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Abstract

The paper analyses optimal spending of an endowment fund. We
use the life cycle model for both expected utility and recursive utility in
discrete time. First we find the optimal consumption and investment
policies for both kinds of utility functions. This we apply to a sovereign
wealth fund that invests broadly in the international financial markets.
We demonstrate that the optimal spending rate, i.e., the consumption
to wealth ratio, is significantly lower than the fund’s expected real rate
of return. Using the expected return as the spending rate, implies that
the fund’s value converges towards 0 with probability 1 and also in
expectation, as time goes. For both kinds of long term convergence
we find closed form threshold values. Spending below these values
secures that the fund will last ”forever”. For reasonable values of the
preference parameters, the optimal spending rate is demonstrated to
satisfy these long term requirements.
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1 Introduction

We consider optimal investment strategies and optimal spending from an
endowment fund consistent with the life cycle model. We demonstrate that
the optimal spending rate is, for reasonable values of the preference param-
eters, strictly smaller than the expected rate of return, and the difference is
significant.

According to Eeckhoudt, Gollier and Schlesinger (2005) is preference for
diversification intrinsically equivalent to risk aversion. Extracting the ex-
pected real rate of return on a fund is associated to risk neutrality.

We take the security market as given, assumed to be in equilibrium, and
introduce a price taking agent in this market. In this setting we reconsider
the problem of optimal consumption and portfolio selection to obtain closed
form solutions. In the context of an endowment fund, the results from an-
alyzing this more general problem can immediately be utilized in order to
determine an optimal spending rate as the consumption to wealth ratio. We
have considered both expected utility, in which case risk aversion plays a
prominent role, and recursive utility where consumption substitution is sep-
arated from risk aversion, which is clarifying.

The microfoundation of adopting utility functions in contexts like this
has been discussed in the literature, and seems well founded (see for example
Blancard (1985)). In some interpretations this requires a constant popula-
tion.

When the investment opportunity set is deterministic, there exist explicit
and closed form solutions for optimal spending in the continuous-time model
(Merton (1969-71)). This was utilized in Aase and Bjerksund (2021), who
also extended the analysis to a stochastic investment opportunity set.

In the discrete-time model closed form solutions are hard to come across.
The early papers by Mossin (1968), and Samuelson (1969) realized that dy-
namic programming can be used, but this did not lead to closed form so-
lutions. We have used directional derivatives to first find the optimal con-
sumption subject to a budget constraint. With a closed form solution to this
problem, we next solved the optimal portfolio selection problem by maximiz-
ing the remaining utility at each time t.

When finding closed form solutions to the optimal consumption to wealth
ratio, we relied on first having formulated an appropriate model of the finan-
cial market. This model is inspired from the no-arbitrage theory following
the seminal paper by Black and Scholes (1973). This breakthrough was in a
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continuous-time setting, but soon afterwards several papers, and books, fol-
lowed using a discrete time framework, see for example Cox and Rubinstein
(1985) and Skiadas (2009).

If the extraction rate is the one of expected return, this normally means
that the agent is risk neutral at the level of spending, and must then, to be
consistent, be risk neutral at the level of optimal portfolio selection as well.
But the consequence of such an investment strategy is rarely advocated by
anyone responsible for an endowment fund, whatever its purpose.

We demonstrate that a particular spending policy, the expected real rate
of the fund, is not consistent with a reasonable long term development of
the fund, and will with probability one eventually deplete any fund that is
managed by diversification. In addition, the expected value of the fund will
converge to 0 as time t increases. We find closed form threshold values for
both kinds of long term developments.

Most endowments have the perspective that they should last ”forever”.
Consequently, there is a trade-off between current spending and future spend-
ing opportunities. Tobin (1974) develop sustainable spending rules in a de-
terministic world. It can be argued that it is sustainable to spend the real
interest rate (or something slightly smaller) within this setting.

Uncertainty complicates this picture. It has been argued that it is sustain-
able for an endowment to spend the expected fund return, see e.g., Campbell
(2012), who considered university endowments. Moreover, this idea moti-
vates the current 3 % fiscal rule that applies to the 1 trillion USD Norwegian
sovereign wealth fund.

Our article is concerned with optimal extraction of endowment funds in
general, and has in particular been motivated by the Norwegian Government
Pension Fund Global, earlier called the Norwegian Oil Fund or just the Nor-
wegian sovereign wealth fund, which we consider as an example of the general
theory. This is illustrated in the paper’s last section.

1.1 Related literature

Dybvig and Qin (2019) consider a fund with normal iid log-returns. The
authors find that for the fund to last ”forever”, spending must not exceed
expected fund return subtracted by half the variance. The discrepancy be-
tween expected fund return and sustainable spending is far from negligible.

The two key decisions of an endowment fund that invests in the financial
market is how much risk to take and how much to spend. From a theoretical
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point of view, the two decisions are closely related and must be determined
jointly. To examine the questions one must address the issue of the objec-
tive function by which optimality is to be measured. Merton (1971) presents
optimal portfolio and consumption rules for an investor who maximizes ex-
pected, additive and separable utility with constant relative risk aversion in
a continuous-time world, where risky asset returns are iid. Recursive util-
ity is a more generalized framework where the investor’s risk aversion and
consumption substitution are disentangled, see, e.g., Epstein and Zin (1991).

Campbell and Sigalov (2020) adopt the Merton model as well as Epstein-
Zin preferences, and assume that there is a constraint on the spending rule.
The authors examine two alternative constraints: (i) spending the expected
return; and (ii) the maximum sustainable spending follows the assumption
of Dybvig and Qin (2019). The authors find that the constraint induces
increased risk taking (referred to as ”reaching out for yield”).

Campbell and Martin (2022) introduce a sustainability constraint that
the representative agent may choose to impose on herself. The constraint
imposes an upper bound on the consumption to wealth ratio, which is shown
to lie between the riskless rate and the expected return on optimally invested
wealth. The constraint requires that the time t-conditional expected utility
should not be allowed to decline, in expectation, over time. Also we consider
utility as a stochastic process, but we do not constrain it. Rather we study
the long term developments of the fund value itself under various assumptions
on spending.

In Merton (1990), ch 21, optimal investment strategies for university en-
dowment funds are analyzed, where the objective is maximization of expected
utility, related to several activities consistent with the purposes of the uni-
versity. We limit the scope to how much to optimally spend in the numeraire
unit of account, which is a purely financial question. How much to spend on
each of several activities we consider as a political issue.

One purpose of this paper is to compare the optimal spending with the
conventional wisdom of spending the expected return, or any other ad hoc
rule, under various assumptions. For this reason, we adopt and develop the
life cycle model, where we consider the recursive utility framework in addition
to the standard expected utility, in the setting of discrete time. We find two
threshold values that spending should not exceed, in order for the fund value
to be maintained in the long run in a probabilistic sense. These values are
independent of the agent’s preferences. We then demonstrate that, when the
agent is reasonably patient, the optimal consumption to wealth ratio passes
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the two long run tests. If the spending rate is set equal to the expected
rate of return on the endowment fund, both tests fail. The implications of
this is that the fund value Wt converges to zero with probability 1 as time
t increases, and, moreover, that the expected value of the fund converges to
zero as time t goes to infinity.

The paper is organized as follows: The basic discrete-time model is for-
mulated in Section 2. In Section 3 we solve the optimal consumption and
portfolio choice problem with expected utility, and in Section 4 we find the
corresponding optimal consumption to wealth ratio. In Section 5 we consider
the asymptotic behaviour of a sovereign wealth fund. Numerical illustrations
for expected utility follow in Section 6. In Section 7 we solve the optimal con-
sumption and portfolio choice problem for recursive utility, and in Section 7.2
we find the corresponding optimal consumption to wealth ratio. Numerical
illustrations for recursive utility follow in Section 8. In Section 9 we consider
the Norwegian SWF Government Fund Global, and Section 10 concludes.
The paper contains x appendices where some of the the technical material
and proofs can be found.

2 The basic financial model

In this paper we are concerned with the optimal spending from a sovereign
wealth fund, which we interpret as finding the optimal consumption to wealth
ratio. Towards this end, we first consider the optimal consumption and
portfolio selection problem using the life cycle model.

We have an agent represented by the pair (U, e), where U(c) is the agent’s
utility function over consumption processes c, and e is the agent’s endowment
process. The problem consists in maximizing utility subject to the agent’s
budget constraint

(2.1) supc,ϕU(c) subject to E
( T∑
t=0

πtct

)
≤ E

( T∑
t=0

πtet

)
:= w,

where ϕ are the optimal fractions of wealth in the various risky investment
possibilities facing the agent, and w is the current value of the agent’s wealth.
The quantity πt is the state price at time t, i.e., the Arrow-Debreu state prices
in units of probability. The horizon is T ≤ ∞.

The consumer takes as given a dynamic financial market, consisting of
N risky securities and one riskless asset, the latter with rate of return rt,
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a stochastic process. The agent’s actions do not affect market prices of the
risky assets, nor the risk-free rate of return rt.

2.1 Preliminaries

We first assume that U represented separable and additive expected utility.
We address the same basic problem as the continuous-time paper by Aase

and Bjerksund (2021), but we deviate on several accounts. First, the agent’s
preferences are represented by expected additive and separable utility of the
form

(2.2) U(c) = E
( T∑
t=0

u(ct, t)
)
.

Here u(c, t) is the agent’s felicity index, which we assume to be of the CRRA-
type, meaning that the real function u(x, t) = 1

1−γx
1−γβt, where γ is the

agent’s relative risk aversion and β is the agent’s patience factor (the utility
discount factor). The parameters γ and β are constants satisfying 0 < γ <∞
and β ∈ (0, 1]. In continuous-time models β = e−δ, where δ = −ln(β) is the
impatience rate, 0 ≤ δ < ∞. In our model we define the impatience rate
more naturally from the relationship β = 1

1+δ
. Recursive utility is treated in

Section 7.
From the general theory in Appendix 1 we have that optimal consumption

c∗t and the optimal wealth at time W ∗
t are connected as follows

(2.3) W ∗
t =

1

πt
Et

{ T∑
s=t

πsc
∗
s

}
.

Here Et(X) := E(X|Ft) is the conditional expectation of any random vari-
ableX given the information by time t, where Ft, is the information filtration,
0 ≤ t ≤ T , and πt, the Arrow-Debreu state price in units of probability, will
be characterized in Appendix 1.

The following model of the financial market is a discrete-time version of
the theory that emerged after the no-arbitrage theory of contingent claims
analysis had been established, motivated by the seminal paper of Black and
Scholes (1973). Its aim is to characterize complete financial markets with
no arbitrage possibilities. In such a market our agent operates as a price
taker. There is by now an extensive literature on this topic, primarily in a
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continuous-time setting. The presentation in Appendix 1 is adapted from
Skiadas (2009), see also Aase (2017). With the aid of this, we next focus on
the predictions of the standard expected utility model.

3 Solution of the consumption and invest-

ment problem with expected utility

3.1 Optimal consumption choice

We want to solve problem (2.1), where U(c) is given by (2.2). The Lagrangian
for this problem is

(3.1) L(c;λ) = E
{ T∑

t=0

(
u(ct, t)− λπt(ct − et)

)}
,

where λ is the Lagrangian multiplier. We use Kuhn-Tucker with the La-
grange function given above, which reduces the problem to an unconstrained
maximization problem. We find the first order condition using directional
derivatives in function space (Gateaux derivatives), and finally we determine
the Lagrange multiplier that yields equality in the budget constraint, which
must hold since u(x, t) is strictly increasing in x. The Saddle Point Theorem
provides the final solution. Alternatively, we could have employed dynamic
programming based on the wealth equation (11.6).

