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«They’ll just go to Moody’s»

Answered a Standard & Poor’s employee in a scene in the movie The Big Short

(2015), when asked why they did not insist on higher standards in their credit rating

assessments during the Great Financial Crisis of 2008.

«Theyill just go to Moodyis»

Answered a S t a n d a r d & P o o r ' s employee in a scene in t h e movie T h e B i g Shor t

(2015) , when asked why t h e y did not insist on higher s t anda rds in the i r credit ra t ing

assessments d u r i n g t h e G r e a t Financia l Crisis of 2008.
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Abstract

Credit Rating Agencies («CRAs») play an important role in the global debt market. They

influence the credit spread and thus the borrowing costs for major corporations. An

inherent problem is the conflict of interest that arise when the CRAs are paid by issuers.

This is not a recent concern, and numerous studies have looked into this and other issues

with CRAs. In this master’s thesis, we extend this area of research by applying machine

learning («ML») models for predicting credit rating updates.

For this task, we construct a prediction model using financial ratios, for which we have 20

years of data for two major agencies; Moody’s and Fitch. We also include ratings for an

investor-paid agency: Egan-Jones. In the model, we change the soft factor in the CRAs’

assessment with a new factor that both theoretically and, as will be shown, empirically

explain rating updates; trailing stock returns. We apply the XGBoost algorithm to provide

more accurate predictions of credit rating updates. Moreover, we analyse SHAP values to

interpret different features’ contributions to the predictions of rating updates.

We evaluate our approach on a dataset of credit ratings in the US and EU and obtain an

accuracy of 84.25%. We find that the total return 12 months before the update is the most

important when predicting, which suggests stale credit rating updates. Most excitingly, we

find that for CRAs with an investor-paid model, the total return three months before the

update is the most important when predicting. For the issuer-paid revenue model, twelve

months’ total stock return turned out to be important: This suggests that investor-paid

revenue models are more proactive in updating credit ratings than issuer-paid agencies.

The model is applied to the rating downgrade of Wirecard in 2020, which allows for an

interesting interpretation of local SHAP values. We also discuss the potential limitations of

using ML in credit rating predictions, such as loss of interpretability, unreliable accounting

data and the sensitivity of SHAP values.

Keywords – NHH, master’s thesis, Business Analytics (BAN), Finance, Agency Theory,

Corporate Bonds, Credit Ratings, Credit Rating Agencies, Machine Learning, XGBoost
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1 Introduction

The global corporate bond market amounted to USD 41 trillion in 2020 (ICMA, 2020).

In this huge market, Credit Rating Agencies (hereafter «CRAs») play an important role

as assessors of credit risk. Credit risk is the probability of default and any indication or

perception of an increased probability of default will increase lenders’ required rate of

return, which means a higher borrowing rate. Investors use ratings for their assessments

of risk. Some investors cannot invest in bonds with a certain level of default risk, called

non-investment grade bonds. Obviously, the CRAs must be independent and unbiased in

their assessments.

Nevertheless, CRAs have been criticised for being prone to conflict of interest. As long

as the issuers pay for the rating, suspicion about client pressure will arise. Studies have

shown how this is problematic. Moreover, CRAs have been criticised for being «too late»

on rating actions, and not providing the market with anything it did not already know.

A significant part of the criticism is directed towards CRAs being a «lagging indicator»

instead of a leading indicator (Nye, 2014).

In this thesis, we use machine learning techniques to address these issues. We predict a

multiclass classification problem on credit rating updates using financial accounting data.

Unlike other studies, we predict credit rating updates of corporate bonds and not the

alphanumeric credit rating level. Moreover, we investigate whether CRAs in fact lag the

market, by including the trailing total returns of the issuer’s stock for different periods.

This has, to our knowledge, not been investigated before. Additionally, we also look for

any differences between the two revenue models; the investor-paid model and the more

traditional issuer-paid model.

For the technical part, the machine learning model, we use the Extreme Gradient Boosting

algorithm (hereafter «XGBoost»). The XGBoost model is preferred in our multiclass

classification problem because it is computationally superior and manages problems with

multicollinearity when using financial data. Using the XGBoost model, we obtain good

results, with an accuracy of 84.40%. By adjusting for the imbalance in the data of the

three classes, we obtained a Matthews Correlation Coefficient of 66.23%.
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We apply SHAP values to interpret the model’s results. Using global and local SHAP

values to interpret credit rating updates is unprecedented and a relatively new way to

explain machine learning models. The SHAP values indicate that the Trailing 12 months

total return feature is most important when predicting credit rating updates, providing

tangible evidence of the allegations of CRAs’ actions lagging the stock market. Moreover,

we find it surprising that previous studies have not included the issuer’s stock return in

their machine learning models, as it has good predictive power. Maybe not surprising, but

still interesting, we find that, by looking at SHAP values, positive values for an issuer’s

Trailing 12 months total return contribute to a credit rating update being predicted as an

Upgrade, and negative values for Trailing 12 months total return predict a Downgrade.

To contribute to the endless dispute about which revenue model is preferred, we split

the data set by revenue models. We obtain exciting results when investigating the two

revenue models separately. The SHAP values for the investor-paid revenue model indicate

that Trailing three months total return contributes the most to the predictions, which is a

meaningful nine-month difference from the issuer-paid model.

Lastly, we use SHAP values in local explanations to investigate the Wirecard Scandal of

2020. As the last downgrade of the infamous German fintech company Wirecard is part

of our data set, we use local SHAP values to see which features contribute most when

predicting the update. The model predicted that the case belongs in the Downgrade class

with a 94% probability, which turned out to be correct, as the bond was downgraded on

the 19th of June 2020.

Moreover, we were curious to see if our model could outperform Moody’s assessment prior

to Wirecard’s default in June 2020. Using the last quarter’s financial data, we created

a synthetic case one month before the last case. Our model’s predicted probability of

the synthetic case belonging to class Affirmation is 69%. The predicted probability for

class Downgrade and Upgrade is 50% and 1%, respectively, meaning our model could not

affirmatively predict a downgrade before Moody’s. Although, it is essential to keep in

mind that our model is trained on Moody’s data, which could cause our results to be

biased and closer or further from the actual unknown truth.
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1.1 Motivation 3

Nonetheless, this highlights our most significant challenge in this thesis and credit ratings

in general. Credit ratings are established by private companies and cannot be benchmarked

to an actual observable truth, which creates a paradox when using machine learning models

to predict credit ratings.

1.1 Motivation

Surprisingly, no prior studies use SHAP values to interpret credit rating updates and

detect possible lags. Understanding the mechanisms of credit ratings is highly important

to prevent future credit rating scandals, and we believe this work makes a contribution to

the field of study.

Moreover, as leverage has increased and credit quality worsen, good models for credit risk

are essential for lenders and regulators. We think the demand for more and better credit

risk models will increase and we believe machine learning techniques can bring promising

progress in this respect.

Machine Learning (hereafter «ML») methods are known for their ability to predict

accurately. Until recently, however, predictions have been hard to interpret due to the

model complexity in ML. New model-agnostic methods, like SHAP values, have made

it possible to interpret black-box models. By applying relatively new ML methods and

new interpreting methods, such as SHAP values, we give new insights into credit rating

updates.

1.2 Scope and Limitations

The global bond market is large and complex, and some limitations were necessary for

accurate prediction and thorough analysis. The thesis scope was narrowed down to

analysing the European and US bond market as there are many similarities between the

two markets and economies. Countries that follow the EU regulations are included in the

European data, comprising countries in the European Union, the European Economic

Area, the United Kingdom, and Switzerland.
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4 1.3 Structure

This thesis is limited to bonds issued by corporations, known as corporate bonds. We

only look at companies with publicly available financial data, which primarily means

companies listed on a stock exchange. The financial accounting data we use exists for

corporations only and cannot be derived for other bond issuers, such as governments and

municipalities, and are, consequently, not included.

A vital part of our analysis uses different trailing total returns as features. Hence the

scope is limited to corporate bonds publicly listed on global stock exchanges. Financial

corporations, such as institutions, banks, asset managers, and insurance companies, are

excluded as they are covered by different regulations and have a separate credit rating

assessment.

Unfortunately, due to access restrictions, we could not access data from Standard & Poor’s

(S&P). In Refinitiv, our primary data resource, the exportation of S&P ratings is now a

separate chargeable service, meaning S&P is not part of the final data set used in this

thesis. The final data set thus comprises Moody’s, Fitch, and Egan-Jones. Egan-Jones

has a different revenue model than the Big Three (Moody’s, Fitch, and S&P). While not

a major CRA, Egan-Jones is included to study potential differences in the revenue models

and credit rating updates. Data from Egan-Jones is only included from 2016 and onwards,

as they did not provide ratings to Refinitiv before 2016.

1.3 Structure

This thesis is structured in seven parts. Part 1 introduces the reader to the current

challenges with CRAs and why it is interesting to investigate this topic. Part 2 explains

CRAs’ past and current role and importance. Part 3 reviews similar literature, relevant

financial theory, and previous events and describes regulatory guidelines. Part 4 gives

an understanding of the applied methodology before the data and data modelling is

introduced in Part 5. Lastly, the results are analysed and discussed in Part 6 before

concluding in Part 7.
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2 Background

2.1 From Railroads to Ratings

The reputation of the CRAs is described as the agencies’ most competitive advantage and

stems from a long history of an oligopolistic market structure (Nye, 2014). Significant

barriers to entry, reputation, international regulation, and high profits have protected the

CRAs against newcomers and innovation.

Modern corporate bonds have existed since the early 17th century. They were first issued to

the public in the Netherlands to fund the Dutch East India Company in 1623 (Gelderblom

et al., 2013). Later, during the 19th century, corporate bonds became a critical funding

instrument during the construction of the North American railroad system, as small local

banks were unwilling and unable to give credit to US Railroad companies (Sylla, 2002).

Historically, debt obligations mainly existed between parties who knew each other on

interpersonal levels or between financial institutions. As bonds gained popularity and

geographical range, investors needed assurance of a corporation’s creditworthiness and

ability to pay back its debt obligations. The need for assurance led to the birth of Credit

Reporting Agencies, such as The Mercantile Agency, founded in 1841, which collected and

sold information on the creditworthiness of US businesses.

As the US corporate bond market was more advanced than in most countries, it was no

surprise that a Credit Rating Agency was introduced by the American John Moody in

1909, roughly 60 years after the first corporate bond issuance. In the same period, the

editor of The American Railroad Journal, Henry Poor, collected data from 1849-1862 on

railroads’ property, such as their earnings, assets, and liabilities. The data later turned

into the Manual of the Railroads of the United States, which reported operating and

financial data on most American railroads. John Moody and Henry Poor were pioneers in

the credit rating industry, and their companies are still the two largest rating agencies in

the world (Sylla, 2002).
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6 2.2 Fundamentals of Credit Ratings

2.2 Fundamentals of Credit Ratings

2.2.1 Corporate Bonds

A bond is a debt obligation typically issued by corporations or governments, such as

federal governments, municipalities, or agencies. However, in this thesis, we only study

corporate bonds, and for the sake of understanding later nomenclature, we define and

explain the fundamentals of the financial instrument, and the following paragraphs aim to

provide some necessary insights.

Today, corporations (issuers) frequently use bonds to raise finance investments and

operations. Bonds are more attractive to issuers as bank financing is usually more

expensive. Investors, i.e. the lenders, receive an interest (coupon) compensating for

the time value of money and risk. When bonds reach their maturity date, the original

investment (par) is returned to investors, and future payments terminate (Bodie et al.,

2022).

Institutional investors, such as mutual funds, pension funds, and insurance companies,

are typically large holders of corporate bonds. Institutional investors hold investments of

significant sizes, as these, again, are aggregated by many smaller investors. Institutional

investors are often mandated by law or internal standards to base some of their investment

choices on credit ratings of reputable CRAs, as a practice to minimise risk for the smaller

investors (Booth and de Bruin, 2019). Usually, these investors are required to invest in

corporate bonds rated investment grade only. However, there are also debt funds that

only invest in what can be classified as non-investment grade bonds, typically referred to

as high yield or junk bonds, see Table 2.1. A bond being downgraded from investment

grade to junk is called a fallen angel. To issuers, receiving a fallen angel label could be

harmful as it could require institutional investors to sell their bonds as some investment

mandates restrict what they are allowed to hold (Belloni et al., 2020).

In our data set, which consists of 37,873 credit rating updates, 56.63% are classified as

investment grade, while 43.37% are classified as non-investment grade. Of the credit

rating updates, 1.62% can be classified as fallen angels, while 1.64% of the updates can be

classified as a rising star, meaning the credit rating was upgraded from non-investment

grade to investment grade.
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2.2.2 Corporate Bond Market

Even though corporate bonds have existed for a long time, there has been an increase

in popularity in recent years. Since 2000, the aggregated financing market has increased

substantially more than bank lending in Europe (Darmouni and Papoutsi, 2022).

In 2020, US corporate bond issuance hit an all-time high of USD 1.919 trillion (Rennison,

2020). Similarly, there has been an increasing surge of smaller issuers to the European

bond market since 2008, making the nominal value of the market EUR 12.12 trillion

(Darmouni and Papoutsi, 2022). The global corporate bond market is estimated to be

USD 41 trillion, dominated by the US with USD 10.9 trillion and China following up

with USD 7.4 trillion (ICMA, 2020). In 2015, bond financing represented 34.66% of US

corporations’ total debt, relative to only 19.70% in Europe (Darmouni and Papoutsi,

2022). Accordingly, it is appropriate to label the European financial system as bank-based

and the American as market-based.

The rise of bond financing has been supported by policymakers, as diversification of

sources of funds shields corporations from shocks in the banking industry. The other side

of the coin is that the frequency and amplitude of rating scandals have increased, making

it valuable that we contribute to understanding the mechanism of Credit Rating Updates.

2.2.3 Credit Ratings

Credit ratings are standardised measures to assess the probability of default by the issuer.

Ratings are ranked using an alphanumeric letter grading scale, where A is the premier

and D is the default. There are 21 to 24 combinations of the letters, each representing a

level of credit risk. See Table 2.1 for a complete comparison.

There are three fundamental functions of credit ratings. A credit rating has an

economic function to objectively measure an issuer’s credit risk while eliminating essential

information asymmetry between the issuer and investors, making it easier for issuers to

access funding. Secondly, it offers a standardised comparison method for investors over a

range of corporate bonds, helping them manage their portfolios. Lastly, they give market

participants a uniform standard for discussing credit risk. The three functions aim to

ensure that ratings should be independent and verifiable (OECD, 2010), although as we

will discuss in Section 3, this has not always been the case.

2.2 Fundamentals of Credit Ratings 7

2.2.2 Corporate Bond Market

Even though corporate bonds have existed for a long time, there has been an increase

in popularity in recent years. Since 2000, the aggregated financing market has increased

substantially more than bank lending in Europe (Darmouni and Papoutsi, 2022).

In 2020, US corporate bond issuance hit an all-time high of USD 1.919 trillion (Rennison,

2020). Similarly, there has been an increasing surge of smaller issuers to the European

bond market since 2008, making the nominal value of the market EUR 12.12 trillion

(Darmouni and Papoutsi, 2022). The global corporate bond market is estimated to be

USD 41 trillion, dominated by the US with USD 10.9 trillion and China following up

with USD 7.4 trillion (ICMA, 2020). In 2015, bond financing represented 34.66% of US

corporations' total debt , relative to only 19.70% in Europe (Darmouni and Papoutsi,

2022). Accordingly, it is appropriate to label the European financial system as bank-based

and the American as market-based.
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it valuable that we contribute to understanding the mechanism of Credit Rating Updates.

2.2.3 Credit Ratings
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Ratings are ranked using an alphanumeric letter grading scale, where A is the premier

and D is the default. There are 21 to 24 combinations of the letters, each representing a

level of credit risk. See Table 2.1 for a complete comparison.
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Issuers can request public, private, or confidential ratings from the CRAs. After a public

rating is assessed, the rating is often released as a stock exchange announcement and

distributed directly through the CRAs’ channels. A private rating, on the other hand, is

distributed to parties designated by the issuer, and confidential ratings are for internal

usage (by the issuer) only. Private and confidential ratings can later be reclassified

and published as public ratings upon the issuer’s request, creating an option to conceal

unfavourable ratings. As an issuer is not obliged to disclose unfavourable ratings publicly,

it creates an option for a potential bias and skewness in credit rating distribution.

In Figure 2.1 we can observe some skewness in our data, where the majority of our

observations are investment grade (green bars), and the minority is junk bonds (blue

bars).

Figure 2.1: Alphanumeric Value of Credit Rating Updates in the Analysed Data

8 2.2 Fundamentals of Credit Ratings

Issuers can request public, private, or confidential ratings from the CRAs. After a public

rating is assessed, the rating is often released as a stock exchange announcement and

distributed directly through the CRAs' channels. A private rating, on the other hand, is

distributed to parties designated by the issuer, and confidential ratings are for internal

usage (by the issuer) only. Private and confidential ratings can later be reclassified

and published as public ratings upon the issuer's request, creating an option to conceal

unfavourable ratings. As an issuer is not obliged to disclose unfavourable ratings publicly,

it creates an option for a potential bias and skewness in credit rating distribution.

