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Abstract

This paper develops a machine-learning method that allows researchers to estimate

heterogeneous treatment effects with panel data in a setting with many covariates.

Our method, which we name the dynamic causal forest (DCF) method, extends the

causal-forest method of Wager and Athey (2018) by allowing for the estimation of

dynamic treatment effects in a difference-in-difference setting. Regular causal forests

require conditional independence to consistently estimate heterogeneous treatment

effects. In contrast, DCFs provide a consistent estimate for heterogeneous treatment

effects under the weaker assumption of parallel trends. DCFs can be used to create

event-study plots which aid in the inspection of pre-trends and treatment effect dy-

namics. We provide an empirical application, where DCFs are applied to estimate

the incidence of payroll tax on wages paid to employees. We consider treatment

effect heterogeneity associated with personal- and firm-level variables. We find that

on average the incidence of the tax is shifted onto workers through incidental pay-

ments, rather than contracted wages. Heterogeneity is mainly explained by firm-and

workforce-level variables. Firms with a large and heterogeneous workforce are most

effective in passing on the incidence of the tax to workers.
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1 Introduction

Policymakers often care about treatment effect heterogeneity. This allows them to tar-

get public interventions toward the groups that are most responsive, and to evaluate

the effects of public policy on inequality. In addition, investigating heterogeneous effects

can reveal information about underlying mechanisms that drive differences in outcomes.

However, estimation of heterogeneous treatment effects is challenging in data-rich en-

vironments. The abundance of data offers empirical researchers too much flexibility in

choosing specifications, which complicates inference (see e.g. Brodeur et al., 2016). One

example of such a data-rich environment is the administrative data we exploit in our

application, in which merging various administrative sources results in a large covariate-

space.

As a response to such concerns, recent advances in causal machine learning have

delivered the causal tree and forest algorithms (Athey and Imbens, 2016; Wager and

Athey, 2018). Causal forests provide a data-driven approach to estimating treatment

effect heterogeneity in the context of a cross-sectional experiment. A canny sample

splitting technique, known as honesty, overcomes the issues generally associated with

multiple hypothesis testing and overfitting.1 For identification, causal forests rely on

the strong assumption of conditional independence, which states that treatment status

is independent of the outcome variable after conditioning on covariates.

Yet, there are limitations to the practical usefulness of causal forest methods. In

many applied studies estimated on panel data, conditional independence is unlikely to

be satisfied. In such a setting, causal forest estimates are not guaranteed to be consistent.

Therefore, a recent overview paper Roth et al. (2022, p.42) calls for extending the causal

forest method to a setting which assumes parallel trends but not (necessarily) conditional

independence.

In this paper, we take on the challenge by developing a method that we name Dy-

namic Causal Forest (DCF). DCFs extend causal forests to a setting in which identifi-

cation comes from parallel trends, rather than conditional independence. DCFs allow

researchers to study heterogeneity of causal effects both between covariates and over

time. Our main result shows that DCFs provide a consistent estimate for the aver-

age treatment effect on the treated, conditional on both covariates and time (CATT),

provided that the outcome variable satisfies parallel trends conditional on covariates.

Similar to event studies, DCFs can be used to examine whether pre-trends are parallel,

1The sample splitting technique splits samples into a training sample, on which a forest is trained,
and an estimation sample, on which causal effects are estimated. (Wager and Athey, 2018) show that
standard methods for inference apply in this setting for the estimation sample.
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and to study treatment effect dynamics. Our method thus combines event study design

with the strengths of causal forests, in which DCFs provide optimal ways of splitting

the data to capture treatment effect heterogeneity.

To develop our method, we consider a set-up with panel data on an outcome variable

of interest and a set of covariates that are assumed to vary by unit, but not over time.

We assume a single treatment, occurring in period b + 1 which divides the sample in

a treatment and a control group (here period b signifies the base period).2 The panel

must be partially balanced in the sense that all units must be observed in the base-year

period, and at least one other period. We assume that the outcome variable satisifies

parallel trends after conditioning on covariates.

We use the following key insight to develop DCFs. Parallel trends on outcome

variable yit restrict the relationship between the base-year differenced outcome variable

zit ≡ yit − yib (henceforth the differenced outcome variable) and assignment to the

treatment group. The parallel-trend assumption we make in this paper, implies that in

the absence of treatment the expected value of zit does not depend on treatment status

after conditioning on covariates. We show that this assumption is sufficient to apply the

main theorem of Wager and Athey (2018) (Theorem 11) to zit for the treated group.

Hence, under parallel trends, a causal forest estimated on zit yields consistent estimates

for the CATT.

Leveraging this insight, we develop DCFs by i.) base-year differencing the outcome

variable, ii.) applying Neyman-orthogonalization to the outcome variable of interest

and the treatment variable to reduce the finite-sample bias inherent to machine-learning

models (see e.g. Chernozhukov et al., 2018; Athey et al., 2019) and iii.) estimating a

causal forest on the differenced outcome variable for each period t ̸= b. Intuitively, the

latter step is equivalent to estimating a forest on the full sample, but forcing each tree

to first branch out by time, before considering splits along other covariates.3

Figure 1 provides a schematic of a tree in a DCF. Related to our application, the

example illustrates an intervention that produces heterogeneous treatment effects in a

sample of workers. There are 4 periods ranging from b−1 to b+2 and two covariates: the

size of the firm, and the gender of the worker. All splits, except the initial time-split are

data-driven and only occur if the algorithm finds significant treatment effect heterogene-

ity on the basis of the covariates on a training sample. Final splits of trees are known

2In the Appendix we extend our method to allow for staggered treatment.
3This third step is essential because the causal-forest estimator is consistent, but biased in finite

samples. The bias that is most worrisome in a dynamic setting is the bias that follows when the sample
is not split by time, and hence, pre- and post-reform are combined into a single estimate. Forcing the
forest to first separate observations by time prevents this from occurring.
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Figure 1: Example of a tree in a DCF

Notes: The Figure displays a simplified example tree in a DCF estimated on a sample of workers
with covariates firm size (x1) and gender of the worker (x2). Trees always first split by period. There
is no split for t = b, since the treatment effect is not identified in the base year. In period b − 1
the tree algorithm finds no treatment effect heterogeneity. Hence, the tree-estimate for the CATT
is independent of the covariates, and given by the difference in the differenced outcome zit between
the treatment (Wi = 1) and control (Wi = 0) group. In period b + 1 the tree finds evidence of
heterogeneity by firm size between large (L) and small firms (S). Here the CATT is estimated on
the same difference in zit but conditioned on x1. In period b + 2 the algorithm finds evidence of
additional heterogeneity by gender within large firms, and hence, the estimates are split accordingly.

as leaves. The average treatment effect in a particular leaf is the difference between

treated and control units in the differenced outcome variable within the leaf. Hence,

identification is based on the difference-in-difference (DiD) in the outcome variable of

interest.

Proposition 1 of this paper formally shows that DCFs provide a consistent estimate

for the treatment effect. This result relies on the following assumptions. First, the

expected outcome variable must satisfy a parallel trend assumption in the absence of

treatment, conditional on covariates. Second, there must be overlap between treatment

and control group in all regions of the covariate-space. Third, we make a few regularity

assumptions, which among others require that the CATT varies continuously with the

covariates. All assumptions, apart from the parallel-trend assumption are equivalent to

the assumptions taken in Wager and Athey (2018).

DCFs allows for standard inference, such as hypothesis testing of treatment effects

between subpopulations or over time. In addition, the estimates can be used to cre-

ate event-study diagrams to, for instance, study treatment dynamics for the average

treatment effect, or for the treatment effect among a subsample of interest. DCFs also

produce a variable-importance matrix for each period which allows researchers to identify
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subsamples of interest. We demonstrate all of these features of DCFs in our empirical

application.

Application In our empirical application of the DCF method, we study the incidence

of payroll taxes on wages paid to workers in Norway. There is a large literature that

studies the incidence of employer-paid payroll taxes on the wage of workers, but estimates

of the pass-through coefficient vary strongly. For instance, Gruber (1997) find that all

of the incidence is passed through to workers in Chile, whereas a more recent study by

Ku et al. (2020) on Norwegian data find that most of the incidence remains with the

employer. Research by Saez et al. (2012, 2019) provides evidence for rent sharing at

the firm level, implying that the firm’s exposure to the payroll tax is more important

than the exposure of an individual worker. This wide variety of results implies that

there can be significant treatment effect heterogeneity with respect to personal and firm

characteristics.

At the same time, there exists a large literature in labor economics which finds

evidence that firm-specific premiums are an important driver of wage inequality (e.g.

Abowd et al., 1999; Card et al., 2013).4 One possible channel for mediation of such

inequality arises when some firms are better able to shift tax incidence to workers than

others.

