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Abstract 

This thesis investigates the relationship between policy rates and green innovation among 

OECD countries. The study uses patent application data as a proxy for innovation and 

examines the impact of real policy rates on the level and ratio of green innovation. The results 

of the analysis show that there is a negative relationship between central bank policy rates and 

green innovation, indicating that higher real policy rates may hinder the development of green 

technologies. The study also finds that the impact of real policy rates on green innovation 

varies by subcategory, with some subcategories being more sensitive to changes in the real 

policy rates than others. Overall, the study provides evidence that central bank monetary policy 

can have an impact on the development of green technologies. 
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1. Introduction 

The energy transition is one of the greatest challenges of our time. In recent years, discussions 

about central banks’ (CB) role in the transition have emerged. Back in 2015, the former CB 

chief of the Bank of England, Mark Carney, held a speech about climate change and financial 

stability. During the speech, he stated that it is not for financial policymakers to lead the shift 

toward a low-carbon economy. Instead, it is for the governments to prioritize one climate 

policy over another (Carney, 2015). Likewise, the European Central Bank (ECB) expressed in 

its climate agenda published in 2022, that it is governments and legislators that have the 

primary tools to address climate change and drive the transition towards a greener economy 

(ECB, 2022). 

Recently, the European Commission delivered a report called “Stepping up Europe`s 2030 

climate ambition” to the European parliament. The report outlines the importance of turning 

investments towards innovative low-carbon technologies instead of traditional fossil-fuel 

technologies, in times of scarce liquidity (European commission, 2020). 

The International Energy Agency (IEA) argues that the climate challenges are primarily an 

energy challenge, as around 75% of the greenhouse gas (GHG) emissions stem from the supply 

and use of energy (Méinère et al., 2021). Thus, the change from traditional fossil fuel energy 

(FFE) to low carbon energy (LCE) sources plays a major role in achieving carbon neutrality 

by 2050. To achieve this goal, the IEA highlights the importance of clean energy innovation 

and argues that the road towards net zero emissions is dependent on major acceleration in 

clean energy innovation. This is because innovation is the key to bringing up new technologies 

and developing existing ones (Sha et al., 2020).  

Although the need for clean energy innovation is more acute than ever before, Ménière et al. 

(2021) finds that the annual growth rate in LCE supply patenting has declined in recent years. 

A decline in LCE supply patenting could impact the diversity of renewable energy sources 

and cost improvements of current ones. On the bright side, the report finds that the patenting 

activity in LCE supply technologies has been growing faster than fossil fuel technologies since 

the start of the 2000s.  

To successfully reach the GHG reduction goals, effective and targeted climate policies are 

crucial. According to a report developed by the Organization for Economic Co-operation and 
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Development (OECD), climate policy measures are lagging in terms of achieving the GHG 

reduction goals (Dechezleprêtre et al., 2022). With current policies and actions, the global 

temperature is expected to increase by around 2,7C by 2100 (CAT, 2021). Based on these 

findings, one can argue that there is a clear inconsistency between the climate goals and the 

climate policies and actions in place to achieve these goals. The inconsistency will according 

to Dilusio et al. (2021) lead to increased demand for environmentally friendly inventions, 

increased cost of implementing new policies, and macroeconomic instability, as the society 

have less time to adapt to new environmental policies.  

Back in 2017, the Bank of England, together with other CBs, established the Network for 

Greening the Financial System (NGFS). Today, the network consists of more than 100 CBs 

(NGFS, 2022). The NGFS developed three main areas in which CBs can contribute to a 

greener economy. These are credit operations, collateral framework, and asset purchases. In 

terms of credit operations, where CBs provide liquidity to commercial banks, the NGFS 

suggest providing differentiated rates to commercial banks, based on the carbon intensity of 

the clients they are providing loans to. The second suggestion implies that CBs can adjust their 

requirements for assets used as collateral, based on carbon intensity. This alternative is 

discussed in detail by McConnell et al. (2020), where the transition risk1 pose a threat to 

carbon-intensive collateral assets, suggesting a “hair-cut” valuation of these assets in CB`s 

collateralized lending facility. Finally, as CB`s asset purchasing program is biased toward 

high-carbon intensive assets (Papoutsi et al., 2022), the NGFS suggests CBs to reevaluate their 

purchasing program towards greener assets (Stefano et al., 2022).  

Aghion et al. (2022) argue that the suggestions of greening the CBs have limited effects as 

they face economic and legal obstacles. They also argue that the primary mandate of the CB 

is to ensure price stability, and policies directed to stimulate green innovation could potentially 

violate the concept of “market neutrality”. Consequently, to ensure price stability in times of 

rapid economic growth, an increase in the nominal policy rate is considered inevitable. Hence, 

the discussion of the CB’s contribution to a greener economy has moved toward the CB’s 

primary monetary policy tools. McConnell et al. (2020) do not consider the primary policy 

tools such as the CBs policy rate as an effective way of promoting investments in green 

 

1 Transition risk: the risk of physical or financial assets losing their value because of stringent climate policies, such as higher 
carbon taxes.  
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technologies, since a lowering of the policy rate may symmetrically increase investment in 

both green and brown innovations. Similarly, Aghion et al. (2022) also argue that monetary 

policy channels that affect the bank lending facilities have little or no material effect on green 

patenting, as banks are not involved in the innovation of new technologies. In contrast, 

Schnabel2 (2022) held a speech where she argues that the removal of monetary stimulus to 

hamper inflation could harm the incentives of building a low-carbon economy. She created 

her statement by arguing that an increase in the CB policy rate directly increases the cost of 

capital, hence decreasing the willingness to invest in renewable projects. 

The discussion regarding the CB`s role in the transition toward a greener economy continues. 

However, there have been few empirical studies of how the CB`s primary monetary policies 

affect the green transition. This thesis aims to contribute to the discussion by investigating 

whether the CB`s primary mandate of price stability compromises the increasing need for 

green innovation to successfully achieve a clean energy transition. To do so, we investigate 

whether the CB`s monetary policy, through the real policy rate, impacts the level and ratio3 of 

green innovation.  

We use the extensive data provided by the OECD on patent applications to classify innovation. 

This allows us to investigate whether green innovation and its subcategories are affected 

differently by changes in the real policy rate (RPR) than brown innovation. We base our 

findings on patent applications to the European Patent Office (EPO) by OECD countries. To 

conduct our analysis, we use a panel fixed effect model with country fixed effects and a linear 

time trend, where we also apply a weighting scheme based on each country’s GDP. We start 

by providing evidence of an inverse relationship between the RPR and the level of green 

innovation. However, the relationship is strongly driven by the total weight of the US. By 

further separating green technologies into three subcategories, we provide strong evidence that 

the RPR has a negative effect on end-use technologies. The relationship between the RPR and 

end-use technologies is consistently significant through all robustness checks. Thereafter, we 

discover weak evidence that there may be a long-term effect in which innovation in LCE 

supply related technologies is prioritized less in favor of brown innovation during times of 

 

2 Isabel Schnabel has been serving as a member of the Executive Board of the ECB since 2020. 

3 Please see Equation 1 for formula of the green ratio (GR) 
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monetary tightening. These findings suggest that the CB’s goal of price stability may hinder 

the development of green innovation. 

The thesis is organized as follows. In Chapter 2, we provide a theoretical foundation related 

to our research, by discussing key concepts and related literature. In Chapter 3, we describe 

the structuring and classification of patent applications data, as well as the interpretation of 

our dependent, independent, and control variables. The chapter also includes a presentation of 

some descriptive statistics for these variables. In Chapter 4, we present the empirical model 

that we use to test our two hypotheses. Chapter 5 presents the results of our hypothesis testing, 

as well as a series of robustness checks to validate our findings. In Chapter 6, we interpret and 

discuss our results and limitations associated with our analysis. Finally, in Chapter 7, we 

provide a summary of our key findings and conclusion.   
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discuss our results and limitations associated with our analysis. Finally, in Chapter 7, we
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2. Theoretical background and hypotheses  

To provide a theoretical foundation to our study, we begin by discussing the potential pros and 

cons of using patent applications as a proxy for innovation. We then examine the factors that 

have been shown to impact the development of green innovation, which is later considered in 

our analysis. Finally, we review the existing literature on the relationship between the policy 

rate and innovation, which serves as the foundation for our hypotheses development.  

2.1 Patent applications as a proxy for innovation  

Because innovation in itself is hard to measure, using innovation input or output factors has 

become a common practice among researchers (Nagaoka et al., 2010). Research and 

development (R&D) expenditure is one example of an input factor used as a proxy for 

innovation (Hyytinen & Toivanen, 2005). However, Nagaoka et al. (2010) argue that 

measuring innovation through R&D expenditure could create measurement problems since it 

is an input factor and does not capture the end result. In contrast, patent applications are output 

measures of innovation.  

There are both advantages and disadvantages associated with using patent applications as a 

proxy for innovation. First, patent applications provide researchers with detailed abstracts 

containing information about the applicant and the invention itself (OECD, 2009). 

Furthermore, patent application data are easily obtainable, discrete and can be subcategorized 

and classified into different technologies (Johnstone et al., 2010).  

Although the use of patent application data has increased in recent years, it should be used 

carefully since they are not free of problems. One disadvantage related to patent application is 

that not all inventions are patented. Based on EPO`s “Applicant Panel Survey” report of 2008, 

about 50% of all inventions were not patented throughout the world (EPO, 2009c). One of the 

reasons for the low portion is that patents need to fulfill certain criteria. The wording in the 

requirements is different for different jurisdictions around the world. For instance, the patent 

examination at the EPO requires that the invention needs to be “new”, include an inventive 

step, capable of industrial application and the invention needs to belong to a field of 

technology (EPO, 2022b). As stated by Moser (2013), the low share of patenting could also 

be explained by firms deliberately deciding not to patent their inventions since patenting 
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requires full disclosure. According to Anton and Yao (2004), this may happen when property 

rights are limited, and the value of disclosing is offset by the fear of imitation. 

In addition, due to differences in practices across patent offices in various countries, 

comparing patent applications can be challenging, as you cannot be sure that you are 

comparing “apples to apples” (Johnstone et al., 2010). Another problem of working with 

patent data is that the data is skewed. This happens as a small portion of all patents have high 

technological and economical value. Therefore, simple counts of patent applications can be 

misleading as it assigns the same value for all patents. Even though patent application data 

does not capture all inventions, it is considered the most valuable source of innovation 

information, assuming that the user of the data is aware of its noises and biases (Nagaoka et 

al., 2010). 

2.2 Factors influencing the development of green 
innovation 

There are several factors affecting the development of green innovation. Previous studies have 

investigated the effect of environmental policies on innovation within LCE technologies. Due 

to the negative externalities stemming from traditional fossil fuel energy (FFE) sources and 

increased awareness about the environment, governments have started favoring LCEs such as 

solar, wind, hydropower, and geothermal energy. As FFE has historically outperformed LCE 

in terms of cost, governments have in recent years increased incentives to the latter one 

through various environmental policies (Nesta et al., 2014). One of the most known 

environmental policies is carbon taxation. A report developed by the OECD finds that carbon 

taxation is an effective tool to mitigate carbon emissions by making LCE or renewable 

technologies more competitive compared to FFE technologies (OECD, 2021). Additionally, 

Aghion et al. (2016) explored how taxes on pollution effects the level of green and brown 

innovation. By using tax-inclusive fuel prices (a proxy for the carbon tax), the results found 

that an increase in tax-inclusive fuel prices stimulates clean innovation and depresses brown 

innovation.  

Relatedly, Zhang et al. (2022) explored how the Environmental Policy Stringency (EPS) index 

impacts green innovation. By investigating 27 OECD countries and 6 developing economies, 

their results show that countries are likely to execute green innovation in response to a more 

stringent environmental policy. Interestingly, the results show an insignificant relationship 
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between a stringent marked-based policy and green innovation but find a significant 

relationship between a stringent non-marked based policy and green innovation. Furthermore, 

Böhringer et al. (2017) investigated how the German feed-in-tariff  scheme affects innovation 

measured by annual patent count. The paper found a significantly positive relationship 

between feed-in-tariffs and innovation in renewable energy technologies.  

Another potential factor playing its part in the development of green innovation is the amount 

of renewable energy consumption. Increased consumption of renewable energy sources could 

act as a signal for inventors, investors, and entrepreneurs of higher future returns of green 

innovation, potentially increasing the willingness to take on such innovations (Herman & 

Xiang, 2019).  

Finally, the effect of foreign direct investments (FDI) on the development of green innovation 

has also been studied. FDI can have a positive and negative impact on green innovation. Luo 

et al. (2021) finds a positive effect because of the potential knowledge spill-over effect, 

exchange of new technologies, and improved administration practices. On the negative side, 

Qiu et al. (2021) finds that FDI could potentially result in multinational corporations moving 

their polluting business units to countries with less stringent environmental rules and policies.  

2.3 Studies on the affect of the policy rate on innovation 

An increase (decrease) in the policy rate is one of the monetary policy actions the CBs take to 

ease (enhance) economic growth. Changes in the policy rate are one of the factors that play a 

part in causing cyclical fluctuations, which are referred to as business cycles. Business cycles’ 

effect on innovation is a closely related field of study and has seen more empirical studies than 

the policy rates impact on innovation. Broader literature on business cycles’ effect on 

innovation has identified two responses to business cycles.  

The first approach implies that innovation responds countercyclically to business cycles. 

During economic contractions, the input of innovation becomes cheaper, such as materials and 

labor. In addition, the opportunity cost of conducting research decreases, as the potential loss 

of sales is lower (Hingley & Park, 2017). Looking at Spanish firms, the paper of Lopez-Garcia 

et al (2012), finds that R&D investments as a share of total investments increases during 

economical contractions, assuming no credit constraints. These results provide evidence of the 

countercyclical behaviors of R&D investments and innovations. On the other hand, Hingley 
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& Park (2017) find that patent applications at the EPO tend to increase during economic 

expansions, pointing evidence towards the procyclical behaviors of patent applications. They 

argued that for firms relying on internal cash flows to fund innovation, an economic expansion 

increases a firm`s ability and accessibility to obtain such funds.    

Even though business cycle literature on innovation typically does not consider policy rates, 

business cycles remain relevant in terms of indicating the impact of policy rates on innovation. 

Moving over to the narrower literature which has its primary focus on investigating the 

relationship between the nominal policy rate and innovation, Zhang et al. (2020) find that the 

US nominal policy rate has a positive and significant impact on R&D and patents for Chinese 

enterprises. Moreover, they find that an increase in the policy rate makes firms more likely to 

use internal cash flows over external funds to finance innovation. Using an option pricing 

approach, de la Horra et al. (2022) confirm the findings for the US market. They find that the 

nominal policy rate has a positive and significant impact on R&D investments. 

Empirical studies which investigate the relationship between inflation and innovation often 

include changes in the nominal policy rate as a ripple effect of inflation. Among others, the 

paper of Rocha et al. (2021) investigated how inflation affects innovation. In their model, firms 

can finance R&D investments with internal cash flows or by borrowing money from financial 

institutions. Their research found that, when inflation rises in an inflation-targeted regime, the 

CBs will increase the nominal policy rate to adjust the inflation toward the target. As a result, 

the opportunity cost of R&D investment will increase, lowering the willingness to invest, and 

reducing innovation and technological output. 

Rather than investigating the relationship between the nominal policy rate and innovation, we 

aim to test the RPR`s relationship with innovation, as the RPR better reflects the true cost of 

borrowing. However, there are also few empirical papers which investigate the relationship 

between the RPR and innovation. A more common approach is using the real interest rate 

measured from i.e., bonds. Relatedly, Heger (2004) included real interest rates when 

investigating which factors that impact firm’s innovation decisions. She found that the real 

interest rate had a significantly positive relationship on the decision to stop innovation. 

Furthermore, we follow the likes of Evers et al. (2020) which differentiates between advanced 

and basic but return-dominated technologies, whereas our approach differentiates between 

green and brown innovation. The study of Evers et al. (2020) investigates the relationship 
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between inflation and innovation, but also included liquidity. Given that advanced 

technologies are subject to idiosyncratic risk, firms may hedge this risk by holding a liquidity 

buffer. When inflation rises, the CBs increase the nominal policy rate to mute inflation. As a 

result, the opportunity cost of holding cash increases, reducing the demand for liquidity. 

Hence, firms tilt their innovation from advanced to basic but return-dominated technologies.  

When developing our hypotheses, we also consider the importance of implementing renewable 

energy (RE) projects, as they are considered important to produce innovative output (IEA, 

2022).  Looking at EU member states and the United Kingdom, Avalle (2021) investigated the 

financing conditions for RE projects. These projects are more capital intensive, require larger 

up-front payments and have lower operating costs compared to fossil fuel power plants. 

Therefore, the report finds the weighted average cost of capital (WACC) as an important 

financial variable for RE projects. Furthermore, RE projects are generally financed by debt or 

issuance of equity. In the initial stages it is key to leverage enough debt to successfully scale 

these projects. Looking at onshore wind projects, the report finds a positive correlation 

between CBs policy rates and the average cost of debt. These results, confirm the statement of 

Schnabel (2022), that an increase in the CBs policy rate directly impacts the cost of capital. 

For instance, the cost of debt in the energy-related sector has increased on average by 50% 

during 2022. Consequently, the probability of abandonment of RE projects might increase, 

which can result in a reduction of innovative output in the future (IEA, 2022). Therefore, it is 

important that renewable energy projects are not abandoned in times of rising interest rates, to 

keep producing innovative output.  

Although RE projects are generally financed by debt or equity issuance, it is not necessarily 

the case for the inventions behind these projects. Hall and Lerner (2010)4 argues that there is 

a considerable gap between the internal and external cost of capital on innovation. This is 

illustrated by Ughetto (2008), which finds that innovation by more than 1000 Italian 

manufacturing firms is generally never financed by debt. Therefore, the financing source is 

internal cash flows, as Italian firms generally do not issue equity to finance innovation. 

Furthermore, Nylund et al. (2019) find that internal cash flow is negatively related to 

innovation for a broad range of firms, including the manufacturing sector. Firms in the energy 

 

4 Although the study focuses primarily on R&D investments, the author states that much of the empirical evidence also applies 
to financing innovation.   
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sector are the only ones who become more innovative by using internal cash flow to finance 

innovation. They also find that debt financing reduces the innovation of profitable firms. 