In Figure 2.1 we can observe some skewness in our data , where the majority of our

observations are investment grade (green bars), and the minority is junk bonds (blue

bars).

Figure 2.1: Alphanumeric Value of Credit Rating Updates in the Analysed Data

Credit Rating Distribution
Alphanumeric Value of 37,863 Credit Rating Updates

4,000

2,000

o----1 11. _
AAA AA+ AA AA- A+ A A- BBB+ BBB BBB- BB+ BB BB- B+ B B- CCC+ CCC CCC- CC C D



2.2 Fundamentals of Credit Ratings 9

Table 2.1: Comparison of Alphanumerical Letter Grades in Credit Ratings

S&P Fitch Egan-Jones Moody’s KMV1

In
ve

st
m

en
t

G
ra

d
e

Highest quality AAA AAA AAA Aaa 0.02%

Superior quality
AA+ AA+ AA+ Aa1 0.05%
AA AA AA Aa2 0.08%
AA- AA- AA- Aa3 0.13%

Good quality
A+ A+ A+ A1 0.21%
A A A A2 0.32%
A- A- A- A3 0.42%

Medium quality
BBB+ BBB+ BBB+ Baa1 0.54%
BBB BBB BBB Baa2 0.70%
BBB- BBB- BBB- Baa3 0.90%

Ju
n
k

Low, medium quality
BB+ BB+ BB+ Ba1 1.15%
BB BB BB Ba2 1.48%
BB- BB- BB- Ba3 2.09%

Low quality
B+ B+ B+ B1 2.95%
B B B B2 4.14%
B- B- B- B3 6.66%

Bad quality
CCC+ CCC+ CCC+ Caa1 10.64%
CCC CCC CCC Caa2 17.00%
CCC- CCC- CCC- Caa3 17.95%

Speculative CC CC CC Ca 20.00%

Default

C C C C 20.00%
D DDD >20.00%

DD
D

1Expected Default Probability according to Moody’s KMV model (Langohr and Langohr, 2009)
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2.2.3.1 Rating Updates From time to time, CRAs update their outstanding ratings.

In the analysis, we will not predict the alphanumeric letter grade of a corporate bond

rating. Instead, we are more interested in the actions of the CRAs by investigating credit

rating updates. Several studies have already utilised machine learning models to predict

the alphanumeric letter grade, and Section 3.5 reviews several of these studies.

A credit rating receives an update when the CRAs opinion of its risk changes in the

long-term perspective. A credit rating can either receive an update as (1) Downgrade,

meaning the credit rating worsens, (2) Affirmation, meaning the rating does not change or

(3) Upgrade, meaning the credit rating is upgraded. A bond receiving either an upgrade

or downgrade can be critical for an investor who is a bondholder, as it confirms that the

bond’s risk has shifted.

Figure 2.2: Distribution of the Credit Rating Updates in the Analysed Data
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As the credit risk of corporations normally is quite stable, most credit rating updates

are Affirmation, which is reflected in the distribution of updates in the analysed data,

illustrated in Figure 2.2. Rating updates tend to be cyclical, meaning the number of

downgrades increases in recessions or crises, and vice versa for updates. In Figure 2.3 of

our data set, we see an increase in the number of rating updates being Downgrades in

2008 and 2020, which were both years of economic recessions. In most cases, Downgrades

and Upgrades are just changing the credit rating between one or two notches on the

alphanumeric rating scale.

Figure 2.3: Timeline of the Credit Rating Updates in the Analysed Data

2.2.3.2 Rating Outlooks and Watchlist Along with credit ratings and long-term

updates, the CRAs also announce rating outlooks and can put outstanding credit ratings

on a rating watchlist. The CRAs do not always place ratings on the watchlist prior to a

rating change, and likewise, for an upgrade or downgrade, they are not always preceded

by a positive or negative outlook. The CRAs may announce that they issue an outlook

instead of a rating update under uncertainty.

Rating Outlooks are opinions of the likely direction of credit ratings from a medium-term

perspective. The CRAs use rating outlooks to express their opinion on the expectation of

a rating change and, often, the likely direction of that rating. The outlooks focus mainly

on special events, such as merges and recapitalisations, that call for additional monitoring.
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Rating Watchlist represents an opinion of credit ratings that are under review for possible

changes in a short-term perspective. When downgraded, affirmed, or upgraded, a credit

rating is withdrawn from the watchlist.

2.2.4 Credit Risk

Credit risk is the likelihood that the borrowing corporation cannot fully meet its debt

obligations, which can cause a default. Credit ratings describe the issuer’s credit risk and

guide investors to set a meaningful interest rate for compensation for the probability of

default. The following paragraphs are included to give some theoretical background of

credit risk, which is the underlying foundation of credit ratings.

2.2.4.1 Five C-s To give an understanding of the basics of credit risk, we introduce

the Five C-s. The Five C-s are fundamental factors when lenders assess a borrower’s

creditworthiness. The fundamentals attempt to evaluate the likelihood of default and,

subsequently, the risk of a financial loss for the lender.

1. Character, Creditworthiness and reputation of the borrower. Factors such as credit

history, financial stability, the integrity of management

2. Capacity, Borrower’s ability to repay the debt, factors such as business model,

competitive advantages, and financial projections

3. Capital, Borrower’s financial resources, equity cushions such as cash reserves

4. Collateral, Assets that the borrower is willing to pledge to the lender

5. Condition, Economic, market and business environment conditions, such as industry

trends, interest rates, and state of the economy.

2.2.4.2 Probability of Default Default is the least desired situation for issuers and

investors. Default occurs when a borrower can no longer fulfil the required payments

on a loan or debt obligation due to a lack of resources or an unwillingness to pay. The

Probability of Default is the likelihood that default occurs.
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In credit risk theory, there are three main branches of models for assessing the probability

of default: (1) Structural models utilise the direct relationship between capital structure

and default risk, (2) Accounting models use accounting data to assess the probability of

default, and (3) Hybrid models are a combination of the former two (Wagner, 2008).

2.2.4.3 Merton Model The Merton model is one of the most common structural

models used to assess credit risk by evaluating the direct relationship between a

corporation’s capital structure and default risk (Merton, 1974). The model is commonly

used by stock analysts, commercial loan officers, and others to assess a company’s credit

default risk. We mention it here because we will introduce equity volatility (stock returns)

as an important feature in our model later.

According to Merton’s model, a company’s credit risk depends on its assets, liabilities,

and their volatility. A version of the Black-Scholes option pricing formula determines the

probability of default. In short, the model evaluates a company’s structural credit risk by

modelling its equity as a European call option on its assets.

Merton’s Model - Value of Equity
The theoretical value of a company’s equity E is given as:

E = V0Φ(d1)− Be−rTΦ(d2) (2.1)

d1 =
(ln Vt

B
) + (r + σ2

2
∆T )

σ
√
∆T

(2.2)
d2 = d1 − σ

√
∆T (2.3)

where Vt is the value of the company’s assets in period t. B is the value of the

corporation’s debt. Φ is a function of the cumulative standard normal distribution.

r is the risk-free interest rate. σ is the standard deviation of the company’s stock.

The Merton Model assumes there are no dividends or share repurchases and that

the issued debt is a zero-coupon bond.
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Merton’s Model - Expected Default Frequency
The Expected Default Frequency (hereafter «EDF») is the probability that a given

firm will default within a year. Merton defines the one-year probability default of a

firm as the probability that in one year, the asset value V1 will be below threshold

B. Threshold B is usually reflecting the liabilities payable within one year. Using

the symmetry principles of the Gaussian distribution and arranging the terms of

Formula 2.1, the EDF is given as:

EDFMerton = P (V1 ≤ B) = Φ̄

(
log (V0)− log(B) + (r − 1

2
σ2)

σ

)
(2.4)

The model assumes that a firm’s assets are invested in a stock and bond portfolio that

follows a log-normal distribution. This indicates that although the value of the assets is

log-normally distributed, the returns on the assets are normally distributed. The model

also assumes that the company’s liabilities are known and constant and can always pay

its debts off by liquidating its assets.

Considering these assumptions, the model determines the likelihood that a company will

fail to make its debt payments. If this likelihood is high, the company is thought to be

at a high default risk, and investors may be reluctant to lend to the company or buy its

assets. Overall, Merton’s model offers a helpful framework for assessing a company’s or

financial asset’s credit risk. Still, it is vital to keep in mind that the model rests on a

number of assumptions that makes it hard to implement in real life. In the next section,

however, we will briefly look at one application of Merton’s model.

2.2.4.4 Moody’s KMV Model The KMV model was introduced in the late 1980s

by the company KMV, later acquired by Moody’s. Moody’s KMV is an industry model

derived from Merton’s model. Many financial institutions use this model to assess the

probability of default. The KMV model does the following:

1. Estimate the value and volatility of the firm’s asset, preferably using stock returns

2. Calculates an index distance measure of default risk using Merton’s model

3. Scale the distance to default to probabilities using a proprietary default database
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Merton’s model and KMV differ because the latter uses a large database. In short, the

KMV tries to overcome some of the weaknesses of Merton’s model by replacing the

log-normal distribution with Moody’s proprietary distribution. The KMV model also

considers not only the volatility of a firm’s assets but also the volatility of its liabilities.

Merton’s model assumes there are no payments before the bond expires, while KMV takes

intermediate payments into account.

Merton’s model assumes that default only happens at maturity date T , while KMV relaxes

the assumption and allows for default before maturity. To arrive at this threshold, KMV

uses empirically observed probabilities of default from the market.

Merton’s model and KMV best assess publicly traded companies whose assets are valued

based on market value. The models use equity value to assess default risk, meaning for

the market value, it uses the price of the issuer’s stock times the number of outstanding

shares. These widely used structural models show the importance of the stock returns

when assessing credit risk and indirect credit ratings, which are therefore used as essential

indicators in our analysis.

2.2.5 Credit Rating Agencies

Credit Rating Agencies issue credit ratings and rating updates, where the opinions of only

a handful of agencies are recognised. As explained in Section 2.1, some agencies have a

long and strong history, and for a long time the market was duopolistic, with Standard &

Poor’s and Moody’s as the only providers of credit ratings.

Today, the credit rating market in the United States and Europe resembles an oligopolistic

market and has characteristics of high entry barriers, price rigidity, and non-price

competition. The providers Standard & Poor’s (hereafter «S&P»), Moody’s Investors

Service (hereafter «Moody’s») and Fitch Ratings (hereafter «Fitch»), known as the Big

Three, collectively have a market share of over 90% in the United States and Europe

(Refinitiv, 2022). These three agencies are private for-profit companies and had estimated

annual revenue of roughly $17 billion in 2020 (Refinitiv, 2022).
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S&P is the largest provider of ratings in Europe, with a market share of 51.77% (ESMA,

2021). Following S&P are Moody’s and Fitch, with European market shares of 30.12%

and 10.30%, respectively. The Big Three dominate the US market, where S&P has the

most significant market share of 43.9%, with Moody’s share at 25.8%, and Fitch at 16%

(SEC, 2022). The market share is calculated from the revenue of corporate credit rating

activities.

There are several smaller CRA behind the Big Three in Europe and the United States.

Around the turn of the millennium, many new and smaller credit rating agencies were

established. Of these smaller agencies, Egan-Jones Ratings Company (hereafter «E-J»)

was founded in 1995 and received recognition following the aftermath of the financial

crisis. E-J was founded by Sean Egan, an investment banker and consultant, launching

E-J as a challenger to the Big Three. E-J has been an outspoken critic of the Big Three,

describing his company as a challenger that is not intimated by large corporations and

has previously been known to give less favourable ratings to large corporations than their

competitors (Lucchetti, 2008). E-J is different from the Big Three and operates with an

investor-paid revenue model, and E-J argues that its revenue model reduces the infamous

conflict of interest problem.

Figure 2.4: Share of Credit Rating Agencies in the Analysed Data
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In Figure 2.5, the ratings in our data set are presented in a box plot, with the dotted

line being the investment grade boundary. The box plot shows that Moody’s ratings are

relatively lower than Fitch and E-J. The box in a box plot represents the interquartile

range, which is the range of the middle 50% of the data. The line within the box illustrates

the median value of the data, which varies for each class and CRA. The whiskers of the

box plot show the minimum and maximum values of our ratings, not including outliers.

Figure 2.5: Box Plot Analysis of the Credit Rating Updates in the Analysed Data
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2.2.6 Revenue Models

The two primary revenue models used by the CRAs are issuer-paid and investor-paid.

There is no consensus on which model is preferred or the better, and this will be discussed

in Section 3.3.1 and investigated using machine learning models in Section 6.4.3.

Between 1900-1970, the investor-paid model dominated. Investors purchased ratings and

relevant intelligence originally in journals from the CRAs. Between 1970 and 2001, most

CRAs switched to an issuer-paid model, which is used by the Big Three today.

In an issuer-paid model, illustrated in Figure 2.6, the revenue stream comes from issuers

engaging the CRAs for a rating on their bond. The rating is then made public, and

investors can choose to invest in the bond based on the rating assessment. If an investor

invests in the bond, the issuer gets financing. In an Investor-Paid model, illustrated in

Figure 2.7, the investors pay the CRAs to access their ratings. The rating is assessed

independently from the influence of the issuers.

Figure 2.6: Issuer-Paid Revenue Model

Figure 2.7: Investor-Paid Revenue Model
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2.2.7 Assessment

In this section, we review the assessment methods of Moody’s, Fitch and E-J to ensure

that our machine learning model (1) has reasonable features, (2) is realistic, and (3)

is a viable alternative to the assessments done by the CRAs. We find that the rating

methodology of the CRAs shares similarities, most likely due to regulations, competition,

and data availability.

In the issuer-paid model, a bond will not be rated unless instituted by an issuer hiring

CRAs to assess its bond. Moody’s evaluates qualitative and quantitative factors such

as scale, business profile, financial accounting ratios, and the company’s financial policy

(Moody’s, 2022). Moody’s rating methodology varies depending on the bond class and

sector, where a rating committee applies subjective judgments to emphasise each rating

factor. A thorough review of Moody’s assessment methods is provided in Appendix A1.

After reviewing a bond, analysts present the rating recommendations to a rating committee.

The rating committee then assesses the factors most likely to affect credit risk in the

sector. The rating committee compromise of five to nine analysts, where each committee

member gets one vote, and the majority vote decides the ratings. The rating decision can

take anywhere from 30 minutes to several days for more debatable ratings (Nye, 2014,

p. 131). The assessment method for Fitch is like Moody’s, and they stress that the most

significant measures when they rate corporate bonds are debt service, short-term liquidity,

leverage, and coverage ratios.

For CRAs with an investor-paid revenue model, the assessment is instigated regardless of

the issuer’s interest. Recall investors pay CRAs for rating potential investments, which

means a rating can be published shortly after the bond issuance in the interest of investors.

In investor-paid CRAs’ assessment, there is usually no access to non-public information

from the management of the issuers. Like the issuer-paid model, the assessment uses

qualitative and quantitative methods.

E-J state that they mainly use the Five C-s, reviewed in Section 2.2.4.1, when assessing

ratings. For corporate bond ratings, E-J uses a monthly quantitative screening method

called Rating Change Anticipator (hereafter «RCA») to identify possible changes in credit

quality. However, the details of the RCA method are not disclosed publicly. E-J does not
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disclose its ratings to the issuer unless requested (Egan-Jones Ratings Company, 2020). If

the issuer disagrees with the rating, the issuers must provide a written report to support

their objection.

In Section 6.4.3, we investigate if there is a lag difference between the two revenue models,

and one element in the analysis is how assessments are instigated.

2.3 Regulation

International Regulation: IOSCO The International Organisation for Securities

Commissions («IOSCO») is an association of securities regulators. One of their objectives

is to issue the Code of Conduct for the CRAs. The Code of Conduct has four objectives:

(1) Ensure quality and integrity of the rating process, (2) Ensure independence and reduce

conflict of interests, (3) Promote transparency and timeliness of rating disclosures, and

(4) Properly secure confidential information. This Code of Conduct is implemented in the

local regulations; however, the local regulators only impose that the CRAs should apply

it voluntarily without any enforcement mechanisms (European Commission, 2016).

Regulation in the European Economic Area: ESMA The European Economic

Area («EEA») follow the same regulation imposed by the European Securities and Markets

Authority («ESMA»). The supervision of CRAs in the United Kingdom is conducted by

the Financial Conduct Authority («FCA»), and still, post-Brexit, follows EU regulations.

