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Abstract  

The impact of COVID-19 on Oslo bicycle sharing system was analyzed in this thesis. 

Weather data in the form of temperature, precipitation and wind speed, and calendar event 

factor (whether the day, when the ride was taken, was workday or weekend) were used as 

explanatory variables to assess shared bikes usage. Independent variables were chosen using 

LASSO shrinkage method. Response variables were daily rides and average trip duration. 

Predictions of sharing system usage, if no COVID happened, were made using generalized 

additive model. Afterwards, predictions and actual values were compared to estimate the 

effect of COVID-19 on Oslo system and suggestions for improvements of Oslo City Bike 

were given.  

Weather data and bicycle usage data were obtained from the open sources managed 

by the official providers of this information such as Norwegian Meteorological Institute and 

Oslo City Bike respectively. R was used to analyze this pool of data. Data were divided for 

train (pre pandemic period) and test (pandemic period).  

Based on conducted analysis, it was concluded that overall daily rides on shared bikes 

in Oslo decreased and average trip duration increased due to COVID-19. Number of rides 

also could have been affected by the appearance of massive amount of electric scooters on the 

streets of Oslo in 2019-2021.  

Oslo bicycle sharing system was able to satisfy the decreased aggregate demand for 

rides, but in terms of satisfying the demand for longer trips the supply side was limited to 

Ring 3 (road #150) of Oslo. This could be improved by rearranging placements of existing 

stations at a lower total cost or by expanding the bicycle sharing system’s coverage area with 

new bikes and new stations at a higher total cost.  
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1. Introduction 

COVID-19 pandemic has influenced many aspects of everyday life for everyone all 

over the world. National and local rules and restrictions affected daily operations of 

businesses, educational institutions, governmental bodies, public transport, etc. As a part of 

public transport Oslo City Bike (bicycle sharing services in Oslo, Norway provided by UIP 

Oslo Bysykkel AS) should have been affected by the pandemic also. Common sense suggests 

that people (specifically those who live in the zones of operation of shared bikes) would prefer 

riding bikes in the open air to using closely confined buses, trams and metro carriages. Also, 

duration of the trip should be longer as one would like to go further distances than before to 

avoid crowds in other types of public transport.  

But at the same time one can argue that going online (work from home and online 

education) could influence public bicycle usage negatively. In addition, temporal closure of 

sport and culture facilities, non-essential shops, cancellation of sport and cultural events 

reduced level of mobility everywhere and Oslo is no exception.  

There could be simultaneously an increase in demand for bikes due to the travelers’ 

shift from other (riskier in terms of spread of disease) modes of transport and a decrease due 

to increased home offices / online schooling / lockdowns. Overall change in shared bikes 

usage in Oslo is to be estimated in this thesis. 

Total number of daily rides and daily average ride duration were used as indicators to 

assess bike sharing system usage. Based on previous studies in various cities, the pandemic 

effect and the method to measure it were different in each location. As for Oslo, in order to 

estimate the impact of COVID the author followed two step approach. First, pre-pandemic 

data were used to build a correct model. Data was gathered from open data sources and 

analyzed using R. Secondly, a comparison was made between predicted by this model values 

(as if there was no pandemic) with actual pandemic bicycle usage values.  

The author expects total number of daily rides to decrease (as the work and study from 

home and governmental restrictions decreased mobility of people and that impact was greater 

than shift from other types of public transport out of fear of getting a disease) and average trip 

duration to increase (because commuters are willing to travel for longer distances to avoid 

catching the disease, for example, if earlier pre-pandemic someone would just travel from 

bike station 1 to bike station 2 which is closer to metro, nor the same user could travel from 

to the final desired destination by bike instead of metro).  

Thus, thesis hypotheses could be stated as follows: 
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Hypothesis 1: Number of daily rides on Oslo’s shared bikes decreased during COVID-

19, which could be explained by decreased overall mobility caused by the pandemic and by 

uncontrollable inflow of electric scooters.  

Hypothesis 2: Average trip duration on Oslo’s shared bikes increased during COVID-

19, meaning that commuters were willing to travel for longer time and distances and replaced 

their previous preferred public transport choice by shared bikes.  

With a fleet of 3 000 bicycles Oslo City Bike should have been able to meet the 

demands of the users as total trips decreased, but users’ willingness to travel for longer 

distances could have been limited by Ring 3 (limit of operation of Oslo City Bike, Ring 3 is 

not covering the whole city of Oslo). That means if the author’s hypothesis is confirmed, Oslo 

City Bike should rearrange existing bikes’ stock and expand area of operation beyond Ring 

3. This could also help achieve other goals such as creation of additional mode of public 

transportation for Oslo residents outside Ring 3 and increasing preparedness of Oslo City Bike 

for possible new pandemics.  

In the next chapter overview of bicycle sharing system in Oslo and timeline of COVID 

in the Norway will be given. Next, previous findings in the field (general factors influencing 

public bicycle usage and studies of pandemic effect on bicycle sharing systems in various 

cities) will be discussed. After that in the third part, overview of the data and model will be 

given. In Chapter 4 results will be presented and discussed. Finally, Chapter 5 will conclude 

the thesis and the author will discuss ideas for future work.  
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2. Literature review 

In this section, first, brief history and description of bike sharing situation in Oslo as 

well as timeline of the pandemic in Norway and COVID statistics for Oslo will be provided. 

Then, previous studies on factors influencing shared bicycles usage (specifically weather 

factors) and previous studies on pandemic impacts on bicycle sharing system in various cities 

will be discussed. 

 

2.1. Bicycle sharing system in Oslo 

Bicycle sharing system (hereafter BSS) is defined as a “network of public use bicycles 

distributed around the city for use at a low cost” (New York City Department of City Planning, 

2009). Shaheen et al. (2010) defines bike-sharing as a “short-term bicycle access which 

provides its users with an environmentally friendly form of public transportation”, and which 

allows individuals to “use bicycles on “as-needed” basis without the costs and responsibilities 

of bike ownership”.  

First BSS appeared in Amsterdam, Netherlands in the mid-1960s and now in 2022 

bike sharing is available in over 3000 cities worldwide (O’Sullivan, 2022). 

As for Oslo, information about BSS prior to 2016 is almost nonexistent. In April 2015 

Oslo City Council adopted Bicycle Strategy 2015-2025. According to this strategy in 2013 

8% of commuters used bikes as their mode of transport for everyday travel and one of the 

main goals of this strategy is to double that number to 16% by 2025. One of the measures to 

fulfill this strategy is measure 1H: “expanding the bike sharing system”. So, there was 

definitely a BSS running in Oslo prior to 2016 which has to be expanded. Then in April 2016 

updated BSS was launched with 72 stations, 770 bicycles and 1400 docks with a new mobile 

application and website (Knudsen, 2016). By November 2022 Oslo’s BSS (Oslo Bysykkel) 

increased to 251 stations, 6000 bikes and 6000 locks (UIP, 2022). 

According to Global Bicycle Cities Index 2022 (Luko, 2022) Oslo’s BSS is on 55th 

place. Ranking is based on six categories: weather, percentage of bicycle users, crime & safety 

(fatalities and accidents per 100 000 cyclists, bicycle theft score), infrastructure (specialized 

bicycle roads and road quality, number of bicycle shops per 100 000 cyclists, investment and 

infrastructure quality), sharing (number of sharing and rental stations and number of shared 

bicycles divided by 100 000) and events (no car day, critical mass score). From Table 1 it can 

be observed that Oslo outperforms number one city in the ranking (Utrecht) in crime& safety 
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score and sharing score (sharing here includes not only BSS, but also rental shops), in all other 

categories Oslo’s scores are lower than Utrecht’s.  

Table 1. Extract from Global Bicycle Cities Index 2022 

Ranking City Country 
Weather 

score 
Bicycle 
usage 

Crime and 
Safety Score 

Infrastructure 
score 

Sharing 
score 

Events 
score 

Total 
score 

1 Utrecht Netherlands 63.83 51% 82.46 57.51 17 279.88 77.84 
55 Oslo Norway 47.45 7% 90.79 30.31 45 226.4 31.31 

 

Also, it is worth mentioning that weather score was derived using “total annual hours 

of sunshine, average annual precipitation in millimeters and number of days with temperature 

below 0°C and above 30°C (Luko, 2022). Key point to emphasize here is that weather was 

used in estimating the city ranking. In this thesis the weather data will also be used to analyze 

bike sharing numbers.  

Another mode of shared (similar to BSS) transport, which is quite popular in Oslo, is 

electric scooters. E-scooters appeared during years 2018-2019. In 2019 there were 5 000 units 

on the streets of Oslo, by summer of 2021 total number of shared e-scooters rose to around 

20 000 (Myhre & Uglum, 2021). Due to the problems associated with use of e-scooters 

(increased traffic safety concerns for scooters’ drivers and other road users, reduced 

accessibility for disabled and elderly), since September 2021 local authorities had intervened 

in the operation of sharing-scooters program and had established a limit of 8 000 units to be 

available for shared renting (Oslo commune, 2021a).  

There are a lot of similarities between shared bikes and shared scooters: both are types 

of shared public transport, both have easy-to-entry systems for users (simple registration in 

user-friendly mobile application), both are modes of transportation free of CO2 emissions. 

One major difference is that shared bikes are dock-based (meaning that users have to take and 

to return bikes to specific bike stations), whereas scooters are stationless and could be dropped 

off at almost any location. 

Even without the pandemic, it was expected that scooters would impact usage of Oslo 

shared bikes and would lure away some portion of Oslo BSS users because these two services 

are almost perfect substitutes, except for the prices and the level of physical effort needed to 

move the transport. Based on the information provided on the official website and applications 

of the service providers, annual pass for Oslo City Bike costs 549 NOK (around 46 NOK per 

month), monthly – 79 NOK, both with unlimited unlocks and free rides up to 1 hour, whereas 

fares for using electric scooters are higher: monthly pass costs 299 NOK (provider – Voi) or 

389 NOK (provider – Bolt) just for 300 minutes a month (around 10 minutes a day).  
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Peak of scooters popularity among users and caused by that uncontrolled inflow of 

them on the streets happened exactly during analyzed pandemic years of 2020-2021. At the 

maximum there were 3 000 bikes and 20 000 (Nikel (2021) states that number was around 30 

000 units) electric scooters in Summer 2021. This means that definitely part of decrease in 

demand for shared bikes during pandemics could be explained by appearance and rising 

popularity of e-scooters.  