Nevertheless, studying the heterogeneous incidence of payroll taxes has so far received

limited attention in the literature for two reasons. First, there is little employer-employee

matched data that also cover a variety of wage concepts that can reveal different margins

of adjustment to the tax. Second, there are many relevant dimensions of heterogeneity

from a conceptual point of view, whilst theory offers little guidance concerning which

dimensions are most important.

To address these key challenges, we exploit one of the main features of the forest

algorithm, the variable importance matrix, as a data-driven method to determine the

main margins of heterogeneity in the treatment effect in a panel data setting. Thus,

the methodology allows us to identify the relative importance of firm vs worker-specific

characteristics on payroll tax incidence.

Our empirical application utilizes a special survey panel of matched employer-employee

data from Norway that contain information on various wage concepts, most notably, con-

tracted wages, and wages inclusive of overtime payments and bonuses. We link our data

to administrative data on individual- and firm-level tax returns, demographic data and

education data, which provide a host of covariates that can potentially mediate treat-

ment. We are interested in examining the margins along which we observe the largest

4See Card et al. (2018) for an overview.
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heterogeneity in the pass-through of the payroll tax. Given that incidence is the result of

bargaining between workers and employers, we are interested in variables that typically

influence the bargaining position of workers. For example, variables such as gender and

education, can play a major role in pass-through of the payroll tax, shedding light on

the practical mechanisms of the incidence of the payroll tax.

To account for alternative channels, our DCF includes both firm and worker-level

covariates. Further, for each worker-level covariate, we also include a firm-level aggre-

gate. This allows us to, for example, distinguish between the case where heterogeneity

is primarily driven by the union-status of the worker, or by the fraction of unionized

workers within a firm. The DCF can distinguish between these cases, because the former

would be observationally consistent with large within-firm heterogeneity in payroll-tax

incidence, whereas the latter only drives between-firm heterogeneity.

To obtain causal evidence we employ the following reform. Norway has a system of

regionally differentiated payroll tax rates that has undergone several reforms. We focus

on a Norwegian payroll tax reform implemented in 2004. For workers in our Treatment

Zone, the payroll tax rate increased permanently in 2004, whereas the tax rate remained

unchanged in our Control Zone throughout the period of analysis. We use this reform

as a quasi-experimental framework and apply both standard difference-in-difference and

DCF methods. We focus on workers that can be observed throughout the sample period

from 2002 to 2008.

With respect to the average treatment effect, we find suggestive evidence that some

of the tax incidence is shifted to workers when considering contracted wages as outcome,

but the response of contracted wages does not differ significantly from zero. However,

this result changes when we examine as an outcome variable the full wage inclusive

of overtime and bonus payments. In this specification, the regression event study has

large confidence intervals which do not rule out full incidence on the firm, but also

contain (close-to) full incidence on workers. DCF estimates are more precise, and the

central estimate implies that incidence is fully shifted on the worker. The effect becomes

apparent in the second year after the reform and it persists until 2008, the end of the

sample period.

If we were confined to only using event study analysis we would be tempted to delve

into the heterogeneity analysis by running multiple regressions, where for each splitting

variable we would vary the splitting rule and the functional form. Instead, we rely on

DCF method to decompose the long-term treatment effect heterogeneity of the payroll

tax. We group explanatory variables into several groups, consistent with theoretical

expectations on the impact of payroll taxes. We find that firm characteristics are the

6



most important in determining how full wages react to changes in the payroll tax. More

specifically, important variables are firm size in terms of number of employees, the gender

ratio and unionization rate at the firm level.

Overall, the emerging picture is that large firms, with a more heterogeneous workforce

are most effective in passing through the incidence of the tax onto workers. The effect

on firm size in terms of employees is monotonous, such that smaller firms are less likely

to pass through the incidence. With the other variables, the effect is non-monotonic,

such that firms with a more even gender ratio and average unionization rates tend to

pass-through more of the incidence. These findings could be consistent with the idea

that workers in larger firms with a more heterogeneous workforce find it more difficult

to form a coalition when bargaining with management.

The rest of the paper is structured as follows. The Dynamic Causal Forest method-

ology is developed in Section 2. In Section 3, we provide the background on payroll

tax reform in Norway and the data that are utilized in our application. The empirical

results are discussed in Section 4, and Section 5 concludes. We review related literature

in the main text. Methodological literature is discussed at the end of section 2, whereas

literature related to our application is discussed at the end of section 4.

2 Methodology

2.1 Set-up

We consider a panel dataset which contains i.) the outcome variable of interest yit, where

i is the observational unit, and t denotes period of time, ii.) a treatment indicator Wi

which equals 1 for the treated units, and zero for control units throughout time, and iii.)

a set of d covariates denoted by Xi which are assumed to be constant over time. The

panel is not required to be balanced. However, all units must be observed in a base year b

and, at a minimum, one additional time period. The number of units observed in period

t is expressed by Nt. Denote the set of outcomes in period t by St ≡ {yit}∀i∈{1,...,Nt}.

We are interested in the conditional average treatment effect on the treated (CATT).

Formally, we define the horizon-specific CATT in period t as:

τt(x) ≡ E [yit(1)|Wi = 1, Xi = x]− E [yit(0)|Wi = 1, Xi = x] , (1)

where yit(W ) denotes the potential outcome variable under actual and counterfactual

treatment status W ∈ {0, 1} in period t.

Our aim is to evaluate the effects of a policy intervention that is implemented in
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one step in year b + 1 during our sample period.5 Event studies are commonly used

in such settings to account for dynamic treatment effects that may depend on the time

elapsed since the onset of treatment. Although we are primarily interested in the post-

treatment effects, this research design also accounts for the “treatment effects” prior

to the intervention. The pre-treatment effects are used to inspect (deviations from)

parallel trends in the outcomes within treatment versus control group. Thus, we adopt

the convention that treated units are treated in all years t except for a base year b. For the

treatment group, we observe yit(1) for all years t ̸= b, whilst yit(0) is the counterfactual

outcome, except in the base year. For the control group, we only observe the untreated

state. Therefore, in equation (1), for all years t ̸= b , the second term is unobservable.

2.2 Causal Forest Estimator

In this paper we introduce Dynamic Causal Forest (DCF) as a method for estimating

the CATT in (1). DCFs share a large number of properties with regular (causal) forests,

which we will shortly introduce here. Forests consist of trees. For future reference, we

denote the k-th tree estimated on a sample from period t by Πk
t . In (causal) forests each

tree is “trained” on a random subsample of the data through recursive partitioning.

Denote the sample used to train Πk
t , by J k

t .

Trees split data along the covariates. The training algorithm creates a split in the

data along the covariate that provides the best prediction of heterogeneity in the estimate

of interest, in our case the treatment effect. Final splits of trees are known as leafs. Let

x be a point of interest in the covariate space. Then the leaf around x consists of all

observations in the tree Πk
t which are contained in the same leaf as an observation with

covariate-vector x. By construction, causal forest secures that each leaf contains both

treated and control units.

With many, or continuously distributed covariates, the data can in principle be sub-

divided until each leaf contains a single treated observation. To prohibit overfitting,

the training algorithm contains several stopping rules that can for instance require a

minimum number of observations/groups in each leaf, or a minimum level of treatment

effect heterogeneity between leafs.

Training and estimating trees on the same (sub)sample results in inconsistent es-

timates, because of dependence between the structure of the tree and the estimates

produced by the tree. Therefore, Athey and Imbens (2016) introduce a concept known

as “honesty” to the machine-learning literature, which relies on sample-splitting methods

5The Appendix sketches an approach to extend DCFs to staggered-treatment settings.
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and separation between training and estimation sample. An honest tree estimates the

average treatment effect in each leaf of the tree using the estimation sample Ik
t = St\J k

t .

By contrast, the structure of the tree is determined by using the training sample J k
t .

As a result, the structure of the tree and the treatment effect estimates are indepen-

dent, thereby overcoming the crucial challenge of producing consistent estimates with

machine-learning methods.

To understand how trees can be used to estimate heterogeneous treatment effects

consider a given tree Πk
t that is estimated on a sample from period t. Let Ik

t (x,W )

denote the subset of the estimation sample that falls in the leaf around x and has

treatment status W . One way to estimate the treatment effect at x is to take the

difference of the average value of the outcome variable in the leaf between the treatment

and the control group. The expected value of such an estimator is given by:

E[Πk
t (x)|Xi,Wi] =

∑
i∈Ik

t (x,1)
E[yit(1)|Xi,W = 1]

|Ik
t (x, 1)|

−
∑

i∈Ik
t (x,0)

E[yit(0)|Xi,W = 0]

|Ik
t (x, 0)|

. (2)

This estimator has desirable properties in the sense that it is consistent for the con-

ditional average treatment effect (CATE) when treatment assignment is conditionally

independent (Athey and Imbens, 2016; Wager and Athey, 2018). To understand this,

note that as the size of the leaf shrinks, the partitioning on x becomes finer. In the

limit, as the leaf size shrinks to zero, confounding variation that is correlated with Xi is

fully conditioned out, and assuming conditional independence, the bias vanishes. Wager

and Athey (2018) show that the leaf size shrinks with the number of observations, thus

proving consistency of the causal-tree estimator.