One of the objectives of the European CRA regulation is to increase competition in the

markets for credit ratings by encouraging issuers to use smaller credit rating agencies by

requiring issuers to consider appointing at least one small CRA. Considering the Financial

Crisis of 2008, the European Parliament and the Council introduced a new regulation

on CRAs just months after the crisis hit (European Union, 2019). This regulation was

again updated in 2013 when a new EU reform was introduced, called Third Reform of

CRA Regulation (hereafter «CRA3»). CRA3 aims to address the over-reliance on external

credit rating and potential conflict of interest (European Commission, 2016).
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Regulation in the United States: SEC The Securities and Exchange Commission

of the United States («SEC») has a long history of regulating CRAs. In 1975, the

SEC introduced the concept of Nationally Recognised Statistical Rating Organisations

(«NRSRO»). Today there are nine CRAs with NRSRO status, including S&P, Moody’s,

Fitch, and Egan-Jones. In 2006, merely months before the Financial Crisis, the Credit

Rating Agency Reform Act was introduced in the United States. The reform was intended

to improve the quality of the CRAs to protect investors by promoting accountability,

transparency, and competition. The reform granted the SEC authority to examine the

CRAs with NRSRO status, making the CRAs required to disclose specific information,

such as conflicts of interest, rating performance, and internal procedures.
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3 Literature Review

Section 3 reviews several studies to assess the most critical and relevant problems with

credit ratings and CRAs. Most literature criticises the CRAs’ role in past events, such as

the lack of competition, agency problems, and asymmetric information problems. Relevant

financial literature is also reviewed in this section, as it is highly relevant for the feature

selection in Section 5.2.2.

3.1 Efficient Market Hypothesis

Fama (1970) introduced the Efficient Market Hypothesis (hereafter «EMH»), and according

to this theory, assets are priced according to all available information in the market at any

given time. There are three underlying assumptions for market efficiency: (1) investors

are rational, (2) if investors are not rational, their random trades will be cancelled, and

(3) all arbitrage opportunities will be used (Fama, 1970). In an efficient market, it is

impossible to profit from publicly available information.

EMH states that asset prices reflect all information. The hypothesis argues that, for

example, stocks trade at a fair market value on a stock market. There are three forms of

the EMH: (1) Strong form of EMH states that all information in a market is reflected in

the asset price; this includes both public and private information. (2) Semi strong form

states that all public information is reflected in the asset price. (3) Weak form states that

all past prices of a specific asset are reflected in today’s asset price.

According to Easley et al. (2010), abnormal stock returns can be explained by private

information, violating the strong form of EMH. Their study creates a measure of private

information and a portfolio consisting of long on stocks with a high value of private

information and short on stocks with a low value, this portfolio yields significant abnormal

returns. Based on the abnormal returns from the trading strategy of the private information

measure, the study argues that information is an important determinant of asset returns,

even in the presence of other explanatory factors.

Returns on financial assets are directly linked to credit ratings, as credit ratings are an

information indicator. For example, the price of a corporate bond is both influenced and

influences the credit rating. The issuers’ stock prices can influence the credit ratings, or
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the credit ratings can influence the stock prices. Hite and Warga (1997) study how credit

rating changes affect bond pricing performance, and their results show that credit ratings

often trail the market’s pricing of the bond. More specifically, on average, the prices of

the bonds decrease prior to a rating downgrading.

3.2 Asymmetric Information Theory

The economic theory of asymmetric information was developed in the 1970s to explain

market inefficiency (Akerlof, 1970). The theory suggests that an imbalance of information

between buyers and sellers can cause market failure. Sellers are believed to hold more

information on the product quality than the buyer, which can cause a discrepancy regarding

the price and added value. Historically, CRAs were created to solve the asymmetric

information problem between issuers and investors in the days before open financial

accounting data was accessible to the public (Sylla, 2002).

3.2.1 Asymmetric Information between Management and CRAs

There is an asymmetric relationship between CRAs and the issuer’s management, as the

management can selectively disclose information to the CRAs in credit rating assessments.

Kothari et al. (2009) and Lougee and Marquardt (2004) find evidence that managers

of corporations choose to disclose information strategically to third parties, such as the

CRAs. These studies find that managers often withhold bad news and emphasise the

good news.

Ahn et al. (2019) study the asymmetric relationship between the issuer’s management

and the CRAs, using data on CRAs. They find evidence that issuers are more hesitant

to give less optimistic information to CRAs in their private communications, which is

reflected in credit rating levels. The study uses linear regression to review if CRAs react

less to negative public information, like earnings announcements, when they have access to

private information. The study reveals that S&P, which has an issuer-paid revenue model,

is «relatively more likely to downgrade a firm’s rating before an earnings announcement»,

while Egan-Jone, which has an investor-paid revenue model is «relatively less likely to

downgrade a firm’s rating after an earnings announcement».
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3.3 Principal Agent Theory

In the principal agent dilemma, a conflict of interest can arise between a party and the

agent appointed to act on their behalf (Eisenhardt, 1989). The principal agency problem

can occur when CRAs act as agents for investors and issuers and favour issuers over

investors. Investors want CRAs to give accurate ratings, and issuers expect the best

possible ratings. When both parties aim to maximise their economic benefits while having

different goals, it causes a conflict of interest (Berk and DeMarzo, 2019). Sinclair (2005)

claims that an issuer-paid revenue model incentivises cooperation between issuers and

CRAs.

3.3.1 Client Pressure and Conflicts of Interest in Credit Ratings

Morgenson (2008) investigates the incident where Moody’s was pressured by its client,

Countrywide Financial, to withdraw a rating. In 2005, Moody’s assessed securities issued

by Countrywide Financial, the largest mortgage lender in the US. However, these ratings

were changed the next day as Countrywide meant the assessment was too harsh. The

rating was changed regardless of any new and significant public information. Leading up

to the financial crisis, Moody’s had assigned a high-level rating to many mortgage backed

securities, especially Collateralised Debt Obligations (CDOs) including Countrywide’s

mortgages. The erroneously high ratings resulted in significant investor losses.

Frost (2007) reviews the research evidence on the Enron scandal and the role of the CRAs.

Prior to Enron’s bankruptcy, executives at Enron and its potential acquirer Dynegy

informed Moody’s that downgrading Enron would jeopardize Dynegy’s acquisition of

Enron. It was later revealed that executives at influential financial services firms, who

stood to gain from the acquisition, prompted Moody’s to maintain an investment grade

rating on Enrons bonds, despite signs of high-risk associated with its debt. On the other

hand, Egan-Jones downgraded Enron to a junk rating 32 days before the bankruptcy,

while S&P and Moody’s downgraded only five days before bankruptcy. The difference

in the time before downgrading could be due to S&P and Moody’s having access to

intelligence from management and favouring issuers over investors. On the other hand,

Egan-Jones were uninfluenced and had little to lose when downgrading Enron.
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3.3.2 Revenue Models

There is no consensus as to which revenue model is preferred, as discussed in Section

2.2.6. Researchers have done comparative studies on the two revenue models. We aim to

contribute to the field of research by investigating the two revenue models and see if we

can see any differences in rating updates.

Jiang et al. (2012) studies ratings from S&P and Moody’s in the 1970s and 1980s after

they switched models. They show that in the period before S&P switched to an issuer-paid

revenue model, Moody’s offered more favourable ratings than S&P. However, they find

that this effect has disappeared after S&P’s switch to the issuer-paid revenue model.

Bonsall (2014) study the impact of Moody’s and S&P’s adoptions of the issuer-paid model

on corporate bond ratings. The results in his study show that after adopting the issuer-

paid model, the ratings became more «informative». Bonsall argues that the issuer-paid

revenue model allows for economic bonding between the CRAs and issuers through their

contractual agreements, which gives the CRAs access to non-public information. Using a

difference-in-difference model, the results show that the ratings became relatively more

accurate and better to time default after adopting the issuer-paid model in the 1970s.

Kashyap and Kovrijnykh (2016) argues that credit rating errors are more pronounced when

assessed by a CRA with an issuer-paid revenue model than CRAs with an investor-paid

model. The study also finds that all CRAs produce more significant credit rating errors

than socioeconomic optimal. According to their model, the CRAs need to be paid more

to have incentives to assess more accurate ratings.

Kronlund (2019) finds evidence of a phenomenon they describe as Rating Shopping, which

occurs in the issuer-paid revenue model. Rating Shopping is when issuers engage several

CRAs, which pressures the CRAs to give the best rating, or they might risk losing the

issuer’s business. The study finds evidence that issuers frequently wait until after a bond

is sold before publishing less favourable ratings.

Bonsall et al. (2022) provide evidence of systematic bias of CRAs with an investor-paid

model. They hypothesise that E-J provides higher ratings relative to Moody’s when more

E-J clients are invested in the corporations close to the investment grade boundary. Their

findings cannot prove that investor-paid ratings will resolve problems arising from conflicts
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is sold before publishing less favourable ratings.

Bonsall et al. (2022) provide evidence of systematic bias of CRAs with an investor-paid

model. They hypothesise that E-J provides higher ratings relative to Moody's when more

E-J clients are invested in the corporations close to the investment grade boundary. Their

findings cannot prove that investor-paid ratings will resolve problems arising from conflicts
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of interest, but they could alter the nature of these conflicts in the rating process. They

find evidence that E-J ratings are less accurate for firms more held by E-J subscribers.

Xia (2014) looks at S&P’s ratings after E-J started coverage of the same issuers. The

study finds that S&P ratings were «more responsive to credit risk and its rating changes

incorporate higher information content» after E-J started covering the same issuer. Xia

uses Moody’s KMV model to calculate the Expected Probability of Default and found

that E-J tracks this probability better than S&P. The study concludes that CRAs with

issuer-paid revenue models have better quality than those with the investor-paid model.

To summarise, there are differences in opinions regarding the best practice of revenue

models. CRAs have a motivation to maximise earnings for their shareholders as they are

private, profit-driven businesses. The issuers’ desire to receive excellent ratings does not

coincide with the investors’ desire to receive reliable ratings. Since issuers and CRAs

have similar interests, the CRAs are coerced into providing issuers with higher ratings to

increase their profits. This alignment is at the expense of the investors and well-functioning

capital markets.

3.3.3 Market Conditions

In an oligopoly, the market is dominated by a handful of independent firms. As already

mentioned (Section 2.2.5), the credit rating market is dominated by the Big Three, making

up over 90% of the market in Europe and the US.

Before the CRA market became an oligopoly, it was a duopoly controlled by S&P and

Moody’s. Becker and Milbourn (2011) studied what happened when Fitch became a

prominent agency in 1989, on how it affected S&P and Moody’s ratings. The authors

describe their findings as «relatively troubling». Fitch’s entry increased competition, and

the credit ratings’ quality fell. In general, the level of the credit ratings increased, and

the correlation between the ratings and market-implied yields fell, so the CRAs’ ability to

predict default declined.

Strong oligopolistic markets often generate antitrust action and regulations by the

government (Posner, 1969). Using statistical testing to review the effects of the post-

financial crisis regulations of oligopolistic market competition. Malewska (2021) could not

conclude that stricter regulations improved the competition.
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Hemraj (2015) investigates CRAs in the wake of Enron and Lehman Brothers’ default and

how CRA agencies compromised their integrity to appease issuers and investors. Hemraj

argues that the CRAs should have updated these issuers’ investment grade credit ratings

earlier, as their reputations were at stake. These scandals illustrate how the CRAs have

compromised their integrity to satisfy the issuer. In Sections 3.4.1 and 3.4.2, we will

elaborate on two events where the CRAs has be criticised for not providing reliable credit

rating updates

3.4.1 The Financial Crisis of 2008

Scalet and Kelly (2012) reviews the role of the CRAs during and the period leading up the

Great Financial Crisis of 2008 (hereafter «GFC»). The failures of CRAs partly caused the

Bankruptcy of Lehman Brothers on the 15th of September 2008. Lehman Brothers sold

high-risk debt products like Collateral Debt Obligations (CDOs) and Mortgage-Backed

Securities (MBS), which CRAs had rated as investment grade (Baker Library, 2022).

During the first quarter of 2007, a whopping 53% of Moody’s total revenue came from

rating complex structured financial products. Mishkin and Eakins (2018) concludes that

a conflict of interest arose as CRAs advised clients on how to structure these complex

financial instruments at the same time as they were rating them.

In 2013, in the aftermath of GFC, S&P was sued by 19 states and the District of Columbia

for issuing inflated ratings that falsely represented the security’s real credit risk. The

lawsuit included allegations that S&P wrongfully represented its ratings as objective,

independent and uninfluenced by its business relations with the investment banks that

issued the securities. The lawsuit was settled with a USD 1.375 billion payment and new

governance regulations from SEC to increase transparency and reduce conflict of interest

(Department of Justice, 2015).

GFC led to the establishment of the Dodd–Frank Wall Street Reform and Consumer

Protection Act of 2010 (hereafter «Dodd-Frank»). The Dodd-Frank Act’s primary goal is

to discourage issuers from rating shopping and encourage CRAs to assess more accurate

ratings. Toscano (2020) looks at the effects of the Dodd-Frank Act on reducing the conflict

of interest of CRAs. The study compares rating data on S&P versus E-J and uses these
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results to conclude whether Dodd-Frank has helped reduce conflict of interest. Toscano

finds evidence of S&P ratings being more accurate than E-J ratings in the post-Dodd-

Frank period, as seen by the lesser likelihood of significant changes in credit ratings and

rating reversals. Additionally, she demonstrates that issuer-paid ratings are more worried

than investor-paid ratings are about providing timely ratings in the post-Dodd-Frank era,

safeguarding their status as top information providers. Critics of Dodd-Frank, on the

other hand, believe the regulation constrains CRAs in the United States compared to

non-US CRAs (Committee on the Judiciary, 2012).

Europe’s legislative response to the GFC was considered controversial. In the CRA3, one

of the goals was to deter investors from relying mechanically and solely on credit ratings.

Edwards (2013) opinions that some of the provisions of the CRA3 are noteworthy, but

that some are too extreme and fail to meet its objective. Edwards disagreed with two

provisions. Notably, (1) the issuer’s obligatory rotation of CRAs, and (2) providing issuers

and investors with a civil cause of action against CRAs’ breaches of regulations. Edwards

claims that these provisions may impact the «willingness and ability» of the CRAs to

provide a breadth of credit ratings.

To summarise, several local regulatory reforms have been implemented by the governments

in response to the wrongdoings of the CRAs post-GFC. However, there is no consensus

on international reform for the CRAs. In short, the CRAs disclaim all liability for harm

done due to investors or institutions relying solely on their credit ratings.

3.4.2 The Wirecard Scandal of 2020

Another event where the CRAs were criticised for being slow and lacking in diligence is

the Wirecard Scandal of 2020, which is a case in our data set (See 3.1).

Wirecard was a German financial services company that provided payment processing

and banking services. The company was once considered a significant player within the

fintech industry. Still, it turned out to be a massive accounting scandal in which it was

revealed that it had been reporting fake revenue and profits for several years, with audits

signed by auditor Ernst & Young. Wirecard filed for insolvency in 2020, and its former

CEO was arrested and charged with accounting fraud. While unrolling these malpractices,

the CRAs did not issue a credit rating update.
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Financial Times (2022) started an investigative series on Wirecard in 2015 after several

allegations of malpractice. However, the allegations were persistently dismissed by

Wirecard. In January 2019, the financial regulators of Germany BaFin investigated

the Financial Times over allegations of market manipulation. In February 2019, BaFin

introduced a two-month short-sell ban on the stock of Wirecard after increased short-selling

activity and new allegations.

Figure 3.1: Closing Price of Wirecard Stock

In September 2019, Wirecard issued EUR 500 million worth of bonds, and Moody’s rated

these bonds as investment grade. In April 2020, KPMG published a report saying they

struggled to verify that most of the Wirecard business was real; the same day, the shares

fell 26 per cent, see Figure 3.1.

There were many red flags in the weeks leading up to Wirecard’s bankruptcy. On June

5th 2020, the police launched a criminal investigation and raided Wirecard’s Munich

offices. Eleven days later, two banks informed Wirecard’s auditor Ernst & Young that

the reportedly EUR 1.9 billion they held for Wirecard did not exist. On June 18th, when

Wirecard was supposed to publish its 2019 audit, they announced the billions were missing.

Moody’s issued a credit rating update where they downgraded Wirecard from investment

grade (Baa3 ) to non-investment grade (B3 ) on June 19th and put Wirecard under review

on their outlooks list. The CEO of Wirecard resigned that day, and Wirecard filed for

insolvency six days later, on June 25th.
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It may appear at first glance that no credit rating agencies conducted credit proceedings

against Wirecard, considering the long history of short calls and fraud allegations.

Comparing Moody’s actions to the stock price, shown in Figure 3.1, one can argue

that Moody’s pulled the trigger late on its credit rating update. In Section 6.4.4, we

aim to investigate local SHAP values to see whether our model can detect the decline of

Wirecard and predict a Downgrade better than Moody’s did in June 2020.

