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Abstract

In GMM estimators moment conditions with additive error terms involve an observed component and

a predicted component. If the predicted component is computationally costly to evaluate, it may not be

feasible to estimate the model with all the available data. We propose an estimator that uses the full

data set for the computationally cheap observed component, but a reduced sample size for the predicted

component. We show consistency, asymptotic normality, and derive standard errors and a practical

criterion for when our estimator is variance-reducing. We demonstrate the estimator’s properties on a

range of models through Monte Carlo studies and an empirical application to alcohol demand.
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1 Introduction

The growing availability of large data sets, such as administrative tax records, household scanner data, and

data collected by tech firms, in combination with the computational burden of complex models, can mean

that researchers are forced to estimate their models with a subset of the available data. As stated by Lee

and Ng (2020) in their recent review article: “analyzing large datasets is time consuming and sometimes

beyond the limits of our computers. (. . . ) One way to alleviate the bottleneck is to work with a sketch of

the data. These are data sets of smaller dimensions and yet representative of the original data.” Examples

of this practice include Busse et al. (2013), who “draw a 10 percent random sample of all transactions

(. . . ) necessary to allow for estimation of specifications with multiple sets of high-dimensional fixed effects,

including fixed effect interactions” (p. 228) and Varian (2014), who states that “it is often possible to select

a subsample for statistical analysis. At Google, for example, I have found that random samples on the order

of 0.1 percent work fine for analysis of business data.”

For models with additive error terms, GMM moment conditions involve a difference between an observed

and predicted component. In nonlinear settings the predicted part needs to be calculated for each trial

value of the parameters during numerical minimization of the GMM objective function. This can be com-

putationally costly if the model involves simulation, nested optimization or a fixed-point problem. Even in

linear settings, if the model contains “multiple sets of high-dimensional fixed effects” computation of the

predicted component can be burdensome. This means it can be necessary to use a subsample of the data

for estimation. Typically one would use a subsample also for the observed part.

In this paper we propose an alternative estimator for cross-section or panel data that uses the full sample

for the observed component, and a subsample only for the predicted component. The cost of computing the

value of the observed part of the moment is usually negligible, because it needs to be done once, does not

depend on the parameters to be estimated, and typically involves simple manipulations of a few variables

at most. The calculation of the predicted part of the moment, on the other hand, may be costly in terms

of CPU or memory demand. We show that the estimator is consistent and asymptotically normal, and how

to estimate its asymptotic variance.

The rationale for using our estimator, instead of a GMM estimator with the subsample, is that it minimizes

the sampling error of the observed component of the moment, which acts to lower the variance of the

estimator. Yet there is an offsetting effect as, compared with small-sample GMM, our estimator lowers the

correlation between the observed and predicted part of the moments, which acts to raise the variance of the

estimator. We derive a condition, which can be straightforwardly checked with a subsample of the data,

that, if satisfied, ensures our estimator will have lower variance than small-sample GMM. The condition

requires the covariance between the observed and predicted component to be small relative to the variance

of the observed component.

We illustrate our estimator’s properties through two sets of simulations. The first is based on a Monte

Carlo study in which we simulate a data generating process for a set of linear and non-linear models. In

each case we fix a small sample size (used for the predicted component of the moment) and show how the
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variance of our estimator changes with the size of the large sample (used for the observed component). The

simulations illustrate the potential for our estimator to increase efficiency in linear and non-linear (namely

a multinomial and random coefficient logit) settings.

Our second set of simulations is based on household scanner data for the UK that covers alcohol purchases

for 40,000 households over two decades. We specify an alcohol demand equation, with the purpose of

estimating the slope of households’ alcohol Engel curve. As the model is relatively simple (i.e., linear with

a relatively small set of parameters) we are able to implement (both for a cross-sectional and panel data

variant) GMM estimation on the full dataset. This acts as a benchmark against which we compare both

GMM estimators implemented on sub-samples of the data and our estimator. We show that our estimator

outperforms small-sample GMM, and that for the panel data model, the precision of our estimator is close

to that of the GMM estimator implemented on the full dataset, even when the size of the sub-sample used to

evaluate the predicted part of the moment represents a modest fraction (less than 15%) of the full sample.

Our estimator is related to that proposed by Imbens and Lancaster (1994), which consists of a GMM

estimator that augments moments formed with micro or survey data with moments from census (“macro”)

data, which have no sampling error and act to improve the accuracy of estimation. It also is related to

the two-sample 2SLS estimator of Angrist and Krueger (1992), Inoue and Solon (2010) and Pacini and

Windmeijer (2016). Other than our more general nonlinear GMM setting, the main difference between our

work and those papers is that they focus on a situation where only a subset of the required variables are

observed in each of two data sets, so that both samples are needed for identification of parameters of interest.

While they assume independence between the two samples, in our case one sample is a subset of the other.

The next section outlines our setting and estimator, and establish consistency, asymptotic normality and an

asymptotic variance estimator. Section 3 discusses when our estimator is more efficient than small-sample

GMM. Sections 4 and 5 present our Monte Carlo and data simulations and a final section concludes.

2 The estimator

Let IN be a set of N individuals i, and let (yi, wi) for i ∈ IN be a random sample of observable variables yi,

which is a column vector, and wi, whose dimensions are unspecified (but finite). The following population

moment condition is assumed to hold at the true parameter value θ0:

E[yi − hi(θ0)] = 0, (2.1)

where hi(θ) is a vector valued function of θ and of wi, hi(θ) = h(wi, θ).

Define the observed part of the sample moment:

ȳN =
1

N

∑
i∈IN

yi, (2.2)
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Suppose it is costly to compute the predicted part of the sample moment using the full sample, h̄N (θ) =
1
N

∑
i∈IN hi(θ). To reduce the computational burden of estimating the model, we approximate the sample

average h̄N (θ) by selecting (at random) a subset of households In ⊂ IN with

n = kN (2.3)

for some “scaling-down” constant k ≤ 1, where we think of n as the largest sample size for which the

estimator is computationally feasible. In our asymptotic analysis, we assume that as n increases, N increases

correspondingly, to ensure that condition (2.3) holds. We define the observed component of the sample

moment as:

h̄n(θ) =
1

n

∑
i∈In

hi(θ). (2.4)

The large-small estimator is

θ̂ = arg min
θ

[ȳN − h̄n(θ)]′Ŵ [ȳN − h̄n(θ)]. (2.5)

where θ is K×1, and yi is L×1 for integers L ≥ K, and Ŵ
p−→W for a positive semi-definite L×L matrix

W . We make use of the following notation for the sample average of the moments:

ĝn(θ) = ȳN − h̄n(θ), (2.6)

so that the estimator can be written θ̂ = arg minθ ĝn(θ)′Ŵ ĝn(θ). Since, in general, ĝn(θ) is not a sample

average over a single sample, this is not a traditional GMM estimator.1 However, note that when k = 1 and

so n = N , our estimator coincides with the standard GMM case.2

Example 1 – linear panel data model. We have a sample (Xit, Yit, Zit), i ∈ IN , t = 1, . . . , T , that is identically

distributed, independent in the i-dimension and with unknown dependence in the t-dimension. The vector

Xit is 1 × K for some integer K > 1, Zit is 1 × L for some integer L ≥ K, and Yit is a scalar. The first

entries of Xit and Zit are both 1. The structural equation is Yit = Xitθ+ eit, where E(Z ′iteit) = 0 is assumed

to hold in the population. Let yi = T−1
∑T

t=1 Z
′
itYit and hi(θ) = T−1

∑T
t=1 Z

′
iXiθ. Then condition (2.1) is

T−1
∑T

t=1 E(Z ′iteit) = 0. A pooled linear GMM estimator θ̂ is then given by equation (2.5) when n = N . Let

X be the NT ×K matrix that vertically stacks Xit, Z the corresponding NT × L matrix, and Y a stacked

NT×1 vector. The GMM objective function is [Z ′Y/NT−(Z ′X/NT )θ]′Ŵ [Z ′Y/NT−(Z ′X/NT )θ]. Solving

the first-order condition gives the estimator θ̂ = [(Z ′X/NT )′Ŵ (Z ′X/NT )]−1(Z ′X/NT )′Ŵ (Z ′Y/NT ). X

