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Abstract 

This paper investigates a multi-periodic channel optimization facing uncertain, price-

dependent, and dynamic demand. The picture of the market uncertainty is incomplete, and only 

the price and time-dependent mean and standard deviation are known and may depend on the 

price history. The actual demand distribution itself is unknown as is typically the case in real-

world problems. An algorithm finding the optimized decentralized channel equilibrium is 

developed when the downstream member optimizes her expected profit stream by a 

distributional-robust approach, and the upstream member (leader) considers it as the follower’s 

reaction function. The algorithm allows for strategic decisions whereby the current demand is 

scaled by the previous price setting. 
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1 Introduction 

A supply channel is frequently accompanied by a time-varying and uncertain demand. The 

upstream member (manufacturer) and the downstream member (retailer) are exposed to this 

market uncertainty in different manners. The retailer faces the uncertainty directly, while the 

manufacturer senses it through the order quantity made by the retailer. The uncertainty in 

demand usually leads the chain to a lost sale or unsold quantity which can be salvaged (Khan 

& Sarkar, 2021). 

The simplest case occurs when the demand is structured from a distribution of price-

independent quantities. In reality, demand varies as time goes by. Consequently, demand-

boosting strategies, such as period(s) with free or low-price commodities to boost the market in 

the following periods, expedite the market. On the other hand, customers, aware of the price 

trend, may change their purchase plan based on the historical product’s prices over time. The 

market demand can be adjusted to increase (decrease) with positive (negative) effects from 

price history. Strategic pricing policy, hence, occurs where the demand contains current and 

historical prices. The main challenge in a multi-period discrete-time model with dynamic price-

dependent demand is the interdependence of all price values. This nestedness comes into play 

by the notion of memory or scaling functions that carry the effect of prior prices. 

A channel is normally not fully equipped with comprehensive demand distribution information, 

either the information is unavailable or too costly to be achieved. These cases logically require 

a distributional-robust (𝐷𝑅) approach. The present work considers a game between upstream 

and downstream parties of a decentralized channel where the manufacturer is the leader, and 

the retailer follows him. The demand of this channel is dynamic and price-dependent for a 

perishable commodity where the demand distribution is unknown. The problem is formulated 

in a multi-period revenue management setting. In each period (𝑘) the leader starts by deciding 

the wholesale price (𝑤𝑘) and the follower immediately follows up by deciding her order 

quantity (𝑞𝑘) and retail price (𝑟𝑘) to the market. Both parties want to optimize their holistic 

profits over all periods. The commodity cannot be stored for later use. Thus, any unsold item 

must be salvaged (discarded) at a lower price (cost) 𝑠𝑘. 

The retailer encounters the market risk through stochastic demand (𝐷𝑘) and may endure not 

meeting the market by missing an opportunity to sell (𝐷𝑘 − 𝑞𝑘)+ more, or salvaging/discarding 

(𝑞𝑘 − 𝐷𝑘)+ leftovers. In each period the uncertainty is unveiled after the decisions on 

𝑤𝑘, 𝑟𝑘, and 𝑞𝑘 are made. The main novelty in this paper is to solve such multi-periodic supply 

chain problems where the means and standard deviations are the only known information about 
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the demand encompassing the effect of antecedent price setting. This approach incorporates the 

effects on future market demand by previous decisions (price-setting). This implements by 

setting the means and standard deviations as functions of all previous retail prices, such that 

previous prices scale the demand, but only the current retail price determines the current 

coefficient of variation (CV). The potential dependence on previous prices authorizes strategic 

pricing, e.g., lowering prices to enhance demand by attracting more customers. Over time, 

prices can be raised if the customer base increases sufficiently. 

This work considers the normal flow of retail; The product is supplied (produced) by a 

wholesaler (manufacturer) and sold by a retailer to customers. Both parties are risk-neutral and 

want to maximize their expected discounted total profit. The main part of the solution effort is 

the computation of equilibrium prices leading to order quantities that maximize expected 

profits. It leads to a type of subgame perfect optimization that can be decomposed into a 

sequence of connected decisions. A trivial subclass of our approach covers the multi-period 

supply chain games with stochastic demands that are only dependent on the current price and 

time. The non-negative property of demand excludes all distributions with compact support not 

limited from below, e.g. the normal distribution. This is particularly important when the 

volatility is dependent on decision variables (e.g. the price). Section 4 works out an illustration 

comparing distributional-robust results with the alternative fully informed cases exemplified by 

uniform distributions.  