2.4 Hypotheses development  

We build on the presented literature to form our two hypotheses focusing on the relationship 

between the RPR and the level and ratio of green innovation. Both our hypotheses represent 

the foundation of our analysis. 

Presented literature on business cycles disagrees how innovation responds to business cycles, 

as they find both a procyclical and countercyclical relationship. Based on Hall and Lerner 

(2010) that find the internal cost of capital for R&D investments to be lower than the external 

cost of capital, one would expect firms to use internal cash flows to finance innovation. This 

reduces their exposure to an increase in the RPR, in terms of the cost of debt. However, an 

increase in the RPR could still increase the opportunity cost of capital. Relatedly, building 

upon RE project`s exposure to interest rates, and the consequence of abandonments on 

innovation output, we aim to explore how the CB`s monetary policy, through the RPR, impacts 

the level of green innovation. In times of rising policy rates to ease the inflationary pressure, 

as well as increased demand for green innovation, our first hypothesis is of increasing 

relevance: 

H1: An increase in the RPR will depress the level of green innovation. 

By answering this hypothesis, we can explore if the CBs primary mandate of price stability 

compromises the increasing need for green innovation to successfully achieve a clean energy 

transition.  

When developing our second hypothesis, we build upon the fact that RE during the time 

interval of our analysis, has been less mature and outperformed in terms of cost, compared to 

traditional FFE (Nesta et al., 2014). The hypothesis follows the likes of Evers et al. (2020), 

which finds that firms tilt their innovation from advanced to basic but return-dominated 

technologies in times of increasing nominal policy rate. Having classified green and brown 

patents applications, our second hypothesis is:  

H2: An increase in the RPR will depress the level of green innovation more than brown 

innovation.  
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By answering the second hypothesis, we aim to understand if green innovation is de-prioritized 

for brown innovation in times of increasing RPRs. However, one can argue that the 

prioritization choice of different technologies found by Evers et al. (2020) does not apply to 

our analysis, as innovation within green technologies is increasingly subsidized and 

incentivized, and that the demand for such technologies is higher than ever before. If the effect 

is sufficient, the differences outlined between green and brown technologies may be canceled 

out, making them equally exposed to changes in the RPRs.  
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3. Data description 

In this section, we describe our approach in sourcing and classifying patent application as 

green and brown. We then discuss the interpretation of the variables included in our study. 

Finally, we present some descriptive statistics for these variables. This provides important 

information about the range and distribution of the data.  

3.1 Structuring patent statistics  

The two main sources of patent indicators which have been structured to make our own 

dataset, are gathered from “OECD, REGPAT database, August 2022”5, and EPO’s “EP full-

text for data for data analytics”6. From OECDs REGPAT database we make use of the patent 

applications filed to the EPO by OECD countries. Furthermore, if we encounter any problems 

when structuring patent statistics, we make decisions based on the patent statistic manual 

released by the OECD in 2009. 

Filing for a patent is both costly and time-consuming (van Pottelsberghe de la Potterie & 

François, 2008). At the EPO, granting a patent takes an average of 5 years and could span up 

to as long as 10 years. EPO is considered a regional patent office and examines applications 

on behalf of its member countries. If a patent is granted, the applicant can choose for which 

member countries they want the validation rights for. The fact that an application is granted 

or refused is indicative of its quality (OECD, 2009). However, to be able to make use of the 

latest completed dataset, we utilize patent applications as our proxy for innovation. As a 

regional office, EPO provides a degree of control for patent quality by only representing patent 

applications for which the inventor considers the value sufficient to seek protection 

internationally (Ménière et al., 2021). 

We then continue by using the priority date as our reference date, as it is the earliest date and 

therefore considered as the closest date to the invention. The priority date is the first date for 

filing a patent application, anywhere in the world. Moreover, if the patent has inventors from 

 

5 Data source: https://console.cloud.google.com/storage/browser/ep-fulltext-for-text-
analytics/2022week05;tab=objects?prefix=&forceOnObjectsSortingFiltering=false 

6 Data source: https://forms.office.com/pages/responsepage.aspx?id=1MdBrGEfDUaw9PySWitHHKuxmuqpz_9KusL7-
G1D6wFUOEU0OVBYVk5QTzROVlBTSUtBUUREWVhHTiQlQCN0PWcu 
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latest completed dataset, we utilize patent applications as our proxy for innovation. As a

regional office, EPO provides a degree of control for patent quality by only representing patent

applications for which the inventor considers the value sufficient to seek protection

internationally (Meniere et al., 2021).

We then continue by using the priority date as our reference date, as it is the earliest date and

therefore considered as the closest date to the invention. The priority date is the first date for

filing a patent application, anywhere in the world. Moreover, if the patent has inventors from

5 Data source: https://console.cloud.google.com/storage/browser/ep-fulltext-for-text-
analytics/2022week05;tab=objects?prefix=&forceOnObjectsSortingFiltering=false

6 Data source: https://forms.office.com/pages/responsepage.aspx?id=lMdBrGEfDUaw9PySWitHHKuxmuqpz_9KusL7-
GlD6wFUOEU0OVBYVk5QTzROVlBTSUtBUUREWVhHTiQIQCN0PWcu



 21 

different countries, the patent is partly attributed to each country mentioned to credit each unit 

of analysis with its correct proportion and avoid double counting (OECD, 2009).  

Patent applications from the Patent Cooperation Treaty (PCT) entering the EPO regional phase 

are included in OECD’s REGPAT database, which could have a time lag of up to 31 months 

from the priority date. After entering the regional phase, it may take an additional 6 months 

before this step is published by the EPO (OECD, 2009). Thus, the most recent complete patent 

data is from 2018. 

The inventor’s dataset is used instead of the applicants, as it better measures the inventive 

performance of countries (OECD, 2009). This is mainly because the inventor dataset includes 

the country of the R&D unit that created the patented invention, meanwhile, the patent 

applicant shows the country for which the legal owner is subject to taxation (Bohm et al., 

2015). However, every patent application does not contain the information of the inventors. 

Therefore, the applicant database is made use of to check for any missing observations in the 

inventor dataset. Leading to an additional 12,243 observations in our dataset. The full dataset 

contains 10,445,128 rows. 

23 observations of the inventor’s country of residence are missing from the full dataset. All 

these patents contained the professional address of the inventor and were thus checked 

manually. Only two of the addresses are located in the OECD countries and were assigned to 

their legitimate country.  

To identify green patents, we made use of IEA’s cartography of LCE technologies (Ménière 

et al., 2021). Please see Appendix 7.1.1 to see which technologies that have been classified as 

green and their respective Cooperative Patent Classification (CPC) classes. IEA’s cartography 

of LCE technologies is based on a rigorous selection and re-organization of different sections 

of EPO’s dedicated classification scheme for climate change mitigation (EPO, 2022d). The 

dedicated classification scheme for climate change mitigation relies on the CPC classes. A 

patent may have multiple CPC codes allocated across different technical fields. If the patent 

contained a singular CPC class from the IEA’s cartography of LCE technologies, it has been 

classified as a green patent, unless it shares a CPC code with a brown patent application. After 

this procedure, we end up with a total of 269,662 green patents since 1977.  

Furthermore, classifying green innovation according to IEAs classification cartography has 

allowed us to further subdivide green patent applications into three different categories. These 
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are LCE supply technologies, enabling technologies and end-use technologies. The patent has 

been allocated to the technological field in which it had the highest count of CPC codes. If a 

patent had an equal number of CPC codes across the different technical fields, it has been 

randomly allocated to one of the three subcategories. Following this procedure, we have 

observed 53,163 LCE supply patents, 51,689 enabling patents and 164,810 end-use patents, 

since 1977. 

EPO’s EP full-text data for text analytics dataset was needed to identify brown patents. The 

dataset contains all the full-text data for patents published by the EPO since 1977. However, 

it does not contain European patent applications filed via the PCT route which is published by 

the World Intellectual Property Organization (WIPO) (EPO, 2022a). The dataset comprises 

approximately 6.5 million EP publications and is about 261 GB in size (EPO, 2022b). 

Brown patents are identified according to the IEA`s methodology for identifying fossil fuel 

supply-related technologies in patent data (IEA, 2021). Besides classifying brown patents 

solely on their CPC classification, some CPC classes required additional filtering according to 

IEAs methodology. The additional filtering, which required the inclusion and/or exclusion of 

search queries, is shown in Appendix 7.1.2, together with the brown technologies. All 

accessible text has been made use of to perform the full-text analysis. The EPO has three 

official filing languages (OECD, 2009), so to be able to extract all the relevant full-texts, 

search queries were applied in English, German, and French using regular expressions. After 

the full-text search queries were carried out, we were left with 50,714 unique observations. 

10,086 of these patents contain CPC classes from both green- and brown patents, so these have 

been excluded from the final sample. This leaves us with 40,628 unique observations of brown 

patents since 1977. 

3.2 Interpretation of variables  

3.2.1 Dependent variable  

We run regression analyses on green patent applications, brown patent applications, and the 

green ratio (GR) to test our two hypotheses. As explained in Chapter 2.1, we utilize patent 

applications as a proxy for innovation. The green and brown patent application enables us to 

investigate how changes in the RPR impact the level of green- and brown innovation. The 
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third variable enables us to investigate how changes in the RPR impact the ratio of green 

innovation.   

The dependent variables are expressed by total patent applications per country. Since the 

regression model includes country fixed effect, we do not consider it necessary to adjust our 

three dependent variables by per capita, as the population remains stable over time within the 

countries in our sample.  

The last dependent variable, the GR, expresses the ratio of energy-supply related technologies 

classified as green and brown. As one can see from Equation 1, we only include LCE supply-

related patent applications in the GR. This is because brown patents are only fossil fuel supply-

related technologies. Meanwhile, green patents include a broader spectrum of related 

technologies. For instance, in addition to LCE supply technologies, green patents include 

enabling and end-use technologies, which could be energy efficiency in buildings or electric 

vehicles. Therefore, it is more natural to compare only the energy supply-related patent 

applications.  

Equation 1: Green Ratio 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝐺𝐺𝐺𝐺) = 𝐿𝐿𝐿𝐿𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 1
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 1  

Equation 1: The GR presents the formula applied to estimate the ratio of LCE supply patent applications to brown patent 

applications.  

As we have given fractional counts to countries to credit each unit of the patent development 

process, there are a few observations where countries have less than an entire patent 

application, which leads to an inflated ratio. To account for this problem, 1 is added to the 

numerator and denominator of the equation. The overall effect of the ratio will remain 

unchanged. However, there will be a small inaccuracy in the GR, as the data will be slightly 

different from its original values. 

The dependent variables in our analysis have been transformed by the natural logarithm. 

Besides simplifying the interpretation of the model, the transformation follows common 

practice when making use of patent applications as dependent variables. In addition, the 

transformation benefits the skewness of the residual. 
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3.2.2 Independent variable  

As this thesis aims at understanding how the CB`s monetary policy impacts the level and ratio 

of green innovation, we make use of the RPR as our main variable of interest. We have made 

use of the RPR instead of the nominal policy rate because it better reflects the true cost of 

borrowing. Hence, it allows for a more accurate comparison of interest rates across time. To 

obtain RPRs, the nominal policy rate was controlled for the consumer price index (CPI), 

according to the concept of the Fisher equation7 (Cooray, 2002). The CPI is extensively used 

as a measure of inflation by economic policymakers (Kotzeva et al., 2020). Both the nominal 

policy8 rate and CPI index9. was sourced from the International Monetary Fund (IMF) 

database.  

3.2.3 Control variables  

Environmental policy index 

To validate the results and ensure the robustness of our regression analysis, we will include 

several control variables in addition to our main variable of interest. To consider the impact 

of climate policies on the development of green innovation as described in Chapter 2.2, we 

include the three subcategories of the EPS index as control variables. The data on the EPS 

index was sourced from the OECD database10.  

Investigating the effect of environmental policies on economic outcomes can be challenging 

on a cross-country basis. This is because the mix of environmental policies can vary widely 

across countries. To fill this gap, the OECD developed the EPS index, which allows for the 

evaluation of environmental policies across countries. To ensure good quality, only 

environmental policies on climate change and air pollution are included. This means that 

 

7 Fisher equation: (1 + 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) =  (1+𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
(1+𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)  

8 Data source: https://data.imf.org/regular.aspx?key=61545855 

9 Data source: https://data.imf.org/?sk=4FFB52B2-3653-409A-B471-D47B46D904B5&sId=1485878855236 

10 Data source: https://stats.oecd.org/index.aspx?lang=en 
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policies that are set on a regional or municipal level, such as waste and water management, 

are left out because these are challenging to scale up to a national level (Kruse et al., 2022).  

The first subcategory of the EPS index, the market-based policies (MBP), consists of CO2 

trading schemes, renewable energy trading schemes, CO2 taxes, nitrogen oxides taxes, sulfur 

oxides taxes, and fuel taxes. Common for all these MBPs is that they create a price on pollution 

through taxes or tradable permits on emissions. The non-market based policies (NMBP) 

include emission limits value for nitrogen oxides, sulfur oxides, coal-power plants, and sulfur 

content within fuel such as diesel. Common for all NMBPs is that they all set certain standards 

and emission limit values. Finally, the technology support policies (TS) contain public 

research and development (R&D) expenditure for LCE relative to the size of each country’s 

nominal gross domestic product (GDP). It also contains price support for solar and wind 

technologies through feed-in tariff schemes and renewable energy auctions. The categories are 

constructed by scoring the stringency from zero (no policies) to six (most stringent) (Kruse et 

al., 2022). 

Renewable energy consumption over total consumption  

To control for the effect of expected future profits and market size within the renewable energy 

market, the renewable energy consumption on total energy consumption per country is 

controlled for. The data was sourced from the “Our World in Data” website11. The variable is 

denominated as a percentage of total energy consumption.  

Foreign direct investments  

Finally, we add foreign direct investments (FDI) as a control variable. FDI can have a positive 

and negative impact on green innovation, as explained in Chapter 2.2. The FDI12 was sourced 

from the World Bank database. The FDI is denominated as a percentage of GDP. When the 

FDI variable is above zero, it means that the respective country had more foreign investments 

than divestment in the respective year, vice versa.   

 

 

11 Data source: https://ourworldindata.org/renewable-energy 

12 Data source: https://databank.worldbank.org/source/world-development-indicators 
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Gross domestic product & unemployment rate  

As elaborated in the literature review, we will control for the effect of business cycles on 

innovation. Therefore, we include GDP and the unemployment rate which are major indicators 

of business cycles. The two variables often move in opposite directions, whereas GDP tend to 

rise during times of economic expansion, the unemployment rate tend to decrease during 

economic expansions.  

The GDP is transformed by its natural logarithm to simplify its interpretation. In this way, one 

can interpret it in which a marginal change in GDP is explained in terms of percentage changes 

in the dependent variables, which is considered a log-log interpretation. The unemployment 

rate is denominated as a percentage of the total labour force in each country.  

3.3 Descriptive statistics  

3.3.1 Dependent variable  

Having sourced, classified, and structured the patent application data, various figures are 

utilized to get an overview of the data. Figure 1 illustrates the development of the green and  

Figure 1: Development of Green Patent Applications and its Three 
Subcategories, and Brown Patent Applications 

 

 

Figure 1 presents the development of Green, Brown, LCE supply, enabling and end-use patent applications from 1999 until 

2018. The y-axis illustrates the count of patent applications, while the x-axis illustrates the years included in our data sample.  
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Figure l presents the development of Green, Brown, LCE supply, enabling and end-use patent applications from 1999 until

2018. The y-axis illustrates the count of patent applications, while the x-axis illustrates the years included in our data sample.
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brown patent applications, as well as the development of the three subcategories of green 

innovation. As shown in Figure 1, green patent applications have seen a remarkable growth 

since 1999, while brown patent applications have remained stable until recently, before they 

began to decline. Looking at the three types of green technology innovation, end-use and 

enabling technologies has increased steadily, whereas the LCE supply technologies has 

decreased in recent years. Common for LCE supply and brown, is that they are both energy-

supply related technologies, whereas both have seen a drop of patent application in past few 

years. 

Moving more specifically into green innovation, the development of the share of the three 

subcategories are expressed in Figure 2. The figure shows that the green innovation on average 

consists of around 60% in end-use technologies, 25% in enabling technologies, and the 

remaining 15% within LCE supply technologies. Looking at the development of the shares, 

one can see that innovation within enabling technologies is the fastest growing. Since 2008, 

the share of innovation within LCE supply technologies has on average decreased.   

Figure 2: Share of the Subcategories within Green Innovation 

 

 

Figure 2 presents the development of LCE supply, Enabling and End-use patent applications from 1999 until 2018. The y-

axis shows the share of patent application on total green patent application, while the x-axis illustrates the years included in 

our data sample.  
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Figure 2 presents the development of LCE supply, Enabling and End-use patent applications from 1999 until 2018. They-

axis shows the share of patent application on total green patent application, while the x-axis illustrates the years included in

our data sample.
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Furthermore, Table 1 displays the ranking for each country13 based on the sum of green patent 

applications since 199914. The US is the highest-ranking country in terms of green patent  

Table 1: Overview of Dependent Variable per Country 

Rank Country Green LCE supply Enabling End-use Brown GR 
1 US 50444 10224 9143 31725 9904 1.03 
2 JP 46077 6584 12721 26902 1121 5.72 
3 DE 37716 9200 6517 22272 2273 4.01 
4 FR 14323 2566 2510 9319 2281 1.07 
5 KR 13158 2043 5040 6067 282 6.13 
6 GB 8750 1907 1484 5467 2332 0.95 
7 IT 5295 1324 671 3507 568 2.28 
8 NL 4454 1064 458 2985 1190 1.05 
9 SE 4411 808 476 3254 312 2.69 
10 DK 4088 2644 359 1106 454 6.40 
11 CA 3676 597 971 2089 573 1.09 
12 CH 3530 994 733 1947 176 5.96 
13 AT 2708 582 436 1752 192 3.11 
14 ES 2485 1180 260 1093 157 7.53 
15 BE 2049 476 285 1212 227 2.24 
16 FI 1978 398 230 1400 276 1.46 
17 AU 1379 352 258 805 210 1.92 
18 NO 768 300 163 327 1033 0.33 
19 PL 446 109 72 275 54 1.86 
20 IE 354 142 36 184 34 3.09 
21 CZ 234 55 31 158 12 2.52 
22 HU 211 45 20 154 17 2.26 
23 PT 186 76 27 90 17 2.96 
24 GR 122 41 12 70 8 2.53 
25 SI 99 22 20 58 2 1.91 
26 SK 68 30 10 31 8 2.11 

Total 209,006 43,794 41,465 123,747 23,713 2,85 
Table 1 presents the descriptive statistics for the level of green share for the 26 OECD countries. The period spans from 

1999 to 2018. The GR presents the ratio of LCE patent applications to brown patent applications. Be aware that the 2,85 is 

an average of all GRs.  

