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Abstract

The rapid growth in the Norwegian electric vehicle market has put Norway in a unique

position as the leading country in electric vehicle adoption. With few challenges in the

establishment of charging infrastructure, most electric vehicle owners will at some point

charge their vehicle at home. The charging process of the vehicles can utilize business

analytics to schedule the charging to optimize the desired objectives.

In this thesis, we performed a comparison of charging strategies for electric vehicle owners

to schedule optimal charging at home. The charging strategies differ in the time periods of

charging and are based on the charging behavior of electric vehicle owners in Norway. In

order to compare the strategies, we developed a linear programming model that minimizes

the charging cost. The spot prices of electricity for 2021 was retrieved as the thesis is

conducted in a retrospective manner.

The thesis finds that the flexible night strategy would have experienced the lowest annual

charging cost of 1935.36 NOK. In addition, we find the most costly annual charging cost

of 2584.01 NOK associated with the forced afternoon strategy. This is a cost increase of

approximately 34% compared to the strategy with the lowest annual cost. The results

imply that the flexible strategies which can charge at any hour during the day choose to

charge the most at night.

This thesis further investigates how the charging costs would be affected if the new network

tariff model, to be implemented on July 1, 2022, was implemented in 2021. The results

show that the new network tariff would lead to an increase in the variable charging cost for

the strategies charging in the afternoon. In contrast, the results imply that the strategies

utilizing the off-peak hours of electricity would have experienced a decrease in the variable

cost. Lastly, adjustments in the battery capacity and driving range of the electric vehicle

were made to investigate the cost effect on the strategies. The results show a decrease in

the charging cost as the range increases. The most considerable cost reduction is seen

when the range increases from 200 km to 300 km for all the charging strategies.
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1 Introduction

1.1 Background and Scope of Research

The Norwegian electric vehicle (EV) market has experienced rapid growth over the last

years. At the end of 2021, the total share of EVs accounted for approximately 16% of the

Norwegian car fleet (SSB, 2022). The rapid growth is a unique phenomenon in a global

context considering Norway is a relatively small country as regards population size and

the car market. Consequently, no other country in the world has more registered EVs per

citizen.

Since its introduction, EV technology has developed exponentially as many businesses are

investing heavily to conquer a larger market share of the booming industry. As technology

evolves, car manufacturing companies strive to be the preferred choice for EV buyers.

Naturally, EVs will have different car-specific characteristics, such as battery capacity and

driving range. To meet the growing appetite for EVs, the companies strive to produce the

vehicle with the longest range and largest battery capacity. As the industry develops as a

whole, new technology and devices for EV charging are developed. Hence, the charging

effect from the charging device installed at home evolves.

More than 94% of EV owners charge the vehicle at home, making the charging process

flexible as the EV owner can decide which hours to charge (Figenbaum, 2018). Many EV

owners plug the vehicle into the charger when coming home from work in the afternoon.

Another typical charging behavior is to charge the vehicle during the night. As the EV

owner can charge at preferred hours, the charging can be scheduled at hours when the

spot prices for electricity are relatively lower.

As the number of EVs is expected to continue to increase, this might impact the stability

of the power grid. Therefore, the demand for charging will increase; thus, greater peak

demand on the power grid is expected. In June 2021, the Ministry of Petroleum and

Energy resolved a new regulatory requirement to facilitate better utilization of the power

grid and contribute to a reasonable distribution of the network costs between the end-

users. The new network tariff model aims to motivate consumers to shift their electricity

consumption to off-peak hours of electricity (Ministry of Petroleum and Energy, 2021a).
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2 1.2 Structure of the Thesis

Based on the unique situation of the Norwegian EV market, it is of great interest to study

different charging strategies based on the charging behaviors of the typical EV owner. In

this way, we aim to gain insight into how charging strategies would have performed based

on the spot prices of electricity in 2021. In order to do this, we utilize business analytics

to develop a charging optimization model which is used in a retrospective manner.

We intend to exploit and compare different charging strategies for electric vehicle owners

to minimize the charging cost.

This is performed by using mathematical programming, where the model proposed is a

linear programming optimization model. The objective function is to minimize the charging

cost of the different charging strategies presented. The input data in the optimization

model are spot prices of electricity and car-specific characteristics. Data on the spot prices

are retrieved from Nord Pool, while the car-specific characteristics are retrieved from the

Norwegian Road Federation (OFV). The solution of the optimization model returns the

minimum cost the EV owner can achieve for each charging strategy. Additionally, the

model can be used to see how the objectives will be affected if the new network tariff

model was implemented and if car-specific factors are adjusted in 2021.

1.2 Structure of the Thesis

This thesis is divided into eight chapters. This chapter has presented the background

and the scope of the research of the thesis. Chapter 2 presents relevant theory regarding

the Norwegian electricity grid and EVs in Norway and ends with a literature review of

research related to the field of EV charging. In chapter 3, a description of the development

of the optimization model and charging strategies are presented. Moreover, chapter 4

presents and describes the optimization model in mathematical terms. In chapter 5, the

computation and implementation of the data applied to the model are described. In

chapter 6, the results of the model are presented, compared, and discussed before two

scenarios are introduced. Furthermore, in chapter 7, a discussion of the model and data

limitations and suggestions for further work are presented. In the final chapter, conclusions

are drawn based on the results and discussion in the preceding chapters.

2 l. 2 Structure of the Thesis

Based on the unique situation of the Norwegian EV market, it is of great interest to study

different charging strategies based on the charging behaviors of the typical EV owner. In

this way, we aim to gain insight into how charging strategies would have performed based

on the spot prices of electricity in 2021. In order to do this, we utilize business analytics

to develop a charging optimization model which is used in a retrospective manner.

We intend to eaploit and compare different charging strategies for electric vehicle owners

to minimize the charging cost.

This is performed by using mathematical programming, where the model proposed is a

linear programming optimization model. The objective function is to minimize the charging

cost of the different charging strategies presented. The input data in the optimization

model are spot prices of electricity and car-specific characteristics. Data on the spot prices

are retrieved from Nord Pool, while the car-specific characteristics are retrieved from the

Norwegian Road Federation (OFV). The solution of the optimization model returns the

minimum cost the EV owner can achieve for each charging strategy. Additionally, the

model can be used to see how the objectives will be affected if the new network tariff

model was implemented and if car-specific factors are adjusted in 2021.

1.2 Structure of the Thesis

This thesis is divided into eight chapters. This chapter has presented the background

and the scope of the research of the thesis. Chapter 2 presents relevant theory regarding

the Norwegian electricity grid and EVs in Norway and ends with a literature review of

research related to the field of EV charging. In chapter 3, a description of the development

of the optimization model and charging strategies are presented. Moreover, chapter 4

presents and describes the optimization model in mathematical terms. In chapter 5, the

computation and implementation of the data applied to the model are described. In

chapter 6, the results of the model are presented, compared, and discussed before two

scenarios are introduced. Furthermore, in chapter 7, a discussion of the model and data

limitations and suggestions for further work are presented. In the final chapter, conclusions

are drawn based on the results and discussion in the preceding chapters.



3

2 Background

This chapter is divided into two parts. The first part provides an overview of the Norwegian

electricity grid. We present the technical characteristics of the power system, how the

power market works, regulations, and costs of using the electricity grid. The second

part elaborates on the EV market in Norway. This section includes a description of the

development of the market, political measures, charging behavior, and the impact of the

increasing number of EVs on the electricity grid. Lastly, a literature review is presented.

2.1 The Norwegian Electricity Grid

2.1.1 Production of Electricity

In its nature, electricity must be consumed at the same time as it is produced. This

unique feature of electricity is known as the need for instantaneous balance. In order

to maintain the instantaneous balance, the power supply system has three fundamental

functions: production, transmission, and trade.

The resources for electricity production are often located far from where the actual

consumption occurs. The energy sources are different in both location and form, including

non-renewable energy sources like nuclear, oil, coal, and natural gas, and renewable energy

sources like wind, solar, geothermal, and hydropower. Norway has the highest share

of electricity produced from renewable sources in Europe, whereas hydropower is the

mainstay of the power capacity (Energifakta Norge, 2021). The Norwegian hydropower

system has a high storage capacity, and the production can be increased and decreased

as needed at a low cost. The transmission function of the power supply system makes it

possible to transmit the power from production to the end-user.

The Norwegian power system is closely integrated with the other Nordic power systems,

which in turn are closely integrated with the rest of Europe through cross-border

interconnectors to the Netherlands, Germany, Poland, Russia, and the Baltic states

(Energifakta Norge, 2021). In Norway, the vulnerability to fluctuations in production

between seasons and years is reduced due to the characteristics of hydropower as an energy

source, a well-developed power grid, and integration with other power systems in other
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countries.

2.1.2 Infrastructure of the Electricity Grid

The function of the electricity grid is to transport the demanded volume of electricity

from the producers to the consumers at the time requested by the consumers (Ministry of

Petroleum and Energy, 2021b). The Norwegian power grid is a so-called natural monopoly

as it is not considered efficient for society to build parallel power lines if the existing lines

provide sufficient transmission capacity. The Norwegian electricity grid is divided into

three levels: the transmission grid, the regional grid, and the distribution grid.

The transmission grid constitutes the nationwide main roads of the power system. The

approximately 11000 km long transmission grid connects large producers and consumers

and carries mainly a high voltage level of 300 kV to 420 kV (Energifakta Norge, 2019).

In Norway, Statnett is the designated transmission system operator (TSO) and owns

most of the transmission grid. Statnett is responsible for coordinating production and

consumption to maintain an instantaneous balance in the power system.

The regional grid often links the transmission grid to the distribution grid. It carries a

voltage level of 33 to 132 kV and has a total length of approximately 19000 km. The

regional grid may also include production and consumption radials carrying higher voltage

levels.

The distribution grid consists of the local electricity grids, which primarily supply power

to smaller end-users. The distribution grid is divided into two segments, the high-voltage

and low-voltage. The high-voltage distribution grid normally carries a voltage level of 1

kV to 22 kV, while the low-voltage distribution grid operates at a voltage-levels of 230 V

or 400 V.

As defined by EU legislation, the regional and distribution grids are considered distribution

systems (NVE, 2018). About 130 different distribution system operators (DSOs) operate

on the distribution systems. The DSOs own the distribution networks and are responsible

for distributing the power to the end-users.
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2.1.3 Market-Based Power System

As electricity cannot easily be stored, the amount produced must equal the amount

consumed. The standard microeconomic theory of price uses the concept of supply and

demand to determine the appropriate price for a given commodity or service. In other

commodity markets, the standard microeconomic theory implies that supply and demand

will balance over time by using a pricing mechanism. In such markets, the price will

increase when demand exceeds supply, resulting in a decrease in demand and an increase

in supply until the balance is reached. The reverse logic is applied when supply exceeds

demand. However, due to the need for an instantaneous balance of electricity, the standard

microeconomic perspective of the pricing mechanism does not apply as the electricity

prices cannot keep up. Therefore, the power market is an essential tool to ensure balance

in the electricity system.

The power market can be divided into the wholesale market and the end-user market

(Energifakta Norge, 2022). The wholesale market includes the day-ahead, continuous

intraday, and balancing markets. The day-ahead market is the primary market for power

trading in the Nordic region. Here, power producers, power suppliers, brokers, energy

companies, and large industrial customers buy and sell large volumes of power. The

participants in the day-ahead market make bids and offers between 8 AM and 12 PM,

while the TSOs publish the trading capacity for each bidding area before 10 AM. Based

on the received bids, offers, and trading capacity, the prices for each hour of the following

day are determined.

The Nord Pool power exchange calculates the system price and the area prices. The system

price is equal for the Nordic market and works as a reference price for price determination

in the financial power markets. While the system price does not consider any congestion

in the grid, the area prices do. In this way, area prices contribute to a balance between

the purchase and sell bids from participants in the different bidding zones in the Nordic

region. Norway is currently divided into five different bidding zones, as shown in table

2.1.
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Table 2.1: The five bidding zones in Norway.

NO1 Oslo

NO2 Kristiansand

NO3 Trondheim

NO4 Tromsø

NO5 Bergen

The day-ahead market plays a vital role in ensuring the balance between supply and

demand. However, unexpected events could occur after the auction of the day-ahead

market has closed, leading to the actual production or consumption changes from the initial

position in the day-ahead market. Therefore, the intraday market enables continuously

trading in the period between clearance in the day-ahead market and up to one hour

before the hour of operation. This is with the intention that participants are able to

accomplish a balance through the trading (Energifakta Norge, 2022). Both day-ahead

and intraday trading takes place on the Nord Pool exchange.

As one of its TSO tasks, Statnett runs the latter wholesale market in Norway, the balancing

markets. There are other events that could disturb the balance in the power market.

In these cases, Statnett utilizes the balancing markets to regulate the production or

consumption depending on what is needed to maintain the instantaneous balance in the

power system.

The end-user market consists of individual consumers who enter into agreements to

purchase electricity from a power supplier. In the Norwegian end-user market, one-third

are households, one-third are industries, and one-third are medium-sized customers like

hotels and chain stores.

2.1.4 Regulations of the Electricity Grid

Due to the monopolistic nature of the power grid, the grid operations are not subject

to competition. The authority regulates the power system and grants licenses for the

production and transmission of energy as a monopoly control. The monopoly control is in

place to ensure that the operation, utilization, and development of the grid are rational

and in the best interest of society.
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The grid operators are subject to direct and incentive-based policy instruments in the

regulatory framework. The direct regulations are in place to ensure the necessary level of

investment, maintenance, and operation in the power grid. At the same time, the revenue

cap regulation is in place to incentivize the grid companies to find cost-effective ways of

meeting the requirements of the authorities.

Due to the monopolistic nature of the power grid, the end-users are also tied to their

local grid company. In this way, the end-users pay the cost of being connected to the grid

through the DSOs.

Connection charge

The TSO and DSO require a one-time connection expense of the end-user to cover the

costs of connecting the customer to the power grid. The grid company needs to present

an estimate of the connection charge in advance.

Network tariffs

The network tariffs vary across the country as it is the DSO’s responsibility to set its own

tariffs in the designated area. However, the national authority sets the general principles

for the tariff design that all DSOs must follow. As the end-user is tied to their local grid

company, the network tariffs are intended to cover the costs for the respective grid-level

the customer is connected to and for the overhead grid (NVE, 2018). However, the network

tariffs set by the DSOs must be objective and non-discriminatory. It is designed to reflect

a long-term signal of efficient utilization and development of the power grid and is allowed

to differentiate on relevant conditions in the area.

The general design of the network tariff consists of two components, a fixed component

and a variable component. The fixed component covers the fixed grid costs and the

customer-specific costs not covered by the variable component (NVE, 2021). In addition,

it is thought to provide a reasonable return on investments given efficient operation,

utilization, and development of the network. The variable component is meant to reflect

the costs of the end-users electricity consumption.

The taxes are not a part of the network tariff but are incorporated in the end-users total

invoice. The taxes include electricity tax and value-added tax (VAT). In addition, a

fee earmarked for the Energy Fund and a payment for electricity certificates are added.

2.1 The Norwegian Electricity Grid 7

The grid operators are subject to direct and incentive-based policy instruments in the

regulatory framework. The direct regulations are in place to ensure the necessary level of

investment, maintenance, and operation in the power grid. At the same time, the revenue

cap regulation is in place to incentivize the grid companies to find cost-effective ways of

meeting the requirements of the authorities.

Due to the monopolistic nature of the power grid, the end-users are also tied to their

local grid company. In this way, the end-users pay the cost of being connected to the grid

through the DSOs.

Connection charge

The TSO and DSO require a one-time connection expense of the end-user to cover the

costs of connecting the customer to the power grid. The grid company needs to present

an estimate of the connection charge in advance.

Network tariffs

The network tariffs vary across the country as it is the DSO's responsibility to set its own

tariffs in the designated area. However, the national authority sets the general principles

for the tariff design that all DSOs must follow. As the end-user is tied to their local grid

company, the network tariffs are intended to cover the costs for the respective grid-level

the customer is connected to and for the overhead grid (NVE, 2018). However, the network

tariffs set by the DSOs must be objective and non-discriminatory. It is designed to reflect

a long-term signal of efficient utilization and development of the power grid and is allowed

to differentiate on relevant conditions in the area.

The general design of the network tariff consists of two components, a fixed component

and a variable component. The fixed component covers the fixed grid costs and the

customer-specific costs not covered by the variable component (NVE, 2021). In addition,

it is thought to provide a reasonable return on investments given efficient operation,

utilization, and development of the network. The variable component is meant to reflect

the costs of the end-users electricity consumption.

The taxes are not a part of the network tariff but are incorporated in the end-users total

invoice. The taxes include electricity tax and value-added tax (VAT). In addition, a

fee earmarked for the Energy Fund and a payment for electricity certificates are added.



8 2.1 The Norwegian Electricity Grid

Finnmark, and the municipalities of Karlsøy, Kvænangen, Kåfjord, Lyngden, Nordreisa,

Skjerøy og Storfjord are exempt from the electricity tax and VAT. Moreover, Troms and

Nordland are exempt from VAT.

In June 2021, the Ministry of Petroleum and Energy resolved a new regulatory requirement

on how the network tariff should be redesigned. The purpose of the regulatory change is

to facilitate the best possible utilization of the power grid and contribute to a reasonable

distribution of the network costs between the end-users (Ministry of Petroleum and Energy,

2021a). As the use of power is expected to increase due to the electrification of society, so

is the demand on the power grid also expected to increase.

Yet, with the same general design as the current network tariff model, the new network

tariff model is to reward the end-users who utilize the off-peak hours of the power grid.