Table 3.1: Observation of Wirecard Downgrade by Moody’s

Issuer WIRECARD AG
Country Germany
Effective Date 2020-06-19
Credit Agency Moody’s
New Rating B3
Previous Rating Baa3
Update Type Rating Downgrade

X1: TotalReturn1Mo -70.82
X2: TotalReturn3Mo -71.73
X3: TotalReturn6Mo -77.01
X4: TotalReturn12Mo -84.13
X5: EBITMargPct 23.45
X6: TotAssetstoTotEq 3.05
X7: RetainedEarntoTotAssets 0.24
X8: CAPEXtoNetCashFlowOp 0.15
X9: NetDebtToEBITDA -1.92
X10: LTDebtPctofTotAssets 24.45
X11: QuickRatio 1.75
X12: CurrRatio 1.75
X13: PriceToBookValuePerShr 7.87
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3.5 Predicting Credit Ratings using Machine Learning

There seems to be limited research on machine learning on credit rating due to a prevalent

issue with obtaining large data sets of credit ratings (Golbayani et al., 2020). There are

two reasons why obtaining large data sets on credit ratings is hard. Firstly, a corporation

can have multiple bonds with the same financial data. Secondly, bonds are traded more

frequently than financial statements are updated, which are usually quarterly or yearly.

The two reasons cause some bonds to have the same feature values and some credit rating

updates are lost. Moreover, one must be cautious in predicting credit ratings, as machine

learning models are trained on data provided by CRAs and can potentially be biased.

However, some studies have been conducted using smaller data sets. See Appendix A2 for

an overview of other studies. Studies using primarily using machine learning have shown

that machine learning works well when predicting alphanumerical credit ratings using

historical financial data.
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3.6 Boosting Methods and Asymmetric Information

In this section, which is more technical, we look at previous studies using the methodology

we apply in our thesis. The prevalence of using gradient boosting machines for classification

has increased in the last couple of years (James et al., 2021). Several studies using machine

learning models to explain asymmetric information in finance have shown that gradient

boosting methods are suitable for explaining, making it the preferred method in our

classification problem using financial data.

Park and Chai (2021) points out that, unlike various academic fields, in finance, machine

learning methods are not often used for explaining, and most studies only utilise

machine learning for predictions. They suggest using the XGBoost algorithm due to its

computational superiority and much higher interpretability than, for instance, Support

Vector Machines, which was previously used in similar studies. The main justification

for using a gradient boosting method is that one can compare the level of features

that «ultimately impact the formation of information asymmetry». We are interested

in comparing the level of features that ultimately impact the formation of credit rating

updates, which makes XGBoost an attractive methodology for our classification problem.

The study of Chang et al. (2018) looks at the construction of machine learning models for

financial institutions, and how XGBoost can be implemented in credit risk assessment

models for financial institutions. The study indicates that the XGBoost classifier performs

better than other tree-based methods in assessing credit risk.

Nevasalmi (2020) utilises several machine learning methods to forecast stock returns in

a multinomial classification problem. The study concludes that the gradient boosting

machine is the best-performing machine learning method. The gradient boosting model

performs best in terms of statistical evaluation, but more importantly, having the best

economic predictive performance. The study tests this economic predictive performance

by conducting the model’s results in a real-life trading simulation. The trading strategy

indicated by the model achieves a positive abnormal return in the trading simulation,

which is in direct contrast to the efficient market hypothesis.

Gradient Boosting Methods excellent performance in interpreting asymmetric information,

credit risk and stock return motivate the selection of the method in our master’s thesis.
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This master’s thesis aims to contribute to similar research by investigating patterns in

credit rating updates and differences in revenue models. We use ML models due to their

prediction abilities and accuracy. Moreover, ML has become increasingly prevalent in

finance, especially in assessing financial risk, as classic statistical methods describe the

relationship between the variables insufficiently (Mashrur et al., 2020). Furthermore, as

reviewed in Sections 3.5 and 3.6, ML models can predict credit ratings accurately and

create the foundation for the methodology in this thesis.

4.1 Terminology

In ML and statistics, many different terms are used to explain the same phenomena.

Breiman (2001) reviews the terminology and differentiates between terms used in ML and

statistics. The terminology used in this thesis is chosen as it is most frequently used in

the field of ML.

Features are the explanatory variables, predictors, or covariates. Target is the dependent

or response variable. Cases are observations ; in this context, one case is a single credit

rating update. Model training is when a model is fitted on cases in the training data.

4.2 Machine Learning Algorithm

Machine learning is the use and development of computer processes that can adapt and

learn without specific instructions. These processes are done by analysing data patterns

and drawing inferences from these patterns using algorithms and statistical models.

One often distinguishes between two types of ML, supervised and unsupervised. Supervised

ML analyses identified and labelled input and output data, while unsupervised learning

processes unidentified or raw data. Supervised learning can be further categorised into

regression and classification (James et al., 2021).
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4.2.1 Interpretable and Explainable Machine Learning

Previous studies using ML in credit ratings have predicted the alphanumeric letter grade

and evaluated the model’s prediction accuracy, recall Section 3.5. We take the ML

techniques further and use them to interpret and explain credit ratings.

ML are often solely evaluated on their predictive performance, such as using a metric

to assess the accuracy of the predictions. Nonetheless, not only should ML models be

accurate, they should also be interpretable and explainable. The focus on interpretable

ML has therefore recently increased (Molnar, 2022).

The terms interpretability and explainability are frequently interchangeable, and there are

several definitions of these terms. Molnar (2022) defines interpretability as «the degree

to which a human can understand the cause of a decision and consistently predict the

model’s result», and further does not define the term explainability. Other researchers

call for a distinguishment between interpretability and explainability. Arrieta et al. (2020)

define interpretability as a passive characteristic of a model that makes sense for humans

and explainability as a process applied to a model after its predictions. In other words, an

active characteristic refers to any action or process carried out by a model to elaborate or

clarify its internal processes. The interpretability is a priori (from the earlier), while the

explainability is a posterior (from the later).

Doshi-Velez and Kim (2017) state that there is no consensus on interpretability and

explainability, and there are too many definitions. The authors argue that most demand

the concept of interpretability as the problem is defined incompletely, and they define this

incompleteness as a gap between the actual problem and the model formulation.

Complex ML models with low interpretability and explainability are described as Black

Box-models, and easily interpretable models as Glass Box-models. Fortunately, there have

been developed methods for explainability, such as SHAP values.

There is a fundamental trade-off between interpretability and model accuracy in ML

(James et al., 2021). ML methods are less interpretable than other statistical methods,

a linear model could have been utilised to in this thesis. Regression would most likely

have multicollinearity due to the usage of financial data. We prefer CART to logistic and

linear regression because it does not make simplifying results to explain reality.
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4.3 Classification and Regression Trees (CART)

Classification and Regression Trees («CART») are decision tree algorithms that can be

used in classification or regression predictive modelling problems and were introduced by

Breiman et al. (1984). Decision Trees are easy to interpret, but many features and cases

cause the algorithm to perform poorly. Decision Trees are susceptible to noise, causing

varying results if changes to small training data are applied (James et al., 2021, p. 340).

4.3.1 Classification Trees

Because our target variable is non-numerical (Downgrade, Affirmation, Upgrade), we must

use classification trees instead of regression trees with quantitative target variables. In

classification, each case is predicted to belong to the most commonly occurring class of

training cases in the region to which it belongs (James et al., 2021, p. 335).

Classification Trees
Recursive binary splitting is used to grow a classification tree. Classification error rate

is used as a criterion for doing the binary splits, see Formula 4.1. The classification

error rate counts as the fraction of the training case for a given region that does not

belong to the typical class.

E = 1−max
k

(p̂mk) (4.1)

where p̂mk represents the proportion of training cases in the m-th region from the

k-th class. In addition, a Gini index or Entropy needs to be applied supplementary

to grow a classification tree. The Gini Index, see Formula 4.2, measures the node

purity by measuring the total variance across the K classes. If p̂mk is close to 1 or 0,

the index takes on a small value and indicates that a node mainly consists of cases

from one class. Entropy, on the other hand, is given by the function in Formula 4.3.

G =
K∑
k=1

p̂mk(1− p̂mk) (4.2) D = −
K∑
k=1

p̂mk log p̂mk (4.3)

Recall, p̂mk represents the proportion of training cases in the m-th region that are

from the k-th class, meaning 0 ≤ p̂mk ≤ 1. Subsequently −p̂mk log p̂mk will always

be more significant than zero. The Entropy will take on a value near zero if the p̂mk

are all near zero or one, and the m-th node is pure.
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4.3.2 Ensemble Methods

Ensemble methods are preferred because we have an extensive data set of 37, 863 cases.

Ensemble methods combine many simple models to obtain a more robust model (James

et al., 2021, p. 340). The simpler models are often known as weak learners, as these

alone may predict mediocrely. A single decision tree could be the weak learner in CART

algorithms, and combining many decision trees is an ensemble method. Examples of

ensemble methods include Bagging, Boosting, Random Forests and XGBoost.

The advantage of using Ensembled CART Algorithms is that they are non-parametric,

can handle different data types, are categorical and numerical and are robust against

overfitting, outliers, and noise (Nikulski, 2020). Moreover, the multicollinearity of features

does not influence the accuracy and predictive performance of the model, and features do

not need to be removed or altered to decrease the correlation between them.

However, in terms of performance, having too many unnecessary features adds complexity

and should be avoided. The final number of features and how these have been chosen is

further described in Section 5.2.2.
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4.3.3 Boosting

Boosting is an approach to improve a decision tree’s predictions and can be applied to

multiple statistical learning methods for regression or classification. Boosting makes

predictions for T rounds using a sequential algorithm on the training sample and improves

the performance of the boosting algorithm iteratively. The improvement derives from

the information on the prior round’s prediction accuracy (James et al., 2021; Freund and

Schapire, 1997).

Boosting Algorithm

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B repeat:

(a) Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training data

(X, r)

(b) Update f̂ by adding in a shrunken version of the new tree: f̂(x) ←

f̂(x) + λf̂ b

(c) Update the residuals: ri ← ri + λf̂ b

3. Output the boosted model: f̂(x) =
∑B

b=1 λf̂
b(x)

Where:

B: Number of trees

λ: Shrinkage parameter, which controls the rate at which the boosting learns

d: Number of splits in each tree, which controls the complexity of the boosted

ensemble
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4.3.4 Gradient Boosting Methods

Gradient Boosting is a boosting method that is versatile and can be used in both regression

and classification problems. This method generates an ensemble of weak learners, typically

decision trees, and utilises this ensemble as a prediction model. The model is built in

several stages, like other boosting methods, while it generalises the models by using a loss

function as an optimiser. The gradient boosting method consists of three components:

(1) a loss function that penalises error in the prediction, (2) a weak learner and (3) an

additive model (Hastie et al., 2009).

Gradient Boosting Algorithm
1. Initialize f0(x) = argmin

γ

∑n
i=1 L(yi, γ)

2. For m = 1, 2, . . . ,M :

(a) For i = 1, 2, . . . , N compute generalised residuals:

ri,m = −[∂L(yi,f(xi))
∂f(xi)

]f=fm−1

(b) Fitting a regression tree to the residual targets rim giving terminal regions:

Rjm, j = 1, 2, . . . , Jm.

(c) For j = 1, 2, . . . , Jm compute:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm)

3. Output model f̂(x) = fM(x)

Where:

L: Different loss criteria

r: Generalised (pseudo) residuals

M : Number of iterations

Jm: Dimensions of each of the individual trees

For classification, Lines 2 (a) to (d) are repeated K times for each iteration m, using

a gradient vector gkm. The result in Line 3 is K different tree expansions fkM(x)

where k = 1, 2, . . . , K.

4.3.5 eXtreme Gradient Boosting Model (XGBoost)

The eXtreme Gradient Boosting model was created to be used on large, complicated data

sets and was first introduced by Chen and Guestrin (2016). It was built on previous CART
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models, specifically the Gradient Boosting Method, to enhance speed and performance

while introducing regularisation parameters to reduce overfitting. We chose the XGBoost

algorithm because of its speed and performance, and as Chang et al. (2018) found in their

study, it is superior to other algorithms when assessing risk in finance.

The XGBoost method applies the process of various CART as weak learners and bundles

them while increasing the performance of each tree formed by minimising its objective

regularisation function. The XGBoost method has an excellent ability to predict, especially

in the case of classification, because this method has concepts such as sparsity awareness

algorithms for each tree formed. The XGBoost algorithm is known for training an optimal

model with low tendencies to overfit by regulating the complexity of the tree.

XGBoost has primarily been used for predictions, as it is a black-box model. However,

the usage of XGBoost for analytical and explanatory models is increasing (Chang

et al., 2018). The algorithm’s prevalence increases as it outputs each feature’s accuracy

contribution scores (gains) and the frequency through the entire tree growth process

(feature importance), which are later used to explain the models.

4.3.6 Multiclass Classification Problem

When there are more than two possible outcomes in a classification problem, it becomes a

multiclass classification. When we predict Downgrade, Affirmation or Upgrade, we have

a multiclass classification problem. There are two approaches for handling a multiclass

classification problem: One-versus-All and One-versus-One.

In the One-versus-All approach, a classifier for each potential class value is created, with

a positive outcome when the prediction belongs to this class and a negative for any other

class. Meaning for N class instances, there are N binary classifier models. In this case, a

credit rating update rating can be either a Downgrade, Affirmation or Upgrade, meaning

a total of three binary classifier models.

On the other hand, in the One-versus-One approach, a classifier on every potential pair of

classes is created. For example, whether a credit rating update belongs to Downgrade or

Upgrade, Downgrade or Affirmation, and Upgrade or Affirmation. With N class instances,

there are N × N−1
2

binary classifier models, meaning, in this case, there are three binary

classifier models.
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4.4 Model Tuning

The parameters of a model must be estimated before it can be used for prediction. Some

parameters can be determined directly from the training data the model is fitted on, but

other parameters must be set before the model is fitted, as they cannot be approximated

from the training data. These parameters are tuning parameters or hyperparameters

and can considerably impact the model. Selecting these hyperparameters must be done

cautiously. Many of these parameters regulate the complexity of the model, and not

correctly tuning these may lead to overfitting. However, performing this tuning is

computationally costly, especially in our case with over 30, 000 observations, therefore, we

utilise a new method, ANOVA racing, to save computational time.

4.4.1 Grid Search

Complex machine learning models, such as XGBoost, have several hyperparameters, up to

35 different parameters. Therefore, trying several different values, referred to as candidates,

is time- and computationally consuming. There are several approaches to minimize testing

all candidates. Resampling techniques like cross-validation or bootstrap are frequently

used to evaluate a candidate set of values and select the best one based on a pre-defined

criterion. However, the model tuning procedure can be sped up by adaptively choosing

candidate values so those sub-optimal settings can be eliminated.

A common approach to quickly find candidates is to perform a grid search. A set of

values for each parameter is defined in a regular grid search before models are fitted on

different combinations. There are several methods of building various types of regular

grids. A benefit of using a regular grid is that the linkages and patterns between the

tuning parameters and the model metrics are simple to comprehend. However, it requires

many models to be fitted and evaluated, which, as already mentioned require tremendous

computational time.

Other irregular grids and iterative methods exist that utilise the candidates’ results to

decide which parameter value should be tested next. However, it requires using other

models or processes, such as Bayesian optimisation or a Gaussian process model, that

again introduces more assumptions in the modelling work.
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4.4.2 ANOVA Race

Tuning hyperparameters in a grid search is computationally complex. An alternative to

the grid search is a set of techniques referred to as racing methods. The tuning search

evaluates every model configuration on a subset of the resamples. Racing methods perform

a limited set of resamples for each grid candidate before conducting a statistical test to

determine which ones should be eliminated or given greater attention.

One of these tuning methods is the ANOVA racing method. The ANOVA racing method

performs an Analysis of Variance test on the candidates to investigate the statistical

significance between the differently-tuned hyperparameters before deciding which to

continue testing and which to drop. These racing methods are based on the works of Kuhn

(2014), allowing the usage of parallel processing and quickly discarding candidates that

are not viable. Performing a grid search saves considerable computational complexity.

4.5 Evaluating Features

Features are the explanatory variables of a ML model. Discussing and evaluating features

is part of the explainability of ML and is a central part of our analysis. Global explanations,

also known as data set-level explanations, describe a model’s behaviour over all cases

summarised. Global explanations allow for investigation of the model’s behaviour on

average and in general. A local explanation, also known as an instance-level explanation,

explains how a model predicts a single case, specifically, how the features contribute to

the model’s prediction (Biecek and Burzykowski, 2021).

This thesis uses two methods for evaluating the features, SHAP values and Feature

Importance, both model-agnostic evaluation methods. SHAP Values are essential to our

analysis. We will use global SHAP values to identify patterns in the data and the overall

behaviour of the model and local SHAP values to understand why a particular prediction

was made, like in the Wirecard case. The predictions of SHAP values lay the foundation

for our conclusions in Section 6.
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4.5.1 Global Explanation: Feature Importance

Feature Importance opens up for ranking the features by their contribution to the ML

model. The plots are easy to interpret and give insights into models with low explainability.

There are various methods to measure feature importance, however, we are only looking at

the methods embedded in the XGBoost algorithm. There are three options for measuring

model-specific feature importance directly from the XGBoost algorithm: (1) Weight is

determined by how frequently it is utilised to make a split in the model. It is a measure of

how often the feature is used to determine the structure of the model. (2) Cover measures

the same as Weight but is weighted by the number of training data cases used in the

splits. (3) Gain measures the increase in accuracy that a feature contributes to the model

by being included, versus not being included.

