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Abstract

Commercial banks and other financial institutions are essential to the modern economy,

and government agencies and regulators strive to identify and counteract risks in banking

institutions. With an emphasis on loan and risk based factors, this thesis explores what

influences small private commercial U.S. banks’ decision to get no voluntary external

audit. Using bank regulatory data spanning 10 years from 2010 to 2020, we predict

audit choice using four machine learning algorithms for classification; logistic regression,

LASSO, random forest, and LightGBM. The models make use of 16 specially selected

independent features. This thesis analyzes the machine learning algorithms based on

various performance metrics (accuracy, specificity, precision, recall, and F1) and studies

the feature importance measured by each model. To verify the results, the thesis uses two

methods of feature selection; ANOVA and Mutual Information.

Our findings suggest that the proportion of agricultural loans to the total sum of loans

is an important factor in predicting audit choice. Bank size and asset quality are also

important factors in the banks’ audit decisions. The best models are the tree-based

models, with random forest being considered the best. Random forest predicts with a

high level of accuracy and argues that the relationship between audit choice and the bank

data is nonlinear.

Keywords – Banks, Audit, Classification, Machine Learning
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1 Introduction

Economic and financial systems depend on financial institutions and commercial banks.

Banks facilitate economic growth and development by allowing people and organizations

to access the capital they need to start and grow businesses, buy homes, and invest in the

stock market. The economy becomes more efficient through the allocation of funds from

savers to borrowers, and banks play a vital role in today’s society. At the end of the third

quarter of 2022, commercial banks held over 23.6 trillion USD in accumulated assets in the

U.S., which is 91.8% of the gross domestic product (Bureau of Economic Analysis, 2022;

FDIC, 2022). Regulatory authorities monitor all banks, but unlike most other Western

countries, the U.S. does not require an external audit of all banks (Nicoletti, 2018). This

is in stark contrast to the European Union (EU) and the European Economic Area (EEA),

where banks are considered Public Interest Entities and are subject to additional legal and

regulatory requirements due to the nature of their business (Accountancy Europe, 2017).

In order to ensure that their financial statements are accurate, reliable, and transparent, all

banks in the EU and EEA are obliged to have statutory audits (Accountancy Europe, 2017).

The objective of the regulators supervising and regulating U.S. banks is similar to

those of the auditors. The regulators’ job is to ensure that banks and other financial

institutions employ safe and sound business practices and comply with all applicable

laws and regulations (Federal Reserve, 2021). Meanwhile, auditors are responsible for

examining and verifying the accuracy and reliability of a company’s financial statements

(Tuovila, 2022). Banks differ from private firms in that they are reviewed by regulatory

authorities regardless of whether they are audited (Federal Reserve, 2021). Private firms

lack this type of control mechanism from an external party, and this interaction between

regulators and auditors brings a new aspect to the choice of auditing for banks.

In most U.S. states, private banks are not obligated to have an external audit, but may

choose to do so voluntarily. Research has shown that credit defaults are reduced by 38% in

banks with voluntary external audits (Barton et al., 2015), yet 82% of the banks studied

in this thesis have opted not to engage external audits for parts of or the whole 10-year
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period. The question why so many banks opt not to have an external audit remains a

conundrum to the field of accounting. To answer such a question, one must first identify

which factors drive these banks not to employ an external audit when given the opportunity.

This thesis aims to fill a gap in the literature by identifying drivers of the banks’ decisions.

It has previously been researched as to why private firms choose to audit and on the

value that an audit provides in general. However, very little research has been conducted

on which factors influence banks in the decision of getting no voluntary external audits.

Understanding why some banks decide not to procure a voluntary external audit

contributes to better understand these banks and their behavior. Additionally, this

research can help identify and decipher differences between private banks that operate in

various sectors and activities, and facilitate further research into the value derived from

an audit.

In this thesis, we investigate which factors influence the choice of not acquiring a voluntary

audit for small1 private commercial U.S. banks using bank regulatory data from 2010 to

2020. Vanstraelen & Schelleman (2017) found that there is much divergency in factors

driving audit demand for private companies when studying what is currently known about

the costs and benefits of auditing private companies (Vanstraelen & Schelleman, 2017).

To the best of our knowledge, little research has been conducted on this regarding private

banks. As such, we believe the study of voluntary audits profits from a more thorough

analysis of which factors are the most important. For this analysis, we have narrowed

down our focus to loans and risk factors as potential influences. It is our opinion that the

most value can be found in identifying banks that do not acquire external audits, which

will be explained in detail in the following paragraphs. Therefore, the thesis addresses the

two-part research question:

How do loan and risk factors influence the decision to get no audit?

Banks’ primary source of income is the interest spread from their loans, and it is clear

that loans are one, if not the, main activity of a bank (Gadre et al., 2016). As such,

1banks with total assets below 500 million USD
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loans may naturally influence most other aspects of a bank’s decisions, including audit

choices. We look at the types of loans banks issue, and specifically in what sectors, who

the borrower is and how they are secured. These categories are defined as agricultural

loans, commercial and industrial loans, real estate loans and loans to individuals. Lease

financing receivables, which is net of unearned income on direct and leveraged financing

lease and any allowance for losses on leases (Federal Reserve, n.d.), is included as well.

We assume that regulatory authorities are interested in high risk banks and their

behavior. Bank failures may have enormous consequences, as brutally demonstrated

in the financial crisis of 2007-2008, and government agencies and regulators strive to

pinpoint and counteract risks in banking institutions. The relevance and importance

of understanding banks is further highlighted by the 2022 Nobel Prize in Economics.

The laureates’ research has improved our understanding of banks’ role in the economy

and the findings show why avoiding bank collapses is vital (Nobel Prize Outreach

AB 2022, 2022). As such, we assume there is a distinct interest in whether there

is a connection between risk indicators and the decision to get no audit. This

assumption led us to structure the research in a way that emphasizes the negative

decision, i.e. to get no audit. The thesis examines risk factors, specifically cash, loan

loss allowance, loan loss provision, return on assets, and ratios for Tier 1 and Tier 2 capital.

In order to study private U.S. banks’ decisions to get an external audit or not, we have

applied machine learning and predictive modeling techniques. Using machine learning,

one is able to extract relevant information from a large quantity of available raw data,

due to the fact that a machine learning algorithm searches for patterns and underlying

structures it finds meaningful to its decision making (Alpaydin, 2020). Accordingly, this

method allows us to investigate the behavior of banks, without implementing our own

biases on the data. In this thesis we predict banks’ choices of audit using a subset of the

reported information in financial statements. We apply four machine learning models to

the problem; logistic regression, LASSO, random forest and LightGBM. We use loan

and risk variables as features in the models, in addition to variables derived from other

necessary financial statement data.
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The results of this thesis are twofold. First, the trained random forest and LightGBM

models predict audits with considerable accuracy, random forest being the best. These

predictive models offer a new approach to studying voluntary audits as it allows further

research to predict decisions of banks’ prior to the choice being taken. Second, it concludes

that there are variables in both the loan and the risk category that affect the choice to

get no audit. Intriguingly, the proportion of agricultural loans to total loans emerges as

the most important variable. In terms of risk, loan loss allowance and loan loss provision,

as proxies for asset quality, are large influences on the decision to get no audit. Lastly, in

accordance with prior literature (Chan & Kogan, 2011), we find that bank size is important.

The thesis is divided into seven chapters. First, we review relevant literature about

auditing private firms and banks in Chapter 2. This will provide an understanding of

what we already know about auditing for private companies and banks and what research

shows drives audit demand. The thesis will use prior literature as a foundation in further

investigating what might drive audit demand amongst private U.S. banks.

In Chapter 3 we present the data we have collected, the data cleaning process and some

discussion on the selected features. The following chapter, Chapter 4, will explain the

multivariate analysis. Here, we introduce and describe the applied machine learning

models, and show how these models are performing in terms of predictive power. Next, in

Chapter 5, we explore the most important factors for the different models, and verify

the results using two approaches of feature selection; ANOVA and Mutual Information.

Further, in Chapter 6, we compare and interpret our results, and discuss the robustness of

the models and their predictions. Additionally, we provide suggestions for further research.

Ultimately, we summarize and conclude based the results of the analysis in Chapter 7.
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2 Literature Review

Across the world, there are different financial disclosure requirements for private

companies. In the major capital markets worldwide, mandatory audits are required of

publicly traded companies, and by extension, of other public-interest entities (Vanstraelen

& Schelleman, 2017). However, the requirements for audits of private companies differ

considerably. Dedman et al. (2013) stated that the reasons for requiring a mandatory

audit for private companies are less clear than for public companies because private

companies exist in a different environment (Dedman et al., 2013). In private companies,

the stakeholders tend to be closer to the company, which makes it easier to request

information directly. Generally, private companies in the U.S. are neither required to

disclose their financial results nor have their financial statements audited (Minnis &

Shroff, 2017).

Auditing requirements for private companies vary across countries, and regulations

change over time. For example, Sweden and Norway dropped the requirement that

all private companies, including small limited liability companies, were subject to a

statutory audit in 2011 (Vanstraelen & Schelleman, 2017). Between 1967 and 1994,

all UK companies were obligated to undergo an external audit (Dedman et al., 2013).

However, over time, the UK has significantly increased its exemption criteria for private

companies, meaning fewer companies are required to have an external audit (Dedman

et al., 2013). In comparison to research on public companies, little economic research

has been conducted on privately held companies’ external audits. However, changes in

regulations and institutional settings, where certain private companies are not subject

to a mandatory external audit, have allowed researchers to investigate the drivers of

voluntary audit demand in a new way (Vanstraelen & Schelleman, 2017).

Using survey data on a sample of privately held U.S. companies, Abdel-Khalik (1993)

concluded that private firms choose audits to compensate for the loss of control when

there is a long chain of command, and observability of subordinates’ actions decreases

(Abdel-Khalik, 1993). Furthermore, Dedman et al., (2013) found that private companies
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are more likely to voluntarily engage an external audit if they have greater agency

costs (Dedman et al., 2013). These findings suggest that private companies value

independent information verification when they have an asymmetric relationship between

employees, management, and shareholders. According to research, private firms tend

to acquire voluntary audits when they are larger, are growing, are more complex, have

more contractual relationships with external parties such as creditors and suppliers,

and when they require advice or consulting services that are provided by their external

auditor (Vanstraelen & Schelleman, 2017). Audits are costly, and the cost-benefit

analysis for private company audits are firm specific. There are variations in the different

needs from users of private companies’ financial statements and as a result of this,

a one-size-fits-all audit may not be optimal for all types of companies (Dedman et al., 2013).

When it comes to the choice of auditing in banks, Chan & Kogan, (2011) used machine

learning to predict the choice of getting a voluntary external audit. They researched

FDIC-insured banks to evaluate if banks’ choice of voluntary audits is systematic. In

finding evidence for the choice being systematic, they also found that several of the factors

indicating that a private firm is audited, are similar to the ones of banks. Their research

suggests that banks’ size, profitability, growth, leverage, complexity of operations and

ownership structure significantly impact the decision to procure an audit. Furthermore,

banks with lower levels of capitalization had lower likelihood of procuring an audit, while

larger, more profitable, and growing banks had higher likelihood. (Chan & Kogan, 2011)

In terms of risk, Dedman et al. (2013) found that private UK companies choose to get an

external voluntary audit when they are riskier (Dedman et al., 2013). Banks’ lending

activity is a substantial part of the their risk elements as their primary income is the

interest rate they receive from loans (Gadre et al., 2016). This makes auditors’ effect

on loan loss provision an interesting study. Loan loss provision and loan loss allowance

are created and maintained by a bank against potential losses on loans and certain risks

(Nicoletti, 2018). A loan loss allowance reduces the reported value of issued loans as

a contra-asset, while a loan loss provision increases the allowance and lowers reported

earnings (Nicoletti, 2018). Both variables are used in research as proxies for asset quality
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(Chan & Kogan, 2011). Nicoletti (2018) presents evidence that regulators and auditors

have different influences on loan loss provision, with auditors being the dominant influence

(Nicoletti, 2018). When banks are subject to greater regulatory scrutiny, audited banks

are less timely, relative to unaudited banks (Nicoletti, 2018). In other words, when there

is an increase in nonperforming loans, banks delay the recognition of expected losses when

getting an external audit.

