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Abstract

In this thesis, we explore how sentiment from financial news could affect stock volatility.

Using financial data from the S&P100, volatility data from the Volatility Index (VIX)

and sentiment data collected with web scraping we make five different machine learning

models with different covariates. Analyzing the effect in both individual sectors and a

combination of all sectors, with a total of 240 different models.

In order to isolate the effect of sentiment, we create datasets with and without the

information and look at how the results differ. We found little proof that the additional

information from the news sentiment affects the result significantly. The reason for this

is complex, but we believe that using sentiment would be better suited for classification

of volatility direction. Our best attempts to predict volatility on index level came from

the LSTM model that got an R2 score of 43,6% using sentiment as a covariate. The best

result on an individual sector came from the random forest model that got an R2 score of

62.5% using sentiment to predict volatility in the energy sector. Although these scores

isolated are acceptable, for the majority of the models, those without sentiment data

performed as well, if not better.

Keywords – Machine learning, Sentiment Analysis, Volatility
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1 Introduction

Sentiment analysis is a task of natural language processing (NLP) that deals with the

detection and classification of emotions in text. The goal is to identify the polarity of a

given sentence (positive, negative, or neutral), and sometimes also the intensity of the

sentiment. The application of sentiment analysis has grown in recent years with the

increasing popularity of machine learning. One such application is in detecting stock

volatility. Market volatility can be affected by a number of factors, including public

sentiment around a company or product. By analyzing sentiment data, it may be possible

to predict future market movements more accurately.

As an example of how far NLP and machine learning has come, the paragraph above was in

its entirety generated by an AI from Writerly-AI (2022). Given only a selection of relevant

keywords (seen in figure A.1). Although this is an amusing use case, it speaks to the

multitude of different applications sentiment analysis can have. One of these applications,

as the AI mentioned, could be predicting stock volatility.

Vast amounts of news are published to the internet every day from a myriad of sources.

Processing information is a key element in our everyday life, but analyzing this amount of

data is impossible for any human to do alone. This is where sentiment analysis can be

applied. By understanding the emotional direction of thousands of articles automatically,

traders could use this information for economic gain. As of now, there exists an fair

amount of research om the relation between media sentiment and stock return (Schumaker

et al., 2012; Li et al., 2014b,a). A more limited area of research however, is on the relation

between media sentiment and market volatility. This is an interesting topic because of

the complexity in modern financial markets and the potential implications of automated

volatility predictions. With this brief introduction we present the research question of

this thesis.

Explore the relationship between volatility and news sentiment and evaluate its predicting

powers.

This thesis will look at 100,000 news headlines and 4 years of financial data in order to

explore this relationship between news sentiment and stock volatility. We will construct a
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daily sentiment score and use this information in conjunction with financial data and a

volatility index (VIX), in an attempt to make predictions of the volatility of the S&P100.

Additionally, we will look at how sentiment score affect volatility predictions, compared

to using the volatility index in an attempt to isolate the effect of sentiment. We will try

to make predictions of market volatility, in addition to the individual sectors.

We will first present previous work within the field of sentiment analysis and volatility

prediction. Secondly, we describe the theoretical foundation of sentiment analysis required

to analyze the effect of sentiment on stock volatility. Followed by the data used in our

analysis. The theory behind the machine learning models is separated in its own section.

This order of sections is chosen to reflect the step-wise approach of our study. Finally,

we present our findings, a discussion of relevant observations, limitations, and suggested

avenues for further work.
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2 Background

In this section we aim to cover the previous relevant literature within sentiment analysis,

volatility forecasting and the combination of the two. There is an abundance of research

conducted on both sentiment and volatility forecasting, but literature on the combination

is somewhat limited.

2.1 Volatility forecasting

An early, but fairly important paper was written by Brailsford and Faff (1996) comparing

different volatility forecasting techniques. They tested ten different forecasting models

to predict monthly stock market volatility in Australia. They found that no one model

could be considered the best, and that it was largely dependent on the choice of error

statistic. They favored a simple regression model, but suggested that an Auto Regressive

Conditional Heteroskedasticity (ARCH) class model (Engle, 1982) could be equally good,

if not slightly superior. Their final remark was however that "volatility forecasting is a

notoriously difficult task."

Another study by Brooks and Persand (2003) compared a set of different models for

forecasting volatility in order to re-examine the existing theories. The set included a

generalized ARCH (GARCH) model (Bollerslev, 1986), random walk (see e.g. Lawler

and Limic (2010)), Long Short Term Memory (Hochreiter and Schmidhuber, 1997) model

and different multivariate models. These were used to forecast volatility in the UK

financial market. They argued that the loss-function could have an over-riding effect on

the accuracy of the forecast. Illustrating that there is more to volatility forecasting than

the choice of model and error statistic.

In contrast to testing different models, Mittnik et al. (2015) looked at what variables

that affects the S&P500s volatility. Using variables from equity markets, macroeconomics,

foreign exchange markets and other risk measurements they selected 84 different predictors.

The selection included the Volatility Index (VIX) from the Chicago Board Options

Exchange, interest rates, inflation rates, bond rates and S&P500 returns. They identified

the VIX as being the best predictor for volatility.
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4 2.2 Forecasting with sentiment

2.2 Forecasting with sentiment

The choice of model will affect the results, but another important part is how to best

incorporate the available information. In 2011, Jospeh et al. tried to predict stock return

using investor sentiment. Utilizing Google search frequency of stock tickers as a proxy from

sentiment. They found that increased search intensity foreshadowed abnormal returns

and trading volumes (Joseph et al., 2011).

Further, Schumaker et al. (2012) investigated the relationship between the sentiment in

financial news articles and stock price movement using a combination of minute based

stock quotes and articles from Yahoo! Finance. They found that using sentiment in

predicting price direction gave a correct result in more than 50% of the time, showing

that sentiment analysis could be beneficial in stock predictions.

Several other studies have been conducted on this topic. Notably, a study done by Li et al.

(2014a) found using a combination of lexicon-based sentiment analysis (see chapter 3.3.5)

and Support Vector Regression (SVR) model (Vapnik, 1999a) that investors are affected

by public sentiment and firm-specific news articles. Giving them increased knowledge

that affect their investment decision making. Using data from news articles and financial

discussion forum posts, they concluded that stock markets are affected by public news.

Li et al. (2014b) tried to predict Hong Kong stock prices using a combination of

sentiment analysis and support vector machines. They used two different lexicons for their

sentiment analysis. Comparing their results with a Bag-of-words model which analyzed

the relationship between statistical patterns in headlines and stock prices. Their result

showed that the lexicon-based sentiment analysis outperformed the bag-of-words model

at individual stock, sector, and index level. Further, they found that models that used

polarity from headlines could not make useful stock predictions. Lastly, they found that

there was a minor difference when using different lexicons for their sentiment analysis.
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2.3 Volatility prediction with sentiment

One study by Antweiler and Frank (2004) analyzed the relationship between 1.5 million

posts from stock message boards and the 45 companies from Dow Jones Industrial Average.

They found that the stock messages helped predict the market volatility, and that the

effect on stock returns was statistically significant.

On the topic of predicting volatility with the added information of sentiment analysis,

Liu et al. (2017) compared a Recurring Neural Network (RNN) model (Rumelhart et al.,

1985) with and without the use of sentiment analysis. They used data from an online

stock forum to predict volatility in a Chinese market. They found that using sentiment

in the model boosted the accuracy of their classifications from 61.1% to 65.5%. They

mention that one drawback of their method is the trustability of messages from a stock

forum since there are no mechanisms to ensure the validity of the messages.

A more recent analysis was done by Deveikyte et al. (2020). They used data from almost 1

million financial news and tweets to predict stock volatility on the index of the 100 largest

companies on the London stock exchange. Using a lexicon-based model they extracted the

daily sentiment from the news and found that there was a strong and significant negative

correlation between positive news and volatility the following day. Further, they achieved

a classification accuracy of 63% when trying to predict volatility.
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3 Sentiment Analysis

In this chapter we will explain our choice of methodology regarding sentiment analysis.

First we explain how the sentiment data is collected. Followed by an explanation of the

applied steps in our sentiment analysis.

3.1 Scraping data

Web scraping is a technique for extracting data from the World Wide Web to save it for

later retrieval or further analysis (Zhao, 2017). The most common implementation of a

web scraper is the use of automated scripts that queries a web server for data. Usually

in the form of HTML (Mitchell, 2018). Automatic web scraping allows us to collect

thousands of news headlines automatically and save them to a desired format for further

use. We achieve this by sending a request to the page containing the news headlines.

A GET request uses the URL to specify the search parameters. This replicates what a

physical user would type in the URL bar in a browser. The web server returns the HTML

of the requested page, and we can use the Python package Beautiful Soup (Richardson,

2007) to structure the HTML in a way that enables extraction of the relevant data.

3.2 Natural Language Processing

Natural Language Processing (NLP) uses computer science in order to analyze, understand

and produce human language content (Hirschberg and Manning, 2015). It started as an

combination of artificial intelligence and linguistics in the 1950s (Nadkarni et al., 2011),

but has since evolved greatly with the modern advances within neural networks and large

scale data collection (Anastasopoulos et al., 2020). Sentiment analysis, a field within

NLP, is the task of extracting the opinions of authors about specific entities within a text

(Feldman, 2013).
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3.3 Sentiment analysis

An important activity for humans is to understand the emotions that are communicated

to us. It may be news, a report, a political speech, or a normal conversation. However,

when the volume of information increases it becomes challenging for us to process it all

(Appel et al., 2015). This is where we see a need of an automated process for extracting

sentiment. Further, Cambria et al. (2017) argues that the ability to automatically capture

the sentiments of the general public has become of increasing interest in the business

world because of the usability in financial market prediction. In order to extract the

sentiment trough automated analysis, several techniques have been developed. The two

most prominent methods being lexicon-based and machine learning based (Taboada et al.,

2011). Our preliminary analysis on the accuracy of the two different models showed us

that the lexicon-based approach was advantageous based on the data we have.