A weakness is that the ordering of the feature importance is often different for all three

options to calculate feature importance (Lundberg et al., 2018). Another weakness of

feature importance is that the importance is undervalued when two or more features are

highly correlated.

Feature Importance
1. Initialise f0(x) = argmin

γ

∑n
i=1 L(yi, γ)

2. For m = 1, 2, . . . ,M :

(a) For i = 1, 2, . . . , N compute generalised residuals:

ri,m = −[∂L(yi,f(xi))
∂f(xi)

]f=fm−1

(b) Fitting a regression tree to the residual targets rim giving terminal regions:

Rjm, j = 1, 2, . . . , Jm.

(c) For j = 1, 2, . . . , Jm compute:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ)

(d) Update fm(x) = fm−1(x) +
∑Jm

j=1 γjmI(x ∈ Rjm)

3. Output model f̂(x) = fM(x)

There are various ways to calculate and approximate feature importance. Instead of trying

out the various model-agnostic methods of feature importance, we have decided to focus

solely on SHAP values as a model-agnostic method, as it can be used for explanations

both locally and globally.
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model-specific feature importance directly from the XGBoost algorithm: ( l ) Weight is

determined by how frequently it is utilised to make a split in the model. It is a measure of

how often the feature is used to determine the structure of the model. (2) Cover measures

the same as Weight but is weighted by the number of training data cases used in the

splits. (3) Gain measures the increase in accuracy that a feature contributes to the model

by being included, versus not being included.

A weakness is that the ordering of the feature importance is often different for all three

options to calculate feature importance (Lundberg et al., 2018). Another weakness of

feature importance is that the importance is undervalued when two or more features are

highly correlated.

Feature Importance
l. Initialise f0(x) = arg min L : i L(yi,1),
2. F o r m = l , 2 , . . . , M :

(a) For i = l, 2, . . . , N compute generalised residuals:
_ [ å L ( y i J ( x i ) ) ]ri,m - - å f ( x i ) f = f r n - 1

(b) Fitting a regression tree to the residual targets rim giving terminal regions:

Rjm, j = l, 2, , Im,

(c) For j= l, 2, , Im compute:

r jm = arg m i n L x ER L(yi, f m - l ( x i )+ 1), ' Jrn

(d) Update fm(x) = fm-1(x) + L f : 1 r jmI(x E Rjm)

3. Output model } ( x ) = ! M ( x )

There are various ways to calculate and approximate feature importance. Instead of trying

out the various model-agnostic methods of feature importance, we have decided to focus

solely on SHAP values as a model-agnostic method, as it can be used for explanations

both locally and globally.



4.5 Evaluating Features 43

4.5.2 Local and Global Explanation: SHAP Values

Shapley Values is a solution concept in cooperative game theory, introduced by Lloyd S.

Shapley (1952). In a cooperative game, meaning competition between groups of players,

the Shapley Values quantify each player’s contribution. The idea is to fairly allocate the

payoff amongst the players in the game when assuming collaboration between the players.

SHapley Additive exPlanations (hereafter «SHAP») is the concept of using Shapley values

to assess the features of a machine learning model. Lundberg and Lee (2017) contextualized

the concept of Shapley values from economics as a unified approach to machine learning.

When there is a need to understand the model’s choices in its predictions, SHAP values

are essentially utilised for sophisticated models, such as gradient boosting models. The

use of SHAP values to demystify black-box models has increased in recent years. The

SHAP values can be used for local interpretation, but by aggregating the values, SHAP

can also be used for global interpretation.

When explaining an ML model, SHAP values are used to assess a feature’s significance in

relation to other features. The SHAP values consider the impact of including versus not

including that predictive feature on the loss function. Additionally, SHAP values explain

if the relationship between the feature and the target is positive or negative.

Transferring the concept of Shapley values to a machine learning model means the game

is the prediction outcome of the model, and the players are the model’s features. The

Shapley values quantify each player’s contribution to the game, while in a machine learning

context, SHAP quantifies each feature’s contribution to the model’s predictions.

4.5.2.1 Properties of Shapley Values Lloyd S. Shapley (1952) pointed out that

Shapley values have four desirable properties: (1) Efficiency, the sum of the values of

all players equals the value of the total game. (2) Symmetry, all players have an equal

chance to be part of the game. (3) Dummy player, a player’s contribution is zero if the

player does not contribute to the game, and (4) Additivity, arithmetic summation of pair

of games is possible.
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Shapley Values
Shapley values are founded on the idea that when determining the significance of a

single player, the results of every possible coalition of the players must be considered.

Aas et al. (2021) formulates the concept of Shapley values as follows; considering a

cooperative game with M players, where all players’ objective is to maximise payoff.

Let subset S ⊆ M = 1, . . . ,M , where |S| is the number of players — assuming a

contribution function every for player v(S) that represents the quantified subsets

of the players, also known as the contribution of coalition S. The function v(S)

describes the total expected sum of payoff the members of the coalition S can achieve

by cooperation.

Assuming all the players collaborate, the Shapley value fairly allocates the total

gains to the players. The amount that player j receive is given in Formula 4.4,

which is the weighted mean over contribution function differences for all subsets S

of players not containing player j.

ϕj(v) = ϕj =
∑

S⊆M{j}

|S|!(M− |S| − 1)!

M!
(v(S ∪ {j})− v(S)), j = 1, . . . ,M (4.4)

SHAP uses the idea of Shapley values by taking the marginal contribution of a feature

for a given model. Introducing a new feature m adds computational cost, which is a

disadvantage in using the method for large prediction models as the SHAP formula requires

training 2F models.

Another downside with Shapley values is that they implicitly assume that features are

independent. However, there are methods for approximating SHAP values that handle

high computational costs and adapt extensions for handling dependent features. Two

popular approximation methods are the Tree-Based SHAP and the Kernel SHAP.

The Kernel SHAP approximation of Aas et al. (2021) uses a kernel estimator to reduce

computational time and has an extension to handle dependent features. However, this

approximation method «suffers greatly from the curse of dimensionality, which inhibits

its use in multivariate problems» (Aas et al., 2021).

4.5.2.2 Tree-Based SHAP Tree-Based SHAP has the advantage of being the

currently fastest computational way to approximate SHAP values. Lundberg et al.
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(2018) developed this approximation, which is today the most widely used approximation

of SHAP values due to it being bundled in popular algorithms, such as XGBoost.

The Tree-Based SHAP algorithm reduces the complexity from O(TL2F ) to O(TLD2),

where T is the number of trees in the model, L is the maximum number of leaves in the

tree, D is the maximum depth of a tree and F is the number of explained features.

This algorithm uses the structure of tree-based models and the Additivity property of the

Shapely values to calculate an approximate SHAP value quickly. Three-Based SHAP

has two approximation methods for feature perturbation: (1) Tree-dependence and (2)

Interventional.

Tree-Dependence Feature Perturbation using Conditional Expectation The

tree-dependence method for feature perturbation takes advantage of the conditional

distribution from the tree structure of the underlying CART model. This is the standard

and most widely used method, as it is superior in computational time. However, the

usage of conditional distribution can introduce the causality problem. Tree-dependence

approximation uses the following perturbation for each feature x:

v(S) = E[v(x)|xS = x∗
S] (4.5)

Interventional Feature Perturbation using Marginal Expectation The

interventional method for feature perturbation breaks the dependencies between the

features according to the rules of causal inference dictated by Janzing et al. (2019). This

method handles the problem of causality. However, using the marginal distribution of

a background data set can provide unlikely data points to the model. Interventional

approximation uses the following perturbation for each feature x:

v(S) = E[v(xS, x
∗
S)] (4.6)

There is currently no consensus on which method is preferable. It discusses whether the

attribution method should be «true to model» with tree-dependence or «true to data»

with interventional feature perturbation. H. Chen et al. (2020) argue that the preferable

method is application dependent.
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4.6 Data Splitting

4.6.1 Test and Train Data

The principle of data splitting is to subset the original data, and best practices in supervised

machine learning call for partitioning the data into independent sets. The training set is a

subset used to train a model to learn possible underlying relationships and patterns. The

test set is a subset used to test the trained model by estimating the unbiased accuracy

of the model. A common practice is having a validation set for assessing a model’s

performance across different algorithms and hyperparameters. Best practices call for the

test set not to be utilised in the selection, as using the test set ahead of time will lead to

overfitting and bias (James et al., 2021).

4.6.2 Stratification

Machine learning models perform better with balanced data sets in a classification problem

(Kuhn and Silge, 2022). Stratification ensures that the distribution of one or more specific

features is approximately equal in the different subsets. By using stratification, each

group within a population receives a proper representation, resulting in a more accurate

estimation of a model’s parameters. However, this presupposes that the population can

be divided into homogeneous subgroups.

4.6.3 Resampling using Bootstrap

Bootstrap is the technique of sampling with replacement, leading to subsets of the same size

as the novel data set (James et al., 2021, p. 209). The cases excluded from the bootstrap

subset are called Out-of-Bag cases. An alternative to bootstrap is cross-validation, which

draws cases without replacement, leading to smaller data subsets than the original data

set.

4.7 Model Performance Metrics

There are several ways to assess model performance; the best performance measure depends

on the data structure. As we have a classification problem, the performance measures of

our model are reviewed in proportions of correctly predicted cases.
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4.7.1 Confusion Matrix

The confusion matrix is an accessible and valuable performance measure for ML

classification and works well with multiclass classification. The confusion matrices show

the predicted values against the actual values, and the left-to-right diagonal values show

the correctly classified cases.

The matrix rows represent the predicted classes, while the columns represent the actual

classes. The matrix cells contain the number of cases that were predicted to belong to a

given predicted class and belong to a given actual class.

Figure 4.1: Confusion Matrices
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Correctly classified cases are True Positives (TP ) and True Negatives (TN). Falsely

classified cases are False Positives (FP ) and False Negatives (FN). From the Confusion

Matrix in Figure 4.1, it is possible to derive multiple metrics, given in Table 4.1.

In a multiclass classification problem, instead of operating with positives and negatives,

each class’s individual TN , TP , FP , and FN are calculated and compile different metrics

like Precision, Recall and the F1 Score. The confusion matrices for multiclass problems,

shown to the right in Figure 4.1, have the predicted values for each class vertically and the

actual value for each class horizontally, and the correctly classified values on the diagonal.
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4.7.2 Measures for Accuracy

Table 4.1: Accuracy Measures

Measure Formula

Sensitivity (True Positive Rate) measures the rate of True Positives
to the total of actual positives and is important when identifying
the positives, and preventing false negatives is crucial.

Sens = TP
TP+FN

Precision measures the true positives to the total predicted
positives and is valuable when the occurrence of false positives
is unacceptable.

Pr = TP
TP+FP

Specificity (True Negative Rate) is the rate of true negatives to
the total of actual negatives and is used when you want to cover all
true negatives and prevent false alarms.

Spec = TN
TN+FP

F1 Score considers both precision and recall and is useful when
dealing with uneven class distribution. It separates different types
of errors (false positives and false negatives).

F1 =
2×Sens×Pr
Sens+Pr

4.7.2.1 Accuracy Accuracy is perhaps one of the most used measures to assess the

performance of a model. The accuracy measures the total correct predictions over the total

prediction and is given in Formula 4.7. The accuracy measures work well in classification,

but it does not work optimally when dealing with imbalanced data sets.

Accuracy =
TN + TP

TP + FP + TN + FN
(4.7)

4.7.2.2 Cohen’s Kappa As we are dealing with a highly imbalanced data set, recall

2.2, the Accuracy measure is not the most fitting. Cohen’s Kappa is used when the data

set is imbalanced and normalises the accuracy by weighing the observed accuracy against

the expected accuracy. The goal is to remove the possibility of the classifier and a random

guess being the same and measure the number of predictions a model makes that cannot

be explained by a random guess. The expected accuracy’s presence adjusts for the data

set’s imbalance.

KCohen′s =
p0 − pe
1− pe

=
Observed Accuracy − Expected Accuracy

1− Observed Accuracy
(4.8)
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4.7.3 Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (hereafter «ROC») is a curve visualising the

performance of a given classification model at all classification thresholds. The x-axis

shows the proportion Specificity (True Negative Rate), and the y-axis shows the Sensitivity

(True Positive Rate). The Sensitivity and Specificity pair associated with each point on

the ROC curve corresponds to a specific decision threshold.

4.7.4 Area Under the Curve (AOC)

The Area Under the Curve (hereafter «AUC») is a metric used to evaluate a model’s

performance. As the name implies, the AUC is the area under the ROC curve. The AUC

metric evaluates the model’s ability to distinguish between the different classes. A perfect

classifier would have an AUC of 1.0, while a classifier that makes random predictions

would have an AUC of 0.5.

In a multiclass setting, the AUC is averaged over One-versus-All, and this average is not

possible to plot. However, the N classes One-Versus-All is possible to plot and is a good

illustration of the model’s performance for each different class.

4.7.5 Matthews Correlation Coefficient (MCC)

The Matthews Correlation Coefficient (hereafter «MCC») is a measure of the quality of

the classification and is particularly relevant in this multiclass classification problem. It

considers True Positives, False Positives, True Negatives and False Negatives and produces

only high scores if the prediction returns reasonable rates for all four of these measures.

MCC can therefore be described as a balanced measure that works well for imbalanced

class distributions.
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Matthews Correlation Coefficient
In a multi-class classification problem, the MCC has a generalised calculation for all

classes:

MCC =

∑
k

∑
l

∑
m CkkClm − CklCmk√∑

k(
∑

l Ckl)(
∑

k′|k′ ̸=k

∑
l′ Ck′l′)

√∑
k(
∑

l Clk)(
∑

k′|k′ ̸=k

∑
l′ Cl′k′)

(4.9)

Where:
∑

i Cik : Number of times class k truly occurred
∑

i Cki : Number of times class k was predicted
∑

k Ckk : Total number of samples correctly predicted
∑

i

∑
j Cij : Total number of samples

4.7.6 Multiclass Averaging

Moreover, in the multiclass classification setting, some evaluation metrics must be

individual, and while some of these measures have unique multiclass implementations,

most use micro, macro, or macro-weighted averaging.

Macro and Macro-Weighted Averaging Macro averaging uses multiple sets of binary

predictions, calculates the metric for each binary case, and averages the results in multiple

One-versus-All approaches. Formula 4.10 shows an example of how metric Precision Pr is

macro-averaged.

Prmacro =
Pr1 + Pr2 + . . .+ Prk

k
(4.10)

Where Pr1 is the precision calculated in a One-versus-All approach, which predicts either

one as the first class and the two others as zero. Macro averaging give all classes an equal

weight, which might not be realistic if there is a class imbalance (Vaughan, 2022). An

alternative to handling the class imbalance is to use macro-weighted averaging, where the

frequency of that class in the test data set calculates the weights.

Micro Averaging In micro averaging, the averaging is done with the entire data set as

an aggregated result, and just the metric is calculated, rather than averaging k metrics.
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Prmacro = k (4.10)

Where P r 1 is the precision calculated in a One-versus-All approach, which predicts either

one as the first class and the two others as zero. Macro averaging give all classes an equal

weight, which might not be realistic if there is a class imbalance (Vaughan, 2022). An

alternative to handling the class imbalance is to use macro-weighted averaging, where the

frequency of that class in the test data set calculates the weights.

Micro Averaging In micro averaging, the averaging is done with the entire data set as

an aggregated result, and just the metric is calculated, rather than averaging k metrics.
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Each case gets an equal weight in micro averaging, while each class has an equal weight

in macro averaging. Formula 4.11 shows an example of how metric Precision Pr is

micro-averaged.

Prmicro =
TP1 + TP2 + . . .+ TPk

(TP1 + TP2 + . . .+ TPk) + (FP1 + FP2 + . . .+ FPk)
(4.11)

Other Averaging Methods However, some metrics do not require multiclass averaging,

such as Accuracy and Kappa and MC. The standard averaging method works poorly for

other measures, such as the AUC.

4.7.6.1 Hand & Till AUC Averaging Hand and Till (2001) introduced a new

method that preserves insensitivity when there is an imbalanced class distribution to

compute a multiclass AUC more accurately. Unfortunately, this approach to ROC and

AUC does not make sense in a visual interpretation.

Hand & Till AUC Averaging
The Hand & Till averaging method uses a One-versus-One approach, where N pairs

of classifiers (i, j) are considered. The probability that a case belonging to class j

has a lower probability for class i than a random case belonging to class i is defined

as Â(i|j). Since Â(I|j) = Â(j|i), one can define Â(I, j) = 1
2
(Â(i|j) + Â(j|i)).

The overall AUC of a multiclass classifier is the average value Â(i, j) is given in

Formula 4.12.

AUC
Hand & Till

=
2

N(N − 1)

∑
i<j

Â(I, j) (4.12)
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5 Data and Modeling

5.1 Data

5.1.1 Credit Rating Updates on Corporate Bonds

The credit rating updates on the corporate bonds are retrieved from Ratings Monitor in

Refinitiv Workspace. The data set contains information on European and US bonds from

01.01.2002 to 16.09.2022, with ratings from Moody’s, Fitch, and Egan-Jones.