In the aftermath of the financial crisis of 2007-2008, regulators have increasingly focused

on banks’ capital ratios. As a result of the crisis, an internationally agreed upon set

of standards for adequacy, stress testing, and liquidity are set as requirements for all

banks (BIS, n.d.). Tier 1 and Tier 2 capital are banks’ core capital and supplementary

capital respectively, and banks’ total capital can be calculated by adding these together

(Nickolas, 2019). Ratios of these are seen as the most important measures for banks’

financial health, and regulatory authorities monitor them as low values can be risky

(Nickolas, 2019). As it is more difficult to liquidate Tier 2 capital, it may be considered

less reliable than Tier 1 capital. Illiquid balance sheet values such as intangible assets can

thus be a risk to banks if they make up a great percentage of their assets.

Having a voluntary external audit is shown to be valuable to banks. Barton et al. (2015)

found that having a voluntary audit of banks’ financial statements is associated with a

38% decrease in the likelihood of credit defaults (Barton et al., 2015). Interestingly, they

found no differential effect between mandatory and voluntary audits (Barton et al., 2015).

This suggests that the correlation between audit and reduced likelihood of failure is due

to having an audit, rather than choosing to have an audit. As such, one can argue that

research indicates that auditing of banks leads to real economic benefits.
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3 Data

Regulatory authorities who oversee U.S. banks include the Federal Reserve (the Fed),

Federal Deposit Insurance Corporation (FDIC), and Office of the Comptroller of the

Currency (OCC) (Federal Reserve, 2021). The primary supervisor of a bank is decided

by which type of institution the bank is, and who licensed the bank to operate (Federal

Reserve, 2021). All commercial banks in the U.S. are obligated by regulators to fill out

Reports of Condition and Income (Call Report) each quarter regardless of their size,

independent audit status or trading status (WRDS, n.d.b). The Call Report follows

Generally Accepted Accounting Principles (GAAP) and contains a balance sheet, income

statement, and other supporting documents (WRDS, n.d.b). The Call Report is part

of what we refer to as bank regulatory data. For this analysis, we focus mainly on

the subsection of the Call Report named Report of Condition (Schedule RC-C) which

provides detailed information on assets, liabilities, and capital accounts. The banks are

required to fill out all information for domestic and consolidated bank operations (FFIEC,

n.d.a). Submission of the Call Report can be done either digitally or by paper (FFIEC,

n.d.a). The quality of the data is further discussed in Chapter 6.

To complete our analysis, we have used Rstudio which is an integrated development

environment for R, supplemented by Python in Visual Studio and Power Query in Excel.

3.1 Presentation of Data

The data consists mainly of bank regulatory data for commercial banks collected from

Wharton Research Data Services (WRDS). This data is retrieved from Call Reports filed

by commercial U.S. banks, and we use the Schedule RC-C which includes balance sheet

data. Data from the Center for Research in Security Prices, LLC, (CRSP), and the Federal

Financial Institutions Examination Council (FFIEC) is used as a supplement. CRSP

data is used for identifying publicly listed banks, while FFIEC data is used for filling out

information on loans where the variables were not available throughout the 10-year period.

As a foundation, the analysis has used variables from the quarterly Call Reports collected

by the Central Data Repository (CDR). Specifically, we have investigated the variables
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from the balance sheet, loans and lease financial receivables, and income statement. All

banks and bank holding companies are identified by their RSSD ID, which is a unique

number that the Federal Reserve assigns to each bank (FFIEC, n.d.c). The data spans

ten years, beginning at the first quarter of 2010 and ending in the first quarter of 2020.

3.2 Data Cleaning

The raw data contains 271 553 observations covering 8 319 commercial banks. Domestic

values are reported with the prefix RCON, and the consolidated bank values with RCFD

(Federal Reserve, 2017). As a general rule for the data, where RCFD observations are

missing, we have used the respective RCON data as a substitution. Furthermore, in the

case of reporting variables expiring or having been edited throughout the period, we have

filled them by calculating their value using other reporting variables, see Appendix A1 for

detailed information. Duplicated data is excluded, removing 51 observations.

We have included data from 2020 due to the fact that information on whether a bank

has received an external audit is reported in the March Call Report the following year

(WRDS, n.d.a). After lagging the audit information so that it is present for the year in

question, data from 2020 is removed. This process removes 5 382 observations.

The original data set includes some listed bank holding companies. These companies

are identified using monthly stock security files from the CRSP database. In CRSP all

companies use a PERMCO identifier instead of the RSSD ID. We link these using the

current table of RSSD ID to PERMCO ID links from the Federal Reserve Bank of New

York and exclude all bank holding companies that have been listed at some point during

our time period. This removes 48 bank holding companies.

All observations where banks have total assets of over 500 million USD are removed as

FDIC requires an external audit of all banks insured by them with total assets over this

threshold (FDIC, n.d.a). Some discussion on these larger banks is presented in Chapter 6.
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Moreover, we remove data from U.S. territories outside the 50 states and Washington

D.C. These are banks that operate in American Samoa, Federated States of Micronesia

(including PN for Pohnpei), Guam, Puerto Rico, and the U.S. Virgin Islands. Additionally,

there were some spelling errors in reporting of state abbreviation, which were edited or

removed as necessary2.

To identify states that demand an external audit, we have computed the rate of audited

banks per state. Appendix A2 presents the results. All states that surpass a ratio of 95%

are assumed to have mandatory external audits. When employing a strict percentage

limit, states with few operating banks may be incorrectly classified, as the ratio might be

considerably affected by just one or two banks. Therefore, for states with less than 25

banks, we have investigated more comprehensively due to the small sample size3. This

removes a total of 884 banks from the data.

All observations where total assets (RCFD2170) and total loans (RCFD2122) are missing,

zero or negative are removed from the data set because this indicates that the bank is not

currently operating. This removes 588 and 3 259 observations respectively.

Similarly, observations with missing values for loan loss allowance (RCFD3123) and lease

financial receivables (RCFD2127/28) are removed from the set. For our objectives, we are

not able to use observations without this information. This filters out 13 227 observations.

Ultimately, the data has been winsorized at the 1st and 99th percentile to reduce the

effect of outliers. The final set contains 179 455 observations on 5 934 distinct banks from

the first quarter of 2010 to the last quarter of 2019.

2IK is IL for Illinois, KA is KS for Kansas, 19 is Florida, and further removed banks reporting 0 as
their state abbreviation, belonging to the Federated States of Micronesia.

3Alaska; Alaska Statutes Title 44. (2021), Hawaii; Hawaii Code of Financial Institutions Chapter 412
(n.d.), Idaho; Idaho Credit Union Act Chapter 21 (n.d.)
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3Alaska; Alaska Statutes Title 44. (2021), Hawaii; Hawaii Code of Financial Institutions Chapter 412
(n.d.), Idaho; Idaho Credit Union Act Chapter 21 (n.d.)
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3.3 Discussion of Variables

3.3.1 Target Variable

To identify which banks are audited, the audit indicator RCON6724 is used to make a

dummy variable that takes the value 1 if the bank has received an external audit that

year, and 0 if not. The aim of the machine learning modeling in Chapter 4 is to predict

this target variable. Banks report their audit indicator on a scale from 1 to 9, where each

number indicates the most comprehensive level of auditing work received, with 1 being

the most extensive (WRDS, n.d.a). If a bank reports either 1 or 2, the bank is classified

as audited following prior literature (Chan & Kogan, 2011; Nicoletti, 2018). Three banks

have reported a value of 0, and all associated observations are classified as not audited.

3.3.2 Predictors

Grouping Name Associated variable

Loans

Agricultural loans AG_loans
Commercial and Industrial loans CI_loans

Loans to Individuals IN_loans
Real Estate Loans RE_loans

Lease Financial Receivables LFR
Total sum of loans total_loans

Risk

Liquidity cash
Loan Loss Allowance LLA
Loan Loss Provision LLP
Return on Assets ROA

Tier 1 capital tier1_ratio
Tier 2 capital tier2_ratio

Other

Federal funds sold fed_funds_sold
Intangible Assets intangible_assets

Premises and Fixed Assets prem_fixed_assets
Size size

Table 3.1: Grouping of Variables

As specified earlier, we focus on loan and risk related variables, and include some other

necessary financial statement data, as illustrated in Table 3.1. These variables combined

are the input used in order for the machine learning models to make a prediction. The

next section explains this categorization and the reasonings behind selecting these features.
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The complete and detailed variable definitions are presented in Appendix A3.

Loans

All loan variables are defined using the subsections of loans defined in the main asset

side of the balance sheet of the Call Report, except for total_loans which is all loans

accumulated. These categories are determined based on the loans’ security, borrower,

and purpose (FFIEC, n.d.b). Due to the vast difference in bank sizes in the data, it is

more appropriate to include the ratios of these categories rather than an absolute value.

We have calculated these ratios for each category scaled to the sum of all loans. The

total_loans variable, on the other hand, is scaled by the sum of all assets to compute the

ratio of loans to assets.

While AG_loans, CI_loans, IN_loans, and RE_loans are relatively straightforward to

comprehend, LFR requires some additional explanation. LFR represents the balance of

outstanding receivables which are related to direction and leveraged financing leasing on

property that is acquired by the bank for leasing purposes (Federal Reserve, 2022). It can

be argued that the variable therefore should be included in the risk category. Though, for

all variables, it is important to consider that risk is a part of all activities and operations

in a bank. This will be further discussed in the next part.

Risk

The risk related variables aim to identify signs of risk in the banks’ financial statements.

Risk variables are less intuitive than loan variables, as it is harder to evaluate to a specific

value. As mentioned, risk is a broad concept, and most reported information may signal

high or low risk in some way or another. A bank’s overall risk is not measured solely

from one or a few variables, but must be seen in relation to how the overall state of the

bank appears. This is further a main reason as to why the loan and risk variables are

supplemented by more financial statement data. Therefore, the grouping of the variables

into a specific risk category is merely a way of organizing the most prolific high risk

indicators. As such, we can identify if these specific variables are important to the decision

not to audit. The following paragraphs explains the risk variables in further detail.
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The cash feature is a proxy for liquidity as it indicates how much available reserve the

bank has in proportion to the total assets. Low liquidity is undoubtedly a risk to banks

as they may struggle to pay their commitments. Furthermore, extremely high portions

of liquidity may come as a response to high levels of uncertainty (Breitenlechner et al.,

2022).

We consider asset quality by the loan loss allowance (LLA) and loan loss provision

(LLP). LLA is the reserve for losses on loans and leases, while LLP represents an income

statement expense of what banks estimate to lose (Alpert, 2021). LLP shall be charged

or credited to bring LLA to an appropriate level (OCC, n.d.), and if accurate, a large

LLP should indicate larger losses.

Banks’ overall financial health is addressed by Tier 1 and Tier 2 capital ratios, computed

by Tier 1 and Tier 2 capital scaled by total risk-weighted assets. As discussed in the

literature review, these ratios are a strong indicator for the condition of banks’ assets.

Accordingly, low levels are a sign of a bank being high risk.

The return on assets (ROA) represents companies’ profitability in relation to their assets

(Hargrave, 2022). It is computed by the total operating income divided by total assets

(Hargrave, 2022). As banks’ assets are mainly their loans, a low ROA may indicate

low earnings on loans or that their interest spread is too low. A low ROA may be

connected with low-quality loans (Britannica, n.d.) and asset inefficiency (Hargrave, 2022).

Other

Other variables from financial statements have been scaled by total assets, except for size.

The variable size is represented by the natural logarithm of total assets, and has further

been normalized to fit a scale from 0 to 1. We use this normalization as a means of not

skewing the predictions. As all other values are ratios, i.e. between 0 and 1, the size

variable has larger values before normalization The same process is repeated for LLP

and ROA as both variables have negative values. This means that all variables are on a

scale from 0 to 1 before modeling. For the two generalized linear models, this increases
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interpretability when studying the β coefficients. This standardization does not have any

significant effect on the tree models, but transforming the variables will not affect output,

and it makes training faster (Charbuty & Abdulazeez, 2021).

We have also considered two other aspects of banks’ assets, federal funds sold and

premises and fixed assets. Federal funds sold are the excess reserves banks have after

trading on their regional federal reserve (Chen, 2021). It represents how much more

cash the commercial bank has than the standard reserve requirement, which is set

by central banking authorities (Chen, 2021). As such, fed_funds_sold represents

the ratio of excess reserves compared to total assets. A high level of fed_funds_sold

indicates that banks have an additional buffer available, which is associated with lower

risks. Premises and fixed assets, prem_fixed_assets, are often referred to as premises

and equipment, and represent all the property and locale where the bank does its

business as well as other fixed assets (FDIC, n.d.b). Among other fixed assets, vaults,

fixed machinery, capitalized leases and real estate acquired for future expansion of

business locales may be included (OCC, 2018). While larger amounts of premises and

other fixed assets may indicate a larger, more reliable institution, this is no guarantee.