 

2.2.  COVID-19 in Oslo 

In the end of 2019 COVID pandemic began. On 11 March 2020 World Health 

Organization (2020) declared COVID outbreak a pandemic.  

In February 2020 first cases were registered in Norway (Folkehelseinstituttet 2022a) 

and in Oslo (Folkehelseinstituttet 2022b). Figure 1 (source – https ://statistikk.fhi.no) presents 

monthly number of cases in Oslo and Norway.  

Here is a short timeline of major governmental actions to fight the pandemic in 

Norway:  

On 12 March 2020 Norwegian government introduced for the first time restrictions on 

the national level (Lokkevik et al., 2020). Schools and universities were closed. Cultural and 

sports events were prohibited. Restaurants and bars were not operating. Restrictions (at times 

eased, at times tightened) continued throughout 2020 and beginning of 2021. 
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In February 2020 first cases were registered in Norway (Folkehelseinstituttet 2022a)

and in Oslo (Folkehelseinstituttet 2022b). Figure l (source - https ://statistikk.fui.no) presents

monthly number of cases in Oslo and Norway.

Here is a short timeline of major governmental actions to fight the pandemic in
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On 12 March 2020 Norwegian government introduced for the first time restrictions on

the national level (Lokkevik et al., 2020). Schools and universities were closed. Cultural and

sports events were prohibited. Restaurants and bars were not operating. Restrictions (at times

eased, at times tightened) continued throughout 2020 and beginning of 2021.
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In April 2021 gradual reopening plan was presented (The Office of the Prime-

Minister, 2021, April 10). Since 16 April 2021 first step of reopening plan had started to be 

implemented.  

On 25 September 2021 Norway moved to “normal everyday life with increased 

emergency preparedness” (The Office of the Prime-Minister, 2021, September 25).  

However, in November-December 2021 some restrictions were brought back due to 

spread of omicron variant. 

Finally, on 12 February 2022 all infection control measures (including face mask 

requirements, one meter distance, etc.) were removed (The Office of the Prime-Minister, 

2022, February 12).  

 In this thesis there are two major time periods: pre-covid and covid. Pre-covid period 

is before 11 March 2020 (last day before national measures were announced). Covid period 

is from 12 March 2020 (date when first national measures against COVID were imposed) to 

12 February 2022 (date when all infection measures were dropped). 
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2.3. Literature review on dependent and independent variables  

A lot of factors could influence bicycle usage in general and specifically shared 

bicycle usage. Undoubtfully, weather conditions should play a significant role in individuals’ 

decision whether to use a bike. No one would like to ride a bike in heavy rain or during windy 

day. Below previous research studying relationship between weather conditions / calendar 

events and BSS usage are discussed. Analyzing this research will help the author choose 

candidates for independent variables, then after running tests selecting the final ones.  

Corcoran et al. (2014) studied the effect of weather and calendar events on public 

bicycle sharing program on the example of Brisbane’s CityCycle. Effect of each factor was 

estimated separately (using two-sampled Poisson test) and simultaneously (multivariate 

regression). To estimate the simultaneous effect, multivariate Poisson regression was used. 

Dependent variable was log of average number of daily trips per station. Independent 

variables were three weather variable (temperature, rainfall and wind speed) and three dummy 

calendar events variables (weekend, school holiday, public holiday). Regression showed that 

public holiday, weekend, and warmer temperatures had significant positive effect, whereas 

rainfall and higher wind speed had significant negative effect on number of trips. Also, the 

authors found that “temperature was the only independent variable found to possess non-linear 

properties in its relationship to the dependent variable” (Corcoran et al., 2014).  

Gebhart and Noland (2014) estimated the impact of weather conditions on bike sharing 

in Washington. Contrary to other research, the authors used two different models for different 

dependent variables: a negative binomial model for number of trips and an ordinary least 

squares regression for average trip time. Weather data (temperature, humidity, wind speed, 

fog, rain, thunderstorm, snow, darkness), dummy variables for month/weekend/federal 

holiday/peak travel time, and number of stations in BSS were used as independent variables. 

Gebhart and Noland (2014) found that “very cold temperatures, rain, high humidity and 

increased wind speed” decreased number of trips and shortened average trip duration. Those 

authors also believe that relationship between temperature and bicycling behavior is not 

linear.  

Eren & Uz (2020) reviewed different studies on station-based bike sharing to derive 

common factors which influence trip demand. Those factors were divided into six main 

categories: weather, built environment, public transport, socio-demographic attributes, 

temporal factors, and safety. In the scope of this thesis weather category is of the most of 

interest. The authors highlighted that temperature is “one of the most investigated factors” to 
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affect bike-sharing demand and that there is a positive correlation between temperature and 

demand. The authors concluded that adverse weather conditions (such as rain, strong wind, 

high temperature (above the maximum at the BSS location) and humidity) decrease trip 

demand. 

Flynn et al. (2012) estimated the effect of weather on individual decision to ride a bike 

to work. Study was conducted in Vermont, USA, on 183 adults. Dependent variable was 

binary variable with 1 if the person biked and 0 if the person didn’t bike that specific day. 

Independent variables were mean temperature, mean wind velocity, precipitation, snow depth, 

daylight, distance, age and gender. The results have shown that precipitation and temperature 

increased (consistent with other research) the odds of bicycle commuting, whereas wind speed 

(contrary to the other research analyzed by the authors) decreased the probability of using a 

bicycle modestly.  

The purpose of looking at all this research is to understand what could influence BSS 

usage and how it was estimated, which models were used. Analysis of applicability of these 

approaches to this thesis was done in Section 3.5. 

Thus, based on the analysis of previous studies, weather conditions are playing key 

role in estimating bike sharing usage. In this thesis, weather parameters such as average daily 

temperature in °C, precipitation in millimeters, wind speed in meter per second and calendar 

event (weekend or workday) are candidates to be used as explanatory variables to analyze 

bicycle-sharing numbers in Oslo. A test will be run in Section 3.3. to select which variables 

should be used in the model.  

As for measure of BSS usage, there will be two different dependent variables: daily 

total number of trips and daily average trip duration. Most of the previous studies used those 

variables as dependent and even without this fact it is logical to assess BSS by number of trips 

and trip duration.  
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2.4. Literature review on the effect of COVID-19 on bicycle sharing 

systems across the world 

Worth mentioning is another analogous research. There have been several studies on 

measuring effect of COVID-19 pandemic on bicycle sharing systems in various cities across 

the world.  

For example, Padmanadhan et al. (2021) measured the impact of pandemic on shared 

biking in New York, Boston and Chicago. The authors used correlation coefficients analysis 

to understand relation between number of COVID cases and trip frequency and average trip 

duration during different stages of pandemic (pre covid, uphill and downhill in cases). They 

found that there was a negative correlation between COVID cases and number of trips and a 

positive correlation between cases and average trip duration in all three cities.  

Another study is based on London bicycle sharing system. Heydari et al. (2021) 

estimated the effect of pandemic over March-December 2020 in London using second order 

random walk time series model and found that number of rides decreased in March and April 

2020, then increased in May 2020 to expected (without pandemic) level which showed 

London BSS resiliency. Average hire time was substantially higher than predicted in April, 

May and June 2020 and afterwards followed a predicted pattern.  

Berezvai (2022) estimated short-term and long-term effects of COVID on Budapest 

BSS (MOL Bubi). In the fixed effect panel regression, the author used change between 2019 

and 2020 in daily number of trips and average duration of trips per specific station as 

dependent variables and change in government restrictions (2019 – no restrictions, 2020 – 

measured as the Government Stringency Index based on Oxford COVID19 Government 

response tracker dataset), change in weather (daily temperature, daily precipitation, daily 

wind speed) and change in traffic as independent variables. Workday and weekend data was 

analyzed separately. Berezvai (2022) found that in the short run government restrictions in 

the beginning of pandemic increased bicycle usage substantially, however in the long run 

when some of the restrictions were lifted, bicycle sharing dropped (despite the fact that fares 

decreased).  

Based on those studies, it can be observed that COVID-19 influenced BSS systems 

across the world in different ways. For some cities there was an increase in usage, for some – 

a decrease. The author does not have any knowledge of analogous study on Oslo BSS, and 

the effect of pandemic on bike sharing in Oslo will be analyzed in this thesis. 
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3. Data, method and model 

3.1. Data and data analysis 

3.1.1. Weather data and calendar events 

Weather data were scrapped from yr.no website (official website of Norwegian 

Meteorological Institute) for the period of 7 years (January 2016 – February 2022) on daily 

basis for Oslo. Chosen meteorological station Oslo (Blindern) is located at the following 

coordinates 59°56’32.3”N and 10°43’12.0”E and is exactly inside the coverage area of Oslo 

BSS. 

 Average temperature in °C, precipitation in mm and wind speed in m/s for each day 

were gathered in one weather dataset. 
Figure 2. Average temperature in Oslo over Jan 2016-Feb 2022 

 

From Figure 2 it can be observed that daily average temperature in Oslo follows almost 

the same pattern over the years. In those years mean average temperature was always in the 

range of 7.00-7.30 °C, except hotter 2018 (7.81°C) and 2020 (8.73°C).  

Table 2. Descriptive statistics of daily weather data (explanatory variables) 

    2016 2017 2018 2019 2020 2021 Jan-Feb 2022 

Average 
temperature, 

°C 

mean 7.29 7.00 7.81 7.32 8.73 7.31 -0.31 

st dev 8.01 7.24 9.36 7.54 6.45 8.75 2.80 

max 22.60 20.40 25.90 25.30 24.60 23.60 4.80 

min -12.40 -10.10 -11.40 -10.60 -4.20 -11.30 -6.00 
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From Figure 2 it can be observed that daily average temperature in Oslo follows almost

the same pattern over the years. In those years mean average temperature was always in the

range of 7.00-7.30 °C, except hotter 2018 (7.81°C) and 2020 (8.73°C).

