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Abstract

In this thesis, we investigate whether electricity prices affect innovation within low-carbon

energy technologies (LCE) in the period from 1978 to 2018.

2022 has brought up one of the worst energy crises the world has ever seen, causing

abnormally high electricity prices. Consequently, innovation within low-carbon energy

technologies is crucial. In previous research, electricity price is identified as a potential

driver for green innovation. However, the scientific community also argues that policies

and the stock of knowledge are important drivers.

When applying a linear model to our panel consisting of 26 OECD countries, the findings

indicate that there is no effect of electricity prices on low-carbon energy innovation.

Corresponding with previous research, the main driver for innovation in our model is

the stock of available knowledge at the time the patent was applied for. However, for

countries with higher overall patenting activity, the effect of electricity prices is positive.

This indicates that electricity prices do not initiate innovation within low-carbon energy

technologies, but rather affect countries where innovation is already high.
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1 Introduction

2022 is the year when we finally could see the end of the global COVID-19 pandemic.

However, this year has been marked by abnormally high electricity prices, Russia invading

Ukraine, and we are facing uncertainty related to the general economic outlook (IEA,

2021d). The negative consequences of high electricity prices are very tangible and present

all around us. However, can this current crisis have a climate-friendly silver lining? Europe

is working towards less dependence on Russian fossil fuel imports by speeding up the

transition to clean energy. In addition, the global climate crisis contributes to the urgency

of implementing this transition in near future to meet the Paris agreement. The innovation

of low-carbon energy technologies (LCE) is considered a crucial part of this transition

(IEA, 2021c). Considering today’s global situation, we aim to analyse whether electricity

prices historically have led to more innovation within LCE technologies.

In previous research, energy and electricity prices have been identified as potential drivers

for green innovation. Popp (2002) finds that energy prices have a positive significant

effect on energy-efficient innovation in the United States but emphasises that the stock of

knowledge has an even more substantial effect on innovation. He states that "the supply

of ideas, as well as the demand for new ideas, plays an important role in shaping the

direction of innovation" (Popp, 2002). The knowledge stock aims to measure the available

knowledge within a technology category at a given time and is considered a proxy for

technical capability. Kruse and Wetzel (2016) find that the knowledge stock is a significant

driver of green technological innovations, while energy prices only significantly affect some

technologies.

Furthermore, a widely recognised driver of green innovation is policies. Lanjouw and Mody

(1996) found that environmental innovations respond to the severity of environmental

regulations, and Johnstone et al. (2010) single out policies as the key driver to green

innovation. Policies are also considered to be closely linked to both electricity prices and

the stock of knowledge (Kruse and Wetzel, 2016). Governments can increase electricity

prices by implementing policies that increase the potential profit of successful innovations.

On the other hand, governments can increase the knowledge stock by implementing policies

that decrease the cost of producing innovations. (Kruse and Wetzel, 2016).
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A common feature of previous research is the focus on specific energy supply technologies

such as solar, wind, and biofuels. We aim to add to the literature by basing our analysis

on the IEA’s categorisation of LCE technologies, which reflects new trends in renewable

energy innovation (IEA, 2021c). The three main building blocks of LCE technologies are

LCE-supply technologies, enabling technologies and end-use technologies.

LCE-supply technologies include wind, solar, hydropower, bioenergy and energy generation

of nuclear origin. Enabling technologies mainly involve carbon capture, utilisation and

storage (CCUS), batteries, hydrogen and fuel cells, smart grids and other technologies

for energy storage. End-use technologies are primarily used for production in agriculture,

production of consumer products, electric vehicles and technologies for transportation

within the aviation and maritime sector.

To limit the scope of this analysis, we choose to focus on the LCE-supply and enabling

technologies. This is mainly because LCE-supply and enabling technologies represent

the supply side of electricity production and can significantly impact the supply mix

of electricity. End-use technologies, on the other hand, can be considered the demand

side as the sales of the technologies will be affected by how the customers embrace the

innovations.

Innovation within LCE-supply and enabling technologies have followed each other closely

since 1978, but have moved in different directions since 2012 (IEA, 2021c). The question

of what drives innovation of LCE-supply and enabling technologies remains complex

as innovation activities are affected by several factors. In this analysis, we investigate

whether electricity prices can explain changes in patenting activity. Additionally, we

analyse whether the effect differs between LCE-supply and enabling technologies, and

whether the effects vary before and after 2012. Thus, the research question of this analysis

is:

How do electricity prices affect innovation within LCE-Supply and Enabling technologies?

To answer our research question, patents are used as a proxy for innovation. Using a

linear regression model, we analyse patent applications from 26 OECD countries from

1978 to 2018.
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"Patents are the data source most widely used to measure innovative activity" (van

Pottelsberghe et al., 2000). Beyond the fact that patent data is readily available, there

are many advantages to using patent data. There are few examples of major inventions

that have not been patented, and the patent data is a rich source of information on the

applicants, inventors and technology categories. Additionally, "patents cover a broad

range of technologies, including those where there sometimes can be few other sources of

data" (van Pottelsberghe et al., 2000).

There are, however, some drawbacks when using patent data. The value distribution of

patents is skewed, meaning that some patents are highly valuable while others have no

industrial application (van Pottelsberghe et al., 2000). Also, the propensity to patent

differs across countries leading to some inventions not to be patented. Differences in

patent regulations across countries can sometimes make it challenging to compare counts

of patents. Lastly, changes in patent law can affect the trends over time (van Pottelsberghe

et al., 2000).

Patents are structured into categories using the Cooperate Patent Classification (CPC).

The categories for LCE-supply and enabling technologies are based on the cartography of

LCE technologies from the article "Patents and the Energy Transition" (IEA, 2021c). The

CPC classifications for the two categories are presented in table A1.1 in the appendix.

We expect our findings to be in line with the induced innovation hypothesis. The induced

innovation theory states that "changes in one relative factor should lead to innovations

that reduce the need for the relatively expensive factor" (Popp, 2002). LCE technologies

contribute to facilitating and producing electricity and can be considered part of the

supply mix of electricity generation. The commercial viability of these technologies will

depend on the cost level relative to other non-renewable substitutes (Johnstone et al.,

2010). Johnstone et al. (2010) states that an increase in electricity prices should increase

the incentives to innovate within renewable energy. This is because the initial cost of

electricity production using renewable energy sources is generally higher than the cost of

fossil fuels. Based on this, our main hypothesis is:

H1 = An increase in electricity price will positively affect patenting activity within LCE-

supply and enabling technologies.
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The findings indicate that for the 26 OECD countries in our panel, electricity prices have

no significant effect on patenting activity. However, for countries in our panel with an

overall high patenting activity, the effect of electricity prices coincides with the hypothesis,

indicating that patenting activity is positively affected by increasing electricity prices.

Furthermore, we find no significant effect of policies. In line with the previous research,

knowledge seems to be the main driver for innovative activity in our models. At last, the

findings indicate that electricity prices have similar effects on patenting activity before

and after 2012.

This thesis is structured in 6 parts and proceeds as follows: Section 2 describes the

data and gives an understanding of how the data is structured. In section 3, the model

specifications and methodical approach are explained. Section 4 presents the results of how

patenting activity affects LCE-supply and enabling technologies. To strengthen our results,

section 5 examines various subsets and specification choices by performing a robustness

analysis. Finally, section 6 makes a concluding statement and presents suggestions for

future research.
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2 Data

To study our hypothesis, we constructed a panel dataset with the variables necessary

for our research. First, we introduce the OECD REGPAT database, where we extract

data on patents. Then, we present all other relevant sources of data. Next, we describe

the construction of our dependent and explanatory variables and provide a thorough

description of how the data is processed. Finally, our processed data is presented through

descriptive statistics.

2.1 Data sources

2.1.1 OECD REGPAT Database

Our analysis is based on patent data from the OECD REGPAT database, which covers

data on patent applicants to the EPO and associated regionalised data (Maraut et al.,

2008). A significant advantage of REGPAT data is the possibility to join the data with

other regional structured data such as GDP and electricity prices (Maraut et al., 2008).

The data covers all EPO patent applications from 1977 to 2022.

Patent applications to EPO are relatively expensive compared to filing for patents through

other national patent offices in Europe (Johnstone et al., 2010). However, filing for

EPO patents is more economical and efficient than filing for the same patent at multiple

national patent offices. This causes a natural elimination of low-value inventions to EPO

and assures that only relevant patents of a particular value are included in our analysis

(Johnstone et al., 2010).

