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Abstract

In this paper, we study the performance of prediction intervals in situations applicable to electricity

markets. In order to do so we first introduce an extension of the logistic mixture autoregressive with

exogenous variables (LMARX) model, see (Wong, Li, 2001), where we allow for multiplicative seasonality

and lagged mixture probabilities. The reason for using this model is the prevalence of spikes in electricity

prices. This feature creates a quickly varying, and sometimes bimodal, forecast distribution. The model is

fitted to the price data from the electricity market forecasting competition GEFCom2014. Additionally, we

compare the outcomes of our presumably more accurate representation of reality, the LMARX model, with

other widely utilized approaches that have been employed in the literature.

Keywords— Prediction intervals, probabilistic forecasts, electricity prices, spikes, mixture models

1 Introduction

Forecast intervals and, more generally, probabilistic forecasts, are important when making decisions about future pro-

duction and consumption of electricity. It allows the decision-makers in the market to determine not only which outcome

they should expect from their decision but also the risks they are taking. This realization is probably the reason why

the literature on probabilistic forecasts has grown significantly in the last decade, see, e.g. the extensive review by

(Nowotarski, Weron, 2018).

A particular problem for probabilistic forecasting in electricity markets is the relatively frequent spikes. Several

interesting questions arise because of these. Firstly, the ability to predict spike occurrence is, maybe, the golden grail of

electricity price forecasting. A decision maker or trader with a superior ability to predict spikes will certainly be a very

successful actor in the electricity market. A prominent example of this strand of the literature is (Christensen et al.,

2012), which uses an autoregressive conditional hazard (ACD) model to estimate the conditional likelihood of a spike
∗jonas.andersson@nhh.no
†samaneh.sheybanivaziri@nhh.no
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occurrence. Other works focusing on spike predictions are (Amjady, Keynia, 2010) and (Amjady, Keynia, 2011). The

latter two papers focus on both the probability and size of spikes.

Secondly, the issue of what a reasonable measure of risk is for a commodity with two such distinct regimes, regular

and spike prices, surfaces. As an example, variance, often used in financial modeling, is not a proper measure of risk.

There is certainly a big difference in risk profile between, say, a normally distributed, N(2, 100), return distribution, and

a return, distributed as a mixture of a N(1, 3)-variate and the value 100 with probability 0.01; even if they have almost

identical expectations and the same variance.

Thirdly, and the main topic of this paper is that being able to model, or even predict spikes are of enormous use

when probabilistic forecasts of electricity prices are needed. As part of their extensive review of probabilistic forecasting

for electricity prices, (Nowotarski, Weron, 2018) present a study on the performance of methods to compute prediction

intervals in this context. This was done using real-world data from the electricity forecast competition, GEFCom2014,

that can be accessed in the supplementary data of (Hong et al., 2016). In this paper, the performance of some commonly

used methods will, instead, be investigated by means of a Monte Carlo study.

In the past few years, research within the area of probabilistic electricity price forecasting has been quite active,

as highlighted by (Nowotarski, Weron, 2018). (Hong et al., 2016) review advances in probabilistic energy forecasting

methods. The paper also serves as an introduction to the Global Energy Forecasting Competition 2014 (GEFCom2014).

The data from this competition is used in our paper. In the paper by (Dudek, 2016), the author suggests, and investigates,

a method, based on a feed forward neural network to produce probabilistic forecasts. One argument for the method is

that no preprocessing, such as detrending, is required. While dealing with probabilistic forecasts of another variable,

wind power generation, the work by (Wan et al., 2013) is relevant to ours. Just like electricity prices, wind power

generation does not have a smooth probability density. For electricity prices, a reason for this are the spikes and, to some

extent, negative prices. For wind power production, the reason is, however, something else. The wind power turbines

produce zero power for wind speeds below and, respectively, above certain thresholds. (Wan et al., 2013) use extreme

learning machine (ELM), see (Huang et al., 2006), to produce prediction intervals for this application. The paper by

(Botterud et al., 2012) introduces a model for optimal trading of wind power in the day-ahead market under uncertainty

in wind power and prices. They highlight the importance of probabilistic prediction in the electricity market context.

The paper also applies a kernel density method to compute the predictive distribution of the price. The application of

probabilistic forecasts in optimal trading is, in our view, a topic that should be pursued further in the literature. It is,

however, beyond the scope of our present work. In (Nowotarski, Weron, 2015), the quantile regression averaging (QRA)

approach, is introduced. In QRA, the prices are regressed on a set of point forecasts in a quantile regression in order

to obtain prediction intervals. (Maciejowska et al., 2016) expand QRA for cases with an exuberant number of forecast

models as inputs. This is done by means of principal component analysis. (Gaillard et al., 2016) present their results

from their participation in the GEFCom2014 competition. They found that a generalized additive model fitted by the

fitting function from quantile regression was the most successful method for probabilistic forecasts for both load and

price. In contrast to the methods described so far, possibly with the exception of (Botterud et al., 2012), the paper by

(Ziel, Steinert, 2016) takes a more structural starting point to the problem. They use real auction data and arrive at

probabilistic forecasts of the supply and demand curves. This approach is then extended to accommodate for long-term

forecasts in (Ziel, Steinert, 2018). (Brusaferri et al., 2019) use a Bayesian neural network where a prior distribution is

assumed on the weights of the network. A potential benefit of this is the possibility to evaluate model uncertainty.
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(Muniain, Ziel, 2020) utilize autoregressive models with exogenous variables and modified error terms in order to

capture price spikes. Their evaluation, considering interconnected peak and off-peak time series, identified the energy

score (ES) as a measure for prediction accuracy. Using (Anderson, Davison, 2008)’s methodology, (Maryniak, Weron,

2020) model the probability of price spike occurrence as an increasing function of the demand-to-capacity ratio. They find

a positive correlation between the likelihood of price spikes and an increase in the demand-to-capacity ratio, regardless

of the spike detection method used. In addition to positive price spikes, probabilistic forecasting of extremely low prices

has gained attention due to its relevance in market analysis and decision-making processes. Notably, the paper by (Bello

et al., 2016), presents a method to predict the occurrence of extremely low prices and applies it to data from the Spanish

wholesale market. The method combines different forecasting and spatial interpolation techniques with Monte Carlo

simulation.