Table 2. Descriptive statistics of daily weather data (explanatory variables)

2016 2017 2018 2019 2020 2021 Jan-Feb 2022
mean 7.29 7.00 7.81 7.32 8.73 7.31 -0.31

Average st dev 8.01 7.24 9.36 7.54 6.45 8.75 2.80
temperature,
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Table 2 (cont.) 

    2016 2017 2018 2019 2020 2021 Jan-Feb 2022 

Precipitation, 
mm 

mean 1.98 2.59 1.80 2.87 2.95 1.91 0.93 

st dev 4.23 5.55 4.40 5.61 6.03 4.75 2.26 

max 27.00 42.20 41.50 39.60 47.00 39.00 8.20 

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Wind speed, 
m/s 

mean 2.72 2.64 2.74 2.76 2.85 2.68 2.52 
st dev 1.22 1.17 1.14 1.13 1.17 1.10 1.19 
max 6.90 8.00 8.10 7.10 8.40 7.70 5.20 
min 0.70 0.70 0.70 0.80 0.70 0.80 1.00 

Controrary to the average temperature, daily precipitation varies over the years with 

different peaks and lows each year. Minimum mean daily precipitaion at 1.80 mm with 

standard deviation of 4.40 mm was observed in 2018, whereas maximum was at 2.95 mm 

with standard deviation of 6.03 mm in 2020 (Figure 3).  
Figure 3. Daily precipitation (mm) in Oslo over Jan 2016-Feb 2022  

 

As for the wind speed, 2.64-2.85 m/s was average daily wind speed in Oslo throughout 

January 2016-December 2021. Standard deviation was also stable over the years and in the 

range of 1.10-1.22 m/s. Minimum wind speed was always around 0.70-0.80 m/s throughout 

2016-2021, and maximum was in the range of 6.90-8.40 m/s (see graph in Appendix 1).  

Calendar event variable was created as a binary variable with value 0 for working days 

and 1 for weekend days. In the whole data there were 1591 working days and 638 weekend 

days. 
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As for the wind speed, 2.64-2.85 m/s was average daily wind speed in Oslo throughout

January 2016-December 2021. Standard deviation was also stable over the years and in the

range of 1.10-1.22 m/s. Minimum wind speed was always around 0.70-0.80 m/s throughout

2016-2021, and maximum was in the range of 6.90-8.40 m/s (see graph in Appendix l).

Calendar event variable was created as a binary variable with value Ofor working days

and l for weekend days. In the whole data there were 1591 working days and 638 weekend

days.
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3.1.2. Bicycle sharing system data 

Data on Oslo BSS is publicly available and was obtained from service provider’s 

official website (Oslo City Bike, 2022). Original BSS data was divided by the provider in two 

periods (not connected to COVID): data before April 2019 and data after April 2019. Data 

before April 2019 contained the following information about individual trips: 1) start time, 2) 

end time, 3) start station id, 4) end station id. Data after April 2019 contained the same 

information as above plus 5) duration, 6) start station name, 7) end station name, 8) start 

station description, 9) end station description, 10) start station longitude and latitude, 11) end 

station longitude and latitude. Provider states that all recorded trips were minimum one minute 

long, but this was not always the case. During tidying up the data, trips with duration of less 

than one minute were removed. 

Pre-covid data frame was composed by combining data from before April 2019 (2016-

April 2019 7.75 million rides) and after April 2019 (April 2019 - March 2020 2.25 million 

rides), a total of almost 10 million unique trips. During the process of cleaning data there were 

found trips with negative values for duration (possibly due to technical mistakes) and with 

duration longer than 24 hours (not relevant to analysis as weather changes every day). Those 

trips (212 793 trips) were removed from the final datasets. Final pre-pandemic dataset consists 

of data on 9 780 271 unique trips. 

Covid data frame covered a period from 12 March 2020 (first national anti-COVID 

measures were imposed) till 12 February 2022 (all infection control measures were lifted) and 

is composed of 3.14 million unique rides. In the same manner as with pre-pandemic dataset, 

19 trips with duration longer than 24 hours were also removed. The author observed that 

quality of data on Oslo BSS definitely improved over the time, for example, in the later data 

(after April 2019) there were no negative values for duration and substantially less trips with 

duration longer than 1 day (which of course could be explained by commuters’ personal 

choices, but could be also caused by fewer technical mistakes/bugs in bicycle sharing IT 

system).  

Both datasets were aggregated to daily basis, total number of rides per day and average 

trip duration during that day were calculated. Pre-pandemic and pandemic datasets were 

considered as train and test datasets respectively. Final pre-covid train dataset consists of 1528 

days and covid test dataset of 701 days.  
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Table 3. Descriptive statistics of number of trips and trip duration (dependent variables) 

  Year Total number 
of rides 

Daily number of rides Average daily trip 
duration in seconds 

mean st dev mean st dev 

Pre-
COVID 

2016 2 090 165 5 711 4 909 868 671 

2017 2 654 614 7 273 6 523 487 370 

2018 2 790 712 7 646 6 794 522 383 

2019 2 244 780 6 150 5 417 494 356 

Jan-11 Mar 2020 0 0 0 0 0 

COVID 
12 Mar-Dec 2020 1 696 039 5 749 3 528 766 181 

2021 1 419 280 3 888 2 462 745 114 

Jan-12 Feb 2022 21 778 506 187 690 89 

              
  Total Pre-COVID 9 780 271 6 384 6 033 565 495 
  Total COVID 3 137 097 4 462 3 192 750 146 

There was a constant annual increase in trips on shared bikes since the introduction of 

updated version of BSS in Oslo in 2016 (Figure 4). Then, in 2019 there was a decline in total 

number of rides which could be explained by appearance and rising popularity of electrical 

scooters (discussed in Section 2.1.). Usually BSS was not operational during January-March 

of each year, but since 2021 there were 1 000 available bikes with spiked tires (UIP, 2022). 
Figure 4. Daily number of rides on BSS over 2016-2022 in Oslo 

 
In absolute numbers, total number of BSS rides dropped during pandemic: from 2.2 

million rides in 2019 to 1.7 million rides in 2020 and even further to 1.4 million rides in 2021.  

As for average trip duration, it was higher in 2016 with mean of 868 seconds per one 

trip (could be caused by introduction of new updated BSS with new user-friendly app and 

riders desire to try it), then it stabilized and followed the same pattern in years 2017, 2018 and 

2019 with mean around 487-522 seconds per trip. In 2019 average trip duration was not 

affected to the same extent by the appearance of e-scooters as was total number of rides. 

Pre-
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Table 3. Descriptive statistics of number of trips and trip duration (dependent variables)

Total number Daily number of rides Average daily trip
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There was a constant annual increase in trips on shared bikes since the introduction of

updated version ofBSS in Oslo in 2016 (Figure 4). Then, in 2019 there was a decline in total

number of rides which could be explained by appearance and rising popularity of electrical

scooters (discussed in Section 2.1.). Usually BSS was not operational during January-March

of each year, but since 2021 there were l 000 available bikes with spiked tires (UIP, 2022).
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In absolute numbers, total number of BSS rides dropped during pandemic: from 2.2

million rides in 2019 to l. 7 million rides in 2020 and even further to l. 4 million rides in 2021.

As for average trip duration, it was higher in 2016 with mean of 868 seconds per one

trip (could be caused by introduction of new updated BSS with new user-friendly app and

riders desire to try it), then it stabilized and followed the same pattern in years 2017, 2018 and

2019 with mean around 487-522 seconds per trip. In 2019 average trip duration was not

affected to the same extent by the appearance of e-scooters as was total number of rides.
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Figure 5. Average trip duration (in seconds) on BSS over 2016-2022 

 
During COVID mean of average trip duration increased from 494 seconds to 766 

seconds per one trip. This could be explained by BSS users’ desire to travel longer distances 

to avoid other types of public transport (buses, trams, metros).  

Additional candidate explanatory variable is binary variable with value 1 if the ride 

was taken during weekend (Saturday and Sunday), 0 if the ride was taken during working 

days (Monday – Friday). Historically mean daily number of rides was smaller on weekends 

than on working days (could be explained that Oslo residents used shared bikes mostly to 

travel to offices on workdays), whereas average trip duration was longer on weekends 

(possibly, bicycles were used longer for recreational use on weekends).  

Table 4. Comparison between number of rides and average trip duration on workdays and weekend 

Year Daily number of trips (mean) Average duration (mean) 
Workdays Weekend Workdays Weekend 

2016 5 925 5 186 866 873 
2017 7 313 7 174 475 516 
2018 7 745 7 397 515 540 
2019 6 366 5 609 483 522 
2020 4 699 4 470 612 632 
2021 3 925 3 797 735 768 

Jan-Feb 2022 525 463 678 718 

The same pattern as before is observed here for both type of days: for number of trips 

increase from 2016 to 2018, drop in 2019 and then decrease since start of pandemic in 2020; 

for average duration peak in 2016, stable 2017-2019, increase since start of pandemic (Table 

4). 
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During COVID mean of average trip duration increased from 494 seconds to 766

seconds per one trip. This could be explained by BSS users' desire to travel longer distances

to avoid other types of public transport (buses, trams, metros).

Additional candidate explanatory variable is binary variable with value l if the ride

was taken during weekend (Saturday and Sunday), 0 if the ride was taken during working

days (Monday - Friday). Historically mean daily number of rides was smaller on weekends

than on working days (could be explained that Oslo residents used shared bikes mostly to

travel to offices on workdays), whereas average trip duration was longer on weekends

(possibly, bicycles were used longer for recreational use on weekends).