Example 1 with large-small estimator. Let In be a subset of IN , and pick at random a subset of size τ ≤ T
of the full set of T time periods. Let Xn be the nτ × K matrix that vertically stacks Xit for i in In and

t = 1, . . . , τ , and Zn the corresponding nτ ×L matrix, so that h̄n(θ) = (Z ′nXn/nτ)θ. The objective function

1Newey and McFadden (1994) p. 2116) define a GMM estimator as arg minθ ĝn(θ)′Ŵ ĝn(θ) with ĝn(θ) = n−1∑n
i=1 g(zi, θ)

for some function g of the data zi.
2 The GMM estimator is consistent by Theorem 2.6 in Newey and McFadden (1994) with some additional assumptions,

which we maintain throughout: (i) WE[yi − hi(θ)] = 0 only if θ = θ0; (ii) θ0 ∈ Θ where Θ is compact; (iii) hi(θ) is continuous
at each θ ∈ Θ with probability one; (iv) E[supθ∈Θ ‖hi(θ)‖] <∞ and E[‖yi‖] <∞, which implies E[supθ∈Θ ‖yi − hi(θ)‖] <∞ by
the triangle inequality.
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for the large-small estimator is [Z ′Y/NT − (Z ′nXn/nτ)θ]′Ŵ [Z ′Y/NT − (Z ′nXn/nτ)θ] and the estimator is

θ̂ = [(Z ′nXn/nτ)′Ŵ (Z ′nXn/nτ)]−1(Z ′nXn/nτ)′Ŵ (Z ′Y/NT ). X

We think of nonlinear models as the main application of the large-small estimator. But in Example 1, if

N , L and K are very large (e.g. due to inclusion of high-dimensional fixed effects), the computational cost

saving may be significant in these linear settings too.3 We next consider two examples of nonlinear models,

which highlight that our estimator can aid identification.

Example 2 – discrete-choice model. We have a random sample (Xi, Yi, Zi), i ∈ IN . The setting is a

discrete choice between J alternatives, with cross-sectional data for individual decision makers. J is large

and some alternatives j are chosen only by a small fraction of consumers. The outcome variable Yi is a

J × 1 vector of zeros except for the j-th entry which is 1 if i chooses alternative j. The J ×K matrix Xi

contains consumer- and alternative-specific attributes, and Zi is a J ×L matrix of instruments. A discrete-

choice model gives the probability of choosing each alternative as a J × 1 vector P(Xi, θ) where θ includes

coefficients on interactions between alternative-specific dummies and consumer attributes. The moment

condition E[Z ′i(Yi − P(Xi, θ0))] = 0 holds in the population. Define yi = Z ′iYi and hi(θ) = Z ′iP(Xi, θ).

Suppose P involves simulation, a nested optimization or fixed-point problem, or other features that are

computationally costly, so that it is not feasible to compute the GMM estimator for the full data set. Instead

we work with a subset In ⊂ IN of the data. If we compute a GMM estimator using the subsample In, some

alternatives may not be chosen by any consumers in In, and the corresponding alternative-specific coefficients

can no longer be estimated.4 The large-small estimator does not have this problem, since predictions are

formed for every alternative for every i and the full data set is used for the observed component of the

moments. X

Example 3 – multi-product demand model with corner solutions. Let notation be as in Example 2, but now

let Yi be a J×1 vector of non-negative continuous choices, and P(Xi, θ) a model of continuous choices subject

to non-negativity constraints and permitting corner solutions. If utility is non-separable in products, and

varies with continuous consumer attributes and simulated random shocks, J2 combinations of interior/corner

solutions must be checked and compared for each combination of household i and simulation draw r for each

trial value of θ. This is an example of a nested optimization problem that makes estimation computationally

costly. X

2.1 Consistency

Consistency follows from a standard result for extremum estimators (Newey and McFadden (1994), Theorem

2.1), where a key requirement is that the sample objective function converges uniformly in probability to

its population counterpart. It is sufficient for ĝn(θ) to converge uniformly in probability to g0(θ). Newey

and McFadden (1994) provide a proof that this is the case for GMM estimators, which we adapt to show

the same for our estimator.

3In Example 1, the large-small estimator involves L(nτ)K operations, instead of L(NT )K operations, for the predicted part
of the moment.

4See Lee and Ng (2020), Section 1.1, for a real data example of such “rank failure” in random subsampling.
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Proposition 1. The large-small estimator (2.5) is consistent: θ̂
p−→ θ0.

Proof. See Appendix A.

2.2 Asymptotic normality

An estimator of the form θ̂ = arg minθ ĝn(θ)′Ŵ ĝn(θ) is a minimum distance estimator5 if at the true value

θ0, ĝn(θ0)
p−→ 0. Minimum distance estimators for which

√
nĝn(θ0) is asymptotically normal are themselves

asymptotically normal. We proceed by verifying these two requirements.

Proposition 2. The large-small estimator (2.5) is a minimum distance estimator.

Proof. By the law of large numbers, h̄n(θ0)
p−→ E[hi(θ0)] as n → ∞. Since N ≥ n by condition (2.3),

ȳN
p−→ E[yi] as n → ∞. Then ĝn(θ0)

p−→ 0 follows from the additivity of probability limits and condition

(2.1): ĝn(θ0)
p−→ E[yi]− E[hi(θ0)] = 0.

Proposition 3. The moment in (2.6) satisfies:

√
nĝn(θ0)

d−→ N(0,Ω) (2.7)

where Ω = kΣy + Σh − k(Σyh + Σ′yh), Σy = Var[yi], Σh = Var[hi(θ0)] and Σyh = Cov[yi, hi(θ0)].

Proof. Define µy = E[yi] and µh = E[hi(θ0)]. By the central limit theorem
√
n(h̄n(θ0) − µh)

d−→ N(0,Σh)

as n → ∞ and
√
N(ȳN − µy)

d−→ N(0,Σy) as N → ∞. Given the fixed ratio k = n/N , it then follows

that when n → ∞,
√
n(ȳN − µy) =

√
n√
N

√
N(ȳN − µy)

d−→ N
(
0, nNΣy

)
. Online Appendix A shows that

Cov
[√
n(ȳN − µy),

√
n(h̄n(θ0)− µh)

]
= n

NΣyh. Using the fact that µy = µh by condition (2.1), we get
√
nĝn(θ0) =

√
n(ȳN − h̄n(θ0)) =

√
n(ȳN − µy)−

√
n(h̄n(θ0)− µh)

d−→ N(0, kΣy + Σh − k(Σyh + Σ′yh)).

We can now state the main result about the distribution of the large-small estimator, which follows from

Theorem 3.2 in Newey and McFadden (1994).6

Proposition 4. The large-small estimator (2.5) satisfies

√
n(θ̂ − θ0)

d−→ N(0, BΩB′), (2.8)

where B = (G′WG)−1G′W , G = −∇θE[hi(θ0)] (an L×K matrix), and Ω = kΣy + Σh − k(Σyh + Σ′yh).

5See Newey and McFadden (1994), p. 2116 - 2117.
6For simplicity, assume that (a) θ0 ∈ interior(Θ); (b) hi(θ) is continuously differentiable on interior(Θ), and (c) G′WG

is nonsingular. But note we can relax (b) and (c) to the hypotheses in Newey and McFadden’s Theorem 3.2: (d) ĝn(θ)
is continuously differentiable in a neighbourhood N of θ0; (e) there is a function G(θ) that is continuous at θ0 and

supθ∈Θ ‖∇θ ĝn(θ)−G(θ)‖ p−→ 0; (f) for G = G(θ0), G′WG is nonsingular. Clearly (b) implies (d) and (e). Online Appendix B
gives an alternative result for the case when condition (e) is not satisfied.
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2.3 Asymptotic variance estimation

Given Proposition 4, we can obtain an estimator for the asymptotic variance in the usual way.