NVE (2022), in collaboration with other relevant companies and organizations, proposes

changes to motivate the end-users to shift their consumption to increase grid utilization.

With the general design of the current network tariff model, the proposal wants to adjust

the components by the following:

1. A minimum of 50% of the revenue should come from the variable component.

2. The variable component should be time differentiated to motivate the end-users to

shift the consumption to time periods when there is more capacity in the power

grid.

3. The part of the network tariff model that is not collected by the variable component

should be collected by a fixed component. The fixed component should be capacity-

based and motivate the end-users to even out large consumption peaks. In addition,

the fixed component should not be based on the maximum consumption in a single

hour.

4. The new network tariff model should be introduced in line with the above

recommendations from July 1, 2022, followed by an evaluation of the new network

tariff model in the autumn of 2024.
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2.2 Electric Vehicles in Norway

2.2.1 The Electric Vehicle Market

Norway is the country in the world with the most EVs per citizen, which puts the

Norwegian EV market in a unique situation in a global context (Lorentzen and Grøndahl,

2019). EVs are either partially or fully powered by electric power. However, only EVs

solely powered by electricity are taken into consideration in the following chapters. This

means that vehicles partially powered by electric energy, such as hybrid electric vehicles

(HEV) and plug-in hybrid electric vehicles (PHEV), are not included.

At the end of 2021, the total number of privately owned cars was approximately 2.9

million in Norway (SSB, 2022). EVs fully powered by electricity contributed to 460734

of these registered vehicles. Accordingly, the share of EVs accounted for approximately

16% of the total Norwegian car fleet in 2021. The number of new registrations of EVs

has experienced rapid growth over the last few years as figure 2.1 indicates. Figure 2.1

shows that the number of new registered EVs has increased in all counties from 2010 to

2021. Vestland (former Hordaland) is the county with the highest share of new registered

electric vehicles in 2021.

Figure 2.1: The development in the share of new registered EVs in selected counties of
Norway (Ofv, 2022).
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Different political measures are one of the reasons why the Norwegian EV market is

unique. Different governments have gradually introduced the incentives to promote

zero-emission vehicles since the early 1990s. According to Figenbaum and Kolbenstvedt

(2016), exemptions from the one-off registration tax and VAT, and access to the bus

lane are incentives that have had the greatest effect on the sales of EVs. In addition,

exemptions of toll road charges on national roads, free or reduced-price on ferries, and free

or reduced-price on public parking, are other EV advantages that are considered to have

contributed to the high sales number (Ministry of Transport, 2021). The latter incentives

are thought to be less substantial but can be of great importance for the individual EV

buyers (Figenbaum and Kolbenstvedt, 2016).

2.2.2 Impact on the Electricity Grid

As the number of EVs is expected to continue to grow, the demand for charging will

increase; thus, greater peak demand in the power grid is expected. These demand peaks

will become one of the main challenges for the power grid (Ydersbond and Amundsen,

2020).

NVE expects the transmission grid to be able to resist the higher energy consumption

from EVs as it will be a relatively small load compared to the total power consumption

(Skotland et al., 2016). The Norwegian power grid can support a fully electrified car fleet

without investing in additional capacity if charging occurs when the electricity usage is low

(Bjørndalen et al., 2019). On the other hand, it may create challenges for transformers

and cables in the distribution network if many people charge their vehicles simultaneously

in the same area. This applies especially to areas with less capacity in the first place.

Consequently, the distribution network will face the biggest challenges (Skotland et al.,

2016).

Systems for smart charging and load-shifting may reduce the possible challenges of capacity

due to the increasing number of EVs and the subsequent charging. Both smart charging

and load-shifting illustrate scenarios where the consumers move the consumption from

one period to another (Skotland et al., 2016). Additionally, incentivizing the end-users

to adapt their consumption to the capacity of the electricity grid is thought to reduce

the impact on the power grid. Designing the network tariff model in this matter would
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reduce the cost for the end-users (Bjørndalen et al., 2019).

2.2.3 Charging

Home charging

In contrast to a traditional car, where the refueling is a mechanical process, refueling an

EV is a chemical process through charging. There are two methods for charging an EV at

home. The EV owner can either use a home charger unit, also called a wallbox, or an

ordinary socket. The Norwegian Directorate for Civil Protection (2017) recommends the

usage of a wallbox as it provides better safety, charges faster, and has greater flexibility

than charging with an ordinary socket. In addition, the usage of an ordinary socket is

thought to increase the risk of fire.

There are two types of wallboxes, smart wallboxes and simple wallboxes. Smart wallboxes

have the functions of implementing time control and power supply control. Power control

involves controlling the use of electricity to even out the consumption, while time control

consists in deciding when the charging will start and stop (Norsk Elbilforening, nd).

In 2018, 43% of all EV owners used a wallbox to charge their vehicle (Figenbaum and

Nordbakke, 2019). According to Norsk Elbilforening (2021), 77% of all EV owners charged

their EVs with a wallbox in 2021, hence the number of EV owners using a wallbox has

increased substantially from 2018 to 2021 (Norsk Elbilforening, 2021). The EV owners

charged their vehicle either with a 16A fuse, which delivers 3.7 kW, or a 32A fuse, which

delivers between 7-22 kW. The higher the charging effect, the faster the EVs are charged.

The charging effect the wallbox provides is also delimited to what the specific EV is able

to receive. If the vehicle only can take 3.7 kW when charging, regardless of the effect the

wallbox can provide, the EV will not be able to receive more than 3.7 kW.

The wallbox receives power from the electricity grid and converts it to the kind of current

the car battery can store (The European Commission, nd). The power from the electricity

grid is always alternating current (AC). However, EVs can only store power as direct

current (DC) in the battery. In order to charge the battery, the power needs to be

converted from AC to DC. The onboard charger inside the vehicle is responsible for the

converting.
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Charging habits

According to Figenbaum (2018), more than 94% of EV owners charge their vehicles at

home. The charging takes place either in the garage or in their own parking lot. Moreover,

80% of the EV owners charge three times or more per week (Figenbaum and Nordbakke,

2019). This is illustrated in figure 2.2.

Figure 2.2: Frequency of charging the electric vehicle (Figenbaum, 2018).

As explained by Figenbaum (2018), the typical EV owner plugs the vehicle into the

charger when coming home from work, starting around 4 PM. This is supported by

surveys conducted by Norsk Elbilforening (2019), which reveals that more than half of

today’s EV owners charge their vehicle in the time period between 4 PM and 8 PM. A

more recent study conducted by Norsk Elbilforening states that 53% of the EV owners

charge their car at night (Sletvold, 2021). Lastly, 37% of EV owners states that they

charge their car daily.
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charge their car daily.



2.3 Literature Review 13

2.3 Literature Review

The interest and research in the EV industry are growing as new and existing technologies

are rapidly developed. The research articles have inspired us to write our thesis on

charging strategies based on the charging behavior of the typical EV owner. Many studies

seek to minimize the grid load when charging the EV at home, exploit the possibility

of discharging technology (V2G), or minimize costs when fast charging. Other studies

concern both grid load and cost minimization, while it seems to be few studies solely

concerning cost minimization for different charging behaviors. This section provides an

overview of existing literature relevant to the scope of our thesis.

Wang, Infield and Gill (2021) propose a simple and effective heuristic approach for

minimizing the EV charging cost of smart charging in a smart grid environment. The

smart grid environment refers to an aggregator which gathers usage data from EV owners

and makes daily charging schedules based on the submitted data in response to a real-time

price signal. The authors first present an optimization model, where the objective function

minimizes charging costs across the whole simulation period, which is set to 24 hours

with a resolution of 10 minutes. Furthermore, the authors propose a heuristic method to

implement the model while satisfying the constraints. The method follows the idea of

filling the valleys of the price signal curve with EV charging. This is presented in two

steps. The first step concerns scheduling the charging of the EV for each vehicle based on

its availability and the price signal. This means that the charging time slot with the lowest

price value from the price signal is selected first, and the price valley filling continues until

the EV is fully charged. The next step is to identify and eliminate any voltage points

that have been violated from the charging profiles. Meaning, detected voltage violations

identified in the simulation runs are excluded from the charging scheduling list. The

proposed model is tested on a typical domestic distribution network in the UK. Then, the

authors present a dynamic optimal power flow approach to demonstrate the effectiveness

of the smart charging model.

Hexeberg (2014) proposes an algorithm for smart charging and discharging procedure

of EVs in which the batteries’ storage capacity can be exploited to provide network

services under given assumptions. When developing the algorithm, the author investigates

three different charging scenarios. Firstly, a dumb charging strategy is considered, which
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means that all charging starts at 5 PM and continues until the battery is fully charged.

Secondly, the paper considers a profit-maximization scenario, which means that the vehicle

is charged when the electricity prices are low and discharged at times when the prices

are high. Lastly, a power factor control scenario is considered where the car is charged,

similar to the first scenario, if the voltage is above a certain level, and charging time is

reduced if the voltage is below. Furthermore, Hexeberg (2014) develops and implements

algorithms for all the charging scenarios. The proposed algorithm is applied to a number

of EVs in Norway, corresponding to a 50% adoption of EVs. The author finds that when

all the vehicles are charged according to the first scenario, it results in a major peak in

demand and reduction of the voltage between 6 PM and 8 PM. Furthermore, the findings

show that the second and the third scenario improved the voltage profile.

Kriekinge, De Cauwer, Sapountzoglou, Coosemans and Messagie (2021) present two

different MPC algorithms for charge scheduling. The first objective function minimizes the

grid electricity costs. This enables cost minimization for uni-directional charging, which

means power flows from the grid to the vehicle. The second objective function minimizes

the peak power cost and enables peak shaving and cost minimization for both uni- and

bi-directional charging. Bi-directional charging is when power can flow both ways. As a

result, four different charging strategies are defined. The authors test the strategies in a

simulator, which uses PV forecast from the transmission system operator in Belgium and

a developed deep recurrent neural network (RNN) for the load forecast. When compared

to uncoordinated charging, the authors discover that all charging schedules presented

are able to lower peak power. Furthermore, the authors find that bi-directional charging

reduces the peak power to a lower level than before the EVs were introduced.

The paper by Wangsness and Halse (2021) studies whether uncoordinated charging of EVs

might impose challenges on the local grid. The authors analyze data from 107 DSOs from

2008 to 2017 to investigate how an increase in the EV fleet affects the costs at the local

grids. The proposed model is a fixed effect regression used on a panel with the given data.

The objective is to investigate how the time varying variable, which is EVs, influences

the time-dependent endogenous variable, which is total cost. Wangsness and Halse (2021)

find that an increase in the number of EVs in the operational area of a DSO is associated

with an increase in local grid costs. Additionally, the study demonstrates relatively large
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heterogeneity in the effect of EVs on grid costs.

Bjørndalen, Ingeberg, Brønmo, and Norheim (2019) study the effect on the grid costs

if every household charges the EV at the same time. The authors present a power

demand model developed by Pöyry. This is a bottom-up tool which can be used to study

future hourly demand during the peak day of the year. The data is collected from three

different grid companies. Moreover, the authors present three future charging behaviors:

1) charging every day in the afternoon, 2) charging when needed in the afternoon, and 3)

charging at night.

The results obtained by Bjørndalen, Ingeberg, Brønmo, and Norheim (2019) illustrate

that when charging at night, the peak is in the morning between 8 AM and 9 AM, which

is the same result obtained when no EVs were charged. Furthermore, the load increases

between 5 PM and 8 PM when charging in the afternoon when required, although the

peak in the afternoon will not become larger than the peak in the morning. Lastly, the

results demonstrate that the peak in the afternoon is considerably larger than the peak in

the morning when charging every day in the afternoon. Next, the authors look into the

investment requirements for the local distribution networks under the different charging

strategies. The findings illustrate that charging at night does not require any investments

while charging in the afternoon will lead to a cost increase of 7% for the local distribution

company. These investments consist of network tariffs and investment contributions.

The mentioned research articles have inspired us to write our thesis. Nevertheless, we see

that there is still a lack of studies on when the EV owners should charge their vehicles

based on minimizing the charging cost. With this thesis, we attempt to fill the gap in the

research by comparing different charging strategies in order to minimize the charging costs

for EV owners. In order to exploit and compare the charging strategies, a mathematical

optimization model is developed to gain insight into what charging strategies are associated

with the highest and lowest annual charging cost.
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3 Problem Description

The goal of this thesis is to exploit and compare different charging strategies based

on charging behavior of EV owners. In order to compare the charging strategies, a

mathematical optimization model is created to minimize the charging cost of the different

charging schedules for the EV owners. For the purpose of minimizing cost, it is needed to

formulate a charging schedule based on normal charging behavior in mathematical terms.

The aim is to create the model as realistic as possible while still making some assumptions

to avoid the model being too complex to implement in the decision-making for the EV

owners. The model only takes into consideration vehicles that are solely powered by

electricity.

3.1 Home Charging for Electric Vehicle Owners

The increasing number of EV owners with a wallbox installed at home enables them to

charge the vehicle at their own preferred time. In this way, the EV owners can schedule

their charging to periods when the spot prices for electricity are lower. However, some EV

owners are not as price-conscious and schedule the charging when it is more convenient

regardless of the price level. Two factors determine the charging costs, the amount of

electricity retrieved from the grid per hour and the spot price, which varies from hour to

hour. In this model, the hourly spot prices for 2021 are retrieved from Nord Pool. This

means that the costs associated with the charging behaviors depend on the time periods

the EV owners decided to charge the vehicles in 2021. Thus, the analysis is conducted

retrospectively.

The purpose of the battery of the EV is to store energy; thus, the amount stored is a

crucial parameter. EVs have a built-in battery where the power the vehicles retrieve from

the grid is stored. Each car type has a different battery capacity, given in kWh. This

means that the amount of power stored varies among different EVs. Thus, the amount of

electricity charged is limited to the battery capacity and the state of charge. The state of

charge is the level of electricity stored in the battery of the EV. The model must ensure

that the state of charge does not exceed the battery capacity. Moreover, the state of

charge should not fall below a certain battery capacity level for the EV owners not to
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experience range anxiety. Range anxiety is the fear of running out of power. The model

makes sure the state of charge is always greater than or equal to the specific level of the

battery capacity.

The EV owners are thought to use the vehicle for the same daily travels every day of

the week. This means that longer trips are not included in the charging schedule. The

daily electricity demand for the EV owners is calculated using the average daily driving

distance. The model ensures the car is used for daily travels by subtracting the daily

demand of kWh from the battery’s state of charge. Additionally, the state of charge is

connected by each hour on each day to ensure the proper state of charge levels at all times.

In this way, the amount retrieved from the grid is added to the state of charge when the

car is plugged into the wallbox and subtracted when the car is driving. The model takes

care of this by making sure the state of charge in the current hour is equal to the state

of charge in the previous hour and the amount charged in the current hour. This also

applies to days, where the model ensures that the state of charge at the beginning of each

day is equal to the state of charge at the end of the previous day and the amount charged

on the current day.

The amount of electricity an EV can obtain from the wallbox in one hour is primarily

determined by the maximum charging rate it can give. This, in turn, is dependent on the

main fuse of the house. The model ensures the total amount of electricity received does

not exceed the maximum kW the wallbox can give. Additionally, a charging device inside

the battery of the vehicle limits how much power it can receive in one hour. The device

ensures that the EV does not receive more electricity than it can handle. The model

assumes that the charging rate the vehicle receives from the wallbox is the same for all

vehicles.

When the EV is plugged into the charger, the amount of electricity the vehicle receives

from the grid cannot be less than 0. This also applies to the state of charge of the car.

The model ensures that the amount of electricity received from the grid and the state of

charge is always greater than or equal to 0.
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3.2 The Charging Strategies

Seven charging strategies are formulated based on the presented charging behavior and

included in the model. In this part of the thesis, the charging strategies are presented.

3.2.1 Fully Flexible

The charging strategy is included as a benchmark strategy to illustrate the optimal

charging schedule if the EV owner can charge the vehicle at any time during the week.

The strategy is fully flexible as it can charge all hours of the day on both weekdays and

weekends. However, the charging strategy is restricted to drive the EV at 3 PM every day

of the week. It is assumed that this is a time period where many EV owners use their

cars for daily trips. As a result, the EV owners cannot charge the vehicles during this

hour due to the driving.

3.2.2 Forced Afternoon

The forced afternoon charging strategy is based on one of the most common charging

behaviors of EV owners, where the vehicle is plugged into the wallbox right after work

every weekday. Hence, the EV is charged regardless of the state of charge of the battery.

Right after work is assumed to be at 4 PM, which means the EV owners start to charge

the vehicle during peak hours of electricity. The model restricts the strategy to have a

fully charged battery at the end of each charging period. The charging period is 4 PM to

8 PM Monday through Friday. In addition, the car is thought to be driven at 3 PM every

day of the week which is outside the charging period.

3.2.3 Flexible Afternoon

The flexible afternoon charging strategy is also based on one of the most common charging

behaviors, where the EV owners still charge the vehicle right after work from 4 PM to 8

PM. However, the EV owners can plug the vehicle into the wallbox when necessary to

charge the battery. In the model, it is assumed to be necessary never to have less than

20% of the battery capacity available. This is due to range anxiety. In addition, it is

assumed that it is necessary to charge the battery to be capable of making the daily trips
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on the following days. The EVs are thought to be driven at 3 PM every day of the week,

which is outside the charging period. The charging strategy still restricts the EV owners

to only be able to charge Monday through Friday, and not outside the charging period of

4 PM to 8 PM nor on the weekends.

3.2.4 Forced Night

Forced night charging illustrates a charging schedule where the EV owners utilize the

off-peak hours of electricity. The EV owners are forced to charge the vehicle every night

on weekdays. Hence, the EV owners are restricted to fully charge the vehicle at the end of

the charging period. The charging period starts at 12 AM and ends at 7 AM, and ranges

from the night of Sunday to Monday until the night of Thursday to Friday. Accordingly,

EVs are not allowed to be charged during the weekend. Additionally, the vehicles are

thought to be driven at 3 PM every day of the week, which is outside the charging period.