Our paper has two main contributions. Our first contribution is to add features, not included in the original LMARX

model by (Wong, Li, 2001) and show how to estimate such a model. The second is to complement the study by

(Nowotarski, Weron, 2018) by investigating coverage probability and length of prediction intervals by means of a Monte

Carlo study where we simulate data from the logistic mixture autoregressive model with exogenous variables (LMARX),

(Wong, Li, 2001). The benefit of doing this is the ability to study the performance of different models in a situation

when the data-generating process is fully known. The values of the parameters in the Monte Carlo setup are guided by

the parameter values obtained when the model is fitted to the GEFCom2014 data.

In the next section of the paper, we describe the model by (Wong, Li, 2001), how to estimate it, some properties of

it, and why it is a good description of electricity prices. We also present extensions to allow for seasonality and lagged

spike probabilities. We describe how to estimate the model using the R-package TMB, see (Kristensen et al., 2016). In

Section 3 we fit the LMARX-model to the GEFCom2014 data using forecasted load as exogenous variables. In Section

4 we present other, commonly used, models used for forecasting electricity prices. This fitted LMARX-model, argued

to be a realistic approximation for the data generating process of electricity prices, is then used in Section 5 where

forecast intervals from the LMARX-model and models from Section 4 are evaluated by means of a Monte Carlo Study.

A conclusion ends the paper.

2 An extension of the logistic mixed autoregressive model with ex-

ogenous variables (LMARX)

We extend the model by (Wong, Li, 2001) to capture the most important features of electricity price time series, namely

price spikes, seasonality and explanatory variables, such as predicted load. The general model is specified by

pt =

y0,t if zt = 0

y1,t if zt = 1
(1)

where zt is a Bernoulli variable determining if the market is in a normal state or in a spike state. The probability of

being in a spike state can potentially be predictable, given knowledge of a variable, vt, so that

P (zt = 1) = α(vt;β0,β1, δ1) = 1
1 + exp(−(β0 + v′

tβ1 + δ1αt−1)) (2)
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where the variable vt is observable at the time of prediction. αt−1 is a short notation for the lagged spike probability

α(vt−1;β0,β1, δ1). Note that lags of yt can be included in vt. Within each of the two states, a seasonal ARX model,

ARX(p)(P )s, model

ϕk(B)Φk(B)(yk,t − µk) = x′
tγ + εk,t, (3)

is governing the dynamics of the process, k = 0, 1. εk,t ∼ N(0, σ2
k) are normally distributed white noise processes, B is

the backshift operator, xt is a vector of covariates,

ϕk(B) = 1 − ϕk,1B − ϕk,2B
2 − ...− ϕk,pB

p and

Φk(B) = 1 − Φk,1B
s − Φk,2B

2s − ...− Φk,PB
P s.

(4)

The model described above is an extended version of the model by (Wong, Li, 2001) in two ways. Firstly, we allow

for a multiplicative seasonality and, secondly, for a lagged probability in the dynamics of the spike probability1. The

EM-algorithm developed in (Wong, Li, 2001) is therefore not directly applicable. We estimate the model through the

R-package (R Core Team, 2022), TMB (Kristensen et al., 2016), which employs an automatic differentiation algorithm,

thus allowing the computation of exact gradients. The conditional density function for yt is

f(yt|Ft−1,xt, vt,ϕ,Φ,γ,σ, β0,β1) = (1 − α(vt;β0,β1, δ1))ϕ
(
yt − µ0(Ft−1,xt)

σ0

)
+α(vt;β0,β1, δ1)ϕ

(
yt − µ1(Ft−1,xt)

σ1

) (5)

where µk(Ft−1,xt) are the conditional means of yt for k = 0, 1, Ft−1 = {yt−1, yt−2, ...} and ϕ is the standard normal

density function. The conditional log-likelihood can then be computed as

logL(ϕ,Φ,γ,σ, β0,β1))
T∑

t=P s+1

log f(yt|Ft−1,xt, vt,ϕ,Φ,γ,σ, β0,β1) (6)

which is then maximized using TMB. The model, with around 1000 observations, is estimated in ca 0.2 seconds with a

standard 2023 desktop computer.

The predictive probability density of the model, f(yT +h|FT ,xT , vT ), is obtained by simulating yT +1, yT +2, ..., yT +h

from the model . The values of xT and vT must be known or predicted. Modeling a potential endogeneity, so that

variables, such as load, could be dependent on previous price or spike probability, would be very interesting but is beyond

the scope of this paper.