Denoting the directional derivative of L in the direction c by5L(c∗, λ; c),
the first order condition for this unconstrained problem is

(3.2) 5L(c∗, λ; c) = 0 for all c ∈ L,

where λ > 0 is the Lagrange multiplier for the wealth constraint. Here
the optimal consumption path c∗ is assumed to exist, and we can ignore
the positivity constraint on c because of the behaviour of u(x, t) when x
approaches zero. We then obtain that

(3.3) E
{ T∑

t=0

(
u′(c∗t , t)− λπt

)
ct

}
= 0 for all c ∈ L,

which implies that

(3.4) u′(c∗t , t) = λπt, a.s., t = 0, 1, · · · , T,
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where prime means derivative with respect to the first variable. Using the
functional form of u, we find

(3.5) c∗t = (λπtβ
−t)−

1
γ , t = 0, 1, · · · , T.

From (3.5) we see that the optimal consumption is exposed to market move-
ments only: When the state price πt is down, times are ’good’ and consump-
tion c∗t is high, and vice versa when the state price πt is up, consumption
goes down. However, consumer spending tends to stay fairly stable, presum-
ably because consumers use wealth to dampen the market variations. This
is better explained by use of non-expected utility, which we return to below.

The property expressed in (3.5) is seen to hold for all consumers with
CRRA utility, whatever the value of the γ-parameter so long as it is strictly
positive. Equation (3.5) expresses a version of the mutuality principle (e.g.,
Borch (1960, 1962) and Wilson (1968)): When the market is down, it is down
for everyone and everyone consumes less (but to a varying degree), and vice
versa everyone consumes more when the market is up.

When there is no market uncertainty, i.e., when πt =
∏t

s=0(1 + rs)
−1 for

all t ≤ T , the model is known as the Ramsey model, see Ramsey (1928),
Koopmans (1960).

3.2 The Associated Optimal Portfolio Selection Prob-
lem

We now turn to the investment policy that goes along with the optimal
consumption strategy of the the model presented in Appendix 1.

Mossin (1968) was one of the first to study the problem of optimal in-
vestments. He leaves out intermediate consumption, i.e., consumption only
takes place in the final period, and considers two assets, one risky and one
risk-free. With CRRA-utility, he demonstrated that the optimal fraction ϕt
of wealth held in the risky asset is constant across time provided returns are
iid. He uses dynamic programming, as does Samuelson (1969) for the same
problem, except that the latter allows consumption in every period. Neither
of these authors arrive at explicit formulas for general CRRA utility, but
Samuelson is concerned with the special case γ = 1.

Let us return to the optimal consumption c∗t solving problem (2.1) and
characterized in Section 3.1. In the present model it is known that the the
optimal consumption is proportional to wealth for expected utility, so that
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c∗t = AtW
∗
t where W ∗

t is optimal wealth. Provided we limit ourselves to
a deterministic investment opportunity set It = (rt, ηt, νt), the factor At is
deterministic, which we now assume.

Let Rt = (R
(1)
t , R

(2)
t , · · · , R(N)

t )′ are the (simple) returns on the N risky
assets, and rt is the (simple) return on the risk-free asset. Since c∗t solves
the constrained optimization problem of Section 3.1, the optimal portfo-
lio weights ϕt+1 at time t for the next period solve the following problem
supϕtEt(u(c∗t+1)), or

(3.6) supϕEt

( 1

1− γ
(
At+1Wt+1(ϕt+1)

)1−γ)
, t = 0, 1, . . . , T − 1,

where
Wt+1 = (Wt − c∗t )(1 + rt+1 + ϕt+1(Rt+1 − rt+1)).

From our assumptions, this problem reduces to solving the following

supϕEt

( 1

1− γ
(
1 + rt+1 + ϕt+1(Rt+1 − rt+1))

1−γ
)
, t = 0, 1, . . . , T − 1.

Implied by our notation is that ϕt+1 is Ft-measurable. The first order con-
dition is

(3.7) Et
{(

1+rt+1+ϕt+1(Rt+1−rt+1)
)−γ(

Rt+1−rt+1

)}
= 0, t = 0, . . . , T−1.

Provided the product rtEt(Rt+1 − rt) is small enough, by a Taylor series
approximation it follows that
(3.8)

ϕt+1 ≈
1

γ

(
Et((Rt+1− rt+1)(Rt+1− rt+1)

′)
)−1

Et(Rt+1− rt+1) =
1

γ
(MtM

′
t)
−1νt,

which, when return distributions are independent and stationary over time,
implies that the ratios ϕt+1 are constant over time. The inverse matrix
(MtM

′
t)
−1 in this expression is based on excess returns instead of the ex-

pected square deviations (Et(Rt+1 − Et(Rt+1))(Rt+1 − Et(Rt+1))
′)−1 and is

therefore not identical to the covariance matrix (σtσ
′
t)
−1 found in the con-

tinuous time analysis. This means that ϕt will be lower for the discrete
time model but the difference is small. However, as we see below, the corre-
sponding adjustments in the matrix in (3.8) implies that the consumption to
wealth ratio is approximately the same in both models, as the matter must
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be. Under the same type of assumptions, there should be no real economic
difference between the predictions of these two approaches.

In the continuous-time model ϕc = 1
γ
(σσ′)−1νt, where η′η = ν ′(σσ′)−1ν

and the product can be shown to satisfy 1
γ
η′η = γϕ′c(σσ

′)ϕc. Similarly we can

show that 1
γ
ν ′(MM ′)−1ν = γϕ′(MM ′)ϕ. We can also link the market-price-

of-risk inner product η′η to the optimal portfolio ratios ϕc for the continuous-
time model and ϕ given in (3.8) via 1

γ
η′η = γϕ′c(MM ′)ϕ. This is demon-

strated as follows.

1

γ
η′η =

1

γ
ν ′(σσ′)−1(MM ′)(MM ′)−1ν = γν ′(σσ′)−1

1

γ
(MM ′)ϕ = γϕ′c(MM ′)ϕ.

In order to find M from σ we can use the concept of ”bias” in statistical
estimation theory, which gives the connection

MM ′ = σσ′ + (E(Rt+1)− rt+1)(E(Rt+1)− rt+1)
′.

Having solved the optimal consumption and portfolio selection problem
in the life cycle model for expected additive and separable utility, we can
now use this to find the optimal spending rate as the consumption to wealth
ratio for an endowment fund. This we do in the next section.

4 The optimal consumption to wealth ratio

We now address the optimal spending problem of a sovereign wealth fund.
First we prove the following result:

Theorem 1. The connection between the optimal wealth W ∗
t and the optimal

consumption c∗t at any time t is given by the following relationship:

(4.1) W ∗
t = c∗tEt

{ T∑
s=t

β(s−t)/γ
s∏

v=t+1

(1− η′v4Bv)
1− 1

γ

(1 + rv)
1− 1

γ

}
.

The proof can be found in Appendix 2.
In order to progress further, we need some simplifying assumptions. From

now on we adopt the assumption of Section 3.2 of a stationary and determin-
istic investment opportunity set It = (r, η, ν) for all t. In order to compare
our results to the associated continuous-time version, we also assume that
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4Bi
t are independent for i 6= j, and independent and identically distributed

across time t for each i.
Let X(v) = (1 − η′v4Bv), for all v ≥ t, t = 1, 2, . . . , T . In order for the

model to be complete, these variables are discretely distributed with state
probabilities pk, k = 1 . . . S, summing to 1, and satisfying

(i)
S∑
k=1

4Bi
v(k) pk = 0, (ii)

S∑
k=1

(4Bi
v(k))2 pk = 1,

and
S∑
k=1

4Bi
v(k)4Bj

v(k)pk = 0, i 6= j, for all v.

If we assume we can neglect moments of order three and higher, we can
simplify using Taylor series approximations. This gives the following result:

Theorem 2. (a) Consider the finite horizon case T <∞. Under the above
assumptions the optimal consumption to wealth ratio ct(T ) can be written as
follows:

(4.2) ct(T ) =
c∗t
W ∗
t

=
1− β

1
γ (1 + r)

1−γ
γ (1 + 1−γ

2γ2
η′η)

1−
(
β

1
γ (1 + r)

1−γ
γ (1 + 1−γ

2γ2
η′η)

)T−t .
(b) Consider the infinite horizon case where T = ∞. The optimal con-

sumption to wealth ratio is given by

(4.3) ct(∞) =
c∗t
W ∗
t

= 1− β
1
γ (1 + r)

1−γ
γ (1 +

1− γ
2γ2

η′η),

provided β
1
γ (1 + r)

1−γ
γ (1 + 1−γ

2γ2
η′η) < 1.

The proof can be found in Appendix 2.

Remark 1. By using Taylor approximations of the exponential function
and the logarithmic function, we can write the above formula for ct(∞) as
follows

(4.4) ct(∞) ≈ δ
(1

γ

)
+
(
1− 1

γ

)(
r +

1

2γ
ν ′(σσ′)−1ν

)
.
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The right-hand side is the exact formula for the optimal spending found in
equation (16) in Bjerksund and Aase (2021) for the continuous-time model,
where the impatience rate δ = −ln(β). This expression can be seen to be
a convex combination of the impatience rate δ and the certainty equivalent
rate of return on the fund. The derivation can be found in Appendix 1. �

Remark 2. For reasonable values of the preference parameters one can
verify that the expected return on the fund is larger than the consumption
to wealth ratio:

(4.5) µW := r + ϕν > 1− β
1
γ (1 + r)

1−γ
γ (1 +

1− γ
2γ2

η′η),

provided the agent is reasonably patient, i.e., β is large enough. In practice
’large enough’ certainly holds provided β ≥ 0.96, say. This is most conve-
niently demonstrated by use of the alternative formula (4.4) in Remark 1.
The proof of this can be found in Appendix 2, and is similar to the corre-
sponding demonstration in Aase and Bjerksund (2021) for the continuous-
time model. The examples to follow below turn out to confirm this claim,
where the inequality holds with good margin. �

5 The asymptotic behaviour of a sovereign

wealth fund.

In this section we investigate what happens to the fund after a long time
has elapsed from the present, under different spending scenarios. We take
the model explained in Appendix 1 as given. The spending rate c0(∞) is the
consumption to wealth ratio. We take this rate and the expected return rate
of the fund µW as exogenously given, and investigate the long term behaviour
of the fund as a function of these two rates.

We consider two different types of convergence, L1-convergence, or con-
vergence in 1st mean, and convergence almost surely (a.s.). It is well known
that these two types of convergence do not imply each other. See, for exam-
ple, Breiman (1968).

Our starting point is the dynamic equation for the fund given in equation
(11.6) in Appendix 1. This equation can be written

Wt+1 = (Wt − ct)(1 +RW
t+1), t = 0, 1, . . .
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From our assumptions it follows that with an infinite horizon, the spending
rate c0(∞) is a constant. For simplicity of notation we call this rate c in this
section. Accordingly, this relationship can be written

W ∗
t+1 = W ∗

t (1− c)(1 +RW
t+1), t = 0, 1, . . .

and iterating, this becomes

W ∗
t+1 = W0(1− c)t+1

t∏
s=0

(1 +RW
s+1), t = 0, 1, . . .

5.1 Convergence in 1st mean; martingale theory.

Let us first look at convergence in first mean. Employing our assumption
about iid returns and taking expectations, this gives

(5.1) E(W ∗
t+1) = W0

(
(1− c)(1 + µW )

)t
, t = 0, 1, . . .

Let us tentatively see what happens if the extraction rate c is equal to the
expected rate of return µW on the fund. This gives

E(W ∗
t+1) = W0(1− µ2

W )t, t = 0, 1, . . .

Assuming |µW | < 1, this means that E(W ∗
t )→ 0 as t→∞.