3.3.1 Pre-processing

An essential step in preparing the data for modeling is textual preprocessing (Chai,

2022). This is considered crucial in order to extract the most accurate results from the

sentiment analysis (Krouska et al., 2016). There are several different methods that needs

to be considered, but the most important techniques are tokenization, text normalization,

punctuation handling, removing stopwords, stemming and lemmatization (Chai, 2022).

3.3.2 Tokenization

Tokenization, in NLP, is the process of splitting sentences into pieces called tokens. These

are most often words, but can be any grouping of letters that form a useful semantic unit

for further processing (Christopher et al., 2008). For a computer, a sentence is just a long

string of characters. Tokenization splits this up into subunits that is suited for analysis.

This is one of the earliest steps in making text ready for text analysis (Grefenstette, 1999).

3.3.3 Stopwords

In order to reduce the noise in textual data, a list of predefined stopwords (e.g "the",

"because", "of") is filtered out. This is a popular procedure (Saif et al., 2014) and a
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standard component (Sarica and Luo, 2021) in preprocessing data for sentiment analysis.

3.3.4 Lemmatization

Lemmatization is the process of finding the normalized form of a word, and is an important

preprocessing step in NLP (Plisson et al., 2004). The method of lemmatization is simply

put to reverse a word to its base form. For example, the words "Driving", "Drives",

"Drove" should all be transformed to the normalized verb "Drive".

For all our preprocessing requirements we used the Python module Natural Language

Toolkit (Bird, 2006). This module contains functions for lemmatization, tokenization and

stop word removal.

3.3.5 Lexicon Based Sentiment Analysis

The lexicon-based approach is making use of a predefined dictionary where words are given

a semantic orientation (i.e, positive or negative) in the form of a numeric score (Taboada

et al., 2011). The main idea is that opinion words express positive (e.g., "perfect" and

"good") or negative sentiments (e.g., "awful" and "terrible"). Although most opinionated

words are adjectives or adverbs, there are also verbs and nouns that have their own

sentiment (Zhang et al., 2011). The sentiment of a sentence is calculated in the following

way. First the sentence is preprocessed and split into tokens. Then each token has its

sentiment score checked in the lexicon and given a sentiment score. When this is done

for all tokens, typically the average or sum of sentiment scores will produce the overall

sentiment for the sentence (Jurek et al., 2015).

3.3.6 Vader Sentiment Analysis

Valence Aware Dictionary and sEntiment Reasoner (VADER) is a lexicon and rule-based

analysis tool for determining the sentiment of text. In a benchmark comparison of lexicons

VADER was considered one of the best on multiple datasets with sentence level data

(Ribeiro et al., 2016). Additionally, Viegas et al. (2020) noted the VADER lexicon as the

best available off-the-shelf choice for sentiment analysis.
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4 Data

In this section we will explain our choice of data, data collection process, the necessary

pre-processing and present the final data. We have included essential graphs and figures

and additional plots can be found in the appendix.

4.1 Period of study

Our dataset contains observations from 1. January 2018 to 31. December 2021. The

period is split into 800 days of training from 01.01.2018 to 15.03.2021 and 200 days of

testing from 16.03.2021 to 31.12.2021. News sentiment is collected from web scraping

news headlines from the same time period. The choice of time span was motivated by

several factors. Firstly, we wanted data over several years to account for yearly cycles and

to reduce the impact of years with one-off events. Secondly, we wanted to include known

volatile periods to highlight changes in volatility. The selected time span includes both

large positive and large negative changes in the stock market. The largest are particularly

found during the Covid-19 pandemic. This might highlight changes in volatility but also

challenge the robustness of the models. Despite potential challenges, we chose to keep the

volatile periods because there are volatility shocks present in both training and testing

sets. Therefore, we believe these shocks will not compromise the results but rather be a

realistic representation of volatility. It is also worth mentioning that computational cost

was central in our decision not to increase the time span further than four years.

For the selected time span, we aim to aggregate data by day. This will be done for each of

the eleven sectors contained in the S&P100. Additionally, we will include one aggregation

across all sectors, resulting in a total of twelve datasets. This will ensure all our data

sources are combined on the same daily level. Another argument for this aggregation, is

to group the companies one might expect to have similar dependencies together. This

might create a less noisy volatility development. When presenting the volatility data, we

will explain how this is calculated.

g

4 Data

In this section we will explain our choice of data , data collection process, the necessary

pre-processing and present the final data. We have included essential graphs and figures

and additional plots can be found in the appendix.

4.1 Period of study

Our dataset contains observations from l. January 2018 to 31. December 2021. The

period is split into 800 days of training from 01.01.2018 to 15.03.2021 and 200 days of

testing from 16.03.2021 to 31.12.2021. News sentiment is collected from web scraping

news headlines from the same time period. The choice of time span was motivated by

several factors. Firstly, we wanted data over several years to account for yearly cycles and

to reduce the impact of years with one-off events. Secondly, we wanted to include known

volatile periods to highlight changes in volatility. The selected time span includes both

large positive and large negative changes in the stock market. The largest are particularly

found during the Covid-19 pandemic. This might highlight changes in volatility but also

challenge the robustness of the models. Despite potential challenges, we chose to keep the

volatile periods because there are volatility shocks present in both training and testing

sets. Therefore, we believe these shocks will not compromise the results but rather be a

realistic representation of volatility. It is also worth mentioning that computational cost

was central in our decision not to increase the time span further than four years.

For the selected time span, we aim to aggregate data by day. This will be done for each of

the eleven sectors contained in the S&PlO0. Additionally, we will include one aggregation

across all sectors, resulting in a total of twelve datasets. This will ensure all our data

sources are combined on the same daily level. Another argument for this aggregation, is

to group the companies one might expect to have similar dependencies together. This

might create a less noisy volatility development. When presenting the volatility data, we

will explain how this is calculated.



10 4.2 Sentiment data

4.2 Sentiment data

This section looks at the data collection, characteristics, and sentiment of the news

headlines used in this paper. The data for the sentiment analysis is gathered from

Investing.com. This is an investing website that collects news from several sources, mainly

Reuters in order to provide a collective of financial news to the public. We created an

automated web scraper in order to collect the needed data efficiently.

4.2.1 Pre-processing news headlines

In order to reduce noise and improve clarity in the headlines, the data needs to be

pre-processed. The steps include removing numbers and special characters (e.g., "3%",

"!", "?"), removing stopwords (e.g., "and", "that", "for"), tokenization and lemmatization.

The individual processes are described chapter 3.

Figure 4.1: Flowchart of pre-processing for sentiment analysis

4.2.2 Descriptive statistics

The dataset consist of 92 201 unique observations with an average length of 9.9 words per

headline.

We can look at a word cloud for the headlines. This represents the word frequency of

the top 100 most used words for our sentiment dataset. Some prominent words are large
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We can look at a word cloud for the headlines. This represents the word frequency of

the top 100 most used words for our sentiment dataset. Some prominent words are large
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companies such as Amazon and Apple, stock price movements such as fall and higher,

and topics such as revenue, CEO, and plan. This is illustrated in figure 4.2

Figure 4.2: Word cloud of the 100 most used words in the collected news headlines

4.2.3 Sentiment score

When calculating the sentiment score for each headline the Python package Vader (Hutto

and Gilbert, 2014) is utilized. We get an individual sentiment score for each headline

between -1 and 1 that represents the degree of the sentiment. -1 is very negative and

+1 is very positive. A lot of headlines get the score of 0 because they don’t convey any

sentiment (e.g., "Is Teladoc Health a Buy Under $100?"). When we filter out neutral

headlines we can look at the distribution of sentiment scores in figure 4.3.

For our analysis we will use the daily aggregated sentiment scores. Since the sentiment

scores are scaled from -1 to 1 we can sum the scores of each day to get a daily score.

News with a stronger sentiment will therefore count more than less impactful news. A

time-series plot of the sentiment scores is presented in figure 4.4.
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Figure 4.3: Histogram of sentiment scores, without neutral scores.

Figure 4.4: Time series of the daily sentiment scores

4.3 Financial data

There are arguably a large number of unknown and sometimes un-quantifiable covariates

affecting changes in volatility. In general, our main motivation behind the selected financial

covariates are their assumed predicting power and direct relevance to stock volatility

forecasting. Another important factor in our choice is daily availability. The combination

of these two criteria on a company level naturally limits the pool of variables to choose
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4.3 Financial data

There are arguably a large number of unknown and sometimes un-quantifiable covariates

affecting changes in volatility. In general, our main motivation behind the selected financial

covariates are their assumed predicting power and direct relevance to stock volatility

forecasting. Another important factor in our choice is daily availability. The combination

of these two criteria on a company level naturally limits the pool of variables to choose
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from. The financial data was extracted from Wharton Research Data Service as a merged

dataset from the Center of Research in Security Price (CRSP) and Compustat database.

Where the latter is Standard and Poor’s own database on financial and market statistics.

In the merged dataset Trading volume, open, close, high and low prices are retrieved from

CRSP. The remaining financial variables, Indicated annual dividend and Earnings per

share are retrieved from Compustat.

Open, close, high, and low prices for the stock are included to provide measures of the

changes in price during the day. High and low covariates provide information about

the range while open and close indicates the daily total change. To highlight the daily

development in price further we also calculate returns by subtracting the previous close

price from the current day’s close price.