3 The seasonal LMARX-model fitted to the GEF686Com2014 data

We first fit the model to the price data from the Global Energy Forecasting Competition 2014 and use seasonally adjusted

forecasts of zonal and total loads as variables in both x and v. v1t is forecasted zonal load and v2t is forecasted total

load at time t. The processes {yk,t}, k = 0, 1 are both seasonal ARX(1)-models. The purpose of the data analysis here

is to choose realistic parameter values for the model used in the Monte Carlo study, performed in the next section.

Since the prices are set once a day and we consider this as a 24-dimensional daily time series rather than one hourly

time series. An example of one such price series, for the hour 8 am, is given in Figure 1. The plot shows that there are
1By setting δ1 = 0 and Φk(B) = 1, we obtain the model by (Wong, Li, 2001).
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spikes in the prices at some times, which deviate a lot from most other prices.

Figure 1: Zonal marginal prices for hour 8 am for the GEFCom2014 data

We also investigate the unconditional distribution of the data for hours 13 and 17, see Figure 2. These two examples

show that the unconditional distribution of the price can be close to uni-modal, as for hour 13, or not, as for hour 16.

For the uni-modal case, there is a possibility that a model based on a uni-modal distribution can capture the price

distribution. Even a model based on a symmetrical distribution, such as the normal distribution, could work after a

simple transformation, such as the logarithm, of the data. The bi- or multi-modal case, however, is a strong argument

for using a model based on a mixture of distributions. In terms of electricity prices, a bi-modality can be thought of

as a process determining prices in a ”normal state” and another process determining the prices in a ”spike state”. This

interpretation should not be seen as anything close to a structural model for electricity prices but only as a vehicle to

capture the predictive distribution in a more realistic way.

(a) Hour 13 (b) Hour 16

Figure 2: Kernel density estimates for hours 13 and 16.

We now fit the following seasonal LMARX(1) model to the series in Figure 1.



y0,t = ϕ00 + ϕ01yt−1 + Φ01yt−7 − ϕ01Φ01yt−8 + γ01v1t + γ02v2t + ε1,t

y1,t = ϕ10 + ϕ11yt−1 + Φ11yt−7 − ϕ11Φ11yt−8 + γ11v1t + γ12v2t + ε2,t

yt =

y0t if Zt = 0

y1t if Zt = 1

αt = P (Zt = 1) = 1
1 + exp(−(β0 + β1v1t + β2v2t + β3yt−1 + δ1αt−1))

(7)

where yt is zonal price, v1t is forecasted zonal load and v2t is forecasted total load. The result is shown in Table 1.
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coef se tval pval
ARIMA-parameters
ϕ00 6.425 0.533 12.047 0.000
ϕ10 14.417 4.251 3.391 0.001
ϕ01 0.615 0.026 23.935 0.000
ϕ11 0.781 0.050 15.471 0.000
Φ01 0.590 0.024 24.461 0.000
Φ11 0.147 0.083 1.764 0.078
γ01 -0.004 0.002 -1.914 0.056
γ11 -0.063 0.027 -2.381 0.017
γ02 0.005 0.001 5.905 0.000
γ12 0.031 0.009 3.314 0.001
σ0 1.500 0.031 48.937 0.000
σ1 3.188 0.062 51.476 0.000
Spike parameters
β0 -4.892 0.053 91.478 0.000
β1 -0.006 0.001 4.796 0.000
β2 0.002 0.001 -3.121 0.002
β3 0.037 0.000 -96.710 0.000
δ1 5.366 0.097 -55.319 0.000

Table 1: The model fitted to zonal prices for hour 8 am

As can be seen in Table 1, most parameters are significant in both regimes. The only exceptions are that in the spike

regime, seasonality is not significant and in the non-spike regime, the same is true of the forecasted zonal load. What

is more interesting is that both forecasted zonal and total load is significantly and positively affecting the probability

of a price spike on the next day. Furthermore, an increased price on day t increases the spike probability on day t + 1,

which is manifested in the parameter β3 and an increased probability of observing a spike on the day t can increase the

probability of a spike on the next day which is revealed by δ1.

Finally, in Figure 3, we illustrate the one-step-ahead predictive distributions for two different days at hour 16. In

Figure 3a, we see an example where the resulting distribution is uni-modal, and in Figure 3b, where it is not. This is a

feature that the other models used in this paper cannot capture.

(a) (b)

Figure 3: Predictive densities for two different days, hour 16. The vertical red lines are the actual prices.

4 Other common methods to compute forecast intervals

Seasonal autoregressive models were already mentioned in Section 2 when the LMARX model was described. A very

common way to produce forecasts is to use an appropriate, special case from a class of models known as the seasonal
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autoregressive integrated moving average (SARIMA) models. The model can be written

ϕ(B)Φ(B)(1 −B)d(1 −Bs)D(yt − µk) = θ(B)Θ(B)εk,t (8)

where {εt} is a strict white noise and ϕ(B), Φ(B), θ(B) and Θ(B) are polynomials determining the lag structure of the

model
ϕ(B) = 1 − ϕ1B − ϕ2B

2 − ...− ϕpB
p,

Φ(B) = 1 − Φ1B
s − Φ2B

2s − ...− ΦPB
P s,

θ(B) = 1 − θ1B − θ2B
2 − ...− θqB

q, and

Θ(B) = 1 − Θ1B
s − Θ2B

2s − ...− ΘQB
Qs.

(9)

The model is often denoted as ARIMA(p, d, q)(P,D,Q)s.