Proposition 5. The following estimator of the asymptotic covariance matrix is consistent:

B̂Ω̂B̂′
p−→ BΩB′, (2.9)

where B̂ = (Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ , Ĝ = −n−1
∑

i∈In ∇θhi(θ̂), and Ω̂ = kΣ̂y + Σ̂h − k(Σ̂yh + Σ̂′yh), with

Σ̂y = N−1
∑
i∈IN

[yi − ȳN ][yi − ȳN ]′ (2.10)

Σ̂h = n−1
∑
i∈In

[hi(θ̂)− h̄n(θ̂)][hi(θ̂)− h̄n(θ̂)]′ (2.11)

Σ̂yh = n−1
∑
i∈In

[yi − ȳN ][hi(θ̂)− h̄n(θ̂)]′. (2.12)

Proof. By the law of large numbers, each of equations (2.10)-(2.12) converges in probability to the corre-

sponding population object, so that Ω̂
p−→ Ω. The result then follows by Newey and McFadden (1994)

Theorem 4.2.

Standard errors are given by the square roots of the diagonal entries in B̂Ω̂B̂′/n. The covariance estimator

is also valid for the special case of GMM, where N = n and k = 1. It then corresponds to the centred

covariance estimator that is “in general preferred” (Hansen (2022), p. 431) for GMM estimators.7 Finally,

the optimal weighting matrix is the usual choice:8

Proposition 6. The large-small estimator (2.5) is asymptotically efficient when Ŵ is chosen so that W =

Ω−1.

3 Conditions for efficiency gain

Holding the sample size for the predicted component of the moment condition in the estimator (2.5) fixed

at n, we consider the effect on the variance of the estimator of increasing the sample size for the observed

component, N .

Proposition 7. For the k-th element of the parameter vector θ, the difference between the asymptotic

variance of the GMM estimator θ̂n,nk that uses sample size n, and that of the large-small estimator θ̂N,nk is

Avar(θ̂n,nk )−Avar(θ̂N,nk ) =

(
1

n
− 1

N

)
bk[Σy − (Σyh + Σ′yh)]b′k, (3.1)

where bk is the k-th row of the matrix B.

7Then Ω̂ = n−1∑
i∈In [(yi−hi(θ))− (ȳn− h̄n(θ))][(yi−hi(θ))− (ȳn− h̄n(θ))]′, which equals the Ω̂ above when we set k = 1

and replace N with n everywhere.
8See Theorem 5.2, Newey and McFadden (1994).
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Proof. The change in BΩB′/n is B
{[

Σy + Σh − (Σyh + Σ′yh)
]
−
[
kΣy + Σh − k(Σyh + Σ′yh)

]}
B′/n

= (1− k)B[Σy − (Σyh + Σ′yh)]B′/n. Element (k, k) of BΩB′/n is bkΩb
′
k/n.

Since the left-hand side of (3.1) is a quadratic form, the large-sample estimator with N > n is variance-

reducing for all k = 1, . . . ,K if and only if

Σy − (Σyh + Σ′yh) (3.2)

is positive definite. Note that since equation (3.1) can be consistently estimated with the sample of size n,

we can estimate the efficiency gain from the large-small estimator before actually implementing it.

Intuitively, potential efficiency gains are driven by a reduction in the asymptotic variance of the observed

part of the moment, ȳN , since Σy/N < Σy/n. On the other hand, for given variances Σy/N and Σh/n of the

observed and predicted components, respectively, the overall variance of the moment ȳN − h̄n(θ0) increases

if the covariance between the two components falls. Therefore, when the large-small estimator reduces

the covariance term, Σyh/N < Σyh/n, it acts to increase the overall variance of the moment, everything

else equal. It is the net effect of these two forces that determines whether the large-small estimator is

variance-reducing. The following example explores these issues in the context of a simple linear regression

model.

Example 4 – linear regression. Suppose we want to estimate the model y = θx + e, where Cov(x, e) = 0

at the true value θ0, so that θ0 = Cov(x, y)/Var(x). Let Sxy(n) and Sxy(N) be the sample covariances

between x and y in the small and large samples, respectively. Then the OLS estimator for the small sample

is θ̂n,n = Sxy(n)/Sxx(n), while our estimator is θ̂N,n = Sxy(N)/Sxx(n). There are two opposite effects

determining which of the two estimators has the smaller variance. One the one hand, Sxy(N) is a less noisy

estimate of the population covariance than Sxy(n) is, which tends to make θ̂N,n less noisy. On the other

hand, Sxx(n) is more highly correlated with Sxy(n) than with Sxy(N), since Sxy(n) is a function of exactly

the same xi (both directly for x and indirectly for y through yi = xiθ0 +ei) that enter Sxx(n). Therefore the

noise in the numerator and denominator will cancel out to a larger extent in θ̂n,n than in θ̂N,n, tending to

make the ratio in the OLS estimator less noisy. The latter effect is particularly salient in the case of perfect

fit, where ei = 0. Then Sxy(n) = θ0Sxx(n), so that θ̂n,n has zero variance, while θ̂N,n still has sampling error

from not using the same xi in the observed and predicted parts of the moment. That is, sampling error in x

is the only source of noise in the estimators, but it cancels between the numerator and denominator in the

OLS estimator.

For a numerical illustration, suppose x and e are independent and both have a standard normal distribution.

The positive-definiteness criterion is then satisfied if

0.7071 ≈ 1/
√

2 > |θ| , (3.3)
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i.e. the error term e must be a relatively important source of variation in y. In this case, G = E(x2) =

Var(x) = 1, so B = 1 for W = 1. From equation (3.1) we get a variance reduction of:9(
1

n
− 1

N

)
(1− 2θ2), (3.4)

so that if n = 3, 000, N = 100, 000 and θ = 0.15, for instance, the variance reduction is 3.088e-4. The

asymptotic variance of the moment with sample size n is Var(xe)/n = 1/n = 3.333e-4. It follows that

the large-small estimator lowers the asymptotic standard deviation from 0.0183 for the GMM estimator to

0.0050, or by a factor of 3.7. X

4 Monte Carlo results

In this section we present Monte Carlo results for a linear regression, a multinomial logit model, and a

random-coefficients logit model. Models 1–3 are linear regression models,

yi = θxi + ei,

where both xi and ei are independent draws from a standard normal distribution.

Models 4–6 are multinomial logit discrete-choice models. Consumer i’s conditional indirect utility uij from

alternatives j = 1, . . . , J , where J = 20, is given by

uij = θxij + εij .

The variable xij is drawn independently from a standard normal distribution, and the shock εij from a type-

1 extreme value distribution. The variable xij mimics an observed consumer/alternative-specific variable,

such as distance to a store from consumer i’s home. Each observed choice is generated by one draw of the

vector (xi1, . . . , xiJ , εi1, . . . , εiJ).

Model 7 is a panel data random-coefficients logit model. Consumer i at time t = 1, . . . , T gets conditional

indirect utility uijt such that

uijt = (β + σνi + γzit)xjt + εijt.

xjt are independent draws from a standard normal distribution, and mimic observed product attributes.

The shocks εijt are independent draws from a type-1 extreme value distribution. The shocks νi, independent

draws from a standard normal distribution, represent unobserved heterogeneity in the taste for the product

attribute xjt.
10 The variable zit, independent across i, mimics an observed demographic variable with some

dependence across t. It is generated as the sum of two standard uniform random variables, one of which is

constant across time and one of which is independent across time. Each observed choice is generated by one

9See Online Appendix C for details.
10For simulation of the integral over the distribution of νi in the model’s prediction, for each i we use five simulation draws.
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draw of the vector (zit, νi, εi1t, . . . , εiJt) while the product attributes x1t, . . . , xJt are the same for all i. The

number of alternatives is J = 20, time periods T = 2.

For the regression models 1–3, estimation is based on the moment condition E(xiei) = 0. For the multinomial

logit models 4–6, the moment condition is E(
∑

j xijeij) = 0, where eij = Iij − Pij(θ), Iij is an indicator

for whether i chose j, and Pij is the model’s choice probability for this outcome. For model 7, define

the prediction error eijt = Iijt − Pijt(θ). We use the two moment conditions E[T−1
∑

t

∑
j xjteijt] = 0

and E[T−1
∑

t

∑
j zitxjteijt] = 0. We add a third condition that exploits the panel structure to match the

covariance of the purchase-weighted x in the two time periods:11

E[(
∑
j

xjtIijt)(
∑
j

xjt′Iijt′)− (
∑
j

xjtPijt)(
∑
j

xjt′Pijt′)] = 0,

We use 10,000 Monte Carlo samples of size n and N ≥ n respectively, where the small sample is a subset

of the large sample.12 Table 4.1 reports the sample means and sample standard deviations of estimates, as

well as the sample mean of the standard errors. The results for model 1 correspond to the threshold derived

in equation (3.3): no effect of changing N for a given n. Here the effects discussed in Section 3 exactly

offset each other. The same is true for model 4. Models 2 and 5 have values of θ above the threshold, which

means that the large sample increases the variance of the estimator. The model 2 mean standard errors for

N=3,000 and N=100,000 match the asymptotic results based on equation (3.4) discussed in Section 3. In

models 3, 6 and 7 the large sample reduces the variance of the estimator.