To get from a tree estimate to a forest estimate one simply takes an average of

the treatment effects over all trees in the forest. Forests typically outperform singular

trees, since forests consists of multiple trees that each split the data in different ways.

Therefore, in finite samples, forests offer an improvement in comparison to singular trees

(e.g. Breiman, 2001).

In settings where the conditional independence assumption is valid, we may employ

the estimator in (2) directly to obtain estimates for dynamic treatment effects. Since

the estimator accounts for heterogeneous effects by time, it provides dynamic treatment

effect estimates that are comparable to conventional event study designs. A concern with

this method, however, is that conditional independence is a rather strong assumption

which is rarely plausible in settings with observational data.
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2.3 Dynamic Causal Forest

Therefore, our setting differs from Wager and Athey (2018) because we do not assume

that treatment assignment is independent of potential outcomes conditional on covari-

ates. Estimates based on (2) will not be consistent when there are systematic differences

between treated and control units within the leaf. Instead, we employ a weaker assump-

tion of parallel trends conditional on covariates. Formally:

Assumption 1 Parallel trends

E[yit(0)− yib(0)|Wi = 1, Xi] =

E[yit(0)− yib(0)|Wi = 0, Xi] ∀ x, t. (3)

That is, in the untreated state, for all time periods, and conditional on covariates, the

difference in the average outcome between period t and the base period b would have been

the same in the treatment group as observed in the control group. Assumption 1 restricts

the expected counterfactual outcomes for the treatment group E[yit(0)|Wi = 1, Xi = x],

but places no restriction on the counterfactual outcome for the control group. Hence,

with this assumption we can, at most, identify the treatment effect on the treated, which

is therefore our focus.6

We also assume overlap for all covariates.

Assumption 2 Overlap

For each Xi the probability of treatment is bounded away from zero and one:

1 > E[Wi|Xi] > 0 ∀ Xi. (4)

If there are regions in the covariate-space where the probability of treatment is either

zero or one, then the overlap assumption is violated, and conditional treatment effects

are not identified everywhere. Note that from an applied perspective, this assumption

may impose restrictions on the covariates included in the forest. For instance, in our

application we use regional variation in payroll taxation. Covariates that measure the

location of a worker violate the overlap assumption, since in some locations all workers

6To also estimate the treatment effect for the control group we would have to make the additional
assumption that trends in the control group are parallel to trends in the treatment group in the counter-
factual case where the control group is treated. Most of the DiD literature does not make this additional
assumption (see e.g. Angrist and Pischke, 2008).
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are treated, whereas in other locations all workers are untreated. These covariates can

therefore not be included in the forest.

Under parallel-trend assumption 1 the CATT is identified through DiD conditional

on Xi:

τt(x) = E [zit(1)|Wi = 1, Xi = x]− E [zit(0)|Wi = 0, Xi = x] , (5)

where zit ≡ yit − yib denotes the outcome variable differenced by the base year, and

the equality follows from substituting (3) into (1). When x is high-dimensional and/or

continuous, it is not possible to directly estimate (5), since fully conditioning out x would

absorb all variation, unless the researcher imposes strong conditions on the functional

form of τ(x), and restrictions on the conditioning set that result in parallel trends.

To apply causal forests to a setting with parallel trends, i.e. to develop a DCF, we

make three adjustements to the causal-forest algorithm. First, we use the differenced

outcome variable zit as an input to the causal forest. Intuitively, the idea is that causal

forests identify the treatment effect based on the difference between the treatment and

the control group. Using the differenced outcome variable zit as an input to a causal

forest, implies that we are effectively identifying the treatment effect through DiD.

Second, we separately estimate a causal forest for each time period t ̸= b. This

approach is essential to ensure that the treatment effect for each period is identified

separately. To see this, consider an alternative approach in which a causal forest is

estimated on the full sample, but time t is included as a regular covariate. In this

case, through random subsampling, there will almost surely exist trees with leafs that

contain observations from different time periods. This method leads to bias because

the estimated treatment effect in period t will partly depend on treatment effects for

other periods. To manually separate the data by time before estimating causal forests

is equivalent to estimating a forest on the full sample, but forcing each tree in the forest

to first split on time periods, before considering other splits. Hence, our method secures

that observations from different time periods are never combined into a single estimate.

Third, we only predict the treatment effect for the treated units, since the parallel-

trend Assumption 1 is insufficient to identify the treatment effect for the control units.

Below we outline the algorithm for an DCF estimated on outcome variable yit with

treatment assignment Wi, covariates Xi and base period b.

Algorithm 1 1. Transform the outcome variable zit = yit − yib

2. For each period t ̸= b , estimate a regular causal forest using zit as the outcome
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variable, Wi as the treatment variable and Xi as the covariates to obtain the DCF

estimate τ̂t(x). Here we apply the causal-forest algorithm and code developed in

Athey et al. (2019).

3. Predict the treatment effect for the treated units:

τ̂it = τ̂−i
t (Xi) ∀ i ∈ Wi = 1 (6)

where the superscript −i denotes the fact that we predict the treatment effect for

unit i on those trees in the forest for which example i is not in the training samples,

i.e. trees that satsify yit /∈ J k
t consistent with the honesty-property defined above.

For future reference, we refer to this as out-of-bag estimates.

4. Use the variable-importance matrices to identify subgroups that exhibit strong het-

erogeneity in the treatment effect of interest (see subsection 2.5 for more details).

The structure of our algorithm is represented in Figure 1. For each tree in the forest,

data is first separated by time. Subsequent splits are made by the algorithm based on the

training sample. The CATT is estimated on the difference in the differenced-outcome

variable (i.e. the DiD) in each leaf.

In order to prove that this algorithm provides a consistent estimate for the CATT,

we require that the data-generating process satisfies a number of regularity assumptions:

Assumption 3 Regularity assumptions

1. The covariates Xi are continuously distributed in the unit-hypercube (0, 1)d

2. E[zit(W )|Xi = x] and E[(zit(W ))2|Xi = x] are Lipschitz continuous for all x, t,W

3. var[zit(W )|Xi = x] > 0 and E[|zit(W ) − E[zit(W )|Xi = x]|2+δ|Xi = x] ≤ M for

some constants δ,M uniformly over all x, t,W .

4. The distribution of Zit ≡ (xi, wi, zit) is independent between units

These assumptions play the following role in the proof. First, it is essential that leaf size

shrinks as the number of observations increases. Part 1 of Assumption 3 ensures that

covariates follow a continuous distribution in a precisely defined space. This allows for a

clear definition of what it means for a leaf to shrink. Part 2 assumes that the expected

value of the transformed outcome variable for the treated and control population, and

hence, the treatment effects, exhibit sufficient continuity. Part 3 secures that the second
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moments of zit are bounded. Finally, Part 4 introduces a relatively strong independence

assumption, however at the end of this section we generalize this by considering cluster-

robust inference.

We now arrive at our main proposition:

Proposition 1 Under Assumptions 1-3 the estimator τ̂t(x) that is derived by estimating

a dynamic causal forest on (xi,Wi, yit) with base year b converges to:

τ̂t(x)− τt(x)√
var(τ̂t(x))

→ N (0, 1), (7)

for all t as the number of units approaches infinity, Nt → ∞ for all t ̸= b. The variance

can be estimated through the infinitesimal jackknife estimator developed in Wager and

Athey (2018).

Proof. Through Algorithm 1 a DCF estimated on (Xi,Wi, Yit) corresponds to a causal

forest estimated on Zit. Therefore, our aim is to show that Assumptions 1-3 are jointly

sufficient to apply Theorem 11 in Wager and Athey (2018) to Zit which proves consis-

tency for the causal-forest estimator.

To see that this is indeed the case, note that Theorem 11 in Wager and Athey (2018)

requires that:

1. Zit satisfies regularity conditions equivalent to Assumption 3

2. Wi satisfies an overlap assumption equivalent to Assumption 2

3. The tree-estimator (2) applied to Zit converges to τt(x) as the size of the leaf

shrinks, and the number of observations per leaf increases (this corresponds to

equation (25) in Wager and Athey (2018) with the exception that our version

concerns the CATT rather than the CATE.

