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Abstract 
While climate change is known to pose a variety of highly relevant economic risks, there are 

still many probable implications and economic fields with a lack of available data and 

research. This thesis explores the potential interrelations of climate change and global supply 

change management based on the case of Brazilian soybean supply.  

The main research question, how a change in temperature and precipitation affects Brazilian 

soybean yield, is investigated using historical weather and soybean yield data. A panel data 

crop yield regression model was developed to estimate the impact of changing weather 

variables on yield productivity. The results suggest that a one-degree Celsius increase in 

average annual temperature in Brazil leads to a 13.8% decrease in average soybean yield, a 

100-millimeter increase in annual precipitation is associated with a 1.5% increase in average 

soybean yield, and lastly, a one-degree Celsius increase in the average temperature during the 

driest quarter of the year was found to lead to a 1.6% decrease in average annual soybean yield 

in Brazil. 

By contextualizing these results within the global sustainable soybean supply chain 

management theory, this thesis further adds valuable insights to the existing new climate 

economy literature and the relevant discussion of the economic implications of climate change. 

Lastly, this thesis aims to advocate for how increasing available climate data and analysis can 

limit potentially harmful consequences and encourage further research in the still-developing 

field of sustainable supply chain management to provide more information to policymakers 

and decision-makers.  

 

Keywords: Sustainable supply chain management, Brazilian soybean, climate change, new 

climate economy literature, crop yield regression, panel data regression  
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1. Introduction 

Global supply chains are complex networks of interconnected entities, such as manufacturers, 

suppliers, distributors, and retailers, enabling the production and distribution of goods and 

services worldwide. These supply chains are essential for international trade and economic 

growth but are also vulnerable to various challenges (Janvier-James, 2011). 

The COVID-19 pandemic, geopolitical conflicts such as the ongoing war in Ukraine, and the 

Suez Canal blockade are just a few recent examples that show how sensitive global supply 

chains are and how easily they can be disrupted. Significant delays in global production and 

transportation of goods can lead to shortages and price increases for many essential and 

specialty items. As global supply chains continue to evolve and expand, it is essential to 

develop strategies to mitigate these risks and ensure the stability and resilience of these critical 

networks (Gurtu & Johny, 2021). 

One of the major challenges for global supply chains now and in the future is to account for 

the various challenges posed by climate change. A significant part of that is to develop 

strategies to make supply chains more sustainable to account for environmental, social, and 

economic aspects. To do so, it is crucial to consider how supply chains impact the environment 

and how a changing environment impacts supply chains (Ghadge et al., 2020). 

A prime example is the complex narrative of global soybean trade, specifically with Brazilian 

soybean production. Soybeans are an essential commodity worldwide with high demand and 

economic value, and many industries rely on them. Soybean production and trade are therefore 

essential not only for the Brazilian but the global economy. However, the increased soy 

demand and trade are also significant reasons for social issues and the increasing deforestation 

of the Amazonian rainforest, further endangering maintaining a safe climate on earth. The 

impacts, in turn, of climate change are likely to negatively affect soybean yield in Brazil, 

potentially putting their economic well-being and the global soybean supply chain at risk. This 

complex and challenging cause-and-effect circle is multi-faceted and increasingly raises the 

question of how to source and trade soy sustainably on a global level (De Maria et al., 2020).  

To face all these challenges and to consider potential economic implications, a critical first 

step is to understand how changes in our climate can change the soybean production conditions 

and potentially shift the global production and trade flows. Understanding this will help 
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evaluate whether an increasing demand for soybeans in the future can be met or if innovative 

solutions will be required to avoid an economic issue at large. 

This thesis develops and contributes a starting point to the required research in this field, 

aiming to explore the interrelationships between climate change and supply chain design and 

operations using the example of Brazilian soy supply. Historical data on soybean yield and 

weather conditions are used to estimate the potential causal relationship between climate and 

soybean yield. This analysis provides a foundation to explore further relevant questions such 

as: How can access to improved weather forecasts mitigate the harmful economic impacts of 

climate change?  

The remainder of this thesis is structured as follows.  

Firstly, an introduction to the overarching topics of sustainable supply chain management and 

soybean economics is provided. The concept of sustainable supply chain management is 

defined, its relevance is explained, and its potential implementation is demonstrated. The 

importance of soybeans in the global economic context is presented, followed by an overview 

of global soybean trade dynamics, which provides insights into worldwide supply and demand 

structures by analyzing production, consumption, export, and import data. Additionally, the 

potential impact of climate change on soybean production and trade is discussed, with a 

specific focus on Brazil. 

Secondly, a comprehensive literature review summarizes the current state of the new climate 

economy literature. It provides an overview of previous research in crop yield forecasting 

based on statistical models. 

Thirdly, the datasets used for the purpose of this research, including historical soybean yield 

and temperature and precipitation in Brazil, are introduced. The research methodology is 

explained, including the pre-processing of the data and the model selection process for 

estimating the relationship between weather variables and soybean yield. An overview of the 

results of the analysis is presented and discussed. 

Next, the economic implications of the findings are contextualized within the field. 

Lastly, a brief conclusion summarizes and reiterates the main findings of this research while 

also acknowledging the limitations of this research and providing guidance for using the 

presented results and suggestions for further research. 
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2. Conceptual Background 

2.1 Sustainable Supply Chain Management 

2.1.1 Concept Definition 

Supply chains have been an elementary part of business processes for many decades, yet 

supply chain management can be considered a comparably new and still developing field of 

research. Therefore, perceptions of the discipline differ among researchers, and several 

definitions, varying in complexity, exist (Janvier-James, 2011). Initially, when the concept of 

supply chain management was introduced in the 1980s, definitions focused solely on the flow 

of materials. Nowadays, many additional aspects, such as risk management, performance 

evaluation, integration, information flow, internal and external networks of relationships as 

well as governance of supply networks, are being considered when describing the discipline 

(Ahi & Searcy, 2013).  

For the purpose of this study, the definition provided by the Council of Supply Chain 

Management Professionals is being adopted, which defines supply chain management as “the 

planning and management of all activities involved in sourcing and procurement, conversion, 

and all logistics management activities. Importantly, it also includes coordination and 

collaboration with channel partners, which can be suppliers, intermediaries, third-party service 

providers, and customers. In essence, supply chain management integrates supply and demand 

management within and across companies.” (CSCMP, 2023).  

In recent years the topic of sustainability has become more prevalent across different areas of 

business operations, including supply chain management. Although there have been a few 

prior attempts to define sustainable supply chain management, the term was broadly 

introduced in 2008 by Seuring and Müller. Their definition, which emphasizes the 

incorporation of the three dimensions of sustainable development, i.e., economic, 

environmental, and social aspects, into the management of supply chains, remains one of the 

most cited ones to date (Seuring & Müller, 2008; Nimsai et al., 2020).  

Table 1 provides a comprehensive overview of the concept’s development over time through 

selected definitions.   
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Definition Source 

“The strategic, transparent integration and achievement of an 
organization’s social, environmental, and economic goals in the systemic 
coordination of key inter-organizational business processes for improving 
the long-term economic performance of the individual company and its 
supply chains.” 

Carter & 
Rogers, 2008, 
p. 368 

“The management of material, information and capital flows as well as 
cooperation among companies along the supply chain while taking goals 
from all three dimensions of sustainable development, i.e., economic, 
environmental and social, into account which are derived from customer 
and stakeholder requirements.” 

Seuring & 
Müller, 2008, 
p. 1700 

“The integration of sustainable development and supply chain 
management [in which] by merging these two concepts, environmental 
and social aspects along the supply chain have to be taken into account, 
thereby avoiding related problems, but also looking at more sustainable 
products and processes.” 

Seuring, 2008, 
p. 132 

“The management of supply chains where all the three dimensions of 
sustainability, namely the economic, environmental, and social ones, are 
taken into account.” 

Ciliberti et al., 
2008, p. 1580 

“Adding sustainability to existing supply chain management processes, to 
consider environmental, social and economic impacts of business 
activities.” 

Font et al., 
2008, p. 260 

“The set of supply chain management policies held, actions taken, and 
relationships formed in response to concerns related to the natural 
environment and social issues with regard to the design, acquisition, 
production, distribution, use, reuse, and disposal of the firm’s goods and 
services.” 

Haake & 
Seuring, 2009, 
p. 285 

“The degree to which a manufacturer strategically collaborates with its 
supply chain partners and collaboratively manages intra- and inter-
organization processes for sustainability.” 

Wolf, 2011, p. 
223 

“Reflection of the firm’s ability to plan for, mitigate, detect, respond to, 
and recover from potential global risks. Risks involving substantial 
marketing and supply chain considerations include product development, 
channel selection, market decisions, sourcing, manufacturing complexity, 
transportation, government and industry regulation, resource availability, 
talent management, alternative energy platforms, and security.” 

Closs et al., 
2011, p. 102 

“An extension to the traditional concept of Supply Chain Management by 
adding environmental and social/ethical aspects.” 