 

13 Please see Appendix 7.2 for an overview of country codes. 

14 Please see Appendix 7.3 for an overview of the average patent applications and GR per country during our sample period. 
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applications, followed by JP and DE. The US is also the top applicant for brown patents. The 

green ratio is also reported, where KR (6.13) and JP (5.72) are substantially ahead of the rest 

of the sample. The total number of LCE supply patent applications (43,794) is significantly 

higher than that of brown patent applications (23,713), resulting in a green ratio of (2.85) on 

average amongst the countries in our sample. 

3.3.2 Independent variable  

Figure 3 represents the development of our main variable of interest, the RPR. The upper 

panels contain the RPR development for non-ECB member countries, while the lower panels 

contain the ECB member countries. Overall, the RPRs in our sample have on average declined 

since 1999. This trend is largely due to a decrease in nominal policy rates, combined with the 

inflation which has been fluctuating around the 2% inflation target set by CBs. In recent years, 

we have observed negative RPRs in some countries, reflecting low nominal policy rates, 

sometimes even negative.  

Figure 3: Development of RPRs 

Figure 3 presents the development of the RPR for all countries in our sample. The period spans from 1999 to 2018. 

3.3.3 Control variables 

Building upon the Porter hypothesis that applicable and stringent environmental policies can 

promote green innovation (van Leeuwen & Mohnen, 2017), we start by including the 

subcategories of the EPS Index named “market-based policies”, “non-market based policies” 
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Figure 3 presents the development of the RPR for all countries in our sample. The period spans from 1999 to 2018.

3.3.3 Control variables

Building upon the Porter hypothesis that applicable and stringent environmental policies can

promote green innovation (van Leeuwen & Mohnen, 2017), we start by including the

subcategories of the EPS Index named "market-based policies", "non-market based policies"
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and “technology support policies”. The index is constructed by scoring the stringency of 

environmental policies from zero (no policies) to six (most stringent).  

Figure 4 illustrates the stringency development for each of the three subcategories. The 

stringency of the environmental policies included in the EPS index has been increasing over 

time, as illustrated by the bars. The NMBP is on average the most stringent policy, followed 

by TS and MBP. When comparing the average EPS score and the green share, they seem to 

have a positive relationship. The main reason why the data sample is limited to 26 out of 38 

OECD member states, is due to the OECD not reporting the EPS index for several of its 

member countries.  

Figure 4: Development EPS Stringency Score 

 

Figure 4 illustrates the development of the stringency by the three subcategories of the EPS Index. The three subcategories 

are equally weighted in the average EPS. The Green share is the share of green patent applications on all categories of patent 

applications. Each subcategory is scored on a scale from zero (no policies) to six (most stringent).  

Table 2 presents an overview of descriptive statistics for the variables used in our regression 

for the 26 OECD countries. The sample period spans from 1999 to 2018, structured by annual 

frequency, totaling 520 observations. Our main variable of interest, the RPR, has a mean value 

of 0.6%. This means that on average, the nominal interest rate is set 0.6% higher than the rate 

of inflation. Additionally, the standard deviation (1.9%) of the RPR indicates that there is a 

wide range of values within the sample. The GDP variable is denominated in billions of USD. 

The standard deviation indicates that there is a large spread in GDP across countries, also 
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frequency, totaling 520 observations. Our main variable of interest, the RPR, has a mean value

of 0.6%. This means that on average, the nominal interest rate is set 0.6% higher than the rate

of inflation. Additionally, the standard deviation (1.9%) of the RPR indicates that there is a

wide range of values within the sample. The GDP variable is denominated in billions of USD.

The standard deviation indicates that there is a large spread in GDP across countries, also
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illustrated by looking at the min and max values. In comparison, the unemployment is closer 

spread around its mean, but has some minor outliers. The renewable energy consumption on 

total energy consumption and foreign direct investments is denominated as percentages. The 

negative minimum value of the FDI variable arises when some countries in our sample have 

observation of more foreign divestments than investments during a year.  

Table 2: Total Descriptive Statistics 

Statistic N Mean St. Dev. Min Max 
Green 520 401.9 739.9 0.0 3,685.0 
Brown 520 45.6 100.9 0.0 782.3 
GR 520 2.9 2.8 0.1 19.9 
LCE supply 520 82.8 153.9 0.0 939.5 
Enabling 520 80.3 170.0 0.0 989.9 
End-use 520 238.8 462.3 0.0 2,541.6 
RPR 520 0.6 1.9 -6.4 10.5 
MBP 520 1.4 0.8 0.0 4.0 
NMBP 520 4.4 1.3 0.0 6.0 
TS 520 2.1 1.2 0.0 6.0 
GDP 520 1,497.4 2,956.3 20.3 20,527.2 
Unem 520 7.6 4.2 2.1 27.5 
REC 520 14.1 15.2 0.2 72.4 
FDI 520 5.1 10.2 -40.1 86.5 

Table 2 presents the descriptive statistics for all dependent, independent, and control variables included in our regression 

analysis. The table contains data from 1999 to 2018, from 26 OECD countries, amounting to 520 observations in total. The 

table reports the number of observations, mean, standard deviation, minimum and maximum values. Variables in absolute 

values.  
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4. Econometric methodology  

Our data sample consists of 20 years of observations of patent applications in 26 countries and 

is labeled as panel data. To decide whether fixed- or random effect is the best fitted estimator, 

we run a Hausman test. The results are presented in Appendix 7.4 and show that the fixed 

effects is our preferred estimator. 

To examine the impact of the RPR on green patent applications, we use the panel fixed effect 

model with country fixed effects and a linear time trend. The linear time trend is added due to 

our observations spanning over a short period of time. Additionally, when the ECB increases 

the policy rate, they do it simultaneously for 12 of the countries in our data sample. Including 

a year fixed effect would simply kill most of the effect from the change in the ECB nominal 

policy rate, as it is naturally trending over the years across countries. Thus, a linear time trend 

is added as compensation for time fixed effects. Our main empirical model is: 

Equation 2: Empirical Model  

𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖𝑖𝑖+1) =  𝛽𝛽1𝑹𝑹𝑹𝑹𝑹𝑹𝒊𝒊𝒊𝒊 +  𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 +  𝛽𝛽4𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽5ln(𝐺𝐺𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖 +  𝛽𝛽6𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖 +
𝛽𝛽7𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 + 𝛽𝛽8𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖  +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑎𝑎𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

where the dependent variable Yit+1 represents the number of green patent applications, brown 

patent applications, or GR for any country i in year t+1. The dependent variables have been 

transformed with the natural logarithm (ln). The variable is leaded by one year instead of 

lagging all the independent variables as the R&D process tends to lead to a first patent 

application within the year (De Rassenfosse & Guellec, 2009). We include the variables as 

presented in Chapter 3.2, whereas the RPRit represents our independent variable of interest, 

the real policy rate. The Market Based Policy (MBPit), Non-Market Based Policy (NMBPit), 

and Technology Support (TSit) represent the three subcategories of the EPS index. 

Furthermore, ln(GDP)it denotes the natural logarithm of the Gross Domestic Product, and 

Unemit designates the unemployment rate as a % of the total labour force in each country. 

RECit represents renewable energy consumption as a % of total energy consumption. The final 

control variable FDIit denotes the net inflow (% of GDP) of Foreign Direct Investment. 

Furthermore, timet is the linear time trend. 𝑎𝑎𝑖𝑖 represents the time-invariant unobserved 

individual-specific effect, and 𝜀𝜀𝑖𝑖𝑖𝑖 is the error term. 
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In a fixed effects model, Abadie et al. (2017) show that it is only necessary to cluster the 

standard errors if there is heterogeneity in treatment effects, and there is clustering in the 

sample or the assignment. Our sample of OECD countries is not randomly selected, which is 

why we apply clustered standard errors by country in our model. The clustered standard errors 

allow for unrestricted forms of serial correlation and heteroskedasticity in the error terms 

within the OECD countries (Wooldridge, 2019).  

Moreover, we weight our model according to each country’s GDP, to ensure that the data from 

the larger economies has a greater influence on the overall results. The main reason behind 

this decision is that it is the larger economies in our sample who are the main contributors to 

green innovation. By weighting the model according to the scale of the economy, we reduce 

the impact of random fluctuations from low inventive countries. Low inventive countries could 

be considered as countries which consistently file for patents in the proximity of zero. An 

increase or decrease by a few patents for these countries could thus make a huge impact as 

there is a drastic change in percentage for each observation. This could potentially cause bias 

in our coefficients. Hence, weighting according to a country’s GDP allows us to get a more 

representative result of the underlying trends in the data, and helps us smooth out the short-

term fluctuations. To ensure the validity of our weighting scheme, we conduct two robustness 

checks. First, we apply equal weight to each country. Secondly, we exclude the US to control 

for the country’s large GDP. These controls allow us to assess the sensitivity of our results to 

the choice of weighting scheme. 

To further ensure the validity of the model and variables, we perform multiple tests and checks 

to examine the assumptions underlying the OLS (ordinary least squared), which is included in 

Appendix 7.5. To summarize, we start by validating the need to cluster the standard errors by 

performing a Breusch-Godfrey test for serial correlations, and a Breusch-Pagan test for 

heteroskedasticity in the error term. Thereafter, we remove Turkey from our sample to avoid 

bias in our regression analysis, due to the RPR’s deviation from the rest of the sample. We 

also consider whether there exists multicollinearity between our explanatory variables. 

However, we find no evidence of a strong or perfect correlation. Finally, we include a minor 

discussion regarding the satisfaction of the zero conditional mean assumption. The model is 

considered satisfactory, although we warn that one should be careful with causal 

interpretations. 
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5. Empirical results 

In this section, we present the results of our regression analysis. We begin by presenting the 

results from our simple OLS regression. Furthermore, we also include several control variables 

that are known to impact the development of green innovation, as discussed in Chapter 2.2. 

To assess the validity of our results, we conduct a series of robustness checks.  

In advance of investigating the relationship between the level- and ratio of green patent 

applications, we do a follow-up test of the simple model of Zhang et al. (2020). As the study 

of the impact of policy rates on patent applications is a relatively new field, this provides a 

starting point for further investigation of our hypotheses. The simple model in Appendix  7.6 

indicates that there are differences between the datasets, and that there is an inverse 

relationship between the policy rate and innovation in general.  

5.1 Hypothesis 1 

Total Green Innovation 

We will now examine our first hypothesis and explore if there exists a significant relationship 

between the RPR and the level of green innovation. To examine the relationship, we start by 

running a simple OLS regression model. We continue by performing several panel fixed effect 

regressions with country fixed effects and a linear time trend. To remind you, our first 

hypothesis is:  

H1: An increase in the RPR will depress the level of green innovation. 

The results from the regression analysis of the green innovation are presented in Table 3. The 

simple OLS regression suggests that a one percent increase in the RPR is associated with a 

28% decrease in the level of green innovation, at a 1% significance level, in the following 

year. The reason for the effect happening in the following year is because the dependent 

variable includes a one-year time lead. However, as the result is based on a simple OLS, it 

expresses a correlation between the RPR and the level of green innovation. To check the 

validity of the relationship, we introduce several control variables, together with country fixed 

effect, as visible in columns (2) to (8) of Table 3. The slope of the RPR suggests a negative 

relationship to the level of green patent applications. Looking at column (8), the coefficient is 

negatively statistically significant when introducing all control variables, at a 5% significance  
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Table 3: Regression Analysis Hypothesis 1 

 Dependent variable:  
 ln(Greent+1) 
 (1) (2) (3) (4) (5) (6) (7) (8) 

RPR -0.280*** -0.030*** -0.034*** -0.031*** -0.027*** -0.023** -0.023** -0.021** 
 (0.066) (0.010) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009) 

MBP  0.142 0.139 0.138 0.114 0.117 0.117 0.116 
  (0.107) (0.101) (0.102) (0.080) (0.074) (0.074) (0.074) 

NMBP   0.067 0.067 -0.028 -0.030 -0.030 -0.031 
   (0.052) (0.050) (0.042) (0.036) (0.036) (0.036) 

TS    0.037 0.005 -0.001 -0.001 -0.002 
    (0.040) (0.035) (0.029) (0.029) (0.029) 

ln(GDP)     0.856*** 0.894*** 0.895*** 0.898*** 
     (0.275) (0.270) (0.267) (0.266) 

Unem      0.021** 0.021** 0.021** 
      (0.010) (0.010) (0.010) 

REC       0.0005 0.0003 
       (0.008) (0.008) 

FDI        -0.002 
        (0.002) 

time 0.011 0.048*** 0.035*** 0.031*** 0.022*** 0.021*** 0.021*** 0.021*** 
 (0.011) (0.005) (0.009) (0.007) (0.007) (0.007) (0.007) (0.007) 

Constant 6.699***        

 (0.417)        

Control(GDP) Yes Yes Yes Yes Yes Yes Yes Yes 
Country FE No Yes Yes Yes Yes Yes Yes Yes 
Year FE No No No No No No No No 
Observations 494 494 494 494 494 494 494 494 
R2 0.121 0.594 0.611 0.614 0.655 0.650 0.650 0.651 
Adjusted R2 0.118 0.569 0.586 0.589 0.632 0.625 0.625 0.625 
Note: Table 3 presents the output of our OLS regression model with country fixed effects and linear time trend. All standard 

errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s 

average GDP. The dependent variable represents the natural logarithmic of green patent applications, with one year time 

lead in all columns. The underlying data spans from 1999 to 2018, for 26 countries.  *p<0.1; **p<0.05; ***p<0.01 

level. This means that a 1% increase in the RPR is associated with a 2,1% decrease in the 

level of green innovation. Looking at column (5) to (8), we observe a positively significant 

relationship between the GDP and the level of green innovation. Looking at column (8), the 
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level of green innovation. Looking at column (5) to (8), we observe a positively significant

relationship between the GDP and the level of green innovation. Looking at column (8), the
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slope suggests that a one percent increase in GDP is related to a 0,898% increase in the level 

of green innovation, at a 1% significance level. In comparison, we observe that the 

unemployment rate coefficient is also associated with a positive impact on green innovation, 

which is surprising as the GDP and the unemployment rate tend to have an inverse 

relationship. Interestingly, we do not observe a significant relationship between the 

stringency of climate policies and the level of green innovation, which contradicts the 

findings of Zhang et al. (2022). Nor do we observe that the renewable energy consumption 

and foreign direct investment have a significant relationship with our dependent variable.  

Subcategories of Green Innovation 

In addition of running regression analysis on green innovation in general, we make use of the 

classification system in Appendix 7.1.1, to differentiate between innovation within LCE 

supply technologies, enabling technologies and end-use technologies. This enables us to 

investigate whether the RPR affects the subcategories differently, as well as if one of the 

subcategories are stronger contributors to the significance level found in Table 4. For further 

analysis, all regressions will include the same control variables as those in Table 3, column 

(8). 

As illustrated in Table 4, our data sample consists of 15% LCE supply technologies, 25% 

enabling technologies, and 60% end-use technologies. In column (1) and (2), we observe a 

negative relationship between the RPR and the level of innovation within LCE supply 

technologies and enabling technologies. However, the coefficient is not statistically 

significant, which means that the relationship cannot be inferred. We observe that a 1% 

increase in GDP is associated with a 1,4% and 0,628% in column (1) and (2) respectively. 

Seen together with the negative coefficient on the RPR, this gives an indication that 

innovation within these two technologies reacts procyclical to business cycles.   

 
Moving to column (3), we observe a negative relationship between the RPR and the level of 

end-use technologies, at a 1% significance level. The slope of the RPR coefficient suggests 

that a 1% increase is related to a 3,5% decrease of innovation within end-use technologies by 

3,5%. Hence, the significance level found on green innovation seems to be stemming from 

end-use technologies. In this model, as with the previous ones, we observe what might be a 

procyclical response of innovation to business cycles, as a 1% increase in GDP is related to a 

0.72% increase in the level of end-use technologies.  
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Table 4: Regression Subcategories of Green Innovation 

 Dependent variable: 
 ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) 
 (1) (2) (3) 

RPR -0.015 -0.015 -0.035*** 
 (0.009) (0.012) (0.009) 

MBP -0.020 0.148 0.122* 
 (0.151) (0.087) (0.070) 

NMBP -0.060 -0.076** 0.009 
 (0.115) (0.033) (0.018) 

TS 0.073 0.005 -0.044 
 (0.069) (0.037) (0.031) 

ln(GDP) 1.400** 0.628*** 0.720*** 
 (0.524) (0.177) (0.258) 

Unem 0.031** 0.014 0.024** 
 (0.014) (0.012) (0.011) 

REC -0.041** 0.011 0.001 
 (0.016) (0.016) (0.007) 

FDI -0.003 -0.002 -0.003** 
 (0.004) (0.006) (0.001) 

time 0.022 0.029* 0.028*** 
 (0.015) (0.016) (0.008) 

Control(GDP) Yes Yes Yes 
Country FE Yes Yes Yes 
Year FE No No No 
Observations 494 494 494 
R2 0.506 0.452 0.592 
Adjusted R2 0.470 0.411 0.562 
Note: Table 4 presents the output of our OLS regression model with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s 
average GDP. The dependent variables represent the natural logarithmic of LCE supply, Enabling, and End-use patent 
applications, with one year time lead. The underlying data spans from 1999 to 2018, for 26 countries.  
*p<0.1; **p<0.05; ***p<0.01 
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5.2 Hypothesis 2 

We will now examine our second hypothesis to investigate if there is a relationship between 

the RPR and the ratio of green innovation. To investigate the relationship, we run panel fixed 

effect regressions with country fixed effects and a linear time trend. To remind you, our second 

hypothesis is as follows:  

H2: An increase in the RPR will depress the level of green innovation more than brown 

innovation. 