Expanding on the latter point, applying equation (2) to Zit we arrive at:

E[Πk
t (x)|Xi,Wi] =

∑
i∈Ik

t (x,1)
E[zit(1)|Xi,W = 1]

|Ik
t (x, 1)|

−
∑

i∈Ik
t (x,0)

E[zit(0)|Xi,W = 0]

|Ik
t (x, 0)|

,

which converges to the right-hand side of (5) as the size of the leaf shrinks. What re-

mains to be shown is that the size of the leaf indeed shrinks to zero as the number of

units increases. However, this is already shown in the proof to Theorem 1, 11 in Wager

and Athey (2018) to which we refer for further details.
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It is useful to discuss the intuition behind Proposition 1 in more detail. Specifi-

cally, it is important to know in which circumstances a method aimed at estimating

(heterogeneous) treatment effects for cross-sectional data can be extended to panel data

by simply differencing the outcome variable. In the spirit of the Rubin causal model,

Rubin (1974), cross-sectional methods like causal forests typically assume conditional

independence between treatment assignment and the potential outcomes:

(yit(w) ⊥⊥ Wi) |Xi ∀ w ∈ {0, 1}. (8)

It is easy to see that any method that derives consistent estimates under this assumption

can be extended to panel settings when the differenced outcome variable satisfies:

(yit(0)− yib(0) ⊥⊥ Wi) |Xi = (zit(0) ⊥⊥ Wi) |Xi. (9)

Equation (9) is a particularly strong parallel-trend assumption which states that, in the

absence of treatment, trends are conditionally independent from treatment assignment.

In settings where assumption (9) is appropriate one can essentially extend all cross-

sectional methods to a panel setting with the algorithm:

Algorithm 2 1. Derive zit by differencing the outcome variable

2. Use a cross-sectional method of your choice to estimate the CATT.

However, it is uncommon to assume conditional independence on trends, (9), since it

imposes the strong restriction that the full distribution of zit is independent of treatment

assignment. Testing such an assumption is non-trivial even in the pre-reform period. By

contrast, the parallel-trend Assumption 1 only restricts the first moment of zit (see Roth

and Sant’Anna, 2020 for a further discussion on the difference between these parallel-

trend assumptions).

Hence, in practice extending a cross-sectional method to a panel setting using our

approach requires that the cross-sectional estimator retains its properties of consistency

when only the first moment of the trends are restricted. For causal forests Wager and

Athey (2018) impose conditional independence, assumption (8). However, the proof

to their main result only requires a restriction on the first moment of yit.
7 Hence,

conditional independence is sufficient, but not necessary. This is the property we exploit

in Proposition 1. We conjecture that a similar extension applies to many other cross-

sectional methods for estimating heterogeneous treatment effects (e.g. Lee et al., 2017;

7Equation (25) in Wager and Athey (2018).
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Chernozhukov et al., 2020) but leave the verification of this conjecture to future research.

2.4 Neyman orthogonalization and clustering

Proposition 1 proves consistency, but nevertheless τ̂t(x) is biased in finite samples. The

source of this bias is that parallel trends are only assumed to hold after conditioning on

Xi. However, in finite samples, trees cannot fully condition out all covariates. In other

words, leafs can potentially contain units that are on different trends paths.

A practice that reduces this bias is Neyman orthogonalization, which was recently

introduced in a machine-learning context by Chernozhukov et al. (2018). Neyman or-

thogonalization is the process of explicitly modelling the probability of treatment (i.e.

the propensity score) and the outcome variable as a function of the covariates. This first

stage typically applies machine-learning methods such as random forests. Intuitively,

by first predicting out heterogeneity in the probability of treatment and the outcome

variable that does not relate to treatment, the training algorithm of the causal forest

becomes more sensitive to variation that drives treatment effect heterogeneity. Neyman

orthogonalization has been shown to have a number of attractive properties. Specifically,

Athey et al. (2019) show that orthogonalization reduces the bias in generalized random

forests when there exists confounding variation.

In our application of DCFs we apply Neyman orthogonalization to the pair zit,Wit:

zit = ft(xi) + ϵit, (10)

Wit = g(xi) + δi, (11)

where the functions ft(xi) and g(xi) are estimated through a random forest. Note that

ft(xi) varies by time, such that a different forest is estimated for each period. On the

other hand, g(xi) is time-invariant, since treatment status does not vary by time in

our set-up. The causal forest is then estimated on the out-of-bag estimated residuals

ϵ̂it = zit − f̂−i
t (xi), and δ̂i = Wi − ĝ−i(xi). These residuals are called centered outcomes

in Athey et al., 2019 .

Intuitively, explicitly predicting out differences in trends via (10) and systematic

differences between the treatment and control group (11) implies that the remaining

residuals fed to the causal forest are more similar in trends and characteristics. As

such, when estimated on centered outcomes the causal forest is better able to select on

covariates that modify the treatment effects, rather than effects of confounding variables

that drive differences in trends.

To implement Neyman orthogonalization in our algorithm we apply the generalized
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random forest (grf) package in R in step 2 of Algorithm 1 to estimate the causal forest,

which automatically performs the local centering transformation to achieve orthogonal-

ity. The package also extends inference to allow for clustered standard errors, and we

use this extension in our application as well (see Athey et al., 2019; Athey and Wager,

2019 for more details).

2.5 Variable-Importance Matrices in DCFs and heterogeneous treat-

ment effects

One of the questions that is particularly relevant when analyzing treatment effects is how

well the covariates predict treatment effect heterogeneity. DCFs provide a data-driven

approach to this question in the form of covariate-importance matrices. The covariate-

importance matrix provides information on the fraction of trees in a particular forest

that splits the sample by a particular covariate. For instance, if a large percentage of

trees splits by gender, this indicates that gender is an important predictor of treatment

heterogeneity, and it is useful to further inspect how the treatment effect varies by

gender.

Since a DCF estimates separate causal forests for each time period, it is possible to

separately identify and distinguish between variables that predict long-term heterogene-

ity versus variables that predict short-term heterogeneity. Pre-reform heterogeneity may

also be of interest. In particular, when parallel trends hold, the treatment effect should

not vary by covariates in the pre-reform period. Therefore, the variable-importance ma-

trix for pre-reform periods can be exploited as a diagnostic tool to investigate potential

violations of the parallel trend assumption.

2.6 Review of related methodological literature

There exists a rapidly growing literature that combines insights from machine-learning

with causal methods. Our main contribution to the literature is to devise a method to

estimate heterogeneous treatment effects when identification relies on parallel trends.

This contrasts with the original causal-forest method of Athey and Imbens (2016); Wa-

ger and Athey (2018); Athey et al. (2019), and other methods for estimating conditional

average treatment effects (e.g. Lee et al., 2017; Chernozhukov et al., 2020) which re-

quire that the identifying assumption of conditional independence between the outcome

variable and treatment assignment is satisfied.

There are some other recent papers that extend the causal-forest method. Gulen et

al. (2020) marries causal forest to a regression discontinuity design. Miller (2020) also
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uses causal-forest methods on dynamic data, but in his setting identification continues

to rely on conditional independence, rather than parallel trends.

There exists a burgeoning literature that deals with issues related to traditional

DiD estimators (see Roth et al., 2022 for an overview). The traditional method in the

literature for estimating heterogeneous treatment effects under parallel trend assumption

is through a two-way fixed effects (TWFE) model on the following form:

yit = αi + γt + τtWi + ϵit ∀ Xi ∈ X , (12)

where αi and γt denotes a full set of fixed effects for observational units and periods of

time, and X is a subgroup of interest that is defined by the researcher. The parameter

of interest is the treatment effect τt.
8 Equation (12) is typically estimated with OLS.

The estimates derived through TWFE models are unbiased if, within the subgroup X ,

trends are parallel (e.g. Roth et al., 2022).

DCFs offer various advantages over TWFE models. First, the covariate-importance

matrices provide further insight into the responses of heterogeneous subgroups of inter-

est. In particular, this can be helpful in settings where theory is vague and previous

empirical work is ambiguous regarding the relative importance of treatment effect mod-

ifiers. Second, DCFs estimates remain consistent even if trends are not parallel within

a particular subgroup X , but are parallel when conditioning on the full set of observ-

able covariates. The reason is that DCFs only makes comparisons between treatment

and control units that fall in the same leaf. In the limit, as these leafs shrink, DCF-

estimates therefore completely condition out confounding variation related to observable

covariates. Thus DCFs provide a clear distinction between heterogeneity in trends and

heterogeneity in the treatment effect, which TWFE models do not. Third, because

the model of heterogeneity is specified more explicitly, DCF estimates are likely to be

more precise. For instance, in our application, we find that standard errors are typically

smaller with DCFs than with TWFE models.