In order to provide a broader picture of the banks, both features are included in the analysis.

Intangible assets include all assets that are not tangible, like human capital, technology and

organization, and are therefore inherently difficult to measure (Kenton, 2021). Accordingly,

intangible assets are highly illiquid. The ratio of intangible assets to total assets lets us

know the portion of banks’ assets which are tangible assets or material items they can

sell for monetary value (Kenton, 2021). As such, if a large portion of total assets are

intangible and illiquid, it can signal low liquidity or bad financial health.
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4 Methodology

Before we dive deeper into the methodology of this thesis, it is beneficial to provide some

background on machine learning. Machine learning is a scientific field or subject that

studies how a machine can learn and improve with experience (Mitchell, 2006). The study

of machine learning began 50 years ago and has grown into an essential part of everyday

life (Mitchell, 2006). Machine learning as a field encompasses a wide range of models,

algorithms, and applications, and is advancing at monumental speed (Mitchell, 2006). We

will use one of these applications, specifically classification, in our analysis.

In classification, the problem has an outcome that is divided into two or more categories,

also referred to as classes (Alpaydin, 2020). For this analysis, there are two classes;

audited and not audited. This is referred to as a binary classification problem (Alpaydin,

2020). The machine learning model, called classifier, aims to assign the combined input

to one of these classes (James et al., 2013). In this case, the input can be referred to as

x1, x2, . . . .xn where n is the total number of observations. Each observation, denoted x,

contains p lines of data which is given by a set of features X1, X2, . . .Xp (James et al.,

2013), which is also known as the model variables. Using this input, the classifier will

predict whether this bank is audited or not audited. To perform effectively, i.e. to make

accurate predictions, the model must first be trained (Soni, 2018). There are different

methods within this training, typically divided into supervised and unsupervised learning

(Soni, 2018). The first method trains the model using historical data with a correct class

already assigned, and the latter only uses input data and searches for regularities and

patterns (Soni, 2018). In this analysis, we conduct supervised training.

An important step in machine learning is feature selection (Cai et al., 2018). The aim of

feature selection is to create a subset of features from the original features according to a

particular evaluation criterion (Cai et al., 2018). Good feature selection can improve

learning accuracy, reduce learning time and simplify learning results (Cai et al., 2018).

We view feature selection as a valuable tool in this analysis as we search for the most

important variables that explain the banks’ choice to get no audit. However, in this
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thesis, we are selecting potential variables based on our research question. Due to the

thesis’ focus on loan and risk factors, we have already identified features within these

categories. Thus, we use feature selection as a means of validating the importance of

features in the machine learning models rather than a preliminary step.

The most essential part of machine learning is testing. It is in this phase that

the model can learn and may further improve (James et al., 2013). The iterative

testing and training process is what makes machine learning such a powerful tool

in predictive modeling (Brownlee, 2018). Testing involves verifying that the model

functions and performs well, and therefore it must be applied to data that were

not available during training (James et al., 2013). This testing will demonstrate

whether the model overfits on the training data—that is, whether it produces perfect

training data predictions using an overly complex model (James et al., 2013). This

process of testing on unseen data is called cross-validation or model validation (James

et al., 2013). The first step in cross-validation is to divide the data, which raises

the question of how the data should be split. Many alternatives exist for dividing or

distributing the data, but a simple and often applied method is to randomly divide

it into k folds, and create training and tests sets (James et al., 2013). The easiest

version is therefore to use k = 2 folds, i.e. divide the data into one training set

and one test set based upon a selected percentage. Using this latter option saves a

significant amount of computational time, which is primarily why it is used in this analysis.

Researchers diverge on an optimal training-test size ratio, but it is reasonable to use

somewhere between 10-30% of the data for testing (Joseph, 2022; Gholamy et al., 2018).

Recent research investigates sample size determination, but it is still a very new subject

(Melvin, 2021). The split depends on the original sample size as well as the number of

dimensions in the data. Even at 10%, a large sample size will yield a substantial test

set, while a smaller sample size will require a larger percentage to obtain a sufficient test

set. We have used 15% of the original data for the test set, and 85% for the training set.

Due to the substantial sample size and the high dimensionality of the data — that is, the

number of variables — we selected this slightly smaller test set size.
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4.1 Exploratory Data Analysis

Investigating the distribution of the numerical variables and how they differ from one

another, and from audited to not audited banks, helps us understand the data. A good

comprehension of the data will provide us with a better basis for recognizing important

features. Additionally, it is useful to be aware of the distributions, the existence and the

location of outliers, and other anomalies. The Exploratory Data Analysis (EDA) enables

us to determine whether the modeling results are likely to be accurate or whether we

should take special precautions (Hartwig & Dearing, 2002). This section will compare

descriptive statistics of all features and identify their correlation. Initially, we will examine

differences within the features, while in the next part, we will examine correlations between

the features.

4.1.1 Descriptive Statistics

The purpose of this part is to examine feature-wise differences in the data. In the data

set, there are more observations with audited = 1 by roughly 40 000 observations. In

total, there are 179 455 observations in the data. As such, we are examining differences in

the distributions’ shapes and means rather than the specific frequencies. This comparison

is made between distributions of observations that have been audited and those that have

not been audited. Descriptive statistics for all features are displayed in Appendix A4,

along with histograms displaying each feature for each class in Appendix A5. All features,

except size, are ratios without a unit, i.e., dimensionless, due to the scaling of the features.

The size feature is measured in ln(USD).

Most features in the data set are skewed towards the left, and it is evident in most

diagrams that there are many values being equal to zero. The majority of the banks are

smaller banks. This is corroborated by histograms for size, which show that most banks

are to the left of 0.5. Furthermore, the means for most features lie close to zero, with

notable exceptions being total_loans, size and RE_loans. It is logical to assume that since

many banks are smaller, they do not offer loans in every category, which helps explain

these low values. Many values being equal to zero is an important issue when working

with this data, and it may be especially worrying in fed_funds_sold, intangible_assets,
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and LFR where there are few unique values in the distributions. This is further explored

and problematized in Chapter 6.

4.1.2 Correlation

Correlation is a statistical measure of how variables covariate. The degree of correlation

is given by the correlation coefficient denoted r. There are several different correlation

coefficients, and the most commonly used is Pearson4 correlation, which we use in this

analysis. The correlation values are expressed as a value between -1 and 1, where -1

indicates a strong negative relationship and 1 a strong positive. A result of zero signals

that there is no linear relationship between the variables. (Fernando, 2021)

A high correlation between variables can cause problems in a prediction model. All

explanatory variables shall be independent of each other. As such, the model can estimate

the relationship between each independent variable and the dependent variable separately.

A too-high degree of correlation between the variables can make it challenging to fit the

model and interpret the results. This is especially an issue with models based on a linear

relationship between the dependent and independent variables. When there is a high

level of correlation between the variables, the coefficients can swing wildly based on other

independent variables in the model, and the coefficient may become sensitive to small

changes. This phenomenon is called multicollinearity. Furthermore, multicollinearity can

reduce the estimated coefficients’ precision, which weakens the statistical power of a

regression model. The result of multicollinearity is that one might not be able to trust

the test’s p-values to identify statistically significant independent variables. (Frost, 2017)

Several components of banks’ financial statements are intuitively highly correlated. The

total assets of the bank and the absolute value of loans issued are in all likelihood related.

This is one of the reasons why all variables are normalized to a larger entity. Additionally,

selecting the most relevant variables for the study was heavily influenced by the desire

to reduce correlations between independent variables. For financial attributes which by

nature represent the same aspect of the bank, we selected the most relevant based on
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coefficients, and the most commonly used is Pearson4 correlation, which we use in this

analysis. The correlation values are expressed as a value between -1 and l, where -1

indicates a strong negative relationship and l a strong positive. A result of zero signals

that there is no linear relationship between the variables. (Fernando, 2021)

A high correlation between variables can cause problems in a prediction model. All

explanatory variables shall be independent of each other. As such, the model can estimate

the relationship between each independent variable and the dependent variable separately.

A too-high degree of correlation between the variables can make it challenging to fit the

model and interpret the results. This is especially an issue with models based on a linear

relationship between the dependent and independent variables. When there is a high

level of correlation between the variables, the coefficients can swing wildly based on other

independent variables in the model, and the coefficient may become sensitive to small

changes. This phenomenon is called multicollinearity. Furthermore, multicollinearity can

reduce the estimated coefficients' precision, which weakens the statistical power of a

regression model. The result of multicollinearity is that one might not be able to trust

the test's p-values to identify statistically significant independent variables. (Frost, 2017)

Several components of banks' financial statements are intuitively highly correlated. The

total assets of the bank and the absolute value of loans issued are in all likelihood related.

This is one of the reasons why all variables are normalized to a larger entity. Additionally,

selecting the most relevant variables for the study was heavily influenced by the desire

to reduce correlations between independent variables. For financial attributes which by

nature represent the same aspect of the bank, we selected the most relevant based on

4 P e a r s o n ' s r = n(I: x y ) - (I: x)(I: y)

[nI:x2.(I :x)2l[nI:y2 - (I:y)2]
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our research question. In the final selection, no variables have more than 74% absolute

correlation. The correlations between the selected variables are displayed in Figure 4.1.

The highest correlation is between AG_loans and RE_loans, at a negative 73.4%. Except

for this, only three correlations are above 50%. Although it is generally accepted that

correlations of 80% or above indicate a major issue (Senaviratna & Cooray, 2019), this

does not directly exclude multicollinearity in our analysis.

Figure 4.1: Correlation Matrix
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This section will outline the machine learning models we utilize to conduct our analysis in

order to examine the factors influencing banks to not engage an external auditor. Prior

to this, we give some background regarding hyperparameters and the evaluation criteria

for prediction. We use two generalized linear models; logistic regression, and LASSO, as

well as two tree-based models; random forest and LightGBM. These models offer different

perspectives in terms of flexibility and interpretability, as illustrated in Figure 4.2. As
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expressed in the introduction, the aim of the analysis is to identify the important features

for the decision to get no audit, as well as produce a good prediction model. As such, we

examine models from both extremes.

Figure 4.2: Flexibility and Interpretability for Models

(James et al., 2013)

In the following subsections, we introduce and briefly describe the classifiers and their

application to our data. All models are trained and tested on the training and test

sets previously defined. This continuity allows us to compare the accuracy of the

models, which in turn helps validate the conclusions on feature importance and influence.

Validation of the models’ results are discussed in Chapter 5.

There are 16 features to consider as independent features for this analysis, see Appendix

A3. The classifiers use these features to predict one of two outcomes; audited or not

audited. The outcome is represented by the dependent variable audited ;

auditedi =



1, if xi is audited

0, otherwise
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In the following subsections, we introduce and briefly describe the classifiers and their

application to our data . All models are trained and tested on the training and test

sets previously defined. This continuity allows us to compare the accuracy of the

models, which in turn helps validate the conclusions on feature importance and influence.

Validation of the models' results are discussed in Chapter 5.

There are 16 features to consider as independent features for this analysis, see Appendix

A3. The classifiers use these features to predict one of two outcomes; audited or not

audited. The outcome is represented by the dependent variable audited;
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0, otherwise
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4.2.1 Hyperparameters and Tuning

Hyperparameters, or tuning parameters, regulate the complexity of different machine

learning models (Gu et al., 2020). Tuning parameters for this analysis include, for example,

the penalization parameter in LASSO and the number of trees in the random forest model.

These parameters are usually tuned by iteratively improving the models on a validation

set (Gu et al., 2020). As one must reestimate the model on the training set for each

iteration, this process is very computationally heavy. This step is simplified for efficiency

reasons and we look to former research when selecting hyperparameters.

4.2.2 Evaluation Criteria on Predictive Performance

In order to compare the different models, one must first consider what makes it an effective

model in the applied context. We use the evaluation metrics; accuracy, precision, recall,

specificity, and F1, in this analysis to evaluate the models’ predictions. When computed

using out-of-sample data, i.e. the test set, the aforementioned metrics will collectively

provide a credible picture of the models’ predictive powers. Figure 4.3 displays the

formulas for the evaluation criteria and their components visualized in a confusion matrix.