Wittstruck & 
Teuteberg, 
2011, p. 142 

“The creation of coordinated supply chains through the voluntary 
integration of economic, environmental, and social considerations with 
key inter-organizational business systems designed to efficiently and 
effectively manage the material, information, and capital flows associated 
with the procurement, production, and distribution of products or services 
in order to meet stakeholder requirements and improve the profitability 
competitiveness, and resilience of the organization over the short- and 
long-term.” 

Ahi & Searcy, 
2013, p.339 
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“SSCM is the voluntary integration of social, economic, and 
environmental considerations with the key inter organizational business 
systems to create a coordinated supply chain to effectively manage the 
material, information and capital flows associated with the procurement, 
production and distribution of products or services to fulfill short term and 
long term profitability, stakeholder requirements, competitiveness and 
resilience of the organization. ” 

Dubey et al., 
2016, p.1120 

“SSCM is concerned with integrating environmental, social and economic 
goals across a focal firm's supply chain processes, has emerged as an 
approach for firms to improve sustainable (i.e. environmental, social and 
economic) outcomes in their supply chains.” 

Koberg & 
Longoni, 
2019, p. 1085 

Table 1 Sustainable Supply Chain Management Definitions Across Selected Literature 
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2.1.2 Relevance 

Considering the sustainability of supply chains as an integral business success factor 

continuously gains more relevance for several reasons.  

First, sustainable supply chain management reduces the environmental impact of business 

operations by reducing waste, minimizing resource use, and reducing greenhouse gas 

emissions. This helps mitigate the adverse effects of climate change and protect the 

environment for future generations. 

Secondly, on a social scale, sustainable supply chain management helps to promote fair labor 

practices and safe working conditions and also supports local communities. This helps 

companies to fulfill their social responsibility to stakeholders, including employees, 

customers, and the communities in which they operate. 

Thirdly, sustainable supply chain management can lead to economic benefits on two 

dimensions. On the one side, it can lead to cost savings and ensure long-term business viability 

by improving operational efficiency, managing risk, enhancing resilience, and overall creating 

a more sustainable business model that can adapt to changing economic and environmental 

conditions. On the other side, there is a growing stakeholder and foremost customer demand 

for more sustainability and transparency. While this trend is likely to gain even more traction 

in the upcoming years, businesses can significantly benefit through an improved company 

reputation, increased customer loyalty, and improved brand recognition by staying ahead or at 

least on time with these developments (Jørgensen & Pedersen, 2018). 

Specifically, looking at the topic of climate change and its possible impacts on supply chain 

management highlights the relevance of sustainability considerations in the field.  

Climate change is defined as a long-term shift in global or regional climate patterns caused by 

human activities, particularly the emission of greenhouse gases, and characterized by changes 

in temperature, precipitation, and extreme weather events. It poses significant risks to natural 

ecosystems, human health, and socio-economic systems and requires urgent action to mitigate 

its impacts and adapt to its effects (IPCC, 2018). 

Dasaklis & Pappis (2013) analyzed the potential impacts of climate change on supply chain 

management regarding strategic and operational planning, as demonstrated in Figure 1. They 

identified three main areas impacted by climate change: regulatory, physical, and market. The 

regulatory dimension is concerned with external requirements and factors that directly impact 

supply chain management decisions, such as laws promoting emission reductions across the 
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supply chain, or indirectly, such as an increase in energy prices. The physical dimension is, 

for example, concerned with changes in climate and extreme weather patterns, as well as the 

reduced availability of raw materials due to climate change. Lastly, the market dimension 

highlights the increasing customer demand for more environmentally sustainable products, 

service offerings, and overall business operations. All these factors together were found to 

have relevant implications for supply chain management on both the strategic and the 

operational level.  

On the strategic level, climate change requires supply chain management to rethink entire 

supply chain network designs. On the operational level, planning and risk mitigation efforts 

are becoming more complex as supply chain disruptions are expected to increase and become 

more severe (Dasaklis & Pappis, 2013).  

 
Figure 1 Implications of Climate Change Drivers for Supply Chain Management 

(Dasaklis & Pappis, 2013) 

Considering these implications, it becomes clear why the concept of sustainable supply chain 

management is of growing importance for the long-term success of any business and hence 

also a topic of high and continuously increasing value within academic research.  
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Considering these implications, it becomes clear why the concept of sustainable supply chain

management is of growing importance for the long-term success of any business and hence

also a topic of high and continuously increasing value within academic research.
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2.1.3 Implementation 

Shifting towards sustainable supply chain management can be a somewhat complex process, 

as successfully integrating sustainability into supply chain management requires a holistic 

approach that involves collaboration between suppliers, partners, and customers to create 

sustainable solutions that promote economic, social, and environmental sustainability (UN 

Global Compact, 2015). 

The UN Global Compact (2015) has identified the following complementary actions that 

businesses should take in order to transform their supply chain into a more sustainable one: 

“Commit: 

- Develop the business case by understanding the landscape and business 

drivers. 

- Establish a vision and objectives for supply chain sustainability. 

- Establish sustainability expectations for the supply chain.  

Assess:  

- Determine the scope of efforts focusing primarily on areas where there is the 

greatest actual and potential risk of adverse impact on people, environment 

and governance.  

Define and implement:  

- Communicate expectations and engage with suppliers to improve performance. 

- Ensure alignment and follow up internally. 

- Enter into collaboration and partnerships. 

Measure and communicate: 

- Track performance against goals and be transparent and report on progress.” 

A crucial success factor across these steps is the availability of relevant data, especially in 

order to analyze and understand the current situation and assess future threats and changing 

conditions. Thorough analysis provides the necessary foundation to gain a deeper 

comprehension of possible economic implications in the mid- and long-run (UN Global 

Compact, 2015).  

Hence, this research aims to provide this baseline work for the global Brazilian sourced 

soybean supply chain and therefore, indirectly also many businesses across the globe.  
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2.2 Soybeans 

2.2.1 Relevance and Usage 

The soybean is a legume originally domesticated over three thousand years ago in the North-

Eastern part of China that has been a food essential traditionally grown and consumed in China 

and Eastern Asia for thousands of years before becoming a highly demanded global 

commodity by the 20th century (Hymowitz, 1970). 

Today, soybeans are one of the world's most widely traded agricultural commodities, with 

major producers and consumers located in countries such as the United States, Brazil, China, 

and Argentina. As such, soybeans play a significant role in global trade and economic growth 

(Kingsbury et al., 2023). In 2021, Soybeans were estimated to have a total trade value of 

$78.5B, an increase of 22.4% compared to the previous year (The Observatory of Economic 

Complexity, 2021). For comparison, the soybean trade value is estimated to be three times the 

size of rice (De Maria et al., 2020).  

World soybean production itself increased from approximately 160 million tons in an area of 

70 million ha in 1998 to 350 million tons in 125 million ha in 2018 (Karges et al., 2022). In 

addition to its economic value, soybeans, being one of the most essential commodities in 

international trade, plays a vital role in global food security – one of the world’s most pressing 

current and future challenges (Sun et al., 2018). 

The reason soybeans are such an essential commodity for the world economy is their 

versatility and widespread use in various industries. Though the percentage of soybeans used 

in each industry may vary by country, region, and year based on factors such as local demand, 

production capabilities, and market conditions, the United States Department of Agriculture 

(USDA) provides data supporting the following global breakdown: 

Around 70% of the world’s soybean production is used for livestock feed, particularly in the 

poultry, swine, and dairy industry, as it is a cost-effective and nutritious source of protein for 

animal feed and hence plays a major role in supporting the global meat and dairy industries.  

Due to its high nutritional value, approximately 17% are used for food products, such as tofu, 

soy milk, and other plant-based meat substitutes. Soybeans are also used as an ingredient in 

many processed foods, such as baked goods, cereals, and snacks. A large share of the world’s 

population relies on soy products as the primary source of protein.  
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The third largest usage sector, with about 6%, is industrial purposes, such as in the production 

of plastics, textiles, and cosmetics, followed by an estimated 2% used for biofuel production, 

particularly biodiesel. Biodiesel is a renewable energy source that is becoming increasingly 

popular due to its lower carbon footprint compared to traditional fossil fuels. The remaining 

percentage of soybean production is used for seed production, as well as other uses such as 

pharmaceuticals and chemicals (USDA, 2021; Hart, 2017). 

In summary, soybeans are highly relevant for the world economy due to their widespread use 

in food production, livestock feed, biofuel production, industrial uses, and overall global trade. 

2.2.2 Global Soybean Trade 

Nowadays, 170 countries are directly involved in global soybean trade flows – either as 

exporters, importers, or both. Most trade occurs between China, Brazil, and the United States 

of America (USA), creating a trade flow triangle across the Pacific Ocean, as seen in Figure 

2. Historically being the soybean crop production center, China has become the leading 

importer to meet its growing consumer demand. In contrast, the USA and Brazil together are 

responsible for around 80% of the world’s soybean exports (De Maria et al., 2020). 