The methodological literature on DiD has recently grown extensively (e.g. Schmid-

heiny and Siegloch, 2019; Roth and Sant’Anna, 2020; Borusyak et al., 2021; Goodman-

Bacon, 2021; Sant’Anna and Zhao, 2020; Chang, 2020; Callaway and Sant’Anna, 2021;

Wooldridge, 2021. The main estimate of interest in this literature is the average treat-

ment effect on the treated (ATT), rather than the CATT. For this reason the overview

article by Roth et al. (2022, p.42) considers extending heterogeneous treatment effect

8In the context of our application in payroll taxation some recent examples of this methodology are
Saez et al. (2019); Ku et al. (2020); Benzarti and Harju (2021a).
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estimators like causal forests to a DiD setting a “promising area of research”. Neverthe-

less, DCFs can also be used to provide an estimate for the ATT, by simply averaging

the CATT over all units. Therefore it is useful to make a comparison in the context of

the ATT.

The recent DiD literature has uncovered various shortcomings of the TWFE model.

The first is that TWFE estimators of the ATT are only consistent if trends are parallel

unconditionally. Related to our set-up, (Abadie, 2005; Sant’Anna and Zhao, 2020; Call-

away and Sant’Anna, 2021) extend DiD to a setting where trends are parallel after con-

ditioning on Xi. Similar to these approaches, Proposition 1 shows that DCF-estimates

remain consistent when trends are parallel conditional on Xi. The second shortcoming is

that TWFE-estimators are biased with staggered treatment timing when the treatment

effect is heterogeneous between cohorts. The reason is that TWFE-models, estimated

through OLS, make “forbidden comparisons” between units that are treated early, and

units that are treated later. Borusyak et al. (2021); Goodman-Bacon (2021); Callaway

and Sant’Anna (2021) make progress by deriving estimators of the treatment effect that

are more explicit with respect to the comparisons that drive identification. In the Ap-

pendix we apply these insights to extend DCFs to a setting with staggered treatment

timing where we only allow for comparisons between treated units and never-treated

units.

3 Application: Norwegian Payroll Tax

3.1 Background

In Norway, payroll taxes are paid by employers and collected by the central government.

Revenues from payroll taxes are used to fund state pensions. It is important to note

that there is no linkage between pension benefits and payroll-tax payments, in the sense

that workers in all payroll tax zones have the same pension rights. The payroll tax rate

is geographically differentiated since 1975. The official objective is to counter negative

trends of depopulation and underemployment in peripheral and rural regions of the

country. Over the years, the number of zones and the tax rates have undergone several

reforms. The system has seen multiple reforms in the 00’s which were mandated by

interpretations of EU law. Specifically, regulations of unfair competitive tax advantages

in the EU market were found to require changes in the Norwegian payroll tax system.9

9Although Norway is not a member of the EU, it must still abide by most EU regulations due to its
membership of the European Economic Area (EEA).
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As a result, a reform was imposed in 2004 whereby most zones saw an increase in their

payroll tax rates. However, since the 2004 reform was contested between Norway and

EU, it was partly reversed in 2007. In Figure 2 we show a map of Norway with the

(current) distribution of payroll tax zones since 2007.

Figure 2: Geographically Differentiated Payroll Tax for Norway

Notes: The Figure plots payroll-tax zones and corresponding tax rates in Norway at the end of our
sample-period.

Our study exploits features of the reform in 2004 that became permanent. More

precisely, since reforms in Zones 3 and 4 and parts of Zone 2 were reversed in 2007, our

focus will be on the reform implemented in Zone 1a when using Zone 1 as control group.

In Figure 3 we show the evolution of the payroll tax rates for Zones 1, 1a and 2. The

payroll tax rate in Zone 1 remained unchanged at 14.1 percent throughout our period

of analysis. In 2004, the rate in Zone 2 increased from the lower rate of 10.6 percent in

pre-reform years to the same level as in Zone 1. Three years later, Zone 2 was divided

in two parts; Zone 1a which kept the same tax rate as Zone 1, and the ”new” residual of

Zone 2, where the tax rate was cut back to the pre-reform level, which means that the

reform became transitory. By contrast, Zone 1a was exposed to a permanent tax rate
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Figure 3: Payroll Tax Rate in Zones 1 and 1a in Norway

Notes: The Figure plots the evolution of the payroll tax rate over time for the Control group (zone
1) and the treatment group (zone 1A). Zone 2, which initially was combined with zone 1A, is plotted
for comparison.

increase that closed the earlier gap in comparison to Zone 1.

This provides us with i.) a clean split in treatment and control regions, and ii.) a

reform implemented in a single step in 2004 which clearly defines pre- and post-reform

periods. Thus, the comparison of Zone 1a and 1 allows us to study longer-term effects

in a setting that is appropriate for DiD and event study designs.10

Following the financial crisis, there was a recession and European debt crisis in the

years 2008-2010. Notice that the effect of these crises on the Norwegian economy was

relatively muted. For instance, annual unemployment decreased from 4.3 percent in 2005

to 2.5 percent in 2007, and later there was only a small increase during the height of the

financial crises (3.5 percent in 2010).

10The 2007 reform also affected the way the payroll tax rate is determined. Prior to 2007, the payroll
tax rate depended on the residence of the worker. After 2007, the payroll tax rate depends on location
of the firm in which the worker is employed. To circumvent potential confounding variation related to
this, we focus on firms and workers that are located in the same tax zone throughout our sample period.
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3.2 Data

Our main sample comes from the wage register that is maintained by Statistics Nor-

way. The wage register is a matched employer-employee sample based on an annual

survey of firms which is taken yearly around September/October. For each job contract,

sampled firms are required to provide detailed information on (the compensation of)

their employees. Most importantly for our study, the wage register contains informa-

tion on i.) contracted monthly wages at the time of the survey, ii.) average monthly

overtime payments during the year, iii.) average monthly surcharges due to working in

weekends/nights, and iv.) bonus payments.

Large firms, and public sector organizations are sampled every year. Medium private

sector firms are sampled each year with probability 1/2. Small private sector firms are

sampled with probability 1/10. The sampling procedure makes use of industry-specific

thresholds to categorize firms according to size. In most cases, firms with more than

300 employees are considered as large firms which are always included. Firms with less

than 5 employees are excluded from the sample. The sampling unit is firm-by-industry,

which means that a sampled unit will report information about employees in the plants

that belong to a given firm and industry (by main division). Besides inclusion of large

firms, there is complete coverage of firms with membership in a selection of Employer’s

Associations. The latter coverage is aimed at producing relevant wage statistics for the

participating organizations, but also contributes to increase the overall sample size.

We combine information in the wage register with several administrative registers

that we can link through unique individual identifiers and firm/plant identifiers. The

data sets include tax and social security registers, employer-employee register, education

registers, household register, corporate accounting register and firm/plant unit register

that contain records for Norwegian individuals and/or firms for the years 2002 to 2008.

The databases provide extensive demographic and socioeconomic information for indi-

viduals in combination with their wages and characteristics of the firms where they are

employed. Municipality identifiers allow us to observe the location of firms and residents

by payroll tax zone.

The treated observations are workers who are employed by firms located in any

municipality in Zone 1a, whereas control observation are employed in a subset of munic-

ipalities in Zone 1. Since Zone 1a does not contain municipalities with higher levels of

centrality, the excluded municipalities in Zone 1 are more central according to the official

classification made by Statistics Norway. From the treatment and control municipalities,

we make the following selection of our sample. First, we drop all workers with more than
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2 jobs in the Wage register. Second, we focus on the private sector, and hence, drop

workers in the public sector and in healthcare, since the payroll tax only applies in the

private sector. Third, we remove observations with negative income from labor on tax

returns. Fourth, we keep workers that have been employed at a sampled firm for the

whole sample period, implicitly removing retirees, new entrants and job switchers who

switch to unsampled firms. Fifth, we focus on worker-firm pairs in which both the firm

and the worker are in payroll-tax zone 1/1a. Sixth, we drop workers who move from

zone 1 to 1a or vice versa after the reform. We are left with 2970 firm-year observations

and 44 510 worker-year observations.

To analyze the impact of an increase in the payroll tax on wages we use two outcome

variables in order to capture different margins of responses to the reforms in the payroll

tax. We show the summary statistics for these variables in Table 1. First, we present

the Monthly Full Wage, which is the contracted monthly wage plus overtime and bonus

payments. Second, we present the contracted monthly wage (grunnlonn) denoted as

Contracted Wage in Table 1. This variables captures responses in the contracted wage,

which is affected by changes in hours worked per month as well as wages per hour. As a

robustness check, we also make use of contracted wage standardized by the contracted

hours per month as a proportion of regular full-time position. This is a measure of the

full-time equivalent of the contracted wage, denoted Full-time Equivalent Wage. For

example, if a worker was half-time employed, then this variable would contain their

compensation as if they were full-time employed and their actual compensation would

be multiplied by two. Full-Time Equivalent Wage differs from Contracted Wage for

part-time workers, but not for full-time workers.