11The last condition is intended to identify the parameter σ. See Thomassen et al. (2017) and Berry and Haile (2021) for a
discussion of this type of moment condition. As weighting matrix we use the diagonal matrix where entry (k, k) is the inverse
of the square of the observed component of moment number k. This is a simple way to scale the moments in relation to each
other without the need for two stages of estimation (see Low and Meghir (2017)).

12See Online Appendix D for details.
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Table 4.1: Monte Carlo results

n=3,000

N=3,000 N=10,000 N=30,000 N=100,000
S.E.(θ̂3k,3k)

S.E.(θ̂100k,3k)

Model 1: Linear regression (θ = 0.7071)

θ̂ 0.7069 0.7073 0.7077 0.7077

S.E.(θ̂) 0.0183 0.0183 0.0183 0.0183 1.0

S.D.(θ̂) 0.0183 0.0183 0.0184 0.0184

Model 2: Linear regression (θ = 4)

θ̂ 4.0001 4.0028 4.0022 4.0034

S.E.(θ̂) 0.0182 0.0871 0.0981 0.1018 0.2

S.D.(θ̂) 0.0185 0.0875 0.0992 0.1009

Model 3: Linear regression (θ = 0.15)

θ̂ 0.1499 0.1501 0.1501 0.1501

S.E.(θ̂) 0.0182 0.0105 0.0068 0.0050 3.6

S.D.(θ̂) 0.0182 0.0105 0.0069 0.0050

Model 4: Multinomial logit (θ = 2.061)

θ̂ 2.0615 2.0613 2.0620 2.0610

S.E.(θ̂) 0.0322 0.0321 0.0321 0.0321 1.0

S.D.(θ̂) 0.0317 0.0320 0.0322 0.0322

Model 5: Multinomial logit (θ = 4)

θ̂ 4.0012 4.0048 4.0060 4.0103

S.E.(θ̂) 0.0731 0.1460 0.1610 0.1664 0.4

S.D.(θ̂) 0.0730 0.1457 0.1625 0.1706

Model 6: Multinomial logit (θ = 0.15)

θ̂ 0.1502 0.1500 0.1500 0.1500

S.E.(θ̂) 0.0188 0.0109 0.0073 0.0054 3.5

S.D.(θ̂) 0.0188 0.0109 0.0071 0.0054

Model 7: R.C. logit (β = 0.3, σ = 0.15, γ = 0.2)

β̂ 0.3012 0.3004 0.2999 0.3003

S.E.(β̂) 0.0371 0.0265 0.0227 0.0211 1.8

S.D.(β̂) 0.0371 0.0267 0.0233 0.0216

σ̂ 0.1667 0.1531 0.1486 0.1494
S.E.(σ̂) 0.0802 0.0449 0.0267 0.0144 5.6
S.D.(σ̂) 0.0556 0.0374 0.0261 0.0147

γ̂ 0.1998 0.1996 0.2002 0.1998
S.E.(γ̂) 0.0344 0.0261 0.0232 0.0221 1.6
S.D.(γ̂) 0.0344 0.0264 0.0240 0.0226

Notes: Numbers are mean parameter estimates and standard errors, and estimate standard deviations, over 10,000 simulations.
The final column shows the ratio of the mean standard error when N=3,000 to the mean standard error when N=100,000.

5 Empirical application

In this section we present an empirical application of the large-small estimator. We focus on a setting in

which it is feasible to estimate model parameters using the full data set, and we show how the precision of

estimates obtained using subsamples of different size, both using the large-small estimator and a conventional

GMM estimator, compare to GMM estimates based on the full sample.

Our application entails estimating the relationship between a household’s demand for alcohol and their

total spending on food and drinks (both alcoholic and non-alcoholic). Figure 5.1 shows that households
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with higher spending levels systematically allocate a higher spending share to alcohol. This pattern could

reflect a causal income effect, i.e. exogenously raising a household’s total spending leads them to allocate a

higher share of spending to alcohol, or preference heterogeneity, i.e. households with higher spending have

stronger permanent tastes for alcohol, or a combination of both. Understanding which is important for

forecasting how alcohol consumption will change with fluctuations in income, and is relevant for the optimal

design of alcohol taxation.13

Figure 5.1: Alcohol budget share by spending deciles

Notes: Based on authors’ calculations using Kantar FMCG Purchase Panel. We group household-year observations into deciles
based on the annual total food and drink (including alcohol) equivalized spending distribution. The markers show the average
share of food and drink spending allocated to alcohol for each decile. Total spending is equivalized using the OECD-modified
equivalence scale.

Data. We use household scanner data collected by the market research firm Kantar FMCG Purchase

Panel. The data cover purchases of fast-moving consumer goods (food, drinks and household supplies - such

as toiletries, non-prescription drugs, cleaning products and pet foods) brought into the home by a sample

of households living in Great Britain. Households record purchases using handheld scanners or mobile

phone apps. We aggregate the data to the annual level. Our sample covers 41,982 households (indexed

h = 1, . . . ,H) and the period 2002-2021 (indexed t = 1, . . . , T ). The sample is an unbalanced panel, we use

Th to denote the number of periods household h is present in the sample. The total number of observations

(
∑H

h=1 Th) is 299,078.

Demand model. We specify a simple alcohol demand model in which the alcohol budget share of house-

hold h in year t, yht, is linear in the log of total (food and drink) expenditure xht (expressed in 2021 £s).

13For instance, if the cross-sectional pattern depicted in Figure 5.1 is driven by preference heterogeneity there is a redis-
tributive rationale for taxing alcohol. On the other hand, if the pattern is entirely driven by income effects the case for alcohol
taxation rests only on externality or internality correcting grounds (see Saez (2002) and Allcott et al. (2019)).
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We control for price changes, through inclusion of time dummies, τt, and we control for a vector of demo-

graphics, Dht, which include indicator variables for whether the household has 2 adults, 3 or more adults,

1 child, 2 children, or 3 or more children and for whether the household is located in Scotland and the year

is 2018 or later (designed to capture the impact of the introduction of a minimum unit price for alcohol in

Scotland).14

We estimate two alternative models:

1. Cross-sectional: The first ignores the panel structure of the data. The model is:

yht = α+ αDDht + τt + β ln(xht) + εht

In this case the size of the large sample is N =
∑H

h=1 Th(= 299, 078) and we construct small samples by

randomly drawing observations (i.e., household-periods) from the large sample.

2. Panel data: In the second model we include household fixed effects, ah:

yht = ah + αDDht + τt + β ln(xht) + εht

In this case the size of the large sample is N = H(= 41, 982) and we construct small samples by randomly

drawing households from the large sample.

In each case we estimate the model i) including all explanatory variables in the instrument set and ii)

allowing for the possibility of contemporaneous correlation between log total expenditure and the error term

(by instrumenting log total expenditure with log expenditure on household supplies).

Simulations. Our aim to compare GMM estimates based on a sub- (or small) sample of a given size n with

the large-small estimator (that uses large, size N , data to compute the observed component of the moment

and the small sample to compute the predicted component of the moment). To do this we randomly draw

with replacement a simulated large sample (of size N) from the full sample and from this we randomly draw

a size n small sample. We repeat this procedure 10,000 times.

Results. We present simulation results in Table 5.1, focusing on estimates of the log total expenditure

coefficient (β̂).15 The first two panels provide results for the cross-sectional model and the second two

provide results for the panel data model. In each case we show estimates obtained under the assumption

of (strict) exogeneity of the explanatory variables, and using log expenditure on household supplies as an

instrument for log food and drink spending. Column (1) presents GMM estimates based on the full sample.