3.2.5 Flexible Night

In the flexible night charging strategy, the EV owners still utilize the off-peak hours of

electricity during the night. The model illustrates EV owners who can plug the car into

the wallbox from 12 AM until 7 AM when it is necessary to charge the battery. It is

assumed to be necessary never to have less than 20% of the battery capacity available

due to range anxiety. In addition, it is assumed to be necessary to have sufficient battery

stored to drive the daily trips the following days. The EV owners can only charge the

vehicle during the weekdays and not on the weekends. The charging periods range from

the night of Sunday to Monday until the night of Thursday to Friday. Additionally, the

EVs are thought to be driven at 3 PM every day of the week, which is outside the charging

period.

3.2.6 Forced Weekend

The forced weekend charging strategy illustrates the scenario when the EV owners fully

charge the battery during the weekends. The EV owners can charge the vehicle at any

time during the weekend. Therefore, the charging period starts at 12 AM on Saturday

and lasts until 11 PM on Sunday. The model forces the EV to be fully charged at 11 PM
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on Sunday as the EV owners charge the battery full every weekend. However, the strategy

is restricted to use the vehicle for daily trips every day of the week at 3 PM. Meaning,

the charging schedule cannot charge the EV at this hour.

3.2.7 Flexible Weekend

The flexible weekend charging strategy restricts the EV owners to only charge during the

weekends. The charging period starts at 12 AM on Saturday and lasts until 11 PM on

Sunday. However, in this weekend charging strategy, the EV does not need to be fully

charged at the end of the charging period and charges only when it is necessary. It is

assumed to be necessary never to have less than 20% of the battery capacity available

due to range anxiety. In addition, it is assumed to be necessary to have sufficient battery

stored to drive the daily trips in the following weeks. The charging strategy is flexible

in which the EV owners can charge the vehicle at any time during the weekends except

when it is used for daily trips at 3 PM.

3.2.8 Summary of the Strategies

Table 3.1: Summary of the all the charging strategies presented.

Name Charging period Driving

Fully flexible 12 AM to 11 PM 3 PM

Forced afternoon 4 PM to 8 PM 3 PM

Flexible afternoon 4 PM to 8 PM 3 PM

Forced night 12 AM to 7 AM 3 PM

Flexible night 12 AM to 7 AM 3 PM

Forced weekend 12 AM to 11 PM 3 PM

Flexible weekend 12 AM to 11 PM 3 PM
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4 Optimization Model

This chapter will provide a short introduction to mathematical programming before the

optimization model is presented. The optimization model is formulated using mathematical

programming techniques and includes sets, parameters, decision variables, objective

function, and constraints.

4.1 Mathematical Programming

Mathematical programming is one of the most widely used models in the field of operational

research and management science (Williams, 2013). Operational research is an approach

to find optimal solutions to a range of problems to assist in decision-making, such as the

optimal use of limited resources. A common characteristic of mathematical programming

is that it involves optimization. The optimization model is formulated mathematically

with decision variables, objective function, and constraints (Lundgren et al., 2010). The

decision variables vary and can be controlled or affected by the decision-maker, while the

objective function depends on the decision variables and is either maximized or minimized.

Moreover, the optimal values of the decision variables are restricted by a set of constraints.

There exists a large variety of mathematical programming models. Some examples are

linear programming, non-linear programming, and integer programming. The linear

programming model is the most widely used and is especially important as many problems

can be modeled as linear programs (Fourer et al., 2003).

4.1.1 Linear Programming

In a linear programming (LP) model all the costs, requirements, and other quantities of

interest are expressed in terms that is strictly proportionate to the levels of activities,

or sums of such terms. The objective is a linear function and the constraints are linear

equations and inequalities (Fourer et al., 2003). An LP problem can be written in general

form as
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min z =
n∑

j=1

cjxj

s.t.

n∑
j=1

aijxj ≤ bi, i = 1, ..,m

xj ≥ 0, j = 1, .., n

Here, cj is the coefficient for variable xj in the objective function, while aij is the coefficient

for variable xj in the first constraint. bi is the coefficient of the right-hand side in the

same constraint (Lundgren et al., 2010).

Mathematical programming models can be solved by using computer software. In this

thesis, we use AMPL to formulate the model and CPLEX as a solver to obtain the optimal

solution. In the next part, the optimization model will be presented in mathematical

terms.

4.2 Optimization Model

4.2.1 Sets

T = Set of all time periods

D = Set of all days

First, the sets in the model are defined. The sets include a set of time periods and a set

of days. The set containing the time periods includes all the hours in a day, while the set

of days represents all days in a year.
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4.2.2 Parameters

pt,d Spot price of electricity in time period t on day d

e Variable cost of the network tariff dependent on the power consumption

r Charging rate

C Maximum battery capacity of the EV

c Minimum battery capacity of the EV

d̄ Average daily demand of kWh used for daily trips

Yt,d 1 the charging strategy allows for charging at time t and day d, 0 otherwise

Zt,d 1 if the EV is driving at time t and day d, 0 otherwise

The charging strategies are influenced by a set of parameters, including spot prices,

variable costs, charging rate, maximum and minimum battery capacity, average daily

demand for electricity and two binary parameters. Some of the parameters are defined by

the car-specific characteristics of the EV in the model, such as maximum battery capacity,

minimum battery capacity, and the calculated average daily demand for electricity.

The spot prices and the variable cost are given in NOK. Moreover, the charging rate

in kWh is the amount of electricity retrieved from the grid to charge the battery of the

vehicle. The maximum battery capacity represents the maximum amount of electricity

the battery of the EV can store. The minimum battery capacity is set to have at least a

state of charge of 20% of the maximum battery capacity. The average daily demand is

the amount of kWh required to drive the daily trips every day of the week.

The model includes two binary parameters to specify when the different charging strategies

are set to have the opportunity to charge and drive.

4.2 Optimization Model 23

4.2.2 Parameters

Pt ,d Spot price of electricity in time period t on day d

e Variable cost of the network tariff dependent on the power consumption

r Charging rate

C Maximum battery capacity of the EV

c Minimum battery capacity of the EV

d Average daily demand of kWh used for daily trips

Ya 1 the charging strategy allows for charging at time t and day d, 0 otherwise

a 1 i f the EV is driving at time t and day d, 0 otherwise

The charging strategies are influenced by a set of parameters, including spot pnces,

variable costs, charging rate, maximum and minimum battery capacity, average daily

demand for electricity and two binary parameters. Some of the parameters are defined by

the car-specific characteristics of the EV in the model, such as maximum battery capacity,

minimum battery capacity, and the calculated average daily demand for electricity.

The spot prices and the variable cost are given in NOK. Moreover, the charging rate

in kWh is the amount of electricity retrieved from the grid to charge the battery of the

vehicle. The maximum battery capacity represents the maximum amount of electricity

the battery of the EV can store. The minimum battery capacity is set to have at least a

state of charge of 20% of the maximum battery capacity. The average daily demand is

the amount of kWh required to drive the daily trips every day of the week.

The model includes two binary parameters to specify when the different charging strategies

are set to have the opportunity to charge and drive.



24 4.2 Optimization Model

4.2.3 Decision Variables

xt,d Amount of electricity retrieved from the grid at time period t on day d

SOCt,d State of charge of the EV’s battery at time period t on day d

The first decision variable includes the amount of electricity retrieved from the grid to

charge the EV each time period of each day. Moreover, the second decision variable

includes the state of charge of the battery each time period of each day. Both variables

are continuous and measured in kWh.

4.2.4 Objective Function

The objective function aims to minimize the charging cost:

min
∑

t∈T, d∈D

pt,d · xt,d +
∑

t∈T, d∈D

e · xt,d (4.1)

4.2.5 Constraints

In this section, the constraints for the charging strategies are presented. The general

presentation of the model is formulated mathematically before the model is described in

detail. Lastly, the different charging strategies are presented and potential constraints are

added to the general model.

4.2.5.1 General Presentation of the Model

SOCt,d = C, t = 0, d = 1 (4.2)

SOCt,d = SOCt−1,d + xt,d · Yt,d − d̄ · Zt,d, ∀ t ∈ T : t > 0, d ∈ D (4.3)
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SOC0,d = SOC23,d−1 + x0,d, ∀ d ∈ D : d > 1 (4.4)

SOCt,d ≤ C, ∀ t ∈ T, d ∈ D (4.5)

SOCt,d ≥ c, ∀ t ∈ T, d ∈ D (4.6)

xt,d ≤ r, ∀ t ∈ T, d ∈ D (4.7)

xt,d ≥ 0, ∀ t ∈ T, d ∈ D (4.8)

SOCt,d ≥ 0, ∀ t ∈ T, d ∈ D (4.9)

The initial state of charge is defined by constraint 4.2. The constraint ensures that the

EV starts with the total battery capacity at the beginning of the modeling period. This

is defined as the first hour of the first day.

Constraint 4.3 ensures balance between the state of charge of each time period. The

balance is defined by the state of charge in the previous time period, the amount charged

in the current time period, and the amount consumed for daily trips in the current time

period. The time periods are connected, so the state of charge at the current time period

is equal to the state of charge in the previous time period. In addition, if the strategy
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allows for charging, then the amount charged in the current time period is added to the

state of charge. If the charging strategy is required to drive, the amount consumed for

daily trips is subtracted from the state of charge. The two binary parameters Yt,d and

Zt,d ensure these concerns.

Constraint 4.4 ensures balance between the state of charge of each day. The balance is

defined by the state of charge at 11 PM on the previous day and the amount charged

at 12 AM on the current day. In this way, the constraint connects the state of charge

between the 365 days of the model.

Constraint 4.5 makes sure the state of charge of the EV do not exceed the battery capacity

of the specific vehicle. Furthermore, constraint 4.6 ensures the state of charge of the EV

never go below a level of 20% of the battery capacity. This means that the EV owner

demands that the state of charge is above the range anxiety level.

The amount of electricity retrieved from the grid cannot exceed the charging rate. This is

ensured by constraint 4.7, which limits the EV not to retrieve more electricity than the

standard wallbox can give. The vehicle cannot receive more because the wallbox cannot

deliver more effect.

Constraints 4.8 and 4.9 are non-negativity constraints. The constraints ensure that the

amount of electricity retrieved from the grid and the battery’s state of charge is greater

than or equal to 0.

The formulated model is similar to the literature presented in the literature review in

chapter 2. Nevertheless, the model has some dissimilarities compared to the literature.

Hexeberg (2014) describes a similar objective function but maximizes the revenue for

the EV owners by including the ability to discharge the EV. Hence, the solution finds

the optimal objective where the amount of energy sold to the grid is subtracted by the

amount bought from the grid. In our thesis, the formulated model includes all hours in

a day and all days in a year, while Hexeberg (2014) formulates the model for a single

24-hour period. Furthermore, Wang, Infield, and Gill (2021) minimize charging cost for

the EV owners in a smart grid environment. Based on a real-time price signal, the model

schedules the charging for when the price signal curve decreases. The authors formulated

the model to schedule the charging in advance as a smart charging method, while our
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The formulated model is similar to the literature presented in the literature review in

chapter 2. Nevertheless, the model has some dissimilarities compared to the literature.

Hexeberg (2014) describes a similar objective function but maximizes the revenue for

the EV owners by including the ability to discharge the EV. Hence, the solution finds

the optimal objective where the amount of energy sold to the grid is subtracted by the

amount bought from the grid. In our thesis, the formulated model includes all hours in

a day and all days in a year, while Hexeberg (2014) formulates the model for a single

24-hour period. Furthermore, Wang, Infield, and Gill (2021) minimize charging cost for

the EV owners in a smart grid environment. Based on a real-time price signal, the model

schedules the charging for when the price signal curve decreases. The authors formulated
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thesis presents a retrospective analysis of the known spot prices of electricity for 2021.

4.2.5.2 Fully Flexible

Fully flexible charging strategy includes all the constraints presented in the general

presentation of the model. The charging strategy is restricted to drive at 3 PM every

day of the week. Therefore, Zt,d = 1 at time period 15 in constraint 4.3. As the charging

strategy is fully flexible, the model is allowed to charge every hour of every day except

when the car is driving. Thus, the parameter Yt,d = 1 for all time periods except when t

is 15 and for all d in days.

4.2.5.3 Forced Afternoon

The charging strategy includes all the constraints presented in the general presentation of

the model. Forced afternoon charging strategy is forced to charge every weekday after

work. This means Yt,d = 1 when the time period is 16, ..., 20 in weekdays in constraint

4.3. In the same constraint, Zt,d = 1 at time period 15 every day of the week, including

the weekends. Consequently, the EV owner cannot charge the vehicle at this hour as it is

driving. Although the strategy is limited to only charge during the weekdays, the EV is

still used for daily trips on the weekends. Hence, the constraint makes sure the state of

charge on Mondays is equal to the state of charge at the end of Fridays subtracted by the

amount consumed for daily trips on Saturdays and Sundays.

In order for the strategy to charge every day after work, constraint 4.10 is added to the

model. The constraint ensures the battery is fully charged at the end of the charging

period, which in this case is at 8 PM. As the charging strategy only includes charging on

the weekdays, the state of charge on the weekends is not affected by the constraint.

SOCt,d = C, ∀ d ∈ D, t = 20 (4.10)

4.2.5.4 Flexible Afternoon

The charging strategy includes all the constraints presented in the general presentation of

the model. Flexible afternoon strategy charges the EV when necessary on the weekdays.

In constraint 4.3, Yt,d = 1 when the time period is 16, ..., 20 in weekdays. Zt,d = 1 at

4.2 Optimization Model 27

thesis presents a retrospective analysis of the known spot prices of electricity for 2021.

4.2.5.2 Fully Flexible

Fully flexible charging strategy includes all the constraints presented in the general

presentation of the model. The charging strategy is restricted to drive at 3 PM every

day of the week. Therefore, Zia= 1 at time period 15 in constraint 4.3. As the charging

strategy is fully flexible, the model is allowed to charge every hour of every day except

when the car is driving. Thus, the parameter Yt,d= l for all time periods except when t

is 15 and for all d in days.

4.2.5.3 Forced Afternoon

The charging strategy includes all the constraints presented in the general presentation of

the model. Forced afternoon charging strategy is forced to charge every weekday after

work. This means Yt,d = l when the time period is 16, ..., 20 in weekdays in constraint

4.3. In the same constraint, Z a = l at time period 15 every day of the week, including

the weekends. Consequently, the EV owner cannot charge the vehicle at this hour as it is

driving. Although the strategy is limited to only charge during the weekdays, the EV is

st i l l used for daily trips on the weekends. Hence, the constraint makes sure the state of

charge on Mondays is equal to the state of charge at the end of Fridays subtracted by the

amount consumed for daily trips on Saturdays and Sundays.

In order for the strategy to charge every day after work, constraint 4.10 is added to the

model. The constraint ensures the battery is fully charged at the end of the charging

period, which in this case is at 8 PM. As the charging strategy only includes charging on

the weekdays, the state of charge on the weekends is not affected by the constraint.

SOCa c, V d e D , t 20 (4.10)
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the model. Flexible afternoon strategy charges the EV when necessary on the weekdays.
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time period 15 every day of the week. Consequently, the EV owner cannot charge the

vehicle at this hour as it is driving. The EV is also used for daily trips on the weekends,

although the strategy is limited to charge Mondays through Fridays. Thus, the state of

charge on Mondays is equal to the state of charge at the end of Fridays subtracted by the

amount consumed for daily trips on Saturdays and Sundays.

4.2.5.5 Forced Night

The charging strategy includes all the constraints presented in the general presentation of

the model. Forced night strategy is forced to charge every weekday at night. This means

Yt,d = 1 when the time period is 00, ..., 07 in weekdays in constraint 4.3. The time periods

range from the night of Sundays to Mondays until the night of Thursdays to Fridays. In

the same constraint, Zt,d = 1 at time period 15 every day of the week as it is driving.

Although the strategy is limited to only charge at night during the weekdays, the EV is

still used for daily trips on the weekends. Hence, the state of charge when the charging

period begins at 12 AM on Mondays is equal to the state of charge at the end of Fridays

subtracted by the amount consumed for daily trips on Fridays, Saturdays, and Sundays.

In order to force the strategy to charge every weekday at night, constraint 4.11 is added to

the model. The constraint ensures the battery is fully charged at the end of the charging

period, which in this case is at 7 AM. As the strategy only includes charging on the

weekdays, the state of charge on the weekends is not affected by the constraint.

SOCt,d = C, ∀ d ∈ D, t = 07 (4.11)

4.2.5.6 Flexible Night

The charging strategy includes all the constraints presented in the general presentation of

the model. Flexible night strategy charges when necessary at night on the weekdays. In

constraint 4.3, Yt,d = 1 when the time period is 00, ..., 07 in weekdays. The time periods

range from the night of Sundays to Mondays until the night of Thursdays to Fridays. In

addition, Zt,d = 1 at time period 15 every day of the week as it is used for driving. The

EV is also used for daily trips on the weekends, although the strategy is limited to charge

during the weekdays. Hence, the state of charge when the charging period begins at 12
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AM on Mondays is equal to the state of charge at the end of Fridays subtracted by the

amount consumed for daily trips on Fridays, Saturdays, and Sundays.