The last two polynomials add flexibility in the shape of the autocorrelation (ACF). Compared to the seasonal AR

model, can be done in a parsimonious way, i.e., with fewer parameters. Since the model can be written in the so-called

moving average (MA) form

yt = µ+
∞∑

k=0

ψkεt−k, (10)

where the coefficients ψk, k = 0, 1, 2..., are determined by the coefficients in the polynomials above2, it is straightforward

to find the forecast distribution for yT +h given information up until time T . If εt is normally distributed, N(0, σ2) so

will be the forecast distribution.

(yT +h|FT ) ∼ N(fT,h, vh), (11)

where

fT,h = µ+
∞∑

k=h

ψkεT +h−k (12)

is the conditional expectation of yT +h given FT = (yT , yT −1, ...) and

vh = σ2(1 + ψ2
1 + ψ2

2 + ...+ ψ2
h−1) (13)

is the variance of the forecasting error yT +h −fT,h. Based on this result, it is straightforward to derive a forecast interval

or the entire forecast distribution. We will now consider some special cases of particular interest to us. We will focus on

the one-day-ahead prediction, i.e., h = 1.

The model denoted näıve in this paper can be described by the following sentence: The most likely value in hour H

of the next day is the value of hour H today. Framed in the ARIMA framework it would be an ARIMA(0, 1, 0)(0, 0, 0)7

model; or more easily written

(yT +1|FT ) ∼ N(yT , σ
2
N), (14)

where σ2
N is the error term variance. A 100(1 − α)% forecast interval based on this model is given by

yT ± zα
2
σN (15)

2The first coefficient ψ0 is always one.
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where zα
2

is the α/2 percentile of the N(0, 1)-distribution. The seasonal näıve model can be described by the statement:

The most likely value in hour in hour H of next day is the value of hour H on the same weekday last week. This

corresponds to an ARIMA(0, 0, 0)(0, 1, 0)7. The predictive distribution is then

(yT +1|FT ) ∼ N(yT −6, σ
2
SN) (16)

yielding a 100(1 − α)% forecast interval

yT ± zα
2
σSN, (17)

where σ2
SN is the error term variance. We also use the ARIMA(1, 0, 1)-model in our study.

yt = µ+ ϕ1yt−1 + εt − θ1εt−1 (18)

The predictive distribution is here given by first computing the coefficients, ψk, k = 1, 2, ... in (12) and then using

them in (11). In Table 2 we summarize the alternatives to the mixture model. The AR(1) and SAR(1) models will be

investigated both with and without explanatory variables. In Table 2 the point forecasts for the different models are

given.

Forecast method One-step-ahead
Näıve p̂T +1 = pT

Seasonal näıve p̂T +1 = pT −6
AR(1) p̂T +1 = µ̂ + ϕ̂1pT

ARMA(1,1) p̂T +1 = µ̂ + ϕ̂1pT + θ̂1ϵ̂T

SAR(1) p̂T +1 = µ̂ + ϕ̂1pT + Φ̂1pT −7 − ϕ̂1Φ̂1pT −8

Table 2: One-step-ahead forecasts for some other forecasting methods

To compute multi-step-ahead forecasts, the formulas in Table 2 are iterated. The observed values, i.e., the ones up and

until time T are plugged in and the unobserved are substituted with the previous forecast. As an example, for the

SAR(1)-model, the two-step-ahead prediction is

p̂T +2 = µ̂+ ϕ̂1p̂T +1 + Φ̂1pT −6 − ϕ̂1Φ̂1pT −7 (19)

The forecast intervals will be evaluated by their coverage probability and average length. Both those quantities are

computed for both one-step-ahead and seven-step-ahead forecasts made repeatedly over the replications.

5 A Monte Carlo Study

As mentioned previously, the data generating process (DGP) in the simulation study is given by the model (7). The

parameter values are guided by the estimates from the observed price series, such as exemplified for hour 08 in Table 1.

We have done one such simulation study with 1000 replications for the parameter values corresponding to each of the

24 hours in addition to daily average prices. Since the results are quite consistent over the hours, in this section we

include only ones for the daily average prices. Results for one peak hour, hour 18, and one non-peak hour, hour 03, is

given in the appendix.
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5.1 One-day-ahead forecasts

We first investigate the Monte Carlo results for the one-day-ahead forecasts for a DPG with parameter values

corresponding to the ones estimated on daily mean prices. The results are presented in Figure 4 and Table 3.

In Figure 4a, the bias of the empirical coverage, i.e., the actual coverage minus the nominal coverage, is presented. We

see that, not surprisingly, by specifying the correct model, we obtain intervals with coverage probabilities close to the

nominal. Not equally obvious, the larger the nominal coverage probability, the less important the distributional

assumptions seem to be. For small nominal levels, such as 50% and 60%, both the naive models and the ARIMA

models with and without exogenous variables, give forecast intervals that are severely conservative, i.e., they cover a

large part of the predictive distribution. For large nominal levels, on the other hand, this problem almost disappears.

However, we see no reason to advise using these methods since the predictive distribution, seen in total, does not

capture future behavior well. As seen in Figure 4b, the intervals for the correctly specified LMARX model, are the

shortest, despite the fact that the other models are conservative. At the cost of longer intervals compared to a correctly

specified model, bootstrapping, helps, to some extent, for all the miss-specified models.

A pattern that goes through all hours is that seasonality, while often significant in the estimated LMARX models, is

not helping in a material way to reduce the length of the intervals for the other models. The length of the intervals is

extremely long for the seasonal naive model in addition to, for small nominal levels, not having the correct coverage.