Figure 4.3: Evaluation Criteria and Confusion Matrix

(Luque et al., 2019)

The most commonly used evaluation criterion when comparing classification models

is accuracy (Bratko, 1997), but this metric in isolation is not always sufficient to
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The most commonly used evaluation criterion when comparing classification models

is accuracy (Bratko, 1997), but this metric in isolation is not always sufficient to
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evaluate a model. Looking at the test set where roughly 70% of the observations

are audited, one should be careful using only one metric for measuring predictive

performance. Accuracy measures a model’s overall predictive power, i.e. all correct

predictions compared to all predictions, and a model which predicts audited for

all observations will accordingly have an accuracy of 70%. However, even if it is

accurate to 70%, the model should not be considered reliable because all not audited

observations are mispredicted. Thus, it is essential to consider multiple assessment metrics.

One important thing to consider is whether the highest cost for predictions is false

positives or false negatives. Where there is a high cost associated with false positives, one

should focus more on precision, whereas if false negatives have higher costs, one should

focus on recall. Recall and precision generally contend with one another, as when one is

increased, the other usually declines. To seek a balance between precision and recall,

one can use the F1 score of the model, which is a function of recall and precision. The

F1 score is especially useful when working with an uneven class distribution, which is

present in our test set. While the accuracy can be disproportionately affected by many

accurate predictions because of little weight added to false predictions, F1 score takes

false predictions into account, providing a more balanced view. (Jordan, 2017)

In the following analysis, we have selected evaluation criteria based on our assumptions

and research question. The aim of this thesis is to predict what drives banks’ decision to

get no audit. Thus, false negative predictions, i.e. the model predicting banks which are

not audited as being audited, are the biggest issue. For this reason, we believe that false

negatives have the highest associated cost. Therefore, we favor recall above precision, but

balance this by including F1 scores. However, only using these criteria, it is possible that

a model which only predicts audited could achieve great scores. Since there in such a case

are no negatives, there would be no cost associated with false negatives. We therefore

include the specificity metric into the evaluation criteria to prevent this from happening.

Specificity will show how many of the unaudited banks were actually predicted accurately,

which reveals if the model is favoring predicting audited. All five metrics displayed in

Figure 4.1 are used in reviewing the predictions, but with a slight emphasis on recall.
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4.2.3 Generalized Linear Models

The most common approach to regression analysis is the linear regression model, which

uses the principle of ordinary least squares (OLS). However, standard linear regression is

not fit for predicting a qualitative response, such as in classification problems (James

et al., 2013). Generalized linear models is an umbrella term for models that linearly

relate the response variable to the independent variables via a link function such as the

logarithmic function (Jørgensen, 2012). The generalized linear models fit the model to the

data using maximum log likelihood, which is iteratively fitting using reweighted ordinary

least squares (Jørgensen, 2012).

Both generalized linear models used in this thesis predict the probability of engaging a

voluntary external audit. The analyst can therefore determine a threshold value, which

the model will predict according to. For this analysis, we have selected a threshold of

50%. In other words, if the probability surpasses 50%, the model predicts audited.

Logistic Regression

First, we use the logistic regression model which is an expansion of the linear regression

model. The logistic regression model uses the natural logarithmic function to find a linear

relationship (James et al., 2013). It follows from this that the response variable, called the

logit5, is linear in X. The aim of logistic regression is to estimate the β coefficients so that

we maximize log likelihood (James et al., 2013). We predict the probability of X, defined:

p(X) =
eβ0+β1X+...+βpX

1 + eβ0+β1X...+βpX

where β is the estimated coefficients (James et al., 2013).

We fit this logistic regression model on the training data, and use a threshold of 50%.

Applying this model on the test data, we get the confusion matrix presented in Figure 4.4.

5logit: log(
p(x)

1− p(X)
) = β0 + β1X + ...+ βX (James et al., 2013)
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Figure 4.4: Confusion Matrix for Logistic Regression

The confusion matrix presents a high recall of 96.9%, signifying that the model predicts

more than 96 out of 100 actually audited banks correctly. Accordingly, very few actually

audited banks are labeled as not audited. Due to our focus on minimizing false negatives,

one could therefore argue that this is a good model. However, other metrics are

substantially worse. The F1 score, which we use to balance recall, is quite a bit lower,

due to the low precision, and the specificity of the model is extremely low. This score

signifies the issue presented in Section 4.2.2, where the model favors audited. As a result,

few actually not audited observations are predicted correctly, and we should be cautious

in using this model for our purposes.

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) is one of the most well known

regression models, and is a type of shrinkage method (Tibshirani & Wasserman, 2017).

The LASSO method is used for high-dimensional regression, and it builds on the concept

of linear regression by adding a penalty parameter, λ, which will shrink all coefficients

towards zero (James et al., 2013). LASSO problems are convex, which makes them

efficient to solve because we can ensure that the identified solution is the global extrema,

i.e., the most optimal solution (Tibshirani & Wasserman, 2017).
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The confusion matrix presents a high recall of 96.9%, signifying that the model predicts

more than 96 out of 100 actually audited banks correctly. Accordingly, very few actually

audited banks are labeled as not audited. Due to our focus on minimizing false negatives,

one could therefore argue that this is a good model. However, other metrics are

substantially worse. The Fl score, which we use to balance recall, is quite a bit lower,

due to the low precision, and the specificity of the model is extremely low. This score

signifies the issue presented in Section 4.2.2, where the model favors audited. As a result,

few actually not audited observations are predicted correctly, and we should be cautious

in using this model for our purposes.

LASSO

Least Absolute Shrinkage and Selection Operator (LASSO) is one of the most well known

regression models, and is a type of shrinkage method (Tibshirani & Wasserman, 2017).

The LASSO method is used for high-dimensional regression, and it builds on the concept

of linear regression by adding a penalty parameter, >., which will shrink all coefficients

towards zero (James et al., 2013). LASSO problems are convex, which makes them

efficient to solve because we can ensure that the identified solution is the global extrema,

i.e., the most optimal solution (Tibshirani & Wasserman, 2017).
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There are two models often considered when discussing shrinkage methods, LASSO and

ridge regression (James et al., 2013). In contrast to its frequent competitor, LASSO has

sparse solutions (Tibshirani & Wasserman, 2017). In other words, the solution using ridge

regression will have all β coefficients unequal to zero, while LASSO sets p of βj equal to

zero, where j is ∈ 1, ..., p. In other words, it sets a subset of the coefficients equal to zero.

As a result, LASSO is a popular feature selection method because it reduces the coefficients

of less important features to zero (Tibshirani & Wasserman, 2017). As the aim of

this thesis is to find the most important features, we use LASSO instead of ridge regression.

Figure 4.5 displays the binomial deviance for each log λ using 10-fold cross-validation.

The upper horizontal axis shows the number of features with coefficients unequal to zero,

and the leftmost dotted line represents the λ value that produces the lowest binomial

deviance (λmin). Using this λmin, at 0.0003, no coefficients are zero, meaning that it

includes all variables in the model. The dotted line to the right displays the last point at

which the binomial deviance is within one standard deviation of the minimum error. This

line represents a λ∗ = 0.0023, which we will refer to as the optimal λ∗.

Figure 4.5: Plot for Binomial Deviance over log λ

We select the penalty parameter with the lowest binomial deviance while keeping the

model as simple as possible. Therefore, we use the optimal λ∗ as our penalty parameter

in the prediction model. As such, we have a less complex model, in terms of the number

of features, than we would have using λmin. Using λ∗ results in 14 nonzero coefficients.
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We select the penalty parameter with the lowest binomial deviance while keeping the

model as simple as possible. Therefore, we use the optimal ,\* as our penalty parameter

in the prediction model. As such, we have a less complex model, in terms of the number

of features, than we would have using A m i n · Using ,\* results in 14 nonzero coefficients.
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The confusion matrix for this model is presented in Figure 4.6 below.

Figure 4.6: Confusion Matrix for LASSO

LASSO scores the highest for precision, meaning that there are few false positives. However,

recall and F1 scores are both lower, which indicates that the model does not equally

successfully reduce false negatives. Furthermore, the scores are not particularly high, in

terms of accuracy and specificity. As a result, overall, the model should be considered as

unsatisfactory in light of our objectives.

4.2.4 Tree Models

A popular machine learning method for incorporating multiple predictors is decision trees.

Decision trees are inherently nonparametric and nonlinear which allows them to not

impose any assumptions on the relationship between independent variables and the target

variable (Almaça et al., 2013). As such, they are more flexible than the generalized linear

models. An example of a simple decision tree is displayed in Figure 4.7.
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LASSO scores the highest for precision, meaning that there are few false positives. However,

recall and Fl scores are both lower, which indicates that the model does not equally

successfully reduce false negatives. Furthermore, the scores are not particularly high, in

terms of accuracy and specificity. As a result, overall, the model should be considered as

unsatisfactory in light of our objectives.

4.2.4 Tree Models

A popular machine learning method for incorporating multiple predictors is decision trees.

Decision trees are inherently nonparametric and nonlinear which allows them to not

impose any assumptions on the relationship between independent variables and the target

variable (Almaca et al., 2013). As such, they are more flexible than the generalized linear

models. An example of a simple decision tree is displayed in Figure 4.7.
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Figure 4.7: Example of Decision Tree

Decision trees have hierarchical levels where each level conducts tests on a numerical

feature compared to a threshold (Abdulazeez & Jijo, 2021). A decision tree leaf node ends

in a boolean outcome, either TRUE or FALSE (1 or 0) (Abdulazeez & Jijo, 2021), which,

in this case, is the audited variable. One individual decision tree is a weak6 predictor as it

is prone to overfitting and often does not predict particularly well on its own (Brownlee,

2021; Natekin & Knoll, 2013). Therefore, adding more decision trees and comparing their

results improves overall predictions. This approach is referred to as an ensemble method

and includes both random forest and LightGBM (Sun et al., 2020).

Random Forest

Random forest modeling is an expansion of the simpler decision tree. It builds on

the basis of bootstrap aggregation, or bagging as it is more often called (James et al.,

2013). In this method, one draws a number, B, different bootstrap samples of the

data (Gu et al., 2020). For each sample, the model creates a decision tree using a

random sample of a specified number m features (James et al., 2013). In classification,

the output of a random forest model is the popular vote of these classifiers (Gu et al., 2020).

Both the number of trees, B, and the maximum number of features, m, are hyperparameters

of the model. Random forest uses a large set of trees as a basis for the prediction, which

in turn will reduce the influence of each tree. Consequently, overfitting is less of an issue

when using random forest compared to other machine learning models (James et al., 2013).

6only performs slightly better than random guessing or flipping a coin (50%) (El Fares, 2022)
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Furthermore, increasing the number of trees will result in higher accuracy, as it computes

a broader foundation for the popular vote (Breiman, 2001). As a result, we choose a

large number while keeping in mind that each tree increases computational time. We

have decided to use n =1000 trees. For the number of features considered per tree, it

is useful to do some hyperparameter tuning. Ideally, one would want to use repeated

cross-validation across k folds on a sequence of different m values, referred to as a k -fold

grid search (Beheshti, 2022). As mentioned previously, we have simplified this tuning and

followed former research. Generally, one can use m =
√
p, where p is the total number of

features (James et al., 2013). We are therefore using m =
√
16 = 4. The confusion matrix

for random forest is displayed in Figure 4.8 below.

Figure 4.8: Confusion Matrix for Random Forest

The random forest model has consistently good scores for the evaluation metrics, with

a high accuracy score of 91.2%. As the recall of the model is 95%, there are few false

negative predictions, resulting in a model that is more suitable for our needs. The

specificity, however, is marginally lower than all other values, indicating that the model,

similarly to the earlier models, favors audited slightly. Overall, the model performs well

on the test set in light of our research question.
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The random forest model has consistently good scores for the evaluation metrics, with

a high accuracy score of 91.2%. As the recall of the model is 95%, there are few false

negative predictions, resulting in a model that is more suitable for our needs. The

specificity, however, is marginally lower than all other values, indicating that the model,

similarly to the earlier models, favors audited slightly. Overall, the model performs well

on the test set in light of our research question.
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LightGBM

Gradient boosting is another ensemble method using decision trees. The trees are trained

in sequence rather than aggregate resampling (Ke et al., 2017). This process is called

boosting (Ke et al., 2017). Boosting poses the question of whether one can “boost”

a weaker model, such as the decision tree, into a more accurate learning algorithm

(Freund & Schapire, 1999). A gradient boosted decision tree (GBDT) uses algorithms

to incrementally fit new models to better estimate the response variable (James et al.,

2013). With this algorithm, the base learners are constructed so that they are maximally

correlated with the negative gradient of the loss function for the whole ensemble (Natekin

& Knoll, 2013). The LightGBM model aims to minimize a loss-function (Sun et al., 2020).

In this analysis, we use the binary log loss function.