2.1.2 IEA Energy Prices and Taxes Statistics Database

Data on electricity prices are retrieved from the IEA Energy Prices and Taxes Statistics

Database (IEA, 2021a). The database provides detailed OECD country statistics on

energy prices and taxes for different energy sources (IEA, 2020). We have extracted data

on household electricity prices, presented in US Dollars per MWh of electricity. The prices

are converted using average annual purchasing power parity (PPP), which accounts for

the general price differences of goods and services across countries (IEA, 2020).
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2.1.3 Share of Electricity Production from Renewables

Data on electricity production from renewables is retrieved from Our world in data (2022).

Renewable electricity sources include hydropower, solar, wind, biomass waste, geothermal,

wave, and tidal sources. The data covers almost all OECD countries from 1985 to 2021.

Our world in data (2022) bases its data on the Global Electricity Review from Ember, an

independent non-profit climate and energy think tank, which provides analysis and policy

solutions.

2.1.4 OECD Data - Gross Domestic Product

The data on the gross domestic product (GDP) is retrieved from OECD (2022) and covers

data for all OECD countries from 1960 to 2021. We have extracted GDP presented in

million US dollars to include information about countries’ economic activity and wealth.

2.1.5 OECD Environment Statistics Database

The OECD Environment Statistics Database provides data on policy-relevant

environmental statistics (OECD, 2016). The data includes 28 OECD countries from

1990 to 2022. We extract data on the environmental policy stringency index for the 26

countries in our panel data.
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2.2 Construction of variables

2.2.1 Dependent variable

For our model, the dependent variables are counts of patent applications within LCE-

supply and enabling technologies. To construct the dependent variables, we extracted all

EPO patents with CPC classifications within the two technologies. As one patent can

have CPC classifications within both categories, a fraction was constructed. This was

done to find the share of LCE-supply and enabling classifications for each patent and

avoid double counting. For instance, if a patent has one enabling classification and three

LCE-supply classifications, the patent will be 0.25 enabling and 0.75 LCE-supply. Due to

the risk of delay in the enrollment of new patents, we removed the last four years of the

dataset. Further, the first year was set to 1978 as an outcome of missing data for previous

years. Our dataset thus ranges from 1978 to 2018.

One patent can be filed by several applicants, which makes it possible for patents to be

linked to multiple applicant addresses. To avoid double counting of patents, a fraction

was constructed to divide the share of each patent correctly among its applicants. The

data were further grouped by country and year to get the total count of patents within

the two categories, per country per year.

The structure of our dependent variables results in zero values for the patent count in some

countries. There are two potential reasons for zero values. Firstly, we can not exclude the

possibility of true missing values. This can be the case if patent applications are excluded

from the database, or if information about the applicants’ addresses is missing. Secondly,

the patent count results in zero values for countries if there are no patent applications in

the given year. If this is the case, the zeroes can be considered true values. We assume

that the second reason applies to our data.

2.2.2 Electricity prices

The relationship between electricity prices and innovation depends on the technologies

in question. For some specific markets, for instance, the car industry, the relationship

between green innovation and electricity price is straightforward to detect. For instance,

Aghion et al. (2016) finds that increased electricity prices give significantly less "clean"
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innovations, and consequently more "dirty" innovation. On the other hand, increased

fossil fuel prices will have the opposite effect.

However, we expect electricity prices to have a positive effect on patenting activity within

LCE-supply and enabling technologies. This is based on the theory of induced innovation

(Popp, 2002). As previously discussed, the initial cost of electricity production using

renewable energy sources is generally higher than the cost of fossil fuels (Johnstone

et al., 2010). Consequently, increased electricity prices can improve the profit from using

renewable energy sources.

For our panel data analysis, we want to account for the differences in electricity prices

between countries. Therefore, we import electricity prices on a country level from 1978 to

2018. The data is converted using annual purchasing power parity (PPP) to equalise the

difference in price levels between countries (IEA, 2020).

2.2.3 Knowledge stock

Popp (2002) finds that energy prices and the quality of knowledge available to inventors are

important factors for inducing innovation. Researchers have been able to find links between

current and future research, meaning that previous inventions matter for new innovations

(Popp, 2002). Therefore, we include a knowledge stock to consider the available knowledge

for the two technologies at the time the patent was applied for.

As our analysis focuses on the differences between LCE-supply technologies and enabling

technologies, we have created technology-specific knowledge stocks for each of the two

categories.

The knowledge stock is constructed based on the method of Kruse and Wetzel (2016).

This method does not account for the value of different patents. One patent can be more

useful to new innovations than others. However, as previously discussed, EPO applications

are in general more valuable than patents filed in a single country, due to their higher

costs. As our panel data only consist of “high-value patents”, we follow the method of

Kruse and Wetzel (2016) and choose not to include a value measure of patents in the

knowledge stock.
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We construct the knowledge stock based on the perpetual inventory method, following

the previous work of Kruse and Wetzel (2016) and Peri (2005). The method constructs a

stock of knowledge by using the formula below.

K ijt = P ijt + (1− δ)K ijt-1 (2.1)

The knowledge stock, represented by K ijt, for country i, technology j at time t, calculates

the number of patents accumulated up to the year of interest. P ijt is the number of

patents within LCE supply technologies or enabling technologies. Following Kruse and

Wetzel (2016) and Peri (2005) the depreciation rate of previous knowledge, represented

by δ, is set equal to 10%. "The depreciation rate accounts for the fact that knowledge

becomes obsolete as time goes by" (Kruse and Wetzel, 2016).

To account for knowledge accumulated in the years before our starting year 1978, we

construct Kij0.

K ij0 = P ij0/(δ + g) (2.2)

P ij0 is the number of patents in 1978, our starting year. Furthermore, the growth rate of

accumulated knowledge before 1978 is accounted for with g and is set to 15%. δ represent

the depreciation of knowledge and is again set at 10% (Kruse and Wetzel, 2016).

2.2.4 Control variables

In addition to the variables discussed above, there are other factors that might affect

patenting activity within LCE-supply and enabling technologies.

Renewables play a crucial role in the transition to clean energy, and renewable power is

considered one of the main solutions to avoid the average global temperature increasing

more than 1.5°C (IEA, 2022). A country’s share of electricity from renewables indicates

its position in the clean energy transition. It is reasonable to assume that countries with

a high share of electricity production from renewables, also will have a higher patenting

activity within LCE-supply and enabling technologies. Hence, we include the share of

electricity production from renewables for each country in our data.

2.2 Construction of variables 9

We construct the knowledge stock based on the perpetual inventory method, following

the previous work of Kruse and Wetzel (2016) and Peri (2005). The method constructs a

stock of knowledge by using the formula below.

Kiit = Piit + (l - b')Kiit-1 (2.1)

The knowledge stock, represented by Kijt, for country i, technology j at time t, calculates

the number of patents accumulated up to the year of interest. Pijt is the number of

patents within LCE supply technologies or enabling technologies. Following Kruse and

Wetzel (2016) and Peri (2005) the depreciation rate of previous knowledge, represented

by 5, is set equal to 10%. "The depreciation rate accounts for the fact that knowledge

becomes obsolete as time goes by" (Kruse and Wetzel, 2016).

To account for knowledge accumulated in the years before our starting year 1978, we

construct KijO.

KijO= Pijo/(5 + g) (2.2)

PijOis the number of patents in 1978, our starting year. Furthermore, the growth rate of

accumulated knowledge before 1978 is accounted for with g and is set to 15%. 5 represent

the depreciation of knowledge and is again set at 10% (Kruse and Wetzel, 2016).

2.2.4 Control variables

In addition to the variables discussed above, there are other factors that might affect

patenting activity within LCE-supply and enabling technologies.

Renewables play a crucial role in the transition to clean energy, and renewable power is

considered one of the main solutions to avoid the average global temperature increasing

more than 1.5°C (IEA, 2022). A country's share of electricity from renewables indicates

its position in the clean energy transition. It is reasonable to assume that countries with

a high share of electricity production from renewables, also will have a higher patenting

activity within LCE-supply and enabling technologies. Hence, we include the share of

electricity production from renewables for each country in our data.



10 2.3 Data cleaning

Further, patenting activity differs widely across the countries in our panel. We want to

give more weight to countries with a large impact on the world’s patenting activity. These

are also countries with high overall economic activity. GDP measured in millions of dollars

per year is included to control for this.

"It has been widely recognized that for environmental innovations in particular, policy

support is an important trigger" (Kemp et al., 1997 as cited in Peters et al. 2012).

Therefore, we include a variable for environmental policy stringency in the robustness

section. OECD defines stringency as "the degree to which environmental policies put an

explicit or implicit price on pollution or environmentally harmful behaviour" (OECD,

2016). The stringency index is an internationally-comparable measure for each country’s

stringency of environmental policy (OECD, 2016).