2 Literature Review 

In 1958, Scarf proposed a method to solve an inventory problem with limited demand 

information where the only knowledge of demand is the mean and standard deviation and the 

demand distribution is uncharted (Scarf, 1958). Later, Gallego and Moon revised and extended 

Scarf’s method for a newsvendor problem with three conditions when: a second purchasing 

opportunity can occur after demand is revealed, a multi-item case, and a random yield case 

(Gallego & Moon, 1993). In another study, Gallego discussed a minimax distributional-robust 

approach to acquire order and inventory levels minimizing the cost of holding/shortage in a 

newsvendor problem (Gallego, 1992). Gallego, in cooperation with Moon, analyzed continuous 

and periodic inventory models with backorders and lost sales and a price-independent demand 

by a minimax 𝐷𝑅 approach to obtain the order volume and retail price (Moon & Gallego, 1994). 

Godfrey and Powell optimized the newsvendor problem with a repeated inventory under 𝐷𝑅 

model using the concave adaptive value estimation (CAVE) algorithm (Godfrey & Powell, 
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2001). Mostard et al. studied the 𝐷𝑅 newsvendor problem where the returned items, if not 

damaged, were resold before the end of the season and leftovers would be salvaged. Even 

though the shortage also can harm their algorithm by a shortage cost on the retailer’s side 

(Mostard, et al., 2005). Pal et al. also inset a 𝐷𝑅 newsvendor problem and study inventory 

management with a non-linear holding cost to diminish the inventory level (Pal, et al., 2015). 

Sarkar et al. investigated the 𝐷𝑅 Stackelberg newsvendor problem under a make-to-order and 

consignment policy where both parties carry some share of the holding cost (Sarkar, et al., 

2018). Khan and Sarkar presented a 𝐷𝑅 newsvendor model with back-ordering and stochastic 

and price-dependent demand (Khan & Sarkar, 2021). Their retailer is required to pay an 

additional price per product to transfer the unsold items’ risk to the manufacturer. Govindarajan 

et al. solved a 𝐷𝑅 multi-location newsvendor problem to optimize the inventory level 

minimizing cost (Govindarajan, 2021).  

Our paper contributes to this research area by optimizing the multi-period supply chain 

Stackelberg game in which demand is time and price-dependent, although the distribution of 

demand is unknown. The only available information is the mean (𝜇) and the standard deviation 

(𝜎) of the demand as functions of time and prices when the price history impacts the future 

demand, i.e., price history dependent demand (PHD). Practically speaking, figuring out the 

stochastic drivers in a time-dependent demand distribution may not be available or 

economically viable. Hence, the distributional-robust model is a maxmin-optimization to 

generate a weak lower bound on optimal expected value. This is considered in section 4. 

Table 1: A literature review on distributional-robust problem 

Author(s) Perishable  Periods Demand1 PHD 

Scarf, 1958 ✓ 1         S × 

Gallego, 1992 × 1 S × 

Gallego & Moon, 1993 ✓ 1 S × 

Moon & Gallego, 1994 × 1 S × 

Godfrey & Powell, 2001 ✓ 2 S × 

Mostard, et al., 2005 ✓ 1 S × 

Pal, et al., 2015 ✓ 1 S × 

Sarkar, et al., 2018 ✓ 1 S × 

Khan & Sarkar, 2021 ✓ 1 S × 

Govindarajan, 2021 ✓ 1 S × 

This paper ✓ Any TPD ✓ 

 
1 S=static and TPD=time and price dependent 
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3 Model Framework 

To the best of our knowledge, the 𝐷𝑅 supply chain problem has been widely studied in the 

literature but has not gone beyond 2 periods with newsvendor structure. In this paper, our 𝐷𝑅 

algorithm finds the subgame perfect optimal equilibrium prices and quantities. The problem is 

stated in a multi-periodic setting with explicit time-dependent model parameters (non-

autonomous). In the following, a single-period problem is explained in section 3.1, and a multi-

periodic extension in sections 3.2 and 3.3. To follow the rest of this section, the notation list is 

stated as follows where 𝑛 is the number of periods. 