Indicated annual dividend is an estimated dividend an investor can expect to receive from

the stock the coming year. Changes in this variable could change investors’ view of the

stock and thus the variable could be relevant to volatility predictions. Earnings per share

and trade volume daily can also be considered relevant to volatility as they indicate the

development in company performance as well as how the trade activity changes daily.

Earnings per share is calculated quarterly for each company and changes could be a signal

for investors to buy or sell shares.

Li et al. (2022) and Mittnik et al. (2015) both identified the VIX (Volatility Index) as

a good predictor for volatility. Therefore, we have chosen to include it, as it is also an

alternative measure of sentiment in the market. The index is constructed from real-time,

mid-quote prices in S&P500 put and call options. This measures an indication of the

investors view of the future. To represent the daily change in the VIX index we calculate

the difference between high and low. Our choice is based on careful testing in preliminary

work.

4.3.1 Volatility Measure

To predict volatility, we need to calculate a target variable. A traditional way of calculating

volatility is by using a GARCH model (Chong et al., 1999). To reduce complexity in

our study, we instead chose to calculate the volatility variable as the squared standard

deviation of the five-day previous returns. Despite a simpler calculation, one can argue
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that we will still be able to investigate news sentiment’s effect on volatility, as standard

deviation captures the variance in returns. This is similar to (Deveikyte et al., 2020),

who also chose to use a similar measure for volatility. Regardless of alternative ways to

calculate volatility, we will not pursue this further. The focus of this study is not to

find the best volatility measure, but to explore the relationship between sentiment and

volatility changes.

As mentioned earlier, data is divided into different datasets containing individual sectors

or a combination of all sectors. In a dataset, volatility is therefore the aggregated volatility

for the current sector and calculations are done separately for each dataset. Aggregating

the volatility is done for several reasons. First, the data leakage between covariates and

target variable is likely reduced. This potential data leakage is assumed to come from

returns, as it is used as a lagged covariate but also in the calculation of volatility. By first

calculating volatility for individual companies and then aggregating across the sector we

are reducing the potential data leakage. Secondly, we have several news articles for each

day. Therefore, the sentiment score is a daily aggregation, and not filtered by company.

This implies the news sentiment is mostly relevant to aggregated financial and volatility

data, and would maybe not be as relevant to individual companies. Further implications

this could entail is discussed in section 7.

When calculating volatility, we start by defining returns on day t for company s as yst.

Returns aggregated across all companies in a sector are adjusted for company market

share which is denoted as ws. The applied weights are calculated as the company’s fraction

of the total market capitalization. Where the latter is calculated as a company’s stock

price multiplied with number of shares. This calculation is done individually for each

dataset. Therefore, a company can have a different ws for its individual sector and the

dataset containing all sectors. Then, the sum of all returns for a single day t, adjusted for

market share is denoted as

yt =

s

ws yst.

Volatility for each company is given as v(yst). It is calculated as the empirical variance of

the five previous daily returns. This rolling window is moved throughout the time span.
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the five previous daily returns. This rolling window is moved throughout the time span.
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Finally, V (yt) is denoting the aggregated volatility from the sum of individual company

volatility v(yst) in time t. After calculating V (yt), the values are annualized. When

combining all steps, the volatility target variable is calculated as


V (yt) =


s

w2
s v(yst).

This calculation is not accounting for co-variation between the different companies. One

could argue companies within the same sectors have similar development in returns, which

needs to be accounted for. When creating correlation matrices of returns from different

companies, we find little to no correlation. An example of this can be seen in figure A.10

in the appendix. Thus, we assume there is no need to incorporate a co-variation term in

our volatility calculations. Despite this assumption, we are aware this is a source of error

in our study and one could argue the co-variance in asset returns could become larger

during large systematic risk events like covid-19. The final daily volatility development

can be seen in figure 4.5.

Figure 4.5: Time series of daily volatility aggregated on all companies
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To further prepare the data for machine learning the VIX, financial data and news

sentiment are combined by date. This removes all news sentiment from non-trading days,

as we have news sentiment for every day of the year but only financial data from trading

days. Therefore, an important assumption is that information from important news will

be represented over several days. While news mentioned only once will not effect the

volatility significantly. Based on this we consider the reduction in data as justified, but

will discuss implications this might have in section 7.

Throughout the data there are some companies that has stock returns significantly higher
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than the rest. This creates shocks for certain days, even after aggregating across sectors.

This can be caused by stock rallies or organizational changes. To reduce the magnitude of

these shocks one could consider windzorising the largest values, exchanging the largest

values with the 95th percentile. After careful testing we found the data best to be

unchanged. It seems the rest of the financial data is reflecting the changes to some degree

and the data is arguably most realistic when unmanipulated.

Several of the machine learning models used in this thesis are not able to incorporate the

sequential nature of time series and thus we are converting the time series into a dataset

suited for supervised learning. This is done by lagging the covariates in relation to the

volatility measure. Volatility at present time will therefore be matched with observations

of covariates at least one step earlier. All variables are lagged by one day, but returns,

news sentiment and VIX index are lagged by a whole week. This is to account for any

significantly lagged relationships between Volatility and news sentiment or VIX. The final

data contains a total of 34 variables in each of our 12 datasets. After pre-processing we

are left with the following base covariates.

Variable name Data type Description
datadate datetime64 Daily trading dates
sentiment_score float64 News Sentiment score
dvi float64 Indicated annual dividend
eps float64 Earnings per share
cshtrd float64 Trade volume daily
prccd float64 Close price for company
prchd float64 Highest price for company
prcld float64 Lowest price for company
prcod float64 Open price for company
returns float64 Daily returns for company
volatility float64 Volatility for company
tic Category Company tic identification
industry Category Industry identification
vix_change float64 Daily difference for VIX index

Table 4.1: Table showing all variables used in the analysis
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5 Machine Learning Methodology

In this section we will present the relevant machine learning theory used in this thesis.

First, we explain several key methodology considerations, followed by how we assess

prediction performance. Lastly, we briefly present the different models.

5.1 Supervised vs unsupervised machine learning

Supervised machine learning is using labeled data to try to find a relationship between the

dependent and independent variables, and then to make predictions based on new data

(Burkov, 2019). Unsupervised learning does not need labeled data and tries to find unknown

structure and relationships in the data, typically by clustering observations. Supervised

learning is known for providing more accurate results but has a higher computational cost

than unsupervised learning.

We have chosen to use only supervised learning models when predicting volatility. This is

because our goal is to make predictions based on new data, and not to cluster or structure

the dataset. In addition, time series and sequential data is not suited for clustering

(Burkov, 2019). Our goal is also well defined and needs accurate results, indicating that

supervised learning is the correct approach to take in this study.

5.2 Regression vs classification

When creating supervised machine learning models, we need to decide if we want to solve

a classification problem or a regression problem. This is often decided by the type of data

available. Our data indicate that regression models are best suited, as we have almost

exclusively continuous data (James et al., 2013). It is still important to reflect on the

implications of using a regression model to predict volatility. A classification model is

classifying data into predefined categories while regression models are trying to predict

an exact value (James et al., 2013). This might make the model less likely to make very

accurate predictions as volatility is affected by several unknown factors. Despite this

potential implication, we want to explore news sentiment’s relationship to volatility as a

regression problem and will treat the data as time series.
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5.3 Train-test split

In supervised machine learning, models need data to be trained upon. To be able to

determine if a model is memorizing the data or learning trends and structures, we need

separate and unseen data to verify if our predictions are accurate (James et al., 2013).

Therefore, a separation of training and testing data is essential when building supervised

learning models. The main motivation for the data split is to prevent overfitting and

to be able to evaluate predictions with an unbiased true value (James et al., 2013). We

have chosen to split our data into 80% training data and 20% test data, as this is widely

considered a good practice (Hastie et al., 2009).

5.4 Overfitting

Overfitting is the concept of making a statistical model fit the training data too well.

(Burkov, 2019) As a result, it will be unable to make good prediction on data that is

not the training data. Thus, defeating its purpose. This means that the model has

mistakenly captured too much statistical noise from the dataset as part of the underlying

data structure. This creates a more complex model than needed and the model is less

generalized when presented with unseen data (Burkov, 2019). To counter overfitting it is

possible to apply several different techniques.

Adding more training data can give the statistical model more opportunities to capture

the true underlying structure of the data. This technique is heavily dependent on the

quality of the data added and has to be applied with caution (Hastie et al., 2009). If

the additional data is not relevant, the new data could instead provide more noise to the

model and increase overfitting further (James et al., 2013).

Regularization is a technique for reducing the impact each feature has on the model and

thus moderate learning. It applies penalties to the input values which is regulating how

much influence individual features can have. This limits the variance in the model and

reduces the impact of irrelevant features on the model (Burkov, 2019). Some regularization

techniques apply penalties that can shrink the feature value to zero, thus removing the

feature from the model. The lasso (L1) regularization technique is an example of this.

Alternatively, Ridge regularization can shrink the value down, but never entirely remove

18 5.3 Train-test split

5.3 Train-test split

In supervised machine learning, models need data to be trained upon. To be able to

determine if a model is memorizing the data or learning trends and structures, we need

separate and unseen data to verify if our predictions are accurate (Jarnes et al., 2013).

Therefore, a separation of training and testing data is essential when building supervised

learning models. The main motivation for the data split is to prevent overfitting and

to be able to evaluate predictions with an unbiased true value (James et al., 2013). We

have chosen to split our data into 80% training data and 20% test data, as this is widely

considered a good practice (Hastie et al., 2009).

5.4 Overfitting

Overfitting is the concept of making a statistical model fit the training data too well.