2.3 Data cleaning

The EPO REGPAT database (Maraut et al., 2008) contains data on 36 OECD countries

in total. Table A2.1 in the appendix provides an overview of all countries and the number

of patent applications within LCE-supply and enabling technologies. We remove the 10

countries with less than 100 patents in total as it is unlikely to find a relationship to

electricity prices when the count of patents fluctuates around zero. Additionally, it creates

more noise in our model. After removing these countries, we are left with 26 OECD

countries for our analysis, shown in table 2.1.

Further, some countries in our panel have missing data for certain years, meaning that

these countries have shorter time periods in the analysis. For example, Poland has missing

data for electricity prices before 1990, while Hungary has missing data for GDP before

1991. Missing values for electricity prices, GDP and share of renewables in electricity

supply are removed, as it is reasonable to assume that the missing values exist, but are

not captured in the data. We cannot set these values to zero and will rather eliminate

them from our data.
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Box plots of patents for the 26 remaining countries are presented in figure 2.1. The

median value for the 26 countries is respectively 9 and 6 patents for LCE-supply and

enabling technologies. When removing all observations with zero patents, the medians

increases to 19 and 15, indicating that a majority of the countries have a stable low

patent count. On the other side, we observe upper outliers with patent counts over 1,000.

Thus, our data is very skewed. Nevertheless, we keep all upper outliers in our data, as

these observations represent the main drivers of innovation.

Figure 2.1: Boxplot of patent counts for 26 OECD countries (1978 - 2018)
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Table 2.1: Number of LCE technology patents per country

Countries 1978-1986 1986-1994 1994-2002 2002-2010 2010-2018 Total
AT 75 82 115 331 582 1187
AU 46 32 119 280 325 803
BE 58 33 104 268 595 1059
CA 29 129 309 666 694 1829
CH 163 174 388 1112 1799 3638
DE 1039 1211 2558 6312 9852 20974
DK 21 49 182 909 1983 3144
ES 14 25 69 518 799 1426
FI 11 55 85 250 486 888
FR 721 615 738 2025 3893 7994
GB 302 301 458 1136 1842 4041
HU 16 10 6 25 51 111
IE 4 5 19 124 162 316
IL 18 27 76 221 328 671
IT 66 150 251 785 1022 2276
JP 476 1254 3924 7740 12441 25837
KR 0 3 158 2071 6001 8235
LU 20 21 38 61 108 248
NL 94 115 271 749 1142 2372
NO 11 15 78 233 239 576
NZ 0 10 14 41 90 156
PL 1 2 3 44 156 207
PT 1 3 9 36 58 108
SE 149 122 291 395 652 1610
TR 0 0 4 35 75 115
US 1509 2079 3461 8964 10617 26633

AT = Austria, AU = Australia, CA = Canada, CH = Czech Republic, DE = Germany, DK = Denmark, ES = Spain, FI = Finland, FR =

France, GB = Great Britain, HU = Hungary, IE = Ireland, IL = Israel, IT = Italy, JP = Japan, KR = South Korea, LU = Luxembourg, NO

= Norway, NL = New Zealand, PL = Poland, SE = Sweden, TR = Turkey, US = The United States

Table 2.1 presents an overview of the total number of LCE-supply and enabling patents

applied for within each country. The time period spans from 1978-2018, and the total

patent count is calculated per 8 years. At last, the column "total" displays the total

number of patent applications for each country across the entire time period.
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2.4 Descriptive statistics

Table 2.2 shows descriptive statistics for the variables in our panel data. The dependent

variables are counts of patents within LCE-supply and enabling technologies. LCE-supply

technologies include technologies within wind, solar, geothermal energy, hydro, marine,

biofuels, fuel from waste and other technologies related to energy generation. Enabling

technologies include cross-cutting energy systems like CCUS, batteries, hydrogen and

fuel cells and smart grids. On average, the OECD countries in our panel apply for 50

LCE-supply patents and 59 enabling patents per year. The median values are however

less than 10 patents for both categories, meaning that for most countries the average

patenting activity is much lower.

The knowledge stock, as previously presented in Equation 2.1, is a constructed measure

of the available knowledge within each category at a given time. The average knowledge

stock is around 55 for both categories, which can provide a better understanding of the

scale for the knowledge stocks. Due to the depreciation rate, one unit increase in the

knowledge stock equals more than one patent.

Table 2.2: Descriptive statistic

Statistic Units N Mean St. Dev. Min Max

Supply patents count 1,066 49.8 121.7 0.0 1,115.3
Enabling patents count 1,066 59.5 161.5 0.0 1,340.6
Knowledge stock supply count 1,066 52.4 131.8 0.0 1,193.2
Knowledge stock enabling count 1,066 61.0 169.4 0.0 1,422.3
Electricity price USD/ MWh 1,002 148.1 76.9 19.1 417.7
GDP $1MM 1,041 1,070,737 2,272,336 3,840 20,533,058
Share of renewables ratio 884 26.6 26.9 0.01 99.6
Stringency index 754 2.1 1.1 0.0 4.6

2.4.1 Trends in LCE technologies

Patenting activity for LCE technologies has gone through several changes the recent years.

We observe a general shift in new technologies to more reliance on electrical power, more

consumer-oriented solutions and more distributed resources (IEA, 2021c). However, the

new drivers for innovation are mainly in the enabling and end-use categories, while there

have been fewer new patents within the supply category. The world is still in need of

innovation for supply technologies to increase the share of renewables in global electricity

generation, which is currently at 29% (2020) (IEA, 2021b).
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have been fewer new patents within the supply category. The world is s t i l l in need of

innovation for supply technologies to increase the share of renewables in global electricity

generation, which is currently at 29% (2020) (IEA, 2021b).



14 2.4 Descriptive statistics

We observe that the three categories have experienced very different paths since 2000. As

seen in Figure 2.2, patenting activity within LCE-supply and enabling technologies have

followed each other closely since 1978, but have started to move in different directions

in more recent years. For instance, enabling technologies constituted 34% of all LCE

patents in 2019, up from 27% in 2000. On the other hand, LCE-supply technologies have

decreased since their peak in 2012, representing only 17% of total LCE patents in 2019

(IEA, 2021c).

Figure 2.2: Trends in LCE Technologies 1978-2018

As stated, to limit the scope of this analysis we choose to only include LCE-supply and

enabling technologies in the analysis. There are various reasons for LCE-supply and

enabling technologies to be moving in different directions since 2012. One potential reason

is that developing innovations for mature technologies is more challenging and provides

less value, causing a decrease in innovation for supply technologies (Kruse and Wetzel,

2016). Another potential reason is that the supply side of energy underwent a general

decline in recent years. This theory is supported by the similar decline in fossil fuel

exploration and extraction technologies in the same period (IEA, 2021c). For patents

with CPC classifications within both categories, we observe a trend of patents having

a higher share of CPC classifications within enabling technologies. The upward trend

for enabling technologies may be caused by the increasing need for more flexible systems

when the electricity supply varies. (IEA, 2021c).
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2.4.2 LCE innovation across countries

Figure 2.3 and 2.4 illustrate how different countries’ patenting activity has evolved

over the time period. The United States, Japan and Germany account for 68% of the

total patenting activity within LCE-supply and enabling patent applications. The other

countries generally have a much lower patenting activity between zero and a hundred

patents per year.

As noted above, LCE-supply technologies have dramatically decreased since around

2012 while enabling technologies have experienced a slight increase. For LCE-supply

technologies, it is evident that the trends in figure 2.2 are mainly driven by the United

States, Japan and Germany. The other countries in our sample have remained relatively

stable even after 2012. However, the increase since 2012 in enabling technologies seems to

be mainly driven by Korea. Figure 2.4 seems to indicate that enabling technologies also

had a decrease in several countries, but due to the strong growth in Korea, the overall

trend in Table 2.2 is slightly upwards.

2.4 Descriptive statistics 15

2.4.2 LCE innovation across countries

Figure 2.3 and 2.4 illustrate how different countries' patenting activity has evolved

over the time period. The United States, Japan and Germany account for 68% of the

total patenting activity within LCE-supply and enabling patent applications. The other

countries generally have a much lower patenting activity between zero and a hundred

patents per year.

As noted above, LCE-supply technologies have dramatically decreased since around

2012 while enabling technologies have experienced a slight increase. For LCE-supply

technologies, it is evident that the trends in figure 2.2 are mainly driven by the United

States, Japan and Germany. The other countries in our sample have remained relatively

stable even after 2012. However, the increase since 2012 in enabling technologies seems to

be mainly driven by Korea. Figure 2.4 seems to indicate that enabling technologies also

had a decrease in several countries, but due to the strong growth in Korea, the overall

trend in Table 2.2 is slightly upwards.