Notation 

𝛽 = {𝛽1, … , 𝛽𝑛} Discount factor over individual periods2  

𝑐𝑚 = {𝑐1
𝑚, … , 𝑐𝑛

𝑚} Manufacturer cost 

𝑠 = {𝑠1, … , 𝑠𝑛} Salvage price/discarding cost 

𝑤 = {𝑤1, … , 𝑤𝑛} Wholesale price (decisions) 

𝑟 = {𝑟1, … , 𝑟𝑛} Retail price (decisions) 

𝑞 = {𝑞1, … , 𝑞𝑛} Order quantity (decisions) 

𝑘 ∈ {1, … , 𝑛} Time or period 

𝐷 = {𝐷1, … , 𝐷𝑛} Demand 

𝜇 = {𝜇1, … , 𝜇𝑛} Mean of demand 

𝜎 = {𝜎1, … , 𝜎𝑛} The standard deviation of demand 

𝑧 = {𝑧1, … 𝑧𝑛} Stochastic and independent drivers with mean 0 and variance 1 

𝜋𝑚 = {𝜋1
𝑚, … , 𝜋𝑛

𝑚} Manufacturer profit (running value) 

𝜋𝑟 = {𝜋1
𝑟 , … , 𝜋𝑛

𝑟} Retailer profit (running value) 

𝐽𝑅𝑥 The total expected value of player 𝑥, in 𝐷𝑅 model 

𝐽𝐷𝑥 The total expected value of player 𝑥, in the model with known 

distribution 

3.1 Single-Period Distributional-Robust Supply Chain Model 

In this supply chain under the Stackelberg game, the channel leader, the manufacturer, acts first 

and offers the price 𝑤 that maximizes his profit (𝐸[𝜋𝑚(𝑞, 𝑤)]). Then the follower, the retailer, 

decides on the optimal volume 𝑞 and optimal retail price 𝑟 that maximizes his expected profit 

 
2 The discount factors related to the start (t=0) are 𝛼𝑘 = 𝛽1 ∙ 𝛽2 ∙ ⋯ ∙ 𝛽𝑘 . Individual periods may be of different 

length. 



6 

 

(𝐸[𝜋𝑟(𝑞, 𝐷, 𝑟, 𝑤)]). It is a single-order opportunity, and the market cannot be replenished; 

Consequently, the unmet demand is considered backlogged and is not involved in the algorithm. 

The unsold items, on the other hand, can be salvaged/discarded at a lower price/cost 𝑠. We 

have dropped the time index since it is single-period problem. The general form of demand 

forms 

𝐷 = 𝜇(𝑟) + 𝜎(𝑟) 𝑧 ≥ 0, (1) 

where 𝜇 and 𝜎 are deterministic known functions of retail price 𝑟, and 𝑧 is a stochastic variable 

with a mean and standard deviation of 0 and 1 respectively. Noticing the stochastic demand, 

the retailer orders 𝑞 and sells 𝑚𝑖𝑛 (𝐷, 𝑞) at price 𝑟 to maximize his profit 

𝜋𝑟  =  𝑟 min(𝐷, 𝑞) + 𝑠 (𝑞 − 𝐷)+ − 𝑤 𝑞 (2) 

The leftovers (𝑞 − 𝐷)+is salvaged at 𝑠(> 0) or discarded at 𝑠(< 0). To optimize the problem, 

the expected value is illustrated as3 

𝐸[𝜋𝑟]  =  (𝑟 − 𝑠) 𝐸[min(𝐷, 𝑞)] − (𝑤 − 𝑠) 𝑞 

=  (𝑟 − 𝑠) 𝐸(𝐷 − [𝐷 − 𝑞]+) − (𝑤 − 𝑠) 𝑞 

=  (𝑟 − 𝑠) 𝜇 − (𝑤 − 𝑠) 𝑞 − (𝑟 − 𝑠) 𝐸[𝐷 − 𝑞]+ 

(3) 

If the demand is accompanied by a known distribution, the value of 𝐸[𝐷 − 𝑞]+ can be 

calculated. In general, the following hold 

I. (𝐷 − 𝑞)+ ≤ |𝐷 − 𝑞|, 

II. 𝐸[|𝐷 − 𝑞|] ≤ √𝐸[(𝐷 − 𝑞)2] = √(q − μ)2 + 𝜎2  (Cauchy-Schwartz inequality) 

III. (𝐷 − 𝑞)+ =
1

2
{|𝐷 − 𝑞| + (𝐷 − 𝑞)} . 