Before investigating the ratio between green and brown patent applications, we individually 

explore the relationship between the RPR and level of brown innovation. We thus start by 

making use of brown patent applications as the dependent variable, before continuing with the 

GR. Besides weighting our model for each country’s GDP, we run an additional regression 

where we weight the model by each country’s last ten-year production and refinery capacity 

of oil, gas, and coal15. This allows us to examine whether economies with a greater reliance 

on fossil fuel resources are more affected by a change in the RPR, as countries with a greater 

share of natural resources tend to be the primary drivers of innovation in fossil fuel related 

technologies.  

The results from the regression analysis performed to explore hypothesis 2 are reported in 

Table 5. In column (1), the coefficient of the RPR suggests a negative relationship to the level 

of brown innovation, but this relationship is not statistically significant. However, when 

weighting each country by its respective last ten-year production and refinery capacity, we 

obtain a negatively significant relationship, as illustrated in column (2). The negative 

relationship implies that brown innovation within countries which have a larger share of 

natural resources are negatively affected by an increase in the RPR. In comparison to green 

innovation, we observe that brown innovation also might react procyclical to business cycles, 

as RPR is negatively related brown innovation, whereas GDP has a positive relationship.  

Furthermore, we find no evidence in column (3) and (4) to support our hypothesis that an 

increase in the RPRs depresses the ratio of green innovation. Nor do we observe that any of 

 

15 Data source: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-
review/bp-stats-review-2022-full-report.pdf 
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the control variables have an impact on the ratio of green innovation. However, it might be 

that countries with large natural resources get simultaneously affected by an increase in the 

RPR, which may be why we do not observe any effect on the GR in column (4). 

Table 5: Regression Analysis Hypothesis 2 

 Dependent variable: 
 ln(Brownt+1) ln(GRt+1) 
 (1) (2) (3) (4) 

RPR -0.006 -0.021** -0.009 -0.002 
 (0.014) (0.010) (0.016) (0.019) 
MBP 0.018 -0.040 -0.038 -0.251 
 (0.092) (0.110) (0.129) (0.229) 
NMBP -0.121** -0.054 0.061 0.068 
 (0.054) (0.066) (0.072) (0.111) 
TS 0.131*** 0.169*** -0.058 -0.069 
 (0.038) (0.025) (0.051) (0.055) 
ln(GDP) 0.853*** 1.018*** 0.547 -0.517 
 (0.214) (0.276) (0.486) (0.697) 
Unem 0.039** 0.044* -0.008 -0.013 
 (0.014) (0.022) (0.009) (0.012) 
REC -0.012 -0.010 -0.028 -0.048 
 (0.021) (0.019) (0.020) (0.044) 
FDI -0.001 -0.001 -0.002 0.0002 
 (0.003) (0.003) (0.005) (0.007) 
time -0.007 -0.042*** 0.028 0.077* 
 (0.018) (0.013) (0.017) (0.039) 

Control(GDP) Yes No Yes No 
Control(OGC) No Yes No Yes 
Country FE Yes Yes Yes Yes 
Year FE No No No No 
Observations 494 494 494 494 
R2 0.177 0.136 0.250 0.099 
Adjusted R2 0.117 0.072 0.194 0.032 
Note: Table 5 presents the output of our OLS regression with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. Columns (1) and (3) are weighted by each country’s 
average GDP, meanwhile columns (2) and (4) are weighted by each country’s last ten-year production and refinery 
capacity of oil, gas, and coal. The dependent variables in column (1) and (2) represent the natural logarithmic of brown 
patent applications, while the dependent variables in columns (3) to (4) represent the natural logarithmic of the GR. The 
underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 
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5.3 Robustness analysis  

To check the validity of our results thus far, we run a series of robustness checks. These include 

utilizing a different measure of the RPR, substituting the RPR for the nominal policy rate and 

inflation, running different time leads, splitting our sample in two sub-periods, using equal 

weights, and omitting the US. All regression models are included in Appendix 7.7. 

5.3.1 Alternative RPR  

Because firms cannot lend at the exact same rate as the CB policy rate, we utilize the RPR 

obtained from the World Bank16. This RPR represents the lending rate adjusted for each 

country`s respective GDP deflator. The lending rate might be a more accurate measure because 

it takes into account the interest margin that firms pay to borrow from financial institutions, 

on top of the nominal CB policy rate, as the lending rate consist of the nominal CB policy rate 

plus an interest margin.  

When substituting the original RPR, we observe that the significant effect of the RPR on green 

innovation vanishes in Table 19 column (1). The main reason for the drop in significance is 

mainly because the significance level of the RPR on innovation within end-use technologies 

drops from 1% to 10%, as observed in column (4). Remember, the end-use technologies 

represent approximately 60% of green innovation. Since the effect of the RPR within this 

technology decrease, the significance level is not strong enough to impact the total level of 

green innovation. Moreover, the substitution of RPR has no influence of the results when 

investigating the ratio of green innovation. These findings align with the same effect observed 

when using the original RPR.  

5.3.2 Nominal policy rate and inflation  

Our second robustness test, consist of replacing the original RPR by the nominal CB policy 

rate and inflation. This enables us to individually investigate the relationship between the two 

factors that the original RPR consists of. It is important to note that there might be difficulties 

interpreting the relationship between the nominal policy rate and inflation. For instance, there 

is often an inverse relationship between the two variables. However, the relationship is not 

 

16 Data source: https://data.worldbank.org/indicator/FR.INR.RINR 
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always consistent, as there may be other external factors influencing the relationship, such as 

economic growth and the unemployment rate. In addition, a change in the nominal policy rate 

might affect the inflation rate, and vice versa. Thus, one need to carefully consider the potential 

confounding effects of one another. 

In Table 20, we observe that the inflation is the driver behind the RPR, as we see that the 

inflation coefficient is positively statistically significant for all types of technological 

innovation, except for innovation within enabling technologies. One way to interpret this 

result, is as inflation increases, it indicates that the economy is growing, which positively 

impact the level of green innovation. However, if the CBs increase the nominal policy rate to 

mute inflation, the action will indirectly make a negative impact on green innovation, as the 

action may simultaneously decrease the inflation in the economy. Nonetheless, one should be 

careful when interpreting this relationship. 

5.3.3 Time leads 

Our third robustness check includes applying different time leads on our dependent variables 

when investigating the effect of the RPR on the level and ratio of green innovation. In this 

way, we can explore if the changes in our main variable of interest have short, intermediate, 

or long-term effects on our dependent variables. According to De Rassenfosse and Guellec 

(2009), the R&D process can last as many as five years. Thus, we conduct a sensitivity analysis 

applying different time leads reaching from 2 to 5 years. 

Table 21 reports the time leads for green innovation, its subcategories, and the GR, ranging 

from 2 to 5 years. For green innovation, we observe a short to intermediate-term effect from 

the RPR. However, when looking at the long-term effect with a 5-year lead, we do not observe 

a significant relationship. This indicates that the RPR effect on the invention process of green 

technologies seems to take on average 1 to 4 years. 

For innovation within LCE supply technologies, we observe an intermediate to long-term 

effect from the RPR. Furthermore, we do not observe any significant relationship between our 

main variable of interest and innovation within enabling technologies, for any time leads 

performed. This observation is in line with the result obtained with our main model in Table 

4, column (2).   
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performed. This observation is in line with the result obtained with our main model in Table

4, column (2).



 42 

In contrast to innovation within LCE supply technologies, the relationship between the RPR 

and the level of innovation within end-use technologies is associated with a short to 

intermediate-term effect. There seems to be different time horizons from the effect of the RPR 

and innovation observed between the two technologies. The difference in time horizon might 

arise because end-use technologies are less mature than LCE supply technologies. Therefore, 

further developing LCE supply technologies might be more time consuming, and the impact 

from the RPR on innovation output might take a longer period.  

Finally, from column (19) to (20), we observe an inverse long-term relationship between the 

RPR and the ratio of green innovation, which indicates that the GR might eventually be 

negatively affected by an increase in the RPR. The main reason for this is because the GR only 

includes green innovation within LCE supply technologies, which we observed had an 

intermediate to long term relationship with the RPR. However, the adjusted r-squared is 

relatively low for these regressions, so one should be careful to interpret the relationship 

casually. Furthermore, when we apply weights to the GR by natural resources we observe the 

same long-term effect on the GR, however, this is not reported in Table 21 as it provides us 

with an almost identical result.  

5.3.4 Split sample  

As our period consist of 20 years, this robustness test involves splitting the sample in two 

periods. We do this to control for the potential effects only impacting a certain period. The 

first periods span from 1999 to 2008, and the second period from 2009 to 2018.  

The main takeaways from Table 22 and Table 23, is that we observe the relationship between 

the RPR and the level of green innovation to be insignificant during the first period, while the 

relationship in the second period becomes statistically negatively significant at a 5% level. On 

the other hand, the RPR had significant effect on innovation within enabling technologies in 

the first period, but the significant effect disappears during the second period. Finally, the 

financing conditions for innovation within end-use technology seems to be more important 

during the second period since the coefficient decreases substantially. This indicates that an 

increase in the RPR will have a stronger negative impact on the level of end-use technologies 

innovation in the second period compared to the first.  
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5.3.5 Equal weights per country 

Rather than weighting our model by GDP, we conduct a robustness check where the countries 

are equally weighted. By comparing the results of the main model with those of the equal-

weighted robustness check, we can observe whether the main model was influenced or biased 

by the decision to weight the countries by their GDP. This provides us with valuable insights 

and help to ensure the robustness and validity of our analysis.  

When we include equal weights across countries in Table 24, column (1), the significance 

level of the RPR coefficient on green innovation vanishes. One factor that contributes to this 

is that the significance of the RPR on innovation within end-use technologies drops from 1% 

in our main model to 5% in Table 24, column (4). As a result, the RPR`s impact on innovation 

within end-use technologies is not significant enough to drive the overall significance of its 

effect on total green innovation. This indicates that the result from our main model is impacted 

by the choice of weights.   

5.3.6 Omitting the US 

The US have a four times larger GDP than the next largest economy in our sample, as 

expressed in Figure 6 in Appendix 7.7. Since we weight our countries by GDP in our main 

regression, the US are given a higher percentage of emphasis than the other countries in our 

sample. To ensure that our results are not driven by the US, we conduct a robustness check 

where we exclude them. 

When the US is omitted from our sample, we obtain results similar to those obtained with 

equal weighting, as seen in Table 25. This suggests that the weighting of the US by its GDP 

is the primary driver influencing our results on green innovation in our main model.  
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6. Discussion  

This section presents our interpretation of the regression results. We encounter funding 

channels and business cycles when discussing the results. Furthermore, limitations to our 

analysis are presented and discussed. 

6.1 Interpretation of results  

The regression analysis performed in the previous chapter showed that the level of green 

innovation is negatively associated with an increase in the RPR. However, our robustness 

checks revealed multiple weaknesses in the relationship between the RPR and green 

innovation, suggesting that the relationship might not be as reliable as initially indicated. In 

addition, by further investigating the three subcategories of green innovation, we also observed 

that the negative relationship was highly influenced by innovation within end-use 

technologies, which had a negatively statistically significant relationship with the RPR in all 

our robustness checks. Finally, we observed that an increase in the RPR is associated with a 

negatively long-term effect on the GR, although the evidence we presented was weak.  

To interpret the results from the level of green innovation, we start out by looking into the 

funding channels of innovation. As stated by Hall and Lerner (2010), the cost of financing 

innovation with external funds is higher than with internal funds. Therefore, firms might prefer 

internal cash flows over debt and equity issuance, in line with the pecking order theory (Myers, 

1984). The American firm Intel Corporation is one example of a firm preferring internal cash 

flow, as their capital structure policy states that the company should maintain an abundance 

of internal cash to fund multiple years of R&D activities, to avoid being subject to fluctuations 

in the capital markets (Berk & DeMarzo, 2016). However, even though firms prefer internal 

cash flows over external funds to finance innovation, they are still exposed to an increase in 

the RPR. When the RPR increases, the real cost of other obligations within the company 

increasesR. This can reduce the amount of funds the company has available to invest in the 

R&D activities, which increases the opportunity cost of capital. The increased opportunity 

cost could ultimately result in firms prioritizing investments in other parts of the business 

areas, reducing innovation and technological output. Such evidence was found by Heger 

(2004), which argued that an increase in the real interest rate increased the probability to cease 

ongoing innovation activities. Our results suggest that an increasing RPR will lead to fewer 
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green patent applications. However, the effect might be different depending on factors such as 

size and industry of firms. Thus, further research is needed in order to fully understand whether 

an increase in the RPR will increase the probability of abandoning green innovation activities 

and projects. 

In the case where firms finance innovation by debt, an increase in the RPR will in general 

increase both the WACC and the cost of debt for most firms. An increase in the RPR makes 

the true cost of financing innovation by debt more expensive, as well as the existing debt the 

company is serving. The increased costs might result in firms reducing their willingness and 

ability to invest in R&D projects.  

Based on the described effect of increased RPR on internal and external funds, both suggest a 

negative relationship between the RPR and the level of green innovation. The results obtained 

from our main model suggest weak evidence that as the true cost of borrowing increases, the 

level of green innovation decreases, lending support to the effects described above. We find 

strong evidence on the same mechanism for end-use technologies. Moreover, we performed 

different time leads on the subcategories of green innovation. Then we find weak evidence 

that all subcategories and the GR eventually are associated with a negative impact by an 

increase in the RPR.  

Our findings on the effect of RPR on green innovation contradict Aghion et al. (2022), which 

argues that the monetary policy channels that affect the bank lending facilities have little or 

no material effect on green patenting, as banks are not involved in the innovation of new 

technologies. Relatedly, further research could use firm level data to investigate whether firms 

financing green innovation activities with internal cash flows over external funds are less 

exposed to an increase in the RPR. Understanding how firms responds to changes in the RPR 

with regard to their funding channel could provide valuable insight for policymakers.  

However, there exists arguments for R&D investments being different from traditional 

investments in tangible assets. For example, because R&D investments are considered as long-

term investments, and once a large investment in human capital is done, the cost is 

characterized as sunk cost. In fact, 50% or more of R&D expenditures consist of wages and 

salaries of R&D employees (Hall & Lerner, 2010). As a result of such high adjustment costs, 

and the long-term characteristics, firms might be reluctant to cease innovation midway through 

the process. During one of the most famous economic contractions, the financial crisis of 2008, 
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Intel Corporation Group deliberately sustained R&D investments to maintain the company`s 

long-term viability (Berk & DeMarzo, 2016). Nonetheless, such evidence was not found in 

our analysis.  

To further interpret our results, we encounter the effect of business cycles on innovation, 

which might also play a significant role in the level and ratio of green innovation. Our 

regression results suggest that green innovation responds procyclical to business cycles, as a 

decrease in the RPR enhances the level and ratio of green innovation. During economic 

expansions, inventors may be more likely to increase innovation as they have easier access to 

capital and favourable markets for the adoption of green technologies. For firms relying on 

internal funds such as retained earnings to finance innovation, economic expansions might 

increase their ability and accessibility to obtain these funds. Our findings provide evidence in 

the similar direction as Hingley and Park (2017) which finds that patent filings of the EPO 

respond procyclical to business cycles.  

On the other hand, our findings reject that innovation within green technologies react 

countercyclical to business cycles. The countercyclical behaviour of innovation could be 

explained by firms smoothing their R&D expenditure to continuously produce innovation 

output, even during economic contractions. For example, during the financial crisis, Intel 

Corporation Group smoothed their R&D expenditure by reducing investments in other 

business departments, a strategy referred to as “the opportunity cost effect” by Hingley and 

Park (2017), which argues that the opportunity cost of conducting research is lower during 

economic contractions. Furthermore, a reduction of investments in the R&D department might 

lead to potential risk for firms. If the knowledge obtained through R&D projects are embedded 

in the employee and not codified, they might run the risk of losing important intangible assets 

for firms to profit from in the future. Therefore, smoothing their R&D expenditure over time 

may reduce the risk of losing human capital and to sustain enough capital to fund these R&D 

projects during all stages, from idea creation to commercialization. Nevertheless, evidence of 

countercyclical behavior was not found in our regression analysis. To gain a deeper 

understanding of how green innovations respond to business cycles, it is necessary with further 

research which examines the impact of business cycles on green innovation in greater detail. 
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6.2 Limitations of our study 

There are several limitations to our thesis. The main limitations are associated with the final 

dataset used to perform regression analysis. First, the dataset is structured with annual 

observations. This is because the standard EPO patent filing reporting is conducted on an 

annual basis. It would have been beneficial to work with shorter frequency, for example 

matching the frequency of CB policy meetings, to capture every movement in the policy rate.  

Other limitations arise from the fact that we have few years of observations. This limitation is 

mainly because of the ECB, which was not established until 1999. We were unsuccessful in 

our attempt to gather the policy rates of our sample before the establishment of the ECB. 

Hence, we were unable to use the full dataset of patent applications, which is available since 

1977. In addition, the combination of few years of observations and the inclusion of multiple 

members of the ECB, made it ineffective to include year fixed effect in our model. Thus, we 

added a linear time trend as compensation. 

Furthermore, it might be considered naïve of us to count every patent application with equal 

value. This thesis aimed at understanding whether an increase in the RPR compromised the 

increasing need for green innovation. Thus, we made use of patent applications as it is 

primarily a measure of innovation activity or efforts (Klementsen, 2015). This gave us an 

indication whether the intensity of green innovation remained stable in times of monetary 

tightening. Even though there is significant effect on the number of patent applications, there 

still might be a situation where more frequently cited patents are not impacted by changes in 

the policy rates. If this is the case, an increase in the policy rate may not influence the transition 

to a greener economy.  
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7. Conclusion  

This thesis aims to investigate whether the real policy rate (RPR) impacts the level and ratio 

of green innovation. To do this, we analyze green innovation within 26 OECD countries using 

patent application data from 1999 to 2018. Our study is based on two hypotheses, which we 

test using a panel fixed effect model with country fixed effects and a linear time trend. We 

include several control variables that are associated to the development of green innovation, 

such as environmental policies, business cycles indicators, foreign direct investments, and 

renewable energy consumption. We also conduct several robustness analyses to validate our 

results.  