16 2.4 Descriptive statistics

Figure 2.3: LCE-supply patent applications by country

Figure 2.4: Enabling patent applications by country
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2.4.3 Electricity prices

Electricity prices from 1978 to 2018 are visualized in figure 2.5. The average price

throughout the time period is 148 dollars per MWh. In 2.5, The United States, Germany

and Japan are highlighted, while the other countries are shown in grey to demonstrate

the overall trend in electricity prices. The United States has had a relatively flat trend

over the time period, while Germany has experienced a rapid price increase since around

2000. Japan represents a more average price level throughout the time period.

Figure 2.5: Electricity prices by country

2.4.4 Relationship between LCE technologies and electricity

prices

To visualize the relationship between patenting activity and electricity prices, we create

scatterplots. Plots for the countries with the highest patenting activity, the United States,

Japan and Germany are presented in figure 2.6. The patent counts are displayed on the

x-axis, and electricity prices lagged by one year are shown on the y-axis. The electricity

prices are converted using annual purchasing power parity (PPP).

2.4 Descriptive statistics 17

2.4.3 Electricity prices

Electricity prices from 1978 to 2018 are visualized in figure 2.5. The average price

throughout the time period is 148 dollars per MWh. In 2.5, The United States, Germany

and Japan are highlighted, while the other countries are shown in grey to demonstrate

the overall trend in electricity prices. The United States has had a relatively flat trend

over the time period, while Germany has experienced a rapid price increase since around

2000. Japan represents a more average price level throughout the time period.

400

r.
350

L
'-
OJ 300D..
0
l/J
=i 250

OJu
L 200(l_

D
L 150
.µu
OJ
w

100

50

Countries
- D E
- J P
- u s

1995 2000 2005

years

2010 2015

Figure 2.5: Electricity prices by country

2.4.4 Relationship between LCE technologies and electricity

prices

To visualize the relationship between patenting activity and electricity prices, we create

scatterplots. Plots for the countries with the highest patenting activity, the United States,

Japan and Germany are presented in figure 2.6. The patent counts are displayed on the

x-axis, and electricity prices lagged by one year are shown on the y-axis. The electricity

prices are converted using annual purchasing power parity (PPP) .
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Figure 2.6: Scatterplots for countries with the highest patent activity (1978-2018)

The scatterplots for the United States, Germany and Japan indicate that the two variables

might be related to some extent. However, we cannot draw any conclusions based on

these plots because the relationship could be caused by other explanatory variables. As

the observations from these three countries are considered outliers, we create scatterplots

for more average countries in our panel.

Plots for Denmark, Austria and the Netherlands are presented in table 2.7, where the

variables appear to be positively correlated. The curves vary for the different countries,

and it is hard to determine whether a linear relationship exists. For these countries,
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The scatterplots for the United States, Germany and Japan indicate that the two variables

might be related to some extent. However, we cannot draw any conclusions based on

these plots because the relationship could be caused by other explanatory variables. As

the observations from these three countries are considered outliers, we create scatterplots

for more average countries in our panel.

Plots for Denmark, Austria and the Netherlands are presented in table 2.7, where the

variables appear to be positively correlated. The curves vary for the different countries,

and it is hard to determine whether a linear relationship exists. For these countries,
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one can see that for lower electricity prices the patenting activity fluctuates around zero.

However, when reaching a certain price level the innovative activity seems to increase.

This indicates that there might be different price levels for different countries that trigger

innovation. However, the linear relationship is clearer when taking the natural logarithm

of the two variables. In figure 2.7 the scatterplots with log-transformed variables are seen

on the right-hand side.

Figure 2.7: Scatterplots for countries with average patenting activity (1978-2018)

Further, the correlation coefficients are shown in table 2.3. The correlation between the

two variables is close to 1, indicating a linear relationship. However, we cannot interpret
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Figure 2. 7: Scatterplots for countries with average patenting activity (1978-2018)

Further, the correlation coefficients are shown in table 2.3. The correlation between the

two variables is close to l, indicating a linear relationship. However, we cannot interpret
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too much of the correlation other than the fact that a relationship exists.

Table 2.3: Correlation between electricity price and patenting activity

Country Corr supply and electricity prices Corr enabling and electricity prices
Denmark 0.89 0.91
Austria 0.82 0.87

Netherlands 0.82 0.90
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3 Methodology

3.1 Model specifications

As stated, this paper aims to analyse the effect of electricity prices on innovation within

LCE-supply and enabling technologies. We use a linear regression model for our research.

To test our hypothesis, our model is defined by the following equation:

PAT ijt = β1PRICEit-1 + β2K(supply)it-1 + β3K(enabling)it-1 + β4RENEW it-1 + β5Y EARi + αi + uit

(3.1)

where PAT is the patent count for category j, country i at time t. PRICE is a variable for

the electricity price. The variable is lagged by one year, due to the fact that innovation

caused by a price increase cannot happen simultaneously with the increase. K represents

the knowledge stock for LCE-supply and enabling technologies. The knowledge stock is

lagged by two years due to simultaneity problems. The two technical categories are closely

related, and we expect that increasing the available knowledge will lead to more frequent

innovation activity for both categories. Therefore, we include both knowledge stocks in

our model.

RENEW measures the share of green technologies in the supply mix for energy generation.

As all our variables have a general increase over time, the relationship with time is not

random. Therefore, our main model includes a linear time trend, represented by YEAR.

This allows us to control for an increase in the dependent variable, which is not explained

by other variables. We also include a model with a quadratic time trend, which will

be further discussed in section 4. Patenting activity within LCE-supply and enabling

technologies are mainly driven by some large countries, being the United States, Japan

and Germany. These countries also have higher economic growth, measured by GDP. To

account for the differences in patenting activity, the model is weighted by GDP to give

more weight to the countries with higher patenting activity. The weights represent each

country’s i GDP at time t.

All of our regressions include country-fixed effects resulting from the Hausman test in

Appendix A6.2. Implementing a fixed effects model is a standard method to remove
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unobserved effects (Wooldridge, 2018, p. 462 - 465). For our model, any time-constant

country-specific effects will be removed and captured in the unobserved effects αi. Countries

have general differences in patenting activity and other unobserved effects that might be

correlated with our dependent variables. Therefore including the country-fixed effects

reduce the chance of the model being biased.

Further, over the 41 years of data, there might be significant effects related to specific

points in time. Therefore, a model with time-fixed effects instead of a linear time trend is

included. The inclusion of time-fixed effects in the model allows us to both control for

unobservable variables that change over time but are constant over countries, and control

for factors that differ across countries but are constant over time (Hanck et al., 2021).

Regressions for both time-fixed effects and a linear time trend are included because it is

not apparent whether a time-fixed effect or a time trend is most appropriate. However,

our data is limited, so the two-way fixed effects model seems too strict.

3.2 The 2012 model

This model is created to further understand the shift in trends for patenting activity

after 2012. By doing so, we check whether the relationship between electricity prices and

patenting activity has changed. The model is an adjustment of the main model, where we

include a dummy variable for years after 2012 and an interaction term. All other variables

remain equal to our main model.

PAT ijt = β1PRICEit-1 + β2K(supply)it-1 + β3K(enabling)it-1+

β4RENEW it-1 + β5Y EARi + β6D1 + β7D1 ∗ PRICEit-1 + αi + uit

(3.2)

D1 = 1 if year > 2012, 0 if year < 2012

The dummy variable D1 is given the value 0 for years before 2012 and 1 for the years

after. D1* PRICEit-1 represent the interaction term. This variable provides a measure

of the change in the effect of electricity prices on patenting activity for years after 2012.

Adding an interaction term changes the interpretation of the model slightly. The PRICEit

coefficient now represents the effect of electricity prices for years before 2012. Adding
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PRICEit with the coefficient for the interaction term will provide the estimated effect of

electricity price for years after 2012.

3.3 Potential challenges with the models

The model has a high risk of endogeneity, which could cause biased estimations (Wooldridge,

2018, p. 87). First, we might have omitted one or more relevant variables from our model.

Fixed effects reduce omitted variable bias, but endogeneity could still be present in the

model. Another endogeneity concern is simultaneity. The problem arises when one or more

of the explanatory variables is jointly determined with the dependent variable (Wooldridge,

2018, p. 534). As our knowledge stock variables are a function of the dependent variables,

we add a one-year lag to reduce the simultaneity problem. This changes the construction

of the two knowledge stocks to equation 3.3.

K ijt - 1 = P ijt - 1 + (1− δ)K ijt-2 (3.3)

Other potential problems are related to the assumption that the errors, u it, should

be homoskedastic and serially uncorrelated (Wooldridge, 2018, p. 462 - 465). After

running the Breusch-Pagan and the Durbin-Watson test, we found the presence of both

heteroskedasticity and autocorrelation; see Appendix A6.4 and A6.3. Using a weighted

regression can help reduce some of the heteroskedasticity present in the model. However,

each country in the model has specific characteristics that apply to all observations from

that country. Therefore, using the normal standard errors can provide strongly misleading

results (Zach, 2021). To adjust for this, we include clustered standard errors, where each

country represents one cluster. The clustered standard errors are implemented in all

regressions and account for heteroskedasticity across countries.

