between periods  and 1, a value of more 

(less) than unity means that the frontier technology in period 1 is more (less) productive 

than the technology in period . If the ratio of scale efficiency change (SEC) is larger (smaller) 

than unity, then the company has moved closer to (further away from) the optimal scale from 

period  to period 1. 
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3. The StoNED method 

The semi-nonparametric method termed stochastic nonparametric envelopment of data 

(StoNED) was proposed by Johnson and Kuosmanen (2011) to estimate efficiency, and it has 

been applied to the Finnish regulatory model by Kuosmanen (2012). We use the same cost 

frontier function and assumptions on the noise and inefficiency terms as Kuosmanen (2012).  

According to Johnson and Kuosmanen (2011), the StoNED model can be a model of the 

production function or the cost function. When benchmarking for regulation, it is convenient to 

use a cost frontier function. With reference to the multiplicative model applied by Kuosmanen 

(2012), the following cost frontier function is used in this paper: 

∙ 	      where ,			 0, 1,⋯ , ,         (12) 

where  is the total cost and  the vector of outputs of firm  in period ,  is the cost frontier 

function,   is the residual of firm  in period , , and  and  are, respectively, 

the inefficiency term and the stochastic noise term in period . The coefficient vector  

represents the environmental impact and  is the vector of environmental variables for firm  

in period . The stochastic noise term  is assumed to follow a normal distribution 0,  

while the inefficiency term  is assumed to follow a half-normal distribution with a finite 

variance . The expected value of inefficiency is denoted by 2/ 	 

(Aigner et al., 1977). Regarding the cost frontier function , we do not impose a particular 

functional form, but it satisfies continuity, monotonicity, convexity and variable returns to scale 

(VRS), which is similar to the classical DEA model (Charnes et al., 1978). 

The StoNED method consists of two stages: 

Stage 1: Estimate the average-practice cost function by the convex nonparametric least squares 

(CNLS) method. 

Stage 2: Estimate the variance parameters , , the expected values of inefficiency  and the 

best-practice cost frontier function . 

Stage 1 for period  can be expressed as the following optimization problem: 
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                min
, ,

∑  

               s.t. 

                                                            1,⋯ ,  

                                     1,⋯ ,                          (13) 

                    0                                                                        	 1,⋯ ,      

In (13),  is the CNLS estimator of the average-practice total cost of producing	  in period , 

the intercept	  of firm  in period  indicates its local returns to scale status ( 0 and 

0 represent DRS and IRS, respectively), and   is the marginal cost of outputs. The coefficient 

vector  represents the environmental impact and  is the vector of environmental variables 

for firm  in period . The first constraint in (13) is the regression equation, and the second and 

third constraint ensures convexity and monotonicity, respectively.  Model (13) has no sign 

restrictions on the intercept term , which implies that we allow variable returns to scale 

(VRS). By imposing the constraint 0  for all 1,⋯ , , we can implement the 

assumption of constant returns to scale (CRS). 

For stage 2 of the StoNED procedure, there are two commonly applied approaches to estimate 

the variance parameters based on the optimal solution ̂  of model (13): the method of moments 

(MoM) (Aigner et al., 1977) and the pseudo-likelihood estimation approach (PSL) (Fan et al., 

1996). We will consider the former method. Under the maintained assumptions of half-normal 

inefficiency and normal noise, the estimators of  and  are obtained through the equations 

 , and                                                          (13) 

 ,                                                    (14) 

where  and  are the second and third central moments of the composite errors from the 

solution of (13). They are given as 

∑ ̂ ̅ / , and                                                      (15) 

∑ ̂ ̅ / .                                                             (16) 
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In Equation (14), , which measures the skewness of the distribution, is related to the 

standard deviation of the inefficiency distribution. Given our distributional assumptions on  

and , we would expect  to be positive. However, as we will discuss in Section 6, this is not 

always the case. 

The best practice cost function for a given company is 

, , ∙ exp ∙ exp ,                           (17) 

where ∙ exp  is the average-practice cost frontier , ,  (Johnson and 

Kuosmanen, 2011), i.e.,	 0. Based on Equation (18), we notice that the estimated standard 

deviation of inefficiency affects the best practice cost frontier, since the best-practice cost is 

obtained by multiplying the average-practice cost by the shift factor exp 2/ . 

The best-practice cost efficiency score of firm  in period  is defined as the ratio of the 

minimum cost to the observed cost, i.e., 

, , ,
, ,

,                                                   (18) 

and , , ,  can be obtained in a similar manner. 