Our findings lend stronger support to our first hypothesis than the second, which indicates that 

the RPR is associated with a negative effect on both the level and ratio of green innovation. 

However, we observe that our weighting scheme by GDP highly favors the US, which is a 

strong contributor to the relationship between the level of green innovation and the RPR. 

Additionally, we provide strong evidence that this relationship is highly influenced by end-

use technologies. The relationship between the RPR and end-use technologies remained 

statistically significant through all robustness checks. The findings suggest that the CB’s 

mandate of price stability may be a threat to the development of green innovation. 

Furthermore, we provide weak evidence of a long-term effect, in which innovation within LCE 

supply related technologies is de-prioritized in favor of brown innovation during times of 

monetary tightening. Our findings contribute to the limited literature and growing discussion 

about the role of CBs in the energy transition, and how their monetary policy, through the 

RPR, impact the level and ratio of green innovation.  

The mechanism behind the negative relationship between the RPR and the level and ratio of 

green innovation could potentially be explained through the RPR impact on the opportunity 

cost of capital and WACC. This impacts firm’s willingness and ability to invest in R&D 

related projects, potentially decreasing innovation, and technological output. Relatedly, we 

observe that the level and ratio of green innovation responds procyclical to business cycles.  

Our thesis adds to the current discussion about CB role in the energy transition, as we provide 

evidence that CB monetary policy can have an impact on the level and ratio of green 

innovation. However, we are aware of the CBs mandate of market neutrality. Despite that, 

policymakers should be aware of this relationship when formulating monetary policy. 
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Appendix 

7.1 Classifications  

7.1.1 Classifying green patent applications 

To classify green patents, we have made use of IEA’s cartography of LCE technologies 

(Ménière et al., 2021). Table 6 presents the category of the technology from the left. We have 

utilized the three main technologies as patent count for our dependent variables LCE supply, 

Enabling and End-use. The next two columns display the subclasses of each technology. The 

last column shows the CPC code used to classify the green patent application. After following 

this procedure, we are left with 279,748 patents. Finally, we count all patents as green patents, 

unless the patent application shares a CPC class with brown patents. We are then left with our 

final count of 269,662 green patent applications since 1977.  

Table 6: The IEA Classification System – Green Patent Applications 

Technology Sub class Sub-class 2 CPC code 

Low-carbon 
energy supply 

Wind  Y02E10/70/Low 

 
Solar 

Solar PV Y02E10/50/Low 
Solar Thermal Y02E10/40/Low 
Other Solar Y02E10/60 

Other renewables 

Geothermal 
energy 

Y02E10/10/Low 

Hydro Y02E10/20/Low 
Marine Y02E10/30/Low 
Other Y02E10/00 

Technologies for the 
production of fuel of 
non-fossil origin 

Biofuels  Y02E50/10 
Fuel from waste Y02E50/30 
Other Y02E50/00 

Combustion technologies with mitigation 
potential 

Y02E20/00/Low 

Energy generation of nuclear origin 
(electricity) 

Y02E30/00/Low 

Enabling and 
cross-cutting 
energy systems 
(enabling 
technologies) 

CCUS Y02C20/00/Low 
Batteries Y02E60/10 
Hydrogen and fuel cells Y02E60/30/Low 

Other  

Y02E60/00 OR 
Y02E60/13 OR  
Y02E60/14 OR  
Y02E60/16 OR  
Y02E70/00/Low OR  
Y02E60/60 OR  
Y02E40/00 OR 
Y02E40/10, 20, 30, 40, 50, 60 
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Appendix

7.1 Classifications

7.1.1 Classifying green patent applications

To classify green patents, we have made use of IEA's cartography of LCE technologies

(Meniere et al., 2021). Table 6 presents the category of the technology from the left. We have

utilized the three main technologies as patent count for our dependent variables LCE supply,

Enabling and End-use. The next two columns display the subclasses of each technology. The

last column shows the CPC code used to classify the green patent application. After following

this procedure, we are left with 279,748 patents. Finally, we count all patents as green patents,

unless the patent application shares a CPC class with brown patents. We are then left with our

final count of 269,662 green patent applications since 1977.

Table 6: The IEA Classification System - Green Patent Applications

Technology Sub class Sub-class 2 CPC code
Wind Y02El 0/70/Low

Solar PV Y02E10/50/Low

Solar Solar Thermal Y02E10/40/Low
Other Solar Y02E10/60
Geothermal
energy

Y02El Oll0/Low

Other renewables Hydro Y02El0/20/Low
Low-carbon
energy supply

Marine Y02E10/30/Low
Other Y02E10/00

Technologies for the Biofuels Y02E50/l 0- - - - - - - - - - - - - - - - - -
production of fuel of Fuel from waste Y02E50/30- - - - - - - - - - - - - - - - - -non-fossil origin Other Y02E50/00
Combustion technologies with mitigation Y02E20/00/Low

otential
Energy generation of nuclear origin
(electricit )

Y02E30/00/Low

ecus Y02C20/00/Low
Batteries Y02E60/10
Hydrogen and fuel cells Y02E60/30/Low

Enabling and
cross-cutting
energy systems
(enabling
technologies) Other

Y02E60/00 OR
Y02E60/l 3 OR
Y02E60/l 4 OR
Y02E60/l 6 OR
Y02E70/00/Low OR
Y02E60/60 OR
Y02E40/00 OR
Y02E40/10,20,30,40,50,60



 57 

Note: The patent classification follows IEA’s Cartography of LCE technologies. Low indicates that not only the 
class itself, but also its respective classification should be taken into account for the corresponding cartography 
level (Ménière et al., 2021). The patents have first been classified in each subclass. Thereafter, all the patents 
counted have been classified as green patents, unless the patent application shares a CPC class with brown 
patents. 
 

7.1.2 Classifying brown patent applications 

 
To classify brown patents, we have made use of IEA’s methodology for identifying fossil fuel 

supply-related technologies (IEA, 2021). Table 7 presents the fossil fuel supply categories to 

the left, followed by the technological subcategory, and the CPC codes used to classify the 

patent applications. The last two columns show the short label of the full-text search and/or 

CPC codes used to include and/or exclude patents. After following this process, we are left 

with 50,714 patents. Finally, we count all patents as brown patents, unless the patent 

application shares a CPC class with green patents. We are then left with our final count of 

40,628 brown patent applications since 1977. 

 

Smart grids Y04S 

Energy 
substitution 
and efficiency 
in end use (end-
use 
technologies) 

Buildings Y02B 

Production/chemical and oil refining Y02P20/00/Low OR 
Y02P30/00/Low 

Production/metal and minerals processing Y02P10/00/Low OR 
Y02P40/00/Low 

Production/other 

Agriculture Y02P60/00/Low 
Consumer 
products 

Y02P70/00/Low 

Other 
production 

Y02P80/00/Low OR 
Y02P90/00/Low 

Transportation/ 
electric vehicles and 
EV infrastructure 

EV and 
infrastructure 

Y02T90/40/Low 

Fuel cells for 
road vehicles 

Y02T90/40/Low 

Transportation/other road technologies 

Y02T10/00 OR  
Y02T10/10/Low OR 
Y02T10/80, 82, 84, 86, 88, 90 
OR Y02T90/00 

Other transportation/ 
aeronautics, maritime 
and railways 

Aeronautics Y02T50/00/Low 
Maritime and 
waterways 

Y02T70/00/Low 

Railways Y02T30/00 

Computing and communication Y02D10/00 OR 
Y02D30/00/Low 
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Smart grids Y04S
Buildings Y02B

Production/chemical and oil refining Y02P20/00/Low OR
Y02P30/00/Low

Production/metal and minerals processing Y02Pl0/00/Low OR
Y02P40/00/Low

Agriculture Y02P60/00/Low

Production/other
Consumer
products

Y02P70/00/Low

Energy
substitution Transportation/
and efficiency electric vehicles and
in end use (end- EV infrastructure
use
technologies)

Other
production

Y02P80/00/Low OR
Y02P90/00/Low

EV and
infrastructure

Y02T90/40/Low

Fuel cells for
road vehicles

Y02T90/40/Low

Transportation/other road technologies

Y02Tl 0/00 OR
Y02Tl Oll0/Low OR
Y02Tl 0/80, 82, 84, 86, 88, 90
OR Y02T90/00

Other transportation/
aeronautics, maritime
and railways

Aeronautics Y02T50/00/Low
Maritime and
waterways

Y02T70/00/Low

Railways Y02T30/00

Computing and communication Y02D10/00 OR
Y02D30/00/Low

Note: The patent classification follows IEA's Cartography ofLCE technologies. Low indicates that not only the
class itself, but also its respective classification should be taken into account for the corresponding cartography
level (Meniere et al., 2021). The patents have first been classified in each subclass. Thereafter, all the patents
counted have been classified as green patents, unless the patent application shares a CPC class with brown
patents.

7.1.2 Classifying brown patent applications

To classify brown patents, we have made use ofIEA's methodology for identifying fossil fuel

supply-related technologies (IEA, 2021). Table 7 presents the fossil fuel supply categories to

the left, followed by the technological subcategory, and the CPC codes used to classify the

patent applications. The last two columns show the short label of the full-text search and/or

CPC codes used to include and/or exclude patents. After following this process, we are left

with 50,714 patents. Finally, we count all patents as brown patents, unless the patent

application shares a CPC class with green patents. We are then left with our final count of

40,628 brown patent applications since 1977.
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Table 7: The IEA Classification System – Brown Patent Applications 

Fossil fuel 
supply 
category  

Technology CPC code Filtering 
including 
queries 

Filtering 
excluding 
queries 

Upstream Conventional 
oil and gas 

exploration and 
extraction 

B03B9/02   
B03D2203/006   
B63B35/4413 [1],[2],[4]  
B63B2035/442 [1],[2],[4]  
B63B2035/448 [1],[2],[4]  
B63B75/00 [1],[2],[4]  
C09K8/Low   
C10L5/04   
E02B17/00 [1], [8] [10] 
E02B17/0004 to 
E02B2017/0039/ Low 

[1], [8] [10] 

E02B2017/0056/Low to 
E02B2201/00/Low 

[1], [8] [10] 

E21B1/00/ Low to 
E21B41/00/Low 

[1], [2], [4], [8] [12] 

E21B43/00 [1], [2], [4], [8] [12] 
E21B43/003 [1], [2], [4], [8] [12] 
E21B43/006 [1], [2], [4], [8] [12] 
E21B43/01/Low [1], [2], [4], [8] [12] 
E21B43/02/ Low to 
E21B43/12/ Low 

[1], [2], [4], [8] [12] 

E21B43/14 [1], [2], [4], [8] [12] 
E21B43/16/ Low [1], [2], [4], [8] [12] 
E21B43/25/ Low [1], [2], [4], [8] [12] 
E21B43/28/ Low to 
E21B43/34/ Low 

[1], [2], [4], [8] [12] 

E21B44/00/ Low to 
E21B49/00/ Low 

[1], [2], [4], [8] [12] 

Upstream Unconventional 
oil and gas 

exploration and 
extraction 

E21B43/26/Low [1], [2], [4], [8]  
 E21B7/04/Low [1], [2], [4], [8]  
 E21B43/16/Low [1], [2], [4], [8]  
 E21B43/006 [1], [2], [4], [8]  
 E21B41/0099 [1], [2], [4], [8]  
 Coal and solid 

fuels 
exploration and 

mining 

B03B9/005   
 B03B1/00/Low [1], [3]  
 B03D2203/08   
 B61D11/00/Low [1], [3]  
 E21C25/00/Low to 

E21C51/00/Low 
[1], [3]  

Processing and 
downstream 

Oil refining C10G2/00/ Low to 
C10G99/00/Low 

  

C10G1/00, C10G1/002 to 
C10G1/042, C10G1/047 
to C10G1/10 
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Table 7: The IEA Classification System - Brown Patent Applications

Fossil fuel Technology CPC code Filtering Filtering
supply including excluding
categor:y gueries gueries
Upstream Conventional B03B9/02

oil and gas B03D2203/006
exploration and B63B35/4413 [1],[2],[4]

extraction B63B2035/442 [1],[2],[4]
B63B2035/448 [1],[2],[4]
B63B75/00 [1],[2],[4]
C09K8/Low
Cl0LS/04
E02B17/00 [l], [8] [10]
E02B17/0004 to [l], [8] [10]
E02B2017/0039/ Low
E02B2017/0056/Low to [l], [8] [10]
E02B2201/00/Low
E21Bl/00/ Low to [l], [2], [4], [8] [12]
E21B41/00/Low
E21B43/00 [l], [2], [4], [8] [12]
E21B43/003 [l], [2], [4], [8] [12]
E21B43/006 [l], [2], [4], [8] [12]
E21B43/01/Low [l], [2], [4], [8] [12]
E21B43/02/ Low to [l], [2], [4], [8] [12]
E21B43/12/ Low
E21B43/14 [l], [2], [4], [8] [12]
E21B43/16/ Low [l], [2], [4], [8] [12]
E21B43/25/ Low [l], [2], [4], [8] [12]
E21B43/28/ Low to [l], [2], [4], [8] [12]
E21B43/34/ Low
E21B44/00/ Low to [l], [2], [4], [8] [12]
E21B49/00/ Low

Upstream Unconventional E21B43/26/Low [l], [2], [4], [8]
oil and gas E21B7/04/Low [l], [2], [4], [8]

exploration and E21B43/16/Low [l], [2], [4], [8]
extraction E21B43/006 [l], [2], [4], [8]

E21B41/0099 [l], [2], [4], [8]
Coal and solid B03B9/005

fuels B03B1/00/Low [l], [3]
exploration and B03D2203/08

mmmg B61Dl 1/00/Low [l], [3]
E21C25/00/Low to [l], [3]
E21CS1/00/Low

Processing and Oil refining Cl 0G2/00/ Low to
downstream Cl 0G99/00/Low

Cl OG1/00, Cl OG1/002 to
Cl OG1/042, Cl OG1/047
to Cl OG1/10
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C10L1/00/Low [1], [2], [5] [9], [13] 
 Gas 

conditioning 
C10K1/00/Low   

 C10K3/00/Low   
 C10L3/06/Low [4], [6] [9], [13] 
 F25J3/0209/Low   
 F25J3/061 Low   
 Solid fuel 

conditioning 
C10F5/00/Low to 
C10F7/00/Low 

  

 C10L5/06/Low [3], [7] [9], [13] 
 C10L5/24 [3], [7] [9], [13] 
 C10L5/26/Low [3], [7] [9], [13] 
 C10L5/34/Low [3], [7] [9], [13] 
 Coal-to-gas C10B1/00/Low to 

C10B51/00/Low 
  

 C10B53/04 to C10B53/08   
 C10B55/00/Low to 

C10B57/00/Low 
  

 C10J1/00/ Low to 
C10J3/00/Low 

  

 Coal-to-liquids 
and gas-to-

liquids 

C01B3/22/Low [14]  
 C01B3/32/Low [14]  
 C10J3/00/Low [15]  
 Hydrogen fuel 

production 
C01B3/22/Low   

 C01B3/32/Low   
Transmission 
and 
distribution 

Liquid fuel 
pipelines 

B63B27/34 [2], [5]  
B63B27/24/Low [2], [5]  
F17D1/00/Low to 
F17D5/00/Low 

[2], [5]  

Gas fuel 
pipelines 

B63B27/24/Low [4], [6]  
 F17D1/04/Low [4], [6]  
 F17D1/065/Low [4], [6]  
 Liquid fuel 

tanker shipping 
B63B25/08/Low [2], [5]  

 B67D9/00/Low [2], [5]  
 Liquefied 

gaseous fuel 
shipping 

F25J1/0022/Low   

 Compressed 
gaseous fuel 

shipping 

B63B2025/087 [4], [6]  
 B63B25/14 [4], [6]  
 B63B25/16 [4], [6]  
 Solid fuel 

shipping 
B63B25/04 [3]  

 Road tanker 
liquid fuels 
transport 

B60P3/22/Low [11], [5]  

 Road tanker 
gaseous fuels 

transport 

B60P3/22/Low [11],[6]  

 B61D5/00/Low [2], [5]  
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C l OL1/OO/Low [l] , [2], [5] [9], [13]
Gas ClOKl/OO/Low

conditioning C l OK3/OO/Low
C l OL3/O6/Low [4], [6] [9], [13]
F25J3/O2O9/Low
F25J3/O61 Low

Solid fuel C l OF5/OO/Low to
conditioning C l OF7/OO/Low

C l OL5/O6/Low [3], [7] [9], [13]
ClOL5/24 [3], [7] [9], [13]
C l OL5/26/Low [3], [7] [9], [13]
C l OL5/34/Low [3], [7] [9], [13]

Coal-to-gas C l OB1/OO/Low to
C l OB51/OO/Low
C l OB53/O4 to C l OB53/O8
C l OB55/OO/Low to
C l OB57/OO/Low
C l OJl/OO/ Low to
C l O13/OO/Low

Coal-to-liquids CO1B3/22/Low [14]
and gas-to- CO1B3/32/Low [14]

liquids C l O13/OO/Low [15]
Hydrogen fuel CO1B3/22/Low

production CO1B3/32/Low
Transmission Liquid fuel B63B27/34 [2], [5]
and pipelines B63B27/24/Low [2], [5]
distribution F17D1/OO/Low to [2], [5]

Fl 7D5/OO/Low
Gas fuel B63B27/24/Low [4], [6]
pipelines F17D1/O4/Low [4], [6]

F17D1/O65/Low [4], [6]
Liquid fuel B63B25/O8/Low [2], [5]

tanker shipping B67D9/OO/Low [2], [5]
Liquefied F25Jl/OO22/Low

gaseous fuel
shi1212ing

Compressed B63B2O25/O87 [4], [6]
gaseous fuel B63B25/14 [4], [6]

shipping B63B25/16 [4], [6]
Solid fuel B63B25/O4 [3]
shi1212ing

Road tanker B6OP3/22/Low [11], [5]
liquid fuels

trans12ort
Road tanker B6OP3/22/Low [11],[6]

gaseous fuels
trans12ort

B61D5/OO/Low [2], [5]
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 Rail tanker 
liquid fuels 
transport 

B61D3/00/Low [2], [5]  
 B61D15/00/Low [2], [5]  
 B61D49/00/Low [2], [5]  
 Rail tanker 

gaseous fuels 
transport 

B61D3/00/Low [4], [6]  
 B61D15/00/Low [4], [6]  
 B61D49/00/Low [4], [6]  
 Rail solid fuel 

transport 
B61D7/00/Low [3], [7]  

 B61D9/00/Low [3], [7]  
 B61D3/00/Low [3], [7]  
 B61D15/00/Low [3], [7]  
 B61D49/00/Low [3], [7]  
 Underground 

liquid fuels 
storage 

B65G5/00/Low [1], [2], [5]  

 Underground 
gaseous fuels 

storage 

F17C2270/0142/Low [4], [6]  

 Stationary tank 
storage for 

liquids 

E02D27/38 [2], [5]  

 Stationary tank 
storage for 

gases 

F17B1/26 [4], [6]  
 F17C1/00/Low to 

F17C13/00/Low 
[4], [6]  

 F17C2221/032/Low   
 Solid fuel 

storage 
B65G3/00/Low [3], [7]  

 Liquid fuel 
distribution (gas 

stations) 

G01M3/2892   
 G01M3/32/Low [5]  

 Gaseous fuel 
distribution 

F17C2265/06/Low [4], [6]  

Note: The patent classification follows IEA’s methodology for identifying fossil fuel supply related technologies. Low 
indicates that not only the class itself, but also its respective classification should be taken into account for the 
corresponding cartography level (IEA, 2021). 