Table 1 displays four columns. The first two columns show the average values for

observations in the control Zone 1. The second two columns show the average values

for units in the treatment Zone 1a. Each set of columns is divided into a Before and

After period, where 2003 is the base year. On average for the two wage concepts, we

find that wages in the sample are 5-7 percent higher in Zone 1 than in Zone 1a. Between

wage concepts the Full Wage is around 10 percent higher than the Contracted Wage,

on average. Finally, in Table 1 we present the treatment variable in the dynamic causal

forests, which is set to 1 for the treated zone 1a throughout the whole time period.

In Table 2 we present the covariates in our analysis. These variables are measured

in the pre-reform period 2002 and 2003 and do not vary by time. The covariates fall

in two groups - depending on whether they are measured at the firm level or at the

individual/household level. All variables are further described in Appendix Section B.

From the firm level we measure the number of employees and codes in the NACE
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industry classification. In addition, we make use of variables that are based on firm

balance sheets, such as the capital-to-labour ratio, earned capital, liquidity and cash

holdings, investments and dividends. Capital-to-labour ratio is defined as fixed tangible

assets divided by the number of employees, whereas other variables from the balance

sheets are standardized by total assets of the firm.

From the worker level we observe age, gender, household characteristics, social as-

sistance, (years of) education, indicator for labor union membership, and indicator for

workers who received bonus payments in the pre-reform period. Out of these, social

assistance recipiency is observed in the tax register and it includes child and other subsi-

dies. The household status is given by the following variables: Couple in the household

denotes whether the worker is married or part of a cohabiting couple. Number of adults

in the household denotes how many adults above 18 years old are part of a given house-

hold. This variable counts both adults in a couple and any other adults. Number of

children in the household denotes the number of individuals who are 18 years or younger

in the household.

In order to distinguish between effects driven by worker-specific characteristics, and

effects driven by workforce composition, we also aggregate each of the worker-level vari-

ables to the firm-level. We aggregate the worker variables as follows. For binary variables

we take the mean at the firm level. For continuous variables we take the median at the

firm level. For categorical variables we take the mode.

4 Results

4.1 Different Wage Concepts

This section presents results on how different wage concepts are affected by changes in

the payroll tax. Figure 4 displays event-study plots for estimates of the incidence of

the payroll tax on different measures of worker compensation. Estimates are normalized

such that a coefficient of 0 or -1 indicates zero versus full incidence on the worker,

respectively. Each plot reports estimates from the dynamic causal forest in black and

conventional regression event study estimates in red. In panel (a), the dependent variable

is the contracted wage, which captures the compensation for contracted hours. Although

confidence intervals are too wide to draw any firm conclusions, the TWFE regression

suggest that there is around 50 percent payroll tax incidence on contracted wages. Point

estimates for short-term incidence are larger through the lens of DCF than with TWFE
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regression.11

Next, in panel (b) we examine the notion that the employer could shift the incidence

of the payroll tax to workers through a reduction in non-contracted payments. The

dependent variable is the monthly full wage, inclusive of bonus and overtime payments.

In panel (b), estimates from DCF indicate that most of the incidence is on workers when

accounting for non-contracted compensation in the wage concept. By contrast, the

TWFE regression finds smaller point estimates which imply that the incidence remains

mostly with the firm.

Overall, through a TWFE regression event study we find consistent evidence in all

wage concepts that the employer retains most of the incidence of the increase in the

payroll tax. However, when we more closely control for firm and worker heterogeneity

via a DCF we find evidence for shifting of the incidence through incidental payments.

An important difference between regression-event studies and DCFs that could explain

this difference is that the treatment variable, and the outcome variable in the DCF are

first Neyman-orthogonalized. This implies that identification in the DCF comes from

firm-worker pairs that are similar in terms of observable covariates, but that nevertheless

receive different treatment. In contrast TWFE regression does not match on observables.

The implication is that the wage of comparable worker-firm pairs in the treatment zone

has declined relative to the control group consistent with full incidence on the worker.

In the next section we focus on disentangling the heterogeneity in the treatment effect.

4.2 Heterogeneity

One of the main outputs of the causal forest is the variable importance matrix, which

ranks the variables according to the proportion of splits along dimensions that modify

the treatment effects. In Table 3 we present the most important variables in the last

causal forest for 2008, effectively disentangling the sources of the long-run incidence on

the full monthly wage. Panel A presents the variables with importance above 5 percent.

The top variable, Firm Nr. Employees, accounts for 11 percent of the heterogeneity in

the treatment effect. The next variables in the ranking are the gender ratio at the firm,

the rate of unionization at the firm, the proportion of married employees in the firm and

an indicator for the firm paying out bonuses.

Panel B of Table 3 reports summary statistics for the variables in panel A. We divide

11Contracted wages ignore the possibility that incidence of the payroll tax could be shifted to employees
by changing hours worked. In Figure 9 b in the appendix, we consider the contracted monthly wage
that is standardized by contracted hours per month. Estimation results for this wage definition does not
differ materially from the results in Figure 4a.
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the sample into quartiles by covariate and put together the second and third quartile.

We observe that on average, small firms in quartile 1 have 31 employees, while medium-

sized firms have 215 employees and large firms in the sample have on average more than

five thousand employees. We also note that in all variables the values show that there

are sizable differences between firms in different parts of the distribution, which may

constitute a precondition for finding significant heterogeneity in the treatment effect.

Figure 5 provides a graphical representation of heterogeneity in treatment effects

through event-study plots. Panel (a) shows estimates for the treatment effect for three

subsamples of firms, divided based on quartiles in the distribution of the pre-reform

number of employees. We find that incidence on workers is mainly mediated through

large companies. Moreover, the estimated effects are monotonic: smaller companies

display smaller treatment effect, larger companies have the strongest treatment effect.

In panel (b) in Figure 5 we present estimates showing a non-monotonic treatment

effect. In this figure, the two quartiles in the middle of the firm gender distribution shift

more of the incidence to workers. In companies with predominantly female employees

the incidence remains with the firm, whereas the incidence is male-dominated firms is

shared between worker and employer. In the longer term, firms with a mixed gender

composition in the workforce are more effective at passing through the incidence of the

tax onto workers. Notice, however, that individual gender per se plays only a small role

in modifying the treatment effect (the total value in the variable importance matrix is

presented in Figure 8, which is discussed further below.).

In panel (c) in Figure 5 there is another instance of a non-monotonic effect. We

observe that firms in the middle of the unionization distribution are more likely to bear

the incidence of the payroll tax. In this case we could expect that within firms, individual

workers who are non-unionized will tend to bear the incidence, but again the individual

characteristic accounts for little heterogeneity in the response of wages.

In panel (d) we show the treatment effect on subsamples of firms with different

proportions of workers in a household couple. If anything, incidence on workers is larger

in firms with a high proportion of single employees, but the difference in the long-run

estimate is very small.

In Panel (e) of Figure 5, we find that firms which pay out bonuses display full

incidence of the payroll tax on employees. By contrast, the point estimate for wage

response in the first quartile of bonus payments is close to zero. These results are

consistent with the finding from Figure 4, indicating that more incidence is passed onto

full wages in comparison to contracted wages.

Overall, our findings, especially 5 a-c are consistent with the idea that tax incidence
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on workers is larger in larger firms that have a more heterogeneous workforce.

In Figure 6 we present results from interacting the first two variables in the variable-

importance matrix: Firm Nr. Employees and firm gender ratio. We construct nine

separate groups that are defined by the intersections between 3 x 3 quantile groups along

the two dimensions. Next, we create an event-study plot that accounts for payroll tax

incidence on workers in each of the nine groups. We find that in most of the subgroups,

the response of wages to increased payroll taxes does not differ significantly from zero.

The main takeaway from Figure 6 is that heterogeneous effects are mostly found

among large firms, whereas there is less variation in treatment effects among small

and medium sized firms. Among large firms, incidence is on the employer in firms

with a high proportion of female workers, whilst incidence is on workers in firms with a

mixed workforce composition by gender or with a predominantly male workforce. Hence,

workforce composition in terms of gender, appears to be important in large firms, but

not in smaller firms.

4.3 Variable Importance and Margins of Heterogeneity

An interesting question is what types of covariates are most important in modifying the

treatment effect. Such information may provide suggestive evidence about the channels

through which treatment effects are mediated. In Figure 7 we present the importance of

the main five variables in each forest. In 2008, as shown in Table 3 the most important

variable was the firm number of employees. In 2004 and 2005 the variables have similar

importance, while in 2006 the gender ratio at the firm level gains prominence as the top

variable. Looking at panel b in Figure 5 we observe that firms with female-dominated

workforce deviate in trend from the other parts of the distribution, which increases the

heterogeneity in the treatment effect and results in the relatively high importance of the

firm gender ratio in 2006.