 
Figure 2 Global Soybean Trade Flows in 2017 (De Maria et al., 2020) 
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Production 

In 2018 global soybean production (Figure 3) was estimated to be around 350 million tons, an 

increase in value of 8.4 times since 1968. This extensive growth in soybean production is 

supported by both factors: extensification and intensification. The soybean harvesting area 

grew by 4.3 times within this 50-year time span, mainly driven by Brazil and Argentina, while 

the average crop yield almost doubled at the same time, driven by Brazil and the USA (De 

Maria et al., 2020). 

In 2018, five countries produced 88.1% of the world’s soybean. The number one producer was 

the USA with 123.7 million tons, which was equal to 35.8% of total world production, 

followed by Brazil with 118.9 million tons (33.8%), Argentina with 37.8 million tons (10.8%), 

China with 14.2 million tons (4.1%) and India with 13.8 million tons (4.0%) (De Maria et al., 

2020). 

As of 2019, Brazil overtook the USA as the top soybean-producing country, with a production 

volume of around 129.5 million tons in 2021/22 compared to the USA with 121.5 million tons. 

This trend of Brazil being the number one soybean producer in the world is expected to 

continue in the following years (US Department of Agriculture, 2023). 

 
Figure 3 Global Soybean Production 1968-2018 (De Maria et al., 2020) 
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Export 

In line with production quantities, the Americas represent the leading soybean exporters, with 

most soybeans traded globally from the USA, Brazil, and Argentina (Figure 4). While in 1997, 

approximately 2/3 of soybean exports originated in the USA, Brazil has now become the main 

soybean exporter in the world, accounting for 44.6% compared to the USA with 37.9% and 

Argentina with 4.9% in 2017. This development can be explained by less favorable weather 

conditions in the USA and the international trade frictions that the USA has been facing with 

China (De Maria et al., 2020). 

In 2022/2023, Brazil is forecasted to export 92 million tons of soybeans compared to 54 

million tons by the USA (US Department of Agriculture & USDA Foreign Agricultural 

Service, 2023). 

 
Figure 4 Global Soybean Export Flows 1997-2017 (De Maria et al., 2020) 

Consumption 

Regarding soybean consumption, the five largest consumers – China, the USA, Argentina, 

Brazil, and the EU – alone consume around 80% of global produce. As shown in Figure 5, 

total global consumption has more than doubled from approximately 150 million tons in 1999 

to around 350 million tons in 2019 (De Maria et al., 2020).  
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Consumption

Regarding soybean consumption, the five largest consumers - China, the USA, Argentina,

Brazil, and the EU - alone consume around 80% of global produce. As shown in Figure 5,

total global consumption has more than doubled from approximately 150 million tons in 1999

to around 350 million tons in 2019 (De Maria et al., 2020).
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Figure 5 Global Soybean Consumption 1999-2019 (De Maria et al., 2020) 

While the increase in consumption is a global trend, the main driving consumer groups are 

China and the “the rest of the world” category. For many years the USA was the main soybean 

consumer. In 2009 China surpassed the USA and became the consumer of almost 1/3 of the 

world’s soybean within another ten years. This strong increase in soybean consumption in 

China and many other mainly developing economies accounted for in the “rest of the world” 

category can be explained by the growing demand for livestock products by an emerging 

middle class with more spending power for such commodities in these countries (De Maria et 

al., 2020; Lee et al., 2016).  

 

Import  

These trends in consumption are reflected accordingly in global soybean import flows, with 

China being the leading importer accounting for 63% of all soybean imports in 2017 compared 

to only 5.5% in 1997 (Figure 6). While soybean production in the country remains relatively 

stable over this 20-year time span, the increase in consumption demand created a growing 

need to import foreign soybeans. Beyond China, the Asian continent as a whole was 

responsible for 80% of all soybean imports in 2017. In comparison, the second and third largest 

importers globally, Mexico and the Netherlands, together only accounted for 5.8% (De Maria 

et al., 2020).   
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Figure 5 Global Soybean Consumption 1999-2019 (De Maria et al., 2020)

While the increase in consumption is a global trend, the main driving consumer groups are

China and the "the rest of the world" category. For many years the USA was the main soybean

consumer. In 2009 China surpassed the USA and became the consumer of almost 1/3 of the

world's soybean within another ten years. This strong increase in soybean consumption in

China and many other mainly developing economies accounted for in the "rest of the world"

category can be explained by the growing demand for livestock products by an emerging

middle class with more spending power for such commodities in these countries (De Maria et

al., 2020; Lee et al., 2016).
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These trends in consumption are reflected accordingly in global soybean import flows, with

China being the leading importer accounting for 63% of all soybean imports in 2017 compared

to only 5.5% in 1997 (Figure 6). While soybean production in the country remains relatively

stable over this 20-year time span, the increase in consumption demand created a growing

need to import foreign soybeans. Beyond China, the Asian continent as a whole was

responsible for 80% of all soybean imports in 2017. In comparison, the second and third largest

importers globally, Mexico and the Netherlands, together only accounted for 5.8% (De Maria

et al., 2020).
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Figure 6 Global Soybean Import Flows 1997-2017 (De Maria et al., 2020) 

By 2022 China’s yearly imports already rose to 96 million tons of soybeans, followed by the 

EU with 14.4 million tons and Mexico with 6.4 million tons (US Department of Agriculture 

& USDA Foreign Agricultural Service, 2023). 

These trade dynamics not only show the economic relevance of soybeans for the entire world 

but mainly for China, Brazil, and the USA as major players in international soybean trade.  

2.2.3 Climate Change Impact 

Like in many other economically relevant areas, climate change is likely expected to have a 

significant impact on global soybean production and trade. The effects can vary by region, and 

growing conditions, but developing an understanding of and addressing the potential impacts 

of climate change on agriculture is a significant challenge that will require ongoing research 

and innovation (Souza & Almeida, 2019). 

There are five main pillars of how soybean production will be influenced: temperature and 

precipitation, pests and diseases, carbon dioxide concentration, extreme weather events, and 

changes in growing conditions.  

Soybeans are sensitive to changes in temperature and precipitation patterns. Increased 

temperatures can reduce yield by reducing the number of pods and seeds per plant. Changes 

in precipitation patterns, such as increased drought or flooding, can also reduce yields.  
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Figure 6 Global Soybean Import Flows 1997-2017 (De Maria et al., 2020)

By 2022 China's yearly imports already rose to 96 million tons of soybeans, followed by the
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These trade dynamics not only show the economic relevance of soybeans for the entire world

but mainly for China, Brazil, and the USA as major players in international soybean trade.
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Like in many other economically relevant areas, climate change is likely expected to have a

significant impact on global soybean production and trade. The effects can vary by region, and

growing conditions, but developing an understanding of and addressing the potential impacts

of climate change on agriculture is a significant challenge that will require ongoing research

and innovation (Souza & Almeida, 2019).

There are five main pillars of how soybean production will be influenced: temperature and
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Soybeans are sensitive to changes m temperature and precipitation patterns. Increased

temperatures can reduce yield by reducing the number of pods and seeds per plant. Changes

in precipitation patterns, such as increased drought or flooding, can also reduce yields.



 15 

Secondly, climate change can alter the distribution and prevalence of pests and diseases that 

can affect soybean plants, potentially increasing the risk of crop damage and yield loss. 

Thirdly, higher concentrations of carbon dioxide in the atmosphere, which are associated with 

climate change, can increase soybean yields by promoting the growth and development of the 

plant. Moreover, extreme weather events, such as hurricanes, floods, and droughts, can cause 

significant damage to soybean crops, leading to lower yields and economic losses. Lastly, 

climate change can alter growing conditions for soybeans, such as changes in soil moisture, 

nutrient availability, and pest pressure, which can affect crop growth and yield. 

As changes in temperature and precipitation patterns impose the most immediate and direct 

impact, these are relevant variables to analyze the impact of changing climatic conditions on 

soybean yield (Lobell & Gourdji, 2012; Souza & Almeida, 2019; IPCC, 2014). 

Generally, soybean planting occurs in the spring, followed by a growth stage in the summer 

and harvest in the fall. The most weather susceptible is the growing stage, where the flowering 

and pod development takes place. High temperatures and inadequate rainfall during this time 

can cause stress on the plants and lead to a reduction in yield (Endres & Kandel, 2021). 

Multiple studies were able to identify a negative relationship between mean seasonal air 

temperature and crop yields through direct heat stress as well as indirect moisture stress as a 

result of increased vaporization. These effects were found to be amplified through a decreased 

level of precipitation resulting in drought. Historical data from 1970-2013 suggests that there 

is a compound heat-drought effect on crops, as soybean yield decreased more during growing 

seasons in which higher temperatures were complemented by decreased precipitation. Hence, 

a combination of hot and dry conditions, as expected to become more likely under global 

warming, creates a potential risk to global agricultural output, including soybean yield (Lesk 

et al., 2021).  