(Burkov, 2019) As a result, it will be unable to make good prediction on data that is

not the training data . Thus, defeating its purpose. This means that the model has

mistakenly captured too much statistical noise from the dataset as part of the underlying

data structure. This creates a more complex model than needed and the model is less

generalized when presented with unseen data (Burkov, 2019). To counter overfitting it is

possible to apply several different techniques.

Adding more training data can give the statistical model more opportunities to capture

the true underlying structure of the data . This technique is heavily dependent on the

quality of the data added and has to be applied with caution (Hastie et al., 2009). If

the additional data is not relevant, the new data could instead provide more noise to the

model and increase overfitting further (James et al., 2013).

Regularization is a technique for reducing the impact each feature has on the model and

thus moderate learning. It applies penalties to the input values which is regulating how

much influence individual features can have. This limits the variance in the model and

reduces the impact of irrelevant features on the model (Burkov, 2019). Some regularization

techniques apply penalties that can shrink the feature value to zero, thus removing the

feature from the model. The lasso (Ll) regularization technique is an example of this.

Alternatively, Ridge regularization can shrink the value down, but never entirely remove



5.5 Scaling data 19

the feature from impacting the model (Burkov, 2019). Ridge (L2) regularization is mainly

used in this study.

Feature Selection is the process of reducing the number of features in a model. This is done

to reduce the complexity of the model and to allow the model to learn a more dominant

trend in the data. The training data is used to find the most impactful features and

remove the irrelevant or insignificant features. This method highly impacts the variance –

bias trade off when evaluating the model. Which can be described as the trade off between

the variation in predictions and the accuracy of predictions. (Burkov, 2019).

Ensemble algorithms create a set of the training data and train individual models with

individual predictions. The predictions are then aggregated to find the average outcome.

This aggregated result often provides a better reflection of the trends and structures in

the data. (Géron, 2019). Bagging, boosting, and decision trees are some common types of

ensemble methods, and these are often used to reduce variance in datasets which contain

significant noise

Stopping the model early is a way to reduce overfitting (Géron, 2019). This method aims

to reduce the amount of training done to prevent the model from modeling noise in the

dataset. The reduction in training time will also increase the risk of underfitting the

model. Thus, to make good predictions it is important to find a balance between giving

the model enough time to learn trends and structure, while not overfitting the data.

5.5 Scaling data

Hastie et al. (2009) explains how several machine learning models uses distance based

algorithms during their fitting process. Therefore, we need to scale the data and we

apply a min-max scaler to all our covariates. This is also known as normalizing the data.

Another key step in scaling is to keep the training and test scales separate. This prevents

data leakage between training and out of sample data (Hastie et al., 2009). Lastly, to have

a real-world interpretation of our results we are also preforming descaling of predictions

with the same scaler.
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5.6 Validation set

Validation data is a subset of the training data. It is used to tune hyperparameters in

models and to choose a learning algorithm (James et al., 2013). This is done by using the

validation set to evaluate predictions and then adjust the model configuration. Gradually

the search can find the hyperparameters and learning algorithm that produces the best

predictions. This allows us to keep the test data separate and unseen while also creating

a better model (Géron, 2019).

5.7 Walk Forward Validation

For time series data, the current value may be dependent on previous values. Walk

forward validation can be used to account for the order and dependencies between the

observations and also ensure no data leakage from future observations. This means the

models are trained several times with new data as it becomes available. For the current

time-step, the model is provided with previous values when making the prediction for

the next time-step. The method used is an anchored walk forward validation (Carta

et al., 2021). This provides us an increasing amount of data in the training set, as we

move though time. For each iteration in the training stage the model is validated to find

the best hyperparameters. Overall, this form of validation creates tuned models while

preventing data leakage from future observations.

5.8 Assessing performance

During the training of the model, the model is usually given a performance measure to

use as the optimization metric. In regression models the same metric is then used when

calculating the difference between the predicted and the actual value in the test set. Mean

squared error (MSE), mean absolute error (MAE) and R2 score are common metrics when

calculating the performance of regression models (James et al., 2013). However, MSE

and MAE will return scale dependent values. In order to compare forecast accuracy on

different scales Mean Absolute Scaled Error (MASE) is a preferred option. Hyndman and

Koehler (2006) suggested that MASE should be used as the standard way to compare the

accuracy of different time-series forecasts and was further supported by Franses (2016).
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For predictions one step ahead the MASE is often <1, but increasing the prediction

horizon will lead to MASE values generally >1. Hyndman (2006) proposed the following

method for calculating MASE. A scaled error at time t is defined as:

qt =
et

1
n−1

n
i=2 |Yi − Yi−1|

,

where Yi is the naïve predicted value. The error term e from the chosen prediction method

is scaled based on the mean absolute error of a naïve method applied to the testing data

(the denominator in the equation). The MASE is then simply

MASE = mean(|qt|).

Another metric used to assess the performance in prediction models is the R2 score. The

metric describe how much of the variance in the predicted result is derived from the input

variables (Miles, 2005). The scale is generally from 0 to 1 where an R2 score of 1 would

indicate that all variability could be explained by the input variables. It is often presented

as a percentage.

5.9 Ridge Regression

Ridge regression is a type of multiple linear regression model that is well suited to handle

multicollinearity in data (McDonald, 2009). It is developed from a standard least squared

error model but includes a regularization term. This enables the model to apply penalty

weights to the covariates and thus also function as a feature selection (James et al., 2013).

Ridge regression is broadly studied and is a model that is well suited to handle biased

data, because of its self-regulating term (McDonald, 2009).

The penalty term, λ, must be tuned and set manually. When λ increases the magnitude

of the coefficients is reduced and further reducing the impact the coefficients have on the

model. In the ridge regression fitting procedure, the model aims to minimize (James et al.,

2013)

n
i=1


yi − β0 −

p
j=1

βjxij
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+ λ

p
j=1

β2
j ,
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where, the first term is identical to ordinary least square, while the last term is the L2

regularizing term. yi is the i-th row for the dependent variable and xij denotes the i-th

row and j-th column of the input matrix X. β is estimated from the sample during the

minimization process.

5.10 Support Vector Regression

Support vector regression (SVR) is based on the principle of separating observations

with a hyperplane, and is built from the classification model support vector machines

(Burkov, 2019). Regression problems are not necessarily linearly separable and to handle

this, the model creates linear regressions in a higher dimensional space. This is done by

implementing kernel-functions to the cost-function optimization (Vapnik, 1999b). This

dimensional transformation is called the kernel trick and is what allows the model to learn

nonlinear relationships.

The fitting procedure of SVR is minimizing the error from the observations to a regression

line, similar to normal linear regression. The difference comes from the margin, also called

support vector, which is added. Observations within the support vectors are acceptable

errors and the linear optimization problem is given by Vapnik (1999b) as

minimize
1

2
∥w∥2 + C

n
i=1

(ξi + ξ∗1) ,

subject to:

yi − ⟨w, xi⟩ − b ⩽ ϵ + ξi,

⟨w, xi⟩ + b − yi ⩽ ϵ+ ξ∗i ,

ξi, ξ∗i ⩾ 0

where, ξi and ξ∗i are slack variables indicating the maximum and minimum of slack from

the acceptable error limit. These makes the constraints less strict and prevents infeasible

constraints when no perfect linear line exist. ⟨w, xi⟩ denotes the dot product in the space

of input patterns and ϵ denotes the limit for acceptable error. The constant C reflects the

relationship between the flatness of the line and what amount of deviation larger than ϵ is

22 5.10 Support Vector Regression

where, the first term is identical to ordinary least square, while the last term is the 12

regularizing term. Yi is the i-th row for the dependent variable and X i j denotes the i-th

row and j-th column of the input matrix X. j3is estimated from the sample during the

minimization process.

5.10 Support Vector Regression

Support vector regression (SVR) is based on the principle of separating observations

with a hyperplane, and is built from the classification model support vector machines

(Burkov, 2019). Regression problems are not necessarily linearly separable and to handle

this, the model creates linear regressions in a higher dimensional space. This is done by

implementing kernel-functions to the cost-function optimization (Vapnik, 1999b). This

dimensional transformation is called the kernel trick and is what allows the model to learn

nonlinear relationships.

The fitting procedure of SVR is minimizing the error from the observations to a regression

line, similar to normal linear regression. The difference comes from the margin, also called

support vector, which is added. Observations within the support vectors are acceptable

errors and the linear optimization problem is given by Vapnik (1999b) as

. l
m i n i m i z e 2 llwll2+ c L ( i + n '

n

i = l

subject to:

where, i a n d ; are slack variables indicating the maximum and minimum of slack from

the acceptable error limit. These makes the constraints less strict and prevents infeasible

constraints when no perfect linear line exist. (w, xi) denotes the dot product in the space

of input patterns and e:denotes the limit for acceptable error. The constant C reflects the

relationship between the flatness of the line and what amount of deviation larger than e:is
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tolerated. In other words, it determines the distance between ϵ and ξi, ξ∗i .

To be able to make linear regressions of non-linear relationships we need to do a dimension

transformation of the input features. This is done by applying a kernel-function K(xi, xj).

Based on linear regression y = ax+ b, the non-linear support vector regression is given by

Vapnik (1999b) as

y =
n

i=1

(ai − a∗i ) ·K(xi, xj) + b,

where, K (xi, xj) is the kernel-function which takes the dot product ⟨xi, xj⟩ as input.

Because the problem is converted to a dual problem, (ai − a∗i ) is included as a lagrangian

multiplier. b denotes the constant in the regression. There are several types of kernel-

functions but the Gaussian radial bias function is widely used (James et al., 2013) and

is also the one used in our SVR models. This is largely because of its applicability and

because it creates an output similar to a Gaussian distribution (Ko and Lee, 2013). The

Gaussian radial bias function can be mathematically expressed as

K (xi, xj) = exp

−∥xi, xj∥2

α2


,

where, α2 is a manually selected smoothing parameter affecting the distribution of the

data in the kernel space. xi, xj is denoting the dot product of space of input patterns.