On the other hand, if c = 0 in (5.1), then E(Wt+1) = W0(1 + µW )t →∞
as t → ∞ (we drop the *-notation in what follows). Here the limit is not a
random variable. In the first case {Wt}t≥0 is a supermartingale, in the latter
case {Wt}t≥0 is a submartingale.

We are obviously most interested in the latter, namely situations where
{Wt}t≥0 is a submartingale, i.e., Et(Wt+1) ≥ Wt, t = 0, 1, . . .

If {Wt}t≥0 is a supermartingale, i.e., Et(Wt+1) ≤ Wt, t = 0, 1, . . . then the
fund will deteriorate in expectation, and as we shall see below, also almost
surely.

The wealth portfolio {Wt}t≥0 will be a martingale, that is, Et(Wt+1) =
Wt, t = 0, 1, . . . when (1− c)(1 + µW ) = 1 which happens when

c =
µW

1 + µW
:= m.

This means that when c < µW
1+µW

, then {Wt}t≥0 is a submartingale, and

E(Wt) → +∞ as t → ∞, and when c > µW
1+µW

, then {Wt}t≥0 is a super-

martingale, and E(Wt)→ 0 as t→∞.

13



The standard submartingale convergence theorem does not apply here,
since the conditions are not satisfied. If they were, there would exist a random
variable X such that E|Wt − X| → 0 as t → ∞. One problem is that our
wealth process {Wt}t≥0 is not uniformly integrable.1

We can use the above results to get estimates for how long time it takes
for the funds expected value to be equal to some fraction of the current value.
Consider the following example.

Example 1. Suppose the expected return on the fund µW = 0.05 and the
spending rate is c = 0.045 . Here µW

1+µW
= 0.0476. Also suppose W0 = 10.000

in some units. We consider T = 100.

Fig. 1: Various expected developments of an endowment fund

In Figure 1 the line from W0 represents the martingale W
(1)
t where the

spending rate is c = µW
1+µW

. The increasing submartingale W
(2)
t follows the

spending rate assumed to be c = 0.045, while the decreasing curve is the
supermartingale W

(3)
t where the spending rate is c = µW = 0.05.

Here we can answer various types of questions. To illustrate, suppose we
ask the question: How long does it take before the expected value of the
fund E(W

(2)
t ) is up 20%? The answer is 66.39 years. Next, for the fund with

c = µW , it takes 89.15 years before the expected value E(W
(3)
t ) is down 20%.

�
We have proven the following result:

1The same situation occurs in continuous time with the geometric Brownian motion
process.
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Theorem 3. Suppose c is the spending rate of an endowment fund W and
µW is the expected real rate of return on W . Then we have the following
three situations:

1) If c < m = µW
1+µW

, then {Wt}t≥0 is a submartingale and E(Wt)→ +∞
as t→∞.

2) If c > m = µW
1+µW

, then {Wt}t≥0 is a supermartingale and E(Wt) → 0
as t→∞.

3) If c = m = µW
1+µW

, then {Wt}t≥0 is a martingale and Et(Wt+1) = Wt

for t = 1, 2, . . .

In the continuous-time model with Brownian motion driven uncertainty,
for the corresponding martingale result it was shown that the wealth eventu-
ally converges to zero with probability 1 (Aase and Bjerksund (2021), p11).
Here we can appeal to a theorem of Jean Ville (1939) in the context of a
filtered probability space (Ω,F ,F∞n=0, P ), suppose E ∈ F . If a nonnegative
martingale diverges to infinity when E happens, then P (E) = 0. This result
does not need the iid assumption which, admittedly, is heroic. Together with
this assumption, however, with the results of the next section it says roughly
the same as the continuous-time result: The martingale will approach 0 with
probability 1.

5.2 Almost sure convergence.

Let us move to convergence almost surely. Here we have the following result.

Theorem 4. Let c be the spending rate and RW the rate of return of the
endowment fund (a random variable). Then we have the following:

(a) If
(
ln(1 − c) + E(ln(1 + RW ))

)
< 0, then Wt → 0 almost surely as

t→∞.
(b) If

(
ln(1−c)+E(ln(1+RW ))

)
> 0, then Wt grows without limit almost

surely, as t increases.

The proof, which can be found in Appendix 2, makes use of the strong
law of large numbers (SLLN).

Suppose now that the spending rate E(RW ) = µW is being used, as
advocated by some researchers and spokespeople.2

2This is the extraction rule for the Norwegian SWF Government Fund Global, deter-
mined by the Norwegian Parliament (Stortinget).
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In this situation

ln(1− c) + E(ln(1 +RW )) < ln(1− c) + ln(1 + E(RW ))

by Jensen’s inequality since the logarithmic function is strictly concave. Fur-
thermore

ln(1− c) + ln(1 + E(RW )) = ln((1− c)(1 + E(RW ))) = ln(1− c2) < 0

since c ∈ (0, 1). By Theorem 4, part (a), it follows that Wt → 0 with
probability 1 as t→∞. By the above theory it also follows that E(Wt)→ 0
as t → ∞. From this we suggest that this policy is not a viable spending
rule for an endowment fund.

Let us consider the case (b) of the theorem,

ln(1− c) + E(ln(1 +RW )) > 0.

This inequality holds if and only if the spending rate c satisfies

c < ĉ := 1− exp(−E{ln(1 +RW )}).

Let us define

ce1 := E(RW )− 1

2
E{(RW )2}.

It turns out that ĉ can be approximated by ce1: By a Taylor series approxi-
mation of the logarithmic function we know that the standard approximation
for financial return data for the term E{ln(1+RW )} is [E(RW )− 1

2
var(RW )].

Also ĉ ≈ E{ln(1 + RW )} − 1
2
(E{ln(1 + RW )})2 by a Taylor series approx-

imation of the exponential function. The latter can be written E(RW ) −
1
2
var(RW ) − 1

2
(E(RW ) − 1

2
var(RW ))2, and this expression is seen to be well

approximated by E(RW )− 1
2
E{(RW )2}) = ce1 to the fourth order.

This means that ce1 is a threshold which an extraction rate c should not
pass from below in order to have long term ”viability” of the endowment
fund.

How accurate is this approximation, and is it on the conservative side? To
check this, we need the probability distribution of (1 +RW ). As a numerical
illustration, suppose that E(RW ) = µW = 0.06 and var(RW ) = (0.14)2. This
means that ce1 = 0.0484.

To compute E{ln(1 + RW )} we the need the probability distribution of
(1 + RW ). As an illustration, let 1 + RW = 1 + µW + σW4B where 4B is
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one-dimensional and discrete, taking two values (u, p) and (d, (1 − p)) with
u = −0.79, d = 1.30 and p = 0.62, so that E{4B} = 0 and E(4B)2 = 1.
(This distribution is used below in Section 6.1 as well.) Using this, we obtain
E{ln(1 + RW )} = 0.05016. This means that ĉ = 0.0489, so the difference
(ĉ− ce1) = 0.0005 which is sufficiently small for most practical purposes and
on the safe side. When the spending rate c < ce1, this means that c < ĉ as
well and the spending rate c passes the long run test.3

By construction it is always true that µW > ce1 = µW − 1
2
E(R2

W ) and
µW > µW

1+µW
. With this trivial, but important observation, we have the

following reminder:

Corollary 1. Let µW be the expected real rate of an endowment fund. Then
we have the following:

If the spending rate is set equal to the expected rate of return µW , then
the fund value Wt → 0 almost surely as t → ∞, and the expected value
E(Wt)→ 0 as t→∞.

Notice that this result is independent of any of the preference parameters.
It depends on our statistical assumptions.

Next we illustrate this result by numerical examples. Our results can be
compared to the corresponding results for the time-continuous model, see
Aase and Bjerksund (2021); here we present extensions.

6 Numerical illustrations - Expected utility.

For reasonable market quantities, we compare the optimal spending rate for
an endowment fund to the real expected rate of return from the fund. The
optimal spending rate we interpret as the consumption to wealth ratio of the
previous section. We also compare to the thresholds of the last section, and
to a quantity related to the certainty equivalent rate of return of the fund.

One reason for such comparisons is the claim that it is both optimal
and sustainable to spend the expected real return of a sovereign fund. For
example, this is the rule, determined in parliament, for the Norwegian SWF
Government Fund Global, one of the World’s largest sovereign funds. Based
on the last section, our claim is that this is not an optimal spending rate, it

3The standard approximation for E{ln(1 + RW )} is [E(RW ) − 1
2var(RW )], which is

here 0.05020. Using the latter, we obtain ĉ ≈ 1− exp(−[E(RW )− 1
2var(RW )]) = 0.0490.
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is too high, and will, if followed, deplete the fund at a final future time with
probability 1. We consider this fund as an example in Section 9.4

Here we illustrate the above theory by use of real market data. We assume
the agent takes the US-market as given, where the risky part of our fund is
represented by the S&P-500 index. This corresponds to one of the best
functioning securities markets in the World, and should be representative in
construction of the underlying market quantities. The data are as follows.

In Table 1 we provide the key summary statistics of the data in Mehra
and Prescott (1985) on the real annual return data related to the S&P-500,
denoted by S, as well as for the annualized consumption data, denoted c,
and the return on Government bills, denoted b 5.

Expectat. Standard dev. Covariances

Return S&P-500 6.98% 16.54% cov(S, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.00016
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889-1978. Discrete-time annual
compounding.

Example 1.
Consider the above market data, and the following preference parameters:

β = 0.99 and γ = 2.5.
For these parameters and with the market data of Table 1, the optimal

portfolio fraction in the risky part of the market is ϕ = 0.82, the expected
rate of return on the fund is µW = r + ϕν = 0.06 where ν = 0.062 and
η = 0.37 from the above table. Furthermore, M = 0.1709, where M is
defined in equation (3.8), and the volatility of the return on the fund is
σW = ϕσ = 0.14, where σ = 0.1654 all follow from the above table.

For reasons to be clear below, we consider the following expression

ceγ = µW −
1

2
γ(σ′WσW + µ2

W ),

while the following quantity is the key for asymptotic comparisons, defined

4We assume the fund is fully funded, so that the external influx to the fund has come
to an end. When this is not the case, see Section 9.1.

5There are of course newer data by now, but these retain the same basic features.
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in Section 5,

ce1 = µW −
1

2
(σ′WσW + µ2

W ).

We see that when γ > 1, ceγ < ce1, and when γ < 1, ceγ > ce1.
When the extraction rate is below ce1, the fund Wt grows in t with proba-

bility 1, while if it is above ce1, the fund value converges to 0 with probability
1 as t→∞.

Normally we will have that γ > 1 in which case ceγ < ce1, so ceγ may
be a viable candidate for a spending rate. We will refer to this quantity
as the certainty equivalent return in this paper (although this is standard
terminology only when E(RW ) = 0).6

From the last section recall the interpretation of the threshold m =
µW/(1 + µW ). For the above parameters the certainty equivalent rate of
return ceγ = 0.032, ce1 = 0.05 and m = 0.057. The optimal spending rate
is c0(∞) = 0.026. This value is seen to be consistent with long term sus-
tainability of the fund. However, if the real rate of return (= 0.06) is used
as the spending rate, this is not sustainable in the long run and the fund
will converge to 0 almost surely as t goes to infinity. Moreover, E(Wt) will
converge to 0 at a geometric rate as t→∞.

With a finite horizon of T = 500 years, the extraction rate in equation
(4.3) is time dependent, and will increase sharply as the horizon comes closer.
In Figure 2 we present a graph of the optimal extraction rate, and in the same
graph we also represent the real rate of return together with m, ce1 and ceγ.

6The Arrow-Pratt approximation to the certainty equivalent rate of return is given by
µW − 1

2γ(σ′WσW )/(1 + µW ) when µW 6= 0, a slightly larger quantity than ceγ .
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Fig. 2: The optimal extraction rate as a function of time (EU).