4. Productivity estimates based on StoNED 

According to Kuosmanen et al. (2013), the estimated cost norm can also be calculated as 

max .                                                   (19) 

Adjacent-period estimated cost norms using period  or 1 data and period 1 or  

technology are given by 

max ,  and                                    (20) 

max .																																																			(21) 

Based on Equations (21) and (22), the best-practice cost efficiency can be calculated as 

, , ,
, , ∙ /

, and           (22) 

, , ,
, , ∙ ∙ /

.                 (23) 
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Based on Section 2, we define the Malmquist productivity index based on the best-practice 

StoNED frontier as 

, , , , , ⋅ ⋅ .                (24) 

The change in efficiency relative to the frontier between periods  and 1, i.e., 

, , , , , ,
, , ,

,
, , ,

.                      (25) 

The technical frontier change between periods  and 1 is 

, , , , , ,
, , ,

,
, , ,

,
, , ,

,
, , ,

,      (26) 

and the scale efficiency change between periods  and 1 is 

, , , , ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

,
, ,

.        (27) 

5. Impact of distributional assumptions 

In Section 3, the best-practice cost frontier is found by shifting the average-practice cost 

frontier with the estimated standard deviation of the inefficiency via Equation (18). 

Furthermore, in Equation (14), the estimate of the standard deviation depends on the skewness 

estimate. In order to examine the skewness’ effect on productivity change, the productivity 

change based on the best-practice and the average-practice frontiers are compared in this 

section.  

From equation (18) and (19) we can express the relationship between the efficiency scores of 

the best-practice and average-practice frontiers as  

,
, , , ,

, , , ∙  ,                          (28) 

where the scaling factor exp , 2/  represents the estimated average efficiency 

under the assumption of half-normal inefficiency. This means that the distributional 

assumptions and estimates from the second StoNED stage affect the best-practice frontier 

through the scaling factor . 

Equations (26) and (29) imply that efficiency change is given as 
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         , , , , , ,
, , , ∙

,
, , , ∙

       	

                                                                  		 , , , , , ∙ ,           (29) 

i.e., the ratio between efficiency change based on the best-practice frontier and the average-

practice frontier, respectively, is given by the scaling factor  . 

Technical change is, according to Equations (27) and (29), obtained by 

, , , , , ,
, , , ∙

,
, , , ∙

∙ ,
, , , ∙

,
, , , ∙

/

  

                                  , , , , , ∙ ,                 (30)                     

i.e., the ratio between technical change estimate based on the best and average-practice 

frontiers, respectively, is equal to the inverse of the scaling factor in (30). 

Let exp , 2/ . Then, Equations (28) and (29) imply that scale efficiency 

change is  

, , , , ,

,
,

, , ∙

,
,

, , ∙

,
,

, , ∙

,
,

, , ∙

∙

,
,

, , ∙

,
,

, , ∙

,
,

, , ∙

,
,

, , ∙

                               

, , , , , ,                          (31) 

i.e.,  distributional assumptions and estimates in the second StoNED stage do not have any 

impact on scale efficiency change. 

By combining Equations (25) and (30)-(32) we see that 

, , , , , , , , , , .         (32) 

Hence, the adjustments in the second StoNED do not have any impact on the total productivity 

change.  

The StoNED approach is not the only benchmarking method where a best-practice frontier is 

obtained from an average-practice frontier. Other examples are Corrected Ordinary Least 

Squares (COLS) and Modified Ordinary Least Squares (MOLS) (Greene, 1993; Richmond, 

1974). If such models are used to perform Malmquist productivity analysis, as in this paper, 

and if the adjustment from average-practice to best-practice takes the form of a multiplicative 
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scaling of the cost or production values, i.e., an additive shift in terms of logged values, then 

(30)-(33) will be relevant. I.e., the overall productivity change and the scale efficiency change 

do not depend on the adjustment from average-practice to best-practice, but the efficiency 

change and the technical change will be affected. 

6. Empirical illustration: electricity distribution in Norway 

6.1 Data description 

The data we will use to illustrate the StoNED Malmquist analysis is collected by the 

Norwegian Water Resources and Energy Directorate (NVE). It covers 123 Norwegian 

distribution companies for the period 2004-2013. The data set has one single input, three 

outputs, and five environmental variables, as described in Table 1 and Table 2.  