Figure 7 shows the standardized soybean yield sensitivity to mean growing season maximum 

air temperature estimated as the linear slope coefficient (𝛽𝛽T), with units of σ of yield per σ of 

temperature, suggesting an overall decline by 0.3-0.4 standard deviations (σ) per σ of 

increasing temperature (Lesk et al., 2021). 
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Figure 7 Standardized Soybean Yield Temperature Sensitivity (Lesk et al., 2021) 

The potential shift in global soybean yield 

Climate change is expected to have complex and region-specific effects on soybean growth 

and yields. While some regions may experience increased yields due to longer growing 

seasons and higher carbon dioxide concentrations, others may experience decreased yields due 

to increased temperatures and changes in precipitation patterns. Additionally, changes in pest 

and disease pressures and water availability may further complicate the picture (Schauberger 

et al., 2020). 

Lesk et al. (2021) conducted an extensive global analysis of the impact of stronger 

temperature–moisture couplings on a range of crop yields using historical patterns in 

agriculture and weather along with several climate model projection scenarios. Their research 

concluded that global corn and soybean yields can be expected to fall by 5% between 2050 

and 2100 due to the combination of a drier and hotter climate. While reductions are mainly 

expected in the Midwest of the USA and European producers such as Romania, Bulgaria, and 

Italy, some areas in India, China, and Japan are expected to experience improved growing 

conditions for soy. As these regions have a monsoon season, an increase in precipitation will 

likely be able to outweigh an increase in temperature. Changing conditions across the globe 

will hence impact what countries will be able to export soy profitably.  
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Another study found that climate change may also lead to increased soybean yields in some 

regions in northern latitudes, such as Russia and Canada, where temperatures are currently too 

cold for optimal soybean growth. However, the study also found that most major soybean-

producing regions, including Brazil and the United States, will likely experience decreased 

yields due to climate change. The study highlights that the effects of climate change on 

soybean production will depend on a range of factors, including the specific growing 

conditions in each region, as well as the extent and rate of climate change. While some areas 

may benefit from the changing climate, overall, the impacts of climate change on global 

soybean production are expected to be negative (Schauberger et al., 2020). 

2.2.4 The Brazilian Perspective 

While the already observable impact of climate change on agricultural production around the 

world is often linked with the overarching issue of global food security (Cedric et al., 2022), 

the economic perspective of producer countries should also not be neglected. As currently the 

world's largest soybean producer and exporter in the world, the impact of climate change on 

soybean production in Brazil is highly relevant to the country’s economy and the global 

soybean supply chain. 

Soy is extremely important for the Brazilian economy, as it is one of Brazil's main agricultural 

commodities and a significant source of export revenue. According to data from the Brazilian 

Ministry of Agriculture, Livestock, and Supply, soybeans represented about 14% of Brazil's 

total exports in 2021, making it the country's second-largest export product after iron ore and 

accounting for a value of approximately US$ 48 billion (Brazilian Ministry of Agriculture, 

Livestock, and Supply, 2021). 

Soybeans are a crucial source of income for Brazilian farmers across the country as they are 

grown in many different regions of Brazil, including the states of Mato Grosso, Paraná, and 

Rio Grande do Sul. However, the economic impact of soybean on the Brazilian economy 

extends beyond just its production. It encompasses various industries that produce inputs and 

machinery and facilitate logistics and transportation. These industries have a significant 

presence in the country and provide ample employment opportunities (De Maria et al., 2020).  

At the same time, Brazilian soybean exports have been found to be directly linked to illegal 

deforestation, which is a primary environmental concern in Brazil and for the world climate. 

A recent study found a direct linkage between soybean production in the Mato Grosso region 
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and illegal deforestation. The study estimated that over a quarter of total deforestation in the 

region between 2012 and 2017, most of it illegal due to the lack of licenses, took place on 

soybean farms. It is estimated that more than 80% of the soy produced on these farms is 

exported to global markets, with 46% going to China and 14% to the EU. Deforestation has 

severe negative impacts on biodiversity and climate, and illegal deforestation exacerbates 

these impacts (Vasconcelos et al., 2020). 

Furthermore, illegal deforestation also has an economic cost, potentially affecting trade. For 

example, the EU-Mercosur trade deal, expected to increase Brazil's exports and imports by 

over US$ 250 billion, was put at risk by the record number of fires in the Amazon in 2019, of 

which many are believed to be linked to illegal activities. At the same time, global companies 

and investors have also expressed their concerns that they might be forced to boycott Brazilian 

commodities because of the increased risks of land grabbing and deforestation (Vasconcelos 

et al., 2020). 

Hence, Brazil and the global economy are facing a challenging situation in how to increase 

production in order to continue meeting the growing global soybean demand without causing 

further ecosystem loss. To increase sustainable production many measures on different levels, 

such as the promotion of crop expansion over degraded pasture, increased productivity on 

livestock systems, and financial incentives for ecosystem protection, are needed (Sparovek et 

al., 2018). 

At the same time, however, there is a crucial need to account for potential changes in soybean 

yield across the country due to changing climatic conditions. Climate change is expected to 

have a significant impact on soybean yield in Brazil, as changes in temperature and 

precipitation patterns can affect crop growth and development.  

Research suggests that substantial reductions in some regions of the country are to be expected. 

For example, a 2012 study analyzing the overall impact of climate change on global crop 

productivity using statistical models suggests that climate change is likely to lead to a decline 

in soybean yield in Brazil, with some regions experiencing reductions of up to 30% by the 

year 2050. The study also highlights that the negative impacts of climate change on soybean 

yield are expected to be more pronounced in certain regions of Brazil, such as the north-eastern 

and south-eastern regions, which are projected to experience higher temperatures and reduced 

precipitation (Lobell & Gourdji, 2012).  

Taking all these factors into account creates a complex narrative for a future, sustainable 

supply of Brazilian soybean.  
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3. Literature Review 

Numerous scholars have explored the causal relationship between weather variation and 

agricultural output and attempted to forecast crop yield using statistical models under different 

climatic scenarios. The following section presents an overview of existing literature, including 

methodologies and the most relevant findings in this field, summarizing relevant studies, 

presenting different methodological approaches, relevant developments within the new 

climate economy literature, and lastly, existing studies investigating the impact of climate 

change on Brazilian soybean yield.  

3.1 Crop Yield Prediction Using Regression Models 

There are three main categories of state-of-the-art crop yield prediction methods used in 

contemporary research: linear models, machine learning models, and crop models (Ansarifar 

et al., 2021). While these three approaches have complementary strengths and limitations, the 

use of linear statistical models trained on historical yield and weather data, such as growing 

season average temperature and precipitation, has established itself as a common approach in 

crop yield prediction (Lobell & Burke, 2010). Regression models are the most widely used 

method because of their simple and straightforward nature while simultaneously resulting in 

reliable crop forecast models (Kumar et al., 2014). Numerous scholars have evaluated the 

predictive power of crop yield estimation models using different regression techniques with 

satisfactory results (Shastry et al., 2017). A selection of these studies is chronologically 

presented in this section. The research body suggests that multiple linear regression, 

specifically, is the statistical model most commonly used for yield prediction (Gopal & 

Bhargavi, 2019).  

Isik & Devadoss (2006) were among the first scholars within this century to develop an 

econometric crop yield model depending on weather variables. Their research evaluated the 

impact of climate variables such as temperature and precipitation levels on the mean, variance, 

and covariance of crop yields in order to examine the potential implications of global climate 

change on agricultural output. Using historical crop yield and climate data, they developed 

their econometric model based on the 1978 Just-Pope stochastic production function as 

follows: 
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𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖𝑖𝑖; 𝛽𝛽) + 𝜔𝜔𝑖𝑖𝑖𝑖ℎ(𝑥𝑥𝑖𝑖𝑖𝑖; 𝛿𝛿)1/2 

Equation 1 Just-Pope Stochastic Production Function 

where 𝑦𝑦𝑖𝑖𝑖𝑖 is representing the crop yield for region i at year t, x the weather variables, with the 

stochastic term with mean zero and variance 𝜎𝜎𝜔𝜔
2   and 𝛽𝛽 and δ being the production function 

parameters to be estimated. An estimation of the first part of the equation after the equal sign 

accounts for the effects of the independent variables on mean crop yields, and an estimation 

of the second part accounts for the effects of the independent variables on the variance of crop 

yields. Isik & Devadoss (2006) used the maximum likelihood method to estimate the Just-

Pope production method. The results of their analysis showed that, based on their econometric 

model, the impact of temperature and precipitation on crop yields varies across different crops. 

Lobell & Burke (2010) used the perfect model approach with a crop model based on simulated 

historical variability in order to analyze the capability of three different statistical models – 

time series, panel, and cross-sectional – to predict the impact of variance in mean temperature 

and precipitation on crop yield. Under the assumption that a change in temperature or 

precipitation will have the same percent impact on yields independent of yield levels, they 

argued to follow the conventional approach of using log units to express yield.  