The hyperbolic type curve is the optimal extraction rate ct(500), 0 ≤ t <
500, the upper horizontal line is the expected rate of return on the fund, the
next horizontal line is m, then follows ce1, and the lowest horizontal line is
the certainty equivalent rate of return ceγ. The growth rate of the optimal
consumption c∗t is 0.04 with standard deviation 0.14. �

Consider the following illustration: In Figure 2a we show five graphs as
functions of γ for β = 0.99. The lowest one is the long term optimal spending
rate c0(∞) as a function of γ, the next lowest is the certainty equivalent ceγ,
then comes the threshold value ce1(γ), the next highest is the martingale
threshold value m(γ) = µW/(1 + µW ) and the highest located curve is the
expected rate of return on the fund µW (γ). These quantities are time inde-
pendent, but will depend on γ via µW (γ), since they depend on µW .
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Fig. 2a: The functions c0(∞)(γ), µW (γ), m(γ), ce1(γ) and ceγ as γ vary.

We see that the long term optimal spending rate is lower than the other
quantities for any reasonable value of the relative risk aversion γ. This illus-
trates our above claim in this example, and moreover it indicates that the
criterion of spending the real expected rate of return µW (γ) is not only larger
than the optimal one, but also larger than the two threshold values ce1(γ)
and m(γ) for ”any” values of γ and β. This means that the fund will 1)
converge to 0 with probability 1 with this extraction policy regardless of the
relative risk aversion γ, and 2) the expected value of the fund will converge
to zero as t→∞, with µW as the spending rate.

6.1 Discrete state probabilities

As mentioned in Appendix 1, in order for a discrete time model to be com-
plete, the set of states of the world must be finite. In the present situation
we have one risky asset, the index, so let me suggest a simple model for the
4Bt with two states of nature, ”up” and ”down” with probabilities pu and
pd respectively. In this situation the formula for the spending rate is the
following

(6.1) c0(∞) = 1− β
1
γ (1 + r)

1−γ
γ
(
(1− ηu)(1−

1
γ
)pu + (1− ηd)(1−

1
γ
)pd
)

where u and d satisfy the two equations (i) upu + dpd = 0; and (ii) u2pu +
d2pd = 1. We must estimate the two probabilities from return data in the
stock market, and determine u and d from the two equations (i) and (ii).
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Consider the following estimates: pu = 0.62 and pd = 1 − pu = 0.38. This
gives u = −0.79 and d = 1.30. This is calibrated to give the same value
of the spending rate for β = 0.99 and γ = 2 as the above model based on
truncation of Taylor series.

Fig. 2b: The functions c0(∞)(γ), µW (γ), m(γ), ce1(γ) and ceγ as γ vary.

In Figure 2b we show the same graphs as in Figure 2a, with the addition
that the spending rate in equation (6.1) is included together with the one
in the previous figure. These two curves can be seen to be almost indistin-
guishable. It is noteworthy that the simple two-state Binomial model is this
flexible.

6.2 Patience

What we mean by a reasonable patience factor β is illustrated next. In Fig-
ure 2c we show graphs of µW , m(β), ce1 and c0(∞), as functions of β. Here
γ = 2.0.
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Fig. 2c: The functions c0(∞)(β), µW (β), m(β), ce1(β) as β vary.

The falling (convex) curve is the optimal spending rate c0(∞) as a func-
tion of β. The next horizontal lines are independent of β, where the highest
is the line µW showing the real rate of return on the fund, and the lowest
one is the threshold ce1 for a.s. convergence, while the one in the middle
is the m(β)-threshold. The figure shows that when the agent is impatient
enough, the optimal spending rate is larger than the expected rate of return
on the fund, then comes a range where c0(∞)(β) is lower than µW but larger
than m, and when the agent is patient enough, the optimal spending rate is
lower than both m and ce1. For this example we see that this happens when
β > 0.935. Normally one sets β ≥ 0.98 in applied work. A nation as the
agent must be considered patient.

In the expression for ct(T ) the parameter β occurs together with the

parameter γ as β
1
γ . When γ increases, so does β

1
γ . This has the effect that

the agent appears as more ”patient” with increasing γ as can be observed in
Figure 2a, where the optimal spending rate decreases as γ increases. This
decrease is primarily a consequence of increasing risk aversion, but impatience
and risk aversion are not completely disentangled in this model.

With the tools of the asymptotics section we can, for example, calculate
how many years it will take before E(Wt) has deteriorated, or increased
a certain fraction, depending on the spending policy (recall Figure 1). To
illustrate, in this situation with an optimal spending rule c0(∞) = 0.025 and
expected return on the fund µW = 0.06, it takes about 12 years for E(W12)
to have increased 50% using the optimal spending rule, while it takes about
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61 years for E(W61) to have decreased 20% using µW as the spending rate.

7 Recursive utility

Recursive utility (RU) is considered to be a more realistic representation of
preferences than expected, additive and separable utility (EU) that we have
considered so far. In particular RU separates risk aversion from consump-
tion substitution in temporal models, which is important, since since these
two properties are rather different. Recursive preferences have an axiomatic
underpinning in the basic work in the field by Kreps and Porteus (1978).

Again we want to solve the problem (2.1), where the utility function U(c)
is defined via the following ”aggregator”

(7.1) Ut = f(ct,mt+1) = v−1((1− β)v(ct) + βv(mt+1)), t < T, UT = cT ,

where v is a felicity index with inverse function v−1, mt+1 is a conditional
certainty equivalent as of time t, and β is the patience factor defined as as
before. In this case U(c) in (2.1) is given by U0.

So, where does such an aggregator come from? The standard separa-
ble and additive expected utility representation has an ordinally equivalent
version which, when normalized, can be expressed in recursive form. For
example, the representation

(7.2) Ut = Et

[ T−1∑
s=t

βs−tv(cs) +
βT−t

1− β
v(cT )

]
is ordinally equivalent to the recursive version in (7.1), provided the condi-
tional certainty equivalent mt+1 = v−1(Et(v(Ut+1))) is the one of expected
utility with felicity index v.

Thus, in order to deviate, in a non-trivial way, from the standard, additive
representation of preferences, it is assumed that the conditional certainty
equivalent can be represented as above, but with a different felicity index
u: mt+1 = u−1(Et(u(Ut+1))), u 6= v. This turns out to be an important
step, since consumption substitution in a deterministic world is something
very different from risk aversion, where the latter only makes sense under
uncertainty. This essential difference is taken into account by the recursive
model.
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On the one hand this approach stays close enough to the standard, ad-
ditive representation of preferences to still benefit from many of its useful
properties, insights and interpretations, on the other this step is significant
enough to avoid some of its unrealistic and negative features. However, this
generalization comes at a price of added complexity, as is naturally the case
with most generalizations.

In this article we employ the two standard functions v and u, defined up
to affine transformations as v(w) = 1

1−ρ(w1−ρ−1) and u(w) = 1
1−γ (w1−γ−1),

with inverse functions v−1(y) = ((1−ρ)y+1)
1
ρ−1 and u−1(y) = ((1−γ)y+1)

1
γ−1

respectively. The following scale invariant aggregator results from (7.1)

(7.3) Ut = f(ct,mt+1) = ((1− β)c1−ρt + βm1−ρ
t+1 )

1
1−ρ ,

where the conditional certainty equivalent m is given by

mt+1 = (Et[U
1−γ
t+1 ])

1
1−γ .

The parameter γ ≥ 0 corresponds to the agent’s relative risk aversion in
the standard one-period model (the time-less model), and has the same in-
terpretation here. Similarly, in a deterministic setting the parameter ρ ≥ 0,
where 1

ρ
is the elasticity of intertemporal substitution (EIS) in consumption.

These parameters correspond to different properties of the individual’s pref-
erences - and should be measured independently. In the standard, additive
expected utility model, γ = ρ, which turns out to be rather restrictive.

When ρ = 1, the felicity index v(x) = ln(x), and Ut = mβ
t+1c

1−β
t , and

when γ = 1, then we have u(x) = ln(x), and mt+1 = exp(Et[ln(Ut+1)]).
The parameter β is the ’patience’ factor, where 0 ≤ β ≤ 1 as for EU. The

impatience rate δ = 1/β − 1.
While preferences over deterministic consumption plans are solely deter-

mined by the function v, the limitation of the expected additive, discounted
utility in the presence of uncertainty rests on the fact that the function de-
termining risk aversion also governs the purely deterministic development.

RU overcomes this latter problem, and other problems, by simply sepa-
rating v from u.

The version in (7.3) is known as the Epstein-Zin aggregator (see Epstein
and Zin (1989-91), Chew and Epstein (1991)). For continuous-time see Duffie
and Epstein (1992), and for risk premiums and the equilibrium interest rate
see, for example, Aase (2016).
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7.1 Optimal consumption and portfolio selection with
recursive utility

In Appendix 3 we have relegated the analysis of the recursive model, where
we derive a closed form expression for the optimal consumption in equation
(13.11), and compare it to the corresponding expression for EU. Moreover,
we find the optimal portfolio selection rule, and show that this is the same
as for the EU-model, assuming a deterministic investment opportunity set.

These two results are the basics for our expression for the optimal spend-
ing rule for RU, which follows next.

7.2 Optimal consumption to wealth ratio (RU)

We now address the optimal spending problem of a sovereign wealth fund.
Starting with the wealth equation (13.5) in Appendix 3, we proceed as before
with the expression in (13.12) in Appendix 3 for the optimal consumption.
We have the following result:

Theorem 5. The connection between the optimal wealth W ∗
t and the optimal

consumption c∗t at any time t is given by the following relationship:
(7.4)

W ∗
t = c∗tEt

{ T∑
s=t

β(s−t)/ρ
s∏

v=t+1

(1− η′v4Bv)
1− 1

ρ
1−ρ
1−γ (1 + µW,v + σW,v4Bv)

− 1
ρ
γ−ρ
1−γ

(1 + rv)
1− 1

ρ
1−ρ
1−γ

}
.

The proof can be found in Appendix 4.
In order to progress further, we need som simplifying assumptions. From

now on we adopt the assumption of Section 3.2 of a stationary and deter-
ministic investment opportunity set It = (r, η, ν) for all t. The same type
of assumptions are made as in the case of the expected utility, from which
we can characterize the conditional expectation on the right-hand side of
equation (7.4).

Recall that µW = r+ϕ′ν is the expected real rate of return on the wealth
portfolio W , and σ′WσW = ϕ′σσ′ϕ is the corresponding variance of the return
rate of the fund.

We use Taylor series approximations and neglect moments of order three
and higher. This leads to the following result:
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Theorem 6. (a) Consider the finite horizon case T <∞. Define

(7.5) k(β, ρ, γ, η, ν, r, σ, ϕ) = β
1
ρ (1 + r)(

1
ρ

1−ρ
1−γ−1)

{
1−

(1

ρ

γ − ρ
1− γ

)
µW

+
1

2

(1

ρ

γ − ρ
1− γ

)(
1 +

1

ρ

γ − ρ
1− γ

)(
µ2
W + σ′WσW

)
+
(1

ρ

γ − ρ
1− γ

)
·(

1− 1

ρ

1− ρ
1− γ

)[
1−

(
1− 1

ρ

γ − ρ
1− γ

)
µW
]
η′σW −

1

2

(1

ρ

1− ρ
1− γ

)(
1− 1

ρ

1− ρ
1− γ

)
·[

1− 1

ρ

γ − ρ
1− γ

µW −
1

2

(1

ρ

γ − ρ
1− γ

)(
1 +

1

ρ

γ − ρ
1− γ

)
µ2
W

]
η′η
}
.

Under the above assumptions the optimal consumption to wealth ratio ct(T )
can be written as follows:

(7.6) ct(T ) =
c∗t
W ∗
t

=
k(β, ρ, γ, η, ν, r, σ, ϕ)− 1

(k(β, ρ, γ, η, ν, r, σ, ϕ))T−t − 1
.