When fitting an ARMA(1,1)-model, i.e., without seasonality, we observe that there is little autocorrelation left in the

residuals. This is an indication that adding seasonal components will help little and benefits are likely to be outweighed

by the disadvantage of more estimation uncertainty. This can also be seen by comparing the bootstrapped AR models

with and without seasonality.
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(a) Bias of empirical coverage

(b) Average length

Figure 4: The bias of empirical coverage (a) and the average length of the confidence intervals (b) for the
different models and nominal coverage levels, based on daily mean prices. One-step-ahead prediction.
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Table 3: Empirical Coverage (EC) and Average Length of 50%, 60%, 70%, 80%, 90%, and 95% two-sided one-step ahead PIs for
15 models, daily mean, 1000 replications. Computation time 1 hour

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.496 6.52 0.598 8.04 0.708 10.36 0.776 13.10 0.878 17.31 0.940 21.57

Naive 0.824 14.23 0.901 17.63 0.935 21.83 0.948 26.81 0.956 34.51 0.959 41.23
Seasonal Naive 0.746 25.73 0.821 31.93 0.879 39.37 0.894 48.42 0.930 62.67 0.955 74.49

AR(1) 0.813 13.56 0.890 16.79 0.928 20.80 0.935 25.53 0.952 32.89 0.961 39.29
ARMA(1,1) 0.814 13.51 0.879 16.72 0.926 20.72 0.936 25.43 0.952 32.77 0.963 39.13

ARX 0.810 13.22 0.885 16.37 0.928 20.28 0.935 24.88 0.952 32.08 0.960 38.31
ARXX 0.803 12.98 0.878 16.07 0.925 19.91 0.933 24.42 0.952 31.50 0.959 37.59

SARXX 0.810 12.79 0.883 15.83 0.931 19.61 0.931 24.06 0.951 31.04 0.961 37.03
Naive-B 0.561 7.18 0.678 9.06 0.777 11.45 0.846 15.07 0.927 24.76 0.966 44.55

Seasonal Naive-B 0.533 15.35 0.661 19.68 0.758 25.71 0.834 35.25 0.920 59.42 0.965 86.74
AR(1)-B 0.555 6.74 0.655 8.49 0.776 10.78 0.840 14.21 0.926 24.27 0.962 42.63

ARMA(1,1)-B 0.544 6.77 0.642 8.49 0.775 10.85 0.836 14.27 0.927 24.37 0.963 42.31
ARX-B 0.548 6.77 0.663 8.54 0.767 10.87 0.845 14.24 0.931 23.92 0.964 41.53

ARXX-B 0.573 6.98 0.675 8.80 0.795 11.18 0.851 14.67 0.926 24.10 0.960 40.61
SARXX-B 0.577 6.79 0.654 8.53 0.782 10.83 0.840 14.15 0.925 23.60 0.959 40.35

While specifying the correct model seems like an obvious choice if one ever got the opportunity, it is also well known

that estimation uncertainty will affect the quality of the forecasts for finite samples. If a feature of a model is

sufficiently weak, it might be better to ignore it. In our case, this could, e.g., occur if the two states of the

LMARX-model are sufficiently similar. We do, in fact, observe that some models perform better than the

LMARX-models in quite a few cases in our simulation study.

A prominent example of this is the bootstrapped ARMA-models with and without seasonality and explanatory

variables. For many hours and nominal levels, they obtained a correct empirical coverage and better or equivalent

average length. At a 50% nominal level, LMARX demonstrates superior performance in 9 instances, including specific

morning hours (e.g., 3, 9) and afternoon hours (e.g., 13, 17, 18, 20, 21), as well as the daily mean prices, presented in

Table 3, in terms of empirical coverage. However, in the remaining hours, bootstrapped models have shorter average

lengths. In terms of the average length of prediction intervals, the bootstrapped models consistently yield favorable

results across most hours, except for hours 6, 7, and 8, and the daily mean price series, where LMARX generates

narrower prediction intervals. These results also apply to the 60%, 70%, and 80% nominal levels for several parameter

settings. For the 90 % level, the average lengths are mostly shorter for the LMARX-model and for the 95% level, this is

always the case.

The LMARX-model is the only one, of the studied models, that can capture a bi-modal predictive distribution.

Therefore, even though ignoring this feature might help in obtaining shorter prediction intervals, in the presence of

many spikes, such a model would most likely not capture the entire predictive distribution.

5.2 Seven-step-ahead forecasts

For the sake of avoiding the issue of having to predict covariates, models without covariates were fitted to the observed

data in order to get realistic parameter values for studying seven-step-ahead forecasts. The results follow the same

pattern as the one-step-ahead predictions in terms of the comparative performance of the different methods.

Again, not surprisingly, specifying the correct model yields superior results and the empirical coverage has the lowest

bias, see Figure 5a. Among the models with a close to, correct coverage probability, the correct model has the shortest

intervals. There is a tendency that the bootstrap does not correct the coverage probability as well as for the

one-step-ahead forecasts. An exception to this is the seasonal naive model with the bootstrap which has correct
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coverage but much longer intervals, e.g., Figure 5b. This model is solely based on the weekly seasonality. The data is

truly generated from the LMARX model so it is interesting to see that a very simplified model, like the naive seasonal,

works well. This is not true just for the parameter values based on average prices but a result that goes through for

most parameter values investigated (based on the estimated values for real data for different hours).