At last, our variables are strictly positive, which often leads to heteroskedastic or skewed

distributions. This can be seen in the Appendix A3.1 for our dependent variable, which

is left skewed towards zero. "Taking the natural logarithm of such variables can help

reduce these problems if not eliminate them " (Wooldridge, 2018, p. 187). Furthermore,

it changes the coefficients into elasticities, making it easier to interpret the effects of

electricity price on the number of LCE-supply and enabling patents. Therefore, we include

a model where the variables PAT and PRICE are log-transformed.
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On the other hand, taking the natural logarithm of observations with zero values is

not possible. As our model includes several years with zero patents, these values are

transformed into missing values in the log-log model, leaving us with fewer observations

for both technologies. However, these zero values are assumed to be actual zero values

and not missing values that affect the model.

Changing the zero values to missing values also leaves us with a more unbalanced panel.

An unbalanced panel is when there are missing values in at least some cross-sectional

units in the sample (Wooldridge, 2018, p. 468 -469). If the reason for missing data in

an unbalanced panel is correlated with the idiosyncratic error u it, it can cause biased

estimators. As our missing values in the log-log model are actually true zero values, the

reason for the missing values is likely correlated with the error term.

Due to the problems related to zero values, the log-log model does not seem fitting for this

analysis. The choice of a Poisson model could reduce the problem of zero observations.

However, the Poisson model would not be optimal for our data as our patent count is not

an integer but constructed as a share. Our main model is therefore a linear level-level

model despite its limitations.
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4 Results

This section presents the results on whether electricity prices affect patenting activity

within LCE-supply and enabling technologies. The model is estimated separately for the

two technologies in order to analyse the differences between them.

Table 4.1 presents the regression model with the count of LCE-supply patents as the

dependent variable, and Table 4.2 presents the regression for enabling patents. All models

are weighted by GDP and include clustered standard errors and country-fixed effects.

Table 4.1: Regressions results - LCE-supply technologies

Dependent variable:

Supply Log-supply
(1) (2) (3) (4) (5) (6) (7)

PRICEit-1 1.770∗∗∗ −0.382 −0.224 −0.292 −0.245∗∗∗ 0.097
(0.641) (0.920) (0.714) (0.788) (0.043) (0.293)

log(PRICEit-1) 0.096
(0.702)

Ksupply 0.864∗∗∗ 0.865∗∗∗ 0.001∗∗∗

(0.016) (0.020) (0.0001)

Kenabling −0.075∗∗∗ −0.095∗∗∗ −0.001∗∗

(0.012) (0.018) (0.0004)

RENEWit-1 −3.840 −0.014
(3.200) (0.015)

YEARi 13.237∗∗∗ 10.629∗∗ 1.786∗∗∗ 1.786∗∗∗ 0.080∗∗∗

(4.806) (4.367) (0.405) (0.545) (0.024)

YEARi
2 0.059

(0.067)

Constant −308.123∗∗ −161.129∗ −294.427∗∗∗ −261.053∗∗ −0.041 196.457 1.125
(120.426) (90.315) (98.078) (126.136) (5.125) (163.860) (2.165)

Observations 976 976 976 976 976 815 703
Adjusted R2 0.479 0.765 0.578 0.578 0.930 0.930 0.900
Country fixed effects Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects No Yes No No No No No

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.2: Regressions results - Enabling technologies

Dependent variable:

Enabling Log-enabling
(1) (2) (3) (4) (5) (6) (7)

PRICEit-1 2.029∗∗∗ −0.986 −0.727 −0.980 −0.188∗∗ −0.143
(0.780) (0.711) (0.609) (0.653) (0.094) (0.116)

log(PRICEit-1) −0.090
(0.345)

K(supply)it-1 0.057∗∗∗ 0.061∗∗∗ −0.0002∗∗

(0.013) (0.015) (0.0001)

K(enabling)it-1 0.812∗∗∗ 0.798∗∗∗ 0.0003∗

(0.018) (0.018) (0.0002)

RENEWit-1 −0.507 −0.012
(0.478) (0.007)

YEAR 18.299∗∗∗ 8.637 1.350∗∗∗ 1.443∗∗ 0.083∗∗∗

(4.222) (5.462) (0.482) (0.624) (0.013)

YEAR2 0.219∗∗

(0.092)

Constant −364.263∗∗ −184.797∗ −345.330∗∗∗ −221.654∗ −0.151 22.303 1.299
(146.564) (97.284) (109.738) (125.053) (8.313) (27.835) (1.304)

Observations 976 976 976 976 976 815 692
Adjusted R2 0.625 0.802 0.784 0.788 0.972 0.971 0.947
Country fixed effects Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects No Yes No No No No No

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Model (1) is considered the naive model, including only electricity price and country-fixed

effects. Without including any control variables, the PRICE coefficient is positively

significant for both LCE-supply and enabling technologies. The results indicate that a 1

dollar increase in electricity prices per MWh leads to an increase of 1.7 supply patents

and 2 enabling patents per country per year.

Model (2) adds time-fixed effects in addition to country-fixed effects. This reduces the

effect of the PRICE coefficient as well as it turns negative for both LCE-supply and

enabling patents. However, the two-way fixed effect seems too strict for our estimations

due to our limited data.

Model (3) includes country-fixed effects with a linear time trend to control for the overall

increase in patents which is not explained by other variables. The time trend is positively

significant and indicates that the relationship with time is important. Further, the time

trend seems to capture most of the effects related to time. As stated in the methodology

section, controlling for time trends appears to be suited for our model.

Model (4) includes country-fixed effects with a quadratic time trend. For LCE-supply

technologies, it seems that most of the effect is captured in the linear time trend. This is

due to the significant coefficient YEAR at the 5% significance level. Further, the change
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in coefficients for PRICE from a linear to quadratic time trend is minimal. However, for

enabling technologies the coefficient indicating a quadratic time trend has a significant

effect. On the other hand, the coefficient for electricity price does not change much. As the

results of both enabling and LCE-supply regressions showing minimal effect of including

a quadratic time trend, we chose to use a linear time trend in all our models.

Model (5) builds on model (3) with linear time trend and country-fixed effects. In addition,

model (5) includes the knowledge stocks for the two categories. Controlling for available

knowledge makes the coefficient for PRICE negative and significant for both LCE-supply

and enabling technologies. However, the observed effect is small. Both patent counts

are positively affected by their own knowledge stock, as a one-unit increase in knowledge

increases the patent counts by 0.8. Kenabling has a slightly negative effect on LCE-supply

patents, while Ksupply has a small positive effect on the enabling patent count.

Model (6) is considered our main model and includes a control variable for the share of

renewables in the electricity supply mix. Including the variable RENEW reduces our

data by 7 years, leaving us with 815 observations. The coefficients for PRICE are no

longer significant for either LCE-supply or enabling patents. The coefficients for the two

knowledge stocks are still significant, but the effect remains the same as in model (5).

Model (7) is a log-log model, where both the count of patents and electricity prices are

log-transformed. As discussed, log-transformed variables can create a better distribution

of our observations. Considering the fact that a log-log model loses all zero values and

reduces the number of observations by over 100 patents, we will not move further with

this model. With the log-log model, the effect of electricity prices remains the same as in

model (6). However, we observe that the effect of knowledge disappears.
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5 Robustness Analysis

In this section, we test our results by widening our analysis. First, we include a variable

for environmental policy, before taking a closer look at how the effect of electricity prices

might vary for countries with higher patenting activity. Further, we investigate the

observed shift in patenting activity after 2012. At last, we check how different time lags

and weights affect our model.

5.1 Environmental policy stringency

Environmental policies are in previous research recognized as a potential driver for green

innovation. However, environmental policies are closely linked to electricity prices and

the stock of knowledge. As Kruse and Wetzel (2016) explains, governments can increase

electricity prices by implementing policies like emission taxes. This is because a large

share of electricity is generated from fossil fuels. Additionally, governments can increase

the stock of knowledge by for example implementing tax incentives for investments and

government-sponsored R&D (Kruse and Wetzel, 2016). Consequently, the variable for

environmental policy stringency is not included in our main model.