(b) Consider the infinite horizon case where T = ∞. The optimal con-
sumption to wealth ratio is given by

(7.7) ct(∞) =
c∗t
W ∗
t

= 1− k(β, ρ, γ, η, ν, r, σ, ϕ),

provided k(β, ρ, γ, η, ν, r, σ, ϕ) < 1.

The proof can be found in Appendix 4.
Notice that the optimal spending rate depends on the statistical dependence
between the state price and the return on the wealth portfolio via the term
covt((1− η′4Bv), (1 + µW + σ′W4Bv)) = −η′σW for v > t.

Remark 3. The optimal spending rate with recursive utility in continuous
time with continuous price processes based on Brownian motion was pre-
sented in Aase and Bjerksund (2021). The exact expression for the spending
rate is the following

(7.8) ĉ0(∞) =
δ

ρ
+ (1− 1

ρ
)(r +

1

2
γϕc(σσ

′)ϕc),

again a convex combination of the impatience rate δ and the certainty equiv-
alent rate of return from the fund. In the convex combination the parameter
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ρ now plays the role that γ played in the corresponding formula for expected
utility.

In Figure 3 we present a graph of the function in (7.8) together with the
optimal extraction rate in equation (7.7) as functions of ρ when β = 0.99
and γ = 2.

Fig. 3: The two optimal extraction rates as functions of ρ (RU).

The lowest graph is the spending rate in equation (7.8). The spending
rate in equation (7.7) is seen to deviate for more extreme values of ρ, where
the approximation may not be as good as for more central values of this
parameter.

Next we compare these two spending rates as functions of γ when β = 0.99
and ρ = 2.0.
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Fig. 4: The two optimal extraction rates as functions of γ (RU).

The lowest graph is the one in equation (7.7). The fit is seen to be rea-
sonable, given γ is a bit larger than 1.

Below we also compare the continuous-time spending rate with the one
based on the present discrete time model using the discrete state probabili-
ties. The spending rate with RU and the Binomial version is the following:

(7.9)

cB0 (∞) = 1− β
1
ρ (1 + r)

1
ρ

1−ρ
1−γ−1

{
(1− ηu)1−

1
ρ

1−ρ
1−γ (1 + µW + σWu)−

1
ρ
γ−ρ
1−γ pu+

(1− ηd)1−
1
ρ

1−ρ
1−γ (1 + µW + σWd)−

1
ρ
γ−ρ
1−γ pd

}
.

For the recursive model we calibrate the discrete state version for ρ = 2.5,
γ = 2.0 and β = 0.99 to pu = 0.51, pd = 1 − pu, u = −0.98 and d = 1.02
using (7.7).

In Figure 5 we graph the spending rate in (7.8) and the Binomial one in
(7.9) as functions of ρ when γ = 2 and β = 0.99:
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Fig. 5: The cont.time and the Binomial spending rates as ρ vary.

As we see, this fit is rather impressive. In Figure 6 we do the same com-
parison when γ vary for β = 0.99 and ρ = 2.0.

Fig. 6: The cont.time and the Binomial spending rates as γ vary.

Also here the fit is excellent. �
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7.3 The conditional expected consumption growth rate
and the associated volatility

With the techniques of Theorem 6, we can readily find the expected growth
rate of the optimal consumption and its standard deviation. Let

a :=
1

ρ

1− ρ
1− γ

, b :=
1

ρ

γ − ρ
1− γ

.

The conditional expected consumption growth rate is

(7.10) Et
(c∗t+1

c∗t
− 1
)

= β
1
ρ (1 + rt+1)

a
(

1− bµW +
1

2
b(1 + b)

(
µ2
W + σ′WσW

)
− ba

(
1− (1 + b)µW

)
η′σW +

1

2
a(1 + a)

(
1− bµW −

1

2
b(1 + b)µ2

W

)
η′η
)
− 1.

Also

(7.11) Et
(
(
c∗t+1

c∗t
)2
)

= β
2
ρ (1 + rt+1)

2a
(

1− 2bµW + b(1 + 2b)
(
µ2
W + σ′WσW

)
− 4ba

(
1− (1 + 2b)µW

)
η′σW + a(1 + 2a)

(
1− bµW − b(1 + 2b)µ2

W

)
η′η
)
.

From these two quantities we can find the standard deviation of the condi-
tional expected consumption growth rate as

σc∗(t) =

√
Et
(
(
c∗t+1

c∗t
)2
)
−
(
Et
(c∗t+1

c∗t

))2
.

The proof can be found in Appendix 4. By setting a = 1
γ

and b = 0 we
obtain the corresponding results for EU.

8 Numerical illustrations - Recursive utility.

First consider the same data as in Example 1, with preference parameters
β = 0.99, γ = 2.5 and ρ = 2.0. This parameter constellation (γ > ρ)
represents preference for early resolution of uncertainty. Only the the optimal
extraction rate function changes, while the other data remain the same as in
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Example 1. The long term optimal spending rate c0(∞) = 0.023, which is
comparable to the optimal value 0.026 for EU in Example 1.

Next consider the following example.
Example 4. Let β = 0.99, γ = 2.0 and ρ = 2.5. The optimal port-

folio weight ϕ = 1.044, representing a more risky portfolio than above,
µW = 0.074, σW = 0.17, ceγ = 0.0384 and ce1 = 0.056, and m = 0.069.
The optimal extraction rate in the long run is c0(∞) = 0.030, while it is
0.027 for the expected utility model. The graphs corresponding to Figure 2
are here:

Fig. 7: The optimal extraction rate as a function of time (RU).

The upper line is the expected return on the fund, the next line corre-
sponds to the threshold m = µW/(1 + µW ), then follows ce1, and we notice
that the optimal rate is below these two lines consistent with long term tests,
while the certainty equivalent return rate is slightly above the optimal rate.
The expected rate of return on the fund is seen to fail both the long term
tests as a spending rate, in agreement with Corollary 1. The optimal spend-
ing rate ct(500), 0 ≤ t < 500, is the hyperbolic-type curve sharply increasing
towards the horizon, which passes both long-run tests almost to the end of
the horizon. The lowest line, tangent to this curve, is c0(∞).

The growth rate of the optimal consumption c∗t is 0.05 with standard
deviation 0.18. Since γ < ρ, the agent has preference for late resolution of
uncertainty.

When the parameter ρ decreases, the resistance to substitute consumption
across time decreases and the optimal spending rate decreases. For example,
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when ρ = 1.8 and the other parameters are as above, then c0(∞) = 0.025. If
the impatience increases, the optimal spending rate increases. For example,
if β = 0.90, γ = 2.0 and ρ = 1.8, then c0(∞) = 0.075 for RU and 0.072
for EU. The growth rate of c∗t is now −0.007 with standard deviation 0.17.
Impatience does in general not help much on growth. �

In Figure 8 we show a graph of the optimal extraction rate c0(∞)(ρ) as
a function of ρ for the values of β = 0.99 and γ = 2.0. Also included are
the two thresholds m and ce1, explained Section 6, as well as the expected
rate of return on the fund µW and the certainty equivalent return rate ceγ,
all with the same numerical values as in Figure 7. These four quantities do
not depend on ρ. This follows, since the portfolio fractions ϕ only depends
on the relative risk aversion γ also for RU, and the expected rate of return
on the fund µW = r+ϕ′ν where ν is the vector of excess returns on the risky
assets and r is the risk-free rate of return. Hence µW only depends on the
preferences via the parameter γ also for recursive utility.

Fig. 8: The optimal long term spending rate as a function of ρ.

The optimal spending increases with ρ. By increasing the impatience,
optimal spending increases for all values of ρ. Notice that nothing dramatic
happens when ρ passes γ in value. We observe that the optimal spending
rate passes both the long term tests with good margins.

For the truncated model the parameter β can not be too small, since then
the curve c0(∞)(ρ) starts out increasing, reaches a maximum and then con-
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tinues with a decreasing convex shape. When the agent becomes impatient
enough, say β = 0.90, this may seemingly happen. However, this feature is
not real: When we use the Binomial model this pattern disappears (see for
example Figure 5), and the curve is strictly increasing as in Figure 8.

In Figure 9 we show the graphs of optimal spending rate c0(∞)(γ) as a
function of γ, as well as the quantities µW (γ), m(γ), ce1(γ) and ceγ, when
ρ = 2 and β = 0.99. The lowest graph represents the optimal long term
spending rate. The highest falling curve is the expected rate of return on the
fund, the next curve is the martingale threshold m(γ), then the ce1(γ) graph
and finally the curve representing the certainty equivalent ceγ.

Fig. 9: c0(∞)(γ), µW (γ), m(γ), ce1(γ), ceγ as functions of γ (RU).

The optimal spending rate c0(∞) is seen to pass both the long run criteria
for all vales of γ with good margin, while the expected rate of return on the
fund fails both, in agreement with Corollary 1.

When the parameter γ is close enough to 1, the spending curve is large,
which is due to the singularity in the coefficients a and b at γ = 1. In this
case the truncations are not valid (but the discrete state probability version
is not similarly affected).

For the data of this section and with an optimal spending rule c0(∞) =
0.038 with recursive utility and expected return on the fund µW = 0.074, it
takes about 12 years for E(W12) to have increased 50% using the optimal
spending rule, while it takes about 41 years for E(W41) to have decreased
20% using µW as spending rule.
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These examples and graphical illustrations tell us that the models, both
of the EU and of the RU type, are fairly robust with respect to the size of
the optimal spending rate. By changing the preference parameters within
reasonable ranges, the optimal rate changes only moderately. This means
that our results should have real world policy implications regarding optimal
spending rates from endowment funds.

From Corollary 1 it follows that the spending rate can not be set equal
to the expected real rate of the fund. This result is independent of all the
preference parameters.

We round off with the case of the Norwegian SWT Government Fund
Global.

9 The Norwegian SWF Government Fund Global

For this sovereign fund the Norwegian Ministry of Finance set down a com-
mission in 2016 to consider the asset allocation problem. Table 2 below
reflects the commission’s market view on equity and risky bonds.7

Expectation Standard dev. Covariance

Equity 4.83% 16.00% 0.00384
Bonds 0.68% 6.00%
Equity premium 4.15% 14.67%

Table 2: The commission’s market view, Norwegian Ministry of Finance
(2016).

415

The commission recommends an equity share of ϕ = 70%. Given a riskless
rate of 0.68% and an equity premium with expectation 4.15% and standard
deviation 14.67%, the excess return ν = 4.15%, σ = 0.16, the market-price-
of-risk η = σ−1ν = 0.2594, and M = 0.1627.

This translates into an implicit relative risk aversion of γ = 2.24. This
implies that the expected real rate of return µW = r + ϕν = 3.6% and the
standard deviation σW = ϕσ = 11.20%.

7The report, which uses geometric returns, i.e., Et[log{X(t + 1)/X(t)}], is referred in
our list of references. This is translated to simple returns in Table 2. The covariance
reported in the table stems from the following calculation 0.16 · 0.06 · 0.4 = 0.00384, where
the intertemporal correlation coefficient is 0.4.
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The certainty equivalent fund return is ceγ = 2.0%, ce1 = 2.9% and
m = µW/(1 + µW ) = 3.5%. Observe that µW is larger than both ce1 and m,
thus not acceptable in the long run (with probability 1 and in 1th mean).

Let β = 0.99. Then the optimal long term spending rate with expected
utility is c0(∞) = 0.016, which passes both the long run tests. This is 2.0%
lower than the expected real return on the fund.

With recursive utility, assuming ρ = 2.7 and β = 0.99, where the other
parameters are as above, then c0(∞) = 0.017 and we have preference for
late resolution of uncertainty. When ρ = 1.5 we have γ > ρ, preference
for early resolution of uncertainty, and the optimal long term spending is
c0(∞) = 0.014, assuming the other parameters are as above.