Columns (2)-(6) present GMM estimates based on small samples of various sizes and columns (7)-(11)

present corresponding large-small estimates. The first row of each panel shows the parameter estimates

(for columns (2)-(11) means over 10,000 simulations are shown). For each model the estimate is positive,

14Alcohol taxes are the same throughout the UK. However in May 2018 the Scottish government introduced a price floor for
alcohol which lead to price rises and falls in alcohol consumption in Scotland (see Griffith et al. (2022)).

15We present results for the other coefficients in the Online Appendix E. They exhibit similar patterns.
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indicating that alcohol is a luxury good, though the implied total budget elasticity varies from 1.7 for

the cross-sectional model estimated assuming regressor exogeneity to 1.1 for the panel data model (which

controls for fixed household preference heterogeneity) estimated using the total spending instrument. The

second row shows standard errors (for columns (2)-(11), means over simulations are shown) and the final

row shows the standard deviation of the parameter estimates across 10,000 simulations.

In all cases the large-small estimates are more precise than the corresponding small sample GMM estimates.

We illustrate this graphically in Figure 5.2, which show how the coefficient of variation for β̂ across simu-

lations, for both GMM and large-small estimates, varies with the size of the small sample. The efficiency

gains from the large-small estimator are larger the smaller the size of the small sample. For a given small

sample size (aside from the limiting case in which the small and large samples coincide), the efficiency gains

from the large-small estimator are largest for the panel data model. For instance, for the panel data model

estimated using the spending IV, when the small size is 5,000 (under 15% the size of the large sample), the

coefficient of variation of the large-small estimate is only 7% higher than that for the GMM estimate on the

large sample (whereas the small sample GMM estimate has a coefficient of variation that is 2.9 times larger

than the large sample GMM estimate).

Table 5.1: Simulation results

β̂LL β̂SS β̂LS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Cross-sectional model

N = n = n = n = n = n = n = n = n = n = n =
299k 25k 50k 100k 200k 294k 25k 50k 100k 200k 299k

OLS

β̂ 6.385 6.385 6.385 6.385 6.385 6.385 6.393 6.388 6.386 6.386 6.385

S.E.(β̂) 0.049 0.171 0.121 0.085 0.060 0.049 0.137 0.099 0.073 0.056 0.049

S.D.(β̂) 0.170 0.121 0.086 0.061 0.050 0.137 0.100 0.074 0.057 0.050

IV

β̂ 1.415 1.416 1.417 1.416 1.416 1.416 1.418 1.414 1.415 1.417 1.416

S.E.(β̂) 0.084 0.291 0.206 0.145 0.103 0.084 0.237 0.171 0.126 0.096 0.084

S.D.(β̂) 0.293 0.207 0.146 0.104 0.085 0.237 0.173 0.128 0.097 0.085

Panel data model

N = n = n = n = n = n = n = n = n = n = n =
42k 5k 10k 20k 35k 42k 5k 10k 20k 35k 42k

FE

β̂ 3.777 3.779 3.777 3.776 3.776 3.777 3.785 3.780 3.778 3.777 3.777

S.E.(β̂) 0.096 0.278 0.197 0.139 0.105 0.096 0.138 0.116 0.103 0.097 0.096

S.D.(β̂) 0.278 0.198 0.140 0.106 0.096 0.123 0.108 0.100 0.097 0.096

FE-IV

β̂ 0.892 0.897 0.892 0.892 0.891 0.891 0.894 0.893 0.892 0.892 0.891

S.E.(β̂) 0.150 0.434 0.307 0.217 0.164 0.150 0.161 0.155 0.152 0.150 0.150

S.D.(β̂) 0.439 0.308 0.218 0.166 0.151 0.161 0.155 0.152 0.151 0.151

Notes: β̂LL denotes GMM estimates with the full sample. β̂SS denotes GMM estimates with a sub-sample (i.e. the small sample).

β̂LS denotes denotes large-small estimates. The small sample size is displayed in the second row. For columns (2)-(11), rows
1 and 2 of each panel report means across 10,000 simulations. In the panel data model standard errors are clustered at the
household level.

13



Figure 5.2: Precision of β̂

(a) Cross-sectional model: OLS (b) Cross-sectional model: IV

(c) Panel data model: FE (d) Panel data model: FE-IV

Notes: Each marker shows the ratio of the standard deviation to the mean of the estimate across simulations. The standard
deviations and means are reported in Tables 5.1.

6 Conclusion

In this paper we derive the asymptotic properties of a large/small-sample GMM-type estimator. The

estimator will be of use in situations in which researchers have access to large datasets and wish to estimate

a computationally intensive model (involving, for instance, nested optimization or fixed point problems).

Standard practice entails using a subset of the data for estimation. In contrast, rather than discarding

completely the data not in the feasible subsample, our estimator brings the information in the full data to

bear by using a large sample for the observed part of the moment (which only needs to be computed once).

We show that if a simple criterion, that can be checked with the small sample only, is satisfied then using

the large-small estimator will be more efficient than GMM using the small sample. We verify the estimator’s

properties for different models with Monte Carlo studies and simulations with real data.
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Appendix

A Proof of Proposition 1

We maintain the assumptions in footnote 2, here referred to as Assumption 1. We first prove two lemmas that we use for the
main proof.
Lemma 1. Let fn and f be vector-valued functions such that supθ∈Θ ‖fn(θ)− f(θ)‖ p−→ 0 and xn and µ vectors such that

‖xn − µ‖
p−→ 0. Suppose N ≥ n. Then as n→∞,

sup
θ∈Θ
‖xN − fn(θ)− [µ− f(θ)]‖ p−→ 0

Proof. First note that for all N and n,

‖xN − µ‖+ sup
θ
‖fn(θ)− f(θ)‖ = sup

θ
{‖xN − µ‖+ ‖fn(θ)− f(θ)‖}

≥ sup
θ
{‖xN − µ− [fn(θ)− f(θ)]‖} , (A.1)

where the last line follows from the triangle inequality. By assumption, for any ε > 0 and any δ > 0 there exists n1 such that
for all n ≥ n1,

Pr

(
sup
θ∈Θ
‖fn(θ)− f(θ)‖ > ε

2

)
<
δ

2
, (A.2)

and n2 such that for all N ≥ n2,

Pr
(
‖xN − µ‖ >

ε

2

)
<
δ

2
. (A.3)

Then for n0 = max{n1, n2}, n > n0 implies

Pr
(

sup
θ
‖xN − µ− [fn(θ)− f(θ)]‖ > ε

)
≤ Pr

(
‖xN − µ‖+ sup

θ∈Θ
‖fn(θ)− f(θ)‖ > ε

)
≤ Pr

(
‖xN − µ‖ >

ε

2
or sup

θ∈Θ
‖fn(θ)− f(θ)‖ > ε

2

)
≤ Pr

(
‖xN − µ‖ >

ε

2

)
+ Pr

(
sup
θ∈Θ
‖fn(θ)− f(θ)‖ > ε

2

)
< δ.

Lemma 2. Let ĝn(θ) = ȳN−h̄n(θ) and g0(θ) = E[yi−hi(θ)]. Then (i) g0(θ) is continuous and (ii) supθ∈Θ ‖ĝn(θ)− g0(θ)‖ p−→ 0.

Proof. We verify the hypotheses of Lemma 2.4 in Newey and McFadden (1994).16 Recall that hi(θ) = h(wi, θ). We have
assumed that wi are i.i.d., Θ is compact, and h(wi, θ) is continuous at each θ ∈ Θ with probability one.

Define d(wi) = supθ∈Θ ‖h(wi, θ)‖. Then we have ‖h(wi, θ)‖ ≤ d(wi) for all θ ∈ Θ. By Assumption 1(iv), E[d(wi)] =
E
[
supθ∈Θ ‖h(wi, θ)‖

]
<∞. Then by Lemma 2.4 in Newey and McFadden (1994), E[h(wi, θ)] is continuous and

sup
θ∈Θ

∥∥h̄n(θ)− E[h(wi, θ)]
∥∥ = sup

θ∈Θ

∥∥∥∥∥n−1
∑
i∈In

h(wi, θ)− E[h(wi, θ)]

∥∥∥∥∥ p−→ 0.

Continuity of E[h(wi, θ)] implies continuity of g0(θ) = E[yi]− E[h(wi, θ)]. This completes the proof of part (i) of the Lemma.