For the time-series model, the simulated data were fitted to the following equation: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖 

Equation 2 Time-Series Log-Crop-Model 

with 𝑌𝑌𝑖𝑖 being yield, 𝑇𝑇𝑖𝑖 being growing average temperature, and 𝑃𝑃𝑖𝑖 being growing season total 

precipitation in year t, respectively. The model parameters to be fit were represented by 𝛽𝛽0-2, 

and their values were obtained using least-squares.  is an error term.  

The panel regression model approach combines the data, including site-specific intercepts, in 

order to account for omitted time-invariant variables. Lobell & Burke (2010) combined the 

198 sites under analysis using the following equation: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖,𝑖𝑖) = 𝛽𝛽𝑖𝑖,0 + 𝛽𝛽1𝑇𝑇𝑖𝑖,𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖,𝑖𝑖 + 𝛽𝛽3𝑇𝑇𝑖𝑖,𝑖𝑖
2 + 𝛽𝛽4𝑃𝑃𝑖𝑖,𝑖𝑖

2 + 𝜀𝜀𝑖𝑖 

Equation 3 Panel Regression Model with Squared Terms 

with 𝛽𝛽𝑖𝑖,0 representing an intercept for each site i to, as mentioned, balance the absence of 

variables accounting for spatially varying factors such as soil quality, for which no 
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observations are present. Additionally, this model includes squared terms for T and P, which, 

in time-series models, are usually omitted as there is a limited number of observations and 

temperature and precipitation have a comparably narrow range, providing the opportunity to 

reasonably approximate yield through a linear function.  

The third method used for comparison in their analysis was the cross-section model, which 

computed the average yields, temperature, and precipitation at each site for estimation. This 

formula again includes squared terms for T and P in order to account for nonlinearities in 

yield:  

𝑙𝑙𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎) = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽2𝑃𝑃𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛽𝛽3𝑇𝑇𝑖𝑖,𝑎𝑎𝑎𝑎𝑙𝑙
2 + 𝛽𝛽4𝑃𝑃𝑖𝑖,𝑎𝑎𝑎𝑎𝑙𝑙

2 + 𝜀𝜀𝑖𝑖 

Equation 4 Cross-Section Model 

Lobell & Burke’s research concluded that generally, statistical models are a valuable tool for 

predicting yield responses to changing climatic conditions. All three statistical approaches 

have been able to replicate some of the significant aspects of the simulated responses to 

changes in temperature and precipitation, exhibiting comparably low bias non-parametrically 

measured through the median error. For instance, all three methods had a median error of less 

than 2% for predicting impacts of +2◦C. Based on their findings, the effectiveness of statistical 

models depends on the particular response being studied. Time-series models were found to 

be more effective in estimating precipitation responses, while panel and cross-section methods 

were found to be more reliable in the prediction of temperature responses. Lobell & Burke 

also highlight that the accuracy of different statistical approaches is influenced by the spatial 

scale of the training data and the scale at which output projections are required. Generally, 

statistical models are better suited for broader scales of interest, resulting in more reliable 

climate projections (Lobell & Burke, 2010). 

Kumar et al. (2014) used time series weather and yield data for three different crops in their 

analysis, applying a step-wise multiple regression model. They concluded that within their 

research area of forecasting paddy, wheat, and sugarcane crops in the southern Gujarat area in 

India, step wise multiple regression analysis can be regarded as a highly efficient method. 

Similarly, Sellam & Poovammal (2016) used linear regression analysis to analyze the 

predictive power of environmental parameters like Area under Cultivation, Annual Rainfall, 

and Food Price Index for crop yield over a 10-year time period with satisfactory results.  
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Their findings also suggest that yield is mainly dependent on annual rainfall compared to the 

other variables under evaluation. 

Shastry et al. (2017) contributed to the research body by comparing the results of different 

regression models, namely quadratic, pure quadratic, linear, polynomial, generalized linear 

regression, and stepwise linear regression models, for different crops. Their results suggest 

that different regression models provide the best fit for different crops and data sets. At the 

same time, they were generally able to support the utilization of regression techniques for yield 

prediction through satisfactory results.  

Shah et al. (2018) used multivariate polynomial regression, support vector machine regression, 

and random forest models to predict crop yield based on humidity, temperature, and rainfall 

data obtained from the United States Department of Agriculture, resulting in the best results 

for the support vector machine regression approach.  

Sharma et al. (2018) applied stepwise regression to forecast crop yield based on maximum and 

minimum temperature, rainfall, and humidity during crop growing seasons as well as historical 

crop yield data for soybean and wheat for eight districts within the Malwa agroclimatic zone. 

The forecast model they developed was a modification of previously studied models using 

composite weather indices. 

Sharma et al. used step-wise regression to select the significant variables and then evaluated 

model performance with various statistical parameters. Their main finding was that the 

predictive power of their model varied across the different regions, which they explained 

through the context that crop management practices apart from the weather, which was not 

accounted for in the model, varied widely across the regions (Sharma et al., 2018).  

Gopal & Bhargavi (2019) presented a novel approach for crop yield prediction combining two 

of the most commonly used approaches, the statistical model of multiple linear regression and 

the machine learning algorithm of the artificial neural network, into a new hybrid model 

resulting in better accuracy than the two individual models, support vector regression, k-

nearest neighbor, and random forest models. However, thus far, these findings have not been 

sufficiently validated by other scholars.  

Gbadamosi et al. (2019) studied the impact of potential changes in the climate on the yield of 

root and tuber crops in Nigeria using the k-means classification algorithm and multiple linear 

regression. In their case, only rainfall was found to have a strong linear relationship with yield. 
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For Nigerian root and tuber crops, temperature and CO2 emission were found not to be a good 

fit under their model to predict yield.  

Joshi et al. (2020) conducted a study evaluating the performance of stepwise multiple linear 

regression, general additive, and support vector machine models to estimate yield for maize 

and soybean in the US central corn belt using total rainfall, average air temperature, and the 

difference between maximum and minimum air temperature on different timescales (weekly, 

biweekly, and monthly). While all models presented acceptable results, the supply vector 

machine model was able to outperform the other two due to its ability to model nonlinear 

functions. Joshi et al. also found that adding the temperature difference to the independent 

variables was able to significantly improve all yield estimation models, advocating for the 

inclusion of additional weather variables beyond average temperature and precipitation where 

respective data is available (Joshi et al., 2020). 

Ansarifar et al. (2021) developed a new crop yield predictive model, called the interaction 

regression model, based on a combinatorial optimization algorithm, selecting the most 

revealing environmental and management variables and detecting their most noticeable 

interactions, which are then quantified through multiple linear regression. Their interaction 

regression model aims to describe the relationship between crop yield (y) and a set of 

environmental and managerial independent variables (X) as follows: 

𝑦𝑦�̂�𝑖 =  𝛽𝛽0 +  ∑ 𝑋𝑋𝑖𝑖,𝑗𝑗𝛽𝛽𝑗𝑗 + ∑ 𝑏𝑏𝑚𝑚𝑍𝑍𝑖𝑖,𝑚𝑚
𝑚𝑚∈𝑀𝑀

      ∀𝑖𝑖 ∈ 𝑁𝑁
𝑗𝑗∈𝑃𝑃

 

Equation 5 Interaction Regression Model 

where N is the set of sample observations (with one sample per county per year), P is the set 

of explanatory variables, M is the set of intertheactions, 𝑦𝑦�̂�𝑖 is predicted crop yield of sample i, 
𝛽𝛽0 is the intercept of crop yield, 𝛽𝛽𝑗𝑗 is the additive effect of variable j, 𝑋𝑋𝑖𝑖,𝑗𝑗 is the explanatory 

variable j of sample i, 𝑏𝑏𝑚𝑚 is the effect of interaction m, and 𝑍𝑍𝑖𝑖,𝑚𝑚 is the interaction variable m 

of sample i (Ansarifar et al., 2021). 

Even though Ansarifar et al. (2021) conducted a comprehensive case study comparing the 

performance of their proposed model with eight other machine learning models predicting the 

yield of two crops in 293 counties in the US between 2015 and 2018 with satisfactory results, 

this novel model has not been tested in further applications. 
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Lesk et al. (2021) used a simple linear regression model to estimate historical crop yield 

sensitivity to heat. They argue for the use of such a simple model to aid the interpretability of 

spatial patterns while also addressing the main limitation of this approach of reduced 

specificity through using seasonal mean temperature instead of accounting for sub-seasonal 

temperatures. However, comparing their results to those of a multi-model study, they found 

sufficiently consistent results across both, arguing that such a simplified approach can be 

justified (Lesk et al., 2021). 

3.2 New Climate Economy Literature 

The risks and costs of inaction regarding the physical and economic impacts of climate change 

provide a compelling case for the urgent need to shift towards a sustainable, low-carbon 

economy through bridging the gaps between the academic and scientific climate and economic 

communities, policymakers, and business leaders (Global Commission on the Economy and 

Climate, 2014; Global Commission on the Economy and Climate, 2018; International Institute 

for Sustainable Development, 2018). 