Table 4. Comparison between number of rides and average trip duration on workdays and weekend

Year Daily number of trips (mean) Average duration (mean)
Workdays Weekend Workdays Weekend

2016 5925 5 186 866 873

2017 7313 7 174 475 516

2018 7745 7397 515 540

2019 6366 5609 483 522

2020 4699 4470 612 632

2021 3925 3797 735 768

Jan-Feb2022 525 463 678 718

The same pattern as before is observed here for both type of days: for number of trips

increase from 2016 to 2018, drop in 2019 and then decrease since start of pandemic in 2020;

for average duration peak in 2016, stable 2017-2019, increase since start of pandemic (Table

4).
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As for weather parameters, simple graphical analysis shows that there is positive (as 

expected) correlation between temperature and number of daily rides (Figure 6). Eren & Uz 

(2020) states that for the temperatures in the range of 0-20 °C, there is a positive correlation 

between number of rides and temperature; for temperatures in the range of 20-30 °C BSS 

demand is at maximum; for temperatures above 30 °C studies are different (for some citites 

there is an increase, for some decrease in number of rides). For Oslo maximum average 

temperature thorough 2016 – 2022 was never above +30°C , it was +25.9°C and minimum 

was –12.4°C (and usually BSS was closed during January-March, except 2021-2022).  

Each dot represents one specific day. Blue line on Figure 6 and Figure 7 is a smoothed 

regression line added using geom_smooth() function in R. Method for constructing this curve 

is LOESS for data containing less than 1000 observations and GAM for more than 1000 

observations (which is the case for Figure 6 and 7) (RDocumentation, n.d.a).  

From figure 6 the author observes that for temperatures below 0 °C number of daily 

rides does not change a lot due to change in temperature (keeping in mind that system was 

not operational during winter months in 2016-2020), whereas for temperature between 0 to 

10 °C there is a sharp increase in rides with increase in temperature. For temperatures between 

10 and 20 °C there is also an increase in rides, but to a lesser extent than before and even 

smaller increase for temperatures above 20 °C. From this graph (and regression smooth line), 

there is a clear non-linear relationship between temperature and daily rides.  

As for relationship between average trip duration and average daily temperature 

(Figure 7), it is not as steep as with daily rides, but still positive, meaning the higher the 

temperature the longer the rides. The pattern for temperature ranges “below 0 °C”, “0 to 

Figure 6. Relationship between average temperature and number of daily rides over the years 
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Each dot represents one specific day. Blue line on Figure 6 and Figure 7 is a smoothed

regression line added using geom_smooth() function in R. Method for constructing this curve

is LOESS for data containing less than l 000 observations and GAM for more than l 000

observations (which is the case for Figure 6 and 7) (RDocumentation, n.d.a).

From figure 6 the author observes that for temperatures below 0 °C number of daily

rides does not change a lot due to change in temperature (keeping in mind that system was

not operational during winter months in 2016-2020), whereas for temperature between Oto

l 0 °C there is a sharp increase in rides with increase in temperature. For temperatures between

l 0 and 20 °C there is also an increase in rides, but to a lesser extent than before and even

smaller increase for temperatures above 20 °C. From this graph (and regression smooth line),

there is a clear non-linear relationship between temperature and daily rides.

As for relationship between average trip duration and average daily temperature

(Figure 7), it is not as steep as with daily rides, but still positive, meaning the higher the

temperature the longer the rides. The pattern for temperature ranges "below 0 °C", "0 to
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10°C”, “10 to 20 °C” and “above 20°C” follows the above-described pattern for daily rides, 

with the exception that for range “above 20°C” it looks almost flat, meaning trip duration does 

not change with increase in temperature and for “below 0 °C” category blue regression line 

looks more curvy than the same one for daily rides. This also shows a non-linearity between 

temperature and trip duration. 

 

As for precipitation and wind speed, the relationships between those weather variables 

and dependent variables (number of trips and average trip duration) are quite ambiguous from 

the graphs (see Appendix 2). Ride duration seems to be unaffected by change in precipitation 

which is surprising. Generally, those blue regression lines gave the author just a preliminary 

understanding about the relationship between dependent and independent variables and 

significance of these variables in explaining Oslo BSS usage will be tested later in Sections 

3.3. and 3.5.  

Figure 7. Relationship between average temperature and trip duration over the years 
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10°C", "10 to 20 °C" and "above 20°C" follows the above-described pattern for daily rides,

with the exception that for range "above 20°C" it looks almost flat, meaning trip duration does

not change with increase in temperature and for "below O°C" category blue regression line

looks more curvy than the same one for daily rides. This also shows a non-linearity between

temperature and trip duration.
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As for precipitation and wind speed, the relationships between those weather variables

and dependent variables (number of trips and average trip duration) are quite ambiguous from

the graphs (see Appendix 2). Ride duration seems to be unaffected by change in precipitation

which is surprising. Generally, those blue regression lines gave the author just a preliminary

understanding about the relationship between dependent and independent variables and

significance of these variables in explaining Oslo BSS usage will be tested later in Sections

3.3. and 3.5.
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3.2. Method 

Weather conditions impact BSS usage (measured by number of trips and average trip 

duration) significantly. In this thesis, daily total number of trips and daily average trip duration 

were used as dependent variables. Weather data in the form of average daily temperature in 

°C, precipitation in mm and wind speed in m/s were candidate variables to be used as 

explanatory variables. In addition, calendar event (weekend or workday) also could play a 

role in explaining BSS usage, so binary variable “weekend” was also tested as candidate as 

independent variable in the analysis. 

After analyzing data and defining a list of potential explanatory variables, selection of 

independent variables from this list was done using shrinkage method LASSO (will be 

described in detail in Section 3.3.). 

 

 

Next, train pre-pandemic data were fitted to the model. The model was checked for 

goodness of fit. Then using the estimated model, predictions were made using the test 

pandemic dataset. Those predicted values were compared with actual values to estimate an 

impact of COVID on Oslo bike sharing system. Based on those results, recommendations to 

Oslo BSS provider were made.  

RStudio version 2022.07.2 Build 576 was used to analyze data and for modelling. 

 

 

Figure 8. Schematic view of the approach used in the thesis 

Process: Gathering raw data  
Output: weather data; BSS usage data 

Process: Cleaning and summarizing data 
Output: cleaned dataset  

Process: Analyzing data: 
Output: train and test datasets, list of 
potential independent variables 

Process: fitting the model on 
train data set, checking the 
model for goodness of fit 
Output: final model 

Process: Predicting using 
the fitted model on test 
data 
Output: predicted values 

Process: Analyzing actual 
vs predicted values 
Output: estimate of effect 
of COVID on Oslo BSS, 
recommendations for BSS 
provider  

Process: Selecting independent 
variables using shrinkage approach 
Output: selected independent variables 
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Figure 8. Schematic view of the approach used in the thesis
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Process: Analyzing data:

Output: weather data; BSS usage data Output: train and test datasets, list of
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Next, train pre-pandemic data were fitted to the model. The model was checked for

goodness of fit. Then using the estimated model, predictions were made using the test

pandemic dataset. Those predicted values were compared with actual values to estimate an

impact of COVID on Oslo bike sharing system. Based on those results, recommendations to

Oslo BSS provider were made.

RStudio version 2022.07.2 Build 576 was used to analyze data and for modelling.
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3.3. Selection of independent variables  

After analyzing previous research, it was found that weather data should play a key 

role in estimating BSS usage. But those studies were estimated not on Oslo. Thus, in order to 

choose correct explanatory variable a test was conducted on Oslo data.  

The author chose average temperature, precipitation, wind speed and factor of 

weekend as candidates for independent variables.  

 

Next, a shrinkage method LASSO was used to select variables. LASSO (stands for 

least absolute shrinkage and selection operator) is a technique that minimizes RSS (residuals 

sum squared) + 𝜆𝜆 ∑ |𝛽𝛽𝑗𝑗|𝑝𝑝
𝑗𝑗=1  (where λ is a tuning parameter) by shrinking the coefficients 

estimates towards zero (James et al., 2021). Thus, this method works as variable selection 

method. Variables, which have coefficient estimates approaching zero, should be removed.  

 

First, optimal λ was estimated using leave-one-out cross validation approach (which 

includes dividing the data into two parts: one single observation is used as a validation set and 

all the remaining observations are used as a training set, cross-validation errors for different 

values of λ are calculated, optimal λ is λ with the smallest error (James et al., 2021)), then a 

model was fitted using this optimal lambda.  

 
Table 5. LASSO results for variable selection 

Dependent variable Daily number of rides Daily average trip duration 
(Intercept) 5360.38675 5543.4511 
average 499.72393 507.40768 
precipitation -73.97429 -82.38957 
wind speed . -37.4588 
weekend -705.31029 -815.5364 

 

From LASSO shrinkage results (table 5), coefficient estimate on wind speed for 

dependent variable “daily rides” is zero, so this variable can be removed from further 

modelling. For response variable “average trip duration” all tested explanatory variables will 

be fitted in modelling. 
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Independent variables: multicollinearity 

To check for potential multicollinearity between independent variables, correlation 

coefficients were calculated. From the correlation matrix it could be derived that none of the 

regressors is in linear dependency with another. 
Table 6. Correlation matrix between independent variables 

  average temperature precipitation wind speed weekend 
average temperature 1.000 0.006 -0.013 0.012 
precipitation 0.006 1.000 0.056 0.0003 
wind speed -0.013 0.056 1.000 0.009 
weekend 0.012 0.0003 0.009 1.000 
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3.4. Analysis of dependent variables 

3.4.1. Dependent variable: daily rides 

Since daily rides are positive and discrete numbers and represent trips per unit of time 

(day), one would expect a Poisson distribution for daily rides (figure 11). This was checked 

using the software. 

Using descdist() function from fitdistrplus() package, distributions of variables could 

be found. Descdist() function “computes descriptive parameters of an empirical distribution 

for non-censored data and provides a skewness-kurtosis plot” (Rdocumentation, n.d.b). For 

discrete data Poisson, negative binomial and normal distributions, and for non-discrete data 

uniform, normal, logistic, lognormal, beta and gamma distributions are considered.  