GBDT is known for its efficiency, accuracy and interpretability (Ke et al., 2017). Two of

the most popular gradient boosting machines are LightGBM and XGBoost (Ke et al.,

2017). LightGBM uses leaf-wise growth as opposed to level-wise used in the XGBoost

algorithm (Ke et al., 2017). This makes LightGBM faster as it only needs to fit the

next level for the individual node, rather than an entire new level. A disadvantage with

LightGBM is that the algorithm is prone to overfitting (Saha, 2022). To counteract

this, one must select an appropriate maximum depth for each tree (Sun et al., 2020).

Ke et al., (2017) found that in their experiments, LightGBM outperformed XGBoost

(amongst others) by some margin in training time, while maintaining the same level of

accuracy (Ke et al., 2017). Due to our limited computational resources, it is therefore

more beneficial to use the LightGBM algorithm rather than the XGBoost.

Generally, in boosting, there are three tuning parameters; (i) the number of trees, B,

(ii) number of splits in each tree, and (iii) the shrinkage parameter, λ (James et al.,

2013). LightGBM uses these three, and more. According to Sun et al. (2020), the main

parameters of the LightGBM function are the number of leaves in each tree, the learning

rate (λ), the maximum depth of each tree, the minimum number of records a leaf may

have, feature fraction and bagging fraction (Sun et al., 2020). For the most part, we

use the default values included in the lightgbm package in R studio. However, to avoid
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overfitting, we limit the maximum depth of each tree to 5 levels. We set the number of

trees to 1000 as computational time for this model is relatively short, and since it is the

same number of trees used in the random forest model.

Figure 4.9: Confusion Matrix for LightGBM

Figure 4.9 presents the confusion matrix for the LightGBM model applied to the test

set. The model achieves high scores for all evaluation criteria. In this model, precision is

slightly higher than recall, which indicates a slight bias towards reducing false positive

predictions. Similar to the random forest model, this model has lower specificity than the

remaining metrics, suggesting that it may favor audited predictions. Overall, the model

performs well.

4.2.5 Summary of Model Performances

All confusion matrices are displayed alongside each other in Appendix A6. The

worst performing model is the logistic regression model, which predicts audits for

approximately 96% of the observations of the test set. LASSO slightly outperforms

the logistic regression, and is more consistent across the evaluation metrics. However,

it is evident from the confusion matrices that the best performing models are the two

tree-based models. These models are nonlinear, which could imply that the relationship

between the independent variables and the response variable is better represented in

a nonlinear function, at least without additional feature engineering. It is important
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Figure 4.9 presents the confusion matrix for the LightGBM model applied to the test

set. The model achieves high scores for all evaluation criteria. In this model, precision is

slightly higher than recall, which indicates a slight bias towards reducing false positive

predictions. Similar to the random forest model, this model has lower specificity than the

remaining metrics, suggesting that it may favor audited predictions. Overall, the model

performs well.

4.2.5 Summary of Model Performances

All confusion matrices are displayed alongside each other in Appendix A6. The

worst performing model is the logistic regression model, which predicts audits for

approximately 96% of the observations of the test set. LASSO slightly outperforms

the logistic regression, and is more consistent across the evaluation metrics. However,

it is evident from the confusion matrices that the best performing models are the two

tree-based models. These models are nonlinear, which could imply that the relationship

between the independent variables and the response variable is better represented in

a nonlinear function, at least without additional feature engineering. It is important
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to note that these models depend on their respective hyperparameters. That being

said, tuning hyperparameters to achieve a better test set result may not necessarily

result in a better model outside of the data, as the model may be overfitted on the test data.

The predictive performance must be considered when analyzing the feature importance in

the next section. A good model will give a more accurate representation of reality, while

a bad model may be biased or provide false information. As a premise for this analysis,

we have assumed that the cost of a false negative is higher than a false positive, which

means that models with high values of recall are better. Logistic regression performs well

in this regard, but when other performance metrics are considered, it is evident that we

cannot rely on logistic regression alone. The great predictive performances of the two

tree-based models argue that the results of these should be weighted more heavily in the

next chapter of the thesis.
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5 Results

We have analyzed two generalized linear models and two tree-based models. All models

have been evaluated using the same evaluation criteria for prediction. However, the

models differ in how they measure feature contribution and importance. As a result,

in this section of the thesis, we will compare the results of the models to those of its

similar counterparts. In other words, we will compare the generalized linear models and

tree-based models separately. We use the predictive performance on the test set to either

validate or invalidate the results. Additionally, we will conduct two statistical approaches

for feature selection; ANOVA and Mutual Information.

5.1 Feature Importance

5.1.1 Generalized Linear Models

The models based on the generalized linear model employ a linear relationship between

the independent variables and the response variable. As such, feature importance can

be interpreted by the absolute size of the β coefficient of the variable X, given that the

units are equal (Brownlee, 2020). As mentioned previously, all features but size are

dimensionless. Hence, one should exercise caution when comparing size to the other

variables. In general, a larger β represents a more important feature, as a change in this

feature leads to a larger change in the probability (Brownlee, 2020). Additionally, the

relative importance is easier to interpret as all variables are on the same scale, 0 to 1.

In this part, we will use LASSO for its feature selection purposes before presenting the β

coefficients for both of the generalized linear models used for prediction in the previous

chapter. First, we look at the applied LASSO model. Using the optimal λ∗ we have the

following β coefficients presented in Table 5.1.
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Table 5.1: Coefficients for λ∗

β
(Intercept) -1.18
AG_loans -4.82
cash 0.60
CI_loans -0.18
fed_funds_sold 1.85
IN_loans -0.89
intangible_assets 2.81
LFR -7.55
LLA 22.50
LLP 1.60
prem_fixed_assets 6.89
RE_loans 0.00
ROA 0.00
size 1.23
tier1_ratio -0.36
tier2_ratio 5.82
total_loans -0.71

The β for RE_loans and ROA are set to zero, which means that the model removes these

features from the model. In other words, the LASSO model determines that they are not

important. LLA has the highest β by a considerable margin at 22.50, followed by LFR at

-7.55. As previously explained, when increasing the λ, we are increasing the number of

coefficients equal to zero. The variables that are near to zero will, intuitively, reach zero

first when λ increases. Accordingly, by iteratively selecting a larger λ, we aim to identify

the features that LASSO believes are the most important. We refer back to Figure 4.5.

Figure 4.5: Plot for binomial deviance over log λ
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Figure 4.5 illustrates that the binomial deviance of the model starts to increase more

rapidly around log λ = −4. This is close to where the number of nonzero coefficients

decreases from six to five, and we want to identify which features remain at this point.

To investigate this further, we use the λ interval: 0.003 (just above λ∗) to 0.018 (log

λ = −4), and fit new LASSO models. The β coefficients for these models are displayed in

Appendix A7.

At λ = 0.018, we are left with AG_loans, LFR, LLA, LLP, prem_fixed_assets and size.

Of these, AG_loans and LFR have negative coefficients which means that increases in

these values will shift the predicted probability towards zero, i.e. not audited. The other

features consequently contribute positively towards audited. LLA has the largest absolute

β, as it did for λ∗. In order to verify that this feature reduction has not drastically affected

the prediction accuracy, we have examined the accuracy of all models for all λ with the

accuracy staying within 1% of the original model. The results can be seen in Appendix A8.

We use the features found for λ∗ and for λ = 0.018, model (2) and (3) respectively in Table

5.2, and rerun the logistic regression model in order to check if there is any differences

in significance for the β coefficients. The results are displayed along with the original

logistic regression model with all features, model (1), in Table 5.2. In the original model

used in the previous section, all features are significant at the 5% level, and further all

except ROA are significant on the 1% level. Overall, there are no differences in the models’

significance.
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Table 5.2: Logistic Regression Models

Dependent variable:
audited

(1) (2) (3)
AG_loans −6.053∗∗∗ −6.141∗∗∗ −4.882∗∗∗

(0.128) (0.127) (0.061)

cash 0.777∗∗∗
(0.073)

CI_loans −1.489∗∗∗ −1.468∗∗∗
(0.133) (0.132)

fed_funds_sold 2.270∗∗∗ 1.944∗∗∗
(0.171) (0.169)

IN_loans −2.336∗∗∗ −2.428∗∗∗
(0.160) (0.160)

intangible_assets 5.122∗∗∗ 4.952∗∗∗
(0.801) (0.801)

LFR −10.904∗∗∗ −11.157∗∗∗ −8.760∗∗∗
(0.638) (0.638) (0.591)

LLA 21.393∗∗∗ 22.265∗∗∗ 27.894∗∗∗
(0.850) (0.845) (0.680)

LLP 1.723∗∗∗ 1.671∗∗∗ 1.492∗∗∗
(0.050) (0.048) (0.046)

prem_fixed_assets 7.435∗∗∗ 7.172∗∗∗ 6.894∗∗∗
(0.451) (0.450) (0.431)

RE_loans −1.096∗∗∗ −1.114∗∗∗
(0.113) (0.113)

ROA −0.066∗∗
(0.027)

size 1.262∗∗∗ 1.179∗∗∗ 1.172∗∗∗
(0.029) (0.028) (0.026)

tier1_ratio −0.813∗∗∗ −0.744∗∗∗
(0.085) (0.084)

tier2_ratio 15.849∗∗∗ 15.918∗∗∗
(3.214) (3.212)

total_loans −0.952∗∗∗ −1.047∗∗∗
(0.048) (0.047)

Constant 0.034 0.216∗ −1.623∗∗∗
(0.130) (0.128) (0.024)

Observations 152,536 152,536 152,536
Log Likelihood −90,857.030 −90,916.040 −91,329.490
Akaike Inf. Crit. 181,748.100 181,862.100 182,673.000
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.1.2 Tree Models

As mentioned, both random forest and LightGBM are nonparametric, nonlinear models.

Both models are high in flexibility, but low in interpretability, meaning that the feature

importance is less intuitive than in the previous models. To determine the importance of

a feature, one must look to other, more complex measurements, such as a decrease in

accuracy or information gain per feature, rather than just the significance and absolute

value of a coefficient in a linear expression. In this section, we will present the metrics for

each model and compare the results. Both tree models predict with a very high degree of

accuracy across all evaluation criteria, which suggests that the most important features

really influence the decision to get no audit.

Before looking at the feature importance of the tree models it is beneficial to get some

background on entropy. Entropy is an information measure that measures chaos in a

system (Gray, 2013). This information measure is used in constructing decision trees

to handle the unknown (Ye, 2022). The entropy averages the information gain for the

variable, and a low entropy means that there is much information gain, while high

entropy expresses the opposite (Ye, 2022). When constructing a decision tree, features

with lower entropy are placed higher in order for the tree to be as effective as possible

in directing inputs down a series of conditions to a correct outcome (Ye, 2022). The

higher up a feature split is in the tree; the more information the variable gives to the model.

Random Forest

The plots in Figure 5.1 below display the importances for all features in the random

forest model, using two different measures. The left-hand plot displays the mean decrease

in accuracy when removing the variable from the model, and the right presents the

mean decrease in node impurity (Anaraki & Haeri, 2022; R Core Team, 2022). Each

feature’s mean decrease in impurity, or Gini importance, is calculated by the sum of

feature importance across all trees proportionally to the number of splits (Anaraki &

Haeri, 2022). The scale for Gini importance is relative only to itself (Alfaro-Cortes et al.,

n.d.), meaning that, for example, a variable with a mean decrease of 4000 is twice as

important as a variable with a mean decrease of 2000.
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5.1.2 Thee Models

As mentioned, both random forest and LightGBM are nonparametric, nonlinear models.

Both models are high in flexibility, but low in interpretability, meaning that the feature
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Figure 5.1: Plot for Random Forest Feature Importance

The main difference between the two measures is that the Gini measure is used when

creating the best model (Menze et al., 2009), and mean decrease in accuracy is a product

of running the model several times (R Core Team, 2022). It is necessary to repeat the

model since the mean decrease in accuracy denotes how the removal of a particular

feature affects accuracy on average, scaled by the standard deviation (R Core Team,

2022). A feature being high in both accuracy and Gini indicates that there are many

trees and splits that include this feature. Additionally, the feature is present in many

trees that produce the correct prediction.

There are some substiantial differences in the rankings between the two plots in Figure

5.1. An example is RE_loans, achieving a much lower score of accuracy than Gini.

Furthermore, fed_funds_sold have a lower score for Gini importance, which might be a

result of the data set having few unique values, meaning that splits by these features are

not common. Given that intangable_assets and LFR also have few unique values and

have very low Gini scores, this seems like a plausible bias for the Gini measure.