For the data of this section and with an optimal spending rule c0(∞) =
0.017 with recursive utility and expected return on the fund µW = 0.036, it
takes about 12 years for E(W12) to have increased 20% using the optimal
spending rule, while it takes about 40 years for E(W44) to have decreased
5% using µW as spending rule.

At the end of 2021 the market value of this fund was 1299 billions USD,
and 5% decrease in 22 years amounts to 65 billions USD in expectation. If the
optimal spending rule had been used, the fund would have been 11232 billions
USD higher in expectation after 40 years. Should the young generations of
Norwegians accept this?8

In Figure 10 we illustrate the optimal long term spending rate as a func-
tion of the parameter ρ. The parameter β = 0.99 and γ = 2.24. The upper
line represents the expected rate of return on the fund µW = 0.036. The next
line is m = 0.035, then follows ce1 = 0.029, and finally ceγ = 0.020. The
optimal spending rate c0(∞) is the lowest increasing curve, and passes both
the long run tests. In contrast, the expected rate of return on the fund, as a
spending rate, does not pass either test (recall Corollary 1).

8In Norwegian kroner the amounts are, with the exchange rate of 10.0 NOK to the
USD: Fund value at the end of 2021: 12299 billions NOK, the decline in expectation is
614 billions NOK in 40 years, and the difference between the two spending rules amounts
to 112320 billions NOK in expectation.
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Fig. 10: The optimal spending rate c0(∞) as a function of ρ.

Let us illustrate with some concrete values of ρ. In Figure 11 the param-
eter ρ = 2.0, β = 0.98 and γ = 2.24 as above. This implies preference for
early resolution of uncertainty. Then we have the following picture in Figure
11: The horizontal lines are the same as in the previous figure (γ and ϕ are
the same).

Fig. 11: The optimal extraction rate as a function of time (RU).

The optimal long run extraction rate is here c0(∞) = 0.021 for RU, larger
than indicated in the previous figure, since the impatience rate has increased.
The hyperbolic type curve is the optimal extraction rate ct(500), 0 ≤ t < 500.

37



This rate passes all the tests up up to around 400 years. In this example the
growth rate of the optimal consumption c∗t is 0.016 with a standard deviation
of 0.11. The optimal long run spending rate with EU is here c0(∞) = 0.022.

Next we let γ vary: This corresponds to different values of the portfolio
weight ϕ, which would fall from 0.98 to 0.31 when γ increase from 1.6 to 5,
following a convex, hyperbolic curve. For ρ = 2.0 and β = 0.99, Figure 12
gives a graph of the optimal long term spending as a function of γ, the lowest
curve in the figure.

Fig. 12: The optimal spending rate c0(∞) as a function of γ (RU).

In the Figure 12 is also included from the top, the expected rate of return,
the martingale threshold m, the threshold ce1 and the certainty equivalent
ceγ, all as functions of γ. Higher risk aversion leads to a lower optimal
spending rate.

What if the optimal rate becomes very low or even negative? Suppose
EIS = 1.43 corresponding to ρ = 0.70, γ = 2.24 and β = .99 so the agent is
patient. Now the optimal long term spending rate is −0.0034 for recursive
utility, i.e., negative. This must clearly be ruled out in the infinite horizon
case, but still makes sense with a finite horizon. Say for instance that the
fixed horizon is T = 500 years from now. Does this mean no spending at all?
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Fig. 13: The optimal spending rate as a function of time (RU).

Clearly not. See Figure 13, where the horizontal lines are the same as
in Fig. 11, except the lowest line, which corresponds to c0(∞) = −0.0034.
The optimal spending the first year is 0.00076 of the fund value, the optimal
spending in year 30 is 0.00086, the optimal spending in year 70 is 0.0010, in
year 100 it is 0.0012, in year 450 it is 0.0184 and in year 473 is is 0.0354 of
the fund value, which is equal to the expected real rate of return on the fund
in this situation, and so forth.

When the parameter ρ decreases further, the optimal spending rate c0(∞)
decreases, and still the optimal spending with a finite horizon is strictly
positive, and increasing as the horizon comes closer. Provided c0(∞) < ce1,
where ce1 = 0.029 here, the fund grows with probability one as t increases,
but for c0(∞) > ĉ the fund value converges to 0 almost surely.

The consumption growth rate in this example is 0.03 with a standard
deviation of 0.15.

The test with almost sure convergence implies that a negative extraction
rate c0(∞) satisfies the long run tests, and the fund grows with time with
probability one. This situation corresponds to an agent where the consump-
tion substitution dominates.

9.1 Exogenous income streams

Suppose there is an exogenous income stream It added to the fund each year.
The consequences of this will now be discussed. Let us assume that It is added
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to the fund in year t, where this stream of cash flows are assumed iid. We
assume the amount It at time t is invested in the financial markets together
with the rest of the fund W ∗

t , where the new fund is denoted W I
t = W ∗

t + It
and the new spending we call cIt . Under this assumption the real expected
return µIW is equal to µW , since there is no reason that this addition to
the fund will alter the expected return so long as the same optimal portfolio
selection rule is used on the total. Recall that µW = r+ϕν and σW = ϕ′σσ′ϕ,
that is, both these key parameters depend on market related quantities only.
This means that the threshold values ceI1 = ce1 and mI

W = mW are the same
as before, and so is ceγ.

What about the optimal spending rate c0(∞)? For expected utility we
notice from the proof of Theorem 1 that the basic change happens in the
budget constraint, where the Lagrange multiplier λ obtains a new value, but
from the proof this is seen to have no consequence for the consumption to
wealth ratio c0(∞). For recursive utility we see from the proof of Theorem 5
that the optimal spending rate depends in addition to the budget constraint,
also on the parameters µW and σW , which we have argued do not change
by the added income stream. Accordingly, the spending rate c0(∞) and the
final horizon version c0(T ) will both remain unchanged by I for both types
of preferences.

However, optimal spending will naturally change, that is, increase, since
we assume I > 0. This follows since the optimal spending with an exogenous
income stream is still proportional to wealth:

cIt = c0(∞)W I
t = c0(∞)(W ∗

t + It) = c0(∞)W ∗
t + c0(∞)It.

where c∗t = c0(∞)W ∗
t is the optimal spending with no added income stream.

For the Norwegian SWF Government Fund Global this is of interest,
since still an exogenous addition to the fund occurs each year. As explained,
this will allow a larger spending, but the optimal ”fiscal” rule, that is, the
consumption to wealth ratio, remains unchanged by income I.

As an example, for the year 2021 the market value of this fund was
12.340 billion NOK, where the addition (I2021) from the external oil-related
activity was 2.942 billion NOK. This amount has been stable for several
years, supporting our iid assumption. Supposing the optimal spending rule
was 2% this year, this would amount to 188 billion NOK from the fund ex
the direct oil supplement, and in addition 59 billion NOK from the latter.
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10 Summary.

A central part of this paper has been to derive the optimal spending of an
endowment fund, the consumption to wealth ratio. We show that this rate
can not equal the expected real rate of the fund, since this would not be
consistent with preference for diversification.

The rationale for this is that provided the fund is managed by diversifica-
tion, this means that risk aversion, consumption substitution and impatience
are essential in the optimal consumption and portfolio choice problem. To
be consistent, the spending rate must also reflect this. As a consequence, the
expected real rate of return is typically not an optimal spending rate, since
this criterion is linked to risk neutrality.

We have developed two tests, with the property that if the optimal spend-
ing rate is below the corresponding threshold values, the fund will last ”for-
ever”.

For this purpose, we adopted, and further developed the life cycle model
to fit our purposes, where we consider both expected additive and separable
utility as well as recursive utility in the setting of discrete time.

We demonstrate that when the agent is reasonably patient, the optimal
consumption to wealth ratio passes the two long run tests, and is moreover
strictly smaller than the expected rate of return on the fund. If the spending
rate is set equal to the latter, both tests are demonstrated to fail. The impli-
cations of this is that the fund value Wt converges to zero with probability 1
as time t increases, and the expected value of the fund converges to zero as
time t goes to infinity.

11 Appendix 1

11.1 The Financial Market

We consider a consumer who has access to a securities market, as well as
a credit market. The security market consists of N risky and one risk-free
security. The language and notation used here extends to continuous-time
settings with a Brownian filtration. More details can be found in e.g., Skiadas
(2009). The continuous-time analogue can be found in e.g., Duffie (2001).

The information filtration Ft is generated by a d-dimensional martingale
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B = (B1, · · · , Bd)′, where prime means transpose, such that

(11.1) Et−1(4Bi
t4B

j
t ) =

{
1, if i = j;

0, if i 6= j,

for t ∈ {1, · · · , T}, where 4Bi
t = Bi

t −Bi
t−1, and Bi

0 = 0. Any martingale M

can be uniquely expressed as Mt = M0 +
∑t

s=1 θ
′
s4Bs for some predictable

process θ. We shall assume that the number of risky assets N = d, where
d is the spanning number of the filtration Ft, t = 0, 1, . . . , T , and T is the
finite horizon of the economy. The vector stochastic process B is a dynamic
orthonormal basis for the set of zero-mean martingales.

The Doob decomposition of any adapted stochastic process xt is here a
discrete-time, stochastic process that can be uniquely written as

xt = x0 +
t∑

s=1

µxs +
t∑

s=1

σxs4Bs,

or
4xt = µxt + σxt4Bt.

for µx and σx predictable processes, which can be expressed as

µxt = Et−1(4xt) and σxt = Et−1(4xt4B′t).

Price processes are denoted by S, and when adjusted for dividends they are
called adjusted price process, or gains processes, denoted by X. The price
process S of any risky asset is assumed nonzero at nonterminal nodes, and
the return process R is defined by

Rn
t :=

4Xn
t

Snt−1
= µR,nt + σR,nt 4Bt, for t = 1, · · · , T,

where σR,nt is a 1 × N -vector at each time t related to each single asset n,
n = 1, 2, · · · , N . By summing this equation over t we obtain what is called
the cumulative return process (R0 is assumed to be arbitrary).

The securities market can now be described by the vector νt of expected
returns of the N given risky securities in excess of the risk-less instantaneous
return rt, and σRt is an N × N matrix associated to the risky asset prices,
normalized by the asset process, so that σRt (σRt )′ is the covariance matrix
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for asset returns. Both µRt and σRt are assumed to be adaptive, measurable
stochastic processes.

There is an underlying probability space (Ω,F , P ) and an increasing in-
formation filtration Ft generated by the d-dimensional orthonormal basis B.
The parameter σ(0) = 0, so that rt = µ0(t) is the risk-free interest rate (also
a stochastic process). The state price π(t) is connected to a density process
ξt given by

(11.2) ξt =
t∏

s=0

(1− η′s4Bs).

The process ηt is called the market-price-of-risk process. The process ξt
can be interpreted as a conditional density process ξt = Et(dQ/dP ) of a
probability measure Q equivalent to the given measure P . In our framework
ξt is connected to the state price πt as follows, πt = π0s

−1
t ξt, where st is

the price of the risk-less asset, with simple return rt = 4st/st−1, so that
st =

∏t
s=0(1 + rs). Here rt is the return on the risk-less asset in the time

interval between t−1 and t, so it is Ft−1-measurable. From this, using (11.2),
we obtain the expression

(11.3) πt = π0

t∏
s=0

(1− η′s4Bs)

1 + rs
.