As the electricity market exhibits hour-specific characteristics, with each hour of the day reflecting distinct patterns

influenced by factors such as fluctuating demand, diverse power generation sources, and market participants’ activities,

it is crucial to analyze each hour individually. When considering a seven-step ahead forecast at a 50% nominal level,

the LMARX-model that incorporates the effects of both forecasted total load and forecasted system load demonstrates

superior performance compared to all other models in 14 instances, including the daily mean series, see Table 4.

However, during peak evening hours, the seasonal naive model with bootstrapped residuals works very well, producing

comparable results, see for example Table 8 in the Appendix for hour 18:00. The analysis of average length prediction

intervals over 1000 replications reveals a competitive performance between the LMARX and seasonal naive models,

particularly in specific time blocks. In the early morning block, spanning six hours from midnight to 5 am, as well as in

the afternoon block of seven hours from 12 pm to 6 pm, LMARX consistently produces the narrowest prediction

intervals, as shown by the results of hour 03 in Table 7. However, during the second block of the day, encompassing

hours 6 am to 11 am, and in the late evening hours from 7 pm to 11 pm, the seasonal naive model outperforms other

models. Assuming the non-normality of residuals, the seasonal naive model demonstrates superior performance by

effectively capturing the inherent seasonality and patterns present during these time blocks.

In the case of a 60% nominal level, for a 7-step ahead forecast, the empirical coverage of LMARX models is nearly on

par with that of seasonal naive-B. When considering the average length of prediction intervals, LMARX outperforms in

17 out of the 25 cases we investigated, including the daily mean as shown in Table 4. LMARX demonstrates superior

performance in most instances, except during the second block of the day from 6 pm to 10 pm and during hours 18, 21,

and 22 and the seasonal naive model with bootstrapped residuals proves to be more effective during these specific hours

which is interesting considering that the data used for analysis is generated from an LMARX model. These findings

suggest that LMARX models exhibit competitive empirical coverage, even during peak hours, while outperforming in

most cases regarding the average length of prediction intervals. However, during the second block of the day, the

seasonal naive model with bootstrapped residuals proves to be more effective in producing narrower prediction

intervals. These insights can be valuable in selecting the appropriate model based on the specific hour and desired

forecasting performance.
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(a) Bias of empirical coverage

(b) Average length

Figure 5: The bias of empirical coverage (a) and the average length of the confidence intervals (b) for the
different models and nominal coverage levels, based on daily mean time series. Seven-step-ahead prediction.

At a 70% nominal level, both LMARX and seasonal naive-B models demonstrate effective performance in terms of

empirical coverage for 7-step-ahead forecasts. Notably, there are instances, such as hours 4, 7, and 17, where both

models achieve identical empirical coverage. However, when evaluating the average length of prediction intervals,

LMARX consistently outperforms all other models in all hours except for hour 6, the seasonal naive-B model has a

negligible better difference. The same findings persist when considering the nominal level of 80% for 7-step-ahead

forecasts as demonstrated by Table 4 or Tables 7 and 8 in the Appendix.
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The results also indicate that at the 90% nominal level for 7-step ahead forecasts, LMARX consistently produces the

narrowest prediction intervals across all hours. This proves the model’s precision and ability to capture the underlying

patterns in the data. However, when considering the empirical coverage of point forecasts, LMARX performs effectively

alongside seasonal naive models and seasonal naive models with bootstrapped residuals in most hours. Surprisingly,

models such as AR(1)-B, seasonal AR(1)-B, and ARMA(1,1) also demonstrate efficient results in some hours, despite

the data being generated from an LMARX model. These models showcase their capability to adapt and capture the

essential features of the LMARX-generated data.

At a 95% nominal level, analyzing 7-step ahead point forecasts reveals that LMARX exhibits superior performance in

terms of the average length of prediction intervals across all hours, except for hours 14 and 16, where seasonal AR(1)

shows greater sharpness. However, when considering the empirical coverage of point forecasts, several other models

emerge as strong competitors to LMARX. Among these competing models, we observe that naive, AR(1), naive-B,

seasonal naive-B, AR(1)-B, ARMA-B, and seasonal AR(1) demonstrate competitive performance in terms of empirical

coverage. Notably, AR(1) with bootstrapped residuals proves to be a proficient forecaster in 11 instances, specifically in

hours 0, 1, 2, 6, 7, 8, 9, 11, 13, 16, 17, and also the daily mean series, see for instance Table 4. These findings emphasize

that, despite the data being generated and simulated by a logistic mixture model with exogenous variables, simpler

models can sometimes outperform more complex models in specific hours. While LMARX excels in terms of the

average length of prediction intervals, other models demonstrate strong competition in capturing the empirical coverage

of point forecasts. This highlights the importance of considering the strengths and limitations of different models in

various forecasting scenarios, ultimately enabling the selection of the most appropriate model for each specific hour.

If the features of the electricity price for different hours are consistent over a long period of time and the

LMARX-model is a good approximation to them, conclusions could be drawn on when one could, beneficially, use the

different ARMA-models successfully. We leave this question for further research. For now, we conclude that the

LMARX-model is a safe way to capture situations both with and without many spikes.