In Figure 8 we demonstrate a use of the variable importance matrix output. We sum

the importance of the control variables into several possible channels of influence. To this

end, we classify the covariates by level of aggregation and type of characteristic. The first

basic division we make is between firm vs. individual level variables. Next, we add up

the variable importance by type of covariate, where the combined importance expresses

the contribution of firm vs. individual level variables to uncover differential treatment

effects. We find that firm level variables account for 82.4 percent of heterogeneity, which

means that individual level variables play a minor role for the estimated differences in

tax incidence.
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The firm variables can be roughly classified into balance sheet variables and char-

acteristics of the workforce. The balance sheet variables account for 25 percent of the

variation, while the leftover 58 percent is arguably accounted for by workforce character-

istics. This was partially anticipated by the importance of composition of the workforce

by gender, unionization and fraction of employees in a couple from Table 3.

Finally, we separate some workforce characteristics into age, gender and household

characteristics, which are summed between firm and personal level variables. From this

partition of variables, household characteristics hold the most importance.

4.4 Related Findings

There is an extremely large literature on payroll tax incidence. We here limit our dis-

cussion to comparing our approach and results to recent literature from the Nordics,

which are more similar in terms of institutional setting (see Bozio et al., 2020 for a full

overview).

Most closely related are papers that use regional variation in the payroll tax. Using

various reforms in the 00s in Norway the central point estimates in Dale-Olsen (2018);

Ku et al. (2020); Stokke (2021) are consistent with firms shifting between 15-30 percent

of the payroll tax burden to workers. Similarly, using a reform in the 2002 in Sweden

Bennmarker et al. (2009) find that around 25 percent of the payroll tax is borne by

workers. In Finland, using variation around the financial crisis Korkeamäki and Uusitalo

(2009) find that around 50 percent percent of the payroll tax is shifted onto workers.

However, using parts of the same reform, a more recent study by Benzarti and Harju

(2021a) finds no evidence that payroll taxes are shifted onto workers. This is consistent

with findings in another Finnish paper by Benzarti and Harju (2021b) which uses firm-

level variation, rather than regional variation. Our central estimates on contracted

wages are roughly consistent with findings in the literature with point estimates ranging

between around 20-50 percent, albeit with large standard errors that cannot rule out no

shifting. However, we find significantly stronger evidence of shifting when considering

the full wage payment which includes bonus and overtime payments, especially once we

better control for heterogeneity through a DCF.

Using age-based variation in the payroll tax in Sweden Saez et al. (2019) finds that

firms which employ young workers that face a lower payroll tax, increase the wage of all

workers (both young and old) consistent with rent sharing. Given the regional nature of

our reform, we cannot distinguish between the rent-sharing channel, and more traditional

tax incidence. However, our heterogeneity analysis does appear to be more consistent
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with rent sharing than with traditional tax incidence, in the sense that heterogeneity is

mostly driven by firm-level variables, rather than worker-level variables. This is difficult

to explain through traditional supply-demand channels, but easier to explain in a setting

in which some firms are more prone to share rents with workers than others.12

With respect to heterogeneity, previous literature has considered heterogeneity in

a large number of covariates such as worker-level variables of gender and education

of the worker (e.g. Dale-Olsen, 2018; Saez et al., 2019; Stokke, 2021; Benzarti and

Harju, 2021b, and firm-level balance-sheet variables (Saez et al., 2019; Benzarti and

Harju, 2021b). Here we contribute to this literature by exploring heterogeneity with a

data-driven approach. We establish that firm-level variables, particularly the size and

composition of the workforce are more important determinants of payroll-tax incidence

heterogeneity than workers’ individual characteristics. Hence, heterogeneity in payroll-

tax incidence between firms may be one of the mechanisms that drives firm-specific wage

premiums.

5 Conclusion

In this paper we build on previous literature on causal machine learning. Athey and

Wager (2019) develop causal forests as a way to derive data-driven heterogeneity esti-

mates in a cross-sectional setting. We present the DCF method, which extends causal

forests to a dynamic setting. Identification in Athey et al. (2019) is based on the strong

assumption of random assignment, conditional on covariates. Instead, DCFs rely on the

assumption of parallel trends. This allows for the DCFs to be implemented in research

where difference-in-difference designs are applicable.

We demonstrate the DCF methodology through an application on the payroll tax

in Norway. We find that incidence of the increase in the payroll tax is shifted onto

employees through a reduction in bonus payments. We use the variable importance

matrix to derive the margins along which we can observe the greatest heterogeneity.

We estimate heterogeneous treatment effects along the number of employees, the firm

gender ratio, firm unionization and other firm variables. We show an example of a double

interaction, where we explore heterogeneity for firms of different sizes in terms of numbers

of employees and different gender ratios. We demonstrate how the importance of these

margins of heterogeneity develop over time. Our results imply that in the Norwegian

(Scandinavian) institutional setting, firm-level variables and between-firm variation is

12Barth et al. (2020) also find evidence of rent sharing in a Norwegian setting, particularly in firms
that exhibit a large degree of unionization.

28



instrumental in understanding disparities in payroll tax incidence.

Our methodology has implications for the literature extending the use of difference-

in-difference designs. In the Appendix we provide an extension of DCF to staggered

difference-in-difference designs. A fruitful point for future research could be to extend

the application of the DCF to shift-share designs (Adao et al., 2019; Goldsmith-Pinkham

et al., 2020; Borusyak et al., 2022). Intuitively, it could be possible to difference out the

base year in the shift-share variable and use it as a continuous treatment variable in a

dynamic causal forest.
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Figure 4: Event Study of the Effect of the Payroll Tax Reform on Different Wage Con-
cepts

a. Monthly Contracted Wage

b. Monthly Full Wage

Notes: The Figure plots the outcome variable as listed in the caption, where Full Wage is the wage
inclusive of overtime and bonus payment. In each plot we present estimates of a TWFE Regression
Event Study and a DCF. Estimates are normalized by the change in the tax rate, such that a
coefficient of 0 indicates no change in the wage rate (full incidince on the firm), and a coefficient of
-1 indicates full incidence on the worker. Standard errors are clustered at the firm level.
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Figure 5: Heterogeneity Effects in Full Monthly Wage

a. Firm Nr. Employees b. Firm Gender Ratio

c. Firm Unionization d. Firm HH with a Couple

e. Firm Paying Out Bonuses

Notes: The Figure plots the heterogeneity in Full Monthly Wage by subsamples on the variable
listed in the caption. In each plot we present estimates of a Dynamic Causal Forest. Estimates are
normalized by the change in the tax rate, such that a coefficient of 0 indicates no change in the wage
rate (full incidence on the firm), and a coefficient of -1 indicates full incidence on the worker. See
Table 3 for reference values. Standard errors are clustered at the firm level.
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Figure 6: Heterogeneity Effects in Full Monthly Wage - Interaction between Firm Nr.
Employees and Firm Gender Ratio

Notes: The Figure plots the outcome variable full monthly wage inclusive of over time and bonus
payments in different subsets of the data. In each plot we present estimates of a Dynamic Causal
Forest. Estimates are normalized by the change in the tax rate, such that a coefficient of 0 indicates
no change in the wage rate (full incidence on the firm), and a coefficient of -1 indicates full incidence
on the worker. See Table 3 for reference values. For firm employees: quartile one is colored in red,
quartile two and three are in blue, quartile four is in green. For firm gender ratio: quartile one is
with square nodes, quartile two and threee with circles, quartile four with triangles. Standard errors
are clustered at the firm level.
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Figure 7: Event Plot on Variable Importance

Notes: The Figure plots the outcome variable as listed in the caption. In each plot we present
estimates of a Dynamic Causal Forest. Estimates are normalized by the change in the tax rate,
such that a coefficient of 0 indicates no change in the wage rate (full incidence on the firm), and
a coefficient of -1 indicates full incidence on the worker. Standard errors are clustered at the firm
level.
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Figure 8: Importance of Different Channels

Notes: The Figure plots the sum of variables in the variable importance matrix of the dynamic causal
forest. For e.g. ”Personal” sums the importance of all variables measured at the employee level.
”Firm” is the sum of all variables measured at the firm level. ”Other” is the residual category, which
in this case includes only the measure of centrality at the municipality level. ”Balance Sheet” sums
all variables measured in the balance sheet of the company, except capital-labor ratio. ”Household”
sums the importance both employee and firm household indicators of household characteristics.
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Table 1: Summary Statistics