 

Figure 9. Histogram of daily rides 

Figure 10. Fitting distributions to “daily rides” variable 
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Using descdist() function from fitdistrplus() package, distributions of variables could

be found. Descdist() function "computes descriptive parameters of an empirical distribution

for non-censored data and provides a skewness-kurtosis plot" (Rdocumentation, n.d.b). For

discrete data Poisson, negative binomial and normal distributions, and for non-discrete data

uniform, normal, logistic, lognormal, beta and gamma distributions are considered.
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Surprisingly, dependent variable “daily rides” does not have a Poisson distribution, in 

fact none of the tested distributions was of a good fit (Figure 12). Daily rides vary from 

minimum of 1 trip to a maximum of 21 thousand trips per day, with a mean of 9 849 and a 

standard deviation of 4 690.48 or variance of 22 000 600. Indeed, it is confirmed again that 

the distribution is not a Poisson since variance exceeds mean by a lot.  

Since the test for the distribution gave no specific result and to increase the chance of 

normality of residuals, the author decided that a Box-Cox transformation of the daily rides 

need to be done.  

A Box-Cox transformation is a transformation which depends on parameter λ and is 

defined as: 

𝑤𝑤𝑡𝑡 = {
log(𝑦𝑦𝑡𝑡) 𝑖𝑖𝑖𝑖 𝜆𝜆 = 0,
𝑦𝑦𝑡𝑡

𝜆𝜆−1
𝜆𝜆  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. where y1, y2, … yT are original observations, w1, w2, … wT 

are transformed observations (Hyndman & Athanasopoulos, 2018) 

R can compute an optimal lambda for the data, and for daily rides it was 0.788. 

Histogram of transformed daily rides is presented in Figure 13. There is a slight change in 

right tail comparing with original histogram (figure 11). 

 

Figure 11. Histogram of Box-Cox transformed daily rides 
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Histogram of transformed daily rides is presented in Figure 13. There is a slight change in

right tail comparing with original histogram (figure 11).

Figure 11. Histogram of Box-Cox transformed daily rides
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3.4.2. Dependent variable: average trip duration 

Average trip duration is a continuous variable. Following the same procedure as above 

with daily rides, first is the analysis of histogram (figure 12). There is a positive skew in values 

based on the plot, the mean is at 872.4 seconds and is greater than the median of 792.9 

seconds. 

 

Using R allows the author to find that average trip duration values have a Gamma 

distribution. This assumption about the distribution will be used later in finding the right 

model. The dark blue dot (tested values) is on the gamma distribution line, which means that 

observations follow that specific type of distribution.  

Figure 12 . Histogram of average trip duration  

Figure 13. Fitting distributions to “average trip duration” variable  
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Even though distribution of values was determined, the author believes that a Box-

Cox transformation for average trip duration is also needed to normalize the data and to 

increase the chances of getting normal residuals in the final model. Analogously, optimal 

lambda for a transformation was found to be –0.182. Histogram of Box-Cox transformed 

values (figure 14) has no positive skew as histogram of original raw values (figure 12). Both 

types of variables: original values following Gamma and Box-Cox transformed values 

following Gaussian distributions will be tested in the next section. 

 

 

 

Figure 14. Histogram of Box-Cox transformed average trip duration 
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3.5. Model selection 

Up to this point the following was assessed: 

1) dependent variables were chosen as following: 

a. daily rides – Box-Cox transformed daily rides, 

b. average trip duration – original duration following Gamma distribution and 

Box-Cos transformed duration; 

2) independent variables were selected: 

a. for daily rides – average temperature, precipitation, factor of weekend; 

b. for average trip duration – average temperature, precipitation, wind speed, 

factor of weekend 

Next step is choosing appropriate model. All previous studies discussed in Section 2. 

Literature review used different approaches and models to analyze bicycle usage. Among 

those used models were multivariate Poisson regression (Corcoran et al., 2014), binomial 

model (Gebhart & Noland, 2014), ordinary least squares regression (Gebhart & Noland, 2014; 

Flynn et al., 2012), correlation coefficient analysis (Padmanabhan et al., 2021), fixed effect 

panel regression (Berezvai, 2022).  

Padmanabhan er al. (2021) used correlation coefficient analysis between number of 

COVID cases and BSS usage indicators. Berezvai (2022) also incorporated COVID 

connected variables inside the model. In this thesis the author follows a different approach 

(COVID variables are not incorporated directly into the model, but predictions (if no COVID 

existed) were made and compared with actual values (which contained in themselves changes 

associated with COVID) during pandemic, meaning models used in mentioned studies are not 

suitable.  

Main goal of Flynn et al. (2012) and their model was to predict whether an individual 

would ride a bike, dependent variable was binary, this is a classification problem which is 

also not relevant in the scope of this thesis. Most of weather variables were categorical 

variables in the models used by Gebhart & Noland (2014) unlike in this thesis in which 

weather data are values. Corcoran et al.’s (2014) approach cannot be used on Oslo data as it 

was found that dependent variable does not follow a Poisson distribution despite its nature.  

To wrap up, none of these discussed models will be appropriate to use here to fulfill 

the intended purpose of this thesis. A different model is needed.  

So far, a non-linear relationship has already been observed between each dependent 

and each independent variables separately (analysis in Section 3.1.). In other words, there are 

30

3.5. Model selection

Up to this point the following was assessed:

l) dependent variables were chosen as following:

a. daily rides - Box-Cox transformed daily rides,

b. average trip duration - original duration following Gamma distribution and

Box-Cos transformed duration;

2) independent variables were selected:

a. for daily rides - average temperature, precipitation, factor of weekend;

b. for average trip duration - average temperature, precipitation, wind speed,

factor of weekend

Next step is choosing appropriate model. All previous studies discussed in Section 2.

Literature review used different approaches and models to analyze bicycle usage. Among

those used models were multivariate Poisson regression (Corcoran et al., 2014), binomial

model (Gebhart & Noland, 2014), ordinary least squares regression (Gebhart & Noland, 2014;

Flynn et al., 2012), correlation coefficient analysis (Padmanabhan et al., 2021), fixed effect

panel regression (Berezvai, 2022).

Padmanabhan er al. (2021) used correlation coefficient analysis between number of

COVID cases and BSS usage indicators. Berezvai (2022) also incorporated COVID

connected variables inside the model. In this thesis the author follows a different approach

(COVID variables are not incorporated directly into the model, but predictions (if no COVID

existed) were made and compared with actual values (which contained in themselves changes

associated with COVID) during pandemic, meaning models used in mentioned studies are not

suitable.

Main goal of Flynn et al. (2012) and their model was to predict whether an individual

would ride a bike, dependent variable was binary, this is a classification problem which is

also not relevant in the scope of this thesis. Most of weather variables were categorical

variables in the models used by Gebhart & Noland (2014) unlike in this thesis in which

weather data are values. Corcoran et al.'s (2014) approach cannot be used on Oslo data as it

was found that dependent variable does not follow a Poisson distribution despite its nature.

To wrap up, none of these discussed models will be appropriate to use here to fulfill

the intended purpose of this thesis. A different model is needed.

So far, a non-linear relationship has already been observed between each dependent

and each independent variables separately (analysis in Section 3.1.). In other words, there are



31 

 

number of non-linear functions fi(xi) which can describe connections between response and 

each of explanatory variables. Combining all these functions together in one model can be 

done using generalized additive models (GAM). 

GAM extends linear model by allowing a smooth non-linear functions f(x) define a 

non-linear relationships between response variable and explanatory variables (James et al., 

2021). Model’s form is as following: 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝑓𝑓1(𝑥𝑥𝑖𝑖1) + 𝑓𝑓2(𝑥𝑥𝑖𝑖2) + ⋯ + 𝑓𝑓𝑝𝑝(𝑥𝑥𝑖𝑖𝑖𝑖) + 𝜖𝜖𝑖𝑖 

In the context of this thesis f1(x1) could explain relationship between average 

temperature and response variable, f2(x2) could explain relationship between precipitation and 

response variable, and so on. F1(x1) and f2(x2) could be completely different functions. This is 

a one of the main advantages of GAMs. Various functions, even linear functions for binary 

variables (weekend variable in this thesis), could be easily used in one model.  

One of GAM’s key features is additivity. On the one hand, because the model is 

additive, it is easy to analyze the effect of each explanatory variable separately by holding 

other variables (and their respective functions) fixed. On the other hand, this additivity could 

omit possible interactions between independent variables. But in the scope of this thesis, this 

should not be a problem because pool of independent variables is not so large and collinearity 

between independent variables was checked, there are no important interactions between 

independent variables (for example, calendar event (factor of weekend) is not connected or 

not affecting average temperature in any manner).  

By allowing inclusion of different functions GAM can be very flexible. This is 

advantageous because functions could describe the nature of relationship between response 

and explanatory variables closer to true form, and this in turn will increase the accuracy of 

predictions. On the other hand, this flexibility in choosing functions could lead to overfitting. 

In the case of Oslo BSS flexibility will allow adding closer to the true functions and overfitting 

will be controlled by limiting number of basis functions used in smoothing splines functions. 

Thus, GAM should be a good choice for Oslo BSS usage data. Bias will be reduced 

by using non-linear functions, variance will be controlled by restricting some characteristics 

of these functions. Of course, choosing a perfect model which will reflect a true nature of the 

relationship between variables is a hard task, some approximations need to be done. With data 

used in this thesis (their nature and relationship between each other), GAM should be a 

suitable model to fit the model and afterwards to make predictions on test data.  
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3.6. Model results  

3.6.1. GAM model 1  

In the model 1 Box-Cox transformed daily rides were used as a dependent variable. 

Based on selection made in Section 3.3. independent variables are average temperature, 

precipitation and factor of weekend. Formula for model 1 is as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖

= 𝛽𝛽0 +  𝑓𝑓1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖) + 𝑓𝑓2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)
+ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 + 𝜖𝜖𝑖𝑖 

As f1 and f2 functions smoothed regression splines are used. Regression splines divide 

values of the variable into several intervals, then fit a polynomial function to each interval 

with a constraint that there is a smooth joint at the ends of the intervals (James et al., 2021).  