4.2.5.7 Forced Weekend

The charging strategy includes all the constraints presented in the general presentation

of the model. Forced weekend strategy is forced to charge on the weekends. Therefore,

Yt,d = 1 at any time period t in the weekend. The charging period starts at 12 AM on

Saturdays and ends at 11 PM on Sundays. The charging strategy is restricted to drive at

3 PM both Saturdays and Sundays. Therefore, Zt,d = 1 at time period 15 in constraint

4.3. The EV is also used for daily trips on the weekdays, although the charging strategy

is limited to charge during the weekends. Hence, the state of charge when the charging

period begins at 12 AM on Saturdays is equal to the state of charge at the end of Sundays

subtracted by the amount consumed for daily trips on the weekdays.

In order to force the EV to be fully charged at 11 PM on Sundays, constraint 4.12 is

added. As the strategy only includes charging on the weekends, the state of charge on the

weekdays is not affected by the constraint.

SOCt,d = C ∀ d ∈ D, t = 23 (4.12)

4.2.5.8 Flexible Weekend

The charging strategy includes all the constraints presented in the general presentation of

the model. Flexible weekend strategy charges the EV when necessary on the weekends. In

constraint 4.3, Yt,d = 1 at any time period t on the weekends. The weekends start at 12

AM on Saturdays and end at 11 PM on Sundays. Additionally, Zt,d = 1 at time period 15

on Saturdays and Sundays, as the model restricts the EV to drive at 3 PM on both days.

Although the strategy is limited to charge during the weekends, the EV is also used for

daily trips on the weekdays. Hence, the state of charge when the charging period begins

at 12 AM on Saturdays is equal to the state of charge at the end of Sundays subtracted

by the amount consumed for daily trips on the weekdays.
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5 Data Description

This chapter presents and describes the data sources used in the optimization model. The

model optimizes each charging strategy individually and relies on input data retrieved

from various sources. To be regarded as valid input data in the model, the data retrieved

needed different methods of processing and computation. Therefore, this chapter is split

into two parts: computation of the data and implementation of the data. Lastly, the

assumptions made regarding input values are discussed.

5.1 Computation of the Data

For all the charging strategies, the annual charging cost is defined by the amount of kWh

retrieved from the grid and the corresponding spot price when the charging takes place.

The data on electricity prices and car-specific characteristics needed computation and are

presented in the following section.

5.1.1 Electricity Prices

The hourly day-ahead prices are retrieved from Nord Pool, where the data set initially

was given in NOK/MWh for all the bidding areas in Norway. In the raw data, each row

represents the hourly spot price starting on January 1, 2021, at 12 AM and ending on

December 31, 2021, at 11 PM. Each observation applies to one hour, e.g., from 12 AM to

1 AM, which yields a total of 43800 observations when including all the bidding areas in

Norway.

The raw data of spot prices were transformed to better fit the model. Firstly, only the

spot prices of Bergen (NO5) were derived from the raw data. As presented in chapter 2,

Vestland (former Hordaland) had the highest number of new registered EVs in 2021. In

this matter, the total number of observations was reduced to 8760. The data for 2021

consists of three columns, including all the dates, hours in each day and the corresponding

spot prices for NO5.

For the purpose of calculating the annual cost when retrieving electricity measured in

kWh from the grid, the electricity prices are converted from NOK/MWh to NOK/kWh.
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This was applied to the raw data by dividing the spot prices by 1000. In addition, the

day-ahead prices on Nord Pool are wholesale prices and exclude fees, charges, or taxes

applied to the electricity prices at a national level. Therefore, the VAT of 25% is added

to the spot prices.

The computation of the electricity prices was done in Excel. In addition, the data on the

spot prices were transformed to a format that better suits parameters in AMPL. The

columns of the dates, hours and corresponding spot prices are split into multiple columns

horizontally to have each column representing one day and each row representing one

hour for the whole year. The hours were converted to a single-hour format, although the

interpretation of the hour remains the same. The same transformation was applied to the

dates as AMPL would struggle to interpret the formulated model in short date format.

Therefore, the dates were converted into a single number format for all 365 days in 2021.

Table 5.1 illustrates the transformed spot prices when including the taxes for bidding zone

NO5 on the first seven days of 2021.

Table 5.1: Data structure for spot prices the first seven days of 2021.

1 2 3 4 5 6 7

0 0.32574 0.33409 0.32991 0.32195 0.36279 0.39049 0.55878

1 0.31790 0.32521 0.32104 0.31399 0.35809 0.37595 0.53050

2 0.31308 0.32300 0.31151 0.31176 0.35326 0.36798 0.50833

3 0.30968 0.32195 0.30773 0.31373 0.35404 0.36626 0.51598

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

22 0.34519 0.35054 0.34180 0.40408 0.41823 0.50660 0.75023

23 0.33475 0.33866 0.32535 0.35708 0.38105 0.42544 0.65670

5.1.2 The Norwegian Electric Vehicle Fleet

OFV provided us with data on the ten most sold EVs in 2021. The data on the selected

EV models consists of the brand name, the model name, the driving range in km by New

European Driving Cycle standard (NEDC) and Worldwide Harmonized Light Vehicles

Test Procedure standard (WLTP), and the total number of the registered vehicles with
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the corresponding range per 31.12.2021. By September 2018, all car manufacturers were

required by EU law to test the EVs’ range by the WLTP standard (European Automobile

Manufacturers Association, nd). Therefore, only the information on the EVs with range

given in WLTP was considered.

The same EV models are registered with multiple driving ranges and number of

registrations. Therefore, the EV models were grouped in Excel and the minimum

and maximum range of the selected EVs were identified. Lastly, the total number

of registrations of each EV model with the different ranges was computed. In table 5.2,

the five most popular EVs by different car manufacturers per 31.12.2021 is shown.

Table 5.2: The five most registered EVs per 31.12.2021.

Brand name Model Min range Max range Number of registrations

Tesla Model 3 409 640 96700

Nissan Leaf 117 389 79135

Volkswagen ID.4 336 517 71541

Skoda Enyaq 355 673 64822

Audi E-tron 231 485 54862

5.2 Implementation of the Data

In order to implement the optimization model, we have made some assumptions about

the car-specific characteristics and how the electricity is retrieved from the grid. An EV

with similar characteristics as Tesla Model 3 is included in the model as this was the most

registered EV per 31.12.2021. This section will outline and justify the different input

values of the model.

5.2.1 Battery Capacity and Driving Range

Based on the data obtained from OFV, most registrations of Tesla Model 3 have a battery

capacity of 75 kWh and a driving range of 560 km. Therefore, these characteristics are

used as input values in our model.

Table 5.2 shows how the driving range varies between the EV models and how the driving
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range varies within the same EV model. In order to use the model for EVs with other

car-specific characteristics, the two critical input values of battery capacity and driving

range are adjusted in a later scenario analysis. The scenario analysis intends to investigate

how an increase of 100 km in driving range will affect the variable cost of each charging

strategy. Therefore, different values of battery capacity and driving range are chosen to

represent other EV models. The table 5.3 displays the range and corresponding battery

capacity of the selected EV models.

Table 5.3: Overview of the selected driving range and battery capacity.

Range Battery capacity

200 km 35 kWh

300 km 45 kWh

400 km 55 kWh

500 km 65 kWh

600 km 75 kWh

The shortest range is set to 200 km and represents a short-range EV, while the EV with

the longest range of 600 km represents a long-range EV. The long-range EV with range of

600 km has approximately similar characteristics as the imitated Tesla Model 3 in the

initial model. As the scenario analysis intends to investigate how an increase of 100 km in

driving range will affect the charging cost of the charging strategies, the driving range

increases by 100 km at each time. Moreover, the battery capacity also needs to increase

in a similar proportion as more battery capacity leads to a longer range.

5.2.2 Average Driving Distance

Data on average driving distance for passenger cars is retrieved from the Norwegian

National Travel Survey 2018/2019 (Grue et al., 2021). In 2018/2019, the average total

daily driving distance was 43.2 km for passenger cars. There have not been conducted

any more recent surveys due to the impact on travel behavior after Covid-19. As the

pandemic and the following infection control measures restricted the daily travel activity,

it is thought to have reduced the average driving distance in 2021. Therefore, the average
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driving distance of 2018/2019 is used in the model to represent what is considered normal

travel activity.

Based on the survey, the daily trips mainly consist of travels to work, school, shopping,

and other errands, and travels for leisure activities. As the data retrieved only includes

daily trips, other longer trips are not included in the model. Consequently, we assume

that the average daily driving distance is applied to all days of the week. It is thought

that the afternoon and night charging strategies are not affected by the specific hour of

driving. The fully flexible and weekend charging strategies are not limited to charge at

specific hours of the day, and the EV owners have more flexibility. Therefore, we assume

the EVs are used for daily trips between 3 PM and 4 PM. As a consequence, the EVs

cannot be charged during the assumed hours of daily trips.

The amount of kWh an EV consumes at each trip is affected by internal and external

factors, whereas these factors affect the EV models differently. Highly variable factors

such as weather conditions, outside temperature, road conditions, driving conditions,

and car-specific variations in consumption of battery are not taken into consideration in

the model. As a result, the average daily demand for kWh to use for daily trips, d̄, is

calculated by the following equation for all EVs included in the thesis:

Battery capacity
Driving range · average daily driving distance

Based on the data obtained from OFV, an EV similar to Tesla Model 3 has a driving

range of 560 km and battery capacity of 75 kWh. By only taking these input values into

consideration, the EV consumes 75/560 = 0.1339 kWh/km. The average daily demand

for kWh will then be 0.1339 · 43.2 = 5.79 kWh. The same calculation is applied to the

EVs with different battery capacities and driving ranges which are implemented in the

scenario analysis. Table 5.4 summarizes all the EVs.
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Bat t e ry capacity d 'l d ' ' d' t
D . . · average ai y riving is ancer v v n g range
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EVs with different battery capacities and driving ranges which are implemented in the

scenario analysis. Table 5.4 summarizes all the EVs.
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Table 5.4: Driving range, battery capacity and average daily demand to use for daily
trips for all EVs.

Range (km) Battery capacity (kWh) Average daily demand (kWh)

200 35 7.56

300 45 6.48

400 55 5.94

500 65 5.62

560 75 5.79

600 75 5.40

5.2.3 Charging Rate

In Norway, the 230V IT-system is the most common power distribution system in the

low-voltage segment of the distribution grid (Oslo Economics, 2019). Therefore, we assume

this IT-system is installed in our model. In addition, the main fuse in a house determines

the amount of electricity coming into the home and controls how fast the EV can be

charged. A wallbox with a 16A fuse will be able to charge an EV overnight to have a

range of 125-150 km, while a wallbox with a 32A fuse are able to charge twice as much

(Bjørndalen et al., 2019). Given that the average daily driving distance is 43.2 km, we

assume that an average household has a 16A fuse, as they do not need a 32A fuse. Thus,

the model is based on a 230V IT-system with a 16A fuse.

The EV owners can either use a wallbox or an ordinary socket when charging the EV at

home. However, the Norwegian Directorate for Civil Protection (2017) recommends the

usage of a wallbox as it provides better safety, charges faster, and has greater flexibility

than charging with an ordinary socket. In addition, 77% of the EV owners used a wallbox

to charge their EVs in 2021 (Norsk Elbilforening, 2021). The EV owners are thought to

charge the EV with a 16A fuse, hence the wallbox delivers 3.7 kW.

Consequently, the charging rate in the model will have an effect of maximum 3.7 kW.

Although some EVs theoretically can receive more than 3.7 kW, it will not be possible

for the vehicle to receive more as the wallbox cannot deliver more effect with a 16A fuse.

Hence, we assume the charging rate of 3.7 kW to be constant regardless of any other

internal or external factors. The battery wear is ignored as we assume that the charging
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effect will not alter over time. Additionally, it is disregarded that the charging speed may

decrease as the battery fills.

5.2.4 State of Charge

The state of charge is the level of battery charged relative to the battery capacity. Hence,

the state of charge cannot exceed the battery capacity of the EV. The initial state of

charge is set to be 100% of the battery capacity for all the charging strategies. This

is applied in order for the strategies to start at the same initial state of charge at the

beginning of the charging period of 2021. As the state of charge cannot exceed the battery

capacity of the vehicle, the maximum state of charge is also set equal to the battery

capacity of the EV. Additionally, forced afternoon, forced night, and forced weekend are

thought to fully charge the battery at the end of the charging period. Therefore, these

charging strategies restrict the state of charge to be equal to the battery capacity at the

end of the given charging period.

It is desirable that the state of charge does not fall below a certain level of the battery

capacity for the EV owners not to experience range anxiety. In order to avoid the fear of

running out of power while driving the EV, the model implements a minimum state of

charge of 20% of the battery capacity. By this, the model ensures that the state of charge

always is greater than or equal to the certain level of the battery capacity.

5.2.5 Network Tariffs

In western Norway, BKK is the DSO responsible for the distribution of the electricity

to the end-users. For this reason, the network tariff model implemented in the model is

based on the prices of 2021 retrieved from their website. The current network tariff model

is implemented as it was defined for customers at the beginning of 2021. In addition,

data on the prices of the new network tariff model was retrieved to implement the new

prices in a scenario analysis. NVE (2022), in collaboration with other relevant companies

and organizations, created a common proposal on the design of the model. BKK signed

the proposal and has published how the new network tariff model will affect the private

customers on their website. As the retrieved data on the new network tariff are thought

to be in line with the proposal of NVE, this is used as a basis in the scenario analysis.
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The current network tariff model consists of two fixed parts: a variable cost depending

on the consumption and a fixed cost. In 2021, private customers experienced the same

variable cost depending on the consumption of 0.4261 NOK/kWh throughout the year

and an annual fixed cost of 2050 NOK (BKK, nd). To describe a realistic invoice for

the end-user, the electricity tax, VAT, and the fee earmarked for the Energy Fund are

included in the variable cost.

The new network tariff model to be implemented on July 1, 2022, still consists of the

two parts. However, the new network tariff model intends to facilitate the best possible

utilization of the power grid and contribute to a reasonable distribution of the network

costs between the end-users. In line with the recommendations, the variable component is

still dependent on consumption. Still, it is time differentiated to motivate the end-user to

shift its consumption to hours where there is more grid capacity. Moreover, the fixed cost

depends on the consumption to motivate the end-user to even out the demand peaks.

The new variable cost depends on how much energy is consumed and when it is consumed.

The price per kWh at night (10 PM to 6 AM) and on the weekends is lower than the price

per kWh during the day. Table 5.5 provides an overview of the variable costs in the new

network tariff model for customers of BKK (BKK Nett, 2022).

Table 5.5: New variable costs in the network tariff model.

Time Variable cost

Day 0.4990 NOK/kWh

Night/Weekend 0.3990 NOK/kWh

The new fixed cost will differ depending on how much electricity the end-user consumes and

motivate to spread the consumption. Table 5.6 illustrates the new fixed costs associated

to the power consumption (BKK Nett, 2022). BKK splits the fixed cost into six different

steps, whereas each step is associated with a certain level of electricity consumption.

The average consumption of the three hours (on three different days) with the highest

consumption in the previous month will determine which step the end-user is associated

with. To illustrate, if the customer consumes on average 4 kW in the three hours where

the most electricity is consumed, then the fixed cost for the customer is set to step 2,
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equivalent to 206 NOK that month.

Table 5.6: New fixed costs in the network tariff model.

Step kW Monthly fixed cost Annually fixed cost

1 0-2 124 NOK 1500 NOK

2 2-5 206 NOK 2475 NOK

3 5-10 305 NOK 4200 NOK

4 10-15 494 NOK 5925 NOK

5 15-20 638 NOK 7650 NOK

6 20-23 781 NOK 9375 NOK

As described by BKK Nett (2022), 50% of the private customers will never be above

step 2 at any time during the year. In addition, 90% will never consume more than 10

kW on average in the three hours where the most electricity is consumed. Although the

new network tariff model is thought to differentiate the fixed cost per month, we assume

that all EV owners have a consumption equivalent to step 2 throughout the year and

experience a similar fixed cost.

In order to compare the different charging strategies, the fixed cost is not included in the

objective function as we have assumed that the fixed cost is equal for all EV owners.

5.2.6 How We Formulated the Model

In this thesis, we use AMPL to formulate the mathematical problem and CPLEX as a

solver to obtain the optimal solution. AMPL is a modeling language that can be used to

develop and apply mathematical problems (Fourer et al., 2003). Firstly, we formulated

the model in mathematical terms. The data described in this chapter were implemented

in a data file in AMPL. An excerpt of the formulated data file is shown in appendix A2.

Then, the formulated model in mathematical terms was implemented in a model file in

AMPL. In appendix A3, A4, and A5, excerpts of the model files of fully flexible, forced

afternoon, and flexible night charging strategies are included for illustration.
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5.2.7 Summary of Assumptions

A summary of the data inputs for the initial model is given in table 5.7.

Table 5.7: Summary of data input.

Description Value

Battery capacity 75 kWh

Driving range 560 km

Average daily demand 5.79 kWh

Charging rate 3.7 kW

Initial SOC 100%

Max SOC 100%

Min SOC 20%
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6 Results

In the analysis, the optimization model is used to compare the seven charging strategies

described in the previous chapters. The analysis will present, compare and discuss the

results obtained by the model for the different charging strategies. Lastly, a scenario

analysis is performed to investigate how the objective of the charging strategies would be

affected if 1) the new network tariff model is implemented, and 2) the battery capacity

and possible driving range are adjusted.

6.1 Analysis of the Charging Strategies

6.1.1 Presentation of Results

The first part of the analysis will present the optimal solution for each charging strategy

designed in this thesis. The models are run in AMPL using the CPLEX solver.