Each case in the data set is an update on a credit rating of a corporate bond. An update

can have one of three actions: (1) Affirmation, (2) Downgrade, or (3) Upgrade. The cases

contain information on the issuer, date, sector, previous rating, previous rating date, and

the bond’s duration (short- or long-term) and the issuer’s country (See Table X).

As the models require financial data, the data is limited to only include publicly listed

issuers. The data set contains bonds issued by listed companies in the following sectors:

Manufacturing, Service Company, Electric Power, Telephone, Transportation, Consumer

Goods and Gas Distribution (See Table 5.1). Issuers in sectors such as Banking and

Financial Services are excluded, as these issuers typically have other implications for their

credit ratings.

Table 5.1: Issuer’s sector distribution from the Analysed Data

Sector Frequency

Manufacturing 39.79%
Service Company 22.92%
Electric Power 12.55%
Energy Company 8.87%
Consumer Goods 6.92%
Telephone 3.91%
Transportation 3.87%
Gas Distribution 1.16%
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5.1.2 Financial Ratios and Returns

The financial data used for the features are retrieved from Refinitiv Workspace. The credit

ratings’ data set, financial ratios and returns were matched based on the Equity Reuters

Instrument Code. The financial ratios are gathered by trailing the previous quarter of

the date of each credit rating update. Missing data were imputed with yearly data where

quarterly data was unavailable.

5.2 Model Specification

5.2.1 Target Selection

The selected target is a multinomial ordinal variable with three class instances: (1)

Downgrade, (2) Affirmation or (3) Upgrade. The target variable is imbalanced, as most

credit rating updates are Affirmations, as corporate credit ratings seldom change.

Upsampling Having an imbalanced target variable can be problematic. Upsampling

with different methods, such as Synthetic Minority Oversampling Technique (SMOTE)

and Random Over-Sampling Examples (ROSE), did not pose significant improvements.

Other performance measures, such as Cohen’s Kappa, are utilised to assess the imbalance.

5.2.2 Feature Selection

Availability and reliability were prioritised in the feature selection process. Occasionally,

some financial ratios in Refinitiv were deficient and could not be included. Qualitative and

quantitative methods and financial theory were applied in the feature selection process.

The features were selected using investigating the CRA rating methodologies and reviewing

the feature selection in similar research papers and financial theory. Initially, the data set

had 31 features based on the most used financial ratios, and in the final selection, there

were 11 complete features.

A thorough analysis of the assessment methods by the CRAs was conducted. CRAs use

different ratios and weighting of factors depending on the issuer’s sector. The data set in

this thesis comprises mainly manufacturing, service, and electric power companies, with

39.79%, 22.92% and 12.55%, respectively (See Table 5.1). The compound of sectors in the

data set subsequently shaped the final selection of variables.
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The literature review of similar research papers in Section 3 tells of success using historical

financial data as features in credit rating prediction. The features most frequently observed

in similar research were evaluated in the feature selection.

The most traditional way to assess credit risk is to calculate the solvency and liquidity

of a debtor (Berk and DeMarzo, 2019). Liquidity ratios like Current Ratio, Quick Ratio

and Operating Cash Flow are included to explain the corporation’s ability to pay debt

obligations and its safety margin. Long-Term Debt to Assets and Net Debt to EBITDA

are included as variables to explain the corporation’s solvency.

Table 5.2: Final Feature Selection

Feature Description

X1t=[0,1] Total Return2, Last Month
X1t=[0,3] Total Return, Trailing 3 Months
X1t=[0,6] Total Return, Trailing 6 Months
X4t=[0,12] Total Return, Trailing 12 Months
X5 EBIT3 Margin (%)
X6 Total Assets to Total Equity
X7 Retained Earnings to Assets
X8 CAPEX4 to Net Cash Flow from Operations
X9 Net Debt to EBITDA5

X10 Long-Term Debt to Total Assets
X11 Quick Ratio
X12 Current Ratio
X13 Price to Book

Return Features Unlike the papers discussed in the literature review in Section 3.5,

the model includes the total returns of the issuer’s stock as features. There are four

different trailing time horizons included as features. The trailing total return X t,T
[1,4] is

given by the stock price pt, and any dividends or share repurchases denoted as D, in a

trailing time from t to T :

X t,T
[1,4] =

(pT − pt) +D

pt
(5.1)

2Total Return: Trailing Total Return of Issuer’s Stock
3EBIT: Earnings Before Interest and Taxes
4CAPEX: Capital Expenditures
5EBITDA: Earnings Before Interest, Taxes, Depreciation, and Amortization
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The total return features incorporate price changes and any relevant dividends trailing

over a period for the last n months, where the chosen time horizon is n = 1, 3, 6 and 12

months to the date of the credit rating update.

5.2.3 XGBoost Algorithm

In the selection of the machine learning algorithm, multiple CART algorithms were tried.

The chosen machine learning algorithm is XGBoost, with Softmax as the objective function.

Other CART algorithms, besides XGBoost, did not stipulate desirable performance

measures. XGBoost’s interpretability is substantially lower than bagging and decision

trees, but its computational time is a lot better, as well as accuracy.

A fundamental assumption for including total return features is that stock returns can,

in some way, justify the absence of the qualitative assessment in the model. Recall the

Efficient Market Hypothesis, which states that all available information is incorporated

in stock returns. One of the main components of the structural models of Merton’s and

Moody’s KMV, introduced in Section 2.2.4.3, is stock return volatility. The stock price

picks up any indications of lower future income, like loss in market shares or possible

disruptions in the corporations’ market segment, which is like what CRAs review in their

qualitative assessments. For example, in the Enron and Wirecard scandal, the stock

market detected the downfall of these issuers before the CRAs.

Tuning of Hyperparameters The hyperparameters of the XGBoost machine learning

model are set before training. The hyperparameters provide a framework for the model

to make predictions and determine the overall behaviour of the model. Tuning these

hyperparameters is an essential step in the modelling, as it can significantly impact the

model’s performance.

The goal of the hyperparameter tuning is to find the combination of hyperparameters

that results in the best performance for the model. In this case, this measure uses Hand

& Till-weighted as an indicator of model performance. The tuning was done using the

ANOVA Racing Method to reduce computational processing time.
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Table 5.3: Tuning of Hyperparameters

Parameter Value Description

Max depth 6 Maximum depth of a tree. A higher value leads to
increased model complexity and may lead to overfitting.

Gamma 0 Minimum loss reduction is necessary for new leaf split in
the tree. Large values lead to more conservative models.

Column subsample 0.5385 Subsample ratio of columns for each split. Subsampling
occurs once every time a new split is evaluated.

Min. child weight 7 The constructing process will stop dividing if the tree
partition step yields a leaf node with the sum of instance
weight less than the minimum child weight, and a large
value leads to more conservative models.

Subsample 1 Subsample ratio of the training instances [0, 1].
Subsampling occurs once in every boosting iteration.

Estimators 1 646 The number of fitted boosted trees.

ETA 0.0862 Learning Rate [0, 1]. Lower values make boosting process
more conservative but more robust against overfitting.
Low value utilises speed.

Early stopping 50 If the model does not improve for 50 consecutive
iterations, it will revert to the iteration with the best
AUC.

Features 7 The number of features will be randomly sampled at
each split in the tree.

5.2.4 Training, Test and Validation Sets

The final data set contains 30,375 complete cases. The data is split into training and test

data sets. The training data is further split into resampling folds set using the Bootstrap

technique, used as a validation set for tuning the hyperparameters. Separate training and

test sets reduce bias and decrease the chance of overfitting.

Stratification The data set has a high degree of class imbalance, as most credit rating

updates are Affirmations. The training and test split was done using stratification to

ensure that the test and train data were approximately equal. The stratification is done

on the target to ensure balance in the data splitting.
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6 Analysis and Results

We investigate credit rating updates using ML techniques while using the literature review

and event study to discuss our findings. One hypothesis is that the CRAs are slow in

updating a credit rating. Sections 2 and 3 examine other concerns, for example, client

pressure. The analysis aims to see if a ML model can identify any of these concerns.

Explainability is particularly relevant in this analysis, as it does not aim to find the ML

method with the highest accuracy – instead, see other studies in Appendix A2. Instead, the

model in this analysis aims to look at rating updates and use SHAP values for discussion.

The ML model is used as an explanatory model, with changes in the training data used

to train the model between the identified effects. When the model is retrained on new

data, the test and training data are filtered only to include cases that help explain the

identified effects. For example, when investigating the investor-paid revenue model, only

cases issued by E-J are included.

Table 6.1: Data Set Used in Analysis, Credit Rating Updates by Agency

Data Set Moody’s E-J Fitch

Training Data 12,134 8,158 10,004
Test Data 3,070 2,048 2,459

6.1 The Benchmarking Paradox of Credit Ratings

When evaluating predictive models, the factual truth is often established. The problem

with using models to predict or explain credit ratings is that the truth is benchmarked

on the truth of the CRAs, and the factual truth is unknown. We cannot compare the

predictive value to an observable and testable truth. With credit ratings, we must trust

the CRAs to provide the truth.

The hypothesis is that the CRAs’ truth occasionally deviates from the factual truth.

Established empirically by similar studies, as outlined in Section 3, the truth of CRAs is

occasionally biased caused by client pressure and agency problems. Consequently, the

models are trained and tested on potentially biased data, and it is impossible to validate

them unbiasedly. The estimated accuracy of the model is based on the truths of the CRAs,

and the accuracy could be closer or further from the actual unknown truth.
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6.2 Model Performance

The predictive ability of the machine learning model is assessed by examining a confusion

matrix and the ROC curves. The model is trained on the training data set before it is

evaluated on a separate test data set. The test data set is only used for assessing the

model’s performance.

6.2.1 Confusion Matrix

The Confusion Matrix, in Table 6.2, displays the model’s predictions of the test data

set. The confusion matrix shows that the model predicts correctly in most cases. The

confusion between Affirmation and the two other classes, Upgrade and Downgrade, is

expected. While confusion between Upgrade and Downgrade, and vice versa, occurs in a

total of 46 cases, which indicates the model’s predictive ability is good.

Table 6.2: Confusion Matrix of Test Data

Truth
Downgrade Affirmation Upgrade

Downgrade 889 136 22
Affirmation 438 4,789 436

P
re

d
.

Upgrade 25 136 706

From the confusion matrix, several measures are calculated. Most of these measures

are calculated in a One-versus-All setting and averaged using Macro-weighted averaging.

Macro-weighted is chosen as it accounts for class imbalance by computing the average

of the One-versus-All binary metrics, weighted by the number of samples of each Action

class. See Table 6.3 for a complete overview of these test metrics.
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Table 6.3: Multiclass Measures

Measure Weighting Value

Accuracy 84.25%
Cohen’s Kappa 65.66%
Matthews Correlation Coefficient 66.67%
AUC Hand & Till 89.47%
F1 Score Macro 83.56%
Precision Macro 84.14%
Recall Macro 84.25%
Sensitivity Macro 84.25%
Specificity Macro 75.95%
Negative Predicted Value Macro 88.19%
Positive Predicted Value Macro 84.15%

The model obtains a test accuracy of 84.25% and a Training Accuracy of 86.08%. The

slight difference between the Accuracy of the train and test data set can be interpreted as

the model had little signs of overfitting. Overfitting is when the model fits the training

data well but cannot generalize and make accurate predictions for data it has not seen.

Alternative measures to the Accuracy are Cohen’s Kappa, which has a score of 65.66%,

and Matthews Correlation Coefficient has a score of 66.67%. Both measures are adjusted

for the imbalanced class distributions. Compared to similar machine learning studies on

credit rating prediction, listed in Appendix A2, the model’s Accuracy and Cohen’s Kappa

scores are significantly better.

6.2.1.1 Weighted Averaged Measures Since this is a multiclass classification

problem, the rest of the metrics used to assess the model performance are averaged

from three One-versus-All classifiers to a single metric using Macro-Weighted averaging.

Macro-Weighting is chosen as it is a good measure for an imbalanced class distribution.

The model’s Precision and Recall are 84.14% and 84.25%, respectively. The F1 score,

which is a weighted harmonic mean of Precision and Recall, obtains a score of 83.56%.

An F1 score of 83.56% can be considered good if it beats the model’s baseline score. The

baseline score of the model is if the model predicts one outcome for all cases. For example,

predicting the Affirmation class for all cases in the test set would give a baseline score

of 66.78%. Therefore, it can be concluded that the model predicts better than if it just

predicted Affirmation.
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Measure Weighting Value
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Specificity Macro 75.95%
Negative Predicted Value Macro 88.19%
Positive Predicted Value Macro 84.15%
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The macro-weighted average Sensitivity (True Positive Rate) and Specificity (True Negative

Rate) are 85.24% and 75.95%, respectively. The average Sensitivity is how good the model

is at correctly predicting Updates that belong to its class, while average Specificity is how

good the model is at predicting Updates that do not belongs to its class correctly. In other

words, the model is better at predicting True Negatives, meaning it is better at predicting

when something should not be classified as a Downgrade than when it should be classified

as a Downgrade.

6.2.1.2 ROC and AUC The ROC curves are plotted in Figure 6.1. Every curve

represents each One-versus-All classifier. The curves indicate that the model has the best

success in predicting Downgrades. Looking at the separate AUC for the ROC curves,

Downgrade has a value of 90.20%, beating Affirmation with 87.30% and Upgrade with

88.40%. The model average AUC of all classes is 89.47%, averaged using the Hand & Till

method.

The Specificity (True Positive Rate) and the Sensitivity (True Negative Rate) show signs

of most cases being Affirmation. The trained model predicts Affirmation in most cases,

see Figure 6.1, and consequently, the Sensitivity is high for Affirmation, and the Specificity

rate is high for the smaller classes, Downgrade and Upgrade. Thus, The ROC curve looks

different for the three classes.

Figure 6.1: ROC Curves, One-versus-All

The ROC curve plots can be used for diagnosing a model. To interpret a ROC curve, you

can look at the AUC supplementary to get an idea of how well the classifier is performing.
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The ROC curve plots can be used for diagnosing a model. To interpret a ROC curve, you

can look at the AUC supplementary to get an idea of how well the classifier is performing.
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It is possible to look at the curve itself to see how the TPR and TFR change as the

classification threshold are varied. A steep curve indicates that the classifier is able to

distinguish between positive and negative cases very well, while a shallow curve indicates

that the classifier is not able to distinguish between the two classes very well.

By looking at the ROC plots in Figure 6.1 the steepest curve is the Downgrade and

Upgrade, which lines up with the AUC scores for each class (Table 6.4). In this multiclass

classification, the three class instances are mutually exclusive. Therefore, each class have

a multinomial probability distribution, which means that there are N = 3 probabilities of

the prediction falling into each of the three classes sum up to one. Followingly, there is

no threshold for our classification, but the model rather picks the class with the highest

likelihood.

Table 6.4: Metrics per Class Instances

Downgrade Affirmation Upgrade

AUC 90.20% 87.30% 88.40%
Sensitivity 65.75% 94.63% 60.65%
Specificity 97.46% 65.26% 97.49%

In statistical hypotheses testing, a Type I Error is a wrongful rejection of an actual true

null hypothesis (a false positive). A Type II Error is the inability to reject a false null

hypothesis (a false negative). Type I Error, in this case, is updating a rating when it

should not have been updated, and Type II Error is not updating a rating when it should

have been.

Downgrade The AUC for Downgrade (versus-All) is 90.20%, which can be interpreted

as the model accurately predicts Downgrades. Sensitivity in the Downgrade is 65.75%,

and Specificity is 97.46%, meaning the models predict negatives almost perfectly. A false

positive for a Downgrade is when a credit rating update is predicted as a Downgrade when

it should have been an Upgrade or Affirmation. Receiving a false positive on a Downgrade

could be devastating for the issuer, especially if it causes the bond to be a fallen angel

(falling from investment to non-investment grade). Due to client pressure instigated by

the relationship between CRAs and bond issuers, it is crucial that CRAs do not issue a

downgrade under uncertainty. On the other hand, a false negative is not downgrading a

risky bond that should be downgraded.
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Defining the threshold for Downgrades is complicated. CRAs face a conflict of interest, as

bond issuers are interested in avoiding false positives, and investors and regulators are

interested in avoiding false negatives. Having a low threshold for false positives and giving

to the pressure of bond issuers, CRAs may lead to good client relationships and future

revenue. However, this increases the risk of scandals like the ones during the Financial

Crisis in 2008 or the Wirecard Scandal in 2020. The optimal threshold for downgrades

depends on the model user. CRAs operating with an investor-paid revenue model likely

uses a higher threshold for false negatives as they look out for the investors’ best interest.

Hypothetically, if regulatory authorities should use this model, the threshold for false

negatives will likely be high compared to CRAs.

Affirmation Affirmation (versus-All) differs from Upgrades and Downgrades, likely

because it is an extensively larger class, in terms of cases compared to the others.

Alternatively, an explanation could be that Affirmation lies ordered between Upgrades

and Downgrades. The AUC for Affirmation is 87.30% and has a lower degree of Specificity

than Upgrades and Downgrades at 65.26%. The high Sensitivity at 94.63% is caused by

the true cases being predominantly Affirmation.