5.11 Random Forest regression

Random Forest regression is an ensemble method inspired by bagging in statistics. It

combines several models created from equal sized samples of the training data, with

a random sample of features included in each tree (Breiman, 2001). The combination

of these trees make up the "forest" of predictions, where the average prediction is the

final output. This is creating a self-regularizing model and thus limits overfitting on the

training data (Segal, 2004). The inherent random nature of the Random Forest algorithm

prevents a simple mathematical formulation but the algorithm can be described by the

following steps (Hastie et al., 2009):

For all values from b=1 to B, where B is the total number of trees, we draw a bootstrap

sample of size N from the training data. From this sample, we grow a random forest tree
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Tb, by recursively repeating the following three steps for each of the nodes in the tree.

i) Select m variables at random from total of p variables. This is done independently

at each node. ii) Find the split-point among the m variables that will produce the best

prediction. iii) Finally, we split the node into two daughter nodes. The output from the

forest of trees can be noted as Tb
B
1 . When the model is trained on the training data, the

prediction f̂B
rf (x) for a new observation x is given as

f̂B
rf (x) =

1

B

B
b=1

Tb(x),

where, B is the total number of trees and Tb(x) is an individual prediction from a single

tree. Random Forest regression always creates average predictions and therefore struggles

with extrapolation, meaning the method is not able to make predictions outside the value

range found in the training observations (Zhang et al., 2019). This does not necessarily

indicate poor performance in all cases but reduces the performance for problems involving

data with expanding value range.

Figure 5.1: Illustration of Random Forest structure (Amanoul et al., 2021)
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5.12 Extreme gradient boosted trees

Extreme gradient boosting (XgBoost) is an ensemble tree algorithm formalized by Chen

and Guestrin (2016). It was quickly known for its good performance in forecasting

competitions. The idea is to combine several weak learners in a decision tree to make a

stronger collection. Decision trees are built sequentially on the residuals of the previous

trees. Therefore, XgBoost does not explore every tree combination but instead creates

trees greedily. The performance of these trees are purposely boosted and then regularized

afterwards. This enables the model to identify variance not picked up by the previous

tree. Chen and Guestrin (2016) formulates the predictions ŷi as K additive functions

ŷi = φ(xi) =
K
k=1

fk(xi) fk ∈ F,

where fk corresponds to an individual tree n in the regression tree space F . ŷi is the

overall prediction across the entire set of trees. xi denotes the input matrix. To find the

function fk to create a tree, the following expression is minimized

L(φ) =

i

l(yi, ŷi) +

k

Ω(fk),

where, the first function l(ŷi, yi) is the loss function calculating the difference between the

predicted(ŷi) and the actual(yi) value. The Ω(fk) term at the end is a regularization term

and can, for a single tree f , be expressed as

Ω(f) = γT +
1

2
λ∥w∥2,

where, T is the total number of leaves and λ and γ are manually set. Like in ridge

regression, λ is part of the L2 regularization term and will apply penalties that effect the

weights of the covariates. γ is controlling the minimum loss function value required at a

node, to allow the tree to make a split. Further there are several hyperparameters that can

be tuned and learning rate, minimum child weight, tree dept and number of trees will

be tuned as part of a grid search. This will explore the most influential hyperparameters

and find the best model setup for our data. (Chen and Guestrin, 2016) A prediction of an
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XgBoost model is illustrated in figure 5.2.

Figure 5.2: Illustration of Extreme gradient boosting structure (Wang et al., 2019)

5.13 Recurrent Neural Networks

Recurrent neural networks (RNN) is a collective term for neural network models well

suited for time series and sequential data. They are different from other neural networks

as the flow of information is not only moving forward, but also back through time. This

provides the model with a memory where values from observations in previous time steps

can be remembered. This is a form of short-term memory in contrast to slowly changing

weights, which can be viewed as a form of long-term memory (Goodfellow et al., 2016).

A known challenge with RNN is the problem of vanishing- and exploding gradient

(Hochreiter, 1998). This is where the flow of error back through time moves exponentially

fast to zero or to infinity. One can interpret this as the previous information is either

empathized too greatly or the impact of the previous information is almost non-existing.

This can either make learning unstable, or make cost function improvements very hard

(Hochreiter and Schmidhuber, 1997).

5.13.1 Long Short Term Memory models

Long short-term memory (LSTM) method was created by Hochreiter and Schmidhuber

(1997) to improve the computational inefficiencies when preforming back propagation over
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considerable time intervals. It also handles the problem with vanishing and exploding

gradients though time. This is done by proposing three gated cells to the neuron and

Hochreiter and Schmidhuber (1997) formulates the different gated cells in an LSTM

neuron as 


ft

it

gt

ot




=




σ(Wf [xt, ht−1] + bf )

σ(Wi[xt, ht−1] + bi)

tanh(Wg[xt, ht−1] + bg)

σ(Wo[xt, ht−1] + bo)




,

where the forget gate ft decides what information should be used in the cell by having the

possibility to set old states to zero. This is done by a sigmoid function applying weights

to the previous cell state of either one or zero. Similarly, the input gate it controls input

values and is combined with the vector of previous cell updates gt, when updating the

internal state of the cell. Then, the state of a cell c in time t can be expressed as

ct = ft · ct−1 + it · gt.

The output gate ot contains what information is passed on and is combined with a tanh

layer to control the flow of information to the next cell (Hochreiter and Schmidhuber,

1997). Thus, the output values to the next cell can be formulated as:

ht = ot · tanh(ct).

Neural networks are known to be prone to overfitting during the training phase (Burkov,

2019). To handle this, we are exploring L1(Lasso) and L2(Ridge) regularization for the

the neuron layer kernel, bias, or output value. Adaptive Moment Estimation optimizer

(adam) will be used throughout all model combinations. Chandriah and Naraganahalli

(2021) found adam to work well with LSTM models. In addition, dropout rates between

10% and 50% are applied to further explore model regularization. This is done through a

grid search, where we also explore different combinations of learning rates and number of

neurons. The overall information flow in an LSTM cell is illustrated in Figure 5.3.
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Figure 5.3: Basic illustration of Long short term memory cell structure (Zhou et al.,
2022)
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6 Analysis

In this chapter we will look at the results from the analysis. Five different models have

been applied to the dataset, both on all sectors and on individual sector level. Further,

to highlight and isolate the effect of news sentiment and VIX index, we will look at the

model performance with and without these variables. All models have been given 800 days

of training data from 01.01.2018 to 15.03.2021 and 200 days of test data from 16.03.2021

to 31.12.2021. To present our findings, all models will be presented independently.

6.1 Ridge regression

Illustrated in table 6.1 are the combined results from the Ridge regression on all sectors.

The scoring metric is the R2 of the Ridge model predictions. It shows the score from the

different datasets. We observe a minor difference in the respective scenarios, where the

best performer is the one using VIX.

VIX&Sentiment w/o Sentiment&VIX w/Vix w/Sentiment
Total 40.5% 38.7% 41.4% 38.7%

Table 6.1: R-squared values for all sectors using Ridge regression

Further, we can look at how the model performs in predicting volatility in the different

sectors. Table 6.2 shows the R2 scores. We observe a major difference in the different

sectors. In order for an R2 score to be below zero for non-linear models, it needs to perform

poorer than a straight line. This is the case for the Financial, the Consumer Staples and

the Industrial sector. We see that the best results are from the Consumer Discretionary

and the Communication Cervices sector. Another observation is that inclusion or exclusion

of sentiment scores and the VIX index is a lot less impactful on the model performance,

than the choice of sector.

Looking at the mean absolute scaled error (MASE) from the model, the consumer staples

sector is, as expected, an outlier in terms of error margin. The ridge model is not able

to make any valuable predictions on this sector. We can also see that the variance of

the errors are low within each sector, but higher when comparing different sectors. We

observe that overall the MASE scores are consistent with the R2 scores.
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VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials -101,6 % -104,0 % -105,5 % -107,0 %
Communication Services 40,5 % 40,8 % 41,3 % 40,1 %
Consumer Discretionary 48,3 % 51,4 % 51,5 % 48,9 %
Consumer Staples -281,9 % -304,3 % -293,3 % -298,7 %
Energy 27,2 % 33,8 % 27,5 % 37,1 %
Health Care 2,3 % -1,0 % -6,0 % 8,8 %
Industrials -40,8 % -39,8 % -46,4 % -34,0 %
Information Technology 34,5 % 30,6 % 33,6 % 30,7 %
Materials -12,2 % 30,7 % 12,0 % 24,3 %
Real Estate 38,2 % 39,1 % 38,9 % 37,1 %
Utilities 38,4 % -5,4 % 38,5 % -14,6 %

Table 6.2: R-squared values for each sector using Ridge regression

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 4,92 4,95 4,95 5,01
Communication Services 1,79 1,89 1,86 1,82
Consumer Discretionary 1,52 1,43 1,43 1,50
Consumer Staples 5,22 5,44 5,34 5,38
Energy 2,29 2,14 2,31 2,05
Health Care 2,93 2,98 3,09 2,81
Industrials 3,33 3,32 3,42 3,24
Information Technology 1,89 2,02 1,91 2,02
Materials 3,51 2,51 2,96 2,72
Real Estate 1,78 1,72 1,63 1,86
Utilities 1,70 2,75 1,70 2,90

Table 6.3: MASE for each sector using Ridge regression

6.2 Support vector regression

In this section we will look at the results from the support vector regression (SVR).

Running the model on all sectors yields the result illustrated in table 6.4.