6.1.1.1 Fully Flexible

The optimal objective function is 2090.31, which represents the cost of fully flexible

charging in 2021. By including the fixed cost of the network tariff model, the total annual

cost of the strategy is 4140.31 NOK. The result is presented in table 6.1.

Table 6.1: Results for fully flexible charging.

Variable cost 2090.31 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4140.31 NOK/year

Fully flexible is theoretically the optimal charging strategy the EV owners can take. This

is because the EV owners can charge the vehicle at any time during the day or night of

the week when the prices are relatively lower. However, the strategy is limited by the

daily driving at 3 PM, when the vehicle is unavailable for charging.
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6.1.1.2 Forced Afternoon

The optimal objective function is 2584.01, which represents the cost of forced afternoon

charging in 2021. The charging strategy yields a total annual cost for the EV owners of

4634.01 NOK when including the fixed cost of the network tariff model. The result is

summarised in table 6.2.

Table 6.2: Results for forced afternoon charging.

Variable cost 2584.01 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4634.01 NOK/year

The EV owners experience the highest charging cost of all the strategies presented when

charging the vehicle right after work. The charging period of the strategy starts every

weekday at 4 PM and lasts until 8 PM. This means the EV owners charge the vehicle

during peak hours of electricity.

6.1.1.3 Flexible Afternoon

The optimal objective function is 2187.93, which represents the cost of flexible afternoon

charging in 2021. Including the fixed cost of the network tariff model, the total annual

cost for the EV owners is 4237.93 NOK. This is presented in table 6.3.

Table 6.3: Results for flexible afternoon charging.

Variable cost 2187.93 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4237.93 NOK/year

The strategy still charges the vehicles during peak hours of electricity. However, the EV

owners are not restricted to charge the vehicle every weekday. The optimal solution shows

that the EV owners charge on average 3.26 days a week. As it is a retrospective analysis,

the optimization model can schedule the charging for when the spot prices are relatively

lower. The optimal solution suggests to charge more during certain weeks and less when
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the spot prices are relatively higher. Thus, the model has the flexibility to charge five

days in one week and zero days the following week.

6.1.1.4 Forced Night

The optimal objective function is 2234.15, which represents the cost of forced night

charging in 2021. By including the fixed cost of the network tariff model, the total annual

cost for the EV owners is 4284.15 NOK. The result is presented in table 6.4.

Table 6.4: Results for forced night charging.

Variable cost 2234.15 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4284.15 NOK/year

The charging period of the strategy starts every weekday at 12 AM and lasts until 7 AM.

This means the EV owners utilize the off-peak hours of electricity when charging at night.

6.1.1.5 Flexible Night

The optimal objective function is 1935.36, which represents the cost of flexible night

charging in 2021. By including the fixed cost of the network tariff model, the total annual

cost for the EV owners is 3985.36 NOK. The result is presented in table 6.5.

Table 6.5: Results for flexible night charging.

Variable cost 1935.36 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 3985.36 NOK/year

The strategy still charges the vehicles during off-peak hours of electricity. The EV owners

achieve the lowest annual cost of the seven charging strategies presented with this charging

strategy. The optimal solution shows that the EV owners charge on average 2.55 nights a

week. As it is a retrospective analysis, the optimal solution schedules the charging for

when the spot prices are relatively lower at night. Thus, the model has the flexibility to

charge more nights in one week and fewer nights the following week.
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6.1.1.6 Forced Weekend

The optimal objective function is 2389.01, which represents the cost of forced weekend

charging in 2021. By including the fixed cost of the network tariff model, the total annual

cost for the EV owners is 4439.01 NOK. The result is presented in table 6.6.

Table 6.6: Results for forced weekend charging.

Variable cost 2389.01 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4439.01 NOK/year

The EV owners utilize the off-peak hours by only charging on the weekends. With this

strategy, the EV owners can start charging at any time from 12 AM on Saturdays until 11

PM on Sundays. However, the EVs are used for daily trips at 3 PM. The strategy is forced

to obtain full battery capacity at the end of Sundays and therefore charges on average

1.86 days a week. This implies that the vehicles are charged almost every Saturday and

Sunday in 2021.

6.1.1.7 Flexible Weekend

The optimal objective function is 2161.82, which represents the cost of flexible weekend

charging in 2021. By including the fixed cost of the network tariff model, the total annual

cost for the EV owners is 4211.82 NOK. The result is presented in table 6.7.

Table 6.7: Results for flexible weekend charging.

Variable cost 2161.82 NOK/year

Fixed cost 2050.00 NOK/year

Total cost 4211.82 NOK/year

The EV owners utilize the off-peak hours of electricity as the charging is restricted to

the weekends. The charging period starts at 12 AM on Saturdays and ends at 11 PM on

Sundays. However, the EVs are used for daily trips at 3 PM. In this strategy, the model
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is not forced to fully charge the battery but has the flexibility to charge when it is needed.

Hence, the optimal solution charges on average 1.65 days a week.

6.1.2 Comparison of the Charging Strategies

In this part, the charging strategies are compared to each other based on the results

obtained by the optimization model. Figure 6.1 illustrates the variable cost and total

kWh charged for each charging strategy in 2021.

Figure 6.1: Total variable cost and total kWh charged of charging strategies. The plots
are in ascending order associated with the variable cost of the strategies.

Of all the charging strategies presented, flexible night charging is the cheapest strategy in

2021. Furthermore, the most common charging behavior, forced afternoon charging, is

the most expensive strategy. The strategies range from an annual variable cost of 1935.36

NOK to 2584.01 NOK. This means the forced afternoon strategy is approximately 34%

more costly compared to the least costly strategy.

Forced afternoon and forced night charge in total the same amount of kWh in 2021, as

seen in figure 6.1. The strategies charge more than what is regarded as necessary as the

strategies are forced to have full battery capacity at the end of the charging period. Both
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strategies decide to charge more on Mondays compared to the rest of the weekdays where

the strategies charge the same amount each day. This is shown in figure 6.2. Although

the charging strategies charge the same total amount, forced afternoon is approximately

16% more costly than forced night. This indicates that charging at night time is cheaper

than charging after work.

Figure 6.2: Average kWh charged in a week for forced afternoon and forced night
strategies.

Flexible strategies and flexible night are less costly than the forced strategies as the flexible

strategies charge less. These flexible strategies charge the same total amount of kWh in

2021, as seen in figure 6.1. The results show the flexible night strategy charges on average

2.55 nights in a week while the flexible afternoon strategy charges on average 3.26 days a

week. This difference might be a result of the night charging period consisting of more

hours than the afternoon charging period. In this way, flexible night strategy is able to

charge more in one night than the flexible afternoon strategy is able to charge after work.
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In addition, flexible afternoon spreads the charging to specific hours on different days

when the prices are relatively lower. This is shown in the model as the afternoon strategy

charge the most at 4 PM and 8 PM. Although the charging strategies charge the same

total amount, flexible night is the cheapest of the two strategies. Flexible afternoon is

approximately 13% more costly compared to the flexible night strategy. This indicates

that charging at night is cheaper than charging after work.

Figure 6.1 illustrates that the weekend strategies charge more kWh than the charging

strategies for afternoon and night. This might be a consequence of having fewer available

charging days during the weeks. As previously presented, flexible afternoon and flexible

night charge on average 3.26 days a week and 2.55 nights a week, respectively. This is

more days than the weekend strategies have available in each charging period of one week.

Even though the weekend charging strategies charge more, these strategies are less costly

than forced afternoon charging. This can be explained by the flexibility the weekend

strategies have to charge outside peak hours of electricity. This is shown by the optimal

solutions of the weekend strategies which charge more from 12 AM to 7 AM than from 8

AM to 11 PM. Despite charging more at night time, forced weekend charging is still more

costly than forced night charging. In addition, flexible weekend charging is approximately

12% more costly than flexible night charging. This implies that it is cheaper to charge the

EVs at night during the week rather than on the weekends.

Forced weekend is approximately 11% more costly than flexible weekend. As the flexible

weekend charging is not forced to fully charge the battery at the end of Sundays, the

strategy is the cheapest of the two weekend strategies. The EV owners have more flexibility

when it comes to the total amount charged and the opportunity to fully charge the battery

if it foresees that the spot prices are relatively lower compared to the following weekends.

Hence, the strategy can store and prepare in order to have a sufficient amount of battery

for the daily trips to come.

Initially, the fully flexible strategy was thought to be the cheapest charging strategy as

the model has the flexibility to charge whenever. In this benchmark strategy, the model

schedules the charging for when the spot prices are relatively lower. The optimal solution

charges more during the night than during the day. This indicates that charging at night

is cheaper than during the daytime. However, when comparing the strategies, flexible
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night is cheaper than fully flexible. This is because fully flexible charges in total more

kWh in 2021. The larger amount of charging can be explained by the scheduled daily

trips in the models. In the flexible night strategy, the daily trips are scheduled outside the

charging period of 12 AM to 7 AM. This is not the case in the benchmark strategy, where

the scheduled daily trips at 3 PM might affect how the model schedules the total amount

charged. The optimal solution of the benchmark strategy shows that the model charges a

sufficient amount at 4 PM throughout the year. This implies that the model might want

to increase the state of charge right after the daily trips, which could explain the difference

in the total amount charged. Another explanation might be that the charging period in

flexible night strategy is more limited than the charging period of the benchmark strategy.

Although the period when charging at night is more limited, it could potentially consist of

spot prices that are relatively lower than the overall charging period for the fully flexible

strategy.

The analysis shows that the difference in annual variable cost between the charging

strategies varies to some extent. It is possible to discuss what is considered to be a

sufficient difference in the annual variable cost. The least costly strategy in 2021 turned

out to be flexible night, while the most costly strategy was forced afternoon. These

strategies range from an annual variable cost of 1935.36 NOK to 2584.01 NOK, which

is a cost increase of approximately 34%. For some EV owners, this difference might be

regarded as sufficient. This could be the case if the household has more than one EV

that needs to be charged as this will increase the total charging costs. However, other

EV owners might not be as price-conscious and schedule the charging when it is more

convenient regardless of the price level. Hence, the difference in charging cost might not

be regarded as sufficient.

6.2 Scenario Analysis

In the following part, we will investigate how the optimal solution is affected if different

input values in the model are changed. The scenario analysis is divided into two scenarios.

Scenario 1 illustrates the implementation of the new network tariff model, while scenario

2 changes the battery capacity and driving range for the EV in the model. Both scenarios

are implemented based on the spot prices of 2021.
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6.2.1 Scenario 1: New Network Tariff Model

In the first scenario, the presented model is run with the proposed new network tariff

model, as explained in previous chapters. The model is run as if the new network tariff

was applied in 2021. In the following section, the cost effect of the new network tariff on

the charging strategies is analyzed. The cost effect is shown as a percentage change of the

objectives based on the current network tariff. The results are presented in table 6.8.

Table 6.8: Results of variable cost for the charging strategies.

Charging strategy New network tariff (NOK/year) ∆%

Fully flexible 2041.87 −2.66

Forced afternoon 2715.70 +5.10

Flexible afternoon 2315.25 +5.82

Forced night 2186.20 −2.15

Flexible night 1891.24 −2.28

Forced weekend 2332.68 −2.36

Flexible weekend 2107.12 −2.53

If the new network tariff model had been implemented in 2021, the results show the same

order of the charging strategies associated with the costs as the current network tariff

model. Meaning, forced afternoon is still the most costly, and flexible night is still the

least costly of all the charging strategies presented.

The new network tariff differentiates the variable cost by if the consumption takes place

during the day and night or weekend. Compared to the variable cost of 0.4261 NOK/kWh

in the current network tariff model, the new cost for consumption during the night is

set lower, and for consumption during the day is set higher. As a result, the scenario

analysis suggests that the objectives for all the charging strategies, except the afternoon

strategies, would have decreased if the new model had been implemented. Table 6.8

shows that the variable cost of the strategies utilizing the off-peak hours of electricity

would have decreased while the variable costs for the afternoon strategies would have

increased. Forced afternoon and flexible afternoon would have experienced an increase of

5.10% and 5.82%, respectively. The charging strategies which utilize the off-peak hours
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are fully flexible, forced night, flexible night, forced weekend, and flexible weekend. These

strategies would have experienced a decrease due to the variable cost of consumption at

night and weekends being lower than the variable cost of consumption during the day. As

shown in table 6.8, the weekend strategies would have experienced a decrease of 2.36%

and 2.53% in charging costs compared to the current network tariff model. Moreover, the

night strategies would have experienced a decrease of 2.15% and 2.28%.

The new network tariff model aims to incentivize consumers to shift their consumption to

hours where the grid has more capacity by reducing the variable cost at these time periods.

By only looking at the variable cost, the afternoon strategies would have experienced an

increase when charging at hours where the grid capacity is lower. This indeed could work

as an incentive for EV owners to shift their consumption as the difference between the

most and least costly charging strategies becomes more considerable.

In addition to differentiating the variable cost, the new network tariff model also intends to

motivate the consumers to even out peak demand on the electricity grid by differentiating

the fixed cost. Therefore, the actual total annual cost the EV owners would have

experienced is also affected by the fixed cost. The total annual costs, including the fixed

costs, are illustrated in table 6.9.

Table 6.9: Results of total cost for the charging strategies.

Charging strategy Total cost (NOK/year)

Fully flexible 4516.87

Forced afternoon 5190.70

Flexible afternoon 4790.25

Forced night 4661.20

Flexible night 4366.24

Forced weekend 4807.68

Flexible weekend 4582.12

As shown in table 6.9, the total annual cost for all the charging strategies would have

increased. The model implemented assumes that the EV owners consume electricity for

charging and other consumption equivalent to step 2. Therefore, the fixed cost is 425

NOK (2475− 2050) more expensive than the fixed cost in the current network tariff model.
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As all the EV owners are assumed to have the same electricity consumption, the fixed

cost will be equal for all the strategies. Thus, the scenario analysis does not show the real

effect of the differentiation in the fixed cost. As a result, the variable cost is the only part

of the annual cost that varies between the strategies in the model.

The model does not illustrate the different outcomes if EV owners consume more or less

electricity than consumption equivalent to step 2. The incentive for load-shifting might be

stronger when the EV owners have relatively large electricity consumption peaks as the

load-shifting may lead to a lower total consumption. This implies a lower fixed cost and,

therefore, a lower total annual cost. In this case, the lower fixed cost in the new network

tariff model might be an incentive for load-shifting.

6.2.2 Scenario 2: Changes in Battery Capacity and Driving Range

The EV studied in the preceding sections has car-specific characteristics similar to a Tesla

Model 3. However, not all EVs represented in the Norwegian car fleet have the same

characteristics as the Tesla Model 3. In the second scenario analysis, the input values

of driving range and battery capacity are adjusted to investigate the cost effect on the

charging strategies. Table 6.10 illustrates the adjustments of the car-specific characteristics.

Table 6.10: Overview of driving range, battery capacity and average daily demand

Range (km) Battery capacity (kWh) Average daily demand (kWh)

200 35 7.56

300 45 6.48

400 55 5.94

500 65 5.62

600 75 5.40

The input values of the driving range are given in km, the battery capacity are given

in kWh, and the average daily demand is the calculated usage of kWh on daily trips.

Further sections will name the different EVs by only the driving range and not all the

corresponding characteristics.

The scenario analysis intends to investigate how an increase of 100 km in driving range will
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affect the variable costs in each charging strategy. As the driving range increases by 100

km each time, the battery capacity also needs to increase as more battery capacity leads

to a longer range. An EV with a range of 600 km is considered to have approximately

similar car-specific characteristics as a Tesla Model 3.

Fully flexible

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The fully flexible strategy

with the new input values yields the objectives shown in table 6.11. The cost reduction is

associated with a 100 km range increase.

Table 6.11: Results for fully flexible charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200 km 3005.22 0

300 km 2526.66 −15.92

400 km 2223.87 −11.98

500 km 2085.51 −6.22

600 km 1924.72 −7.71

For the EVs presented, EVs with a 200 km range experience the highest cost associated

with the fully flexible strategy. The optimal solution suggests that the EVs need to charge

on average 4.39 days a week, which is more than all the other vehicles in the scenario.

The EVs need to maintain a state of charge above 20% at all times and consume the most

kWh per daily trip. This gives the owners of an EV with a range of 200 km less flexibility

to store electricity for the daily trips in the following weeks; thus, the car is charged more

on average per week.

When the range increases by 100 km, the model suggests that the EV owners need to

charge the vehicle on average 4.09 days a week. This is similar to the average presented

for the EVs of 200 km range, however, the annual variable cost decreases by 15.92%. Thus,

EVs with 300 km range will experience a lower annual charging cost by charging almost

the same number of days a week as EVs with a shorter driving range.

As the range increases to 400 km and 500 km, the model suggests the EVs to charge on

6.2 Scenario Analysis 51

affect the variable costs in each charging strategy. As the driving range increases by 100

km each time, the battery capacity also needs to increase as more battery capacity leads

to a longer range. An EV with a range of 600 km is considered to have approximately

similar car-specific characteristics as a Tesla Model 3.

Fully flexible

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The fully flexible strategy

with the new input values yields the objectives shown in table 6.11. The cost reduction is

associated with a 100 km range increase.

Table 6.11: Results for fully flexible charging.

Driving range Cost (NOK/year) Cost reduction ( \ % )

200 km 3005.22 0

300 km 2526.66 -15.92

400 km 2223.87 -11.98

500 km 2085.51 -6 .22

600 km 1924.72 -7 .71

For the EVs presented, EVs with a 200 km range experience the highest cost associated

with the fully flexible strategy. The optimal solution suggests that the EVs need to charge

on average 4.39 days a week, which is more than all the other vehicles in the scenario.