Table 4: Empirical Coverage (EC) and Average Length (AL) of 50%, 60%, 70%, 80%, 90% and 95% two-sided 7-step ahead PIs
for 11 models, daily mean, 1000 replications. Computation time 2 hours

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.499 16.83 0.579 21.63 0.696 28.07 0.796 37.53 0.897 52.39 0.944 72.74

Naive 0.810 41.23 0.854 51.38 0.882 63.21 0.893 78.34 0.931 99.70 0.955 119.36
Seasonal Naive 0.742 30.96 0.795 38.72 0.827 47.30 0.852 58.89 0.901 75.11 0.922 90.14

AR(1) 0.748 28.94 0.798 36.04 0.847 44.15 0.887 55.12 0.929 70.17 0.934 84.23
ARMA(1,1) 0.750 28.32 0.798 35.28 0.840 43.17 0.880 53.86 0.927 68.71 0.932 82.37

SAR(1) 0.744 27.72 0.785 34.54 0.830 42.29 0.878 52.82 0.921 67.21 0.926 80.68
Naive-B 0.757 33.32 0.812 43.22 0.861 55.74 0.881 73.46 0.932 100.98 0.960 126.83

Seasonal Naive-B 0.505 16.92 0.599 21.89 0.701 28.90 0.790 42.11 0.893 73.71 0.944 108.52
AR(1)-B 0.656 23.04 0.734 29.65 0.797 37.98 0.873 50.61 0.937 70.34 0.948 89.50

ARMA(1,1)-B 0.662 22.57 0.739 29.11 0.794 37.21 0.869 49.50 0.935 68.66 0.946 87.45
SAR(1)-B 0.645 21.81 0.730 28.12 0.784 36.06 0.862 48.17 0.926 67.13 0.945 86.13

6 Conclusion

Computing forecast intervals for electricity prices is challenging since their distribution tends to be bi-modal. We

investigate this by first modifying and then using a mixture model, the LMARX model, where one state represents

price spikes and another has more regular prices. By fitting the model to the price series for different hours we get 24

parameter settings which we argue is a realistic representation of how electricity prices behave. Our results show, that
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using ARIMA models, together with the bootstrap, usually give a correct coverage probability and relatively short

forecast intervals. The extreme values of electricity prices have the effect that, without the bootstrap, ARIMA models

produce conservative, oversized, prediction intervals. This is particularly true for small nominal levels. Bootstrap only

helps to some extent. Exploiting the benefits of a correctly specified LMARX model, however, yield huge benefits in

terms of the length of the interval. An added benefit is also that the model produces an estimate of the spike

probability for the next day.

If only a few unpredictable spikes, could seemingly be considered as outliers not worthwhile trying to model. However,

in our view, the effect of spikes on probabilistic forecasts is a very interesting topic for further research. While few in

numbers, badly predicted occurrences and values of the spikes might lead to huge losses, caused by bad decisions. This

might be studied by means of a case study with a real, or hypothetical, decision problem yielding a specific loss

function.

Statement: During the preparation of this work the authors used ChatGPT in order to improve language and

readability. After using this tool/service, the authors reviewed and edited the content as needed and take full

responsibility for the content of the publication.
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Appendix

Table 5: Empirical Coverage (EC) and Average Length of 50%, 60%, 70%, 80%, 90%, and 95% two-sided one-step ahead PIs for
15 models, hour 03, 1000 replications. Computation time 3.94 hours

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.500 4.98 0.618 6.80 0.721 8.10 0.798 10.75 0.903 14.98 0.950 18.59

Naive 0.758 7.56 0.813 9.47 0.894 11.62 0.914 14.39 0.950 18.58 0.948 21.87
Seasonal Naive 0.665 15.61 0.753 19.55 0.841 23.95 0.901 29.71 0.921 38.32 0.948 45.15

AR(1) 0.785 7.29 0.804 9.13 0.898 11.20 0.916 13.88 0.943 17.92 0.945 21.09
ARMA(1,1) 0.779 7.27 0.801 9.11 0.898 11.17 0.916 13.84 0.943 17.86 0.945 21.02

ARX 0.781 7.23 0.801 9.06 0.896 11.11 0.914 13.77 0.942 17.78 0.945 20.92
ARXX 0.774 7.16 0.800 8.96 0.896 11.00 0.913 13.62 0.942 17.59 0.945 20.70

SARXX 0.772 7.14 0.794 8.94 0.892 10.96 0.914 13.57 0.941 17.54 0.947 20.64
Naive-B 0.537 4.56 0.614 5.75 0.741 7.16 0.812 9.11 0.900 13.25 0.944 21.17

Seasonal Naive-B 0.509 11.01 0.629 14.09 0.744 17.82 0.829 23.29 0.909 35.05 0.950 49.11
AR(1)-B 0.533 4.36 0.610 5.48 0.742 6.85 0.811 8.74 0.908 12.81 0.948 20.53

ARMA(1,1)-B 0.529 4.35 0.618 5.48 0.735 6.86 0.808 8.75 0.902 12.83 0.947 20.43
ARX-B 0.516 4.28 0.602 5.40 0.723 6.73 0.802 8.61 0.898 12.64 0.947 20.32

ARXX-B 0.512 4.24 0.609 5.37 0.727 6.70 0.802 8.56 0.896 12.60 0.946 20.08
SARXX-B 0.520 4.28 0.604 5.40 0.726 6.75 0.806 8.64 0.898 12.67 0.945 19.94

Table 6: Empirical Coverage (EC) and Average Length of 50%, 60%, 70%, 80%, 90%, and 95% two-sided one-step ahead PIs for
15 models, hour 18, 1000 replications. Computation time 3.31 hours

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.506 10.15 0.581 13.93 0.693 15.96 0.805 20.47 0.876 27.44 0.943 36.74

Naive 0.856 21.73 0.878 27.16 0.925 33.38 0.939 41.34 0.941 53.13 0.960 63.14
Seasonal Naive 0.774 39.98 0.815 49.76 0.874 61.39 0.891 76.02 0.913 97.96 0.916 116.08