In Lemma 1, let fn(θ) = h̄n(θ), f(θ) = E[h(wi, θ)], xN = ȳN and µ = E[yi]. Since the assumptions of Lemma 1 are satisfied, it
follows that

sup
θ∈Θ
‖ĝn(θ)− g0(θ)‖ = sup

θ∈Θ

∥∥ȳN − h̄n(θ)− E[yi − h(wi, θ)]
∥∥ p−→ 0.

16Our h is their a, and our wi is their z.
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This completes the proof of part (ii) of the lemma.

We can now prove Proposition 1.

Proof. We let ĝn(θ) = ȳN − h̄n(θ) and g0(θ) = E[yi − h(wi, θ)]. We also define Q0(θ) = −g0(θ)′Wg0(θ) and Q̂n(θ) =
−ĝn(θ)′Ŵ ĝn(θ).

We proceed by verifying the hypotheses of Theorem 2.1 in Newey and McFadden (1994).17 Their condition (i), that Q0(θ)
be uniquely maximized at θ0, follows by our Assumption 1(i) and Lemma 2.3 (GMM identification) in Newey and McFadden
(1994). Their condition (ii), that Θ be compact, is our Assumption 1(ii).

By Lemma 2, g0(θ) is continuous and supθ∈Θ ‖ĝn(θ)− g0(θ)‖ p−→ 0. We use these facts to verify the remaining conditions in
Newey and McFadden’s Theorem 2.1. Their condition (iii), that Q0(θ) = g0(θ)′Wg(θ) be continuous, follows from the continuity
of g0(θ).

By Θ compact, g0(θ) continuous and the extreme value theorem, g0(θ) is bounded on Θ. By the triangle and Cauchy-Schwartz
inequalities,

|Q̂n(θ)−Q0(θ)| ≤ |[ĝn(θ)− g0(θ)]′Ŵ [ĝn(θ)− g0(θ)]|+ |g0(θ)′(Ŵ + Ŵ ′)[ĝn(θ)− g0(θ)]|
+|g0(θ)′(Ŵ −W )g0(θ)|

≤ ‖ĝn(θ)− g0(θ)‖2
∥∥∥Ŵ∥∥∥+ 2 ‖g0(θ)‖ ‖ĝn(θ)− g0(θ)‖

∥∥∥Ŵ∥∥∥
+ ‖g0(θ)‖2

∥∥∥Ŵ −W∥∥∥ .
Then condition (iv), that supθ∈Θ |Q̂n(θ) − Q0(θ)| p−→ 0, holds by supθ∈Θ ‖ĝn(θ)− g0(θ)‖ p−→ 0 and our assumption that

Ŵ
p−→W .
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A The covariance between the observed and predicted moments

We make use of the shorthand notation ai = yi − µy and bi = hi(θ0)− µh. Then E(ai) = 0, E(bi) = 0, and,
because of independence between households i, j, E(aib

′
j) = 0 for i 6= j. We have ȳN−µy = 1

N

∑
i∈IN yi−µy =

1
N

∑
i∈IN ai and h̄n − µh = 1

n

∑
i∈In hi(θ0)− µh = 1

n

∑
i∈In bi. Then:

Cov
[√
n(ȳN − µy),

√
n(h̄n − µh)

]
= nE

 1

N

∑
i∈IN

ai

( 1

n

∑
i∈In

bi

)′ =
1

N
E

∑
i∈IN

ai

(∑
i∈In

b′i

)
=

1

N
E

∑
i∈In

ai +
∑

i∈IN\In

ai

(∑
i∈In

b′i

) =
1

N
E

∑
i∈In

aib
′
i +

∑
i∈In

∑
j∈In\{i}

aib
′
j +

∑
i∈IN\In

∑
j∈In

aib
′
j


=

1

N

∑
i∈In

E(aib
′
i) +

∑
i∈In

∑
j∈In\{i}

E(aib
′
j) +

∑
i∈IN\In

∑
j∈In

E(aib
′
j)

 =
1

N

∑
i∈In

E(aib
′
i)

=
1

N
nE(aib

′
i) =

n

N
E
[
(yi − µy) (hi(θ0)− µh)′

]
=

n

N
Cov (yi, hi(θ0)) .

B Non-smoothness

In some cases assumption (vii) in footnote 6 may not hold. The following set of alternative assumptions are
also sufficient for asymptotic normality.
Assumption 1. Let ĝn(θ) be defined by equation (2.6) and let g0(θ) = E[yit − h(wit, θ)]. Then

(a) θ0 ∈ interior(Θ)

(b) ĝn(θ̂)′Ŵ ĝn(θ̂) ≤ ĝn(θ)′Ŵ ĝn(θ) + op(n
−1)

(c) g0(θ) is differentiable at θ0 with derivative G such that G′WG is nonsingular.

(d) For any δn → 0, sup‖θ−θ0‖<δn

√
n‖ĝn(θ)−ĝn(θ0)−g0(θ)‖

1+
√
n‖θ−θ0‖

p−→ 0.

Proposition 8. The estimator (2.5) satisfies:

√
n(θ̂ − θ0)

d−→ N(0, BΩB′), (B.1)

where B = (G′WG)−1G′W and Ω = kΣy + Σh − k(Σyh + Σ′yh).
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Proof. Newey and McFadden (1994) Theorem 7.2.

C Proof of condition (3.3)

We have

Σy = Var(xy) = Var(x(θx+ e)) = θ2Var(x2) + Var(xe) + 2θCov(x2, xe)

Σyh = Cov(xy, θx2) = Cov(x(θx+ e), θx2) = θ2Var(x2) + θCov(x2, xe)

Under the mean zero and independence assumptions, Var(xe) = Var(x)Var(e). This can be seen from the
general formula

Var(xe) = Cov(x2, e2) + [Var(x) + (Ex)2][Var(e) + (Ee)2]− [Cov(x, e) + ExEe]2.

By equation (3.2) the variance (for a given n) will be reduced by using a larger sample for the observed
component of the moment, if and only if

0 > 2Σyh − Σy = θ2Var(x2)−Var(x)Var(e) ⇔ Var(e) > θ2
Var(x2)

Var(x)
.

Since x is N(0, 1), x2 ∼ χ2(1) (variance 2). The criterion for the large/small-sample estimator to reduce
variance (relative to the OLS estimator using sample size n for both the observed and predicted components)
is then

1 > θ22 ⇔ 0.7071 ≈ 1√
2
> |θ| .

D Details about Monte Carlo simulations

For all models objective functions were minimized numerically with Matlab’s quasi-Newton fminunc with
objective and step tolerances set to 1e-6. Starting values for all parameters were drawn from U(1, 2). For
model 7, if the resulting minimum of the objective was greater than 1e-9, we did a second optimization run
with the true parameter values as starting values. We then kept the results that gave the lowest value for
the objective. To avoid misleading results from optimization failures, we dropped cases where the objective
function was greater than 1e-5 at both optimization runs. This happened in 14.7 percent of simulations for
N = 3, 000, 4.5 percent for N = 10, 000, 0.72 percent for N = 50, 000, and 0.45 percent for N = 100, 000. To
see that the discarded runs were outliers: the 95th, 75th, 50th and 25th percentiles of the objective at the
minimum are, respectively, 5.887e-10, 6.064e-11, 7.019e-12, and 5.116e-13. Among the remaining simulation
runs, for each of the three parameters, there were outliers among the standard errors, which might have
been caused by numerical error in the (finite-difference) calculation of moment derivatives. We therefore
dropped standard errors (and the corresponding parameter estimates) that were above the 95th percentile
of standard errors in each of the six parameter / sample-size combinations where N=3,000 or N=10,000;
and above the 99th percentile of standard errors in each of the six parameter / sample-size combinations
where N=30,000 or N=100,000. Table D.1 shows the Monte Carlo simulations for model 7 without this last
step. Standard deviations of estimates are broadly unchanged, while mean standard errors are now very
different because of the outliers. Table D.2 shows results with the same 95th and 99th percentile cutoffs as
in the paper, but where we have used 100 simulation draws to simulate the distribution of νi instead of 5 as
in the main table. On the other hand, we used only 100 simulated sample to generate Table D.2.
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Table D.1: Monte Carlo results - with outlier standard errors

n=3,000

N=3,000 N=10,000 N=30,000 N=100,000

Model 7: R.C. logit (β = 0.3, σ = 0.15, γ = 0.2)

β̂ 0.3012 0.3004 0.3000 0.3003

S.E.(β̂) 1.0125 0.4178 0.1497 0.0213

S.D.(β̂) 0.0375 0.0274 0.0237 0.0220

σ̂ 0.1594 0.1474 0.1475 0.1489
S.E.(σ̂) 56.7494 26.6544 9.3956 0.0254
S.D.(σ̂) 0.0631 0.0446 0.0283 0.0155

γ̂ 0.1999 0.1999 0.2001 0.1998
S.E.(γ̂) 0.9350 0.4137 0.1448 0.0223
S.D.(γ̂) 0.0346 0.0271 0.0243 0.0229

Notes: Numbers are mean parameter estimates and standard errors, and estimate standard deviations, over 10,000 simulations.