In order to do so, a thorough understanding of the impact of changes in climate on economic 

outcomes is a fundamental pre-requisite. One of the major problems in this field has been 

differentiating between the effects of climate and other potentially correlated characteristics 

on such outcomes. These probable cross-sectional correlations have been a significant 

challenge in identifying causative effects and hence evaluating the past, present, and future 

impacts of a changing climate. In recent years, there has been a rapid growth in research using 

panel methodologies to examine how variation in weather variables such as temperature, 

precipitation, and extreme weather events over time within a given spatial area can influence 

economic outcomes such as agricultural output, national income, industrial output, labor 

productivity, political stability, energy use, health, migration and more. In order to isolate the 

effect of climatic variables from the numerous other correlated factors, longitudinal data is 

being used in this approach (Dell, Jones & Olken, 2014).  

The standard panel regression models within this new climate economy literature usually build 

upon the form: 

𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑍𝑍𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑟𝑟𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

Equation 6 New Climate Economy Standard Panel Regression Model 
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with y being the economic outcome, C the climatic variables and Z other time-varying 

observables with t indexing time and i spatial areas. The inclusion of other time-varying 

observables is a methodological choice as it may absorb residual variation, resulting in more 

precise estimates, yet simultaneously posing the risk of over-controlling, hence negatively 

affecting cross-sectional estimation, in the case of the variables being endogenous to the 

weather variation. Therefore, it is rather recommended to only include credibly exogenous 

regressors as control variables 𝑍𝑍𝑖𝑖𝑖𝑖. In addition, these models include fixed effects for the 

spatial areas, 𝜇𝜇𝑖𝑖, to absorb observed and unobserved fixed spatial characteristics, isolating 

weather shocks from potential sources of omitted variable bias. Moreover, does the inclusion 

of time-fixed effects, 𝜃𝜃𝑟𝑟𝑖𝑖, account for common trends, separating the relevant relationships 

from idiosyncratic local shocks. As these time-fixed effects may differ within subsamples of 

the spatial areas, the subscript denotes r instead of i (Dell et al., 2014). 

3.3 Climate Change Impact on Brazilian Soybean Yield 

While Vogel et al. (2019) suggest that climate conditions explain 20%–49% of the variance 

of global aggregated yield anomalies, there are studies reaching back as early as 1994 that 

specifically attempted to estimate the impact of climate change on Brazilian soybean yield.  

De Siqueira et al. (1994) used two different crop growth models (CERES and SOYGRO) 

under several climate change scenarios generated by GISS, GFDL, and UKMO, which were 

selected based on previous agroclimatic studies, to simulate the production of wheat, maize, 

and soybean for 13 specific sites in Brazil. Their research concluded that global warming 

would result in a reduction of wheat and maize season length and yields, while soybean was 

less likely to be affected due to the CO2 effect and soybean yield, therefore even expected to 

increase.  

De Siquiera et al. (1994) further found differences in the regions under analysis. Specifically, 

regions in the Northeast were found to be expected to be more vulnerable to soybean 

production under changing climatic conditions. 

Justino et al. (2013) evaluated the viability of cultivating maize and soybeans within the states 

of Mato Grosso and Para using future climate scenarios for the time span of 2070 – 2100. They 

used observational data and regional climate simulations (HadRM3) for crop modeling with 

the DSSAT software. While they found a substantial reduction to be expected for maize yield, 
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their results for soybean yield were rather ambiguous. Under different scenarios, assuming 

variability in soil treatment, water stress, and greenhouse warming conditions, productivity 

could be expected to rise or decrease.  

Da Silva et al. (2021) simulated soybean yields for 16 strategically selected agroclimatic zones 

in Brazil, which were to represent the production area in the country, using 40 different future 

climate scenarios for the year 2050. Their research found that soybean yield is expected to 

vary by +1 to +32% across the zones in the average scenario compared to current yields. 

However, this positive development is only explained by the positive effect of increasing CO2 

on crop water productivity, overcoming the adverse effects of temperature and water stress 

increases.  

Silva et al. (2023) estimated the effect of temperature and precipitation on soybean yields 

(kg/ha) using panel data regression at the municipal level within the Cerrado biome and at the 

farm level in a subset region known as Matopiba using historic data from 1980 to 2016. Their 

analysis resulted in an estimated reduction of 6% in soybean yield for each one degree Celsius 

increase in temperature. 

Furthermore, on the methodological side, Schwalbert et al. (2020) explored the use of satellite 

imaging combined with weather data to develop more accurate models to forecast Brazilian 

soybean yields. They used Long-Short Term Memory (LSTM), Neural Networks, satellite 

imagery, and weather data to compare the performance of different algorithms for forecasting 

soybean yield on different days of the year (DOY) using the normalized difference vegetation 

index, the enhanced vegetation index, land surface temperature and precipitation as 

independent variables in the northern region of the Rio Grande do Sul state in southern Brazil. 

They were able to forecast soybean yield at a municipality scale with a mean absolute error of 

0.24 Mg ha−1 at DOY 64 with a superior performance found for the LSTM neural networks 

compared to other algorithms with the exception of DOY 16 where multivariate OLS linear 

regression was found to provide the best performance.  

While there is clearly already a substantial research body on soybean yield prediction under 

different climatic scenarios in Brazil, what all these presented studies have in common is that 

their analysis focuses on a pre-selected area within Brazil rather than the entire country.  

At the same time, there is a variety of research in this field on a global scale, such as by Lesk 

et al. (2021) and Vogel et al. (2019), whose approaches were presented above. 
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To the best of the author’s knowledge, however, there is no published research specifically 

looking at the potential impact of climate change on the entity of the Brazilian country. As 

national production quantities are expected to increase with global demand, soybean 

cultivation area is increasing rapidly across the country, creating a need for forecasting models 

accounting for all regions of the country (Cattelan & Dall’Agnol, 2018), which is why this 

research aims to contribute to the availability of relevant data taking the Brazilian perspective. 
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4. Research Question and Hypotheses Development 

The aim of this research is to understand and contextualize the potential impact of climate 

change on the global soybean supply chain by following the main research question:  

How does a change in temperature and precipitation affect Brazilian soybean yield? 

Based on the presented literature, the following hypotheses were developed. 

The research body suggests that soybean yield, among other factors, is highly subjected to 

temperature and precipitation, especially during the growth stage in the summer months. The 

optimum temperature during soybean growth is estimated at 18 to 26 degrees Celsius 

(Novikova et al., 2020). Considering the average Brazilian climate, the risk of exceeding this 

temperature frame is extensively higher than in the opposite scenario. With temperatures rising 

above 29 degrees Celsius, soybean plants generally were found to suffer from heat stress, with 

a decrease in photosynthesis and limited growth and development resulting in a negative effect 

on yield and quality (Jianing et al., 2022). Therefore, the first hypothesis is as follows: 

H1: An increase in annual average temperature leads to a decrease in soybean yield.  

Furthermore, the presented research body suggests that sufficient moisture availability is 

crucial for soybean growth, with yield decreasing due to both insufficient but also excessive 

precipitation (Sellam & Poovammal, 2016). Due to drought posing a higher risk to soybean 

growth, the second developed hypothesis is the following: 

H2: A decrease in annual precipitation leads to a decrease in soybean yield.  

Lastly, the existing literature emphasizes the importance of evaluating the amplified effect of 

a decreased level of precipitation on moisture stress during times of high temperature, already 

increasing the level of vaporization (Lesk et al., 2021). A combination of heat and drought is 

therefore expected to further decrease soybean growth through a more substantial temperature-

moisture coupling effect, leading to the third hypothesis: 

H3: An increase in average temperature during drier periods leads to a decrease in 

soybean yield.  
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5. Data 

Two different datasets were used to estimate the impact of temperature and precipitation 

changes on Brazilian soybean yield: the first one containing historical crop yield data and the 

second one containing historical temperature and precipitation data.  

Dataset 1: Historical crop yield data 

The first dataset is retrieved from an aggregate database system called SIDRA provided by the 

Brazilian Institute of Geography and Statistics (IBGE - Instituto Brasileiro de Geografia e 

Estatística). The used dataset is the following: “Produção Agrícola Municipal: Tabela 1612 - 

Área plantada, área colhida, quantidade produzida, rendimento médio e valor da produção das 

lavouras temporárias” which is a collection of agricultural production data on the municipality 

level (SIDRA IBGE, 2022). The division of all 5,570 Brazilian municipalities can be seen in 
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Figure 9 provides a first overview of the concentration of the area used for soybean production. 

However, it is important to mention that this is only capturing a specific moment in time (2015) 

in the middle of the ten-year time span under analysis. The used dataset clearly shows the level 

of diversification in soybean production across the country. While in 2011, only 1,831 

municipalities presented values for soybean yield, by 2020, this number increased to 2,388. 

Even though it is not possible to indefinitely verify if all of these municipalities became new 

soybean production areas or if some of them simply improved their reporting standards, the 

literature supports a rapid increase in soybean cultivation areas across the country (Cattelan & 

Dall’Agnol, 2018). 