Table 1 

Inputs, outputs and environmental variables used in the model  

Variable Type Sub-variable Unit 

Total cost  

Operations and maintenance cost 1000NOK 

Value of lost load (quality cost) 1000NOK 

Thermal power losses 1000NOK 

Capital depreciation 1000NOK 

Return on capital 1000NOK 

High voltage lines     Kilometers 

Network stations (transformers)     No. of stations 

Customers     No. of customers 

Distance to road     Kilometers 

HV underground    Share of HV network (0-1) 

Forest    Share of HV lines affected (0-1) 

Geol  

Small scale hydro Inst.cap. (MW)/cost norm1 

Average slope Degrees (0-90) 

Deciduous forest Share of HV lines affected (0-1) 

Geo2  

Wind/dist.to coast / /  
Islands No. of islands /cost norm1 

HV sea cables Share of HV network (0-1) 

Total cost is the single input. The content of the total cost including five cost elements is 

listed in Table 1. Most of the companies also owns and operates part of the regional 

transmission network, and NVE reallocates part of this cost to the local distribution 

                                                 
1 This variable is divided by the company’s cost norm in order to ensure that the resulting variable is size  
   independent. The cost norm is based on five-year average of inputs and outputs. 
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activity. The reallocated cost is not included in our study, so our results may therefore 

differ somewhat from the efficiency measurements published by NVE. The data for all 

years have been adjusted to the price level of a base year (2013). We use an industry-

specific price index for adjusting operations and maintenance costs and the consumer price 

index for the VOLL (value of lost load) costs. Thermal losses are valued at the average 

system price at Nord Pool for the base year (300 NOK/MWh). Capital depreciation is 

based on reported (nominal) book values, and the return on capital is calculated using the 

nominal rate of return set by the regulator for the base year (7.12 %). In order to make the 

capital depreciation/return comparable across years, we have adjusted the capital values to 

the base year with an inflation rate of 2 % per year. This number corresponds, 

approximately, to the average inflation since the book values was established in the 

beginning of the 1990s, following the deregulation of the Norwegian power market. 

The outputs are shown in the second part of Table 1 and include high voltage lines, 

network stations and customers. High voltage lines and network stations represent 

structural and environmental conditions which may affect required network size and 

thereby the cost level of the companies. The last part of Table 1 shows environmental 

variables. The environmental variables affect the performance of the companies, but they 

are out of the companies’ control (Coelli et al. 1998). 

Table 2 

Descriptive statistics of variables  

Variables Mean Min. Median Max. Sd.dev 

Total cost  108000.00 8884.00 39220.00 1771000.00 215719.80 

High voltage lines 803.10 50.00 321.50 8744.00 1329.81 

Network stations(transformers) 1012.00 52.00 367.00 13530.00 1888.21 

Customers   22670.00 947.00 6428.00 570200.00 58710.64 

Distance to road   226.00 70.37 142.90 1056.00 207.34 

HV underground 0.34 0.06 0.31 0.86 0.18 

Forest  0.12 0.00 0.12 0.39 0.10 

Geol  0.02 -2.06 -0.43 4.72 1.49 

Geo2 0.01 -0.64 -0.45 11.86 1.52 

 

6.2 Results 

As discussed in Section 3, the expected value of inefficiency is used to shift the estimates for 

average-practice frontier to obtain the best-practice frontier. The assumption of half-normally 
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distributed inefficiency implies positive value for skewness, but in practice, this is not always 

observed. Table 3 lists the estimated skewness for each year in our data set. Under the CRS 

assumption, 4 out of 10 years exhibit negative skewness, and under the VRS assumption, it 

happens for 7 out of 10 years. 

Table 3 

Estimated skewness in the StoNED model 

Model 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

CRS -0.0005 0.0007 0.0012 0.0002 -0.0043 -0.0002 0.0008 -0.0006 0.0004 0.0001 

VRS -0.0014 0.0002 0.0002 -0.0007 -0.0041 -0.0019 0.0001 -0.0010 -0.0019 0.0001 

 

Table 4 reports average productivity indices and their decompositions for the best-practice and 

the average-practice frontiers, respectively. The values for periods spanning more than one year 

are annualized by taking the geometric means over the included years. Table 4 confirms 

Equations (30)-(33), i.e., that the second stage StoNED adjustments do not have any impact on 

the productivity change and the scale efficiency change, but that the efficiency change and the 

technical change estimates, respectively, are affected.  

For the periods 2007/08, 2008/09, and 2011/2012, the efficiency changes and the technical 

changes are the same for the best-practice and the average-practice frontiers, respectively. From 

Equations (26) and (27), we know that the efficiency change and the technical change only 

depend on the VRS efficiency scores. As shown in Table 3, the estimated skewness for the 

years 2007, 2008, 2009, 2011, and 2012 under are negative under VRS. In our application, we 

handle this problem as suggested by Kuosmanen (2012), i.e., by replacing the estimated 

skewness by a very small constant. If the standard deviation and mean of the inefficiency is the 

same in period  and period 1, we have that  

	

	
1,                                (33) 

where ,  is the average inefficiency under VRS in period . Hence, if the second 

stage StoNED adjustment is constant over time, e.g., if it is close to zero, we know from 

Equations (30) and (31) that EC and TC will be the same under best-practice and average-

practice, respectively. 
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Table 5 