It is also possible to identify some more prominent features for the prediction model as

AG_loans, LLP and tier1_ratio all score relatively high for both accuracy and Gini.

Slightly lower, LLA is also fairly good. AG_loans outperforms all other features by a

substantial margin in both metrics.
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Figure 5.1: Plot for Random Forest Feature Importance

The main difference between the two measures is that the Gini measure is used when

creating the best model (Menze et al., 2009), and mean decrease in accuracy is a product

of running the model several times (R Core Team, 2022). It is necessary to repeat the

model since the mean decrease in accuracy denotes how the removal of a particular

feature affects accuracy on average, scaled by the standard deviation (R Core Team,

2022). A feature being high in both accuracy and Gini indicates that there are many

trees and splits that include this feature. Additionally, the feature is present in many

trees that produce the correct prediction.

There are some substiantial differences in the rankings between the two plots in Figure

5.1. An example is RE_ loans, achieving a much lower score of accuracy than Gini.

Furthermore, fed_funds_sold have a lower score for Gini importance, which might be a

result of the data set having few unique values, meaning that splits by these features are

not common. Given that intangable_ assets and LFR also have few unique values and

have very low Gini scores, this seems like a plausible bias for the Gini measure.

It is also possible to identify some more prominent features for the prediction model as

AG_ loans, LLP and t ierl_ ratio all score relatively high for both accuracy and Gini.

Slightly lower, LLA is also fairly good. AG_ loans outperforms all other features by a

substantial margin in both metrics.
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The mean decrease in accuracy is also presented per class (audited = 1, not audited = 0)

in Table 5.3.

Feature 0 1
AG_loans 210.61 185.74

cash 154.94 142.01
CI_loans 149.74 150.02

fed_funds_sold 142.98 148.83
IN_loans 140.72 136.37

intangible_assets 126.23 138.44
LFR 60.63 70.21
LLA 145.85 134.82
LLP 177.18 156.80

prem_fixed_assets 125.84 112.47
RE_loans 81.80 82.06

ROA 60.78 21.20
size 166.66 154.30

tier1_ratio 202.85 165.72
tier2_ratio 98.05 77.43
total_loans 207.36 176.45

Table 5.3: Random Forest Feature Importance per Class

The findings are consistent with the left-hand plot of Figure 5.1, as the identified most

important variables receive the highest scores for both classes, 0 and 1, in Table 5.3.

Table 5.3 presents that AG_loans, total_loans, tier1_ratio and LLP have substantially

higher scores of mean decrease in accuracy when predicting not audited. In terms of the

overall class-specific mean decline in accuracy, the majority of features have similar scores,

and only a few receive higher marks for audited. This gap between the classes is likely

due to the test set’s overweight of not audited observations. If one removes a feature from

the set and reruns the model, it is likely to affect more not audited observations due to

the fact there are more in the set.

LightGBM

In LightGBM, we measure the feature importance in information gain. Information gain

is defined as the total gain for all splits by that feature divided by the total gain for all

splits (Lee, 2020). Figure 5.2 illustrates the importance of the features in terms of the

percentage of information gained per feature, presented numerically in Appendix A10.
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due to the test set's overweight of not audited observations. If one removes a feature from

the set and reruns the model, it is likely to affect more not audited observations due to

the fact there are more in the set.

LightGBM

In LightGBM, we measure the feature importance in information gain. Information gain

is defined as the total gain for all splits by that feature divided by the total gain for all

splits (Lee, 2020). Figure 5.2 illustrates the importance of the features in terms of the

percentage of information gained per feature, presented numerically in Appendix AlO.
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Figure 5.2: Plot for LightGBM Information Gain

AG_loans and size are the only ones to surpass 10%, followed by IN_loans,

prem_fixed_assets and LLA. Moreover, tier1_ratio scores high in information gain,

as it also did for mean decrease in accuracy in the random forest model. Furthermore,

among the top five features, two features are categories of loans. This suggests that these

types of loans contain much information on the decision to get no audit.

5.2 Statistical Analysis for Feature Selection

As explained previously, feature selection is typically carried out before the machine

learning models are trained, in order to decrease the number of features. However,

because the features are selected based on prior literature and our research question,

we will use this statistical analysis to verify the results presented in the previous paragraphs.

Similarly to model training, one often separates feature selection into supervised and

unsupervised feature selection (and sometimes semi-supervised) based on whether the

training data is labeled, unlabeled, or partially labeled (Brownlee, 2019). The data in
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AG loans and size are the only ones to surpass 10%, followed by IN loans,

prem_fixed_ assets and LLA. Moreover, tierl_ ratio scores high in information gain,

as it also did for mean decrease in accuracy in the random forest model. Furthermore,

among the top five features, two features are categories of loans. This suggests that these

types of loans contain much information on the decision to get no audit.

5.2 Statistical Analysis for Feature Selection

As explained previously, feature selection is typically carried out before the machine

learning models are trained, in order to decrease the number of features. However,

because the features are selected based on prior literature and our research question,

we will use this statistical analysis to verify the results presented in the previous paragraphs.

Similarly to model training, one often separates feature selection into supervised and

unsupervised feature selection (and sometimes semi-supervised) based on whether the

training data is labeled, unlabeled, or partially labeled (Brownlee, 2019). The data in
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our data set is labeled, meaning we have a y-value for every x = (x1, x2, x3, . . . , xn). We

conduct the feature selection on the entire data set as opposed to just the training set.

Generally in predictive modeling one disregards statistical learning as the aim is solely to

make good predictions (Brownlee, 2018). However, statistical learning can still be useful

in this analysis in order to increase interpretability of the relationship with the response

variable (Brownlee, 2018).

It is essential to consider whether the input and output is numerical or categorical when

choosing feature selection techniques. In our model, all input variables are continuous and

numerical, and the output variable is categorical binary output. We have selected two

approaches that fit these criteria; Mutual Information and ANOVA. Mutual Information

studies statistical dependence of any kind (Vergara & Estévez, 2013), while ANOVA is

interested in linear dependency (Asaithambi, 2018).

5.2.1 Mutual Information

Mutual Information measures how much information a variable has about another

variable, and is explained through primarily two aspects. First, Mutual Information can

assess any relation between variables, including nonlinear relationships. Second, Mutual

Information is invariant under transformations in the feature space that are invertible

and differentiable. The latter means that the Mutual Information is invariant with, for

example, translations, rotations, and any transformation that preserves the order of the

original elements. (Vergara & Estévez, 2013)

The information gained to predict y if we know x is defined as:

I(x, y) = H(x)−H(y|x)

where H is entropy. (Vergara & Estévez, 2013)

Mutual Information is zero where the variables x and y are statistically independent

(Vergara & Estévez, 2013). We have identified the relationship between the discrete

audited variable and the continuous independent variables using the mutual_info_classif

function from the sklearn library in Python. The results for the top ten most important

variables are displayed in Figure 5.3.
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Figure 5.3: Plot for Mutual Information scores

The values for mutual information to the target value, audited, are low. There are,

however, some higher values for the different loan categories. The highest is AG_loans

which outperforms all other features, followed by RE_loans. IN_loans and CI_loans are

also present, signifying that all four loan categories contribute information to the audit

decision. Furthermore, size, LLP and LLA are all amongst the top five scoring features,

though all below half of the score of AG_loans.

5.2.2 ANOVA

ANOVA stands for Analysis of Variance and is one of the most widely used statistical

models (Soumare, 2020). Using ANOVA, one investigates whether there are statistical

differences between the means of independent groups by analyzing the levels of variance

within the groups through samples taken from each of them (Qualtrics, n.d.). One divides

ANOVA into one-way and two-way ANOVA, depending on how many independent

variables are in the model (Qualtrics, n.d.). In order to investigate two or more

independent variables, one has to use two-way ANOVA (Qualtrics, n.d.).
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The values for mutual information to the target value, audited, are low. There are,

however, some higher values for the different loan categories. The highest is AG_ loans

which outperforms all other features, followed by RE_ loans. IN_ loans and CI_ loans are

also present, signifying that all four loan categories contribute information to the audit

decision. Furthermore, size, LLP and LLA are all amongst the top five scoring features,

though all below half of the score of AG_ loans.

5.2.2 ANOVA

ANOVA stands for Analysis of Variance and is one of the most widely used statistical

models (Soumare, 2020). Using ANOVA, one investigates whether there are statistical

differences between the means of independent groups by analyzing the levels of variance

within the groups through samples taken from each of them (Qualtrics, n.d.). One divides

ANOVA into one-way and two-way ANOVA, depending on how many independent

variables are in the model (Qualtrics, n.d.). In order to investigate two or more

independent variables, one has to use two-way ANOVA (Qualtrics, n.d.).
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In classification, ANOVA tests for a change in deviance instead of the standard variance

(University of Pennsylvania, n.d.). This is often referred to as ANODev, Analysis of

Deviance (Härdle & Huang, 2013), and was first introduced by Nelder and Wedderburn

(Jørgensen, 2012). The null hypothesis for the ANODev is that the means for each class

are equal. We verify this at a 1% level (Hu, 2022). The F-score for an ANODev is defined as:

F =
distance between classes
compactness of classes

(Islam et al., 2019)

In order to conduct an ANOVA, or in this case, an ANODev test, one must ensure that

the data is normal and homogeneous. First, the independent variables must be normally

distributed. It follows from the central limit theorem that a sample containing n>30

observations approaches the normal distribution (Kwak & Kim, 2017). As such, one

could argue that the sample size in itself is sufficient. It should still be noted that when

investigating the histograms of the numerical variables, all of them do not seem to resemble

the normal distribution. Soumare (2020) conducted multiple experiments and found that

type 1 errors7 were comfortably controlled even where data was closer to a Poisson or

Negative Binomial distribution (Soumare, 2020). These distributions are closer to what we

observe in the histograms. Despite the fact that Soumare’s (2020) findings were based on

count data, we conclude that we may conduct the test after taking both the their findings

and the central limit theorem into consideration. Before conducting the test, the data is

standardized such that we have a standard deviation equal to 1 and a mean equal to

0. This is prefaced by denormalizing size, LLP and ROA to ensure homogeneity in the data.

The analysis is conducted using the f_classif function from the sklearn library in

Python. The results are visualized in Figure 5.4 below.

7type 1 error: probability of rejecting the null hypothesis when it is in fact true (Soumare, 2020)
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Python. The results are visualized in Figure 5.4 below.

7 type l error: probability of rejecting the null hypothesis when it is in fact true (Saumare, 2020)
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Figure 5.4: Plot for ANOVA F-scores

The ANOVA test shows higher importance for the loan types AG_loans and RE_loans,

as well as size, LLP, and LLA. The high importance indicates that these features have

a relatively high impact on the banks’ audit choices. However, it does not indicate in

which direction the features are moving. ANOVA discards the null hypothesis for most

features, using a significance level of 1%. The exceptions are fed_funds_sold, cash and

intangible_assets, implying no significant difference between audited and not audited for

these features.
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Figure 5.4: Plot for ANOVA F-scores

The ANOVA test shows higher importance for the loan types AG_ loans and RE_ loans,

as well as size, LLP, and LLA. The high importance indicates that these features have

a relatively high impact on the banks' audit choices. However, it does not indicate in

which direction the features are moving. ANOVA discards the null hypothesis for most

features, using a significance level of l%. The exceptions are fed_funds_ sold, cash and

intangible_ assets, implying no significant difference between audited and not audited for

these features.
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6 Discussion

6.1 Interpretation of Results

The logistic regression and the LASSO model both predict at roughly the same level of

accuracy, scoring below the 70% threshold. This means that predicting all audits would

outperform these models on the test set. Furthermore, the logistic regression model scores

extremely low for specificity, which is a major drawback of this model. As a result, it is

our opinion that the results from the logistic regression model should not be considered.

Instead, we emphasize the tree models. Even if the model did not predict particularly

well, the results from LASSO can be helpful when discussing the results from the tree

models. Especially one should consider the features that remain for λ = 0.018 which were

AG_loans, LFR, LLA, LLP, prem_fixed_assets and size.

The results from the tree models argue that the most important feature is AG_loans.

This is further supported by the results from the statistical analysis, where AG_loans

perform substantially better than all other variables. The statistical analysis identifies

the most important variables as size, LLA, RE_loans, and LLP, in addition to AG_loans.

These variables receive the highest scores for both the Mutual Information metrics and

F-scores for ANOVA. In the Mutual Information model, the highest scoring variables also

include tier2_ratio, which in ANOVA does not perform especially well. Furthermore,

prem_fixed_assets and IN_loans are present in the top ten variables in both analyses.