AR(1) 0.845 20.66 0.881 25.82 0.927 31.72 0.945 39.31 0.949 50.53 0.953 60.03
ARMA(1,1) 0.840 20.59 0.882 25.73 0.923 31.60 0.944 39.17 0.948 50.35 0.952 59.82

ARX 0.846 20.23 0.879 25.27 0.926 31.05 0.944 38.50 0.949 49.47 0.951 58.79
ARXX 0.839 19.90 0.878 24.86 0.919 30.54 0.942 37.87 0.946 48.68 0.951 57.83

SARXX 0.836 19.75 0.879 24.67 0.926 30.31 0.943 37.58 0.946 48.31 0.950 57.39
Naive-B 0.546 9.43 0.609 12.01 0.742 15.29 0.850 20.54 0.923 37.94 0.968 71.75

Seasonal Naive-B 0.544 21.76 0.619 28.18 0.750 37.09 0.824 53.24 0.912 95.29 0.946 138.85
AR(1)-B 0.512 8.86 0.612 11.26 0.734 14.33 0.844 19.42 0.920 36.81 0.961 67.57

ARMA(1,1)-B 0.511 8.91 0.620 11.31 0.730 14.43 0.834 19.48 0.922 36.93 0.960 67.19
ARX-B 0.555 9.07 0.634 11.56 0.734 14.68 0.853 19.76 0.924 36.36 0.959 66.11

ARXX-B 0.547 9.37 0.640 11.89 0.757 15.16 0.853 20.47 0.918 36.81 0.957 64.72
SARXX-B 0.548 9.29 0.649 11.80 0.765 15.01 0.858 20.35 0.921 36.67 0.956 64.28

Table 7: Empirical Coverage (EC) and Average Length (AL) of 50%, 60%, 70%, 80%, 90% and 95% two-sided 7-step ahead PIs
for 11 models, hour 03, 1000 replications. Computation time 2.2 hours

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.493 12.05 0.611 15.38 0.716 18.68 0.799 24.57 0.903 34.05 0.944 44.86

Naive 0.732 22.41 0.798 27.87 0.867 34.30 0.901 42.27 0.933 54.14 0.945 64.62
Seasonal Naive 0.680 18.99 0.760 23.71 0.838 29.17 0.871 35.86 0.904 46.03 0.929 54.98

AR(1) 0.674 17.12 0.762 21.34 0.840 26.24 0.877 32.43 0.914 41.44 0.937 49.41
ARMA(1,1) 0.671 17.09 0.754 21.29 0.841 26.19 0.874 32.32 0.916 41.35 0.938 49.29

SAR(1) 0.671 16.94 0.754 21.13 0.841 25.96 0.871 32.07 0.913 41.01 0.936 48.89
Naive-B 0.658 18.35 0.744 23.45 0.837 30.10 0.888 39.22 0.927 54.51 0.952 68.73

Seasonal Naive-B 0.483 12.27 0.599 15.61 0.704 20.24 0.803 27.31 0.896 43.57 0.936 62.75
AR(1)-B 0.597 13.92 0.693 17.79 0.800 22.90 0.848 29.83 0.912 41.37 0.942 52.45

ARMA(1,1)-B 0.599 13.89 0.693 17.77 0.796 22.82 0.849 29.67 0.913 41.30 0.944 52.27
SAR(1)-B 0.588 13.79 0.682 17.65 0.796 22.58 0.853 29.50 0.916 40.90 0.942 51.95
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Table 8: Empirical Coverage (EC) and Average Length (AL) of 50%, 60%, 70%, 80%, 90% and 95% two-sided 7-step ahead PIs
for 11 models, hour 18, 1000 replications. Computation time 4.9 hours

50% EC 50% AL 60% EC 60% AL 70% EC 70% AL 80% EC 80% AL 90% EC 90% AL 95% EC 95% AL
LMARX 0.482 24.53 0.601 31.47 0.727 40.08 0.797 54.45 0.883 79.71 0.942 109.19

Naive 0.803 61.53 0.846 76.62 0.893 94.58 0.906 117.05 0.939 151.02 0.955 179.82
Seasonal Naive 0.739 46.21 0.782 57.72 0.854 71.19 0.858 88.14 0.899 113.38 0.915 135.16

AR(1) 0.730 41.67 0.821 51.86 0.869 63.98 0.895 79.20 0.918 102.05 0.925 121.73
ARMA(1,1) 0.732 41.02 0.819 51.10 0.869 63.06 0.892 78.06 0.914 100.49 0.928 119.93

SAR(1) 0.721 40.41 0.811 50.33 0.863 62.10 0.889 76.93 0.916 99.04 0.921 118.12
Naive-B 0.746 48.95 0.803 63.99 0.884 83.82 0.892 110.61 0.940 152.95 0.958 191.07

Seasonal Naive-B 0.510 23.86 0.600 31.26 0.733 42.37 0.795 64.30 0.902 115.86 0.942 163.61
AR(1)-B 0.637 32.41 0.736 42.12 0.831 54.89 0.873 72.67 0.922 102.38 0.937 130.09

ARMA(1,1)-B 0.642 32.01 0.744 41.60 0.824 54.01 0.870 71.53 0.915 100.75 0.935 128.14
SAR(1)-B 0.625 31.15 0.736 40.48 0.826 52.79 0.867 70.25 0.917 99.34 0.932 126.45
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