Productivity change and its decompositions for the best- and average-practice frontiers 

Period 
Best-practice frontier Average-practice frontier 

Differences between the best and 
average practice frontier 

MPI EC TC SEC MPI EC TC SEC MPI EC TC SEC 

2004/05 1.0659 0.9613 1.1095 0.9997 1.0659 1.0052 1.0520 0.9997 0.0000 -0.0440 0.0575 0.0000

2005/06 1.0334 0.9975 1.0348 1.0012 1.0334 1.0039 1.0822 1.0012 0.0000 -0.0064 -0.0474 0.0000

2006/07 1.0164 1.0579 0.9585 1.0016 1.0164 1.0061 1.0078 1.0016 0.0000 0.0517 -0.0493 0.0000

2007/08 0.9697 1.0069 0.9615 1.0012 0.9697 1.0069 0.9615 1.0012 0.0000 0.0000 0.0000 0.0000

2008/09 0.9765 1.0039 0.9725 1.0000 0.9765 1.0039 0.9725 1.0000 0.0000 0.0000 0.0000 0.0000

2009/10 1.0246 0.9702 1.0559 0.9998 1.0246 1.0056 1.0187 0.9998 0.0000 -0.0354 0.0372 0.0000

2010/11 0.9690 1.0437 0.9274 1.0010 0.9690 1.0069 0.9613 1.0010 0.0000 0.0368 -0.0339 0.0000

2011/12 1.0131 1.0049 1.0068 1.0008 1.0131 1.0049 1.0068 1.0008 0.0000 0.0000 0.0000 0.0000

2012/13 0.9802 0.9824 0.9898 1.0010 0.9802 1.0066 0.9757 1.0010 0.0000 -0.0242 0.0142 0.0000

2004/07 1.0383 1.0048 1.0324 1.0008 1.0383 1.0051 1.0469 1.0008 0.0000 -0.0003 -0.0144 0.0000

2007/10 0.9900 0.9935 0.9958 1.0003 0.9900 1.0055 0.9839 1.0003 0.0000 -0.0120 0.0118 0.0000

2010/13 0.9873 1.0100 0.9741 1.0009 0.9873 1.0061 0.9810 1.0009 0.0000 0.0039 -0.0070 0.0000

2004/13 1.0049 1.0027 1.0005 1.0007 1.0049 1.0056 1.0035 1.0007 0.0000 -0.0028 -0.0030 0.0000

 

As discussed above, the “wrong skewness issue” occurs in the StoNED model. We can 

resample the size of the dataset or respecify the model to solve the wrong skewness issue 

(Carree, 2002; Almanidis et al., 2011, Feng et al., 2012). In our application, the issue could not 

be solved by resampling the size of the data set. If we could assume that Equation (34) was 

true, i.e., that the relative distance between the best-practice frontier and the average-practice 

frontier was constant over time, we could use the average-practice results to study efficiency 

change and technical change as well. We see that average efficiency change estimates under the 

average-practice frontier are close to 1, which is consistent with (34), i.e., that the relative 

difference between the average and best performers, respectively, is constant. We do not claim 

that this observation reflects real tendencies in our data, it is merely a result of the assumption 

behind the average-practice frontier, as given by (34). 

In any case, we can use the overall productivity change and scale efficiency change estimates, 

which do not depend on our distributional assumptions. We observe productivity growth for the 

period 2004/2007, which is consistent with Førsund and Kittelsen (1998) and Migueis et al. 

(2011), while productivity change is negative for 2007/2010 and 2010/2013. We observe very 

small scale efficiency changes, which is not surprising, since the industry structure in our data 

set is kept constant over time. 
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7. Conclusion 

We have shown how the StoNED method can be combined with Malmquist analysis to 

investigate productivity change over time, with the usual decompositions of the overall 

productivity indices into efficiency change, technical change, and scale efficiency change. The 

distributional assumptions in the second StoNED stage influence some, but not all, of the 

results. Specifically, the overall productivity change and the scale efficiency change do not 

depend on the distributional assumptions, but the decomposition into efficiency change and 

technical change is affected. This implies that it does not matter whether we use the average-

practice frontier or the best-practice frontier to analyze overall productivity change or scale 

efficiency change. Also, if the analyst can assume that the relative distance between the two 

frontiers are constant over time, then efficiency change and technical change can also be 

evaluated based on the average-practice frontier. Our results are due to the multiplicative form 

of the second stage adjustment in StoNED, and they will therefore also be valid when other 

benchmarking methods with a similar structure, such as COLS or MOLS, are used to perform 

Malmquist analysis. We have illustrated our discussion with data for Norwegian electricity 

distribution companies for the period 2004-2013. 
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