A simple consequence of these relations is 

𝐸[𝐷 − 𝑞]+ ≤  
√𝜎2 + (𝑞 − 𝜇)2 − 𝑞 + 𝜇

2
 . 

(4) 

This inequality gives a tight lower bound on expected retailer profit for any distribution with 

the same 𝜇 and 𝜎. Hence, 

𝐸[𝜋𝑟] ≥  (𝑟 − 𝑠) 𝜇 − (𝑤 − 𝑠) 𝑞 − (𝑟 − 𝑠) 
√𝜎2 + (𝑞 − 𝜇)2 − 𝑞 + 𝜇

2
≡ Π𝑟 . 

(5) 

 
3 min(𝐷, 𝑞) = 𝐷 − (𝐷 − 𝑞)+  and  (𝑞 − 𝐷)+ = (𝑞 − 𝐷) + (𝐷 − 𝑞)+ 
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The 𝐷𝑅 approach is defined by replacing 𝐸[𝜋𝑟] with Π𝑟. It has been shown that equality holds 

in Eq. (5) for some special distributions  (Gallegol & Moon, 2016) and trivially for a 

deterministic demand. 

The optimal ordering volume follows from optimizing Π𝑟 for 𝑞 

𝑞 =  𝜇 + 𝜎Λ, Λ =
𝜂 −

1
2

√𝜂 (1 − 𝜂)
    and    𝜂 =  

𝑟 − 𝑤

𝑟 − 𝑠
  (6) 

The 𝜇 and 𝜎 approach zero when prices turn to large values4. The manufacturer optimizes his 

problem to find the optimal price 𝑤, manipulating the retailer to order 𝑞 in the Stackelberg 

game, such that this pair (𝑤, 𝑞) maximizes his profit 

𝜋𝑚  =  (𝑤 − 𝑐𝑚) 𝑞 = 𝐸[𝜋𝑚] 

To have consistent notation, 𝐸[𝜋𝑚] = 𝜋𝑚 = Π𝑚.  

(7) 

3.2 Multi-Period Distributional-Robust Model 

In a multi-periodic chain, players endeavor to maximize their total discounted expected profit 

streams  

𝐽𝑘
𝑥 = αkΠ𝑘

𝑥 + 𝛼𝑘+1 Π𝑘+1
𝑥  + 𝛼𝑘+2Π𝑘+2

𝑥 +  ⋯ + 𝛼𝑛 Π𝑛
𝑥    for  𝑥 ∈ {𝑚, 𝑟}, 

where 𝛼𝑘 = 𝛽1 . 𝛽2 … 𝛽𝑘, 
 (8) 

and 𝑛 is the number of periods that may be of different duration and 𝛽 is the discount rate.  𝐽𝑘 
𝑟 

and  𝐽𝑘
𝑚 are the present values of the streams for the retailer and manufacturer respectively, from 

period 𝑘 and onward. The players optimize their 𝐽𝑘
𝑥 at each period (i.e., subgame perfect). 

3.3 Multi-Period Distributional-Robust Model with Price-History Dependent Demand 

Demand is usually sensitive to price, and this may evolve as time goes by. The current price 

and time are normally not the only factors impacting the current demand. Previous price settings 

may scale the market by, e.g., boosting or shrinking the upcoming demands. This impact is 

likely to be time-dependent. In this work, we assume that the price history only affects the size 

of the demand while the present price also modifies the coefficient of variation (𝐶𝑉), i.e., 

𝐷𝑘 = Φ𝑘(𝑟1, ⋯ , 𝑟𝑘−1) 𝑑𝑘(𝑟𝑘),    𝑑𝑘(𝑟𝑘) = �̂�𝑘(𝑟𝑘) + �̂�𝑘(𝑟𝑘)𝑧𝑘,   𝑘 ∈ {1, ⋯ , 𝑛},   Φ1 = 1  (9) 

 
4 Real demand is non-negative with compact support on a finite interval. 
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The Φ𝑘 is a scaling function, representing a cumulative relation of previous market price 

settings. As an example, if the relevance between periods’ memories is multiplicative, the 

cumulative scaling at each period forms 

Φ𝑘(𝑟1, ⋯ , 𝑟𝑘−1) = 𝑔𝑘(𝑟𝑘−1)Φ𝑘−1(𝑟1, ⋯ , 𝑟𝑘−2) = ∏ 𝑔𝑖(𝑟𝑖−1)