The EVs need to maintain a state of charge above 20% at all times and consume the most

kWh per daily trip. This gives the owners of an EV with a range of 200 km less flexibility

to store electricity for the daily trips in the following weeks; thus, the car is charged more

on average per week.

When the range increases by 100 km, the model suggests that the EV owners need to

charge the vehicle on average 4.09 days a week. This is similar to the average presented

for the EVs of 200 km range, however, the annual variable cost decreases by 15.92%. Thus,

EVs with 300 km range will experience a lower annual charging cost by charging almost

the same number of days a week as EVs with a shorter driving range.

As the range increases to 400 km and 500 km, the model suggests the EVs to charge on



52 6.2 Scenario Analysis

average 3.2 days a week and 3.18 days a week, respectively. When the range increases

from 300 km to 400 km, the annual cost is reduced by 11.98%. When the range increases

from 400 km to 500 km, the cost reduction is not as significant as shown in table 6.11.

This might be a result of the EVs with 400 km and 500 km range charge on average almost

the exact same number of days. The annual charging cost compared to 300 km is lower

because the EVs have more flexibility and charge one day less.

Consequently, EVs with 600 km range are the most flexible of the presented vehicles. The

optimal solution finds that the EVs charge on average 2.82 days a week. Since the analysis

is retrospective, the model can plan to charge when the spot prices are relatively lower and

use the electricity stored in the battery when the prices are relatively higher. However,

the cost reduction when increasing the range from 500 km to 600 km is not as significant

as increasing from 200 km to 300 km, which experienced the greatest cost reduction.

As figure 6.3 shows all the EVs with different driving ranges follow the same charging

curve. The curves imply that all the EVs charge on average the most amount of kWh at 3

AM, followed by a sufficient amount at 2 PM, 4 PM and 11 PM, throughout the year.

This indicates that the spot prices are relatively lower at these hours.

Figure 6.3: Average kWh charged per hour for fully flexible in 2021.
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Figure 6.3: Average kWh charged per hour for fully flexible in 2021.
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Forced afternoon

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. Forced afternoon charging

with the new input values yields the objectives shown in table 6.12. The cost reduction is

associated with a 100 km range increase.

Table 6.12: Results for forced afternoon charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200 km 3414.57 0

300 km 2906.95 −14.87

400 km 2654.21 −8.69

500 km 2504.44 −5.64

600 km 2402.62 −4.07

Of all the different driving ranges presented, the EVs with 200 km range have the highest

annual charging cost for this strategy. This can be a consequence of an EV with a 200 km

range needing to charge more kWh every day as it consumes more kWh for daily trips.

As the range increases, the EVs do not need to charge as much since the consumption for

daily trips is less. Every time the range increases by 100 km, the annual variable cost

decreases. Therefore, the cost reduction is based on the amount kWh retrieved from the

grid. The largest cost reduction of 14.87% is seen when the range increases from 200 km

to 300 km.

Forced afternoon charging is the most expensive charging strategy for all the EVs in the

scenario analysis. The strategy restricts all the EVs to charge every weekday, but the

amount charged differs between the EVs. Since the charging strategy is forced to charge

every weekday, the model chooses to charge when the spot prices are relatively lower. As

seen in figure 6.4, the model suggests that all the EVs charge on average the most at 4

PM and 8 PM and the least at 6 PM throughout the year. In addition, all the EVs charge

the most on Mondays and less on Tuesdays to Fridays. This might be an indication that

the spot prices on Mondays and at 4 PM and 8 PM are relatively lower compared to the

other days and hours in the charging period. However, it can also be an indication of the

model wanting to increase the state of charge as soon as it is allowed to charge after the
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every weekday, the model chooses to charge when the spot prices are relatively lower. As

seen in figure 6.4, the model suggests that all the EVs charge on average the most at 4
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model wanting to increase the state of charge as soon as it is allowed to charge after the
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weekend.

Figure 6.4: Average kWh charged per hour for forced afternoon in 2021.

Flexible afternoon

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. Flexible afternoon charging

with the new input values yields the objectives shown in table 6.13. The cost reduction is

associated with a 100 km range increase.

Table 6.13: Results for flexible afternoon charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200 km 3064.28 0

300 km 2587.05 −15.57

400 km 2303.31 −10.97

500 km 2166.01 −5.96

600 km 2022.84 −6.61

For the EVs presented in the scenario analysis, the vehicles with a 200 km range experience

the highest charging cost with the flexible afternoon strategy. The optimal solution shows
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Figure 6.4: Average kWh charged per hour for forced afternoon in 2021.

Flexible afternoon

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. Flexible afternoon charging

with the new input values yields the objectives shown in table 6.13. The cost reduction is

associated with a 100 km range increase.

Table 6.13: Results for flexible afternoon charging.

Driving range Cost (NOK/year) Cost reduction (% )

200 km 3064.28 0

300 km 2587.05 -15 .57

400 km 2303.31 -10 .97

500 km 2166.01 - 5 . 9 6

600 km 2022.84 -6 .61

For the EVs presented in the scenario analysis, the vehicles with a 200 km range experience

the highest charging cost with the flexible afternoon strategy. The optimal solution shows
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that the EVs with this characteristic charge on average 4.2 days a week. This is more

than all the other EVs charge on average in the scenario, which might explain the higher

charging cost for the EVs with 200 km range. The EV owners do not have the flexibility

to the same extent to store electricity and prepare for the following weeks.

When the range increases by 100 km, the model suggests that the EV owners charge the

vehicle on average 3.85 days a week. As the flexibility increases when the range increases,

the EVs with a range of 300 km experience a cost reduction of 15.57% compared to the

EVs with 200 km range. Furthermore, the EVs need to be charged 3.55 days a week and

3.45 days a week when the range increases to 400 km and 500 km, respectively. As the

EVs with 400 km and 500 km range charge on average almost the exact same number of

days, the cost reduction is not as significant as between 300 km and 400 km, as shown in

table 6.13. The annual charging cost compared to 300 km is lower because the EVs have

more flexibility and charge less.

Accordingly, the flexibility increases when the range increases to 600 km. The optimal

solution suggests that the EVs charge on average 3.09 days a week. As a retrospective

analysis is conducted, the model is able to plan the charging to hours where the spot

prices are relatively lower and use the electricity stored when the spot prices are relatively

higher. However, the cost reduction when increasing the range from 500 km to 600 km is

not as significant as increasing from 200 km to 300 km, which experienced the greatest

cost reduction.

As figure 6.5 shows, all the EVs with different driving ranges follow the same charging

curve, and is similar to the charging curve of forced afternoon. The curves imply that all

the EVs charge on average the most amount of kWh at 4 PM and 8 PM, throughout the

year. This indicates that the spot prices are relatively lower at these hours.
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Figure 6.5: Average kWh charged per hour for flexible afternoon in 2021.

Forced night

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The forced night charging

with the new input values yields the objectives shown in table 6.14. The cost reduction is

associated with a 100 km range increase.

Table 6.14: Results for forced night charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200 km 2925.66 0

300 km 2503.43 −14.43

400 km 2292.69 −8.42

500 km 2167.81 −5.55

600 km 2082.20 −3.95

The EVs with 200 km range have the highest annual charging cost of all the vehicles with

different driving ranges presented for this strategy. This can be explained by the EVs with

200 km range need to charge a greater amount of kWh for daily trips compared to the
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Forced night

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The forced night charging

with the new input values yields the objectives shown in table 6.14. The cost reduction is

associated with a 100 km range increase.

Table 6.14: Results for forced night charging.

Driving range Cost (NOK/year) Cost reduction (A%)

200 km 2925.66 0

300 km 2503.43 -14.43

400 km 2292.69 - 8 . 4 2

500 km 2167.81 - 5 . 5 5

600 km 2082.20 - 3 . 9 5

The EVs with 200 km range have the highest annual charging cost of all the vehicles with

different driving ranges presented for this strategy. This can be explained by the EVs with

200 km range need to charge a greater amount of kWh for daily trips compared to the
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other vehicles. When the range increases, the model implies that the EVs do not need to

charge as much as they use less kWh per daily trip. Hence, every time the range increases

by 100 km, the annual charging cost decreases. Therefore, the cost reduction is based on

the amount kWh charged. The largest cost reduction of 14.43% is seen when the range

increases from 200 km to 300 km.

The forced night strategy restricts all the EVs to charge every night on the weekdays,

but the amount charged differs between the EVs. As the charging strategy is forced to

charge every night, the model chooses to charge when the spot prices are relatively lower

during the night. The model suggests that all the EVs charge on average the most at 3

AM and the least at 7 AM throughout the year, as seen in figure 6.6. In addition, all the

EVs charge the most on Mondays and less on Tuesdays to Fridays. This indicates that

the spot prices are relatively lower on Mondays at 3 AM compared to the other days and

hours in the charging period. It might also indicate that the model wants to increase the

state of charge as soon as it is allowed to charge the first day after the weekend.

Figure 6.6: Average kWh charged per hour for forced night in 2021.

Flexible night

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The flexible night strategy
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Figure 6.6: Average kWh charged per hour for forced night in 2021.

Flexible night

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The flexible night strategy
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with the new input values yields the objectives shown in table 6.15. The cost reduction is

associated with a 100 km range increase.

Table 6.15: Results for flexible night charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200km 2718.64 0

300km 2294.43 −15.60

400km 2041.35 −11.03

500km 1917.44 −6.07

600km 1786.07 −6.85

Flexible night is the least costly charging strategy for all the EVs in the scenario analysis.

The optimal solution finds that EVs with 200 km range charge the vehicle on average

3.59 days a week, which is more than all the other EVs in the analysis. As a result, the

charging strategy is the most expensive for EVs with a 200 km range. The EV owners

experience a higher charging cost as the EVs are less flexible to store and prepare for the

following weeks.

When the range increases to 300 km, the model suggests that the EV owners charge the

vehicle on average 3.26 days a week. With the flexibility to store and charge when the spot

prices are relatively lower, the EVs with a range of 300 km experience a cost reduction of

15.60%. Furthermore, the EVs need to charge on average 2.82 days a week and 2.74 days

a week when the range increases to 400 km and 500 km range, respectively. As the EVs

with 400 km and 500 km range charge on average almost the exact same number of days,

the cost reduction is not as significant as between 300 km and 400 km, as shown in table

6.15. The annual charging cost compared to 300 km is lower because the EVs have more

flexibility and charge less.

Consequently, the flexibility increases when the range increases to 600 km. The optimal

solution finds that the EVs charge on average 2.44 days in a week. The model is able to

decide to charge during hours when the spot prices are relatively lower and use power

stored when the spot prices are relatively higher. However, the cost reduction when

increasing the range from 500 km to 600 km is not as significant as increasing from 200

km to 300 km, which experienced the greatest cost reduction.
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flexibility and charge less.
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decide to charge during hours when the spot prices are relatively lower and use power

stored when the spot prices are relatively higher. However, the cost reduction when
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km to 300 km, which experienced the greatest cost reduction.
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As figure 6.7 shows, all the EVs with different driving ranges follow the same charging

curve, and is similar to the charging curve of forced night. The curves imply that all the

EVs on average charge the most amount of kWh at 3 AM throughout the year. This

indicates that the spot prices are relatively lower at this hour.

Figure 6.7: Average kWh charged per hour for flexible night in 2021.

Forced weekend

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The forced weekend charging

with the new input values yields the objectives shown in table 6.16. The cost reduction is

associated with a 100 km range increase.

Table 6.16: Results for forced weekend charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200km − −

300km 2705.13 0

400km 2454.11 −10.23

500km 2315.45 −5.65

600km 2220.65 −4.09
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As figure 6.7 shows, all the EVs with different driving ranges follow the same charging

curve, and is similar to the charging curve of forced night. The curves imply that all the

EVs on average charge the most amount of kWh at 3 AM throughout the year. This

indicates that the spot prices are relatively lower at this hour.
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Figure 6. 7: Average kWh charged per hour for flexible night in 2021.

Forced weekend

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The forced weekend charging

with the new input values yields the objectives shown in table 6.16. The cost reduction is

associated with a 100 km range increase.

Table 6.16: Results for forced weekend charging.

Driving range Cost (NOK/year) Cost reduction (,6.%)

200km

300km

400km

500km

600km

2705.13

2454.11

2315.45

2220.65

0

-10.23

- 5 . 6 5

- 4 . 0 9
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Forced weekend restricts all the EVs to charge the battery full at the end of every weekend,

but the amount charged differs between the EVs. Moreover, the charging strategy is

not possible for EVs with range of 200 km as the constraint 4.3 cannot hold in the

presented model. This constraint ensures balance between the state of charge of each time

period. In this case, these EVs do not have the capacity to charge the amount required

during the weekend to handle the energy consumption of the daily trips in the following

weeks. Therefore, the balance of state of charge between each time period is violated.

To investigate when all the constraints hold, the first feasible solution is obtained when

increasing the driving range to 300 km, as shown in table 6.16.

As forced weekend charging is not possible for EVs with 200 km range, EVs with range of

300 km have the most expensive charging cost in this strategy. The EVs experience the

highest charging cost as the vehicles use more kWh for daily trips compared to the other

vehicles. When the range increases, the model implies that the EVs do not need to charge

as much as the use of kWh per daily trip is less. Hence, every time the range increases by

100 km, the annual charging cost decreases. Therefore, the cost reduction is based on the

amount of kWh charged. The largest cost reduction of 10.23% is seen when the range

increases from 300 km to 400 km.

Throughout the year, all the feasible solutions charge on average the most at 4 AM and

the least at 7 PM in the optimal solution, as illustrated in figure 6.8. This indicates that

the spot prices are relatively lower on average at 4 AM compared to all the other hours in

the charging period. Moreover, the optimal solution suggests that EVs with 300 km range

charge on average 1.98 days on the weekends. This means the EVs have to charge almost

every day of the weekend to store the amount required for the daily trips in the following

weeks. As the range increases to 400 km, 500 km, and 600 km, the EVs need to charge

on average more than 1.82 days on the weekends. This means that they need to charge

somewhat less compared to the EVs with shorter range. Hence, the EVs become slightly

more flexible as the driving range and the battery capacity increase.
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Figure 6.8: Average kWh charged per hour for forced weekend in 2021.

Flexible weekend

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The flexible weekend charging

with the new input values yields the objectives shown in table 6.17. The cost reduction is

associated with a 100 km range increase.

Table 6.17: Results for flexible weekend charging.

Driving range Cost (NOK/year) Cost reduction (∆%)

200km − −

300km 2617.97 0

400km 2295.98 −12.30

500km 2153.12 −6.22

600km 1990.26 −7.56

The flexible weekend strategy is not possible for EVs with a range of 200 km as the

constraint which ensures balance between the state of charge of each time period cannot

hold. In the model, the EVs do not have the capacity to charge the amount required

6.2 Scenario Analysis 61

0.5

0.4

3
e>
ro

_,:;;
O

Sao-Q)
0)

g
<1

0.2

0.1

Range
300 km

400 km

500 km

600 km

l }l
0 5 10 15 20

Hours

Figure 6.8: Average kWh charged per hour for forced weekend in 2021.

Flexible weekend

Solving the optimization model with the adjusted driving range and battery capacity

results in a change in the annual variable cost of charging. The flexible weekend charging

with the new input values yields the objectives shown in table 6.17. The cost reduction is

associated with a 100 km range increase.

Table 6.17: Results for flexible weekend charging.

Driving range Cost (NOK/year) Cost reduction (% )

200km

300km

400km

500km

600km

2617.97

2295.98

2153.12

1990.26

0

-12 .30

- 6 . 2 2

- 7 . 5 6

The flexible weekend strategy is not possible for EVs with a range of 200 km as the

constraint which ensures balance between the state of charge of each time period cannot

hold. In the model, the EVs do not have the capacity to charge the amount required



62 6.2 Scenario Analysis

in two days to handle the energy consumption of the following weeks. The first feasible

solution is obtained by increasing the range to 300 km.

Whereas flexible weekend charging is not possible for EVs with 200 km range, EVs with

300 km range experience the most expensive charging cost in the strategy presented.

Compared to the other vehicles, the EVs use more kWh for daily trips and therefore

experience the highest charging cost. When the range increases, the optimal solutions

imply that the EVs use less kWh per daily trip and charge less. Thus, the annual charging

cost decreases when the range increases. Therefore, the cost reduction is based on the

amount of kWh charged. The largest cost reduction of 12.30% is seen when the range

increases from 300 km to 400 km.

As illustrated in figure 6.9, the feasible solutions charge on average the most at 4 AM and

nothing at 7 PM throughout the year. This indicates that the spot prices of electricity

are relatively lower at 4 AM than all the other hours in the charging period. Furthermore,

the optimal solution shows that EVs with a range of 300 km charge on average 1.98 days

on the weekend. Meaning, EVs with 300 km range need to charge approximately every

day of the weekend regardless of which of the two weekend charging strategies are being

used. When the range of the EVs increase to 400 km, 500 km, and 600 km, the EVs need

to charge on average more than 1.59 days on the weekends. Compared to the EVs with

shorter range, these vehicles have more flexibility to store electricity and therefore charge

less.
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Figure 6.9: Average kWh charged per hour for flexible weekend in 2021.
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In this analysis, we studied the presented charging strategies consisting of different time

periods based on common charging behavior of EV owners in Norway. The initial EV of

the model has car-specific characteristics similar to the most sold EV in 2021, Tesla Model

3. The aim of the general analysis is to exploit and compare the strategies by minimizing

the annual charging cost of the different strategies.