The search queries have here been reproduced in English. However, they have been applied 

in English, French, and German. The search queries also follow IEA’s methodology for 

identifying fossil fuel supply related technologies in patent data. The search for queries has 

been performed through the full text of the relevant patent. 

 

 

 

60

Rail tanker
liquid fuels

transport
Rail tanker

gaseous fuels
transport

Rail solid fuel
transport

Underground
liquid fuels

stora e

B6 l D3/00/Low [2], [5]
B61Dl5/00/Low [2], [5]
B61D49/00/Low [2], [5]
B6 l D3/00/Low [4], [6]
B61Dl5/00/Low [4], [6]
B61D49/00/Low [4], [6]
B61D7/00/Low [3], [7]
B61D9/00/Low [3], [7]
B6 l D3/00/Low [3], [7]
B61Dl5/00/Low [3], [7]
B61D49/00/Low [3], [7]
B65G5/00/Low [l], [2], [5]

Underground
gaseous fuels

stora e

Fl 7C2270/0142/Low [4], [6]

Stationary tank
storage for

li uids

E02D27/38 [2], [5]

Stationary tank
storage for

gases

Fl 7Bl/26 [4], [6]
Fl 7Cl/00/Low to
Fl 7C13/00/Low
Fl 7C2221/032/Low

[4], [6]

Solid fuel
stora e

B65G3/00/Low [3], [7]

Liquid fuel G01M3/2892
distribution (gas G01M3/32/Low

stations
[5]

Gaseous fuel Fl 7C2265/06/Low
distribution

[4], [6]

Note: The patent classification follows IEA's methodology for identifying fossil fuel supply related technologies. Low
indicates that not only the class itself, but also its respective classification should be taken into account for the
corresponding cartography level (IEA, 2021).

The search queries have here been reproduced in English. However, they have been applied

in English, French, and German. The search queries also follow IEA's methodology for

identifying fossil fuel supply related technologies in patent data. The search for queries has

been performed through the full text of the relevant patent.
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Table 8: Search Queries 

Queries in English Corresponding 
short label 

fossil OR (non w renewable) OR hydrocarbon? OR petrol+ [1] 
    
petroleum OR (crude w oil) OR oil [2] 
    
coal OR mineral? OR coke OR peat OR BKB OR briquette OR 
asphaltite OR ortholignite OR metaanthracite OR lignite OR hardcoal 
OR browncoal OR (brown w coal) OR (oil 2w deposit) OR (oil w bear+) 
OR bitumen OR bituminous OR (tar w sand) OR (oil w sand) 

[3] 

    
methane OR (natural w gas) OR hydrate? OR (petroleum w gas+) OR 
hydrogen OR (boil 2w gas+) OR BOG OR LNG OR LPG OR (liqui+ 2w 
(fuel? OR petroleum)) OR (liqui+ 2w gas+) OR (gaseous w fuel?) 

[4] 

    
LNG OR LPG OR (liquid w fuel?) OR diesel OR gasoline OR (jet w 
fuel?) OR (fuel w oil) OR (bunker w fuel?) OR kerosene OR (oil w 
product?) OR octane OR cetane OR propane OR butane 

[5] 

    
methane OR (natural w gas+) OR CNG OR LNG OR PLNG OR propane 
OR butane OR LPG OR Hydrate? OR (petroleum w gas+) OR hydrogen 
OR liquefied OR (compressed w gas+) 

[6] 

    
coal OR BKB OR briquette OR asphaltite OR ortholignite OR 
metaanthracite OR lignite OR hardcoal OR browncoal [7] 

    
drilling OR offshore OR onshore OR oil OR hydrocarbon? OR gas+ OR 
subsea OR seabed OR reservoir OR petroleum OR methane OR 
formation OR riser? OR (well w head) OR bop OR (blowout w 
prevent+) OR fracturing OR frack+ OR ((bottom OR down) w hole) 

[8] 

    
biomass OR biofuel OR bioethanol OR biodiesel [9] 
    
(wind w turbine) OR tower OR mast OR ((power OR electric) 3w 
generat+) [10] 

   
+tank+ OR reservoir OR citerne [11] 

Note: The search queries are to be applied to the corresponding CPC field. 

 

A singular patent has multiple CPC classes. In addition to filtering based on full-text queries, 

some of the patents are only included and/or excluded as brown patents, if they contain a 

certain CPC class. 
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Table 8: Search Queries

Queries in English Corresponding
short label

fossil OR (non w renewable) OR hydrocarbon? OR petrol+ [ l ]

petroleum OR (crude w oil) OR oil [2]

coal OR mineral? OR coke OR peat OR BKB OR briquette OR
asphaltite OR ortholignite OR metaanthracite OR lignite OR hardcoal
OR browncoal OR (brown w coal) OR (oil 2w deposit) OR (oil w bear+)
OR bitumen OR bituminous OR (tar w sand) OR (oil w sand)

[3]

methane OR (natural w gas) OR hydrate? OR (petroleum w gas+) OR
hydrogen OR (boil 2w gas+) OR BOG OR LNG OR LPG OR (liqui+ 2w
(fuel? OR petroleum)) OR (ligui+ 2w gas+) OR (gaseous w fuel?)

[4]

LNG OR LPG OR (liquid w fuel?) OR diesel OR gasoline OR Get w
fuel?) OR (fuel w oil) OR (bunker w fuel?) OR kerosene OR (oil w
product?) OR octane OR cetane OR propane OR butane

[5]

methane OR (natural w gas+) OR CNG OR LNG OR PLNG OR propane
OR butane OR LPG OR Hydrate? OR (petroleum w gas+) OR hydrogen
OR liquefied OR (compressed w gas+)

[6]

coal OR BKB OR briquette OR asphaltite OR ortholignite OR
metaanthracite OR lignite OR hardcoal OR browncoal [7]

drilling OR offshore OR onshore OR oil OR hydrocarbon? OR gas+ OR
subsea OR seabed OR reservoir OR petroleum OR methane OR
formation OR riser? OR (well w head) OR bop OR (blowout w
prevent+) OR fracturing OR frack+ OR ((bottom OR down) whole)

[8]

biomass OR biofuel OR bioethanol OR biodiesel [9]

(wind w turbine) OR tower OR mast OR ((power OR electric) 3w
generat+) [10]

+tank+ OR reservoir OR citerne [11]
Note: The search queries are to be applied to the corresponding CPC field.

A singular patent has multiple CPC classes. In addition to filtering based on full-text queries,

some of the patents are only included and/or excluded as brown patents, if they contain a

certain CPC class.
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Table 9: Additional CPC Filtering 

CPC classes Corresponding short 
label 

E21B43/26/Low OR E21B7/04/Low OR E21B7/06/Low OR 
E21B43/16/Low OR E21B43/24/Low OR E21B43/006 OR 
E21B41/0099 

[12] 

   
C10L2200/0469/Low [13] 
    
C01B2203/062  [14] 
    
C10G2/30/Low  [15] 

Note: The CPC classes are to be applied to the corresponding CPC field 

7.2 Country codes 

Table 10: Country Codes 

Country code Country 
AU Australia 
AT Austria 
BE Belgium 
CA Canada 
CH Switzerland 
CZ Czech Republic 
DE Germany 
DK Denmark 
ES Spain 
FI Finland 
FR France 
GB United Kingdom 
GR Greece 
HU Hungary 
IE Ireland 
IT Italy 
JP Japan 
KR South Korea 
NL Netherland 
NO Norway 
PL Poland 
PT Portugal 
SE Sweden 
SI Slovenia 
SK Slovak Republic 
US United States of America 
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7.3 Descriptive statistics per country 

Table 11: Per Country Green Patents 

 

Table 11 presents the per-country descriptive statistics for green patents application ranging 
from 1999 to 2018.  

Table 12: Per Country Brown Patents 

 

Table 12 presents the per-country descriptive statistics for brown patents application ranging 
from 1999 to 2018.  

Table 13: Per Country Green Ratio 

 

Table 13 presents the per-country descriptive statistics for the GR, building upon green and 
brown patent applications from 1999 to 2018.  

7.4 Hausman test 

The table shows the results after performing a Hausman test to check whether fixed- or random 

effects are the preferred estimators in our analysis. The null hypothesis is that there is no 

correlation between the time-invariant unobserved individual-specific effect and the 
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7.3 Descriptive statistics per country

Table 11: Per Country Green Patents

Green patents summary
Statistic AT AU BE CA CH CZ DE DK ES FI FR GB GR HU IE IT JP KR NL NO PL PT SE SI SK US

N 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Mean 135 69 102 184 176 12 1,886 204 124 99 716 438 6 11 18 265 2,304 658 223 38 22 9 221 5 3 2,522
St. Dev. 57 9 42 44 65 6 574 121 66 41 289 184 3 6 10 86 664 444 79 16 19 6 103 3 2 810
Min 54 48 43 84 82 l 1,039 51 25 42 285 189 l I 3 112 1,395 47 108 11 0 l 82 0 0 1,165
Max 216 86 156 232 288 21 2,719 436 192 172 1,054 711 14 22 33 389 3,619 1,363 318 65 63 24 350 12 9 3,685

Table 11 presents the per-country descriptive statistics for green patents application ranging
from 1999 to 2018.

Table 12: Per Country Brown Patents

Brown patents summary

Statistic AT AU BE CA CH CZ DE DK ES FI FR GB GR HU IE IT JP KR NL NO PL PT SE SI SK US

N 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Mean 10 10 11 29 9 114 23 8 14114 117 0 2 28 56 14 60 52 3 16 0 0 495
St. Dev. 5 5 4 14 4 l 30 18 4 7 30 37 l l 8 16 8 15 24 2 6 0 130
Min 2 4 5 14 0 60 4 l 6 72 32 0 0 0 13 35 2 18 22 0 0 5 0 0 240
Max 24 22 19 59 15 2 166 71 15 32 174 166 2 4 4 43 93 27 85 93 7 3 26 2 782

Table 12 presents the per-country descriptive statistics for brown patents application ranging
from 1999 to 2018.

Table 13: Per Country Green Ratio

Green Ratio summary

Statistic AT AU BE CA CH CZ DE DK ES FI FR GB GR HU IE IT JP KR NL NO PL PT SE SI SK US

N 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Mean 3.1 1.9 2.2 l.l 6.0 2.5 4.0 6.4 7.5 1.5 l.l 0.9 2.5 2.3 3.1 2.3 5.7 6.1 l.l 0.3 1.9 3.0 2.7 1.9 2.1 1.0
St. Dev. l.l l.l 1.3 0.5 4.3 1.4 1.2 3.5 5.3 0.7 0.4 0.8 1.5 1.8 2.4 1.0 1.8 3.8 0.8 0.2 l .4 2.5 1.4 0.8 1.6 0.4
Min l.l 0.6 0.5 0.1 1.5 0.4 1.9 1.6 0.5 0.6 0.5 0.2 0.3 0.2 1.0 0.3 3.6 1.0 0.2 0.1 0.2 0.6 0.9 1.0 0.7 0.4
Max 5.4 4.3 4.3 2.3 19.3 5.2 6.3 15.6 19.9 3.4 1.8 4.1 6.0 7.0 11.4 4.0 10.6 15.3 3.2 0.8 5.7 10.8 5.3 3.4 7.7 2.0

Table 13 presents the per-country descriptive statistics for the GR, building upon green and
brown patent applications from 1999 to 2018.

7.4 Hausman test

The table shows the results after performing a Hausman test to check whether fixed- or random

effects are the preferred estimators in our analysis. The null hypothesis is that there is no

correlation between the time-invariant unobserved individual-specific effect and the
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regressors. If there is no correlation, we do not reject the null hypothesis, and the random 

effects are our preferred estimator. However, the test results from the Hausman test show a p-

value well below 5%, which means we reject the null hypothesis. Therefore, our preferred 

estimator is the fixed effects. 

Table 14: Hausman Test 

Dependent Chisq p-value 

lnGreent+1 66.365 2.59e-11 

 

7.5 Model specifications 

7.5.1 Model testing 

Breusch-Pagan test 

We perform two tests to confirm the need to cluster our standard errors in the regression 

models. As the clustered standard errors allow for unrestricted forms of serial correlation and 

heteroskedasticity (Wooldridge, 2019), the presence of either will confirm our need to cluster 

the standard errors.  

First, the Breusch-Pagan test checks whether there is heteroskedasticity present in our main 

regression models. The null hypothesis is that the error variances are all equal. The p-values 

in the tables are under 5%, which means we reject the null hypothesis, and that there is 

heteroskedasticity present in all our models. 

Table 15: Breusch-Pagan Test – (Heteroskedasticity Test) 

Dependent BP df p-value 

lnGreent+1 190.46 33 2.2e-16 

lnBrownt+1 103.86 33 2.949e-9 

lnGRt+1 118.53 33 1.805e-11 
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Breusch-Godfrey test 

Secondly, The Breusch-Godfrey test checks for serial correlations in the error term. The null 

hypothesis is that there is no presence of serial correlations. In comparison to the Breusch-

Pagan test, the results show a p-value under 5%. We reject the null hypothesis and prove that 

there is a serial correlation in our model. The result from both tests confirms our need to cluster 

our standard errors for all models, as we confirm the presence of both serial correlation and 

heteroskedasticity in all of them. 

Table 16: Breusch-Godfrey/Wooldridge Test – (Serial Correlation Test) 

Dependent Chisq. df p-value 

Greent+1 139.59 19 2.2e-16 

Brownt+1 100.1 19 5.136e-13 

GRt+1 153 19 2.2e-16 

 

Multicollinearity 

The correlation matrix displays the correlation coefficient between multiple variables. Our 

variable of interest has a moderate negative correlation with NMBP (-0.257) and TS (-0.260). 

Otherwise, there is no evidence of strong or perfect intercorrelation between the policy rate  

Table 17: Correlation Matrix 

 

 

 

 

 

 

 

 RPR ln(GDP) Unem MBP NMBP TS REC FDI 
RPR 1        
ln(GDP) -0.046 1       
Unem 0.013 -0.186 1      
MBP -0.121 0.031 -0.139 1     
NMBP -0.257 0.183 -0.018 0.325 1    
TS -0.260 0.337 -0.103 0.194 0.448 1   
REC -0.085 -0.110 -0.152 0.376 0.165 0.132 1  
FDI 0.157 -0.124 -0.019 -0.123 -0.022 -0.096 -0.135 1 
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Multicollinearity

The correlation matrix displays the correlation coefficient between multiple variables. Our

variable of interest has a moderate negative correlation with NMBP (-0.257) and TS (-0.260).

Otherwise, there is no evidence of strong or perfect intercorrelation between the policy rate

Table 17: Correlation Matrix

RPR ln(GDP) Unem MBP NMBP TS REC FDI

RPR l
ln(GDP) -0.046 l
Unem 0.013 -0.186 l
MBP -0.121 0.031 -0.139 l
NMBP -0.257 0.183 -0.018 0.325 l
TS -0.260 0.337 -0.103 0.194 0.448 l
REC -0.085 -0.110 -0.152 0.376 0.165 0.132 l
FDI 0.157 -0.124 -0.019 -0.123 -0.022 -0.096 -0.135 l
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and any other variable. Furthermore, the three subcategories MBP, NMBP, and TS of the EPS, 

are expected to have a positive correlation with each other, as they all measure the stringency 

of different environmental policies. There is no evidence of a strong correlation between them, 

and we can include them individually. Nonetheless, the correlation between the subcategories 

is of less concern, as the policy rates are our variable of interest. The correlation matrix does 

not imply that there is a violation of the multicollinearity assumption. 

Zero Conditional Mean  

For the zero conditional mean assumption to hold, all explanatory variables must be 

uncorrelated with the error term. There are no statistical tests to perform to check whether the 

assumption is violated, which makes it hard to conclude whether one can interpret the 

coefficients in our model in a casual way. However, we add multiple control variables which 

are likely to correlate with both the RPR and patent applications. It could be argued that the 

zero conditional mean assumption is violated as some of our explanatory variables are 

systematically related to other factors that affect the level of patent applications. Thus, one 

should be careful to interpret our models casually (Wooldridge, 2019). 

7.5.2 Removing outliers 

The CB of Turkey follows an ideology where they lower the policy rate to bring down 

inflation, which is the opposite of all other CBs in our sample. This has led to an extreme 

policy rate value, as can be seen in Figure 5. To avoid bias caused by outliers in our regression, 

Turkey is omitted from the data sample used in the regression analysis.  