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Total 34.6% 35.5% 36.1% 32.1%

Table 6.4: R-squared values for all sectors using SVR

The main observation here is that the model using sentiment as the only external predictor

performs slightly worse than its counterparts. The model using the VIX preforms best,

followed by the model where both the VIX and news sentiment is removed. This could

indicate that SVR is not able to use news sentiment to make good predictions, but it is

able to find some useful information in the VIX index.

However, if we look at the individual sectors in table 6.5, we see a slightly different pattern.

We observe some cases where the best result are from the models that have excluded
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6.2 Support vector regression

In this section we will look at the results from the support vector regression (SYR).

Running the model on all sectors yields the result illustrated in table 6.4.

VIX&Sentiment w/ o Sentiment&VIX w/VIX w/Sentiment
Total 34.6% 35.5% 36.1% 32.1%

Table 6.4: R-squared values for all sectors using SYR

The main observation here is that the model using sentiment as the only external predictor

performs slightly worse than its counterparts. The model using the VIX preforms best,

followed by the model where both the VIX and news sentiment is removed. This could

indicate that SYR is not able to use news sentiment to make good predictions, but it is

able to find some useful information in the VIX index.

However, if we look at the individual sectors in table 6.5, we see a slightly different pattern.

We observe some cases where the best result are from the models that have excluded
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the VIX and sentiment scores, and other models that find both VIX index and news

sentiment useful. This indicates again that the choice of sector is more impactful than

news sentiment.

Further, the model still achieves the highest R2 score for the Energy sector and the scores

from Communication Services and utilities are somewhat solid. There are still several

models that get a negative R2 and subsequently does not satisfy any purpose. This reduces

the overall credibility of the SVR predictions.

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials -299,9 % -144,3 % -204,7 % -322,1 %
Communication Services 22,0 % 50,7 % 23,5 % 34,1 %
Consumer Discretionary -17,1 % 19,8 % 36,6 % -14,7 %
Consumer Staples -173,1 % -86,3 % -66,4 % -164,2 %
Energy 45,4 % 60,9 % 52,2 % 54,4 %
Health Care 18,7 % -7,6 % -4,5 % 3,7 %
Industrials -28,1 % -30,7 % -12,8 % -29,8 %
Information Technology 12,8 % 5,5 % 15,8 % 3,5 %
Materials -47,5 % 15,3 % -3,0 % -3,4 %
Real Estate 0,8 % 1,1 % 0,2 % 1,6 %
Utilities 20,6 % 42,9 % 30,8 % 34,4 %
Total 34,6 % 35,5 % 36,1 % 32,1 %

Table 6.5: R-squared values for each sector using SVR

Table 6.6 shows the MASE for each sector for each variant of the model. We observe the

same pattern as with ridge, namely that the model variants that got a low R2 score have

higher margins of error. Overall, it seems like SVR achieves reasonable predictions on the

Communications Service, Energy, and Utilities. The consistent performance of sectors

across models might indicate the covariates used are representing changes in volatility

better in these sectors.
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models that get a negative R2 and subsequently does not satisfy any purpose. This reduces

the overall credibility of the SYR predictions.

VIX&Sentiment w/ o Sentiment&VIX w/VIX w/Sentiment
Financials
Communication Services
Consumer Discretionary
Consumer Staples
Energy
Health Care
Industrials
Information Technology
Materials
Real Estate
Utilities
Total

-299,9 %
22,0 %
-17,1 %
-173,1 %
45,4 %
18,7 %
-28,1 %
12,8 %
-47,5 %
0,8 %
20,6 %
34,6 %

-144,3 %
50,7 %
19,8 %
-86,3 %
60,9 %
-7,6 %
-30,7 %
5,5 %
15,3 %
1,1 %
42,9 %
35,5 %

-204,7 %
23,5 %
36,6 %
-66,4 %
52,2 %
-4,5 %
-12,8 %
15,8 %
-3,0 %
0,2 %
30,8 %
36,1 %

-322,1 %
34,1 %
-14,7 %
-164,2 %
54,4 %
3,7 %
-29,8 %
3,5 %
-3,4 %
1,6 %
34,4 %
32,1 %

Table 6.5: R-squared values for each sector using SYR

Table 6.6 shows the MASE for each sector for each variant of the model. We observe the

same pattern as with ridge, namely that the model variants that got a low R2 score have

higher margins of error. Overall, it seems like SYR achieves reasonable predictions on the

Communications Service, Energy, and Utilities. The consistent performance of sectors

across models might indicate the covariates used are representing changes in volatility

better in these sectors.
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VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 7,25 5,58 6,32 7,42
Communication Services 1,90 1,90 1,89 2,20
Consumer Discretionary 2,02 1,95 1,87 2,00
Consumer Staples 4,37 3,25 3,09 4,14
Energy 2,01 1,56 1,80 1,75
Health Care 2,67 3,11 3,05 2,92
Industrials 3,18 3,23 2,91 3,23
Information Technology 2,43 2,68 2,36 2,63
Materials 4,41 3,02 3,37 3,62
Real Estate 1,74 1,77 1,79 1,72
Utilities 2,33 1,91 2,16 2,13
Total 2,07 2,13 2,13 2,19

Table 6.6: MASE for each sector using SVR

6.3 Random Forest

In this section we will presents the results from the Random Forest regression. When

running the model on all the sectors as a whole, we get the results in table 6.7.

VIX&Sentiment w/o VIX&Sentiment w/VIX w/Sentiment
Total 36.2% 40.6% 39.5% 36.8%

Table 6.7: R-squared values for all sectors using Random Forest regression

We see that the Random Forest model attain the best R2 score when neither the VIX

index nor the news sentiment is included. However, we observe in table 6.8 than the

Random Forest gets an R2 score of over 55% in the Communication Services, Energy,

Materials and Utilities sector for all variants. A significant improvement pointing in the

direction of Random Forestt outperforming ridge and SVM on individual sector level, but

not on the data as a whole. There is again some consistency in which sectors are the best

performers, but there are inconsistencies when the VIX index and news sentiment score

contributes to the best model.

The main observation when looking at the MASE scores from Random Forest is that it

generally does better on individual sector level than for the dataset in total. For several

sectors, the model seems to be able to make better predictions than SVR and ridge. There

is again no clear pattern in the performance of news sentiment and VIX index. Overall,

the results indicate that while the Random Forest model performed subpar on the total

dataset, its strength lies in predicting volatility in the individual sectors.
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6.4 XgBoost 33

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 4,0 % 6,6 % 1,6 % 6,1 %
Communication Services 57,2 % 58,2 % 58,1 % 57,1 %
Consumer Discretionary 36,8 % 49,1 % 41,5 % 42,1 %
Consumer Staples -43,4 % -39,9 % -45,5 % -41,8 %
Energy 62,5 % 62,3 % 62,4 % 62,5 %
Health Care 33,1 % 36,5 % 32,1 % 36,4 %
Industrials 35,4 % 37,4 % 35,9 % 36,8 %
Information Technology 41,9 % 48,4 % 41,5 % 43,6 %
Materials 61,7 % 61,7 % 61,4 % 61,6 %
Real Estate 34,2 % 37,7 % 33,7 % 36,2 %
Utilities 57,5 % 61,7 % 57,1 % 61,9 %
Total 36,2 % 40,6 % 39,5 % 36,8 %

Table 6.8: R-squared values for each sector using Random Forest regression

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 3,12 3,07 3,15 3,07
Communication Services 1,41 1,40 1,41 1,42
Consumer Discretionary 1,80 1,60 1,75 1,72
Consumer Staples 3,16 3,11 3,18 3,14
Energy 1,23 1,20 1,23 1,20
Health Care 2,30 2,23 2,32 2,24
Industrials 2,19 2,15 2,17 2,17
Information Technology 1,81 1,68 1,84 1,77
Materials 1,53 1,57 1,57 1,53
Real Estate 1,65 1,62 1,67 1,64
Utilities 1,59 1,39 1,59 1,42
Total 2,03 1,91 1,93 2,02

Table 6.9: MASE for each sector using Random Forest regression

6.4 XgBoost

Like the Random Forest model, XgBoost is tree-based. The similarity of these two models

should indicate that with optimal parameter tuning, the XgBoost could outperform the

Random Forest model. This does not seem to be the case and indicates that our choice

of tuning parameters are not optimal, reducing the credibility of XgBoost’s results. In

some cases we see that XgBoost, and Random Forest perform about the same, with the

Random Forest having a slightly better result. Most notably the two models get different

outcomes with regards to the predicting power of the different covariate combinations.

For the XgBoost model the variant with VIX gets the highest score with 34%, whereas

the Random Forest is able to produce slightly better overall results.
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VIX&Sentiment w/o VIX&Sentiment w/VIX w/Sentiment
Total 28,8% 27,3% 34,0% 30,6%

Table 6.10: R-squared values for all sectors using XgBoost

When looking at the individual sectors for XgBoost, we see observations in line with the

previous results. The same sectors seem to be more predictable than the others. It is

still the Energy sector with the exclusion of sentiment scores and the VIX that gets the

highest R2 score and the lowest MASE. However, when we look at the results on the total

dataset we see that the model using the VIX has the highest R2 score and the lowest

MASE. This could suggest that some models are better at utilizing news sentiment and

VIX index when predicting the market as a whole, rather than specific sectors.