The results of the optimization model suggest that flexible night charging would have

been the least costly of all the strategies presented. We found that the variable cost of

this strategy would equal 1935.36 NOK. Furthermore, forced afternoon charging would

have been the most costly and the cost would equal 2584.01 NOK. This is a cost increase

of approximately 34%. Moreover, the model finds that fully flexible, forced weekend, and

flexible weekend choose to charge the most during the night. This implies that charging

at night reduces the charging cost as the optimization model aims to minimize the annual

cost.

When the new network tariff model was implemented in the general model, we found that
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Figure 6.9: Average kWh charged per hour for flexible weekend in 2021.
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the forced afternoon strategy would still be the most costly. In addition, flexible night

charging would still be the least costly strategy. The charging strategies thought to utilize

the grid capacity, meaning fully flexible, both night charging strategies and both weekend

charging strategies, would have experienced a decrease in the variable cost. Furthermore,

the model finds that the forced and flexible afternoon strategies would have experienced

an increase in the variable cost. When including the fixed cost of the new network tariff

model, we found that all the charging strategies would have experienced an increase in

the total annual cost.

As the driving range and battery capacity were adjusted in the last scenario analysis, the

model found that the forced afternoon charging and flexible night charging for all the EVs

still would be the most costly and least costly of the strategies. Furthermore, the model

found that EVs with shorter range would experience a higher charging cost in all the

charging strategies. The greatest cost reduction is shown for all EVs in all the charging

strategies when increasing the range from 200 km to 300 km. The analysis shows that

an increase in the range gives the EV owners more flexibility and can charge when the

spot prices are relatively lower. Hence, these vehicles have lower charging costs for all the

charging strategies in the scenario. Lastly, the EVs with 200 km range cannot charge only

during the weekends given the restrictions in the model.
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7 Discussion

In the previous chapter, we presented the findings of our model. In this chapter, the

limitations of the data and model and the validity of the results will be discussed. Lastly,

future work related to the research in this thesis is proposed and discussed.

7.1 Limitations and Validity of Results

The model and the input data in this thesis are subject to assumptions which are likely

to affect or limit the results. The results obtained are valid only for the input parameters

of the specific EVs used in the model. Hence, the validity of the results depends on the

assumptions made when formulating the model and deciding on the input values for the

data. First, the limitations of the formulated charging strategies are discussed before the

assumptions on important parameters are justified below.

The charging strategies formulated are intended to illustrate normal charging behavior

for EV owners. Still, some assumptions were included to avoid making the model too

complex to implement in the decision-making. However, some of the assumptions might

be difficult to implement in real life. Firstly, fully flexible strategy was formulated to

represent the optimal charging schedule since the EV owners can charge at any time except

when driving. In reality, this charging strategy might be difficult for an EV owner to

implement as it involves sporadically charging. It is reasonable to assume that the vehicle

is unavailable for charging some hours of the day. Still, the charging strategy was included

as a benchmark strategy to represent the charging cost of the optimal schedule. However,

the solution suggested that the flexible night strategy resulted in a lower charging cost.

The fully flexible strategy charges in total more kWh than what is regarded as necessary,

hence the proposed optimal charging strategy is more costly.

Further, the flexible afternoon and the flexible night strategy might also be difficult for the

EV owners to implement in real life. In the model, the charging strategies are to minimize

the charging cost based on the spot prices of 2021. Hence, the flexible strategies charge at

hours where the spot prices are relatively low to obtain a state of charge above 20% and

to cover the daily trips. Consequently, the optimal solutions charge when necessary and

do not follow a pattern for the EV owners to easily implement. It might be especially
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difficult for EV owners to implement at night without a smart charging device.

In this thesis, the charging of an EV is a central process. When the EVs are connected to

the wallbox, the charging rate is a crucial parameter for the EVs to be able to charge. The

charging rate limits the amount of electricity retrieved from the grid. In the presented

model, we assumed that all EV owners have a 16A fuse and are able to charge the EVs

with a constant charging rate of 3.7 kW by using a wallbox. In reality, the charging effect

the wallbox can deliver varies between households as the type of wallbox and main fuse

installed varies. Additionally, different EVs are capable of receiving different amounts of

charging rate. Although some EVs theoretically are capable of receiving more than 3.7

kW, it will not be possible for these vehicles to receive more as the wallbox cannot deliver

more effect with a 16A fuse. In this case, the wallbox is the limitation of the charging rate.

However, EVs can also limit the charging rate as some EVs are not capable of receiving a

larger amount of kW regardless of the fuse the wallbox is connected to.

In addition, the charging rate is assumed to be unaffected by internal and external factors

that may affect the charging rate. In reality, the chemical process of charging is affected by

factors such as battery temperature and outside temperature. In Norway, the temperature

varies between the regions, seasons, and time of the day. The chemical process slows

down as the temperature decreases, hence the charging rate is not likely to be constant

throughout the day and year.

The thesis assumed that the EVs are allowed to charge until the state of charge is 100%.

We argue that this is a reasonable assumption as the EV owners are likely to demand the

battery to be fully charged at the end of the charging period. However, the vast majority

of EVs charge slower after reaching a state of charge of 80% (NAF, 2022). As the charging

process is thought to slow down after this state of charge, many EV owners are likely to

stop the charging process before reaching the full battery capacity. In addition, the model

assumed the EV owners want to maintain a state of charge of 20% at all times. This is

thought to be a reasonable assumption as the EV owners are likely to not want to reach a

level of 0% of the battery capacity. Therefore, the EV owners are thought to experience

range anxiety at some point prior to this level.

Furthermore, another crucial parameter is the average daily demand for kWh for daily

trips. As explained in chapter 5, the parameter is determined by the battery capacity,
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driving range, and the average daily driving distance. In the model, the driving range

by the manufacturer of the EV is used as input data. However, these measures might

not necessarily be the actual driving range. Other factors which may affect the driving

range are therefore not considered in the model. In reality, seasonal variation in outside

temperature, different road conditions, and driving speed are factors that can affect the

actual driving range.

As the average daily demand for kWh is also determined by the average daily driving

distance, this is an important data input. Based on the findings of the National Travel

Survey of 2018/2019 (Grue et al., 2021), the average daily driving distance is 43.2 km.

Considering Covid-19 impacted the travel behavior, the daily driving distance assumed

may not be representative of the average daily driving distance in 2021. Still, we argue

that the average driving distance of 2018/2019 should be interpreted as valid as it reflects

what is considered normal travel activity.

The hourly spot prices for electricity are another crucial parameter for determining the

charging cost of the charging strategies. This thesis was conducted as a retrospective

study and is only representative for the given county and year. In this model, the results

obtained are only valid for the county of Vestland in 2021 as the hourly spot prices and

the cost of the network tariff model are retrieved for bidding zone NO5 in 2021. Spot

prices vary greatly between different countries, regions, seasons, and hours. Thus, the

charging costs of the charging strategies are highly dependent on the patterns in the spot

prices.

The results obtained from the analysis are regarded as valid only for the specific EVs

presented and under the assumptions made for the input parameters. The aim of the

thesis was to exploit and compare different charging strategies by creating an optimization

model. The analysis illustrates the comparison of the charging cost of the seven charging

strategies. The model also gives insight into the most and least costly charging strategy.

Lastly, as we saw from the scenario analysis, the optimization model can be used to

estimate the change in charging cost if the new network tariff model had been implemented

in 2021, and how adjustments made to the battery capacity and driving range lead to

differences in charging costs.
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7.2 Further Work

In the process of writing this thesis, we found many interesting topics within the field of

EV charging and the electricity grid, which we could not include in the thesis. In this

section, we will present proposals for further research related to the presented topic, which

could be taken into consideration.

As this thesis is a retrospective research based on the spot prices for electricity in 2021, it

would be of interest to investigate future spot prices. A further study could forecast future

prices to investigate the presented charging strategies based on the future spot prices. As

the number of EVs in Norway increases, this analysis could be of special interest for the

new and existing EV owners. Since Norway is in a unique position as regards the EV

fleet, this could be interesting to apply to other regions and countries as well. Especially

since the spot prices of Norway are considered to not be as volatile compared to other

countries in Europe.

Secondly, it is also of interest to research the effect of the charging strategies on the

power grid. The research can investigate if there are some of the presented charging

strategies that impacts the grid more compared to other strategies. As the number of

EVs is expected to continue to increase in the future, a greater peak demand in the power

grid is also expected, especially if EV owners charge the EVs at the same time periods of

the day. These demand peaks will become one of the main challenges for the stability of

the power grid.

Lastly, as the EV market is growing rapidly and the technology is developing quickly, it

might be of interest to investigate how V2G-technology could be included in the model

and how it would affect the charging cost of the charging strategies in the future. This may

also be included in the model presented in this thesis to illustrate how the V2G-technology

would affect the charging strategies in a retrospective manner. Additionally, the EVs in

the future are likely to have longer driving ranges as the technology evolves quickly. Thus,

it would be of interest to include EVs with longer driving range and more battery capacity

compared to the ones presented in this thesis.
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8 Conclusion

In this thesis, we have formulated and implemented an optimization model to imitate

seven different charging strategies for EV owners based on charging behavior. In order

to achieve this, a linear programming model was constructed to minimize the annual

charging cost for the EV owners. The purpose of the analysis was to exploit and compare

the different charging strategies to investigate how the different charging behaviors would

have performed based on the spot prices of electricity in 2021. In addition, two different

scenario analyses were performed to investigate how adjustments in the input values

would affect the objectives of the charging strategies by 1) the new network tariff model

is implemented, and 2) the battery capacity and possible driving range changes.

The results obtained by the formulated model showed that the charging strategies obtained

an annual charging cost ranging from 1935.36 NOK to 2584.01 NOK, which is a cost

increase of approximately 34%. The strategy of flexible night charging was found to be the

least costly of the charging strategies. Furthermore, forced afternoon charging would have

obtained the highest charging cost. The results also showed that the charging strategies

not restricted to charge during certain charging periods choose to charge the most during

the night. This implies that charging at night reduces charging cost as the optimization

model minimizes the annual charging cost.

When the new network tariff model was implemented to the model, the most and least

costly charging strategies remained the same. However, the results indicated that all

the charging strategies thought to utilize the grid capacity would have experienced a

decrease in the charging cost compared to the cost obtained in the current network tariff

model. However, the same effect is not applied to the charging strategies charging in the

afternoon. Forced afternoon and flexible afternoon strategies would have experienced an

increase of 5.10% and 5.82% in variable costs, respectively, compared to the objective

with the current network tariff model.

In order to illustrate the annual total cost of charging the EVs, the fixed cost was included

in the analysis. When including the fixed cost of the new network tariff model, the results

show that all the charging strategies would have experienced an increase in the total

annual cost. Both variable cost and fixed cost are intended to motivate the the consumers
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to shift their consumption to off-peak hours. As the afternoon strategies experience an

increase in both variable and fixed cost, this might be an incentive to shift the consumption

to off-peak hours.

As the driving range and battery capacity were adjusted in the last scenario, the results

showed that EVs with shorter range would experience a higher charging cost in all the

charging strategies. The scenario analysis intends to investigate the cost effect of increasing

the range by 100 km, whereas the results show the greatest cost reduction when increasing

the range from 200 km to 300 km for all EVs in all the strategies. The analysis shows that

an increase in the range gives the EV owners more flexibility and can charge when the

spot prices of electricity are relatively lower. Hence, these vehicles have lower charging

costs for all the strategies in the scenario. Lastly, the EVs with 200 km range cannot

charge only during the weekends given the restrictions in the model.
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Appendix

A1 Optimization Model

minimize

∑
t∈T, d∈D

pt,d · xt,d +
∑

t∈T, d∈D

e · xt,d

subject to

SOCt,d = C, t = 0, d = 1

SOCt,d = SOCt−1,d + xt,d · Yt,d − d̄ · Zt,d, ∀ t ∈ T : t > 0, d ∈ D

SOC0,d = SOC23,d−1 + x0,d, ∀ d ∈ D : d > 1

SOCt,d ≤ C, ∀ t ∈ T, d ∈ D

SOCt,d ≥ c, ∀ t ∈ T, d ∈ D

xt,d ≤ r, ∀ t ∈ T, d ∈ D
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Al Optimization Model

mm1mze

L Pt,d · Xt,d + L e · Xt,d
tET, dED tET, dED

subject to

S O C . a c, t= 0, d= l

SOC S O C t - 1 , d + Xt,d · Y t , d - d · Z . , V t E T : t > 0, d E D

S O C o , d SOC23,d-1 + Xo,d, V d e D : d > I

S O C a <C, v t E T, d E D

S O C a > c, v t E T, d E D

Xt,d :S r, V t E T, d E D
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xt,d ≥ 0, ∀ t ∈ T, d ∈ D

SOCt,d ≥ 0, ∀ t ∈ T, d ∈ D

A2 AMPL Data File

Figure A2.1: Excerpt of the data file in AMPL.
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Tu.a>0,

SOC > 0,

V t e T , d e D

V t e T , d e D

A2 AMPL Data File

set T := 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23;
set D : = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

paramp ;=
[ , l : 1
00 0.32574
01 0.31790
02 0.31308
03 0.30968
04 0.30981
05 0.31411
06 0.31908
07 0.32548
08 0.32509
09 0.32730
10 0.33461
11 0.33840
12 0.34114
13 0.34689
14 0.35641
15 0.37353
16 0.38319
17 0.38253
18 0.37626
19 0.36883
20 0.35668
21 0.35224
22 0.34519
23 0.33475

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
0.33409 0.32991 0.32195 0.36279 0.39049 0.55878 0.63913 0.61321 0.50236 0.52513 0.33848 0.42813 0.48150 0.63169 0.68490 0.60353 0.5
0.32521 0.32104 0.31399 0.35809 0.37595 0.53050 0.61410 0.60626 0.46524 0.51206 0.32904 0.42035 0.47646 0.61248 0.66631 0.58185 0.5
0.32300 0.31151 0.31176 0.35326 0,36798 0.50833 0.59336 0.59904 0,44429 0,48865 0.32256 0,40934 0,47736 0.59609 0.64349 0,58405 0.5
0.32195 0.30773 0.31373 0.35404 0.36626 0.51598 0.57690 0.61438 0.43808 0.45825 0.32670 0.39975 0.50913 0.58423 0.62504 0.58393 0.5
0.32274 0,30668 0.32091 0.36253 0.36863 0.53543 0.59220 0.61915 0.43769 0.48231 0.36229 0.41064 0.54424 0.59919 0.62039 0,57614 0.5
0.32535 0.31138 0.33736 0.38888 0.37963 0.59069 0.65234 0.61566 0.44248 0.53560 0.45325 0.47713 0.58529 0.64316 0.61085 0,57549 0.€
0.33449 0.31399 0.36830 0.46675 0.40214 0.68563 0.77301 0.62198 0.44015 0.55331 0.51936 0.54271 0.70973 0.81211 0.61923 0.58860 0.€
0.34193 0.32378 0.40276 0.60776 0.46524 0,87941 1.00294 0.67225 0,48645 0.65110 0,70529 0.59896 1.05000 1.02995 0.66348 0.60366 ø,g
0.34859 0.32600 0.64234 0.78270 0.51288 l. 09511 l. 34201 0.74893 0.50559 0.74048 0.78460 0.72768 1.17470 1.24635 0.76075 0.61534 U
0.35106 0.33488 0.65304 0.78426 0.54823 1.08771 1.39723 0.83360 0.52719 0.64179 0.71111 0.61841 1.15236 1.26080 0.82513 0.62001 0.£
0.36164 0.33945 0.72329 0.79809 0.60308 1.06930 1.39100 0.84559 0.57116 0.61528 0.73104 0.59923 1.15701 1.16961 0.79713 0. 71076 ø,g
0.36674 0.34036 0.73804 0.81479 0.59260 1.11535 1.35134 0.84920 0.58643 0.57738 0.71603 0.56799 1.17534 1.12164 0.80151 0. 75399 0.8
0.36346 0.33775 0.67981 0.80201 0.60490 1.09874 1.29496 0.83734 0.57893 0.56043 0.64824 0.53429 l. 14565 1.02208 0.68760 0,66454 0.7
0.36346 0.33723 0.73804 0.81258 0.61983 1.06735 l. 23481 0.78038 0.57349 0.55111 0.62171 0.51899 1.12435 0. 98841 0.63329 0.68570 0.7
0.36439 0,33971 0.75710 0.80735 0.67166 1.01975 1.20176 0.74931 0.58785 0.54388 0.62158 0.51160 1.08408 0.99486 0.63174 0,64845 0.7
0.36660 0.34598 0.75214 0.81544 0.71866 l. 05801 l. 23676 0.74931 0.60363 0.54724 0.67295 0.53364 l. 03219 0. 99280 0.65341 0.69428 0.7
0.37665 0.36621 0.78425 0.83828 0.76448 1.16320 l. 23133 0.78399 0.65601 0.55979 0.79004 0.59508 l. 07685 l. 05755 0.76269 0. 78670 0.7
0,37770 0.37248 0.85149 0.84871 0.78450 l. 29590 l. 42574 0.88760 0,71073 0.58178 0.82964 0.71925 l. 29953 l. 28324 0.83868 0,87044 0.7
0.37248 0.36778 0.77799 0.61585 0.72874 1.09758 1.29548 0.89818 0.68990 0.55526 0.78150 0.70655 1.16385 1.26415 0.85660 0.93470 0.7
0.37221 0.36451 0.54220 0.58455 0.65779 l. 00899 l. 03845 0.84765 0.63881 0.51361 0.65276 0.62346 l. 13210 l. 22534 0.82255 0,83058 0.€
0.35746 0.35981 0.49194 0.53198 0.52153 0.83959 0.79686 0.64350 0.60053 0.47998 0.54071 0.61103 0.96274 0.99564 0.70773 0.81071 0.€
0.35198 0.35303 0.45460 0.51659 0.52270 0.75684 0. 77029 0.61799 0.57544 0.44286 0.52674 0.52989 0.80990 0.86641 0.68348 0. 72128 0.5
0.35054 0.34180 0.40408 0,41823 0.50660 0.75023 0.72869 0.56025 0,51826 0.42954 0.48844 0.51874 0,77220 0.80760 0.66980 0.67675 0.5
0.33866 0.32535 0.35708 0.38105 0.42544 0.65670 0.65429 0.47223 0.46408 0.36551 0.44794 0.49294 0.71773 0.69256 0.62143 0.60885 0.4

paramr ;=
3. 7

paramC :=
75

paramt1 :=
0.2

paramd1 ;=
5. 79

Figure A2.1: Excerpt of the data file in AMPL.
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A3 AMPL Model File for Fully Flexible