𝑘

𝑖=2

, 
    

(10) 

where 𝑔𝑘 carries the effect of the previous price  𝑟𝑘−1. Strategic pricing to boost future demand 

may occur optimally in some model specifications. The case Φ𝑘 ≡ 1 for all k implies that the 

demand in each period only depends on the current price, i.e., 𝐷𝑘 = 𝑑𝑘(𝑟𝑘) and no strategic 

pricing can occur. Hence, Eq. (8) can be written 

𝐽𝑘
𝑥 = ∑ 𝛼𝑖Φ𝑖�̂�𝑖

𝑥𝑛
𝑖=𝑘 ,     𝑥 ∈ {𝑚, 𝑟}, (11) 

where �̂�𝑘
𝑟 , �̂�𝑘

𝑚 only depend on decision variables in period k, i.e.,  

[�̂�𝑘(𝑟𝑘), �̂�𝑘(𝑟𝑘), �̂�𝑘(𝑟𝑘, 𝑤𝑘)] =
[𝜇𝑘(𝑟1, … , 𝑟𝑘), 𝜎𝑘(𝑟1, … , 𝑟𝑘), 𝑞(𝑟1, … , 𝑟𝑘, 𝑤1, … 𝑤𝑘)]

Φ𝑘(𝑟1, … , 𝑟𝑘−1)
 

 

(12) 

The term 𝛼𝑘Φ𝑘 is known at the beginning of period 𝑘. Viewing the problem from an arbitrary 

period (k) and onward, Eq. (11) implies maximizing  𝑗𝑘
𝑥 for each player, 

 𝑗𝑘
𝑥 = �̂�𝑘

𝑥 + 𝛽𝑘+1 𝑔𝑘+1 𝑗𝑘+1
𝑥   for   𝑥 ∈ {𝑚, 𝑟} 

where  𝑗𝑘
𝑥 =

𝐽𝑘
𝑥

𝛼𝑘 ∙ Φ𝑘
 

   (13) 

By starting at the last period (n), the sequence of leader-follower games defined by 

{{ 𝑗𝑛
𝑚,  𝑗𝑛

𝑟}, … , { 𝑗1
𝑚,  𝑗1

𝑟}} is optimized. Each of these games has objectives to be maximized in 

the form  𝑗𝑘
𝑥 = �̂�𝑘

𝑥 + 𝛽𝑘+1 𝑔𝑘+1 𝑗𝑘+1
𝑥 =  𝜋(𝑟, 𝑤, �̂�(𝑟, 𝑤)) + 𝑔(𝑟)𝐴, with a known constant 𝐴 

which is zero in the last period (at period 𝑛, 𝐴 = 𝛽𝑛+1𝑗𝑛+1 = 0), and is a known constant at 

each period in the backward induction process where it is calculated from a higher period. When 

the scaled games are solved, and the decisions 𝑟∗, 𝑤∗, and 𝑞∗ are known, the Φ∗ are determined 

and then quantities and profits are rescaled to their proper values.  

Remark 

In a single-period newsvendor (fixed prices) problem, a fully equipped demand creates more 

expected profit for the retailer compared to the 𝐷𝑅 model, 𝜋𝑅∗(𝑞𝑅
∗ ) ≤ 𝜋𝐷(𝑞𝑅

∗ ) ≤ 𝜋𝐷∗(𝑞𝐷
∗ ), 

where 𝜋𝑅 and 𝜋𝐷 represent the expected profit of the distributional-robust model and the model 

with distribution, respectively. It implies that the 𝐷𝑅 optimal profit is a lower bound for the 
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problem with distribution. Furthermore, the 𝐷𝑅 model’s policy is not optimal for the model 

with distribution (𝜋𝐷(𝑞𝑅
∗ ) ≤ 𝜋𝐷(𝑞𝐷

∗ )). 