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials -72,1% -83,5% -73,3% -89,9%
Communication Services 33,1% 28,3% 32,3% 30,2%
Consumer Discretionary 14,7% 33.7% 31,9% 17,5%
Consumer Staples -92,8% -149,0% -94,7% -87,4%
Energy 59,1% 62,3% 60,4% 60,8%
Health Care 14,7% 1,7% 11,9% 13,7%
Industrials 10,7% 5,5% -2,0% -1,4%
Information Technology 20,7% 37,7% 27,3% 26,2%
Materials 42,6% 60,0% 54,3% 39,2%
Real Estate 24,7% 26,1% 30,6% 24,1%
Utilities 44,7% 41,8% 33,8% 44,2%
Total 28,8% 27,3% 34,0% 30,6%

Table 6.11: R-squared values for each sector using XgBoost

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 4.42 4.66 4.47 4.80
Communication Services 1.85 1.97 1.85 1.88
Consumer Discretionary 1.98 1.81 1.83 1.99
Consumer Staples 3.68 4.18 3.70 3.64
Energy 1.35 1.33 1.33 1.33
Health Care 2.69 2.86 2.72 2.70
Industrials 2.65 2.72 2.83 2.82
Information Technology 2.28 1.98 2.18 2.16
Materials 2.04 1.48 1.65 2.19
Real Estate 2.07 1.96 1.85 2.03
Utilities 1.95 1.97 2.13 1.95
Total 2.31 2.27 2.10 2.24

Table 6.12: MASE for each sector using XgBoost
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6.5 LSTM

The LSTM model produces the best overall scores. The results are fairly similar for the

different model variants, but the model with sentiment, seen in table 6.13, stands out as

the one with the highest R2 score.

VIX&Sentiment w/o VIX&Sentiment w/VIX w/Sentiment
Total 33.8% 40.9% 38.6% 43.6%

Table 6.13: R-squared values for all sectors using LSTM

If we compare the results from LSTM in table 6.14 with the other models, we see that the

main improvement lies in the results using sentiment as a covariate. For some cases the

model using sentiment achieves the best score, but it is not a consistent trait. Further, for

the same dataset, the model variants with both VIX and news sentiment performs worse

than the covariates individually. This might indicate they create noise in the model when

combined together. Again, we find inconclusive results, but indications that the use of

sentiment has an effect on the predicted volatility.

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials -13,7 % -81,0 % -77,4 % -53,0 %
Communication Services 36,8 % 46,2 % 45,5 % 38,5 %
Consumer Discretionary 38,9 % 47,1 % 52,1 % 42,4 %
Consumer Staples -173,8 % -400,2 % -382,2 % -173,2 %
Energy 48,7 % 47,9 % 47,6 % 49,6 %
Health Care 29,0 % 22,3 % 31,6 % 10,5 %
Industrials -9,7 % -64,7 % -61,8 % -42,5 %
Information Technology 27,1 % 35,1 % 32,3 % 35,6 %
Materials 43,4 % 43,2 % 38,0 % 39,5 %
Real Estate 44,9 % 37,3 % 45,8 % 40,7 %
Utilities 41,2 % 24,2 % 37,6 % 29,2 %
Total 33,8 % 40,9 % 38,6 % 43,6 %

Table 6.14: R-squared values for each sector using LSTM

6.5 LSTM 35

6.5 LSTM

The LSTM model produces the best overall scores. The results are fairly similar for the

different model variants, but the model with sentiment, seen in table 6.13, stands out as

the one with the highest R2 score.

VIX&Sentiment w/ o VIX&Sentiment w / V I X w /Sentiment
Total 33.8% 40.9% 38.6% 43.6%

Table 6.13: R-squared values for all sectors using LSTM

If we compare the results from LSTM in table 6.14 with the other models, we see that the

main improvement lies in the results using sentiment as a covariate. For some cases the

model using sentiment achieves the best score, but it is not a consistent trait. Further, for

the same dataset, the model variants with both VIX and news sentiment performs worse

than the covariates individually. This might indicate they create noise in the model when

combined together. Again, we find inconclusive results, but indications that the use of

sentiment has an effect on the predicted volatility.

VIX&Sentiment w / o Sentiment&VIX w / V I X w /Sentiment
Financials -13,7 % -81,0 % -77,4 % -53,0 %
Communication Services 36,8 % 46,2 % 45,5 % 38,5 %
Consumer Discretionary 38,9 % 47,1 % 52,1 % 42,4 %
Consumer Staples -173,8% -400,2 % -382,2 % -173,2 %
Energy 48,7 % 47,9 % 47,6 % 49,6 %
Health Care 29,0 % 22,3 % 31,6 % 10,5 %
Industrials -9,7 % -64,7 % -61,8 % -42,5 %
Information Technology 27,1 % 35,1 % 32,3 % 35,6 %
Materials 43,4 % 43,2 % 38,0 % 39,5 %
Real Estate 44,9 % 37,3 % 45,8 % 40,7 %
Utilities 41,2 % 24,2 % 37,6 % 29,2 %
Total 33,8 % 40,9 % 38,6 % 43,6 %

Table 6.14: R-squared values for each sector using LSTM



36 6.6 Results Summary

VIX&Sentiment w/o Sentiment&VIX w/VIX w/Sentiment
Financials 3,62 4,65 4,59 4,18
Communication Services 1,87 1,78 1,76 1,85
Consumer Discretionary 1,77 1,61 1,49 1,70
Consumer Staples 4,11 5,90 5,86 4,25
Energy 1,82 1,79 1,79 1,79
Health Care 2,46 2,55 2,37 2,82
Industrials 2,88 3,61 3,55 3,31
Information Technology 2,10 1,87 1,94 1,83
Materials 2,11 2,11 2,33 2,31
Real Estate 1,67 1,92 1,63 1,77
Utilities 1,95 2,28 1,98 2,19
Total 1,81 1,82 1,92 1,74

Table 6.15: MASE for each sector using LSTM

6.6 Results Summary

Throughout the different configurations, there is little evidence news sentiment or VIX

index have better predicting power when predicting volatility. There are models where

the presence of news sentiment and VIX index improves the predictions and other models

where the predictions are worsened. Our results indicate model choice and sector filtration

has a significant impact on prediction performance and that the effect of VIX index and

news sentiment is ambiguous.

Figure 6.1 shows the prediction for each of the five models together with the volatility

target value. There are some similarities between the models and we observe that none of

them are able to make good predictions for the largest spike in volatility. Several models

are also predicting too large values for the less volatile days. Despite this, we observe a

high degree of correlation between the true value and our predictions. Figure A.2 to A.9

in the appendix illustrates this correlation.

Figure 6.1: Volatility predictions for all sectors using news sentiment
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An interesting observation is how close the predicted and true value correlate, even for

the worst models. 6.2 shows the predicted values and true values from an LSTM model

with both VIX index and sentiment score. For the most part, the graphs correlate fairly

well, but the predictions are shifted up. The predictions are made for the Financial sector.

R2 score is negative 13,7% but we can observe from the graph there is a fair degree of

correlation between the predicted and true value.

Figure 6.2: Time series of predicted and true value, using a LSTM model on the financial
sector

To summarize the model performance, we have plotted R2 score for all sectors from the

different modes. We observe that the highest single score came from using the LSTM

model with sentiment.

Figure 6.3: R2 scores on all sectors grouped by model
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7 Discussion

Throughout this thesis we have examined five different regression models that used

financial data, sentiment scores and VIX index in order to analyze how they predict

market volatility. For this next section, we will discuss the results with emphasis on

evaluating the relationships between volatility and news sentiment and its overall predicting

powers. Lastly, we will discuss the limitations of our approach.

7.1 Predicting power of sentiment

In order to evaluate the effect of sentiment on our volatility predictions we will need

to look at the difference between the models with exclusively financial data and the

models that also applied sentiment scores. The main findings from the analysis when

looking at the predicting power of sentiment alone indicate that there is a measurable

relation between volatility and market sentiment. However, we saw that the difference

in predicting volatility with or without sentiment was marginal overall. On one hand,

some of the models with sentiment as a covariate did yield the best results, and shows

how sentiment could be useful information in predicting volatility. On the other hand

the results were incongruous for different models. Underlining the fact that the results

was heavily dependent on the model used. It also shows that using sentiment scores is

challenging if the relation between market sentiment and volatility is not strong enough

for the models to use.

The analysis showed that the LSTM model attained the best results for predicting the

total market volatility. Therefore, we believe the results from this model will have slightly

higher credibility when evaluating the effect of sentiment. Using all sectors and adding

the sentiment variable returned a 43.6% R2 score. Comparing this with the other models

we saw that this was slightly better. This means the best model could use sentiment in

order to make better predictions. Nevertheless, it is still a single observation, and it is

difficult to claim a final conclusion based on this result alone. On the basis of this we

would argue that sentiment does affect the volatility of the market somewhat, but the

total effect is challenging to isolate, and a direct and causal link is hard to prove.

Given that our best results were achieved on individual sectors, it is befitting that we
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Given that our best results were achieved on individual sectors, it is befitting that we
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discuss the effects of sentiment on this level as well. The findings on sector level are more

varying and has a greater results span. This indicate that each sector has independent

patterns in volatility and consequently have varying prediction results. On one side,

Financial and Consumer Staples are two sectors that got unusable results on all models

regardless of covariates. So, for these sectors it is hard to tell if sentiment had any effect.

On the other side we had the energy sector proving to be the one with the most promising

results. Attaining at best an R2 score of around 60% and higher with Random Forest and

XgBoost for covariate combinations. This could be the result from a well build model,

or it could be from the volatility in the energy sector being easier to predict, regardless

of the model. An interesting point nonetheless is how different the results are based on

the model applied. Despite what Li et al. (2014a) found about how the stock market is

affected by news, our results indicate the amount of influence news has is likely highly

dependent on the type of sector it is used in.