Upgrade The AUC for Upgrade (versus-All) is slightly lower than for Downgrades, at

88.40%. The model does not predict Upgrades as well as Downgrades. The Sensitivity

is 60.65%, and the Specificity is 97.49%, meaning the model is better at predicting true

negatives. A false positive in the class Upgrade predicts an upgrade when it should not

be upgraded, and a false negative does not give an upgrade where it should have been

given. Again, regulatory bodies and investors are likely more critical of false positives

than issuers.
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6.3 Explanatory Results

6.3.1 Feature Importance

The feature importance plot is a graphical representation of the importance of each feature

in the model. The features are ranked in order from most important to least important.

The absolute values of the features in the plot are not meant for interpretation, since the

output is normalised, summing the total value to 1.

Based on previous studies and the CRAs’ rating methodologies, the initial assumption

was that financial ratios are the most important features when predicting credit ratings.

Surprisingly, when looking at the feature importance plot by Gain in Figure 6.2, the

most important feature in the model, when predicting, is X4 : Total Return 12 months,

followed by X3 : Total Return 6 months, meaning the return variables have a significant

predictive power, which, to our knowledge, has previously not been tested in machine

learning. When two features are highly correlated, the importance is undervalued, which

might suggest that the importance of the four total return features X1, X2, X3 and X4

are underestimated.

Figure 6.2: Feature Importance Plot, Measured using Gain

The hyperparameter tuning affects the features’ ranking, and the feature ranking is slightly

different when using Cover, Gain or Weight as the ranking measure. SHAP values also

6.3 Explanatory Results 63

6.3 Explanatory Results

6.3.1 Feature Importance

The feature importance plot is a graphical representation of the importance of each feature

in the model. The features are ranked in order from most important to least important.

The absolute values of the features in the plot are not meant for interpretation, since the

output is normalised, summing the total value to l.

Based on previous studies and the CRAs' rating methodologies, the initial assumption

was that financial ratios are the most important features when predicting credit ratings.

Surprisingly, when looking at the feature importance plot by Gain in Figure 6.2, the

most important feature in the model, when predicting, is X 4: Total Return 12 months ,

followed by X3 : Total Return 6 months , meaning the return variables have a significant

predictive power, which, to our knowledge, has previously not been tested in machine

learning. When two features are highly correlated, the importance is undervalued, which

might suggest that the importance of the four total return features X l , X 2 , X3 and X4

are underestimated.

Figure 6.2: Feature Importance Plot, Measured using Gain

Feature Importance Plot

X4: TotaIReturn12Mo

X3: TotaIReturn6Mo

X7: RetainedEarntoTotAssets

X2: TotaIReturn3Mo

X5: EBITMargin

X1: TotaIReturn1Mo

X9: NetDebtToEBITDA

X12: CurrentRatio

X13: PriceToBook

X6: TotAssetstoTotEq

X10: LTDebtofTotAssets

XB: CAPEXtoNetCashFlowOp

X11: QuickRatio

0.00 0.05 0.10 0.15
Gain

The hyperparameter tuning affects the features' ranking, and the feature ranking is slightly

different when using Cover, Gain or Weight as the ranking measure. SHAP values also
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provide a ranking of the features. We find it more meaningful to rank the features after

their contribution, and the rest of the analysis only uses SHAP values for feature ranking.

6.3.2 SHAP Values

The global SHAP values intuitively explain the models’ predictions and quantify the

magnitude and direction (positive or negative) of the features’ effect on a prediction. Each

feature has a SHAP value that measures the feature’s contribution to the prediction. Since

SHAP values can be used as local and global explanations, giving it a common foundation,

the following results will be discussed using SHAP values only.

The SHAP values are calculated using the Tree-Based SHAP algorithm, with Tree-

Dependence as feature perturbation. Test using the Interventional feature perturbation to

handle the independence assumption did not yield any significant differences in results. It

is important to note that the independence assumption is breached, according to Janzing

et al. (2019). However, in the context of finance, ensuring independence is difficult. SHAP

values are not approximated directly in a multiclass setting; instead, they are implemented

in a One-versus-All classifier approach.

The absolute mean of the SHAP values is displayed in Figure 6.3. The x-axis shows the

absolute mean of the SHAP value, which is the feature’s average impact on the model’s

output for a given class. The plot shows that for class Affirmation, X4:Total Return 12

months has a SHAP value of 0.2, while for class Downgrade it is 0.5 and 0.45 for Upgrade.

In all the One-versus-All classifiers, the SHAP values are greatest for X4: Total Return

12 months and most important for Downgrades and Upgrades. For Affirmation, features

X3: Total Return 6 months and X4: Total Return 12 months are equally important.

The individual absolute mean SHAP for each class are depicted in Figure 6.4 and

emphasizes the importance of the X4: Total Return 12 months feature, in all classes.

However, for Downgrades, the contribution is more substantial than the classes’ remaining

features.
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Figure 6.3: Plot of SHAP Values Summarised

Figure 6.4: Plot of SHAP Values

6.3 Explanatory Results 65

Figure 6.3: Plot of SHAP Values Summarised

X4: Tota1Returnl2Mo

X7: RetainedEarntoTotAssets

X9: NetDebtToEBITDA

XS: EBITMargin

X l 2 : CurrentRatio

X2: Tota1Return3Mo

X3: Tota1Return6Mo

X l l : QuickRatio

X l 3 : PriceToBook

X6: TotAssetstoTotEq

X l : TotalReturnlMo

X l 0 : LTDebtofTotAssets

XB: CAPEXtoNetCashFlowOp
Affirmation

- Downgrade
Upgrade

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
mean(ISHAP valuel)

Figure 6.4: Plot of SHAP Values

Downgrade (versus-All) Aff irmation (versus-All)

X4 X4 X4

XS X l 2 X7

X3 X3 X9

X7 Xll X l 2

X6 Xl XS

X2 X2 X2

X l 0 X7 Xll

X9 Xl3 Xl3

Xl3 X9 X3

X l 2 X6 X6

Xll XB Xl

Xl X l 0 XB

XB XS X l 0

0.0 0.2 0.4 0.0 0.2 0.4 0.0
mean(ISHAP valuel) mean(ISHAP valuel)

Upgrade (versus-All)

0.2 0.4
mean(ISHAP valuel)



66 6.4 Analysis

6.4 Analysis

6.4.1 Investigating the Total Return Features

Recall from Section 5.2.2 that the total stock return is included as a proxy for the

qualitative assessment by the CRAs. Moreover, as discussed in Section 3.1, this is justified

using the Efficient Market Hypothesis and the study of Easley et al. (2010). The EMH

states that a price of an asset contains all available information. However, this assumption

requires that public and private information is reflected in the total return of the issuer’s

stock, which is only valid in the strongest form of the EMH.

The discrepancy between a changing total stock return and an unchanged bond rating

could indicate delays caused by hesitation due to, for example, client pressure. However,

the delay could alternatively be caused by systematic reasons or an argument favouring

the CRAs as they are cautious and thorough in their assessments.

6.4.2 Investigating the Upgrades and Downgrades Classes

Feature X4: Total Return 12 months is the most important feature when predicting all

classes. Suppose the delay of up to 12 months is caused by the CRAs’ thorough diligence

work, which is systematically time-consuming. In that case, the feature should be equally

important in predicting Downgrades and Upgrades. All cases are summarised in three

beeswarm plots in Figures 6.5, 6.6 and 6.7 to investigate a possible difference between

classes.

The SHAP beeswarm summary plots combine the feature importance with their

contribution. Each point on the plot represents a specific case. Overlapping points

are jittered through the y-axis, allowing a better illustration of the SHAP values per

feature. The features are ordered according to importance on the y-axis, while the x-axis

represents the SHAP value. The colour of the point is the value of the feature, going from

low values in blue and high values in red. The cases should be roughly centred in the plot

since it shows the impact of including the feature versus not including the feature in the

model. The plot illustrates the relation between the SHAP values and the corresponding

feature value for all the cases labelled to a particular class.
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A positive SHAP value pushes the model above the expected output of the average model,

while a negative SHAP value pushes the model below the expected average model output.

The SHAP value is the average marginal contribution of a feature value across all possible

sets of features.

Figure 6.5: Plot of SHAP Beeswarm: Downgrade (versus-all)
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Figure 6.6: Plot of SHAP Beeswarm: Affirmation (versus-all)

Figure 6.7: Plot of SHAP Beeswarm: Upgrade (versus-all)

68 6.4 Analysis

Figure 6.6: Plot of SHAP Beeswarm: Affirmation (versus-all)

Affirmation (versus-All)

X4: Tota1Returnl2Mo

X l 2 : CurrentRatio

X3: Tota1Return6Mo

X l l : QuickRatio

X l : TotalReturnlMo

X2: Tota1Return3Mo

X7: RetainedEarntoTotAssets

X l 3 : PriceToBook

X9: NetDebtToEBITDA

X6: TotAssetstoTotEq

XB: CAPEXtoNetCashFlowOp

X l 0 : LTDebtofTotAssets

XS: EBITMargin

High

<!J
.2
<C>

.3
<C
<!J

L.L

Low
-2 -1 0 l

SHAP value (impact on model output)

Figure 6. 7: Plot of SHAP Beeswarm: Upgrade (versus-all)
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The SHAP Summary Plot for Downgrade (versus Affirmation and Upgrade) in Figure

6.5 shows that low feature values for Total Returns (X1, X2, X3 and X4), X5: EBIT

Margin, X12: Current Ratio, and high feature values of X7: Retained Earnings to Assets,

X9: Net debt to EBITDA and X11: Quick Ratio results in high SHAP values and means

it contributes in predicting a Downgrade.

The SHAP summary plot for Upgrade (versus Downgrade and Affirmation) in Figure 6.7

shows that when predicting an Upgrade, high feature values of Total Returns (X1, X2,

X3 and X4), X12: Current Ratio and X5: EBIT Margin yields negative SHAP values.

Low feature values of X7: Retained Earnings to Total Assets, X9: Net Debt to EBITDA

and X11: Quick Ratio yield positive SHAP values.

The plots indicate that negative values of X4: Total Return 12 months contribute more

to predicting a Downgrade than positive values of X4: Total Return 12 months predict an

Upgrade. This could be interpreted as the CRAs being more reluctant to upgrade a credit

rating when the total stock return is positive than downgrading a credit rating when the

total stock return is negative. This is contrary to the initial assumption that CRAs favour

issuers over investors.

Closer Look at the Trailing 12 Months Total Return Feature The feature

X4: Total Return 12 months is further investigated as it is the feature with the most

considerable contribution, measured as the highest absolute mean SHAP value.

SHAP dependence plots show the effect of a single feature on the model prediction, which

in this case, is the relationship between the feature X4 and the credit rating update action.

Each point denotes a single prediction, with the feature value on the x-axis, the SHAP

value on the y-axis, and the colour representing the feature value.

The plot is a global explanation method, as it considers all cases and plots them. To

investigate this relationship further, one must look at the dependence plots. The following

dependence scatter plots show the feature for Total Return, X1, X2, X3 and X4. The

plot shows the feature’s marginal effect on the model’s predicted outcome. The plots

identify any linear, monotonic, or more complex relationship effect between the feature

and the target.
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Figure 6.8: Plot of SHAP Dependence of Total Return Features
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The dependence plots in Figure 6.8 show that the feature X4: Total Return 12 months

can be described as a linear effect between the feature and the credit rating update action.

For Downgrades, the X4 feature has a negative linear relationship, meaning increasing

values for returns results in lower SHAP values, and vice versa for Upgrades. These linear

relationships are expected; however, these linear relationships are not as prominent in the

other Total Return features (X1, X2, X3).

The spurious non-linear relationship between the Total Return features (X1, X2, X3)

and the target variable could be because the total stock return trailing for a period less

than 12 months contains less information or that short total return periods are volatile.

6.4.3 Investigating Revenue Models

The ML model is trained on data from March 2016 to September 2022. Updates from

E-J were unavailable to gather from Refinitiv before this period. Two models are trained,

split by revenue models. The first model uses data from E-J only, representing the

investor-paid revenue model. The second model is trained with data from Moody’s and

Fitch, representing the issuer-paid revenue model.

The results are shown in Figure 6.9 and 6.10, with SHAP values for each corresponding

model. The SHAP values are low for the class Affirmation for both models, revealing that

the features poorly describe this class. However, this could be caused by relatively more

Downgrades and Upgrades in this limited period.

The most important feature in the issuer-paid revenue model is undoubtedly X4: Total

Return 12 months, and is similar to the previous model. Surprisingly, and perhaps the

most exciting discovery in the analysis is that the E-J model indicates that the X2:

Total Return 3 months contributes the most. The individual SHAP plots per class are in

Appendix A3.

The nine-month trailing total return difference between the two revenue models could

indicate that investor-paid revenue agencies, represented here by E-J, update their ratings

earlier. E-J updates its corporate ratings monthly using a quantitative screening method,

RCA, to identify possible changes in credit quality, recall Section 2.2.7. Not involving the

issuers allows for more frequent assessments, which could explain why their assessments

are closer to market fluctuations.
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Figure 6.9: Plot of SHAP Values for Egan-Jones

Figure 6.10: Plot of SHAP Values for Moody’s and Fitch
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Figure 6.9: Plot of SHAP Values for Egan-Jones
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Figure 6.10: Plot of SHAP Values for Moody's and Fitch
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6.4.4 Investigating The Wirecard Scandal of 2020

Interestingly, the data set contains cases of Wirecard’s credit rating updates, enabling

in-depth and exciting analysis of the months leading up to the bankruptcy in June 2020.

Moody’s downgraded Wirecard from investment grade (Baa3 ) to junk status (B3 ) on the

19th of June 2020. Moody’s was criticised for its slow action, as there were indications of

corporate decline prior to the unfolding of the scandal.

We create a synthetic case to investigate local SHAP values and determine if our model

would predict a Downgrade. The synthetic case is an Update on the 19th of May 2020, a

month prior to the actual case observed on the 19th of June 2020. The financial ratios are

equal because the cases are within the same quarter (Q2 2020). The only difference in

feature values is the trailing total return features, resembling a ceteris paribus analysis.

6.4.4.1 Case: 19th of June 2020 The model’s train data is filtered to include

Moody’s observations from 2016 to 2020. The local SHAP values of the Wirecard update

on the 19th of June 2020 are summarised in a force plot in Figure 6.11.

The force plot explains a single prediction of the model by illustrating how the features

contributed to the predictive outcome of a given case. The plot’s name derives from the

plot illustrating each feature’s force on the predicted output.

Figure 6.11: Plot of SHAP Force - Class: Affirmation

The model predicts that this case belongs to the Downgrade class with a 94% probability,

which is a true positive, as the bond was downgraded on the 19th of June 2020. The

predicted probability for class Affirmation and Upgrade is 9% and 1%, respectively. The

base value for Downgrade is 50.65%, which is equal to the class probability in a feature-less

model. In other words, the base value is the average of all the model’s predicted outputs.

The base value for Affirmation is 76.91% and 51.69% for Upgrade.
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The model predicts that this case belongs to the Downgrade class with a 94% probability,

which is a true positive, as the bond was downgraded on the 19th of June 2020. The

predicted probability for class Affirmation and Upgrade is 9% and l%, respectively. The

base value for Downgrade is 50.65%, which is equal to the class probability in a feature-less

model. In other words, the base value is the average of all the model's predicted outputs.

The base value for Affirmation is 76.91% and 51.69% for Upgrade.
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The force plot’s most important features for the given prediction are coloured blue or red.

Red denotes features that push toward the given class, while blue denotes features that

push in the other classes’ direction. The features with the most significant impact on the

score are located on the line between the red and blue scores, and the bars’ sizes illustrate

that feature’s total impact on the prediction.

Figure 6.12: Plot of SHAP Waterfall - Class: Downgrade

An alternative visualisation of 6.11, a waterfall plot, is shown in Figure 6.12. The waterfall

plot is an alternative visualisation to the force plot. The waterfall plot provides SHAP

values for all model features instead of the predicted probabilities. The features are ranked

in order of importance. The feature importance shows that feature X4: Total Return 12

months is the most important and pushes the case to the class Downgrade. Features X12

and X11 have positive SHAP values of 2.94 and 1.13, respectively, which contribute to

predicting the case to be a Downgrade. On the other hand, feature X9: Net DEBT to

EBITDA pushes the predicted case away from class Downgrade with a negative value of

1.07.
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An alternative visualisation of 6.11, a waterfall plot, is shown in Figure 6.12. The waterfall

plot is an alternative visualisation to the force plot. The waterfall plot provides SHAP

values for all model features instead of the predicted probabilities. The features are ranked

in order of importance. The feature importance shows that feature X4: Total Return 12

months is the most important and pushes the case to the class Downgrade. Features X12

and Xll have positive SHAP values of 2.94 and 1.13, respectively, which contribute to

predicting the case to be a Downgrade. On the other hand, feature X9: Net DEBT to

EBITDA pushes the predicted case away from class Downgrade with a negative value of

1.07.
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6.4.4.2 Synthetic Case: 19th of May 2020 A synthetic case has been created to

explore the claim that Moody’s should have downgraded the corporate bond on Wirecard

earlier. The synthetic case tests to see if Moody’s, according to the model, should have

downgraded Wirecard on the 19th of May 2020. The only difference between the case on

the 19th of June 2020 and the 19th of May 2020 is the Total Return features (X1, X2, X3

and X4).