Comparing these results to the results of the tree models, it is evident that size and

LLA are the most prominent features at the end of this analysis, in addition to the

aforementioned AG_loans.

The differences in the two random forest importance measures provide insight into

entropy reduction and how it differs from accuracy. IN_loans and prem_fixed_assets

score relatively well in the LightGBM model and are both ranked in the top half of the

statistical analysis. However, in the random forest model, while the scores are high in

terms of Gini importance, they are low for mean decrease in accuracy. The same is
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prem_fixed_ assets and IN_ loans are present in the top ten variables in both analyses.
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L L A are the most prominent features at the end of this analysis, in addition to the
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The differences in the two random forest importance measures provide insight into

entropy reduction and how it differs from accuracy. IN_ loans and prem_fixed_ assets

score relatively well in the LightGBM model and are both ranked in the top half of the

statistical analysis. However, in the random forest model, while the scores are high in

terms of Gini importance, they are low for mean decrease in accuracy. The same is
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true of RE_loans which is one of the best in terms of the statistical analysis. These

discrepancies, and the fact that high Gini scores coincide with high feature selection scores,

are attributed to entropy. Both tree models try to reduce the amount of entropy. For

random forest modeling, this is represented by the Gini importance measure, where the

highest score represents the largest decrease in entropy (Menze et al., 2009). LightGBM’s

information gain metric is entropy measured before and after a split (Yıldırım, 2020). As

Mutual Information is a measure of the differences in entropy, it is coherent that it will

be very similar to these two other metrics. Moreover, it can be argued that one should

give accuracy greater weight since entropy is measured using several metrics.

There are several variables where the results differ. For example, total_loans and

tier1_ratio perform substantially better in the tree models than in the statistical analysis

with the two being amongst the top three in the random forest mean decrease in accuracy.

In light of the previous paragraph, these results suggest that although these variables

may not be present in many trees, they may be important to increase accuracy.

Amongst the selection of high risk variables, LLA is found to be the most important.

Although LLP performs well for the random forest model and statistical analysis,

it ranks amongst the worst for the LightGBM information gain. In contrast, LLA

is more consistent all around despite being somewhat less important in the mean

decrease in accuracy. Since both variables are created and maintained by banks to

account for loan losses, we do not consider the selection of one of the two variables

as very important. As a result, we are concentrating on the more consistent LLA.

A high LLA does not necessarily mean that a bank has bad financial health, but

it indicates that the quality of the bank’s assets are worse than those of banks with low LLA.

We must look at the importance per class to interpret how it affects the decision not to

audit. It is however important to note that, as a result of using nonlinear, nonparametric

models, it is not straightforward to gather what direction a feature is pulling, like it is in

LASSO or logistic regression. Constructing a decision boundary is also difficult due to

the number of features. As such, although AG_loans has a higher score for predicting
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not audited, it is not necessarily true that higher AG_loans steers in the direction of not

audited.

6.2 Robustness of Machine Learning Models

All models are validated using cross-validation, which uses data that was withheld from

the model during training. This gives a more accurate representation of the models’

performances. To further back up our conclusions, we have run all four models on a

range of training and test sizes within the 10-30% test size interval. These results are in

Appendix A13. The accuracies are consistent for all models.

Furthermore, credibility is built by including several prediction evaluation criteria as

opposed to solely accuracy. As explained, a broader assessment allows us to identify

irregularities in model performance, and discard models that favor a specific class.

Additionally, we can disregard models that favors minimization of false positives at

the expense of false negatives.

6.3 Limitations and Further Research

A central limitation of the analysis is the quality of the data. Many variables had missing

values and had to be computed from other reporting variables in the original data set.

Furthermore, as a result of many of the Call Reports being filed manually on paper before

entering the database, there is risk of spelling errors (as we found for state abbreviations),

false data, and missing data. These errors may also occur for entirely digital processes,

but there is a higher risk of such mistakes happening by hand due to human error.

Additionally, many of the values in the data set are equal to zero. While many of these

observations are probably correctly reported, it can cause an issue in the prediction

(Delucchi & Bostrom, 2004). It is evident in the histograms, where many features have a

pillar of zeros. A reason for these zero values is the focus on loans in different categories.

Smaller banks do not typically have loans in all categories, thus many observations

will have a value of 0. As we have investigated the data thoroughly, we are certain
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that this is not due to missing values. Because observations with no loans issued in a

category are also important for predictive modeling, removing these values would be

problematic. Additionally, transforming the data is not an option because it would not solve

the issue of numerous scores having the same value (i.e., zero) (Delucchi & Bostrom, 2004).

It should also be mentioned that the filtering of banks that operate in states where

external audits are mandatory, is flawed. Navigating the American legal system is

challenging, primarily due to the large differences between the states. Although being a

convenient approach, using a threshold of audited banks to the total number of banks in

each state may not be accurate. It is therefore possible that some states have voluntary

audits even when having a percentage of audited banks above our threshold, and vice versa.

Additionally, it is fair to question if the financial statements of audited and unaudited

banks can be analyzed on the same basis. Nicoletti (2018) showed that regulators and

auditors influence banks’ financial reporting differently. As regulators and auditors have

different focuses during their work, set by their different objectives, can one question

whether the accounting principles are employed in the same way across audited and not

audited banks.

In terms of further research, the analysis could be replicated on different data, as this will

test the model robustness and also the validity of the conclusions. Testing the models

on more recent data after the Covid-19 crisis could be particularly relevant because it

provides an opportunity to look at banks in the upcoming years. Other machine learning

algorithms could also be used. As our results indicate that the relationship between the

decision to get no audit and the independent variables is not linear, other nonlinear models

should be considered. Additionally, we are not including a time aspect in our data, which

assumes that the systematic choice not to audit does not change over time. In further

research, one could introduce this time aspect in the data and look for trends. One should

in such a case consider a dedicated time series classification algorithm as they are better

suited than the ones applied in this analysis.
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6.4 Remarks on Large Banks

While arguably a limitation of the analysis, we believe it is useful to provide some discussion

on the larger banks removed in the data cleaning in a section of its own. To ensure that

all banks used in the analysis are not obligated to have an external audit, we removed all

banks over the FDIC threshold of 500 million USD. Removing these banks is customary

in the little research we found on the topic, and is done in an effort to remove banks that

are assumed to have mandatory audits. We find this to be inaccurate in our data.

Figure 6.1: Box Plot for Large Banks

Figure 6.1 displays a box plot of total assets for class-specific observations that were

removed from the data set during cleaning and whose total assets exceeded 500 million

USD. The results for the two classes are visibly similar, although the maximum values

for the unaudited observations are higher. The medians for each class are both close

the threshold, but given that the scale is logarithmic, their assets are still substantially

larger than the 500 million USD mark. Although close, the 75th percentile of unaudited

observations is higher. As such, in addition to the fact that these observations have the

most extreme values, one may conclude that the observations that were not audited have

more overall assets than the audited observations.

It should further be noted that the majority of these observations are classified as not

audited. As FDIC requires an external audit by all banks (over the threshold) insured by

them, this indicates that FDIC does not insure these banks. Therefore, by excluding these

banks, one may wonder if we are leaving out any effects that could be worth investigating.
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7 Conclusion

This thesis uses bank regulatory data to investigate factors influencing small private U.S.

banks’ decision to get no audit. Previous research has found that this choice is systematic,

but few have researched what the drivers are. We use machine learning to create four

prediction models: logistic regression, LASSO, random forest, and LightGBM.

The analysis finds two well-performing predictive models. The two generalized linear

models, logistic regression and LASSO, are discarded in favor of the tree models, random

forest and LightGBM, due to the substantial difference in prediction accuracy across

all evaluation criteria. As such, the results of the analysis suggest that the relationship

between the choice of getting no voluntary external audit and the selected variables is

nonlinear. The best performing model is the random forest model which predicts with

over 90% accuracy on the test set. Either of the tree-based models may be beneficial for

identifying banks that do not conduct audits and, as a result, facilitate further research

on what characteristics these banks have in common.

Findings show that across all prediction models, the most important variable for the

decision to get no audit is the proportion of agricultural loans to the total sum of loans.

The agricultural loans’ importance is further supported by Mutual Information and

ANOVA feature selection. The thesis concludes that this feature is the most important in

terms of reducing entropy and increasing accuracy. It follows from these findings that

different loan categories, based on their security, borrower, and purpose, may have a large

impact on the decision to get no audit. To the best of our knowledge, this phenomenon

has not previously been discovered, which urges future research on the topic.

Bank size and loan loss allowance are found to be important features for all of the

models used in this thesis. In terms of size, this is coherent with former research

that has identified both bank size and the size of other private firms as drivers for

audit choice. The fact that our results appear to be in agreement with previous

research on both private firms and banks, suggests that the factors that lead to
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procuring no voluntary external audit may be similar for banks and private firms.

Loan loss allowance is also shown to be an important feature for our prediction

models. As specified in the literature review, this factor is related to asset quality

since it reveals what the bank loses on subprime loans. Accordingly, we conclude that

asset quality and the size of total assets are important factors when deciding to get no audit.

This thesis provides a foundation for further research on banks and their behaviour. It

is important to note that the performance evaluation of the models is based entirely on

the test set. However, future research may be able to verify the accuracy of the models

in the context of newer data, as well as fine-tune model hyperparameters. Although the

analysis is conducted on data of imperfect quality, the results point toward an exciting new

direction in research on voluntary audits. Furthermore, the knowledge of the relationship

between features being nonlinear can be used in future analyses on banks as this thesis

sets a foundation for using machine learning in investigating banks’ behavior.
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Appendix

A1 Data Transformation

Table A1.1: All Filled-Out Information

Identifer Name Comment

RCFD1010 Cash
Missing values equal

RCON0071 +RCON0081

RCFD1600 Commercial and Industrial loans Using RCFD1766

RCFD1350 Federal Funds Sold
Missing values equal

RCONB987 +RCONB989

RCON2011 Loans to Individuals
Data from after 2010 equal to
RCFDB538 +RCFDB539

+RCFDK137 +RCFDK207

RCFD2143 Intangible Assets
Missing values equal

RCON3163 +RCON3164

+RCON5507

RIAD4000 Operating Income
Missing values equal

RIAD4107 +RIAD4169

+RIAD4020 +RIAD4079
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A2 Mandatory Audits in States

We consider an external audit as mandatory if more than 95% of the banks in the state

have employed an external audit. States with less than 25 banks are investigated separately.

Table A2.1: Identified State Mandatory Audits

Number of Banks Audited Banks Ratio of Audited Banks State Mandatory Audit
Alabama 153 128 83.66 No
Alaska 8 7 87.50 Yes
Arizona 42 39 92.86 No
Arkansas 134 102 76.12 No
California 292 272 93.15 No
Colorado 144 104 72.22 No

Connecticut 55 53 96.36 Yes
Delaware 43 36 83.72 No
Florida 278 244 87.77 No
Georgia 299 273 91.30 No
Hawaii 9 6 66.67 Yes
Idaho 18 17 94.44 Yes
Illinois 627 387 61.72 No
Indiana 147 133 90.48 No
Iowa 368 138 37.50 No

Kansas 338 98 28.99 No
Kentucky 197 173 87.82 No
Louisiana 156 148 94.87 No

Maine 30 30 100.00 Yes
Maryland 87 83 95.40 Yes

Massachusetts 173 165 95.38 Yes
Michigan 143 121 84.62 No
Minnesota 412 121 29.37 No
Mississippi 92 72 78.26 No
Missouri 348 172 49.43 No
Montana 73 26 35.62 No
Nebraska 232 50 21.55 No
Nevada 33 31 93.94 No

New Hampshire 26 24 92.31 No
New Jersey 118 112 94.92 No
New Mexico 53 49 92.45 No
New York 199 158 79.40 No

North Carolina 102 95 93.14 No
North Dakota 92 24 26.09 No

Ohio 240 197 82.08 No
Oklahoma 256 85 33.20 No
Oregon 37 35 94.59 No

Pennsylvania 225 215 95.56 Yes
Rhode Island 13 12 92.31 No

South Carolina 89 81 91.01 No
South Dakota 85 30 35.29 No

Tennessee 196 187 95.41 Yes
Texas 630 468 74.29 No
Utah 60 51 85.00 No

Vermont 14 13 92.86 No
Virginia 119 109 91.60 No

Washington 87 74 85.06 No
West Virginia 66 65 98.48 Yes

Wisconsin 282 120 42.55 No
Wyoming 37 27 72.97 No

District of Columbia 6 6 100.00 Yes
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A3 Variable Definitions

Table A3.1: Variable Definitions

Name Explanation Formula

audited
1, if bank is audited
0, otherwise

AG_loans
Agricultural loans
scaled by total assets.