Table D.2: Monte Carlo results - simulation draws increased from 5 to 100

n=3,000

N=3,000 N=10,000 N=30,000 N=100,000

Model 7: R.C. logit (β = 0.3, σ = 0.15, γ = 0.2)

β̂ 0.2919 0.3004 0.3004 0.2967

S.E.(β̂) 0.0376 0.0267 0.0229 0.0208

S.D.(β̂) 0.0399 0.0274 0.0223 0.0205

σ̂ 0.1594 0.1568 0.1496 0.1486
S.E.(σ̂) 0.0908 0.0433 0.0261 0.0139
S.D.(σ̂) 0.0538 0.0330 0.0264 0.0165

γ̂ 0.2091 0.1996 0.2000 0.2038
S.E.(γ̂) 0.0350 0.0264 0.0235 0.0218
S.D.(γ̂) 0.0369 0.0276 0.0226 0.0213

Notes: Numbers are mean parameter estimates and standard errors, and estimate standard deviations, over 100 simulations,
using 100 simulation draws per i to simulate the distribution of νi.
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E Empirical application: full simulation results

Table E.1: Cross-sectional model: OLS

θ̂LL θ̂SS θ̂LS

N = n = n = n = n = n = n = n = n = n = n =
299k 25k 50k 100k 200k 294k 25k 50k 100k 200k 299k

θ̂
Constant -38.285 -38.285 -38.286 -38.287 -38.282 -38.284 -38.326 -38.300 -38.291 -38.288 -38.284
No. adults=2 -1.593 -1.590 -1.591 -1.592 -1.593 -1.594 -1.600 -1.596 -1.595 -1.594 -1.594
No. adults=3 -2.837 -2.836 -2.837 -2.837 -2.838 -2.838 -2.842 -2.840 -2.839 -2.839 -2.838
No. adults>3 -4.267 -4.267 -4.267 -4.266 -4.268 -4.268 -4.274 -4.270 -4.268 -4.269 -4.268
No. kids=1 -3.384 -3.383 -3.382 -3.383 -3.384 -3.384 -3.383 -3.383 -3.384 -3.384 -3.384
No. kids=2 -5.167 -5.168 -5.165 -5.167 -5.167 -5.167 -5.169 -5.169 -5.167 -5.167 -5.167
No. kids>2 -6.863 -6.862 -6.863 -6.864 -6.863 -6.863 -6.865 -6.864 -6.863 -6.863 -6.863
Scotland-post 2017 0.932 0.934 0.929 0.932 0.933 0.933 0.962 0.947 0.936 0.935 0.933
Log expenditure 6.385 6.385 6.385 6.385 6.385 6.385 6.393 6.388 6.386 6.386 6.385

S.E.(θ̂)
Constant 0.378 1.308 0.925 0.654 0.462 0.378 1.075 0.776 0.571 0.434 0.378
No. adults=2 0.065 0.223 0.158 0.112 0.079 0.065 0.184 0.133 0.098 0.074 0.065
No. adults=3 0.081 0.280 0.198 0.140 0.099 0.081 0.236 0.170 0.124 0.094 0.081
No. adults>3 0.087 0.300 0.212 0.150 0.106 0.087 0.252 0.182 0.133 0.100 0.087
No. kids=1 0.055 0.192 0.136 0.096 0.068 0.055 0.172 0.123 0.089 0.065 0.055
No. kids=2 0.051 0.178 0.126 0.089 0.063 0.051 0.158 0.113 0.082 0.060 0.051
No. kids>2 0.062 0.214 0.151 0.107 0.076 0.062 0.185 0.133 0.097 0.072 0.062
Scotland-post 2017 0.164 0.568 0.401 0.284 0.201 0.164 0.519 0.370 0.266 0.195 0.164
Log expenditure 0.049 0.171 0.121 0.085 0.060 0.049 0.137 0.099 0.073 0.056 0.049

S.D.(θ̂)
Constant 1.299 0.926 0.660 0.468 0.383 1.070 0.782 0.578 0.440 0.383
No. adults=2 0.226 0.157 0.111 0.078 0.065 0.186 0.134 0.100 0.075 0.065
No. adults=3 0.281 0.197 0.139 0.099 0.082 0.238 0.171 0.126 0.095 0.082
No. adults>3 0.302 0.213 0.149 0.106 0.087 0.252 0.184 0.134 0.101 0.087
No. kids=1 0.191 0.136 0.095 0.068 0.055 0.174 0.122 0.088 0.065 0.055
No. kids=2 0.176 0.125 0.089 0.062 0.051 0.158 0.113 0.081 0.060 0.051
No. kids>2 0.216 0.152 0.108 0.077 0.063 0.184 0.133 0.097 0.073 0.063
Scotland-post 2017 0.565 0.399 0.283 0.199 0.162 0.517 0.367 0.262 0.191 0.162
Log expenditure 0.170 0.121 0.086 0.061 0.050 0.137 0.100 0.074 0.057 0.050
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Table E.2: Cross-sectional model: IV

θ̂LL θ̂SS θ̂LS

N = n = n = n = n = n = n = n = n = n = n =
299k 25k 50k 100k 200k 294k 25k 50k 100k 200k 299k

θ̂
Constant -1.726 -1.734 -1.740 -1.736 -1.729 -1.732 -1.729 -1.713 -1.725 -1.737 -1.732
No. adults=2 0.736 0.739 0.737 0.737 0.736 0.735 0.732 0.735 0.735 0.734 0.735
No. adults=3 0.113 0.113 0.112 0.113 0.111 0.111 0.111 0.113 0.111 0.111 0.111
No. adults>3 -1.021 -1.021 -1.022 -1.020 -1.022 -1.022 -1.024 -1.021 -1.022 -1.023 -1.022
No. kids=1 -2.842 -2.842 -2.841 -2.842 -2.842 -2.842 -2.841 -2.841 -2.842 -2.843 -2.842
No. kids=2 -4.010 -4.011 -4.008 -4.010 -4.010 -4.010 -4.010 -4.010 -4.010 -4.010 -4.010
No. kids>2 -5.299 -5.299 -5.300 -5.301 -5.301 -5.300 -5.301 -5.300 -5.300 -5.300 -5.300
Scotland-post 2017 0.979 0.980 0.976 0.979 0.981 0.980 1.008 0.994 0.983 0.982 0.980
Log expenditure 1.415 1.416 1.417 1.416 1.416 1.416 1.418 1.414 1.415 1.417 1.416

S.E.(θ̂)
Constant 0.636 2.198 1.554 1.099 0.777 0.635 1.789 1.293 0.954 0.728 0.635
No. adults=2 0.072 0.248 0.175 0.124 0.088 0.072 0.198 0.144 0.106 0.082 0.072
No. adults=3 0.090 0.310 0.219 0.155 0.110 0.090 0.254 0.184 0.135 0.103 0.090
No. adults>3 0.096 0.330 0.234 0.165 0.117 0.096 0.272 0.196 0.145 0.110 0.096
No. kids=1 0.056 0.194 0.137 0.097 0.069 0.056 0.165 0.119 0.087 0.065 0.056
No. kids=2 0.053 0.182 0.129 0.091 0.064 0.053 0.156 0.112 0.082 0.061 0.053
No. kids>2 0.064 0.220 0.156 0.110 0.078 0.064 0.181 0.130 0.096 0.073 0.064
Scotland-post 2017 0.170 0.586 0.414 0.293 0.207 0.170 0.507 0.363 0.264 0.197 0.170
Log expenditure 0.084 0.291 0.206 0.145 0.103 0.084 0.237 0.171 0.126 0.096 0.084