Figure 5: Boxplot Turkey 

 

Note: Figure 5 displays two boxplots, before and after omitting Turkey. 
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7.6 Preliminary analysis 

In advance of investigating the relationship between the level- and ratio of green patent 

applications, we do a follow-up test of the simple model of Zhang et al. (2020). Alongside de 

la Horra. (2022), the studies find that an increase in the US nominal policy rate will lead to an 

increase in R&D investment for both Chinese and US companies, as well as an increase in 

patent applications for Chinese enterprises.  

The simple model in Table 18 will give an indication whether our datasets have any 

differences. As dependent variables in the regression, we make use of the total number of 

patent applications across every category to the EPO, denoted as All. We also do additional 

control checks where we use BR&D as a dependent variable. In column (1) we run a simple 

OLS regression without country fixed effect, and we observe that the PR has a significant and 

negative impact on all patent applications. However, when we include country fixed effects in 

column (2), the significance of the PR disappears.  

Moreover, we add different time leads to the dependent variable from column (3) to (4).  The 

policy rate becomes significant at a 5% level and indicates that there might be an intermediate 

effect from a change in the policy rate on all patent applications. What is not shown in the 

columns, is that we also tried to add BR&D as a control variable, however, the PR coefficient 

and standard errors remained stable. Following a similar vein, making use of BR&D as a 

dependent variable in columns (5) to (7), there is no initial sign of a significant effect from the 

PR on BR&D. However, when we add different time leads, there eventually comes a slight 

indication of a long-run effect. 

To summarize, the preliminary analysis fails to reproduce the results of Zhang et al. (2020). 

Where their simple model found that the nominal interest rate had a positive effect on patent 

applications, we find the opposite. However, this does not come as a surprise. Hingley and 

Park (2017) use a similar cross-country sample as ours when studying business cycles’ impact 

on patents. They found that patent applications to the EPO increase during an economic 

expansion, which could be considered a similar finding to our simple preliminary analysis. 

 

 

67

7.6 Preliminary analysis

In advance of investigating the relationship between the level- and ratio of green patent

applications, we do a follow-up test of the simple model of Zhang et al. (2020). Alongside de
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Where their simple model found that the nominal interest rate had a positive effect on patent

applications, we find the opposite. However, this does not come as a surprise. Ringley and
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Table 18: Preliminary Regression Model 

 Dependent variable: 
 ln(Allt+1) ln(Allt+2) ln(Allt+3) ln(BR&D) ln(BR&Dt+1) ln(BR&Dt+2) 
 (1) (2) (3) (4) (5) (6) (7) 

PR -0.308*** -0.044 -0.048** -0.042** -0.010 -0.013 -0.027* 
 (0.034) (0.029) (0.022) (0.019) (0.016) (0.015) (0.016) 

time -0.055*** 0.021*** 0.017*** 0.016*** 0.039*** 0.038*** 0.034*** 
 (0.018) (0.008) (0.007) (0.006) (0.007) (0.006) (0.005) 

Constant 8.485***       

 (0.256)       

Control 
(GDP) No No No No No No No 

Country FE No Yes Yes Yes Yes Yes Yes 
Year FE No No No No No No No 
Observations 494 494 468 442 520 494 468 
R2 0.105 0.423 0.432 0.415 0.585 0.569 0.564 
Adjusted R2 0.101 0.390 0.397 0.377 0.563 0.544 0.537 
Note: Table 18 presents the output of our OLS regression model with country fixed effects and linear time trend. All standard errors 

in the regression are clustered on country-level in parentheses. The dependent variable represents the natural logarithmic of all 

patent applications, with one year time lead in columns (1) and (2). Columns (3) and (4) are leaded with 2 and 3 years respectively. 

The last 3 columns use the natural logarithm of BR&D as the dependent variable with different time leads. The underlying data 

spans from 1999 to 2018, for 26 countries.  *p<0.1; **p<0.05; ***p<0.01. 
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Table 18: Preliminary Regression Model

Dependent variable:

ln(All1+1) ln(All1+2) ln(All1+3) ln(BR&D) ln(BR&D1+1) ln(BR&D1+2)
( l ) (2) (3) (4) (5) (6) (7)
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(0.034) (0.029) (0.022) (0.019) (0.016) (0.015) (0.016)

time -0.055*** 0.021*** 0.011*** 0.016*** 0_039*** 0.038*** 0_034***

(0.018) (0.008) (0.007) (0.006) (0.007) (0.006) (0.005)

Constant 8.485***

(0.256)

Control No No No No No No No(GDP)
Country FE No Yes Yes Yes Yes Yes Yes
Year FE No No No No No No No
Observations 494 494 468 442 520 494 468
R2 0.105 0.423 0.432 0.415 0.585 0.569 0.564
Adjusted R2 0.101 0.390 0.397 0.377 0.563 0.544 0.537
Note: Table 18 presents the output of our OLS regression model with country fixed effects and linear time trend. All standard errors

in the regression are clustered on country-level in parentheses. The dependent variable represents the natural logarithmic of all

patent applications, with one year time lead in columns ( l ) and (2). Columns (3) and (4) are leaded with 2 and 3 years respectively.

The last 3 columns use the natural logarithm of BR&D as the dependent variable with different time leads. The underlying data

spans from 1999 to 2018,for 26 countries. *p<0.1; **p<0.05; ***p<0.01.
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7.7 Robustness analysis 

Table 19: Different RPR: 

 

 

 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

RPR2 -0.018 -0.017 -0.021 -0.026* -0.002 
 (0.013) (0.021) (0.015) (0.013) (0.018) 

MBP 0.118 -0.018 0.150* 0.125* -0.038 
 (0.074) (0.153) (0.084) (0.069) (0.131) 

NMBP -0.031 -0.059 -0.073** 0.007 0.058 
 (0.036) (0.119) (0.033) (0.017) (0.075) 

TS 0.002 0.076 0.008 -0.038 -0.056 
 (0.030) (0.070) (0.039) (0.033) (0.051) 

ln(GDP) 0.929*** 1.425*** 0.656*** 0.768*** 0.555 
 (0.259) (0.505) (0.174) (0.256) (0.471) 

Unem 0.023** 0.032** 0.015 0.027** -0.007 
 (0.010) (0.014) (0.013) (0.010) (0.008) 

REC 0.0002 -0.041** 0.011 0.001 -0.028 
 (0.008) (0.016) (0.016) (0.006) (0.020) 

FDI -0.003 -0.003 -0.002 -0.004** -0.003 
 (0.002) (0.004) (0.006) (0.002) (0.005) 

Time 0.020** 0.019 0.026 0.027*** 0.029 
 (0.008) (0.016) (0.016) (0.009) (0.017) 

Control(GDP) Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 494 494 494 494 494 
R2 0.651 0.510 0.461 0.583 0.251 
Adjusted R2 0.625 0.474 0.421 0.552 0.196 
Note: Table 19 presents the output of our OLS regression with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s 
average GDP.  The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and 
GR, with one year time lead . The underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 
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(0.008) (0.016) (0.016) (0.009) (0.017)

Control(GDP) Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 494 494 494 494 494
R2 0.651 0.510 0.461 0.583 0.251
Adjusted R2 0.625 0.474 0.421 0.552 0.196
Note: Table 19 presents the output of our OLS regression with country fixed effects and linear time trend. All standard
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country's
average GDP. The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and
GR, with one year time lead. The underlying data spans from 1999 to 2018,for 26 countries. *p<0.1; **p<0.05; ***p<0.01.
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Table 20: Nominal Policy Rate and Inflation 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

PR -0.014 0.011 -0.010 -0.034** 0.009 
 (0.011) (0.012) (0.012) (0.012) (0.018) 

Inflation 0.037** 0.070*** 0.027 0.034** 0.048*** 
 (0.013) (0.022) (0.016) (0.012) (0.012) 

MBP 0.123* 0.002 0.153 0.122* -0.022 
 (0.070) (0.129) (0.090) (0.069) (0.112) 

NMBP -0.029 -0.053 -0.074** 0.009 0.066 
 (0.035) (0.112) (0.033) (0.018) (0.070) 

TS -0.004 0.063 0.003 -0.044 -0.064 
 (0.029) (0.073) (0.037) (0.030) (0.053) 

ln(GDP) 0.908*** 1.438*** 0.635*** 0.719*** 0.573 
 (0.267) (0.510) (0.175) (0.257) (0.483) 

Unem 0.025* 0.046* 0.017 0.024* 0.002 
 (0.014) (0.022) (0.013) (0.013) (0.012) 

REC 0.002 -0.034** 0.013 0.001 -0.024 
 (0.008) (0.015) (0.016) (0.006) (0.020) 

FDI -0.003 -0.004 -0.003 -0.003** -0.003 
 (0.002) (0.004) (0.006) (0.001) (0.006) 

Time 0.022*** 0.025* 0.030* 0.028*** 0.031* 
 (0.007) (0.013) (0.015) (0.009) (0.018) 

Control(GDP) Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 494 494 494 494 494 
R2 0.641 0.491 0.452 0.591 0.245 
Adjusted R2 0.614 0.452 0.410 0.560 0.187 

 

Note: Table 20 presents the output of our OLS regression with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s 
average GDP.  The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and 
GR, with one year time lead . The underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05; 
***p<0.01. 
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Table 20: Nominal Policy Rate and Inflation

Dependent variable:

In/Green-u) ln(LCE supply-u) ln(Enabling1+1) ln/End-use.,1) ln(GR1+1)
( l ) (2) (3) (4) (5)

PR -0.014 0.011 -0.010 -0.034** 0.009
(0.01 l) (0.012) (0.012) (0.012) (0.018)

Inflation 0.037** 0.010*** 0.027 0_034** 0.048***
(0.013) (0.022) (0.016) (0.012) (0.012)

MBP 0.123* 0.002 0.153 0.122* -0.022
(0.070) (0.129) (0.090) (0.069) (0.112)

NMBP -0.029 -0.053 -0.074** 0.009 0.066
(0.035) (0.112) (0.033) (0.018) (0.070)

TS -0.004 0.063 0.003 -0.044 -0.064
(0.029) (0.073) (0.037) (0.030) (0.053)

ln(GDP) 0.908*** 1.438*** 0.635*** 0.719*** 0.573
(0.267) (0.510) (0.175) (0.257) (0.483)

Unem 0.025* 0.046* 0.017 0.024* 0.002
(0.014) (0.022) (0.013) (0.013) (0.012)

REC 0.002 -0.034** 0.013 0.001 -0.024
(0.008) (0.015) (0.016) (0.006) (0.020)

FDI -0.003 -0.004 -0.003 -0.003** -0.003
(0.002) (0.004) (0.006) (0.001) (0.006)

Time 0.022*** 0.025* 0.030* 0.023*** 0.031*
(0.007) (0.013) (0.015) (0.009) (0.018)

Control(GDP) Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 494 494 494 494 494
R2 0.641 0.491 0.452 0.591 0.245
Adjusted R2 0.614 0.452 0.410 0.560 0.187

Note: Table 20 presents the output of our OLS regression with country fixed effects and linear time trend. All standard
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country's
average GDP. The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and
GR, with one year time lead . The underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05;
***p<0.01.



Table 21: Time Leads 

 Dependent variable: 

 ln(Greent+2) ln(Greent+3) ln(Greent+4) ln(Greent+5) ln(LCE 
supplyt+2) 

ln(LCE 
supplyt+3) 

ln(LCE 
supplyt+4) 

ln(LCE 
supplyt+5) ln(Enablingt+2) ln(Enablingt+3) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

RPR -0.020* -0.025*** -0.023** -0.015 -0.012 -0.019*** -0.028*** -0.020*** -0.010 -0.012 
 (0.010) (0.009) (0.009) (0.009) (0.015) (0.007) (0.008) (0.006) (0.010) (0.011) 

MBP 0.135* 0.142* 0.112 0.088 0.027 0.067 0.080 0.136 0.175* 0.155* 
 (0.074) (0.070) (0.071) (0.084) (0.181) (0.197) (0.194) (0.159) (0.085) (0.078) 

NMBP -0.025 0.021 0.025 0.044 -0.026 0.025 -0.008 0.043 -0.063* -0.022 
 (0.047) (0.039) (0.045) (0.043) (0.116) (0.101) (0.110) (0.091) (0.035) (0.043) 

TS -0.025 -0.040 -0.061 -0.087*** 0.013 -0.035 -0.099 -0.127** 0.007 0.001 
 (0.036) (0.045) (0.041) (0.028) (0.072) (0.068) (0.058) (0.058) (0.046) (0.049) 

ln(GDP) 0.843*** 0.661** 0.534* 0.344 1.257** 0.983 0.865 0.487 0.626*** 0.536* 
 (0.277) (0.270) (0.275) (0.220) (0.574) (0.588) (0.628) (0.487) (0.223) (0.261) 

Unem 0.018 0.010 0.003 -0.006 0.011 -0.008 -0.016 -0.022** 0.015 0.005 
 (0.012) (0.012) (0.010) (0.007) (0.015) (0.014) (0.011) (0.009) (0.011) (0.010) 

time 0.022** 0.018 0.021* 0.029*** 0.016 0.014 0.018 0.012 0.025 0.022 
 (0.008) (0.011) (0.010) (0.008) (0.019) (0.023) (0.022) (0.017) (0.019) (0.024) 

Control(GDP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 468 442 416 390 468 442 416 390 468 442 
R2 0.623 0.582 0.520 0.438 0.466 0.432 0.348 0.231 0.449 0.415 
Adjusted R2 0.593 0.547 0.477 0.384 0.424 0.385 0.290 0.158 0.405 0.366 

Table 21: Time Leads

Dependent variable:

In/Green-o) ln(Green1+3) ln(Green1+4) ln/Green-,«) ln(LCE ln(LCE ln(LCE ln(LCE ln/Enabling.ø) ln(Enabling1+3)supply1+2) supply-u) supplyna) supply-.s)
( l ) (2) (3) (4) (5) (6) (7) (8) (9) (10)

RPR -0.020* -0.025*** -0.023** -0.015 -0.012 -0.019*** -0.028*** -0.020*** -0.010 -0.012
(0.010) (0.009) (0.009) (0.009) (0.015) (0.007) (0.008) (0.006) (0.010) (0.01 l)

MBP 0.135* 0.142* 0.112 0.088 0.027 0.067 0.080 0.136 0.175* 0.155*
(0.074) (0.070) (0.071) (0.084) (0.181) (0.197) (0.194) (0.159) (0.085) (0.078)

NMBP -0.025 0.021 0.025 0.044 -0.026 0.025 -0.008 0.043 -0.063* -0.022
(0.047) (0.039) (0.045) (0.043) (0.116) (0.101) (0.110) (0.091) (0.035) (0.043)

TS -0.025 -0.040 -0.061 -0.087*** 0.013 -0.035 -0.099 -0.127** 0.007 0.001
(0.036) (0.045) (0.041) (0.028) (0.072) (0.068) (0.058) (0.058) (0.046) (0.049)

ln(GDP) 0.843*** 0.661** 0.534* 0.344 1.257** 0.983 0.865 0.487 0.626*** 0.536*
(0.277) (0.270) (0.275) (0.220) (0.574) (0.588) (0.628) (0.487) (0.223) (0.261)

Unem 0.018 0.010 0.003 -0.006 0.011 -0.008 -0.016 -0.022** 0.015 0.005
(0.012) (0.012) (0.010) (0.007) (0.015) (0.014) (0.01 l) (0.009) (0.01 l) (0.010)

time 0.022** 0.018 0.021* 0.029*** 0.016 0.014 0.018 0.012 0.025 0.022
(0.008) (0.01 l) (0.010) (0.008) (0.019) (0.023) (0.022) (0.017) (0.019) (0.024)

Control(GDP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 468 442 416 390 468 442 416 390 468 442
R2 0.623 0.582 0.520 0.438 0.466 0.432 0.348 0.231 0.449 0.415
Adjusted R2 0.593 0.547 0.477 0.384 0.424 0.385 0.290 0.158 0.405 0.366



 Dependent variable: 
 ln(Enablingt+4) ln(Enablingt+5) ln(End-uset+2) ln(End-uset+3) ln(End-uset+4) ln(End-uset+5) ln(GRt+2) ln(GRt+3) ln(GRt+4) ln(GRt+5) 
 (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

RPR 0.002 0.009 -0.031*** -0.035*** -0.029*** -0.017 -0.001 -0.005 -0.029*** -0.039*** 
 (0.012) (0.007) (0.011) (0.010) (0.008) (0.014) (0.020) (0.014) (0.010) (0.009) 

MBP 0.098 0.109 0.143** 0.159*** 0.122** 0.057 0.019 0.033 0.013 0.070 
 (0.095) (0.087) (0.060) (0.050) (0.049) (0.076) (0.140) (0.137) (0.122) (0.108) 

NMBP 0.011 0.025 -0.004 0.048 0.049 0.053 0.094 0.036 0.020 0.038 
 (0.048) (0.041) (0.030) (0.032) (0.035) (0.037) (0.061) (0.071) (0.059) (0.040) 

TS -0.023 -0.048 -0.056 -0.049 -0.049 -0.071* -0.099** -0.122** -0.127* -0.079 
 (0.048) (0.036) (0.035) (0.047) (0.050) (0.041) (0.044) (0.054) (0.071) (0.058) 

ln(GDP) 0.378 0.248 0.674*** 0.467** 0.385** 0.323** 0.243 0.201 0.017 -0.184 
 (0.261) (0.233) (0.226) (0.192) (0.181) (0.149) (0.460) (0.378) (0.278) (0.208) 

Unem -0.004 -0.007 0.029** 0.028* 0.024* 0.015* -0.032*** -0.044** -0.037** -0.017 
 (0.010) (0.014) (0.014) (0.016) (0.013) (0.008) (0.010) (0.016) (0.017) (0.018) 

time 0.030 0.039** 0.031*** 0.024*** 0.022*** 0.031** 0.034* 0.044** 0.045** 0.028* 
 (0.023) (0.018) (0.008) (0.007) (0.007) (0.012) (0.017) (0.018) (0.020) (0.016) 

Control(GDP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 416 390 468 442 416 390 468 442 416 390 
R2 0.374 0.336 0.548 0.521 0.467 0.394 0.225 0.190 0.119 0.097 
Adjusted R2 0.318 0.272 0.513 0.481 0.419 0.336 0.164 0.122 0.041 0.004 

 