However, in order to test the robustness of our results, we include a control variable for

environmental policy stringency. As previously discussed, the stringency index measures

"the degree to which environmental policies put an explicit or implicit price on pollution or

environmentally harmful behaviour"(OECD, 2016). Models with a variable for stringency

are presented in table 5.1. The database dates back to 1990, meaning that we lose several

observations. Hence, this model only has 723 observations compared to the previous 815

observations.
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Table 5.1: Regression results - Including environmental policy stringency

Dependent variable:

Supply Enabling

(1) (2)

PRICEit-1 0.177 −0.128
(0.341) (0.125)

K(supply)it-1 0.864∗∗∗ 0.065∗∗∗

(0.020) (0.015)

K(enabling)it-1 −0.114∗∗∗ 0.779∗∗∗

(0.023) (0.023)

RENEWit-1 −4.522 −0.508
(3.680) (0.400)

STRINGENCYit −1.519 −10.747
(11.633) (7.689)

YEAR 2.061 2.483∗∗∗
(1.272) (0.742)

Constant 219.900 13.908
(177.435) (21.911)

Observations 723 723
Adjusted R2 0.929 0.970
Country fixed effects Yes Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results for the two categories are quite similar to our previous findings. The coefficient

for PRICE is close to zero and not significant when including all countries. The coefficient

for STRINGENCY is negative and not significant. This is somewhat surprising compared

to previous findings. For instance, Johnstone et al. (2010) finds that environmental policies

play a significant role for patent applications. However, Johnstone et al. include several

types of policy instruments and found that the effect on patenting activity varies between

these. As our index for environmental policy stringency is an overall measure of policies, it

will not reflect the effect of particular policies. Furthermore, the time period in Johnstone

et al. (2010) spans from 1978 to 2003. Due to this, the significant decrease in LCE-supply

technologies is not captured in his data. This could have a substantial effect on the results

and might reduce the importance of policies for innovation in the model.
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5.2 Testing different subsets

As previously discussed, patenting activity varies between countries. The United States,

Japan and Germany have an extremely high patenting activity compared to other OECD

countries. To investigate whether the effect of electricity prices varies among countries,

we create two subsets. One including only the United States, Japan and Germany and

one including the remaining countries. The results are presented in table 5.2. All models

in the table are identical to our main model with a linear time trend and country-fixed

effects.

Table 5.2: Regression results - Testing different subsets

Dependent variable:

Supply Enabling

(1) (2) (3) (4)

US, JP, DE 23 countries US, JP, DE 23 countries

PRICEit-1 3.089∗∗∗ −0.094∗ 0.424∗∗ −0.092
(1.164) (0.050) (0.202) (0.077)

K(supply)it-1 0.805∗∗∗ 0.890∗∗∗ 0.051∗∗∗ 0.018
(0.044) (0.018) (0.012) (0.017)

K(enabling)it-1 −0.412∗∗∗ −0.058∗∗∗ 0.715∗∗∗ 0.966∗∗∗

(0.106) (0.015) (0.042) (0.037)

RENEWit-1 −33.216∗∗∗ −0.363 −5.955∗∗∗ −0.058
(10.519) (0.258) (0.904) (0.196)

YEAR 8.957∗∗∗ 0.781∗∗ 3.334∗∗ 0.421
(2.300) (0.351) (1.324) (0.369)

Constant −337.775∗∗ 22.325 −47.318 9.149
(141.343) (14.546) (44.941) (10.521)

Observations 99 716 99 716
Adjusted R2 0.917 0.932 0.942 0.948
Country fixed effects Yes Yes Yes Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Models (1) and (3) are subsets where only the countries with the highest patenting activity

are included. Model (1) is a regression for LCE-supply technologies, and one can see that

the coefficient is positive and significant at the 1% level. The results show that a 1 dollar

increase in electricity price per MWh will induce 3 more supply patents per country per

year. A similar effect can be observed for enabling patents in model (3), where one can

expect 0,4 patents from a 1-dollar increase per MWh. The coefficient is significant at the

5% level.
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Models (2) and (4) are subsets including the remaining 23 countries. The coefficients

for electricity prices have changed from positive to negative signs. The significance level

is reduced for LCE-supply technologies and is not significant for enabling technologies.

Additionally, the coefficients are close to zero and indicate that there is no effect on

patenting activity from an increase in electricity price for the 23 countries.

However, the coefficients for PRICE can be difficult to interpret. This is due to the large

variation in electricity prices and patenting activity between the countries in our panel.

Therefore, we provide a simplified example:

Over the last 40 years, the United States had an average growth in electricity price per

year of 2 dollars per MWh. This is a relatively flat rate compared to Germany, which had

a yearly average growth of 8 dollars per MWh. A one-dollar increase in electricity price

will have different implications for the two countries, depending on their average growth

rate and price. However, for most countries, the price varies between 50 and 150 dollars

over the time period. To get a deeper understanding of our results, we can think of the

one-dollar increase per MWh as a 1% increase in electricity price. Using the adjusted

interpretation, our results indicate that a 1% increase in electricity price in the United

States will result in 3 LCE-supply patents and 0,4 enabling patents per year. Using this

example can help ease the interpretation of the PRICEit-1 coefficient. However, there are

large variations between countries and this method for coefficient interpretation can not

be used to draw any conclusions.

The results from the subset including the United States, Japan and Germany differ from

the main model where we find no effect of electricity prices on patents within LCE-supply

and enabling technologies. On the other hand, the results from our subset correspond with

the results of Popp (2002). In his research, Popp (2002) finds a significant positive effect of

energy prices on patenting activity within energy-efficient technologies in the United States.

This amplifies the fact that electricity prices have a stronger effect in countries with higher

patenting activity. Therefore, electricity prices do not seem to initiate innovation within

LCE-supply and enabling technologies but rather affect countries where the innovation is

already present.
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5.3 The 2012 model

LCE-supply and enabling technologies have since 2012 shown different trends in patenting

activity. As shown in the section for descriptive statistics, we found that the two

technologies have been moving in separate directions. To further investigate this, we

include a dummy variable and an interaction term in our models to see whether the effect

of electricity prices has changed after 2012.

Table 5.3: Regression Results - Included dummy variable for 2012

Dependent variable:

Supply Enabling

(1) (2) (3) (4) (5) (6)

All countries US, JP, DE 23 countries All countries US, JP, DE 23 countries

PRICEit-1 0.057 2.809∗∗∗ −0.065 −0.129 −0.020 −0.127
(0.248) (0.979) (0.048) (0.180) (0.432) (0.092)

K(supply)it-1 0.817∗∗∗ 0.742∗∗∗ 0.858∗∗∗ 0.038∗∗∗ 0.013 0.017
(0.022) (0.022) (0.021) (0.011) (0.012) (0.020)

K(enabling)it-1 −0.027 −0.222∗∗∗ −0.012 0.830∗∗∗ 0.846∗∗∗ 0.978∗∗∗

(0.031) (0.064) (0.010) (0.012) (0.050) (0.028)

RENEWit-1 −0.229 −18.637∗∗∗ 0.063 1.173∗ 4.705 0.027
(0.926) (6.401) (0.213) (0.644) (4.287) (0.193)

YEAR 4.996∗∗∗ 9.349∗∗∗ 1.209∗∗∗ 2.846∗∗∗ 4.044∗∗∗ 0.656
(1.499) (1.363) (0.328) (0.823) (1.534) (0.399)

D1 −159.289∗∗ −74.727∗∗ −36.013∗∗∗ −68.726∗∗∗ −77.348∗∗∗ −20.770∗∗
(68.137) (33.655) (12.877) (24.855) (15.985) (10.348)

D1* PRICEit-1 0.157 −0.610∗∗∗ 0.059 0.043 −0.258∗∗∗ 0.070∗∗
(0.295) (0.212) (0.043) (0.141) (0.033) (0.031)

Constant −100.546∗∗ −440.747∗∗∗ −18.505 −118.823∗∗ −91.091 4.154
(46.778) (131.491) (13.802) (54.939) (65.712) (11.676)

Observations 815 99 716 815 99 716
R2 0.949 0.944 0.945 0.975 0.958 0.950
Adjusted R2 0.947 0.939 0.942 0.974 0.954 0.948

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The three first models in Table 5.3 are for LCE-supply technologies. Models (4), (5) and

(6) are for enabling technologies.

The variable of interest in this model is the interaction term where we observe the change

in effect from electricity price after 2012. For supply technologies, the interaction term is

only significant for the subset including the United States, Japan and Germany, presented

in model (2). The coefficient indicates that for years after 2012, the effect of electricity

price is reduced by 0.610 patents. Therefore, the total effect of electricity prices on
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patenting activity for years after 2012 is 2.199. For all countries in our panel, presented

in model (1), the effect of electricity prices before and after 2012 is not significant.

For enabling technologies, the coefficients for the interaction term in models (5) and (6)

are significant. We observe that the effect of electricity prices is reduced by 0.258 patents

for the United States, Japan and Germany, while the effect is increased by 0.07 patents

for the remaining 23 countries.