RCFD1590

RCFD2122

cash
Proxy for liquidity.
Cash scaled by total assets.

RCFD0010

RCFD2170

CI_loans
Commercial and Industrial
loans scaled by total loans.

RCFD1600

RCFD2122

fed_funds_sold
Federal funds sold
scaled by total assets.

RCFD1350

RCFD2170

IN_loans
Loans to Individuals
scaled by total loans.

RCON2011

RCFD2122

intangible_assets
Intangible assets
scaled by total assets.

RCFD2143

RCFD2170

LFR
Lease Financing Receivables
scaled by total loans.

RCFD2165

RCFD2122

LLA
Loan Loss Allowance
scaled by total loans.

RCFD3123

RCFD2122

LLP
Loan Loss Provision
scaled by total assets.

RIAD4230

RCFD2170
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Table A3.1: Variable Definitions

Name Explanation Formula

audited
l, if bank is audited
0, otherwise

AG loans
Agricultural loans RCFDl590
scaled by total assets. RCFD2122

cash
Proxy for liquidity. RCFD00lO
Cash scaled by total assets. RCFD2l 70

CI loans
Commercial and Industrial RCFDl600
loans scaled by total loans. RCFD2122

fed funds sold
Federal funds sold RCFDl350
scaled by total assets. RCFD2l 70

IN loans
Loans to Individuals RCON20ll
scaled by total loans. RCFD2122

intangible assets
Intangible assets RCFD2143
scaled by total assets. RCFD2l 70

LFR
Lease Financing Receivables RCFD2l65
scaled by total loans. RCFD2122

LLA
Loan Loss Allowance RCFD3l23
scaled by total loans. RCFD2122

LLP
Loan Loss Provision RIAD4230
scaled by total assets. RCFD2l 70
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Name Explanation Formula

prem_fixed_assets
Premises and Fixed Assets
scaled by total assets.

RCFD2145

RCFD2170

RE_loans
Real estate loans
scaled by total loans.

RCFD1415

RCFD2122

ROA
Return on assets. Total operating
income scaled by total assets.

RIAD4000

RCFD2170

size Proxy for size. ln(RCFD2170)

tier1_ratio
Tier 1
capital ratio.

RCFD8274

RCFDA223

tier2_ratio
Tier 2
capital ratio.

RCFD8275

RCFDA223

total_loans
Total loans scaled
by total assets.

RCFD2122

RCFD2170
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Name Explanation Formula

fixed assets
Premises and Fixed Assets RCFD2145

prem
scaled by total assets. RCFD2170

RE loans
Real estate loans RCFD1415
scaled by total loans. RCFD2122

ROA
Return on assets. Total operating RIAD4000
income scaled by total assets. RCFD2170

size Proxy for size. ln(RCFD2170)

tier l
Tier l RCFD8274

ratio
capital ratio. RCFDA223

tier2
Tier 2 RCFD8275

ratio
capital ratio. RCFDA223

total loans
Total loans scaled RCFD2122
by total assets. RCFD2170
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A4 Descriptive Statistics

Table A4.1: Descriptive Statistics for Explanatory Variables

Statistic N Mean St. Dev. Min Max

AG_loans 179,455 0.092 0.134 0.000 0.576
cash 179,455 0.102 0.087 0.011 0.455
CI_loans 179,455 0.128 0.088 0.000 0.455
fed_funds_sold 179,455 0.018 0.035 0.000 0.189
IN_loans 179,455 0.058 0.064 0.000 0.363
intangible_assets 179,455 0.003 0.007 0.000 0.043
LFR 179,455 0.002 0.010 0.000 0.078
LLA 179,455 0.016 0.009 0.003 0.056
LLP 179,455 0.172 0.138 0.000 1.000
prem_fixed_assets 179,455 0.017 0.013 0.0004 0.064
RE_loans 179,455 0.703 0.190 0.137 0.998
ROA 179,455 0.321 0.221 0.000 1.000
size 179,455 0.601 0.234 0.000 1.000
tier1_ratio 179,455 0.185 0.087 0.058 0.600
tier2_ratio 179,455 0.011 0.002 0.003 0.013
total_loans 179,455 0.614 0.162 0.171 0.903
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cash 179,455 0.102 0.087 0.011 0.455
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A5 Histograms

Figure A5.1: AG_loans Figure A5.2: cash

Figure A5.3: CI_loans Figure A5.4: fed_funds_sold

Figure A5.5: IN_loans Figure A5.6: intangible_assets
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Figure A5.7: LFR Figure A5.8: LLA

Figure A5.9: LLP Figure A5.10: prem_fixed_assets

Figure A5.11: RE_loans Figure A5.12: ROA
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Figure A5.13: size Figure A5.14: tier1_ratio

Figure A5.15: tier2_ratio Figure A5.16: total_loans
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A6 Performance of Machine Learning Models

Figure A6.1: Logistic Regression Figure A6.2: LASSO

Figure A6.3: Random Forest Figure A6.4: LightGBM
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Table A7.1: Lasso Coefficients for λ Interval
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A8 Accuracies for LASSO Models for Different λ

Table A8.1: Accuracy for λ Interval

λ Accuracy
0.003 0.6782
0.004 0.6784
0.005 0.6787
0.006 0.6793
0.007 0.6799
0.008 0.6803
0.009 0.6808
0.010 0.6810
0.011 0.6817
0.012 0.6824
0.013 0.6829
0.014 0.6834
0.015 0.6842
0.016 0.6846
0.017 0.6848
0.018 0.6844
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Table A8.1: Accuracy for ,\ Interval

>. Accuracy
0.003 0.6782
0.004 0.6784
0.005 0.6787
0.006 0.6793
0.007 0.6799
0.008 0.6803
0.009 0.6808
0.010 0.6810
0.011 0.6817
0.012 0.6824
0.013 0.6829
0.014 0.6834
0.015 0.6842
0.016 0.6846
0.017 0.6848
0.018 0.6844
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A9 Random Forest Importance

Table A9.1: Random Forest Importances per Class and Means

Feature 0 1 MeanDecAccuracy MeanDecGini
AG_loans 210.61 185.74 231.83 8485.53
cash 154.94 142.01 163.70 3939.04
CI_loans 149.74 150.02 169.82 4525.27
fed_funds_sold 142.98 148.83 162.77 2388.01
IN_loans 140.72 136.37 145.76 5535.91
intangible_assets 126.23 138.44 139.69 2521.56
LFR 60.63 70.21 66.10 1237.59
LLA 145.85 134.82 151.94 5236.30
LLP 177.18 156.80 178.57 4550.30
prem_fixed_assets 125.84 112.47 122.29 5337.34
RE_loans 81.80 82.06 86.13 5716.95
ROA 60.78 21.20 62.57 2495.64
size 166.66 154.30 167.04 6468.02
tier1_ratio 202.85 165.72 208.69 4829.06
tier2_ratio 98.05 77.43 94.03 4371.23
total_loans 207.36 176.45 213.11 4808.08
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Table A9.1: Random Forest Importances per Class and Means

Feature 0 l MeanDecAccuracy MeanDecGini
AG loans 210.61 185.74 231.83 8485.53-

cash 154.94 142.01 163.70 3939.04
CI loans 149.74 150.02 169.82 4525.27-

fed funds sold 142.98 148.83 162.77 2388.01-

IN loans 140.72 136.37 145.76 5535.91-

intangible_ assets 126.23 138.44 139.69 2521.56
LFR 60.63 70.21 66.10 1237.59
LLA 145.85 134.82 151.94 5236.30
LLP 177.18 156.80 178.57 4550.30
prem fixed assets 125.84 112.47 122.29 5337.34- -

RE loans 81.80 82.06 86.13 5716.95-

ROA 60.78 21.20 62.57 2495.64
size 166.66 154.30 167.04 6468.02
tierl ratio 202.85 165.72 208.69 4829.06
tier2 ratio 98.05 77.43 94.03 4371.23-

total loans 207.36 176.45 213.11 4808.08-
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A10 LightGBM Importance

Table A10.1: All Measures of LightGBM Importance

Feature Gain Cover Frequency
AG_loans 0.15 0.07 0.07
size 0.10 0.09 0.10
IN_loans 0.08 0.08 0.09
prem_fixed_assets 0.08 0.08 0.09
LLA 0.07 0.06 0.07
tier1_ratio 0.07 0.07 0.08
total_loans 0.07 0.07 0.07
RE_loans 0.06 0.08 0.07
CI_loans 0.06 0.07 0.07
intangible_assets 0.05 0.06 0.05
tier2_ratio 0.05 0.06 0.06
cash 0.05 0.06 0.06
LLP 0.05 0.04 0.05
fed_funds_sold 0.03 0.04 0.04
LFR 0.02 0.03 0.02
ROA 0.02 0.04 0.03
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Table AIO.l: All Measures of LightGBM Importance

Feature Gain Cover Frequency
AG loans 0.15 0.07 0.07-

size 0.10 0.09 0.10
IN loans 0.08 0.08 0.09-

prem fixed assets 0.08 0.08 0.09-

LLA 0.07 0.06 0.07
tier l ratio 0.07 0.07 0.08-

total loans 0.07 0.07 0.07-

RE loans 0.06 0.08 0.07-

CI loans 0.06 0.07 0.07-

intangible_ assets 0.05 0.06 0.05
tier2 ratio 0.05 0.06 0.06-

cash 0.05 0.06 0.06
LLP 0.05 0.04 0.05
fed funds sold 0.03 0.04 0.04-

LFR 0.02 0.03 0.02
ROA 0.02 0.04 0.03
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A11 Mutual Information Results

Table A11.1: Mutual Information Scores

Feature Score
AG_loans 0.06069
RE_loans 0.02906
size 0.02252
LLP 0.02174
tier2_ratio 0.01637
LLA 0.01634
IN_loans 0.01400
prem_fixed_assets 0.00961
tier1_ratio 0.00638
LFR 0.00630
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Table A l l . l : Mutual Information Scores

Feature Score
AG loans 0.06069
RE loans 0.02906
size 0.02252
LLP 0.02174
tier2 ratio 0.01637
LLA 0.01634
IN loans 0.01400
prem fixed assets 0.00961-

tierl ratio 0.00638
LFR 0.00630



A12 ANOVA Results 71

A12 ANOVA Results

Table A12.1: ANOVA F-scores and p-values

Feature Score p-value
AG_loans 13124.4239 0.000
RE_loans 7825.5882 0.000
size 5836.2487 0.000
LLP 3889.0310 0.000
LLA 3465.6344 0.000
prem_fixed_assets 2418.0886 0.000
tier2_ratio 1441.0866 0.000
IN_loans 647.4538 0.000
LFR 378.4408 0.000
tier1_ratio 211.2016 0.000
ROA 184.4517 0.000
total_loans 56.3852 0.000
CI_loans 9.1123 0.003
intangible_assets 5.1808 0.023
cash 4.4280 0.035
fed_funds_sold 3.8097 0.051
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Table A12.1: ANOVA F-scores and p-values

Feature Score p-value
AG loans 13124.4239 0.000-

RE loans 7825.5882 0.000-

size 5836.2487 0.000
LLP 3889.0310 0.000
LLA 3465.6344 0.000
prem fixed assets 2418.0886 0.000- -

tier2 ratio 1441.0866 0.000-

IN loans 647.4538 0.000-

LFR 378.4408 0.000
tier l ratio 211.2016 0.000-

ROA 184.4517 0.000
total loans 56.3852 0.000-

CI loans 9.1123 0.003-

intangible_ assets 5.1808 0.023
cash 4.4280 0.035
fed funds sold 3.8097 0.051- -
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A13 Test Size

Table A13.1: Accuracies for Different Test Sizes

Test size 0.10 0.15 0.20 0.25 0.30

Logistic regression 0.641 0.649 0.648 0.644 0.649
Lasso 0.679 0.685 0.686 0.679 0.684
Random Forest 0.916 0.912 0.908 0.901 0.900
LightGBM 0.876 0.874 0.866 0.850 0.849

72 A13 Test Size

A13 Test Size

Table A13.1: Accuracies for Different Test Sizes

Test size 0.10 0.15 0.20 0.25 0.30

Logistic regression 0.641 0.649 0.648 0.644 0.649
Lasso 0.679 0.685 0.686 0.679 0.684
Random Forest 0.916 0.912 0.908 0.901 0.900
LightGBM 0.876 0.874 0.866 0.850 0.849