Figure 6.13: Plot of SHAP Force, Synthetic Case - Class: Affirmation

The force plot in Figure 6.13 shows that the model’s predicted probability of the synthetic

case belonging to class Affirmation is 69%. The predicted probability for class Downgrade

and Upgrade is 50% and 1%, respectively. Accordingly, the model classifies the synthetic

case as Affirmation.

Even though the value of the features X2: Total Return Last 3 Months with -39.75%

and X1: Total Return Last 1 Month, with -31.51% are both negative, they force the case

to belong in the Affirmation case differently. The X2 feature pushes the case towards

the Affirmation, while the return for the last three months (shorter-term X3) pushes it

toward a Downgrade or Upgrade.

Figure 6.14: Plot of SHAP Force, Synthetic Case - Class: Downgrade

Figure 6.14 illustrates that the synthetic case has a 50% probability of belonging to class

Downgrade. The negative X4: Total Return Last 12 Months is pushing the case towards a

Downgrade, while X9: Net Debt to EBITDA is pushing it towards Affirmation or Upgrade.

The model predicts that the synthetic case belongs to classes Affirmation, Downgrade,

and Upgrade with a 69%, 50% and 1% probability, respectively. In conclusion, the ML
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Figure 6.14 illustrates that the synthetic case has a 50% probability of belonging to class

Downgrade. The negative X4: Total Return Last 12 Months is pushing the case towards a

Downgrade, while X9: Net Debt to EBITDA is pushing it towards Affirmation or Upgrade.

The model predicts that the synthetic case belongs to classes Affirmation, Downgrade,

and Upgrade with a 69%, 50% and l% probability, respectively. In conclusion, the ML
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model was aligned with Moody’s assessment. Remember that the data used to predict

the class is based on data from Moody’s, making it possible that the actual probabilities

were further or closer to the predicted values.

6.5 Discussion

The models have demonstrated the ability to predict the CRAs’ credit rating updates.

Remember, the models are just predicting the actions of the CRAs rather than the factual

truth of credit risk. It is essential to remember that not having complete insight into the

rating processes and the Benchmarking Paradox may not give fully reliable predictions.

6.5.1 Critics

6.5.1.1 Fallacies The McNamara fallacy, also known as the quantitative fallacy, states

that deciding solely on quantitative observations or metrics and ignoring all other possible

explanations leads to flawed reasoning Fischer (1970). We hope to have overcome this

fallacy by including other studies and thorough background analysis. However, it is worth

noting that most studies in this context field are primarily quantitative.

Goodhart’s law is an economics principle that when a measure becomes a target, it ceases

to be a good measure Goodhart (1984). In the context of credit ratings, when investors

begin using credit ratings as the decisionmaker in their investment decisions, issuers may

begin taking actions to raise their credit ratings, even if doing so is not in the best interests

in terms of issuers’ underlying business or financial health.

6.5.1.2 Machine Learning and Explainability Due to its accuracy, a machine

learning model was used to predict credit ratings. However, when using ML methods,

some explainability is lost. Moreover, Rosé et al. (2019) argue that ML models alone are

insufficient to use as explanatory models and require interdisciplinary understanding.

A potential pitfall with using an ML model as an explanatory model is what is typically

referred to as the «Rashomon effect». The effect occurs when different models with

the same performance typically have identical predictive performances and base their

predictions on entirely different effects and relations from the same data (Breiman, 2001).

76 6.5 Discussion

model was aligned with Moody's assessment. Remember that the data used to predict

the class is based on data from Moody's, making it possible that the actual probabilities

were further or closer to the predicted values.

6.5 Discussion

The models have demonstrated the ability to predict the CRAs' credit rating updates.

Remember, the models are just predicting the actions of the CRAs rather than the factual

t ruth of credit risk. It is essential to remember that not having complete insight into the

rating processes and the Benchmarking Paradox may not give fully reliable predictions.

6.5.1 Critics

6.5.1.1 Fallacies The McNamara fallacy, also known as the quantitative fallacy, states

that deciding solely on quantitative observations or metrics and ignoring all other possible

explanations leads to flawed reasoning Fischer (1970). We hope to have overcome this

fallacy by including other studies and thorough background analysis. However, it is worth

noting that most studies in this context field are primarily quantitative.

Goodhart's law is an economics principle that when a measure becomes a target, it ceases

to be a good measure Goodhart (1984). In the context of credit ratings, when investors

begin using credit ratings as the decisionmaker in their investment decisions, issuers may

begin taking actions to raise their credit ratings, even if doing so is not in the best interests

in terms of issuers' underlying business or financial health.

6.5.1.2 Machine Learning and Explainability Due to its accuracy, a machine

learning model was used to predict credit ratings. However, when using ML methods,

some explainability is lost. Moreover, Rose et al. (2019) argue that ML models alone are

insufficient to use as explanatory models and require interdisciplinary understanding.

A potential pitfall with using an ML model as an explanatory model is what is typically

referred to as the «Rashornon effect». The effect occurs when different models with

the same performance typically have identical predictive performances and base their

predictions on entirely different effects and relations from the same data (Breiman, 2001).



6.5 Discussion 77

6.5.1.3 SHAP Values Slack et al. (2019) criticises post-hoc explanation techniques

such as SHAP values and proves that these techniques can easily be modified intentionally

to create misleading interpretations. Kumar et al. (2020) criticises that SHAP values

«do not provide explanations which suit human-centric goals of explainability». We have

considered this criticism by conducting a thorough literature review and being cautious in

reaching conclusions from the SHAP values alone.

6.5.1.4 Garbage In, Garbage Out We use financial ratios as features in the ML

model. However, this requires the financial ratio to be reliable and correct. If the model

were to be used by an analyst to predict rating actions, it is essential to remember the

Garbage in, garbage out problem. As observed in the Wirecard scandal, the main problem

was the incorrect accounting numbers approved by auditors at Ernst & Young. The ML

cannot detect any inaccurate accounting data, and training on these data will produce

inaccurate results. In the case of Wirecard, the balance was falsely high by at least EUR

1.9 billion, and the model will consequently not assign a downgrade.

The trailing total return features were included to reduce reliance on financial ratios to

detect any indications of decline that financial data cannot explain. However, it is not

unproblematic to use these features, Even though the total return indicates the market

consensus, some extreme cases can cause falsely low or high stock returns. For instance,

in January 2021, the GameStop stock rocketed overnight due to a short squeeze by social

media users and hedge funds. Despite years of financial losses and a record-breaking net

loss of USD 673 million (in 2019), the share price increased by 1500% over a period of

two weeks.

The SHAP dependence plot (6.8) in Section 6.4.3 explains that high values for the return

features contribute to predicting an upgrade. Due to the high SHAP value of the return

features, the 1500% increase in the GameStop stock would likely be predicted to be an

upgrade in our XGBoost model, despite declining financial ratios and no substantial

operational improvements.

To summarise, ML models alone cannot be used uncritically as the algorithm blindly

trusts the inputs, and deceptive inputs can cause deceptive and inaccurate predictions.
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6.5.2 Use Cases of the Thesis

We have used this XGBoost model to explain credit rating updates with SHAP values.

However, we have also demonstrated that it can be used in predicting the outcome of an

update using financial data and total returns with an 84.25% accuracy and an MCC of

66.67%.

An alternative application of our model is that institutional investors can use it (1) to

classify the bonds in their funds, (2) to be prepared to sell poorly performing bonds and

possible fallen angels before CRAs downgrade them. Moreover, our model and results

highlight the importance of the issuer’s total returns in bond performance and the model

can be used in local explanations to understand the mechanism of anomalies like the

Wirecard scandal and GameStop debacle.

6.5.3 Further Research

Including data from the most established CRA, S&P, could yield more accurate results in

further research. Due to licensing limitations, we could not collect historic rating action

from S&P; therefore, both the methodology and ratings from S&P are excluded from the

data set.

We utilised the feature results from the study of Yang et al. (2020), which uses Principal

Component Analysis and added four more variables with surprisingly high importance,

meaning there could be other unconsidered features with even higher importance. For

further research, we suggest that an extensive set of potential features are collected and

then use a Principal Component Analysis to pick the best-performing features in model

accuracy.

Furthermore, we suggest that the same ML model could be applied to sector-specific data

sets if large sets are obtained. Our methods are not sector-based, unlike the methods

of the CRAs, and if sectors were considered in the model, it could potentially increase

accuracy. Alternatively, we suggest checking the accuracy and feature ranking between

the different sectors and seeing if there is a significant difference between the models.

We suggest bundling several models together with sector-specific features if there is a

difference in model performance across the different sector models.
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We did not consider rating watchlists and outlooks. A more precise analysis would include

these rating outlooks, but the data is not publicly available. We would also like to point

out that many investors are not following these outlooks as closely as they follow the

credit ratings. These outlooks are neither used where credit ratings are part of regulatory

risk assessment, such as in the regulations in Basel III. Also, looking at rating outlooks,

preferably in the same model, these outlooks contain much financial information, so

perhaps the lag would not be so sizeable.

Lastly, we suggest including advanced mechanisms of credit risk in the models, such as

predicting Credit Default Swap Spreads or including a momentum or an age feature.

There is some momentum in the credit rating’s direction, meaning an upgrade and vice

versa will often follow an upgrade. Additionally, there could be an age effect on the credit

ratings, meaning how long an issuer has had a specific rating is a factor for their current

rating. Both the momentum and the age feature should be considered in further research.
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7 Conclusion

Machine learning techniques for predicting credit rating updates performed well, we

obtained an accuracy of 84.4%. Additionally, local and global SHAP values proved to

be powerful tools for understanding machine learning models’ behaviour and providing

transparent and interpretable explanations of its predictions.

Training models on historical financial data make it possible to capture complex patterns

and relationships that may not be immediately apparent to analysts. The results of this

study demonstrate that machine learning models work well in predicting credit rating

updates, particularly when incorporating a wide range of relevant features and utilising

advanced techniques such as ensemble methods.

Local SHAP values explain the prediction for a specific instance, while global SHAP values

explain the model as a whole. Local SHAP values can be more helpful in understanding

why a particular prediction was made, like in the Wirecard case. While global SHAP

values can help identify patterns in the data and the overall behaviour of the model like

the Trailing 12 months Total Return feature importance.

We included four total return features as proxies to justify the absence of qualitative

assessments in the machine learning model and to see if different time horizons have

different importance in predictions. The SHAP values indicated that the trailing 12

months total return feature was most important when predicting credit rating updates,

providing tangible evidence of the allegations of CRAs trailing the market. Additionally,

we investigated the two revenue models, the investor and issuer-paid model, to see if there

were any differences in lag. The global SHAP values indicated that the total returns

trailing three months were most important to investor-paid, Egan-Jones, and the 12-month

returns were most important for issuer-paid agencies Moody’s and Fitch.

Lastly, we used SHAP values in local explanations to investigate the Wirecard Scandal

of 2020. The model predicted that the case belongs in the Downgrade class with a 94%

probability. Moreover, we were curious to see if our model could outperform Moody’s

assessment prior to Wirecard’s default in June 2020. Using the last quarter’s financial

data, we created a synthetic case one month before the last case. Our model’s predicted

probability of the synthetic case belonging to class Affirmation is 69%. The predicted
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probability for class Downgrade and Upgrade is 50% and 1%, respectively, meaning our

model could not affirmatively predict a Downgrade before Moody’s. However, the results

provide some viability to our model.

Although, it is essential to note that the success of ML models in this context is highly

dependent on the quality and quantity of the data used for training and testing. In

order to achieve optimal performance, it was necessary to pre-process and clean the data

carefully and to pay attention to issues such as class imbalance and overfitting.

Overall, using machine learning in credit rating prediction can significantly enhance the

efficiency and effectiveness of credit risk analysis, and this study provides valuable insights

into the design and implementation of such models. Further research could explore using

additional data sources and machine learning techniques and integrate these models into

real-world credit risk management systems.
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«There are two superpowers in the world today, in my opinion.
There’s the United States, and there’s Moody’s Bond Rating

Service. The United States can destroy you by dropping bombs,
and Moody’s can destroy you by downgrading your bonds. And

believe me, it’s not clear sometimes who’s more powerful.»

Pulitzer Prize winning-journalist Thomas Friedman, February 1996
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Appendix

A1 Moody’s Methodology

Figure A1.1: Assessment of Moody’s Methodology

Sector Weight
Manufacturing

Revenue 20% EBIT Margin 5% Debt/EBITDA 10%
RCF/Net Debt 10%
FCF/Debt 5%
EBITA/Interest Expense 10%

Service Company

Revenue 10% EBIT/Interest Expense 15%
RCF/Net Debt 15%
Debt/EBITDA 15%

Revenue 25% Debt/EBITDA 10%
CFO/Debt 10%
Pharmaceutical Cash Cov. Of debt 5%

Revenue 10% EBIT Margin 10% Debt/EBITDA 15%
RCF/Net Debt 10%
EBIT/Interest Expense 10%

Revenue 15% Debt/EBITDA 25%
(EBITDA-CAPEX)/Int.Exp 20%

Telephone
Revenue 12,50% Revenue Trend and Margin Sustainability 10% Debt/EBITDA 15%

RCF/Debt 10%
(EBITDA-CAPEX)/Interest Expense 10%

Energy Company
EBITDA 15% EBITDA/Interest Expense 10%
Property, Plant and Equipment 10% Debt/EBITDA 20%

FFO- Maintenance CAPEX/Distribution 10%
Consumer Goods

Revenue 20% EBIT Margin 10% Debt/EBITDA 10%
RCF/Net Debt 7,50%
EBITA/Interest Expense 7,50%

Transportation
Revenue 15% EBIT Margin 10% Debt/EBITDA 15%

RCF/Net Debt 10%
(FFO+ Interest Expense)/Interest Expense 10%

Gas Distribution
Adjusted Interest Coverage Ratio 10%
Net Debt/Fixed Assets 12,50%
FFO/Net Debt 12,50%
RCF/Net Debt 5%
Min. Debt Service Coverage Ratio 15%
Average Debt Service Coverage Ratio 15%
Concession Life Coverage Ratio 10%

Pharmaceuticals 

Gaming

Media

10% 40%

10%

25%

45

35%

15% 45%

Retail

25%

10% 10%

35%

20% 10% 25%

15% 10%

25% 40%

12,50% 10% 35%

Scale Profitability and effiency Leverage and coverage
20% 35%5%
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Figure A l . l : Assessment of Moody's Methodology

Sector We ht Scale Profitabili and effien Levera e and covera e
Manufacturin 20% 5% 35%

Revenue 20% EBITMargin 5% DebVEBITDA 10%
RCF/Net Debt 10%
FCF/Debt 5%
EBITA/Interest Ex ense 10%

Service Com an
Retail 10% 45

Revenue 10% EBIT/Interest Expense 15%
RCF/Net Debt 15%
DebVEBITDA 15%

Phannaceut:icals 25% 25%
Revenue 25% DebVEBITDA 10%

CFO/Debt 10%
Pharmaceutical Cash Cov. Of debt 5%

Garni 10% 10% 35%
Revenue 10% EBITMargin 10% DebVEBITDA 15%

RCF/Net Debt 10%
EBIT/Interest Ex ense 10%

Media 15% 45%
Revenue 15% DebVEBITDA 25%

(EBITDA-CAPEX)/Int.Exp 20%

Tele hone 12,50% 10% 35%
Revenue 12,50% Revenue Trend and Margin Sustainability 10% DebVEBITDA 15%

RCF/Debt 10%
(EBITDA-CAPEX)/Interest Ex ense 10%

Ener Com an 25% 40%
EBITDA 15% EBITDA/Interest Expense 10%
Property, Plant and Equipment 10% DebVEBITDA 20%

FFO- Maintenance CAPEX/Distribution 10%
Consumer Goods 20% 10% 25%

Revenue 20% EBITMargin 10% DebVEBITDA 10%
RCF/Net Debt 7,50%
EBITA/Interest Expense 7,50%

Trans ortation 15% 10% 35%
Revenue 15% EBITMargin 10% DebVEBITDA 15%

RCF/Net Debt 10%
(FFO+ Interest Expense)/Interest Expense 10%

Gas Distribution 10% 40%
Adjusted Interest Coverage Ratio 10%
Net Debt/Fixed Assets 12,50%
FFO/Net Debt 12,50%
RCF/Net Debt 5%
Min. Debt Service Coverage Ratio 15%
Average Debt Service Coverage Ratio 15%
Concession Life Cove e Ratio 10%
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Table A2.1: Overview of Machine Learning Studies on Credit Ratings
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Figure A3.1: Plot of SHAP Values per Class: Egan-Jones

Figure A3.2: Plot of SHAP Values per Class: Moody’s and Fitch
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Figure A3.2: Plot of SHAP Values per Class: Moody's and Fitch
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