In a multi-periodic supply chain problem, the relation 

𝐽𝑅𝑟∗(𝑤𝑅
∗ , 𝑟𝑅

∗, 𝑞𝑅
∗ ) ≤ 𝐽𝐷𝑟(𝑤𝑅

∗ , 𝑟𝑅
∗, 𝑞𝑅

∗ ) ≤ 𝐽𝐷𝑟∗(𝑤𝐷
∗ , 𝑟𝐷

∗ , 𝑞𝐷
∗ )    (14) 

holds. The  𝐽𝑅𝑟∗, 𝐽𝐷𝑟 , and 𝐽𝐷𝑟∗ are the retailer optimal expected value of the 𝐷𝑅 model, the 

model with distribution before optimization, and the model with distribution after optimization 

respectively, and 𝐽𝑅 and 𝐽𝐷 follow Eq. (11). The indexes 𝑅 and 𝐷, used for 𝑤, 𝑟 and 𝑞, 

represent the distributional robust model and the model with distribution respectively. Hence, 

𝐽𝐷𝑟(𝑤𝑅
∗ , 𝑟𝑅

∗, 𝑞𝑅
∗ ) solves the model with distribution for the 𝐷𝑅 policy. 

4 Numerical Implementation 

The simplest case occurs when the demand depends only on the current price. This family of 

problems decouples into a series of independent single-period problems. Albeit most markets 

have some dependency on the price history affecting customers’ behavior. In this section, we 

offer examples with a price history (path) dependent demand to show how to implement the 

proposed algorithm. One may try to vary the scaling factor or mean and standard deviation 

functional form to take full advantage. Our numerical illustration is given by applying the 

algorithm to optimize problems with the scaled mean and standard deviation of demand given 

by (see Eq. (9)) 

To assess the 𝐷𝑅 results, we assume that uniform distribution (𝑈𝐷) is the true distribution and 

solve the 𝑈𝐷 model algorithm with the 𝐷𝑅 policy and call it 𝑈𝑅 model results. 

From Eq. (10), the scaling factor 

𝑔𝑘(𝑟𝑘) =  𝑒𝛾𝑘(𝐾𝑘−𝑟𝑘) (16) 

at each period. The time-dependent parameter 𝐾𝑘 is a kind of current time preference price and 

𝛾𝑘 represents the strength of a current deviation to the future demand. The scale factor 𝑔𝑘 acts 

similarly to a discount factor, though the retailer can manipulate it by setting the price to modify 

future demand. 

�̂�𝑘(𝑟𝑘) =
1000 (1+

1

1+𝑘 
)

𝑟𝑘
2   and  �̂�𝑘(𝑟𝑘) =

�̂�𝑘(𝑟𝑘)

2√3
.   

 

(15) 
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To optimize the manufacturer-retailer problem an 𝑛-value parameter set has been applied for 

each time-dependent parameters 𝑐𝑚, 𝑠, 𝛽, 𝐾, 𝛾, where 𝑛 represents the number of periods (15 in 

this illustration), 

𝑐𝑚  =  [2 2 2 2.2 2.2 2.2 2.5 2.5 2.5 2.5 2.8 2.8 2.8 3 3] 
𝑠 =  [1 1 1 1 1 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3] 
𝛽 =  [1 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98] 
𝐾 =  [5.6 5.6 5.4 5.4 5.4 5.3 5.3 5.3 5.3 5.1 5.1 5.1 5.1 5.1]  
𝛾 =  [0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03] 

The decision variables (𝑤∗, 𝑟∗, 𝑞∗(𝑤∗, 𝑟∗)) in the equilibrium state are pictured in Figure 1. The 

retailer optimal expected profit at each period is illustrated in Figure 1 (a), where the result of 

the model with the uniform distribution is the blue line (𝑈𝐷), distributional-robust model result 

(𝐷𝑅) is in red, and implementing the 𝑈𝐷 model with the 𝐷𝑅 policy is in green (𝑈𝑅).  Figure 1 

(b) displays the manufacturer profits in cases 𝐷𝑅 and 𝑈𝐷. 
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Figure 1: Optimal results 

The total retailer expected profit satisfies 𝐽𝑅𝑟∗(=  432) ≤  𝐽𝐷𝑟(= 449)  ≤ 𝐽𝐷𝑟∗(= 454), as 

stated in Eq. (14). The manufacturer does not face the incomplete information consequence 

directly. Albeit he feels the market volatility due to the retailer’s order volume decision. The 

manufacturer achieves 𝐽𝑅𝑚∗ (= 456.1) ≤ 𝐽𝐷𝑚∗(= 482.1). The difference between 

𝐽𝐷𝑥∗(𝑤𝐷
∗ , 𝑟𝐷

∗ , 𝑞𝐷
∗ ) and 𝐽𝐷𝑥(𝑤𝑅

∗ , 𝑟𝑅
∗, 𝑞𝑅

∗ ) defines the 𝐷𝑅 profit deviation from 𝑈𝐷 model. The loss 

that the incomplete information causes is the Expected Value of Additional Information 

(EVAI), and in this example 

𝐸𝑉𝐴𝐼𝑟 =  454 − 449 = 5  

𝐸𝑉𝐴𝐼𝑚 = 482.1 − 456.1 = 26 

The retailer deviates 0.94 % and the manufacturer 5.2 % from their actual5 value if they 

implement 𝐷𝑅 policy. The retailer may spend up to 5 units of currency to obtain complete 

information. However, the 𝐷𝑅 policy is a very good heuristic. 