Figure A3.1: AMPL model file for the fully flexible strategy.
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A3 AMPL Model File for Fully Flexible

set T;
set D;

param C;
param r;
paramp{T, D};
param c;
paramd1;
parame:= 0.4261;

var x {T, D}>=0;
var SOC{T, D}>= 0;

#Set oftime(00, , 23)
#Set ofdays(1, , 365)

#Battery capacity
#Charging rate
#Spot prices
#20%
#Amount kh consumed eachtrip
#Variable cost ofthe network tariff model

#Amount ofelectricity received from the grid
#State ofcharge(SOC) ofthe battery ofthe EV

minimize cost:
sum{t in T,d inD}plt,d)xt,d]
+esum{t in T,d inD}x[t,d];

subject to

non_neg{t inT,d in D}:
x[t,dl>= 0;

max_cr{t inT,d inD}:
x(t,d] <= r;

initial SOC:
soc[o,1) = c;

soc_tl{d inD,t in16..23}:
SOC[t,d] = SOC[t-1,d] + x[t,d];

soc_t2{d inD,t in 00..14: t>0}:
SOC[t,d] = SOC[t-1,d] + x[t,d];

soc d{d in D: d>1}:
s0C(0,d] = S0[23,d-1] + x(0,dl;

drive{d inD}:
SOC[15,d] = SOC[14,d]- dl;

soc_max{d inD,t inT}:
SOC[t,d] <=C;

soc_min{dinD,t in T}
S0Ct,d]>=t1C;

#Minimizes charging costs for the EVowner

#Amount kWhcharged cannot beless thanø

#The amount ofelectricity retrieved fromthe grid cannot exceed the charging rate

#Initial state ofcharge att=16 and d=1 equals the battery capacity

#Ensures balance between SOC inthe charging period each day

#Ensures balance between SOC inthe charging period

#Ensures balance between SOC each day

#Ensures daily trip at3 PM

#Ensures SOC ofthe EVdoes not exceeds the battery capacity ofthe EV

#Ensures SOC ofthe EVnever goes below a certain level each day

Figure A3.1: AMPL model file for the fully flexible strategy.



A4 AMPL Model File for Forced Afternoon 77

A4 AMPL Model File for Forced Afternoon

Figure A4.1: AMPL model file for the forced afternoon strategy.
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s e t T; # S e t of t i m e ( 0 0 , , , , 2 3 )
s e t D; s e t of d a y s ( 1 , · · , 3 6 5 )

param C;
param r;
pa r a m p { T , D } ;
param c;
param d l ;
p a r a m e := 0 . 4 2 6 1 ;

var x { T , D} >= 0;
var SOC{T, D} >= 0;

# B a t t e r y c a p a c i t y
C h a r g i n g r a t e
S p o t p r i c e s
#20%
#Amount kWh consumed each t r i p
# V a r i a b l e c o s t of t h e n e t w o r k t a r i f f model

#Amount of e l e c t r i c i t y r e c e i v e d f r o m t h e g r i d
# S t a t e of cha rge {SOC) of t h e b a t t e r y of t h e EV

minimize c o s t :
sum{t in T, d in D } p l t , d l x l t , d
+ e + sum{t in T, d in D } x [ t , d ] ;

s u b j e c t to

non_neg{t in T, d in D}:
x [ t , d ] >= 0;

m a x _ c r t in T, d in D}:
x [ t , d l <= r;

#Minimizes c h a r g i n g c o s t s f o r t h e EV owner

i n i t i a l _ S O C :
SOC[ 1 6 , l) = C;

s o c t 1 { d in l . . 365 by 7 , t in 16 . . 2 0 : t > 0 } :
s o c ( t , dI = S o c [ t - 1 , d ) + x [ t , d ] ;

s o c _ t 2 { d in 4 .. 3 6 5 by 7 , t in 16 . 2 0 : t > 0 } :
s o c I t , d l = S O C [ t - 1 , d l + x I t , d ] ;

soc_ t3{d in 5 .. 365 by 7 , t in 16 · . 2 0 : t > 0 } :
S O C [ t , d ] = S O C [ t - 1 , d ] + x [ t , d ] ;

s o c _ t 4 ( d in 6 .. 365 by 7 , t in 16 · . 2 0 : t > 0 } :
S O C [ t , d ] = S O C [ t - 1 , d ] + x [t , d ] ;

s o c _ t S { d in 7 .. 365 by 7 , t in 16 .. 2 0 : t > 0 } :
S O C [ t , d ] = S O C [ t - 1 , d ] + x [ t , d ) ;

soc_d1{d in 1. . 365 by 7: d>2}: #Ens u res b a l a n c e between s o c e a c h day f o r F r i d a y
5OC[16 ,d ) = 5 O C [ 2 0 , d - 1 ] - dl + x [ 1 6 , d ) ;

soc_d2{d in 4 .. 365 by 7: d > 2 } : #Ens u res ba l ance between s o c e a c h day f o r Monday
SOC[ 1 6 , d) = 5 O C [ 2 0 , d - 1 ] - dl + x [ 1 6 , d ) ;

soc_d3{d in 5 .. 365 by 7: d>2}: #Ens u res ba l ance between s o c e a c h day f o r Tuesday
SOC[ 1 6 , dl = S O C [ 2 0 , d - 1 ] - dl + x [ 1 6 , d ) ;

soc_d4{d in 6 .. 365 by 7: d>2}: #Ensures ba l ance between s o c e a c h day f o r Wednesday
5OC[16 ,d l = 5 O C [ 2 0 , d - l l - dl + x [ 1 6 , d ] ;

soc_d5{d in 7 .. 365 by 7: d>2}: #Ensures balance between soc each day f o r Thursday
0 C [ 1 6 , d ] = SOC[20,d-1] - d1 + x(16,d) ;

drive_weekend{d in 4.• 365 by 7: d>3}: #Ensures balance between SOC a f t e r t h e weekend
SOC[16,d] = 5OC[20,d-3] + x[16,d] - 2xd1;

#Ensures soc of the EV does not exceeds the b a t t e r y capaci ty of the EVsoc max{d in D, t in T } :
SOC[t,d] < c;

soc_min1{t in 16 . . 2 0 , d in 1. .365 by 7}:
SOC[t,d] >= cRC;

soc_min2{t in 16 . . 2 0 , d in 4.. 365 by 7}:
SOC[t,d] >= Cc¥C;

soc_min3{t in 16 . . 2 0 , d in 5 .• 365 by 7}:
SOC[t,d] >= CKC;

soc_min4{t in 16 . . 2 0 , d in 6 .. 365 by 7}:
SOC[t,d] >= Cc+C;

soc_minC5{t in 16 . . 2 0 , d in 7•• 365 by 7}:
SOC[t,d] >= cxC;

ful ly_chargedl{d in 1 . .365 by 7}:
$OC[20,d] = C;

fully_charged2{d in 4•. 365 by 7}:
SOC[20,d] = C;

fully_charged3{d in 5.. 365 by 7 } :
SOC[20,d] = C;

fully_charged4{d in 6.. 365 by 7}:
SOC[20,d] = C;

fully_charged5{d in 7.. 365 by 7 } :
SOC[20,d] = C;

#4mount kWh charged cannot be l e s s t h a n 0

#The amount of e l e c t r i c i t y r e t r i e v e d f r o m t h e g r i d cannot exceed t h e c h a r g i n g r a t e

# I n i t i a l s t a t e of charge at t=16 and d1 e q u a l s t h e b a t t e r y c a p a c i t y

#Ens u res ba l a n c e between s o c in t h e c h a r g i n g p e r i o d e a c h F r i d a y

#Ensures ba l ance between s o c in t h e c h a r g i n g p e r i o d e a c h Monday

#Ensures ba l ance between s o c in t h e c h a r g i n g p e r i o d e a c h Tuesday

#Ensures ba l ance between s o c in t h e c h a r g i n g p e r i o d e a c h Wednesday

#Ens u res ba l ance between s o c in t h e c h a r g i n g p e r i o d e a c h Thursday

#Ensures SOC of the EV never goes below a c e r t a i n level each Friday

#Ensures soc of the EV never goes below a c e r t a i n level each Monday

#Ensures SOC of the EV never goes below a c e r t a i n level each Tuesday

#Ensures soc of the EV never goes below a c e r t a i n level each Wednesday

#Ensures SOC of the EV never goes below a c e r t a i n level each Thursday

#Ensures soc equals b a t t e r y capaci ty at the end of each Friday

#Ensures SOC equals b a t t e r y capaci ty at the end of each Monday

#Ensures soc equals b a t t e r y capaci ty at the end of each Tuesday

#Ensures soc equals b a t t e r y capaci ty at the end of each Wednesday

#Ensures soc equals b a t t e r y capaci ty at the end of each Thursday

Figure A4.1: AMPL model file for the forced afternoon strategy.
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Figure A5.1: AMPL model file for the flexible night strategy.
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se t T; #Set of time (00, . . . , 23)
set D; #Set of days ( l , . . . , 365)

#Bat tery capac i ty
#Charging r a t e
#Spot prices
#20%
#Amount kh consumed each t r i p
#Variable cost of the network t a r i f f model

pa ram C;
param r;
param p{T, D};
pa ram c;
pa ram d l ;
param e := 0.4261;

var x {T, D} >= 0;
var SOC{T, D} >= 0;

minimize cost:
sum{t in T, d in D } p [ t , d ] x [ t , d
+ e + sum{t in T, d in D}x[t ,d] ;

subject to
non_neg{t in T, d in D}:

x [ t , d ] >= 0;

max_cr{t in T, d in D}:
x [ t , d ] <= r;

initial_SOC:
SOC[00, l] = C;

soc t1{d in 1 . . 3 6 5 by 7 , t in 00. .07 : t>0}:
SOC[t,d] = SOC[t-1,d] + x [ t , d ] ;

soc_t2{d in 4 . .365 by 7 , t in 00. .07 : t>0}:
S C [ t , d ] = SOC[t-1,d] + x l t , d l ;

soc_t3{d in 5 .. 365 by 7 , t in 00. .07 : t>0}:
S C [ t , d ] = SOC[t-1,d] + x ( t , d ] ;

soc_t4{d in 6 .. 365 by1 , t in 00. .07 : t>0}:
SOC[t,d] = SOC[t-1,d] + x ( t , d l ;

#Amount of e l e c t r i c i t y received f rom the g r i d
#Sta te of charge (SOC) of the ba t t e ry of the EV

#Minimizes charging c o s t s f o r the EV owner

#Amount kWh charged cannot be l e s s t h a n 0

#The amount of e l e c t r i c i t y retrieved f r o m the g r i d cannot exceed the charging rate

# I n i t i a l s t a t e of charge at t=16 and d=1 equals the b a t t e r y capaci ty

#Ensures balance between soc in the charging period each Friday

#Ensures balance between soc in the charging period each Monday

#Ensures balance between soc in the charging period each Tuesday

#Ensures balance between soc in the charging period each Wednesday

soc_t15{d in 7.. 365 by 7 , t in 0 0 . . 07: t>0}: #Ensures balance between soc in the charging period each Thursday
SOC[t,d] = SOC[t-1,d] + x ( t , d l ;

soc_d1{d in 1 . . 3 6 5 by 7: d>2}: #Ensures balance between soc each day f o r Friday
SOC[00,d] = SOC[07,d-1] - d1 + x(00 ,d l ;

soc_d2{d in 4.. 365 by 7: d>2}: #Ensures balance between soc each day f o r Monday
$0C[00,d] = S0C[07,d-1] - d1 + x[00 ,d l ;

soc_d3{d in 5 .. 365 by 7: d>2}: #Ensures balance between soc each day f o r Tuesday
SOC[00,d] = SOC[07,d-1] - d1 + x(00,d) ;

soc_d4{d in 6 . . 365 by 7: d>2}: #Ensures balance between soc each day f o r Wednesday
SOC[00,d] = SOC[07,d-l] - d1 + x[0o ,d l ;

soc_d5{d in 7 .. 365 by 7: d>2}: #Ensures balance between soc each day f o r Thursday
S0C[00,d] = S0C[07,d-1] - d1 + x[00,d) ;

d r ive_weekend{d in 4 .. 365 by 7: d>3} : #Ens u r e s b a l a n c e be tween SOC a f t e r t h e weekend
SOC[00,d] = SOC[07 ,d -3 ] + x [ 0 0 , d ] - 2+d1;

s o c max1{d in 1 . . 3 6 5 by 7, t in 00 . . 0 7 } :
S O C [ t , d ] < c;

s o c max2{d in 4 .. 365 by 7, t in 00 . . 0 7 } :
S O C [ t , d ] < c;

s o c max3{d in 5 .. 365 by 7, t in 00 . . 0 7 } :
S O C [ t , d ] < c;

s o c max4{d in 6 .. 365 by 7, t in 00 . . 0 7 } :
S O C [ t , d ] < c;

s o c max5{d in 7 .. 365 by 7, t in 00 . . 0 7 } :
S O C [ t , d ] < c;

soc_min1{t in 0 0 . . 0 7 , d in l. . 3 6 5 by 7 } :
S O C [ t , d ] » c+C;

soc_min2{t in 0 0 . . 0 7 , d in 4 .• 365 by 7 } :
S O C [ t , d ] » c+C;

soc_min3{t in 0 0 . . 0 7 , d in 5 .• 365 by 7 } :
S O C [ t , d ] >= c+C;

soc_min4{t in 0 0 . . 0 7 , d in 6 .• 365 by 7 } :
S O C [ t , d ] » c+C;

soc_min5{t in 0 0 . . 0 7 , d in 7 .• 365 by 7 } :
S O C [ t , d ] » c+C;

#Ensu r e s soc of t h e EV does not exceed t h e b a t t e r y c a p a c i t y each F r i d a y

# E n s u r e s SOC of t h e EV does not e x c e e d t h e b a t t e r y c a p a c i t y e a c h Monday

# E n s u r e s SOC of t h e EV does not e x c e e d t h e b a t t e r y c a p a c i t y e a c h Tuesday

#Ens u r e s SOC of t h e EV does not exceed t h e b a t t e r y c a p a c i t y e a c h Wednesday

#Ens u r e s SOC of t h e EV does not exceed t h e b a t t e r y c a p a c i t y e a c h T h u r s d a y

# E n s u r e s SOC of t h e EV n e v e r goes b e l o w a c e r t a i n l e v e l e a c h F r i d a y

# E n s u r e s SOC of t h e EV n e v e r goes b e l o w a c e r t a i n l e v e l e a c h Monday

#Ens u r e s SOC of t h e EV n e v e r goes be l o w a c e r t a i n l e v e l e a c h T u e s d a y

#Ens u r e s SOC of t h e EV n e v e r goes be l o w a c e r t a i n l e v e l e a c h Wednesday

# E n s u r e s SOC of t h e EV n e v e r goes b e l o w a c e r t a i n l e v e l e a c h T h u r s d a y

Figure A5.1: AMPL model file for the flexible night strategy.
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Table A6.1: Excerpt of output values for xt,d in fully flexible strategy. Illustrates the
given output value obtained for January 2021.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0,48 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0,95 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7
12 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7
21 3,7 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 3,7
22 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,37 3,7 3,7
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A6.1: Excerpt of output values for Xt,d in fully flexible strategy. Illustrates the
given output value obtained for January 2021.

0 l 2 3

l O O O 0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0,48 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0,95 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7
12 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7
21 3,7 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 3,7
22 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,37 3,7 3,7
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0
30 0 0 0
31 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
0
0

0
0
0
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Table A7.1: Excerpt of output values for xt,d in forced afternoon strategy. Illustrates
the given output value obtained for January 2021.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,48 0 3,7 3,7 3,7 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,48 0 3,7 3,7 3,7 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0 0 2,09 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0,48 3,7 3,7 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0,48 3,7 3,7 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A7.1: Excerpt of output values for Xt,d in forced afternoon strategy. Illustrates
the given output value obtained for January 2021.

0 l 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16 17 18 19 20 21 22 23
l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,48 0 3,7 3,7 3,7 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,48 0 3,7 3,7 3,7 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0 0 2,09 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0,48 3,7 3,7 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,7 0 0,48 3,7 3,7 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 3,7 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,09 0 0 0 3,7 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A8.1: Excerpt of output values for xt,d in flexible night strategy. Illustrates the
given output value obtained for January 2021.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 3,7 3,7 3,7 0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 2,09 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 3,7 3,7 3,7 3,36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 3,7 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A8.1: Excerpt of output values for Xt,d in flexible night strategy. Illustrates the
given output value obtained for January 2021.

0 l 2 3

l O O O 0
2 0 0 0 0
3 0 0 0 0

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 3,7 3,7 3,7 0,48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 3,7 2,09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 2,09 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 3,7 3,7 3,7 3,36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 3,7 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 3,7 3,7 3,7 3,7 3,7 3,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0
30 0 0 0

3,7 0
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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