Note: Table 21 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors in the regression are clustered on country-level in parentheses. All regressions 
are weighted by each country’s average GDP. The control variables FDI and REC are included in the regression but are not reported due to lack of space.  The dependent variables represent the natural 
logarithmic of Green, LCE supply, Enabling, End-use, and GR, with two to five-year time lead. The underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 

Dependent variable:

ln(Enabling1+4) lnfEnablingu«) ln(End-use1+2) ln/End-use.o) ln/End-use.,») ln(End-use1+s) ln(GR1+2) ln(GR1+3) ln(GR1+4) ln(GR1+s)
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

RPR 0.002 0.009 -0.031*** -0.035*** -0.029*** -0.017 -0.001 -0.005 -0.029*** -0.039***
(0.012) (0.007) (0.01 l) (0.010) (0.008) (0.014) (0.020) (0.014) (0.010) (0.009)

MBP 0.098 0.109 0_143** 0_159*** 0.122** 0.057 0.019 0.033 0.013 0.070
(0.095) (0.087) (0.060) (0.050) (0.049) (0.076) (0.140) (0.137) (0.122) (0.108)

NMBP 0.01 l 0.025 -0.004 0.048 0.049 0.053 0.094 0.036 0.020 0.038
(0.048) (0.041) (0.030) (0.032) (0.035) (0.037) (0.061) (0.071) (0.059) (0.040)

TS -0.023 -0.048 -0.056 -0.049 -0.049 -0.071* -0.099** -0.122** -0.127* -0.079
(0.048) (0.036) (0.035) (0.047) (0.050) (0.041) (0.044) (0.054) (0.071) (0.058)

ln(GDP) 0.378 0.248 0.674*** 0.467** 0.385** 0.323** 0.243 0.201 0.017 -0.184
(0.261) (0.233) (0.226) (0.192) (0.181) (0.149) (0.460) (0.378) (0.278) (0.208)

Unem -0.004 -0.007 0.029** 0.028* 0.024* 0.015* -0.032*** -0.044** -0.037** -0.017
(0.010) (0.014) (0.014) (0.016) (0.013) (0.008) (0.010) (0.016) (0.017) (0.018)

time 0.030 0_039** 0.031*** 0.024*** 0.022*** 0.03 l** 0.034* 0_044** 0.045** 0.028*
(0.023) (0.018) (0.008) (0.007) (0.007) (0.012) (0.017) (0.018) (0.020) (0.016)

Control(GDP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 416 390 468 442 416 390 468 442 416 390
R2 0.374 0.336 0.548 0.521 0.467 0.394 0.225 0.190 0.119 0.097
Adjusted R2 0.318 0.272 0.513 0.481 0.419 0.336 0.164 0.122 0.041 0.004

Note: Table 21 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors in the regression are clustered on country-level in parentheses. All regressions
are weighted by each country's average GDP. The control variables FD! and REC are included in the regression but are not reported due to lack of space. The dependent variables represent the natural
logarithmic of Green, LCE supply, Enabling, End-use, and GR, with two to five-year time lead. The underlying data spans from 1999 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.0l.



Table 22: Sample Split (1999 – 2008) 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

RPR -0.011 0.020 -0.021** -0.023** 0.009 
 (0.008) (0.012) (0.008) (0.011) (0.016) 

MBP 0.108 -0.114 0.190 0.167 -0.328** 
 (0.100) (0.125) (0.117) (0.103) (0.133) 

NMBP -0.025 -0.028 -0.022 -0.013 -0.004 
 (0.021) (0.038) (0.044) (0.021) (0.034) 

TS 0.095 0.185 0.109 0.073 -0.007 
 (0.101) (0.119) (0.121) (0.103) (0.106) 

ln(GDP) 0.534** 0.412 0.584** 0.498* 0.533 
 (0.237) (0.468) (0.226) (0.242) (0.667) 

Unem -0.024* -0.013 -0.026 -0.012 -0.007 
 (0.014) (0.020) (0.021) (0.018) (0.030) 

REC 0.006 -0.023 0.015 -0.008 -0.018 
 (0.013) (0.024) (0.016) (0.015) (0.025) 

FDI 0.002 0.003 0.004 -0.0003 0.005 
 (0.002) (0.003) (0.004) (0.002) (0.003) 

time 0.049*** 0.140*** -0.002 0.037*** 0.107*** 
 (0.012) (0.026) (0.012) (0.011) (0.034) 

Control(GDP) Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 260 260 260 260 260 
R2 0.613 0.609 0.278 0.467 0.339 
Adjusted R2 0.554 0.549 0.169 0.386 0.239 
Note: Table 22 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors 
in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s average 
GDP.  The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and GR, with 
a one year time lead . The underlying data spans from 1999 to 2008, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 
 

 

 

 

Table 22: Sample Split (1999- 2008)

Dependent variable:
ln(Green1+1) ln(LCE supply-u) ln/Enabling-,1) ln/End-use.u) ln(GR1+1)

( l ) (2) (3) (4) (5)

RPR -0.011 0.020 -0.021** -0.023** 0.009
(0.008) (0.012) (0.008) (0.01 l) (0.016)

MBP 0.108 -0.114 0.190 0.167 -0.328**
(0.100) (0.125) (0.117) (0.103) (0.133)

NMBP -0.025 -0.028 -0.022 -0.013 -0.004
(0.021) (0.038) (0.044) (0.021) (0.034)

TS 0.095 0.185 0.109 0.073 -0.007
(0.101) (0.119) (0.121) (0.103) (0.106)

ln(GDP) 0_534** 0.412 0.584** 0.498* 0.533
(0.237) (0.468) (0.226) (0.242) (0.667)

Unem -0.024* -0.013 -0.026 -0.012 -0.007
(0.014) (0.020) (0.021) (0.018) (0.030)

REC 0.006 -0.023 0.015 -0.008 -0.018
(0.013) (0.024) (0.016) (0.015) (0.025)

FDI 0.002 0.003 0.004 -0.0003 0.005
(0.002) (0.003) (0.004) (0.002) (0.003)

time 0_049*** 0_140*** -0.002 0.037*** 0.107***
(0.012) (0.026) (0.012) (0.01 l) (0.034)

Control(GDP) Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 260 260 260 260 260
R2 0.613 0.609 0.278 0.467 0.339
Adjusted R2 0.554 0.549 0.169 0.386 0.239
Note: Table 22 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors
in the regression are clustered on country-level in parentheses. All regressions are weighted by each country's average
GDP. The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and GR, with
a one year time lead. The underlying data spans from 1999 to 2008,for 26 countries. *p<0.1; **p<0.05; ***p<0.01.
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Table 23: Sample Split (2009 – 2018) 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

RPR -0.030** -0.015 -0.018 -0.045*** 0.033 
 (0.011) (0.010) (0.011) (0.012) (0.024) 

MBP -0.002 0.030 0.020 -0.065 0.099 
 (0.034) (0.070) (0.054) (0.039) (0.144) 

NMBP 0.008 -0.062* -0.027 0.049 0.046 
 (0.015) (0.032) (0.021) (0.033) (0.041) 

TS -0.082*** -0.052 -0.071*** -0.109*** -0.081 
 (0.023) (0.038) (0.018) (0.034) (0.061) 

ln(GDP) 0.335** -0.180 0.033 0.600* -0.830*** 
 (0.140) (0.163) (0.167) (0.298) (0.287) 

Unem 0.013* -0.002 0.021** 0.020** -0.066*** 
 (0.006) (0.016) (0.010) (0.010) (0.022) 

REC -0.002 -0.006 -0.031*** 0.010 0.010 
 (0.007) (0.015) (0.010) (0.011) (0.036) 

FDI -0.003 -0.003 -0.002 -0.003 -0.010*** 
 (0.002) (0.002) (0.002) (0.003) (0.003) 

time -0.012 -0.056*** 0.036*** -0.002 -0.018 
 (0.008) (0.016) (0.010) (0.015) (0.031) 

Control(GDP) Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 234 234 234 234 234 
R2 0.450 0.431 0.268 0.387 0.271 
Adjusted R2 0.423 0.402 0.159 0.327 0.211 

Note: Table 23 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors 
in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s average GDP.  
The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and GR, with a one 
year time lead . The underlying data spans from 2009 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 
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Table 23: Sample Split (2009- 2018)

Dependent variable:
ln/Greenui) ln(LCE supply1+1) lnfEnabling.u) ln(End-use1+1) ln(GR1+1)

( l ) (2) (3) (4) (5)

RPR -0.030** -0.015 -0.018 -0.045*** 0.033
(0.01 l) (0.010) (0.01 l) (0.012) (0.024)

MBP -0.002 0.030 0.020 -0.065 0.099
(0.034) (0.070) (0.054) (0.039) (0.144)

NMBP 0.008 -0.062* -0.027 0.049 0.046
(0.015) (0.032) (0.021) (0.033) (0.041)

TS -0.082*** -0.052 -0.071*** -0.109*** -0.081
(0.023) (0.038) (0.018) (0.034) (0.061)

ln(GDP) 0_335** -0.180 0.033 0.600* -0.830***
(0.140) (0.163) (0.167) (0.298) (0.287)

Unem 0.013* -0.002 0.021** 0.020** -0.066***
(0.006) (0.016) (0.010) (0.010) (0.022)

REC -0.002 -0.006 -0.031*** 0.010 0.010
(0.007) (0.015) (0.010) (0.01 l) (0.036)

FDI -0.003 -0.003 -0.002 -0.003 -0.010***
(0.002) (0.002) (0.002) (0.003) (0.003)

time -0.012 -0.056*** 0.036*** -0.002 -0.018
(0.008) (0.016) (0.010) (0.015) (0.031)

Control(GDP) Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 234 234 234 234 234
R2 0.450 0.431 0.268 0.387 0.271
Adjusted R2 0.423 0.402 0.159 0.327 0.211
Note: Table 23 presents the output of our OLS regression with country fixed effects and linear time trend. All standard errors
in the regression are clustered on country-level in parentheses. All regressions are weighted by each country's average GDP.
The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and GR, with a one
year time lead. The underlying data spans from 2009 to 2018,for 26 countries. *p<0.1; **p<0.05; ***p<0.01.
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Table 24: Equal Weights 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

RPR -0.013 -0.009 -0.030 -0.030** 0.002 
 (0.012) (0.019) (0.020) (0.012) (0.020) 

MBP 0.093 0.109 0.027 0.095 0.059 
 (0.070) (0.090) (0.102) (0.060) (0.110) 

NMBP 0.023 0.089** -0.027 0.023 0.126*** 
 (0.028) (0.042) (0.047) (0.024) (0.043) 

TS -0.004 0.046 -0.046 -0.007 -0.043 
 (0.025) (0.039) (0.028) (0.027) (0.042) 

lnGDP 0.759*** 0.959*** 0.461*** 0.438*** 0.471 
 (0.174) (0.272) (0.136) (0.148) (0.342) 

Unem -0.003 -0.007 0.010 -0.006 -0.014 
 (0.013) (0.016) (0.013) (0.013) (0.011) 

REC 0.017 0.016 0.011 0.008 0.006 
 (0.010) (0.016) (0.012) (0.009) (0.011) 

FDI -0.002 -0.002 -0.002 -0.001 -0.003 
 (0.001) (0.003) (0.004) (0.001) (0.004) 

time 0.020** -0.006 0.046*** 0.030*** 0.001 
 (0.009) (0.016) (0.012) (0.008) (0.016) 

Control(GDP) No No No No No 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 494 494 494 494 494 
R2 0.671 0.553 0.474 0.610 0.263 
Adjusted R2 0.647 0.519 0.435 0.581 0.208 
Note: Table 24 presents the output of our OLS regression with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. The dependent variables represent the natural 
logarithmic of Green, LCE supply, Enabling, End-use, and GR, with a one year time lead . The underlying data spans from 
1999 to 2018, for 26 countries. *p<0.1; **p<0.05; ***p<0.01. 
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Table 24: Equal Weights

Dependent variable:

In/Green-u) ln(LCE supply-u) ln/Enabling-,1) ln/End-use.,1) ln(GR1+1)
( l ) (2) (3) (4) (5)

RPR -0.013 -0.009 -0.030 -0.030** 0.002
(0.012) (0.019) (0.020) (0.012) (0.020)

MBP 0.093 0.109 0.027 0.095 0.059
(0.070) (0.090) (0.102) (0.060) (0.110)

NMBP 0.023 0.089** -0.027 0.023 0.126***
(0.028) (0.042) (0.047) (0.024) (0.043)

TS -0.004 0.046 -0.046 -0.007 -0.043
(0.025) (0.039) (0.028) (0.027) (0.042)

lnGDP 0_759*** 0_959*** 0.461*** 0.438*** 0.471
(0.174) (0.272) (0.136) (0.148) (0.342)

Unem -0.003 -0.007 0.010 -0.006 -0.014
(0.013) (0.016) (0.013) (0.013) (0.01 l)

REC 0.017 0.016 0.011 0.008 0.006
(0.010) (0.016) (0.012) (0.009) (0.01 l)

FDI -0.002 -0.002 -0.002 -0.001 -0.003
(0.001) (0.003) (0.004) (0.001) (0.004)

time 0.020** -0.006 0.046*** 0_030*** 0.001
(0.009) (0.016) (0.012) (0.008) (0.016)

Control(GDP) No No No No No
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 494 494 494 494 494
R2 0.671 0.553 0.474 0.610 0.263
Adjusted R2 0.647 0.519 0.435 0.581 0.208
Note: Table 24 presents the output of our OLS regression with country fixed effects and linear time trend. All standard
errors in the regression are clustered on country-level in parentheses. The dependent variables represent the natural
logarithmic of Green, LCE supply, Enabling, End-use, and GR, with a one year time lead. The underlying data spans from
1999 to 2018,for 26 countries. *p<0.1; **p<0.05; ***p<0.01.
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Table 25: Omitting the US 

 

 

 

 

 Dependent variable: 
 ln(Greent+1) ln(LCE supplyt+1) ln(Enablingt+1) ln(End-uset+1) ln(GRt+1) 
 (1) (2) (3) (4) (5) 

RPR -0.015 0.006 -0.015 -0.031** -0.017 
 (0.017) (0.021) (0.019) (0.013) (0.021) 

MBP 0.152* 0.170* 0.076 0.136* 0.138 
 (0.079) (0.094) (0.094) (0.069) (0.094) 

NMBP 0.023 0.112*** -0.045 0.026 0.150*** 
 (0.026) (0.040) (0.049) (0.019) (0.031) 

TS -0.019 0.023 -0.029 -0.028 -0.072 
 (0.027) (0.051) (0.026) (0.029) (0.044) 

lnGDP 0.743*** 0.919** 0.571*** 0.568** 0.272 
 (0.250) (0.399) (0.165) (0.226) (0.434) 

Unem 0.011 0.005 0.022* 0.010 -0.017 
 (0.012) (0.019) (0.012) (0.011) (0.011) 

REC 0.002 -0.010 -0.005 0.002 0.005 
 (0.011) (0.018) (0.016) (0.007) (0.015) 

FDI -0.002 -0.001 -0.002 -0.002 0.001 
 (0.002) (0.003) (0.004) (0.001) (0.004) 

time 0.022*** 0.016 0.053*** 0.020*** 0.010 
 (0.007) (0.016) (0.008) (0.005) (0.012) 

Control(GDP) Yes Yes Yes Yes Yes 
Country FE Yes Yes Yes Yes Yes 
Year FE No No No No No 
Observations 475 475 475 475 475 
R2 0.661 0.547 0.467 0.593 0.250 
Adjusted R2 0.636 0.513 0.427 0.563 0.194 
Note: Table 25 presents the output of our OLS regression with country fixed effects and linear time trend. All standard 
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country’s 
average GDP.  The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and 
GR, with a one year time lead . The underlying data spans from 1999 to 2018, for 25 countries. *p<0.1; **p<0.05; 
***p<0.01. 
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Table 25: Omitting the US

Dependent variable:

In/Green-u) ln(LCE supplynt) ln(Enabling1+1) ln/End-use-,1) ln(GR1+1)
( l ) (2) (3) (4) (5)

RPR -0.015 0.006 -0.015 -0.031** -0.017
(0.017) (0.021) (0.019) (0.013) (0.021)

MBP 0.152* 0.170* 0.076 0.136* 0.138
(0.079) (0.094) (0.094) (0.069) (0.094)

NMBP 0.023 0.112*** -0.045 0.026 o_150***
(0.026) (0.040) (0.049) (0.019) (0.031)

TS -0.019 0.023 -0.029 -0.028 -0.072
(0.027) (0.051) (0.026) (0.029) (0.044)

lnGDP 0_743*** 0.919** 0.571*** 0.568** 0.272
(0.250) (0.399) (0.165) (0.226) (0.434)

Unem 0.011 0.005 0.022* 0.010 -0.017
(0.012) (0.019) (0.012) (0.01 l) (0.01l)

REC 0.002 -0.010 -0.005 0.002 0.005
(0.01 l) (0.018) (0.016) (0.007) (0.015)

FDI -0.002 -0.001 -0.002 -0.002 0.001
(0.002) (0.003) (0.004) (0.001) (0.004)

time 0.022*** 0.016 0_053*** 0.020*** 0.010
(0.007) (0.016) (0.008) (0.005) (0.012)

Control(GDP) Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE No No No No No
Observations 475 475 475 475 475
R2 0.661 0.547 0.467 0.593 0.250
Adjusted R2 0.636 0.513 0.427 0.563 0.194
Note: Table 25 presents the output of our OLS regression with country fixed effects and linear time trend. All standard
errors in the regression are clustered on country-level in parentheses. All regressions are weighted by each country's
average GDP. The dependent variables represent the natural logarithmic of Green, LCE supply, Enabling, End-use, and
GR, with a one year time lead. The underlying data spans from 1999 to 2018, for 25 countries. *p<0.1; **p<0.05;
***p<0.01.
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Figure 6: GDP Average for Each Country 

 

 

Note: Figure 6 displays the average GDP for each country in our sample. The scale of the y-axis is expressed as billion USD, 
whereas the x-axis displays the 20 year average, ranging from 1999 to 2018.  
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Figure 6: GDP Average for Each Country
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Note: Figure 6 displays the average GDP for each country in our sample. The scale of the y-axis is expressed as billion USD,
whereas the x-axis displays the 20 year average, ranging/rom 1999 to 2018.