The retailer price grows by 147 % in the DR and 153.9 % in the UD models (plot (c)) over 

time. The wholesale price decision improves by 64 % in 𝐷𝑅 and 62.1 % in 𝑈𝐷 models (plot 

(d)). The price decisions lead to a 96.1 % quantity decline in 𝐷𝑅 model and 95.5 % in 𝑈𝐷 

model (plot (e)) over time. Looking at plot (f), the retail prices exceed the market price 

preference from period 3 leading to a downward trend in cumulative scaling. 

Plot (d) shows that the wholesale price follows the same pattern as the manufacturer's cost 

vector. However, except for the last stair, an increase in cost usually has been compensated with 

 
5 If the problem with complete information is considered actual. 
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a higher increase in the wholesale price. For instance, a 10 % increase in the cost in the first 

jump (period 3 to 4) raises the wholesale price by 11.8 % and 12.8% in 𝐷𝑅 and 𝑈𝐷 models 

respectively. The reason may stem from the fact that the increase in cost implies both higher 

cost and salvage loss (𝑤 − 𝑠) for the retailer, leading to a lower order quantity. Hence, the 

manufacturer sets a price to also partly compensate for this quantity reduction. 

4.1 Time Independent Model Parameters 

We have fixed the parameter sets as, 𝑐𝑚 = 2, 𝛽 = 0.96, 𝑠 = 1, 𝐾 = 5.6, 𝛾 = 0.05. This 

example is time-independent; Hence, it is only the scaling factor that changes the results. 
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Figure 2: Results with time-independent model parameters 

In this experiment, the retailer obtains 769.8 from 𝐷𝑅 and 787.6 from 𝑈𝐷 models (plot (a)). 

Meanwhile, the manufacturer gains 939.5 from implementing 𝐷𝑅 and 1000.4 from 𝑈𝐷 models 

(plot (b)). The wholesale price increases by 25.5 % until period 14, but by 15.8 % overall (plot 

(d)) and the retail price by 99.1 % (plot (c)) in 𝐷𝑅 model. These prices have led to a 73.2 % 

decline in ordering (plot (e)), while the market is in a state of prosperity for a long time 

(wherever higher than 1 in plot (f)). 

4.2 Impact of Key Model Parameters on Total Profit 

In this section, we evaluate the effect of  changes in salvage value (𝑠), manufacturer cost (𝑐𝑚), 

and current time preference price (𝐾) on the players' values in the proposed model (𝐷𝑅 

approach). Any of these parameters can increase, decrease, or stay unchanged. Table 2 

illustrates 27 scenarios, where scenario 27th  represents the reference problem (baseline) solved 

in section 4.   

Table 2: The effect of key parameters on outputs 

Scenario 𝒄𝒎(%) 𝒔(%) 𝑲(%) 𝑱𝑴  𝑱𝑹 ∆𝑱𝑴(%) ∆𝑱𝑹 (%) 

1 10 10 10 432.9 400 -5.1 -7.4 

2 10 10 -10 319.5 315.4 -29.9 -27 

3 10 10 0 369.95 353.4 -18.9 -18.2 

4 10 -10 10 419.4 387.2 -8.1 -10.4 

5 10 -10 -10 309.8 305.7 -32.1 -29.2 

6 10 -10 0 358.7 342.5 -21.3 -20.7 

7 10 0 10 426 393.4 -6.6 -8.9 

8 10 0 -10 314.6 310.5 -31 -28.1 

9 10 0 0 364.2 347.8 -20.2 -19.5 

10 -10 10 10 703.8 643.8 54.3 49 

11 -10 10 -10 505.4 492.4 10.8 14 
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Scenario 𝒄𝒎(%) 𝒔(%) 𝑲(%) 𝑱𝑴  𝑱𝑹 ∆𝑱𝑴(%) ∆𝑱𝑹 (%) 