We consider discounted price process Xts
−1
t . The market-price-of-risk η(t)

satisfies, for each cumulative return process Rn, the equations

µR,nt − rt = σR,nt ηt, n = 1, 2, · · · , N,

for each t, where σR,nt is 1×N . Alternatively, ηt satisfies the following system
of equations

(11.4) σRt ηt = νt, t ∈ {0, 1, · · · , T},

where the nth component of νt equals (µR,nt − rt), the excess, conditional
expected rate of return on security n at time t, n = 1, 2, · · · , N . In (11.4)
σRt is a N ×N matrix at each time t, assumed to be invertible (d = N). The
matrix σ′tσt is the covariance matrix of the risky assets in units of prices at
each time t, where σt = σRt for short, with a similar notational simplification
for µt.
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Equations (11.4) are the basic no-arbitrage restrictions for the financial
market; when this system of equations hold, there exists a unique vector ηt
for each t, modulo some technical conditions. We then think of the market as
being in a ’dynamic equilibrium’, where a price taker, our consumer, trades
optimally resulting in an optimal consumption plan c and generating optimal
wealth W .

Having determined the market-prices-of-risk ηt from (11.4), these in turn
determine the state prices πt in (11.3). The vector ηt gives a relationship
between ”risk” (conditional variances and covariances) and excess returns
that must hold for there to be no arbitrage possibilities in the market, which
is the basic message found in Black and Scholes’ (1973) theory.

Let (θ(0), θ) be a trading strategy, which finances the consumption plan c
and generates the wealth W . Let

ϕ
(j)
t =

θ
(j)
t X

(j)
t

Wt − ct
, j = 1, 2, · · · , N

where ϕt = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t )′ is the vector of portfolio ratios in the N
risky assets. At the beginning of period t, the agent allocates the proportion
ct−1

Wt−1
of the wealth Wt−1 to immediate consumption and invests the remaining

amount (Wt−1− ct−1) in the 1 +N assets, with proportion ϕ
(j)
t going to asset

j ∈ {1, 2, · · · , N} and the remaining proportion (1−
∑N

j=1 ϕ
(j)
t ) going to the

risk-less asset.
The end-of-period wealth Wt is the result of this investment/consumption

strategy and given by

Wt = (Wt−1 − ct−1)
(
(1 + rt)(1−

N∑
j=1

ϕ
(j)
t ) + ϕ′t(1 +Rt)

)
,

where Rt = (R
(1)
t , R

(2)
t , · · · , R(N)

t )′ are the (simple) returns on the N risky
assets, and rt is the (simple) return on the risk-free asset.

The consumer’s problem is, for each initial wealth level w, to solve

(11.5) sup
(c,ϕ)

U(c),

subject to an intertemporal budget constraint

(11.6) Wt =
(
Wt−1 − ct−1)

(
1 + rt + ϕ′t(Rt − rt)

)
, W0 = w.
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The simple return RW
t on the wealth portfolio is given by the relationship

(11.7) 1 +RW
t =

Wt

Wt−1 − ct−1
,

since consumption c is contained in W , where c may be interpreted as ”div-
idend”.

The present problem is known as a temporal problem of choice.

12 Appendix 2.

Proof of Theorem 1.
From the relationship (2.3) we have

Wt =
1

πt
Et

( T∑
s=t

πsc
∗
s

)
.

The optimal consumptions c∗s = (λπsβ
−s)−

1
γ , s = t, t + 1, . . . , T are found

from (3.5). It follows from the expression (11.3) that

πs
πt

=
s∏

v=t+1

1− η′v4Bv

1 + rv
, where the product is 1 when t = s,

which means that we can write

Wt =
1

πt
Et

( T∑
s=t

λ−
1
γ βt/γπ

1−1/γ
t β(s−t)/γ

s∏
v=t+1

(1− η′v4Bv)
1−1/γ

(1 + rv)1−1/γ

)
=

c∗tEt

{ T∑
s=t

β(s−t)/γ
s∏

v=t+1

(1− η′v4Bv)
1− 1

γ

(1 + rv)
1− 1

γ

}
.

This shows the formula (4.1). �.

Proof of Theorem 2.
We use the result of Theorem 1, and first we compute the following ex-

pectation:

(12.1) Et
( s∏
v=t+1

(1− η′v4Bv)
1− 1

γ
)

=
s∏

v=t+1

Et(1− η′v4Bv)
1− 1

γ
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where we have used independence across time of the random variables (1 −
η′v4Bv), v = 1, 2, . . ..

At this point we use a Taylor series approximations to the second order

of the power function (1− η′v4Bv)
1− 1

γ , which gives for v > t

Et
{

(1−η′v4Bv)
1− 1

γ
}

= Et
{

1−(1−1

γ
)η′4Bv+

(1− 1
γ
)(1− 1

γ
− 1)

1 · 2
η′4Bv4B′vη

}
=

1 +
1− γ
2γ2

η′η.

This means that equation (12.1) can be written

Et
( s∏
v=t+1

(1− η′v4Bv)
1− 1

γ
)

= (1 +
1− γ
2γ2

η′η)(s−t).

As a consequence, from Theorem 1 the optimal wealth to consumption
ratio, 1

ct(T )
, can be expressed as follows:

1

ct(T )
=
W ∗
t

c∗t
=

T∑
s=t

(
β

1
γ (1 + r)

1−γ
γ (1 +

1− γ
2γ2

η′η)
)(s−t)

.

The right hand side can be seen to be a geometric sum, which is given by
the formula of the Theorem. Letting T →∞, this formula results in

1

ct(∞)
=
W ∗
t

c∗t
=

1

1− β
1
γ (1 + r)

1−γ
γ
(
1 + 1−γ

2γ2
η′η
) ,

provided the term β
1
γ (1+r)

1−γ
γ (1+ 1−γ

2γ2
η′η
)
< 1. For reasonable values of the

parameters this inequality obviously holds true, which proves the theorem.
�.

Proof of the spending formula (4.4) in Remark 1.
We start with the optimal spending formula in Theorem 2, which can be

approximated as

ct(∞) = 1− β
1
γ (1 + r)

1−γ
γ
(
1 + η′η

) 1−γ
2γ2 ,
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and rewritten as

1− exp
(1

γ

[
ln(β) + ln(1 + r)(1− γ) + ln(1 + η′η)

1− γ
2γ

])
.

Next we use a first order Taylor approximation of the two last logarithmic
functions, which results in

1− exp
(1

γ

[
ln(β) + r(1− γ) + η′η

1− γ
2γ

])
.

Finally, we use a first order Taylor approximation of the exponential function,
which reduces the formula to the following expression

δ
(1

γ

)
+
(
1− 1

γ

)(
r +

1

2γ
ν ′(σσ′)−1ν

)
,

where δ = −ln(β). This is the formula in Remark 1. �

Demonstration of the formula (4.5) in Remark 2.
Here we make use of the formula (4.4) in Remark 1. We want to show

that

r + ϕ′ν > δ
(1

γ

)
+
(
1− 1

γ

)(
r +

1

2γ
ν ′(σσ′)−1ν

)
.

From our results in Section 3.2, this is the same as

r + γϕ′(MM ′)ϕ > δ
(1

γ

)
+
(
1− 1

γ

)(
r +

1

2
ϕ′c(MM ′)ϕ

)
.

Since ϕc and ϕ are close, this inequality can be written

1

2
ϕ′(MM ′)ϕ ≥ δ − r

γ(1− γ)
.

Because δ ≈ r and 1
2
ϕ′(MM ′)ϕ > 0 with good margin, this inequality holds

true, with good margin, unless the impatience rate δ is too large. �

Proof of Theorem 4.
Starting with the relationship

W ∗
t+1 = W0(1− c)t+1

t∏
s=0

(1 +RW
s+1), t = 0, 1, . . .
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where c is a spending rate, we obtain the following

1

t+ 1
ln(Wt+1) =

1

t+ 1
ln(W0) + ln(1− c) +

1

t+ 1

t∑
s=0

ln(1 +RW
s+1)

With our iid assumption for R1, R2, . . . it follows by the SLLN that

1

t+ 1

t∑
s=0

ln(1 +RW
s+1)→ E(ln(1 +RW )) almost surely.

This means that

1

t+ 1
ln(Wt+1)→ ln(1− c) + E(ln(1 +RW )) almost surely,

or

ln(Wt+1)− (t+ 1)(ln(1− c) + E(ln(1 +RW ))→ 0 almost surely as t→∞.

This shows that when (ln(1 − c) + E(ln(1 + RW )) > 0 then ln(Wt+1) →
+∞ as t→∞, which implies that Wt grows without limit, almost surely, as
t increases. This proves (b) of the theorem.

When the term (ln(1− c) + E(ln(1 + RW )) < 0 on the other hand, then
ln(Wt+1)→ −∞ as t→∞, which implies that Wt → 0 almost surely, which
proves (a). �

13 Appendix 3.

13.1 The first order conditions for optimal consump-
tion: Recursive utility.

First we determine the optimal consumption. The agent is characterized by
a utility function U and an endowment process e ∈ L. The agent’s problem
is

supc∈L+
U(c) subject to E

( T∑
s=0

πscs
)
≤ E

( T∑
s=0

πses
)
,

where L is the space of adapted consumption processes, L+ its positive cone,
and π is the state price deflator.
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The Lagrangian of the problem is

L(c, λ) = U(c)− λE
( T∑
s=0

πs(cs − es)
)
,

where λ > 0 is the Lagrangian multiplier. Assuming U to be continuously
differentiable, the gradient of U at c in the direction x is denoted by5U(c;x).
This directional derivative is a linear functional, and by the Riesz Represen-
tation Theorem and for example, dominated convergence, it is given by

5U(c;x) = E
( T∑
s=0

ysxs
)
.

Here y is the Riesz representation of 5U(c; ·). The first-order condition is

5L(c, λ;x) = 0 for all x ∈ L.

This is equivalent to

E
{ t∑
s=0

(ys − λπs)xs
}

= 0 for all x ∈ L.

This implies that yt = λπt for all t ≤ T .
Our next task is to characterize the Riesz representation y of U . When

this is done, by the above result we have the marginal rates of substitution
in the economy equal to the price ratios, yt+1/yt = πt+1/πt.

13.2 The marginal rate of substitution

In order to find the optimal consumption we need to find the Riesz repre-
sentation p associated with the utility function U as explained in the last
section.

Using directional derivatives and backward induction, we can show that
the utility gradient is given by the following expression

(13.1) 5 U(c;x) = 5U0(c;x) =

E
{ T∑

t=0

xt fc(ct,mt+1)
t−1∏
s=0

fm(cs,ms+1)

u′(ms+1)
u′(Us+1)

}
,
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from which it follows that the Riesz representation is given as

(13.2) yt = fc(ct,mt+1)
t−1∏
s=0

fm(cs,ms+1)

u′(ms+1)
u′(Us+1),

for t = 0, 1, · · · , T , (see e.g., Aase (2021)).
The intertemporal marginal rate of substitution, or the stochastic dis-

count factor, Mt+1 := yt+1/yt is given by the formula

(13.3) Mt+1 =
fc(ct+1,mt+2)

fc(ct,mt+1)
fm(ct,mt+1)

u′(Ut+1)

u′(mt+1)
.

Along the optimal consumption path Mt+1 = πt+1/πt, that is, Mt+1 equals
the price ratio.

In order to find a formula for the stochastic discount factor we must
compute the quantities in (13.3), which are

∂

∂c
f(ct,mt+1) = (1− β)Uρ

t c
−ρ
t ,

∂

∂m
f(ct,mt+1) = βUρ

tm
−ρ
t+1,

and
u′(Ut+1)

u′(mt+1)
=
U−γt+1

m−γt+1

.

This means that the stochastic discount factor takes the form

(13.4) Mt+1 = β
(ct+1

ct

)−ρ(Ut+1

mt+1

)ρ−γ
.

Let c signify optimal consumption, and Wt is the agent’s wealth at time t,
given by

(13.5) Wt =
1

πt
Et

( T∑
s=t

πscs

)
.