 

Now after fitting a model, a true (or closer to the true) relationship between average 

temperature and daily rides could be observed (unlike in the data analysis done in the Section 

3.1., there inferences were preliminary). From plots based on regression results, relationship 

between average temperature and daily rides is positive (as expected): overall as average 

temperature rises, so do daily rides up until 23°C, then there is a slight decrease in daily rides 

as temperature increases. The rise in daily rides is not the same for all temperatures. For 

example, for temperatures lower than –4°C Oslo riders are indifferent to riding a bike (almost 

Figure 15. Relationship between “daily rides” and independent variables based on GAM model 1  
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Now after fitting a model, a true (or closer to the true) relationship between average

temperature and daily rides could be observed (unlike in the data analysis done in the Section

3.1., there inferences were preliminary). From plots based on regression results, relationship

between average temperature and daily rides is positive (as expected): overall as average

temperature rises, so do daily rides up until 23°C, then there is a slight decrease in daily rides

as temperature increases. The rise in daily rides is not the same for all temperatures. For

example, for temperatures lower than -4 °C Oslo riders are indifferent to riding a bike (almost



33 

 

a flat line), for temperatures in the range from – 4°C to + 10°C there is a steepest increase of 

all, meaning that any increase in temperature in that interval will result in substantial increase 

in daily rides. For temperatures from +10°C to +15°C increase in temperature will rise trips 

but smaller than in the previous range and even smaller for temperatures from +15°C to 

+23°C. After +23°C there is a decrease in daily rides, which could be explained as 

temperatures are getting a little bit uncomfortable for riders.  

Precipitation’s relationship with daily rides varies: when precipitation is from 0 to 20 

mm per day, number of daily trips decreases. It is understandable: if there is no rain (0 mm), 

then when it starts to rain, some users may refrain from using bikes. Unexpectedly, for 

precipitation in the range from 20 to 40 mm per day, there is even an increase (just a slight 

one) in number of rides with increase in precipitation. This shows that Oslo BSS users are 

getting indifferent if precipitation is 30mm or 35 mm. 

There were more trips made on weekdays than on weekends, which could mean that 

Oslo BSS users mostly ride bikes to the offices during Monday – Friday than ride them 

possibly for leisure on Saturday – Sunday.  

From regression results, it can be concluded that factor of weekend (p-value of 

0.00174), average temperature (p-value less than 2e-16) and precipitation (p-value less than 

3.55e-9) are significant at 5% level of significance. All chosen independent variables are 

significant, which means that they were chosen correctly.  
Table 7. Regression results GAM model 1 

Family: gaussian  
Link function: identity  
  
Formula: 
n_rides_bc ~ s(average, fx = T) + s(precipitation, fx = T) +  
    weekend 
  
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1763.43      17.74   99.41  < 2e-16 *** 
weekend1     -104.73      33.35   -3.14  0.00174 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
Approximate significance of smooth terms: 
                 edf Ref.df       F  p-value     
s(average)         9      9 125.652  < 2e-16 *** 
s(precipitation)   9      9   6.592 3.55e-09 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
R-sq.(adj) =  0.548   Deviance explained = 55.7% 
-REML = 7403.6  Scale est. = 2.2211e+05  n = 993  

 

 

33

a flat line), for temperatures in the range from - 4°C t o + 10°C there is a steepest increase of

all, meaning that any increase in temperature in that interval will result in substantial increase

in daily rides. For temperatures from + l 0°C to + l 5°C increase in temperature will rise trips

but smaller than in the previous range and even smaller for temperatures from + l 5°C to

+23°C. After +23°C there is a decrease in daily rides, which could be explained as

temperatures are getting a little bit uncomfortable for riders.

Precipitation's relationship with daily rides varies: when precipitation is from Oto 20

mm per day, number of daily trips decreases. It is understandable: if there is no rain (0 mm),

then when it starts to rain, some users may refrain from using bikes. Unexpectedly, for

precipitation in the range from 20 to 40 mm per day, there is even an increase (just a slight

one) in number of rides with increase in precipitation. This shows that Oslo BSS users are

getting indifferent if precipitation is 30mm or 35 mm.

There were more trips made on weekdays than on weekends, which could mean that

Oslo BSS users mostly ride bikes to the offices during Monday - Friday than ride them

possibly for leisure on Saturday - Sunday.

From regression results, it can be concluded that factor of weekend (p-value of

0.00174), average temperature (p-value less than 2e-16) and precipitation (p-value less than

3.55e-9) are significant at 5% level of significance. All chosen independent variables are

significant, which means that they were chosen correctly.
Table 7. Regression results GAM model l

Family: gaussian
Link function: identity

Formula:
n_rides_bc ~ s(average, fx= T)+ s(precipitation, fx= T)+

weekend

Parametric coefficients:
Estimate Std.

(Intercept) 1763.43
weekendl -104.73

Error t value Pr(>ltl)
17.74 99.41 < 2e-16 ***
33.35 -3.14 0.00174 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' l

Approximate significance of smooth terms:
edf Ref.cif F p-value

s(average) 9 9 125.652 < 2e-16 ***
s(precipitation) 9 9 6.592 3.55e-09 ***

Signif. codes: 0 '*** ' 0.001 '**' 0.01 '*' 0.05 '' 0.1 '' l
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Model check   

After fitting the model, model has to be checked for goodness of fit. First, residuals’ 

behavior was checked from the graphs. From figure 16 histogram of the residuals resembles 

a normal bell-shaped curve and residuals distribution quantiles (black line) almost follows a 

normal distribution quantiles (red line).   

 

AIC for the GAM model 1 is 15 064.56. 

Next, in addition to graphical analysis, running a statistical test will help precisely 

decide a normality of residuals. During this test a ratio of an “estimate of the residual variance, 

based on differencing residuals that are near neighbors”, divided by the residual variance is 

calculated. The more this ratio is away from 1, the bigger the chance “that there is missed 

pattern left in the residuals” (RDocumentation, n.d.c). 

Test shows that residuals for the function of average temperature are randomly 

distributed (p-value is equal to 0.15 and is greater than 5% level of significance, so null 

hypothesis (that residuals are randomly distributed) is not rejected), whereas residuals for 

function of precipitation are not (p-values less than 2e-16). Re-fitting the model without 

precipitation variable results in AIC of 15105.33 (slightly higher than before, but one 

explanatory variable was removed) and all the tests for normality of residuals are passed. This 

refitted model is going to be used for final predictions of daily rides. 

 

Figure 16. Residuals of GAM model 1 
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AIC for the GAM model l is 15 064.56.

Next, in addition to graphical analysis, running a statistical test will help precisely

decide a normality of residuals. During this test a ratio of an "estimate of the residual variance,

based on differencing residuals that are near neighbors", divided by the residual variance is

calculated. The more this ratio is away from l, the bigger the chance "that there is missed

pattern left in the residuals" (RDocumentation, n.d.c).

Test shows that residuals for the function of average temperature are randomly

distributed (p-value is equal to 0.15 and is greater than 5% level of significance, so null

hypothesis (that residuals are randomly distributed) is not rejected), whereas residuals for

function of precipitation are not (p-values less than 2e-16). Re-fitting the model without

precipitation variable results in AIC of 15105.33 (slightly higher than before, but one

explanatory variable was removed) and all the tests for normality of residuals are passed. This

refitted model is going to be used for final predictions of daily rides.
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3.6.2. GAM model 2 

GAM can also handle a situation where dependent variable has other than Gaussian 

distribution. For average trip duration the author is going to test two models: one with original 

value with gamma distribution and one with Box-Cox transformed duration, the best one will 

be used for further predictions.  

In the model 2 original average trip duration following Gamma distribution was used 

as a dependent variable. Based on selection made in Section 3.3. independent variables are 

average temperature, precipitation, wind speed and factor of weekend. Formula for model 2 

is as follows: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖

= 𝛽𝛽0 +  𝑓𝑓1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖) + 𝑓𝑓2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)
+  𝑓𝑓3(wind speed) + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 + 𝜖𝜖𝑖𝑖 

 

From regression results (table 8), coefficients on weekend and wind speed are 

insignificant at 5% level of significance (p-value at 0.101 and 0.62174 respectively). AIC for 

GAM model 2 is 13938.08 
Table 8. Regression results GAM model 2 

Family: Gamma  
Link function: inverse  
  
Formula: 
aver_dur ~ s(average, fx = T) + s(precipitation, fx = T) + s(wind_speed,  
    fx = T) + weekend 
  
Parametric coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.192e-03  1.524e-05  78.202   <2e-16 *** 
weekend1    -4.406e-05  2.683e-05  -1.642    0.101     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
Approximate significance of smooth terms: 
                 edf Ref.df      F p-value     
s(average)         9      9 16.322 < 2e-16 *** 
s(precipitation)   9      9  2.911 0.00209 **  
s(wind_speed)      9      9  0.794 0.62174     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
R-sq.(adj) =   0.16   Deviance explained = 21.5% 
-REML = 7188.4  Scale est. = 0.11577   n = 993 
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3.6.2. GAM model 2

GAM can also handle a situation where dependent variable has other than Gaussian

distribution. For average trip duration the author is going to test two models: one with original

value with gamma distribution and one with Box-Cox transformed duration, the best one will

be used for further predictions.

In the model 2 original average trip duration following Gamma distribution was used

as a dependent variable. Based on selection made in Section 3.3. independent variables are

average temperature, precipitation, wind speed and factor of weekend. Formula for model 2

is as follows:

average tr ip duration,

=/Jo+ f1(average temperaturen + fz(precipitationi)

+ h ( w i n d speed)+ weekend, + Ei

From regression results (table 8), coefficients on weekend and wind speed are

insignificant at 5% level of significance (p-value at 0.101 and 0.62174 respectively). AIC for

GAM model 2 is 13938.08
Table 8. Regression results GAM model 2

Family: Gamma
Link function: inverse

Formula:
aver_dur ~ s(average, fx= T)+ s(precipitation, fx= T)+ s(wind_speed,

fx= T)+ weekend

Parametric coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) 1.192e-03 1.524e-05 78.202 <2e-16 ***
weekendl -4.406e-05 2.683e-05 -1.642 0.101

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' l

Approximate significance of smooth terms:
edf Ref.cif F p-value
9 9 16.322 < 2e-16 ***
9 9 2.911 0.00209 **
9 9 0.794 0.62174

s(average)
s(precipitation)
s(wind_speed)

Signif. codes: 0 '*** ' 0.001 '**' 0.01 '*' 0.05 '' 0.1 '' l

R-sq.(adj) = 0.16 Deviance explained= 21.5%
-REML = 7188.4 Scale est. = 0.11577 n= 993
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Model check 

Analogously, as with previous model, residuals were checked for normality. It can be 

concluded that residuals are skewed and not normally distributed from histogram of residuals 

and Q-Q plot (figure 17). 