 

Figure 9 Brazilian Soybean Cultivation Area (Martinelli et al., 2017) 
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Dataset 2: Historical temperature and precipitation data 

The second dataset is the “Statistically enriched geospatial datasets of Brazilian municipalities 

for data-driven modelling,” published in 2022 by Abdalla et al. This dataset contains a variety 

of temperature and precipitation variables for each of the 5,570 Brazilian municipalities on 

an annual level ranging from 1981 to 2020. The raw data was sourced by the scholars as 

described in the following:  

The observed precipitation came from the Climate Hazards Group Infrared Precipitation 

with Stations data (CHIRPS), with a daily temporal resolution and a spatial resolution 

of approximately 5 km (0.05°). The observed temperature drawn from the NCEP 

Climate Forecast System Reanalysis (NCEP/CFSR) at a 6-hour temporal resolution and 

a spatial resolution of approximately 50 km (0.5°). The NCEP/CFSR gridded dataset 

was spatially downscaled to a higher spatial resolution of 5 km (0.05°) using bilinear 

interpolation in order to have the same spatial resolution as CHIRPS (Abdalla et al., 

2022, p. 2). 

Considering these spatial resolutions, the quantity of values used to calculate the available 

averages for the temperature and precipitation variables, as presented in Table 2, varies 

between 1 – 5,213 for temperature and 1 – 5,235 for precipitation, respectively, depending on 

the size of the municipality. 

 
Table 2 Temperature and Precipitation Variables (Abdalla et al., 2022) 
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CHG-bio4 Temperature Seas,ornality (standard devtatlon " 100 )
Temperature CHG-bios Maximum, temperature of the hottest month

(values
CHG-bio6 Minimum tem perature of tine coldest monthprovrded in

Kelvin) CHG-bio7 Annual thermal amplitude (bros-blos)

CHG-bio8 Average temperature of the wettest quarter

CHG-biog Average temperature of the driest quarter

CHG-bio10 Average temperature of the hottest quarter

CHG-bio11 Average temperature of the coldest quarte r

CHG-biou Annual Precipitation

CHG-bio13 i'recipitatron of the wettest month

Predpitation (values
CHG-bio,11'1f i'recipitatron of the driest month

provi•de,d in CHG-bio15 i''recipitatron seasonality ( coefficient of variation)
milllmeters) CHG-bro16 i'recipitatron in the wettest quarter

CHG-bio17 i''recipitatron of th e driest quarter

CHG-bro18 i'recipitatron in the warmes.tt quarter
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6. Methodology  

6.1 Pre-processing of Data and Variable Selection 

To align with the available crop yield data, the historical temperature and precipitation data 

set was reduced to the values of the relevant years for analysis and the 5,563 municipalities 

for which soybean yield data is available in the IBGE dataset. Furthermore, all additional 

variables, such as statistical computations provided by the data set, that were of no relevance 

for the purpose of this analysis were removed. For further potential geospatial analysis, a 

column with the respective states was added to the data set. 

In the next step, all 3,041 municipalities that did not produce soybeans in any of the ten years 

were removed. The remaining data set contained 1,680 municipalities with values for all ten 

years and 842 municipalities with partial data.  

Additionally, boxplots for data in both sets were created to check for outliers. For the weather 

variable data set, all outlier data points were cross-checked with external sources, such as for 

example, the 1290mm of precipitation in the wettest month for the municipality of Japaratinga 

(AL) in 2013 compared to an overall mean value of 291mm for this variable which was 

verifiably explained by heavy rains leading to floods in eastern parts of Brazil in December 

2013. In the yield data set, five extreme outliers that are likely to either be an error in reporting 

or the result of another weather unrelated factor, e.g., new crop, were removed. Boxplots for 

the main variables can be found in Appendix D.  

Lastly, a combination of multicollinearity analysis and variable prioritization based on 

estimated relevance for crop yield grounded on previously presented literature was used in the 

weather variable selection process. The correlation matrix (Appendix A) revealed a high 

correlation (> |0.7|) among a variety of predictor variables, which was an argument to limit the 

number of variables included in the model to a minimum to avoid a high level of 

multicollinearity compromising the regression results. As represented in the existing body of 

literature, including variables to account for temperature and precipitation levels are required 

for the minimum baseline model. Hence, annual average temperature and annual precipitation 

were the base variables chosen to be included in the model. Based on the research presented 

by Lesk et al. (2021), it was also deemed relevant to include an additional variable to account 

for the heat-moisture coupling effect to add additional value to the model. Therefore, the 

average temperature of the driest quarter was also chosen to be included in the analysis. 

32

6. Methodology

6.1 Pre-processing of Data and Variable Selection

To align with the available crop yield data, the historical temperature and precipitation data

set was reduced to the values of the relevant years for analysis and the 5,563 municipalities

for which soybean yield data is available in the IBGE dataset. Furthermore, all additional

variables, such as statistical computations provided by the data set, that were of no relevance

for the purpose of this analysis were removed. For further potential geospatial analysis, a

column with the respective states was added to the data set.

In the next step, all 3,041 municipalities that did not produce soybeans in any of the ten years

were removed. The remaining data set contained 1,680 municipalities with values for all ten

years and 842 municipalities with partial data.

Additionally, boxplots for data in both sets were created to check for outliers. For the weather

variable data set, all outlier data points were cross-checked with external sources, such as for

example, the 1290mm of precipitation in the wettest month for the municipality of Japaratinga

(AL) in 2013 compared to an overall mean value of 291mm for this variable which was

verifiably explained by heavy rains leading to floods in eastern parts of Brazil in December

2013. In the yield data set, five extreme outliers that are likely to either be an error in reporting

or the result of another weather unrelated factor, e.g., new crop, were removed. Boxplots for

the main variables can be found in Appendix D.

Lastly, a combination of multicollinearity analysis and variable prioritization based on

estimated relevance for crop yield grounded on previously presented literature was used in the

weather variable selection process. The correlation matrix (Appendix A) revealed a high

correlation(> I0.71)among a variety of predictor variables, which was an argument to limit the

number of variables included in the model to a minimum to avoid a high level of

multicollinearity compromising the regression results. As represented in the existing body of

literature, including variables to account for temperature and precipitation levels are required

for the minimum baseline model. Hence, annual average temperature and annual precipitation

were the base variables chosen to be included in the model. Based on the research presented

by Lesk et al. (2021), it was also deemed relevant to include an additional variable to account

for the heat-moisture coupling effect to add additional value to the model. Therefore, the

average temperature of the driest quarter was also chosen to be included in the analysis.



 33 

6.2 Descriptive Analysis of Data 

To get a better first understanding of the available data, some basic descriptive computations 

were performed. For a bigger picture view, the municipality-level data was aggregated at the 

national level. Figures 10 and 11 show the 2010 – 2020 development of the mean values across 

all municipalities for the annual average temperature in Kelvin and the annual precipitation in 

millimeters, respectively. 

 
Figure 10 Temperature Development 

 

 
Figure 11 Precipitation Development 
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The data, showing variation throughout the years, suggest a slight upward trend for 

temperature over time and a complementary slight downward trend for precipitation, 

especially in the last four years of the data set. While 2012 and 2020 were the driest years 

within this time span, 2020 was also the warmest year on average.  

Figure 12 shows the 2011 – 2020 development of the mean values across all municipalities 

for the annual average soybean yield in kilograms per hectare.  

 

 
Figure 12 Yield Development 

As excepted, the data shows an overall trend of increased productivity likely driven by other 

technological and managerial factor adaptation to meet the increasing demand. While this 

shows the importance of analyzing the data on a yearly and regional level to be able to compare 

the effects of weather parameters on yield, there are still some possible inferences to be made 

from these graphs.  

For instance, it can be seen that in this recent period of higher temperature and lower 

precipitation years, the yield has also gone down, whereas in 2017, the temperature was lower 

and precipitation higher, potentially leading to an increase in yield.  

Additionally, Table 3 provides an overview of the most relevant statistics for the dependent 

variable average annual soybean yield in kilograms per hectare, and the three selected 

independent variables annual average temperature in Kelvin, annual precipitation in mm, and 

average temperature of the driest quarter in Kelvin. For ease of interpretation, the variables 

presented in Kelvin were also converted into Celsius.  
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technological and managerial factor adaptation to meet the increasing demand. While this

shows the importance of analyzing the data on a yearly and regional level to be able to compare

the effects of weather parameters on yield, there are still some possible inferences to be made

from these graphs.

For instance, it can be seen that in this recent period of higher temperature and lower

precipitation years, the yield has also gone down, whereas in 2017, the temperature was lower

and precipitation higher, potentially leading to an increase in yield.

Additionally, Table 3 provides an overview of the most relevant statistics for the dependent

variable average annual soybean yield in kilograms per hectare, and the three selected

independent variables annual average temperature in Kelvin, annual precipitation in mm, and

average temperature of the driest quarter in Kelvin. For ease of interpretation, the variables

presented in Kelvin were also converted into Celsius.
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Histograms and scatterplots, visually presenting the distribution of all included variables, can 

be found in Appendix B and Appendix C, respectively. 