Our definition of wealth Wt includes current consumption (dividend), so the
simple real rate of return on the wealth portfolio over the period (t, t+ 1) is
RW
t+1 given by

(13.6) 1 +RW
t+1 :=

Wt+1

Wt − ct
,
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as before. By the definition in (13.6), it now follows by a string of manipu-
lations that

(13.7) Mt+1 = β
1−γ
1−ρ

(ct+1

ct

)−ρ 1−γ
1−ρ (

1 +RW
t+1

) ρ−γ
1−ρ .

This expression has been the starting point for much of the literature on
RU in discrete time models; see for example, Mehra and Donaldson (2008)
and Cochrane (2008). This is the stochastic discount factor, first derived
by Epstein and Zin (1989-91) in their seminal papers based on dynamic
programming techniques.

We finally find the optimal consumption c∗ as follows: Below we assume
ρ > 0 and γ 6= 1. Using that yt = λπt, we obtain from the relationship in
(13.7) that

(13.8) ln
(c∗t+1

c∗t

)
=

1

ρ
ln(β)− 1

ρ

1− ρ
1− γ

ln
(πt+1

πt

)
− 1

ρ

γ − ρ
1− γ

ln(1+RW
t+1). (RU)

It is instructive to compare this relationship to the corresponding one for
expected utility, which is

(13.9) ln
(c∗t+1

c∗t

)
=

1

γ
ln(β)− 1

γ
ln
(πt+1

πt

)
. (EU)

Both these difference equations can be solved, using iteration and the prop-
erties of the logarithm. Starting with equation (13.8), it can be written

(13.10) c∗t+1 = c∗t
(β(1 + rt)

1−ρ
1−γ )

1
ρ

(1− η′t4B
1
ρ

1−ρ
1−γ

t (1 + µW,t + σ′W,t4Bt)
1
ρ
γ−ρ
1−γ

,

where µW,s is the expected simple return of the wealth portfolio at time s and
σW,s is the corresponding vector of volatilities. Using this recursive relation
also for c∗t and iterating, we obtain the following closed form solution for the
optimal consumption

(13.11) c∗t = c0β
t
ρ

t∏
s=0

(1 + rs)
1
ρ

1−ρ
1−γ

t∏
s=0

(1− η′s4Bs)
− 1
ρ

1−ρ
1−γ ·

t∏
s=0

(1 + µW,s + σ′W,s4Bs)
− 1
ρ
γ−ρ
1−γ ,
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while the corresponding solution for the conventional EU-model is

(13.12) c∗t = c0β
t
γ

t∏
s=0

(1 + rs)
1
γ

t∏
s=0

(1− η′s4Bs)
− 1
γ .

This last expressions is equivalent to (3.5) in Section 3.1, and has been used
in the analysis of the EU model, see Appendix 1. Notice that µW = r + ϕ′ν
and σ′W = ϕ′σ, where ν, r and σ are market related quantities and where ϕ
are the optimal portfolio ratios, to be found in the next section for RU.

The formulas (13.8)-(13.12) first appeared in Aase (2017).

13.3 Optimal portfolio selection with RU

Let us consider the basic problem (2.1) at time t, where the optimal consump-
tion has been inserted. Since the utility function is increasing, the constraint
is binding and what remains is to solve the finite dimensional problem

(13.13) maxϕUt = maxϕt+1f(c∗t ,mt+1).

Since the portfolio weights for the next period only appear in the second
term of the aggregator f , the first order condition is

∂

∂ϕ
f(c∗t ,mt+1) = fm(c∗t ,mt+1)

∂

∂ϕ
mt+1 =

β
( Ut
mt+1

)ρ ∂
∂ϕ

(
Et(U

1−γ
t+1 )

) 1
1−γ = β

( Ut
mt+1

)ρ 1

1− γ
(
Et(U

1−γ
t+1

) γ
1−γ

∂

∂ϕ
Et(U

1−γ
t+1 ) = 0

where we have used one of the formulas appearing after equation (13.3).
Now we employ the property of scale invariance, which here means that
Ut = fc(ct,mt+1)Wt. With this, the above can be written

β
( Ut
mt+1

)ρ 1

1− γ
(
Et(U

1−γ
t+1

) γ
1−γ

∂

∂ϕ
Et
(
f 1−γ
c W 1−γ

t+1

)
= 0.

Using the equation for the wealth dynamics in (11.6), the first order condi-
tions for ϕ are

(13.14) Et
(
fc(c,m)1−γ(1 + rt + ϕt+1(Rt+1 − rt+1))

−γ(Rt+1 − rt+1)
)

= 0,
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for t = 0, 1, , . . . , T − 1.9 In our case fc(ct,mt+1) = (1 − β)Uρ
t c
−ρ
t . With a

deterministic investment opportunity set it follows that fc(ct,mt+1) is deter-
ministic, since the consumption to wealth ratio is deterministic. This means
that we obtain the same first order conditions as for expected utility given
in equation (3.7), and under the same conditions ϕt+1 is given by the for-
mula (3.8) also for recursive utility. This agrees with Skiadas (2009). A
continuous-time version can be found in Svensson (1989).

Having solved the optimal consumption and portfolio selection problem
in the life cycle model for recursive utility, the solution can be used to find
the optimal spending rate, which we do in the next section.

14 Appendix 4.

Proof of Theorem 5.
We again start from the relationship (2.3)

Wt =
1

πt
Et

( T∑
s=t

πsc
∗
s

)
.

The optimal consumptions c∗s, s = t, t + 1, . . . , T are found from (13.8). It
again follows from the expression (11.3) that

πs
πt

=
s∏

v=t+1

1− η′v4Bv

1 + rv
,

which means that we can write

Wt =
1

πt
Et

( T∑
s=t

c0β
t/ρπ

1− 1
ρ

1−ρ
1−γ

t

t∏
s=0

(1 + µWs + σWs 4Bs)
− 1
ρ
γ−ρ
1−γ

β(s−t)/ρ
s∏

v=t+1

(1− η′v4Bv)
1− 1

ρ
1−ρ
1−γ

(1 + rv)
1− 1

ρ
1−ρ
1−γ

s∏
v=t+1

(1 + µWv + σWv 4Bv)
− 1
ρ
γ−ρ
1−γ

)
=

c∗tEt

{ T∑
s=t

β(s−t)/ρ
s∏

v=t+1

(1− η′v4Bv)
1− 1

ρ
1−ρ
1−γ (1 + µWv + σWv 4Bv)

− 1
ρ
γ−ρ
1−γ

(1 + rv)
1− 1

ρ
1−ρ
1−γ

}
.

9Existence and uniqueness of this problem has been proved by Skiadas (2008).
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This shows the formula (7.4). �.

Proof of Theorem 6.
We use the result of Theorem 5. We simplify the notation as follows in

the first steps below:

a :=
1

ρ

1− ρ
1− γ

, b :=
1

ρ

γ − ρ
1− γ

.

First we need to compute expectations of the following type:

Et

(
(1− η′4Bv)

1−a(1 + µW + σ′W4Bv)
−b
)
,

for v ≥ t + 1. By use of a Taylor series approximation to the second order,
we obtain

Et

((
1− (1− a)η′4Bv+1 +

(1− a)(1− a− 1)

1 · 2
η′4Bv+14B′vη

)
·(

1− b(µW + σ′W4Bv) +
(−b)(−b− 1)

1 · 2
(µW + σ′W4Bv)

2
))

=

1− bµW +
1

2
b(1 + b)(µ2

W + σ′WσW ) + b(1− a)η′σW

−b(1−a)(1+b)µWη
′σW −

1

2
a(1−a)(1−bµW )η′η− 1

4
a(1−a)b(1+b)µ2

Wη
′η.

Here we have carried out the multiplication, then ignored terms of order 3
and larger, and used the property of 4Bv in (11.1).

We now apply the result of Theorem 5. By independence through time
this gives that the reciprocal of the optimal spending rate, ct(T )−1 =

W ∗
t

c∗t
,

can be written

W ∗
t

c∗t
= Et

{ T∑
s=t

β(s−t)/ρ
s∏

v=t+1

(1− η′v4Bv)
1− 1

ρ
1−ρ
1−γ (1 + µWv + σWv 4Bv)

− 1
ρ
γ−ρ
1−γ

(1 + rv)
1− 1

ρ
1−ρ
1−γ

}
=

T∑
s=t

(
β

1
ρ (1 + r)(

1
ρ

1−ρ
1−γ−1)

{
1− bµW +

1

2
b(1 + b)(µ2

W + σ′WσW ) + b(1− a)η′σW

−b(1−a)(1+b)µWη
′σW−

1

2
a(1−a)(1−bµW )η′η−1

4
a(1−a)b(1+b)µ2

Wη
′η
})s−t

=
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k(β, ρ, γ, η, ν, r, σ, ϕ)T−t − 1

k(β, ρ, γ, η, ν, r, σ, ϕ)− 1
,

where

(14.1) k(β, ρ, γ, η, ν, r, σ, ϕ) = β
1
ρ (1 + r)(

1
ρ

1−ρ
1−γ−1)

{
1−

(1

ρ

γ − ρ
1− γ

)
µW

+
1

2

(1

ρ

γ − ρ
1− γ

)(
1 +

1

ρ

γ − ρ
1− γ

)(
µ2
W + σ′WσW

)
+
(1

ρ

γ − ρ
1− γ

)
·(

1− 1

ρ

1− ρ
1− γ

)[
1−

(
1− 1

ρ

γ − ρ
1− γ

)
µW
]
η′σW −

1

2

(1

ρ

1− ρ
1− γ

)(
1− 1

ρ

1− ρ
1− γ

)
·[

1− 1

ρ

γ − ρ
1− γ

µW −
1

2

(1

ρ

γ − ρ
1− γ

)(
1 +

1

ρ

γ − ρ
1− γ

)
µ2
W

]
η′η
}
.

This proves Theorem 6. �

Derivation of the expected consumption growth rate and its SD for RU.

In this kind of analysis it can be of interest to find the expected consump-
tion growth rate and the corresponding volatility. Here this can be done with
the technique developed in the previous theorem. We start with the equation
(13.10) from Section 13.2, which can be written:

(14.2)
c∗t+1

c∗t
= β

1
ρ (1 + rt)

1
ρ

1−ρ
1−γ (1− ηt4Bt)

− 1
ρ

1−ρ
1−γ (1 + µWt + σWt 4Bt)

− 1
ρ
γ−ρ
1−γ .

Following the steps in the proof of Theorem 6, the conditional expected
consumption growth rate is

(14.3) Et
(c∗t+1

c∗t
− 1
)

= β
1
ρ (1 + rt)

a
(

1− bµW +
1

2
b(1 + b)

(
µ2
W + σ′WσW

)
− ba

(
1− (1 + b)µW

)
η′σW +

1

2
a(1 + a)

(
1− bµW −

1

2
b(1 + b)µ2

W

)
η′η
)
− 1.

Next we need the conditional expected value of the following ratio

(
c∗t+1

c∗t
)2 = β

2
ρ (1 + rt)

2a (1− ηt4Bt)
−2a(1 + µWt + σWt 4B−2bt ,

which is

(14.4) Et
(
(
c∗t+1

c∗t
)2
)

= β
2
ρ (1 + rt)

2a
(

1− 2bµW + b(1 + 2b)
(
µ2
W + σ′WσW

)
− 4ba

(
1− (1 + 2b)µW

)
η′σW + a(1 + 2a)

(
1− bµW − b(1 + 2b)µ2

W

)
η′η
)
.
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From these two quantities we can find the conditional standard deviation of
the expected consumption growth rate as

σc∗(t) =

√
Et
(
(
c∗t+1

c∗t
)2
)
−
(
Et
(c∗t+1

c∗t

))2
.

�
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