 

Running a numerical test once again confirms that residuals are not normally 

distributed with p-values on all variables smaller than 2e-16 rejecting the null hypothesis of 

normally distributed residuals.  

3.6.3. GAM model 3 

The GAM model 2 has not passed the residuals test. Thus, in the final model 3 Box-

Cox transformed average trip durations were used as a dependent variable instead of original 

values. Independent variables stayed the same as in the model2. Formula for the model 3 is 

as follows: 

𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖

= 𝛽𝛽0 +  𝑓𝑓1(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖) + 𝑓𝑓2(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)
+  𝑓𝑓3(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖 + 𝜖𝜖𝑖𝑖 

Plot of functions between response (duration) and each independent variables are 

shown in figure 18. Temperature and duration have a slightly different relationship than 

temperature and daily rides. An increase in duration caused by increase in temperature is 

smoother than previously observed for daily rides and almost the same up until temperature 

of +23°C. After +23°C the same as with the number of trips, average duration slightly 

decreases, which could be explained by temperatures becoming uncomfortable (too hot for 

Oslo) to ride bikes. 

Figure 17. Residuals of GAM model 2 
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Running a numerical test once again confirms that residuals are not normally

distributed with p-values on all variables smaller than 2e-16 rejecting the null hypothesis of

normally distributed residuals.

3.6.3. GAM model 3

The GAM model 2 has not passed the residuals test. Thus, in the final model 3 Box-

Cox transformed average trip durations were used as a dependent variable instead of original

values. Independent variables stayed the same as in the model2. Formula for the model 3 is

as follows:

Box - Cox transformed average tr ip duration,

=/Jo+ f1(average temperaturen + fz(precipitationi)

+ h(wind speed)+ weekend, + Ei
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temperature and daily rides. An increase in duration caused by increase in temperature is

smoother than previously observed for daily rides and almost the same up until temperature

of +23°C. After +23°C the same as with the number of trips, average duration slightly

decreases, which could be explained by temperatures becoming uncomfortable (too hot for

Oslo) to ride bikes.
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For precipitation between 0 to 18 mm, there is almost no change in duration, whereas 

with larger than 18 mm a day there is a slight decrease in duration, but not substantial, which 

could mean that overall Oslo riders are not so sensitive to the precipitation. The same is true 

for wind speed: up to 5 m/s trip duration is unchanged with increase in wind speed, for 

stronger winds there is slight decrease in riding time.  

For the factor weekend, it can be concluded that Oslo BSS users prefer riding bikes 

for longer periods on weekends than for workdays (just the opposite of what was observed 

for daily rides). 

From regression results (table 9), p-values for factor of weekend at 4.2.e-7, for average 

temperature at smaller than 2e-16, for precipitation at 0.000186 and for wind speed at 

0.0284420 are smaller than 5% level of significance. All independent variables are significant, 

meaning that they were selected correctly.  
Table 9. Regression results GAM model 3 

Family: gaussian  
Link function: identity  
  
Formula: 
aver_dur_bc ~ s(average, fx = T) + s(precipitation, fx = T) +  
    s(wind_speed, fx = T) + weekend 
  
Parametric coefficients: 
            Estimate Std. Error  t value Pr(>|t|)     
(Intercept) 3.832980   0.001990 1925.755  < 2e-16 *** 
weekend1    0.019210   0.003761    5.108  4.2e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Figure 18. Relationship between “average trip duration” and independent variables based on GAM model 3 
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From regression results (table 9), p-values for factor of weekend at 4.2.e-7, for average

temperature at smaller than 2e-16, for precipitation at 0.000186 and for wind speed at

0.0284420 are smaller than 5% level of significance. All independent variables are significant,

meaning that they were selected correctly.
Table 9. Regression results GAM model 3

Family: gaussian
Link function: identity

Formula:
aver_dur_bc ~ s(average, fx= T)+ s(precipitation, fx= T)+

s(wind_speed, fx= T)+ weekend

Parametric coefficients:
Estimate Std. Error t value Pr(>ltl)

(Intercept) 3.832980 0.001990 1925.755 < 2e-16 ***
weekendl 0.019210 0.003761 5.108 4.2e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' l
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Table 9 (cont). 
Approximate significance of smooth terms: 
                 edf Ref.df      F  p-value     
s(average)         9      9 41.748  < 2e-16 *** 
s(precipitation)   9      9  3.640 0.000186 *** 
s(wind_speed)      9      9  2.089 0.028420 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  
R-sq.(adj) =  0.439   Deviance explained = 46.1% 
-REML = -1126.8  Scale est. = 0.0020436  n = 728  
 

AIC for the model 3 is – 2412.157, which is substantially lower than AIC for the model 

2 (13398.08). 

 

Model check 

The residuals are better distributed for the model 3, no such skewness as was observed 

in the model 2 (figure 19).  

 

P-values in the normality of residuals test are 0.325 for function on average 

temperature, smaller than 2e-16 for spline on precipitation, 0.015 for function on wind speed. 

The model was re-fitted without the variables that did not pass the normality test (precipitation 

and wind speed). Refitted AIC is now – 2394.418, refitted p-value for normality is 0.43, 

meaning that null hypothesis of normality of residuals is not rejected. All tests are passed, this 

model will be used for further predictions of average trip duration.  

 

 

Figure 19. Residuals of GAM model 3 
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Table 9 (cont).
Approximate significance of smooth terms:

edf Ref.cif F p-value
9 9 41.748 < 2e-16 ***
9 9 3.640 0.000186 ***
9 9 2.089 0.028420 *

s(average)
s(precipitation)
s(wind_speed)

Signif. codes: 0 '*** ' 0.001 '**' 0.01 '*' 0.05

R-sq.(adj) = 0.439 Deviance explained= 46.1%
-REML = -1126.8 Scale est. = 0.0020436 n= 728

' ' 0 . 1 ' ' 1

AIC for the model 3 is-2412.157, which is substantially lowerthanAIC for the model

2 (13398.08).

Model check

The residuals are better distributed for the model 3, no such skewness as was observed

in the model 2 (figure 19).
Figure l 9. Residuals of GAM model 3
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P-values in the normality of residuals test are 0.325 for function on average

temperature, smaller than 2e-16 for spline on precipitation, 0.015 for function on wind speed.

The model was re-fitted without the variables that did not pass the normality test (precipitation

and wind speed). Refitted AIC is now - 2394.418, refitted p-value for normality is 0.43,

meaning that null hypothesis of normality of residuals is not rejected. All tests are passed, this

model will be used for further predictions of average trip duration.
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4. Results and Discussion 

Based on the model 1 predictions were made of daily rides during COVID period 

(figure 20), analogously based on the model 3 daily average trip duration was estimated on 

test pandemic period data (figure 21). Next, those predictions and actual values were 

compared to estimate the effect of COVID-19 on Oslo BSS usage. 

 

Overall, it can be concluded that COVID-19 negatively affected daily total rides on 

Oslo BSS, but the effect was different over this almost two year long period. It can be 

concluded that total demand for shared bikes decreased for Oslo. Thus, the hypothesis #1 is 

confirmed.  

In the beginning of pandemic (March – April 2020) there was around 50% decrease 

in actual rides compared to predicted without pandemic. This could be explained by the fact 

that for Oslo BSS a decrease in overall mobility was substantially greater than an increase 

from shift from other types of public transport in the start of pandemic. 

After that in May – June 2020 drop in rides was smaller (around 27%), meaning that 

riders came back to use shared bikes for transporation. For some days it can be observed that 

the actual values with COVID match the predicted ones without COVID, which shows that 

demand for shared bikes increased at those days. 

Figure 20. Predicted vs actual daily number of rides during COVID period  
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Overall, it can be concluded that COVID-19 negatively affected daily total rides on

Oslo BSS, but the effect was different over this almost two year long period. It can be

concluded that total demand for shared bikes decreased for Oslo. Thus, the hypothesis #1 is

confirmed.

In the beginning of pandemic (March - April 2020) there was around 50% decrease

in actual rides compared to predicted without pandemic. This could be explained by the fact

that for Oslo BSS a decrease in overall mobility was substantially greater than an increase

from shift from other types of public transport in the start of pandemic.

After that in May - June 2020 drop in rides was smaller (around 27%), meaning that

riders came back to use shared bikes for transporation. For some days it can be observed that

the actual values with COVID match the predicted ones without COVID, which shows that

demand for shared bikes increased at those days.
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After that actual and predicted values go almost parallel with actuals being smaller 

(still staying at home and drop in the mobility dominates BSS usage). It can be noted that 

there were two significant (more than before) drops in rides: June – September 2021 and 

December 2021 – February 2022. 

First drop could be explained by following facts: 1) continuation of reopening of 

society could have shifted back commuters to the other types of public transport (buses, 

metros, trams), meaning that it was again considered safe to travel in the closed and less 

ventilated vehicles; 2) there was an uncontrolled rise in quantity of shared e-scooters in 

Summer 2021, up to 20-30 000 units were on the streets of Oslo pushing local authorities to 

interfere and put a limit of 8 000 e-scooters allowed since Spetember 2021. 

Second drop, which started in December 2021, could be explained by spread of more 

contagious omicron variant and by additional restrictions which were imposed to fight the 

spread of that variant and which dropped people’s mobility. 

Overall, because of almost constant decrease in rides, of course Oslo BSS met the 

aggregate demand. Oslo City Bike even made bikes available during winter months for the 

first time in COVID year 2021.  

 

 

Figure 21. Predicted vs actual average duration during COVID period 
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With average trip duration, the impact of COVID-19 was completely different (figure 

21). Overall, it was observed that average trip duration was even greater than predicted 

without COVID, which means that riders were willing to travel and travelled for longer 

distances. Thus, the hypothesis #2 is also confirmed. 