In several model combinations the worst results were achieved when including both VIX

index and news sentiment. This is interesting and raises the question on how quantifiable

sentiment is and whether one can include different measures of sentiment. The calculation

of the sentiment score stems for a sentiment analysis, while the VIX index is calculated

based on put and call options in the market. The latter is arguably an indirect measure of

sentiment, and one could expect these two variables to be highly correlated. Nonetheless,

our results indicate this might not be the case. One explanation could be that investors

in the option market are motivated by other factors than the journalists producing the

sentiment in news articles. Therefore, these covariates might create noise when combined.

Another explanation could be that there is some lag associated with their relationship

and only some models are able to detect this lagged structure. Lastly, there might be

some sectors where options or news sentiment is not as important as other factors, thus

creating noise when included.

The calculation of volatility could be a source of error in itself. It is hard to determine

which type of calculation is best suited as there is no universal way to calculate volatility.

GARCH models and other alternative ways to model volatility could be better suited for

this task. We argue our fairly simple calculation could reduce the model complexity and

therefore make it easier to isolate the effect of news sentiment, but this assumption might
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not hold. Either way, it would be desirable to investigate the effect choice of volatility

calculation has on the predicting power of news sentiment.

It is hard to say which way the relationship between news sentiment and volatility is

moving. We cannot determine if the volatility is dependent on the news sentiment, or if the

sentiment is dependent on the volatility. Our observations are on a daily level but there

might be additional insights accessible if intraday data was available. Regardless, it is

likely there exists a dual relationship where sentiment can affect volatility, but also where

changes in volatility can affect or at least reinforce the changes in sentiment. Nonetheless,

our results suggest sentiment from news headlines hardly is the driving factor for changes

in volatility.

Another important discussion topic is how relevant and accurate the news are to the

investors. Our news articles are collected through web-scraping from American financial

papers and we are thus indirectly assuming this will cover the information sources of the

investors owning shares in S&P100 companies. This might not be the case and these

investors might get their information from other sources in other languages. One could

argue the selected news sources are covering the majority of investors because S&P100 are

American companies. If this is not the case, then our prediction might benefit from news

from a broader array of financial papers. This is again a trade-off between including a

broad specter of news and the trustworthiness of the news, where we chose to prioritize the

latter. Liu et al. (2017) and Deveikyte et al. (2020) both found that sentiment improved

their predictions of volatility but both studies are conducted with sentiment from social

media in addition to news sentiment. This could indicate it might be beneficial to include

a broader specter of news sentiment, as well as sentiment from alternative sources like

social media.

The relevance of our news to specific companies is likely to be highly variable. We have

prioritized to include all the financial news available during the time period, and have not

verified or filtered the data based on relevance to the S&P100 companies. This is also

the reason we are aggregating data to individual sectors and a combination of all sectors.

The assumption is based on our sentiment being most relevant to market level changes.

Despite these precautions, the question of whether the news are relevant is still present.

Irrelevant news might create significant noise in our data and filtering news based on
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relevance might be an key step when using sentiment to predicting stock volatility.

7.2 Economic application of volatility

Regardless of the effect of news sentiment on volatility, the models’ ability to predict

volatility can still be of use. Investment strategies such as At-The-Money straddle (Goltz

and Lai, 2009), which is profitable when the volatility is high regardless of price direction,

could be utilized with a good prediction model. Another opportunity is being able to

predict risk. In contrast to Antweiler and Frank (2004) and Schumaker et al. (2012), we

are trying to predict the volatility value directly and not classifying direction or categories

of volatility. It might be the case that sentiment in volatility predictions is best utilized

when provided with some leeway within a category. Investors does not necessary need a

specific volatility but might benefit from knowing direction or what interval the prediction

falls within. Specifically, investors could hedge investments or adjust their portfolio based

on this information.

Some of the error in our predictions originates from the models overshooting the target

value. When plotting predictions and true value together we observe two similar graphs.

The correlation is between 60%-70% (seen in A.2 to A.9 for all models, but the predictions

are usually shifted compared to the target value. This could once again indicate the

predictions should be classified into bins or categories if they are going to have any

practical value for an investor.

7.3 Limitations

The main limiting factor when working with sentiment is the accuracy one can obtain

when working with large amount of data. Noise in the data will have an effect on the

accuracy. Since not all news articles are going to be equally important in measuring

market sentiment. The accuracy will vary, and the overall sentiment for one trading day

has the potential to be skewed by headlines that are less relevant for the true sentiment.

Another drawback is the fact that not all sentiment data is incorporated in the models

since the markets are closed on weekends and holidays. This causes all headlines that

happen on those days to be exempted from the model and the information they hold will
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not have any effect on the predictions. As mentioned above, the sentiment scores are

not filtered on company or sector, but an overall representation of the market sentiment.

This would indicate that sectors that follow the overall market closer will have better

prediction models associated with them.

An additional limiting factor might be the use of data during the Covid-19 pandemic.

Our assumption might not hold, and these volatile periods could maybe compromise the

results despite volatile shocks in both train and test data. One could maybe argue these

volatile periods are abnormal systematic risk events, and no model will be able to predict

these accurately. Therefore, it might be beneficial to use a time span without known

systematic risk events, creating shocks in the market.

In general, we found it challenging to determine which model was best at predicting

volatility. This is in line with Brailsford and Faff (1996) who could not firmly decide

on a model being superior to the others. Because of this, it is challenging to test the

relevance of sentiment when there are existing issues related to predicting volatility with

only financial data. Therefore, our ambiguous results present a need to explore additional

volatility predictors. Poon and Granger (2003) suggests dollar rate as a potential predictor

while Christiansen et al. (2012) suggests that all financial variables which has a sensible

economic interpretation could be good predictors. Further, he is especially emphasizing

variables capturing time-varying risk. Thus, interest rate differentials in foreign exchange

and valuation ratios for equities are potential good candidates. These additional variables

might contribute to build more consistent and robust models, on which the effect of news

sentiment can better be observed.

From our results we observe XgBoost returning weak results compared to the other models.

This is likely because of sub-optimal hyperparameter tuning, which can lead to overfitting

and poor generalization. In line with the guidelines of Chen and Guestrin (2016) we

explored tuning of learning rate, minimum child weight, tree dept and number of trees

through a grid search. Despite this, our results indicate it could be beneficial to tune

additional parameters. One could also argue some of this inferior performance originates

from XgBoost’s problems with extrapolation. This is still not likely, as Random Forest

has the same issues but is without the significant drop in performance.
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8 Conclusion

In this thesis we have analyzed the relationship between news sentiment and market

volatility. Using five different machine learning models to make volatility predictions. By

using different covariates, we attempted to isolate the effect of news sentiment on these

predictions.

Our results indicate that news sentiment shows tendencies to contribute positively when

predicting volatility. There are some contradictory results, and we cannot give a conclusive

verdict. Model selection and type of industry seems to have a larger effect than including

news sentiment or VIX index. Based on our analysis we would claim that isolating the

effect of sentiment on volatility is especially hard because of the complex factors it is

dependent on.

Lastly, we would say that although we were not able to replicate the result of previous

studies, or make consistent improved models by including sentiment, we are convinced

that market sentiment has an effect on volatility.

8.1 Further work

For further analysis on this subject, it might be beneficial to take a more granulated

approach. Looking at the intraday volatility and collecting sentiment from more specific

or filtered news headlines could be interesting. We think that this could give a more

nuanced view on the relationship between news sentiment and stock volatility. Further,

collecting data from a broader range of news and social media sources could also make

the sentiment score more representative.

Another way to improve the sentiment analysis would be to create a custom financial

lexicon that would have more focus on words that could affect volatility. This is a major

task but could definitely improve the accuracy of the sentiment.

To make more consistent and robust models it might be advantageous to include macro

economic variables to count for external market factors. Interest rates, inflation rates and

employment rates could all potentially affect the volatility of a market.

Lastly, we would also urge future work to consider news bias in their sentiment analysis.
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44 8.1 Further work

The internet provides an overload of information and to be able to find a combination of

representative and un-biased news will be important. A potential solution could be to

collect information from sources with different political viewpoints or sources from other

countries.
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A Additional figures

Figure A.1: AI generated introduction

49

Appendix

A Additional figures

() Blog Paragraph Assist

Outputs

Topic or niche

Introduction ol thesis on sentiment analysis uuu
Keywords

machine learning, sentiment analysis, stock volatility, market volatilityy,marketvolatilityarket volatility

Translation TranslationTranslatioTransl

Sentiment analysis has been used for a long time to determine the
emotional state of a text. In recent years, machine learning has been used
to improve the accuracy of sentiment analysis. Several studies have shown
that sentiment analysis can be used to predict stock volatility and market
volatility. The goal of this thesis is to explore the use of machine learning
for sentiment analysis with respect to stock volatility and market volatility.
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Sentiment analysis is a task of natural language processing {NLP) that
deals with the detection and classification of emotions in text. The goal is
to iden1ify the polarity of a given sentence (positive, negative, or neutral),
and sometimes also the intensity of the sentiment. The application of
sentiment analysis has grown in recent years with the increasing
popularity of machine learning. One such application is in detecting stock
volatility. Market volatility can be affected by a number of factors,
including public sentiment around a company or product. By analyzing
sentiment data, it may be possible to predict future market movements
more accurately.
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Figure A.2: Correlation of predictions with all covariates

Figure A.3: Time series plot of predictions from all models with all covariates
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Figure A.4: Correlation of predictions with new sentiment only

Figure A.5: Time series plot of predictions from all models with news sentiment only
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Figure A.6: Correlation of predictions with VIX index only

Figure A.7: Time series plot of predictions from all models with VIX index only
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Figure A.8: Correlation of predictions without VIX index and sentiment

Figure A.9: Time series plot of predictions from all models without VIX index and
sentiment
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Figure A.10: Correlation matrix of individual companies in the information technology
sector
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