Both the coefficients in the models for high patenting activity are significant at the 1%

level. This indicates that the effect of electricity prices after 2012 is slightly reduced for

the United States, Japan and Germany. However, all of the coefficient values are around

0,5 patents, indicating that even though there is a significant change for the subsets, this

change is very small.

The estimated coefficient for the interaction term, representing the change in electricity

prices for years after 2012, has a much shorter time period. Therefore, one should be

careful when comparing the effect of electricity prices before and after 2012.

5.4 Model without weights

All our models are weighted by GDP in order to give more weight to countries with higher

patenting activity. In this section, we further investigate our models without weights.

Model (1) and model (3) are the weighted models for all countries in the panel. Models

(2) and (4) show regressions for LCE-supply and enabling patent counts when we remove

the weights.
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Table 5.4: Regression Results - Weights robustness test

Dependent variable:

Supply Enabling

(1) (2) (3) (4)

with weights without weights with weights without weights

PRICEit-1 0.097 −0.111∗∗ −0.143 −0.116∗
(0.293) (0.052) (0.116) (0.069)

K(supply)it-1 0.865∗∗∗ 0.903∗∗∗ 0.061∗∗∗ 0.062
(0.020) (0.029) (0.015) (0.042)

K(enabling)it-1 −0.095∗∗∗ −0.053∗∗∗ 0.798∗∗∗ 0.858∗∗∗

(0.018) (0.021) (0.018) (0.033)

RENEWit-1 −3.840 −0.069 −0.507 −0.091
(3.200) (0.290) (0.478) (0.128)

YEAR 1.786∗∗∗ 0.798∗∗∗ 1.443∗∗ 0.716∗
(0.545) (0.306) (0.624) (0.371)

Constant 196.457 5.890 22.303 9.130
(163.860) (18.407) (27.835) (8.330)

Observations 815 815 815 815
Adjusted R2 0.930 0.949 0.971 0.973
Country fixed effects Yes Yes Yes Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results coincide with previous findings, which indicate that the positive effect of

electricity prices on patenting activity is mainly driven by the US, Japan and Germany.

We observe that the coefficients for LCE-supply technologies change from positive to

negative when removing the weights. The countries with the highest patenting activity are

also the ones with the highest GDP, giving the results from the United States, Germany

and Japan more weight in the model. As we already know, the effect of electricity prices

is strongly positive for these countries and slightly negative for all other countries. When

giving more weight to the larger countries, we see that the coefficient adjusts for the

strong positive effect in these countries.
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5.5 Lags on electricity price

To test the robustness of the price effects, we test for 2-year and 3-year lags in electricity

prices. This is done for the reason that the delay from the change in electricity price

before a patent is applied for could be longer than one year.

Table 5.5: Lags on electricity price

Dependent variable:

Supply Enabling

(1) (2) (3) (4) (5) (6)

1 year 2 years 3 years 1 year 2 years 3 years

PRICEit-1 0.097 −0.143
(0.293) (0.116)

PRICEit-2 −0.043 −0.096
(0.220) (0.086)

PRICEit-3 −0.159 −0.013
(0.148) (0.084)

K(supply)it-1 0.865∗∗∗ 0.866∗∗∗ 0.865∗∗∗ 0.061∗∗∗ 0.060∗∗∗ 0.060∗∗∗

(0.020) (0.020) (0.019) (0.015) (0.014) (0.014)

K(enabling)it-1 −0.095∗∗∗ −0.097∗∗∗ −0.099∗∗∗ 0.798∗∗∗ 0.799∗∗∗ 0.800∗∗∗

(0.018) (0.017) (0.017) (0.018) (0.018) (0.018)

RENEWit-1 −3.840 −3.240 −2.754 −0.507 −0.717 −1.072
(3.200) (2.836) (2.453) (0.478) (0.548) (0.756)

YEAR 1.786∗∗∗ 2.224∗∗∗ 2.552∗∗∗ 1.443∗∗ 1.285∗∗ 1.041∗∗∗

(0.545) (0.520) (0.603) (0.624) (0.518) (0.399)

Constant 196.457 169.401 147.921 22.303 31.679 47.451
(163.860) (149.336) (133.383) (27.835) (29.863) (36.496)

Observations 815 812 809 815 812 809
Adjusted R2 0.930 0.930 0.930 0.971 0.971 0.970
Country fixed effects Yes Yes Yes Yes Yes Yes

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As shown in table 5.5, the coefficient for electricity price slightly changes between the

three lags for both categories. However, the effect is not significant for any of the three

lags when including all countries in our panel. The other coefficients in the model barely

change for the different time lags. The model does not seem to be significantly affected by

the adjustments for different time lags. Following Kruse and Wetzel (2016), we conclude

that a one-year lag is sufficient in the model.
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6 Conclusion

This analysis aims to come closer to understanding what drives innovation within green

technologies. However, this is a highly discussed and complex question where the scientific

community has not reached a final conclusion.

The uncertain global situation in 2022 has led to changes in the energy supply and

abnormally high electricity prices. Therefore, the motivation for this analysis was to

investigate whether we can expect the increased electricity prices to affect innovation

within LCE technologies. The fundament of the analysis was the following research

question:

How do electricity prices affect innovation within LCE-Supply and Enabling technologies?

To answer this question, patents are used as a proxy for innovation. A linear regression

model is applied to a panel including 26 OECD countries from 1978 to 2018.

For our main results, we do not find any significant effect of electricity prices for either LCE-

supply or enabling technologies. The results correspond with the paper from Johnstone

et al. (2010), which finds no significant effect of electricity price on patent activities within

green energy technology. This indicates that other factors mainly drive innovation within

green technologies. Assuming that there are no omitted variables in the model, our results

suggest that the primary determinant for innovation within LCE-supply and enabling

technologies is the availability of knowledge. This corresponds well with the conclusion

reached by Kruse and Wetzel (2016). Furthermore, this is supported by Popp’s theory

that "the supply of ideas, as well as the demand for new ideas, plays an important role in

shaping the direction of innovation" (Popp, 2002).

However, when extracting a subset for the United States, Japan and Germany, we discover

a positive significant effect of electricity prices. As these countries account for about

68% of total innovation within our data, this result indicates that electricity price affects

countries with high patenting activity. To test the robustness of our analysis, we included

an environmental policy stringency index in our model. However, we do not find any

significant effect of policies for our 26 OECD countries. The results stay close to the main

model, where knowledge seems to be the main driver.
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Next, we look at the shift in trends for patenting activity since 2012. We found that the

effect of electricity prices on innovation did not significantly change before and after 2012.

However, for the United States, Japan and Germany, the effect of electricity prices is

slightly reduced after 2012.

To conclude, the results of our analysis signal that different countries will have different

drivers for green innovation. However, there are some limitations to our models. Due to

the complexity of the question of what drives innovation, our model could have problems

related to endogeneity. One reason for this is the simultaneity problem related to our

knowledge stocks. The additional lag reduces this, yet there is no guarantee that all

simultaneity-related issues are removed from the model. Another potential reason for

endogeneity in the model is caused by omitted variable bias. Even though we have

included and tested for different variables, other explanations for innovation within green

technologies might still exist. Therefore, looking for other potential drivers for innovation

could be interesting for future research.

Further, using patent data to compare innovation trends across countries has some

limitations. This is due to the difference in patent regulations for countries, which makes it

hard to compare counts of patents. Therefore, one should keep this in mind when reading

the results for different country subsets. On the other hand, it would be interesting for

future research to understand the difference in the effect of electricity prices for countries

with higher patenting activity. Understanding how innovation is induced in these countries

could potentially help to increase innovation in other countries.

The time period of the analysis is limited due to a lack of data. This is primarily because

of the data for the share of renewables which only dates back to 1985. Further, some

countries also have missing data for certain variables, meaning that the time period for

these countries is shorter in the analysis. Including a longer time period and a more

balanced panel would be beneficial for future research.

At last, we are in the midst of a global energy and climate crisis. For future research, it

will be particularly interesting to observe whether the current shocks and the extreme

electricity prices we are experiencing today will affect innovation within low-carbon energy

technologies in the future.
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Appendix

A1 Cooperative Patent Classification (CPC)

EPO uses two classification schemes for patents, which is beneficial in order to analyse

innovation within specific categories. The first one is the International Patent Classification

(IPC), where there are approximately 70 000 different classification codes for various

technical areas (EPO, 2017a). The second one, the Cooperative Patent Classification

(CPC) is an extension of the IPC.

CPC is divided into nine sections, A-H and Y with their respective subclasses and groups.

This adds up to a total of approximately 250 000 classification entries (EPO, 2017b). The

difference between CPC and IPC is the additional section Y that is included in CPC,

which is related to the general tagging of new technological developments (EPO, 2017b).