Zone 1 Zone 1 a
Variable Before After Before After

Contracted Wage 26053.99 28584.93 24745.73 27128.371
(8417.83) (9624.3252) (8509.85) (9501.7471)

Full Wage 29045 31154.81 27216.9 29115.246
(9486.17) (10752.573) (9284.96) (10215.122)

Treatment 0 0 1 1
(0) (0) (0) (0)

Observations 15951 34885 2767 6031

Notes: Standard Deviations in parenthesis. Monthly Full Wage contains all bonus and
overtime payments. The monthly wage is based on regular hours worked. The Equivalent
Wage takes into account the percentage of employment and converts remuneration on hours
worked into a full time equivalent wage. The Annual Taxable Income is based on data from
the Tax Administration. Employees is the number of full-time employees per firm. Percent
is the percentage of employment. Zone 1a is denoted as treated during the whole period
2002-2010. Before refers to the period before 2003 inclusive. After refers to the period after
2003. In the main analysis 2003 is the base year. The number of observations is 44 510
workers for all variables, except for employees where the unit of analysis is the firm - 2970
firm-year observations.
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Brodeur, Abel, Mathias Lé, Marc Sangnier, and Yanos Zylberberg (2016) ‘Star wars:

The empirics strike back.’ American Economic Journal: Applied Economics 8(1), 1–

32

Callaway, Brantly, and Pedro HC Sant’Anna (2021) ‘Difference-in-differences with mul-

tiple time periods.’ Journal of Econometrics 225(2), 200–230

Card, David, Ana Rute Cardoso, Joerg Heining, and Patrick Kline (2018) ‘Firms and

labor market inequality: Evidence and some theory.’ Journal of Labor Economics

36(S1), S13–S70

Card, David, Jörg Heining, and Patrick Kline (2013) ‘Workplace heterogeneity and the

rise of west german wage inequality.’ The Quarterly journal of economics 128(3), 967–

1015

Chang, Neng-Chieh (2020) ‘Double/debiased machine learning for difference-in-

differences models.’ The Econometrics Journal 23(2), 177–191

38



Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian

Hansen, Whitney Newey, and James Robins (2018) ‘Double/debiased machine learn-

ing for treatment and structural parameters: Double/debiased machine learning.’ The

Econometrics Journal

Chernozhukov, Victor, Mert Demirer, Esther Duflo, and Ivan Fernandez-Val (2020)

‘Generic machine learning inference on heterogeneous treatment effects in randomized

experiments, with an application to immunization in india.’ NBER Working Paper

No. 24678

Dale-Olsen, Harald (2018) ‘Labour demand and supply changes in norway following

an imposed harmonization of geographically differentiated payroll-tax rates.’ Labour

32(2), 261–291

Goldsmith-Pinkham, Paul, Isaac Sorkin, and Henry Swift (2020) ‘Bartik instruments:

What, when, why, and how.’ American Economic Review 110(8), 2586–2624

Goodman-Bacon, Andrew (2021) ‘Difference-in-differences with variation in treatment

timing.’ Journal of Econometrics 225(2), 254–277

Gruber, Jonathan (1997) ‘The incidence of payroll taxation: Evidence from chile.’ Jour-

nal of Labor Economics 15(S3), S72–S101

Gulen, Huseyin, Candace Jens, and T Beau Page (2020) ‘An application of causal forest

in corporate finance: How does financing affect investment?’
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Appendix For Online Publication

A Extension to staggered treatment

In the main text we introduce the DCF in the context of simultaneous adoption of

treatment in period b + 1. However, in many relevant cases researchers have access to

data where the period of adoption varies by unit, which is called staggered treatment.

Here we sketch one approach that extends the DCF method to staggered settings. For

simplicity, we assume that treatment is an absorbing state. Then we may divide the data

into treatment cohorts, and separately estimate the treatment effect for each. Thus, we

are interested in the CATT within subgroups that are partitioned by cohort and period.

The key assumption we make is that the data contains never-treated units. The approach

we outline below only makes comparisons between treated units and never-treated units.

Let superscript j denote the treatment cohort. For instance, j = 1 can denote the

cohort that is treated first, and so on. Never-treated units are denoted j = ∞. The

outcome variable is thus expressed by yjigt and covariates by xjig. As in the standard DCF

method W j
i = 1 for all treated units (j < ∞), independent of when they are treated.

We first estimate DCFs by cohort and period. The inputs to DCF j are as follows.

The vector of outcome variables is given by [yj , y∞], where yj denotes the vector of

outcome variables for treatment cohort j. Correspondingly, the treatment variable is

given by [W j ,W∞], and the covariates by the matrix [Xj , X∞]. The cohort-specific

base period bj is the last pre-treatment period before adoption of treatment by cohort

j.

The result of such a DCF is an estimate of the CATT by period and cohort, τ̂ jt (x).

To make the estimates comparable between cohorts, these estimates are converted to

treatment event time h, where h = 0 corresponds to period bj + 1 when treatment is

turned on for cohort j. We can do this by applying the transformation:

τ̂ jh(x) = τ̂ j
t−bj−1

(x).

In event studies, a common estimation target is the average treatment effect h periods

since treatment for a given horizon h ≥ 0 . Denote the estimate of the average horizon-

specific CATT by τ̂h(x), which is interpreted as the average dynamic treatment effect at

event time h. To estimate this parameter, the researcher can take a (weighted) cross-

cohort average of τ̂ jh(x). See Callaway and Sant’Anna, 2021; Goodman-Bacon, 2021 for

further discussion of appropriate weights and inference in this setting.
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Note that cohorts which are treated late provide no identification for τ̂h(x) when h

is large. In some settings it may therefore be appropriate to only study τ̂h(x) in a range

of event time where multiple treatment cohorts provide identification. Alternatively, to

purge the estimand for compositional differences, one may consider the average treatment

effect at horizon h only for the subset of units that is also observed at horizon h′.
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B Control Variables

Measurement of covariates in our study is based on the following administrative regis-

ters: Wage register, matched employer-employee register, tax and social security income

register, family and household register, education register, firm balance sheets and firm

unit register. All covariates are measured in the base years 2002 and 2003. For individ-

ual and household characteristics, we also include average values (mean or median) at

the firm level. See for reference Table 2. The register data includes unique identifiers

for individual, family, household, firm, plant and the municipalities where residents and

firms are located. Here, we provide an overview of covariates and their definitions.

Individual and household characteristics of employees:

• Wage: Average monthly wage in the pre-reform years

• Age : Age in the year 2003

• Gender: Indicator for female gender

• Nr. Adults in the Household: Number of household members aged 18 or above

• Nr. of Children in the Household: Number of household members aged below 18

• Couple in the Household: Presence of a married or cohabiting couple in household

• Social assistance recipient: Indicator for individuals who are recipients of social

assistance benefits in the social security register

• Educational attainment: Years of schooling based on educational attainment in

the education register data

• Labor union membership: Indicator for employees with tax reported deduction for

membership fee in labor union

• Indicator for having switched the job in the pre-reform years

• Indicator for having received bonuses in the pre-reform years

• Percentage employment: denotes at how many percent a person is employes on

average

Firm characteristics of employer:

• Wage: Average monthly wage in the pre-reform years
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• Age: Median age of employees

• Social Assistance: Median recipient status for social assistance of all workers

• Education variables at the firm level: Median of employee education

• Household variables at the firm level: Mode of individual variables

• Dividents disbursed in 2002 and 2003, included as separate variables

• Number of employees: Number of employees in the firm

• Capital - labor ratio: Total assets reported in firm balance sheet divided by number

of employees

• Percent earned capital: Accumulated retained earnings (undistributed profits) in

percent of total assets

• Percent liquid assets: Holdings of cash and liquid assets in percent of total assets

• Return on assets (ROA): After-tax profits in percent of total assets

• Investment: Total investments in percent of total assets

• NACE Industry Classification: Code in the NACE-classification of industries (Sta-

tistical Classification of Economic Activities in the European Community) at the

1 digit level

• Centrality Index: denotes the degree of centrality of the municipality
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Figure 9: Event Study of the Effect of the Payroll Tax Reform on Different Wage Con-
cepts

a. Monthly Contracted Wage (FTE) b. Monthly Contracted Wage

c. Monthly Full Wage

Notes: The Figure plots the outcome variable as listed in the caption, where FTE refers to the Full-
time Equivalent Wage, and Full Wage is the wage inclusive of overtime and bonus payment. In each
plot we present estimates of a TWFE regression event study and a DCF. Estimates are normalized
by the change in the tax rate, such that a coefficient of 0 indicates no change in the wage rate (full
incidence on the firm), and a coefficient of -1 indicates full incidence on the worker. Standard errors
are clustered at the firm level.

C Additional Results
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