12 -10 10 0 593.4 560.2 30.1 29.7 

13 -10 -10 10 677.1 617.6 48.5 43 

14 -10 -10 -10 468.7 473.1 6.7 9.5 

15 -10 -10 0 571.1 537.6 25.21 24.5 

16 -10 0 10 690 630.2 51.3 45.9 

17 -10 0 -10 495.8 482.5 8.7 11.7 

18 -10 0 0 581.9 548.6 27.6 27 

19 0 10 10 546.8 501.6 19.9 16 

20 0 10 -10 397.9 390 -12.77 -9.8 

21 0 10 0 464.1 440 1.75 1.8 

22 0 -10 10 528 483.6 15.8 12 

23 0 -10 -10 384.9 376.3 -15.6 -13 

24 0 -10 0 448.5 424.4 -1.7 -1.7 

25 0 0 10 537.2 492.2 17.8 14 

26 0 0 -10 391.5 382.9 -14.2 -11.4 

27(Baseline) 0 0 0 456.1 432 0 0 

 

The variation is ±10%, otherwise, the parameter stays unchanged, indicated with 0% in the 

table. The last two columns depict the percentage of value deviation from scenario 27. The 

results for total expected profits are  

 

Figure 3: Total expected profits in each scenario 
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where the horizontal red and black lines show scenario 27 total expected profits for the 

manufacturer and the retailer respectively. Both players are present in this plot, the blue stems 

stand for the manufacturer and the magenta for the retailer in each scenario. In this example, 

scenarios 1-9, 20,23-24, and 26 are detrimental and the others are beneficial for the channel 

value. Scenario 14 indicates that a cost reduction can compensate for salvage value and 

preference price reduction. Even though the salvage value and preference price increase cannot 

compensate for the cost increase, mirrored in scenario 1 and inferring the higher sensitivity to 

the cost. The next figure (Figure 4) pictures the order quantities generated by different scenarios 

in which the highest and lowest order quantities, like the total profit, occur in scenarios 10 and 

5 respectively. Howbeit the trend of ordering almost follows the same trend. 

 

Figure 4: Order quantities in each scenario 

5 Concluding Remarks 

We have presented a framework to solve multi-periodic manufacturer-retailer games in the 

presence of a dynamic and stochastic market, which depends on the price history but lacks 

knowledge about the distribution of the stochastic drivers. All parameters defining the 

(Stackelberg) game are allowed to be time-dependent. The algorithm solves the distributional-

robust (DR) model in a subgame-perfect manner through backward induction. The 𝐷𝑅 approach 

creates a weak lower bound on the retailer’s expected value. 
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The players initiate a new contract at each period considering a price history-dependent demand 

where the structure is sub-game perfect. However, this periodic-contract structure does not 

allow for any order/production capacity constraint. This problem arises from the way we solve 

the problem in which a scaled quantity is computed in the main body of the algorithm and in 

the end the order quantity is rescaled to its actual amount. Furthermore, in the calculation phase, 

the players decide for each period and move to the next period, without having the chance to 

modify their policy if needed. This limitation will be of key interest in future research.  

We presented an example and evaluated a ±10 % change in 𝑐𝑚, 𝑠, and 𝐾, and monitored the 

model reaction. The outcomes depict that the manufacturer cost alone strongly affects  

the outcome such that a 10 % increase (decrease) makes a 19.8 % (27.3 %) decrease (increase) 

in the channel's total profit. The change in preference price results in a 15.9 % (12.8 %) increase 

(decrease) in the channel value. The salvage value makes the least impact on the value of the 

channel by a 1.8 % (1.7 %) increase (decrease) followed by the least quantity transition. The 

sensitivity to cost also emerges in wholesale price where an increase in cost results in a higher 

increase in the wholesale price. The manufacturer does not face the market stochasticity 

directly, but he realizes that through the order volume from the retailer. The market is improved 

by Φ > 1 and whenever 𝑟 > 𝐾 the cumulative scaling factor begins to decrease and in Φ < 1 

shrinks the market as depicted in the example. 

For future research, one may try to incorporate optimal buyback and quantity discount schemes. 

A very interesting improvement can occur if the players can consider single contracts for the 

complete time horizon and incorporate realistic constraints not easily incorporated in the multi-

periodic contract scheme with the subgame perfect approach.  
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