S.D.(θ̂)
Constant 2.215 1.567 1.103 0.784 0.639 1.788 1.305 0.965 0.732 0.639
No. adults=2 0.251 0.174 0.122 0.087 0.071 0.200 0.145 0.108 0.082 0.071
No. adults=3 0.313 0.218 0.153 0.109 0.090 0.255 0.185 0.136 0.104 0.090
No. adults>3 0.336 0.235 0.164 0.117 0.096 0.271 0.199 0.146 0.111 0.096
No. kids=1 0.193 0.137 0.096 0.069 0.056 0.168 0.119 0.087 0.065 0.056
No. kids=2 0.182 0.129 0.091 0.064 0.052 0.155 0.111 0.081 0.061 0.052
No. kids>2 0.223 0.157 0.111 0.079 0.065 0.179 0.130 0.097 0.074 0.065
Scotland-post 2017 0.584 0.412 0.292 0.206 0.168 0.504 0.360 0.261 0.194 0.168
Log expenditure 0.293 0.207 0.146 0.104 0.085 0.237 0.173 0.128 0.097 0.085
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Table E.3: Panel data model: Fixed effects

θ̂LL θ̂SS θ̂LS

N = n = n = n = n = n = n = n = n = n = n =
42k 5k 10k 20k 35k 42k 5k 10k 20k 35k 42k

θ̂
No. adults=2 -0.514 -0.511 -0.511 -0.511 -0.512 -0.513 -0.512 -0.513 -0.512 -0.512 -0.513
No. adults=3 -0.550 -0.545 -0.545 -0.547 -0.548 -0.549 -0.549 -0.550 -0.549 -0.549 -0.549
No. adults>3 -0.855 -0.852 -0.855 -0.855 -0.856 -0.856 -0.857 -0.856 -0.855 -0.856 -0.856
No. kids=1 -1.587 -1.589 -1.589 -1.590 -1.590 -1.589 -1.595 -1.592 -1.590 -1.590 -1.589
No. kids=2 -2.470 -2.470 -2.472 -2.471 -2.472 -2.471 -2.482 -2.476 -2.473 -2.472 -2.471
No. kids>2 -3.217 -3.221 -3.221 -3.217 -3.219 -3.218 -3.236 -3.226 -3.220 -3.219 -3.218
Scotland-post 2017 -0.157 -0.160 -0.160 -0.159 -0.157 -0.157 -0.154 -0.156 -0.157 -0.157 -0.157
Log expenditure 3.777 3.779 3.777 3.776 3.776 3.777 3.785 3.780 3.778 3.777 3.777

S.E.(θ̂)
No. adults=2 0.156 0.449 0.318 0.226 0.171 0.156 0.207 0.180 0.165 0.158 0.156
No. adults=3 0.199 0.575 0.407 0.288 0.218 0.199 0.271 0.233 0.211 0.201 0.199
No. adults>3 0.257 0.743 0.527 0.373 0.282 0.257 0.352 0.302 0.273 0.260 0.257
No. kids=1 0.103 0.297 0.211 0.149 0.113 0.103 0.142 0.122 0.110 0.104 0.103
No. kids=2 0.141 0.407 0.289 0.204 0.155 0.141 0.197 0.168 0.151 0.143 0.141
No. kids>2 0.207 0.596 0.423 0.299 0.227 0.207 0.299 0.251 0.223 0.210 0.207
Scotland-post 2017 0.162 0.466 0.331 0.234 0.177 0.162 0.194 0.176 0.167 0.163 0.162
Log expenditure 0.096 0.278 0.197 0.139 0.105 0.096 0.138 0.116 0.103 0.097 0.096

S.D.(θ̂)
No. adults=2 0.453 0.320 0.227 0.171 0.156 0.209 0.181 0.165 0.158 0.156
No. adults=3 0.577 0.408 0.289 0.218 0.199 0.271 0.232 0.211 0.202 0.199
No. adults>3 0.739 0.522 0.372 0.281 0.257 0.354 0.301 0.273 0.260 0.257
No. kids=1 0.300 0.214 0.152 0.113 0.103 0.140 0.121 0.110 0.104 0.103
No. kids=2 0.411 0.290 0.205 0.154 0.140 0.192 0.164 0.149 0.142 0.140
No. kids>2 0.605 0.424 0.299 0.226 0.206 0.291 0.247 0.221 0.209 0.206
Scotland-post 2017 0.470 0.335 0.235 0.179 0.163 0.193 0.176 0.168 0.164 0.163
Log expenditure 0.278 0.198 0.140 0.106 0.096 0.123 0.108 0.100 0.097 0.096
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Table E.4: Panel data model: Fixed effects-IV

θ̂LL θ̂SS θ̂LS

N = n = n = n = n = n = n = n = n = n = n =
42k 5k 10k 20k 35k 42k 5k 10k 20k 35k 42k

θ̂
No. adults=2 -0.120 -0.117 -0.117 -0.117 -0.118 -0.119 -0.117 -0.118 -0.119 -0.119 -0.119
No. adults=3 0.067 0.073 0.072 0.070 0.069 0.068 0.070 0.068 0.068 0.068 0.068
No. adults>3 -0.021 -0.016 -0.019 -0.021 -0.022 -0.022 -0.019 -0.020 -0.021 -0.022 -0.022
No. kids=1 -1.121 -1.122 -1.122 -1.123 -1.122 -1.122 -1.127 -1.124 -1.123 -1.122 -1.122
No. kids=2 -1.681 -1.679 -1.681 -1.681 -1.682 -1.681 -1.689 -1.685 -1.682 -1.681 -1.681
No. kids>2 -2.132 -2.132 -2.133 -2.131 -2.132 -2.131 -2.144 -2.137 -2.133 -2.132 -2.131
Scotland-post 2017 -0.179 -0.181 -0.181 -0.180 -0.178 -0.179 -0.175 -0.177 -0.178 -0.179 -0.179
Log expenditure 0.892 0.897 0.892 0.892 0.891 0.891 0.894 0.893 0.892 0.892 0.891

S.E.(θ̂)
No. adults=2 0.155 0.446 0.316 0.224 0.170 0.155 0.186 0.169 0.160 0.156 0.155
No. adults=3 0.200 0.576 0.408 0.289 0.219 0.200 0.244 0.220 0.207 0.201 0.200
No. adults>3 0.258 0.746 0.528 0.374 0.283 0.258 0.314 0.283 0.267 0.260 0.258
No. kids=1 0.104 0.300 0.213 0.151 0.114 0.104 0.126 0.114 0.108 0.105 0.104
No. kids=2 0.144 0.415 0.294 0.208 0.158 0.144 0.173 0.157 0.148 0.145 0.144
No. kids>2 0.210 0.606 0.430 0.304 0.230 0.210 0.259 0.233 0.218 0.212 0.210
Scotland-post 2017 0.165 0.475 0.338 0.239 0.181 0.165 0.180 0.172 0.168 0.166 0.165
Log expenditure 0.150 0.434 0.307 0.217 0.164 0.150 0.161 0.155 0.152 0.150 0.150

S.D.(θ̂)
No. adults=2 0.450 0.318 0.225 0.170 0.155 0.187 0.169 0.160 0.156 0.155
No. adults=3 0.581 0.409 0.290 0.218 0.200 0.243 0.220 0.207 0.201 0.200
No. adults>3 0.744 0.525 0.374 0.283 0.258 0.314 0.284 0.267 0.260 0.258
No. kids=1 0.304 0.216 0.153 0.115 0.105 0.125 0.114 0.108 0.105 0.105
No. kids=2 0.422 0.296 0.209 0.157 0.143 0.169 0.154 0.147 0.143 0.143
No. kids>2 0.618 0.431 0.304 0.230 0.209 0.253 0.229 0.217 0.210 0.209
Scotland-post 2017 0.480 0.342 0.241 0.183 0.167 0.181 0.173 0.169 0.167 0.167
Log expenditure 0.439 0.308 0.218 0.166 0.151 0.161 0.155 0.152 0.151 0.151
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