In March – May 2020 increase in average trip duration (+34% on average from 

predicted values without COVID) was the highest throughout 2020-2022. It was the start of 

pandemic, less information about the disease was available, individuals responded quickly 

with travelling for longer time. Though the total number of daily trips decreased, trip duration 

increased substantially. 

During June – November 2020 actual pandemic values were the same as the predicted 

non-pandemic values. That could mean that after the start of pandemic and initial drastic 

increase in hire time, users got used to the pandemic (initial fear has passed, more information 

about coronavirus became available) and used shared bikes as everything was normal.  

In December 2020 – May 2021 again there was a significant increase (+25% than 

predicted on average) in trip durations. This could be explained by the appearance of new 

variants and imposed national restrictions associated with those variants. The riders reacted 

to that by taking longer trips.  

As in previous year 2021, in June – November 2021 actuals and predicted were almost 

the same. Start of the opening of the society in that period could have affected the trip 

duration: commuters could prefer to ride for a shorter distance, for example, to the closest 

tram or metro stop instead of going by bike to the final desired destination. 

As with daily rides, in December 2021 – February 2022 average trip duration was 

influenced by spread of omicron variant and related anti-pandemic measures. That resulted in 

22% increase on average in trip duration. 

Overall, average bike hire time increased substantially over the pandemic period. 

Those increases were uneven, substantial rises happened when pandemic started, when new 

variants appeared, and corresponding governmental restrictions were imposed. 

As for the tested calendar event factor, there were more rides made on working days 

than on weekend days, whereas Monday – Friday trips were on average shorter than Saturday 

– Sunday ones. 

In this thesis it was confirmed that due to COVID-19 average trip duration increased. 

It means that users were willing to travel for longer distances to avoid catching a disease. It 

shows that people responded to pandemic by taking longer rides. This value is unaffected by 
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the rivalry with the electric scooters’ providers because it measures already taken rides using 

shared bikes. It is a pure COVID effect on the bicycle sharing system. 

Even though users are ready to travel further, current Oslo BSS is limited to Ring 3, 

which is road #150 in Oslo. Road #150 is a red line on figure 22. Borders of city of Oslo are 

blue lines. Several boroughs of Oslo are not covered by Oslo City Bike stations. Just for 

example, population in three Oslo boroughs (which all are located beyond Ring 3) Alna, 

Stovner and Grorud exceeds 110 thousand persons (Oslo commune, 2022b).  

 

There is a huge potential to expand existing Oslo’s bicycle sharing system further. The 

analysis in this thesis has shown that users are willing to use shared bikes for longer time 

periods. The author recommends as the first step for Oslo City Bike to rearrange existing bike 

stations and to place them in boroughs adjacent to and beyond Ring 3. The costs of this step 

should not be substantial as it would not require acquiring new bikes or stations. Next step 

could be an even bigger expansion to cover all the other boroughs of Oslo. This will need 

larger investments than the first step as new bikes and stations are required. Partially those 

costs should be covered by the revenues gained from acquiring new users of the system.  

 

To wrap up the discussion, detailed analysis of daily number of rides and average trip 

duration showed that the effect of COVID-19 on Oslo BSS was as follows: overall number of 

daily rides decreased, and overall average trip duration increased, there were periods when 

those changes were smaller or larger. The author’s hypotheses were fully confirmed. Usually 

Figure 22. Google Map of Oslo vs Map of Oslo City Bike coverage 
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There is a huge potential to expand existing Oslo's bicycle sharing system further. The

analysis in this thesis has shown that users are willing to use shared bikes for longer time

periods. The author recommends as the first step for Oslo City Bike to rearrange existing bike

stations and to place them in boroughs adjacent to and beyond Ring 3. The costs of this step

should not be substantial as it would not require acquiring new bikes or stations. Next step

could be an even bigger expansion to cover all the other boroughs of Oslo. This will need

larger investments than the first step as new bikes and stations are required. Partially those

costs should be covered by the revenues gained from acquiring new users of the system.

To wrap up the discussion, detailed analysis of daily number of rides and average trip

duration showed that the effect of COVID-19 on Oslo BSS was as follows: overall number of

daily rides decreased, and overall average trip duration increased, there were periods when

those changes were smaller or larger. The author's hypotheses were fully confirmed. Usually
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with appearance and spread of new variants and related governmental reactions Oslo’s bicycle 

sharing system responded accordingly (substantial drop in daily rides and substantial increase 

in trip duration). With a fleet of 3 000 bikes and implementation of winter tires on bikes Oslo 

City Bike was able to meet the aggregate demand in terms of daily rides, but with limited 

coverage area some users’ needs could not have been met. To satisfy the users’ needs and to 

be prepared for the future possible analogous pandemic, the provider of shared bicycles 

service could rearrange existing bikes by moving existing stations to cover greater area of 

Oslo and if needed increase the quantity of bikes appropriately.  
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5. Conclusion 

COVID-19 has changed many aspects of everyday lives. Some changes, that were 

caused by spread of pandemic, stayed, some aspects returned to pre-pandemic levels. In this 

thesis impact of COVID-19 on Oslo bicycle sharing system was estimated and based on the 

conducted analysis improvements to Oslo City Bike were suggested.  

The raw data was in the form of information about 13 million of unique trips made on 

Oslo bicycle sharing system throughout the analyzed period and of daily weather data for 

more than 7 years. Using the software (specifically R) allowed the author to analyze this quite 

a big pull of data.  

Various techniques were used throughout the thesis, including graphical and data 

analysis (to understand the patterns and preliminary relationships between various variables), 

shrinkage methods (to select independent variables), cross-validation methods (to select 

optimal tuning parameters for shrinkage methods,), and regression models (to make 

predictions).  

There were some limitations to conducted research. Weather only in the form of 

temperature, precipitation and wind speed, and factor of weekend were used to explain shared 

bicycle usage. Potentially other weather factors, such as level of humidity, presence or 

absence of fog, or another type of calendar event (public holiday or school holiday) could 

influence the BSS usage. The author believes that chosen variables had a good predictive 

power.  

The thesis hypothesis was that daily rides should decrease (as working and studying 

from home/closure of sport and cultural facilities, shops and restaurants/cancelation of events 

decreased people’s mobility substantially) and average trip duration should increase (as users 

prefer to ride the bikes for longer distance to avoid other more contagious (in their opinion) 

modes of public transport). The hypotheses were confirmed. The impact of COVID-19 on 

daily rides was negative, there were substantial drops when new variants appeared, and also 

electric scooters took away part of BSS users. But now there is a sign of recovery of the 

demand for shared bikes. In the post-covid era since February 2022 number of daily rides 

keeps increasing: in 2021 mean of daily trips was 3 888, whereas in 2022 (February-

November) it is already 4261. That shows that individuals are coming back to use Oslo BSS 

despite availability of e-scooters.  

The effect of pandemic on average trip duration was quite the opposite. Hire time 

increased and in some periods rise was substantial. This indicates users’ desire to use bikes 
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for longer trips. It is interesting to mention that this pattern continues even today. Based on 

data from February 2022 to November 2022, mean of average trip duration was 741 seconds 

which is in the range of mean trip durations during COVID era in 2020 and 2021 (766 and 

745 seconds respectively) and is greater than in pre-pandemic 2019 year, when mean duration 

was just 494 seconds. This means that commuters changed their behavior during COVID-19 

by taking longer rides and kept doing so, even when pandemic was officially over in Oslo.  

Based on these conclusions, it is recommended for Oslo City Bike to reconsider 

placements of the biking stations in a such manner that new mapping will cover areas of Oslo 

beyond Ring 3.  

Oslo BSS reacted differently than bike sharing systems in other cities. For example, 

in London the same as in Oslo in the beginning of pandemics total daily rides decreased, but 

unlike Oslo, after initial drop, demand went up to pre-pandemic levels. Also like in Oslo 

average trip duration increased in London during covered period of analysis (Heydari et al., 

2021).   

On the contrary to Oslo and London, in Budapest bicycle sharing system usage 

increased drastically during the first wave of COVID and even more, there were more new 

users signed to use the system during that time than in pre-pandemic year 2019 (Berezvai, 

2022).  

Promoting the usage and expanding bicycle sharing system beyond Ring 3 have 

several advantages for the Oslo City Council and residents of Oslo in general. Health of BSS 

users could improve as riding a bike requires physical effort unlike riding an electric scooter. 

Since bikes produce no CO2 emissions while in use, potentially greater usage of BSS could 

lead to a reduction in the city’s environmental pollution. 

Future research could be made on how to expand the Oslo bicycle sharing system 

beyond Ring 3 with more efficient allocation of existing number of bikes and stations or with 

even greater expansion which will require increase in quantity of both bikes and stations. In 

addition, implementing this project of greater scope in real life could be beneficial for Oslo: 

if a new pandemic happens, then bicycle sharing system will be prepared for potential changes 

in usage patterns and will be available for use for everyone in Oslo; if there is no new 

pandemic, then still there are huge benefits to public health and environment caused by 

increased shared bikes usage. 
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Appendix 1. 

Wind speed in m/s in Oslo over Jan 2016- Feb 2022 
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Appendix l.

Wind speed in m/s in Oslo over Jan 2016- Feb 2022
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Appendix 2.  

Graphs showing relationship between weather data (precipitation and wind speed) and 

dependent variables (daily number of trips and average trip duration) over time. 

Daily rides vs daily precipitation in mm over the years 2016 – Feb 2022 

Daily average trip duration (in seconds) vs precipitation (in mm) over the years 2016- Feb 2022 
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Appendix 2.

Graphs showing relationship between weather data (precipitation and wind speed) and

dependent variables (daily number of trips and average trip duration) over time.

Daily rides vs daily precipitation in mm over the years 2016 - Feb 2022
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Daily rides vs wind speed (in m/s) over the years 2016 – Feb 2022 

 

Daily average trip duration (in seconds) vs wind speed (in m/s) over the years 2016- Feb 2022 
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Daily rides vs wind speed (in mis) over the years 2016 - Feb 2022
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