All the CPC classifications used in our analysis are categorized within this section Y. The

categories are based on the cartography of LCE technologies from the article "Patents

and the Energy Transition" (IEA, 2021c).

Table A1.1: Cartography of LCE-supply and enabling technologies

Cartography of LCE supply and enabling technologies

Low-carbon
energy supply

Wind Y02E10/70/LOW

Solar
Solar PV
Solar thermal
Other Solar

Y02E10/50/LOW
Y02E10/40/LOW
Y02E10/60

Other renewables

Geothermal energy
Hydro
Marine
Other

Y02E10/10/LOW
Y02E10/20/LOW
Y02E10/30/LOW
Y02E10/00

Technologies for the production of
fuel of non-fossil origin

Biofuels
Fuel from waste
Other

Y02E50/10
Y02E50/30
Y02E50/00

Combustion technologies with mitigation potential Y02E20/00/LOW
Energy generation of nuclear origin (electricity) Y02E30/00/LOW

Enabling and
cross-cutting
energy systems
(enabling technologies)

CCUS Y02C20/00/LOW
Batteries Y02E60/10
Hydro and fuel cells Y02E60/30/LOW

Other

Y02E60/00 OR
Y02E60/13 OR
Y02E60/14 ”R
Y02E60/16 OR
Y02E70/00/LOW OR
Y02E60/60 OR
Y02E40/00 OR
Y02E40/10,20,30,40,50,60

Smart Grids Y04S

Table is retrieved from IEA (2021c)
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Table A2.1: Number of LCE technology patents for 36 OECD countries

Countries 1978-1986 1986-1994 1994-2002 2002-2010 2010-2018 Total
AT 75 82 115 331 582 1187
AU 46 32 119 280 325 803
BE 58 33 104 268 595 1059
CA 29 129 309 666 694 1829
CH 163 174 388 1112 1799 3638
CL 0 0 1 3 16 20
CZ 0 2 5 30 48 85
DE 1039 1211 2558 6312 9852 20974
DK 21 49 182 909 1983 3144
EE 0 0 0 9 17 26
ES 14 25 69 518 799 1426
FI 11 55 85 250 486 888
FR 721 615 738 2025 3893 7994
GB 302 301 458 1136 1842 4041
GR 1 9 8 33 21 72
HU 16 10 6 25 51 111
IE 4 5 19 124 162 316
IL 18 27 76 221 328 671
IS 0 0 1 3 5 9
IT 66 150 251 785 1022 2276
JP 476 1254 3924 7740 12441 25837
KR 0 3 158 2071 6001 8235
LT 0 0 0 2 6 8
LU 20 21 38 61 108 248
LV 0 0 1 4 14 19
MX 0 0 3 14 21 38
NL 94 115 271 749 1142 2372
NO 11 15 78 233 239 576
NZ 0 10 14 41 90 156
PL 1 2 3 44 156 207
PT 1 3 9 36 58 108
SE 149 122 291 395 652 1610
SI 0 1 1 11 26 39
SK 0 0 4 10 17 31
TR 0 0 4 35 75 115
US 1509 2079 3461 8964 10617 26633

AT = Austria, AU = Australia, CA = Canada, CH = Czech Republic, DE = Germany, DK = Denmark, ES = Spain, FI = Finland, FR =

France, GB = Great Britain, HU = Hungary, IE = Ireland, IL = Israel, IT = Italy, JP = Japan, KR = South Korea, LU = Luxembourg, NO

= Norway, NL = New Zealand, PL = Poland, SE = Sweden, TR = Turkey, US = The United States, MX = Mexico, CZ = Czech Republic, SI

= Slovenia, CL = Chile, EE = Estonia, IS = Iceland, LV = Latvia, LT = Lithuania, GR = Greece, SK = Slovakia
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AT = A u s t r i a , AU = A u s t r a l i a , C A = C a n a d a , C H = C z e c h R e p u b l i c , DE = G e r m a n y , DK = D e n m a r k , ES = S p a i n , FI = F i n l a n d , F R =

F r a n c e , G B = G r e a t B r i t a i n , H U = H u n g a r y , I E = I r e l a n d , I L = Is rae l , I T = I t a ly , J P = J a p a n , K R = S o u t h K o r e a , L U = L u x e m b o u r g , NO

= Norway, NL = New Z e a l a n d , PL = P o l a n d , S E = S w e d e n , T R = Turkey , US = T h e U n i t e d S t a t e s , MX = Mexico, CZ = Czech R e p u b l i c , SI

= Sloven ia , CL = C h i l e , EE = E s t o n i a , IS = I c e l a n d , LV = L a t v i a , LT = L i t h u a n i a , GR = G r e e c e , SK = Slovakia
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Table A2.1 provides information on LCE-supply and enabling patents for 36 OECD

countries. Countries with less than 100 patents in total are excluded from our analysis.

These are: Latvia, Mexico, Czech Republic, Greece, Slovenia, Chile, Estonia, Iceland,

Slovakia and Lithuania.
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Figure A3.1: Distribution of dependent variables

Figure A3.1 shows the distribution of LCE-supply and enabling patents for 26 OECD

countries. The right hand-side of the figure presents the log-transformed distribution,

while the left side is a regular count. The figure indicates that the distribution is very

skewed, and the log-transformed counts are slightly more normally distributed.
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Figure A3.1 shows the distribution of LCE-supply and enabling patents for 26 OECD

countries. The right hand-side of the figure presents the log-transformed distribution,

while the left side is a regular count. The figure indicates that the distribution is very

skewed, and the log-transformed counts are slightly more normally distributed.
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Figure A4.1: Electricity price for countries

Figure A4.1 presents histograms of electricity prices for the three countries with the

highest patenting activity, and countries with more average patenting activity from 1978

to 2018.
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Figure A4.1: Electricity price for countries

Figure A4.1 presents histograms of electricity prices for the three countries with the

highest patenting activity, and countries with more average patenting activity from 1978

to 2018.



44 A5 Overview environmental policy stringency index

A5 Overview environmental policy stringency index

Figure A5.1: Environmental Policy Stringency for 26 OECD countries

Figure A5.1 presents the environmental policy stringency for 26 OECD countries from

1990 to 2018. Germany and Japan are considered more average on the level of stringency,

while the United States is more on the lower limit. Overall, the majority of countries have

followed the same trends over the time period, including a jump in stringency around

2000.
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Figure A5.1: Environmental Policy Stringency for 26 OECD countries

Figure A5.1 presents the environmental policy stringency for 26 OECD countries from

1990 to 2018. Germany and Japan are considered more average on the level of stringency,

while the United States is more on the lower limit. Overall, the majority of countries have

followed the same trends over the time period, including a jump in stringency around

2000.
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A6.1 The VIF test for Multicollinearity

The variance inflation factor (VIF) is used in order to test for multicollinearity. As none

of the variables has a VIF above 5, we conclude with moderate multicollinearity.

Table A6.1: VIF test

PRICEit-1 K(supply)it-1 K(enabling)it-1 RENEWit-1

1.069 2.883 2.852 1.053

A6.2 The Hausman test for fixed or random effects

For panel data estimation there are two main methods for estimating unobserved effects

(Wooldridge, 2018, p. 462). The Hausmann test is commonly used to decide whether the

fixed or random effects model should be used (Wooldridge, 2018, p. 473).

The null hypothesis is that the random effects model is preferred. If the p-value is less

than 0.05, we reject the null hypothesis. In our case, the P-value indicates rejection of the

null hypothesis, meaning the fixed effects model is preferred.

Table A6.2: Hausman test

data:PAT(supply)it∼ PRICE it-1 +K(supply)it-1 +K(enabling)it-1 +RENEW it-1 + Y EAR

chisq = 83.418, df = 5, p-value < 2.2e-16

alternative hypothesis: one model is inconsistent
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A6.3 Breusch-Pagan test

The Breusch - Pagan test is used to determine the presence of heteroscedasticity. The

null hypothesis is that homoscedasticity is present. Our p-value is less than 0.05 and we

reject the null hypothesis, meaning that heteroskedasticity is present in the model.

Table A6.3: Breusch-Pagan test

data: PATijt∼ PRICE it-1 +K(supply)it-1 +K(enabling)it-1 +RENEW it-1 + Y EAR)

BP = 4994.7, df = 30, p− value < 2.2e− 16

A6.4 Durbin-Watson test

The results of the Durbin-Watson test indicate that there is positive autocorrelation in

our model, as the Durbin-Watson statistic is below 2.

Table A6.4: Durbin-Watson test

data: lm(PATijt∼ PRICE it-1 +K(supply)it-1 +K(enabling)it-1 +RENEW it-1 + Y EAR)

DW = 0.84826, p− value < 2.2e− 16

alternative hypothesis: true autocorrelation is greater than 0

Test for autocorrelation
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