Total Descriptive Statistics 

 N Mean Median St. Dev. Min Max  
Average annual yield (kg/ha) 21,284 2,664 3,000 640.5 108 12,000 

Annual average temperature (K) 61,083 298.1 298.3 2.4 289.3 303.0 

                                             in Celsius  24.9 25.2 2.4 16.2 29.9 

Annual precipitation (mm) 61,028 1,361.5 1,364.3 544.9 132.3 3,995.7 

Average temperature driest quarter (K) 61,083 297.1 297.3 3.3 285.1 304.3 

                                               in Celsius  24.0 24.2 3.3 12.0 31.2 
       

 
Table 3 Descriptive Statistics 

6.3 Model Selection 

The introduced data contains agricultural production and weather variables on a municipality 

and year level and can hence be classified as panel data, which is a combination of cross-

sectional and time series data (Rajarathinam & Suba, 2022). 

As previously noted, when working with a panel data set with output based on a geographical 

entity and unit of time as a function of a vector of explanatory variables and an error term, a 

panel data regression model has proven itself as useful as it allows accounting for time-

invariant variation. Especially within agricultural production estimation, panel models 

acknowledge the fact that spatial locations vary not only in climate but also in numerous other 

factors (e.g., soil quality) that may be correlated with climate. By incorporating a fixed effect 

for each geographical entity, these models account for all non-changing differences over time, 

ensuring that the resulting deviations in weather from the average are no longer linked to 

inherent disparities in space that could lead to a false correlation, thus solely relying on 

weather deviations from the average that are random and independent (Blanc & Schlenker, 

2017). 
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Hence, the model chosen for this analysis is a standard panel regression model of the form:  

𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖,𝑖𝑖) = 𝛽𝛽1𝑇𝑇𝑖𝑖,𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖,𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝑖𝑖,𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖,𝑖𝑖 

Equation 7 Brazilian Soybean Yield Regression Model 

where the dependent variable 𝑌𝑌𝑖𝑖,𝑖𝑖 represents the annual average soybean yield for any 

municipality i in year t. Even though there is only a slight tendency toward a negatively skewed 

distribution of annual soybean production (skewness: -0.45; as can be seen in Appendix B), 

the dependent variables have been transformed with the natural logarithm (ln), to allow for 

better interpretability of the results. As presented in section 6.1, the independent variables 

included in the model are annual average temperature (𝑇𝑇𝑖𝑖,𝑖𝑖), annual precipitation (𝑃𝑃𝑖𝑖,𝑖𝑖) and 

average temperature of the driest quarter (𝐶𝐶𝑖𝑖,𝑖𝑖) representing the heat-moisture coupling effect. 

While the annual precipitation and the average temperature of the driest quarter are distributed 

fairly symmetrically, annual average temperature was found to be slightly negatively skewed 

(skewness: T: -0.55, P: 0.48, C: -0.29; as can be seen in Appendix B). To ensure that this is 

not impacting the model, a log-log model was estimated to compare the results to the model 

presented in Equation 2. As the results were found to be the same, it was decided not to 

transform annual average temperature with the natural logarithm as that would decrease the 

ease of interpretation of the results.  

Additionally, the model includes municipality fixed effects 𝜇𝜇𝑖𝑖 and year fixed effects 𝜃𝜃𝑖𝑖. The 

municipality fixed effects are included to absorb observed and unobserved fixed spatial 

characteristics, isolating weather-shocks from potential sources of omitted variables bias, and 

the year fixed effects aim to account for common trends, separating the relevant relationships 

from idiosyncratic local shocks. 𝜀𝜀𝑖𝑖,𝑖𝑖 is the error term (Dell et al., 2014). 

In the process of developing this baseline crop yield panel regression model, a variety of 

alternative models were developed and tested. These include different fixed effects models 

based on a two-predictor variable version of the model presented above, including only the 

temperature and precipitation variables. Starting with a simple regression model without any 

fixed effects, first only municipality fixed effects were added, then municipality and year fixed 

effects. In another step, a region-specific time trend in the form of a state-year trend was added, 

replacing the year fixed effects. Similarly, the municipality fixed effects were replaced by state 

fixed effects based on the 26 Brazilian states. Lastly, the average temperature of the driest 

quarter variable was added to the model to represent the heat-moisture coupling effect.  
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To assess the stability and reliability of the estimated regression results and hence ensure the 

validity of the developed model, a series of additional robustness checks were run. Analyzing 

how the regression results hold up under different specifications or conditions helps to evaluate 

whether the findings are robust and not overly sensitive to specific modeling choices or 

assumptions (Lu & White, 2014). The robustness analysis includes using clustered standard 

errors, adding weights to the model, substituting the predictor variables with alternative 

variables, including outliers in the analysis, and using a balanced panel through the removal 

of missing values.  
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7. Results and Discussion 

7.1 Regression Model 

This section presents the results of the regression model analysis described above. Table 4 

provides an overview of the results of all models and their respective results, followed by an 

analysis of the introduced hypotheses.  

Table 4: Yield Regression Analysis 
 Dependent variable: 
 ln(Yield) 
 (1) (2) (3) (4) (5) (6) 

Annual average 
temperature 0.015*** -0.031*** -0.160*** -0.017*** -0.158*** -0.138*** 

 (0.001) (0.003) (0.005) (0.002) (0.004) (0.005) 

Annual 
precipitation 0.0001*** 0.0001*** 0.0001*** 0.0002*** 0.0002*** 0.0001*** 

 (0.00000) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) 

Average 
temperature 
driest quarter 

     -0.016*** 

      (0.001) 

Municipality FE No Yes Yes No Yes Yes 

State FE No No No Yes No No 

Year FE No No Yes Yes No Yes 

State-year trend No No No No Yes No 

Observations 21,234 21,234 21,234 21,234 21,234 21,234 

R2 0.027 0.309 0.466 0.210 0.446 0.472 

Adjusted R2 0.027 0.216 0.394 0.208 0.370 0.401 

Residual Std. 

Error 

0.265 (df = 

21231) 

0.238 (df = 

18715) 

0.209 (df = 

18706) 

0.239 (df = 

21201) 

0.213 (df = 

18694) 

0.208 (df = 

18705) 

Note: * p<0.1; **p<0.05; ***p<0.01 
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7. Results and Discussion

7.1 Regression Model

This section presents the results of the regression model analysis described above. Table 4

provides an overview of the results of all models and their respective results, followed by an

analysis of the introduced hypotheses.

Table 4: Yield Regression Analysis

Dependent variable:

ln(Yield)

( l ) (2) (3) (4) (5) (6)

Annual average 0.015*** -0.031*** -0.160*** -0.017*** -0.158*** -0.133***
temperature

(0.001) (0.003) (0.005) (0.002) (0.004) (0.005)

Annual 0.0001*** 0.0001*** 0.0001*** 0.0002*** 0.0002*** 0.0001***
precipitation

(0.00000) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Average
temperature -0.016***
driest quarter

(0.001)

Municipality FE No Yes Yes No Yes Yes

State FE No No No Yes No No

Year FE No No Yes Yes No Yes

State-year trend No No No No Yes No

Observations 21,234 21,234 21,234 21,234 21,234 21,234

R2 0.027 0.309 0.466 0.210 0.446 0.472

Adjusted R2 0.027 0.216 0.394 0.208 0.370 0.401

Residual Std. 0.265 (df= 0.238 (df= 0.209 (df= 0.239 (df= 0.213 (df= 0.208 (df=

Error 21231) 18715) 18706) 21201) 18694) 18705)

Note: * p<0.1; **p<0.05; ***p<0.01
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H1: An increase in annual average temperature leads to a decrease in soybean yield.  

The first hypothesis is concerned with exploring if a significant, negative relationship between 

the annual average temperature and the level of soybean yield exists.  

First of all, all six models indicate that there is a significant relationship between the annual 

average temperature and the level of soybean yield at a 1% significance level. 

The simple OLS regression (model 1) suggests that a one Kelvin increase in the annual average 

temperature is associated with a 1.5% increase in the level of the average annual yield. 

However, only at a 𝑅𝑅2 of 2.7%. Adding the municipality fixed effects (model 2) already 

significantly improves the model and reveals a negative relationship between temperature and 

yield. Further, adding the year fixed effect improves the model, suggesting that an increase of 

one Kelvin in the annual average temperature leads to a 16% decrease in the average yield 

(model 3). When replacing the municipality fixed effects with state fixed effects (model 4), 

this value drops to 1.7%. However, the state fixed effects model is also performing 

considerably worse than the municipality level fixed effects model. Replacing the year fixed 

effects with a state-year trend (model 5), on the other hand, only slightly changes the model 

outcome, indicating a 15.8% decline in yield. Lastly, the three-predictor variable model, 

including the heat-moisture coupling variable (model 6), suggests a negative relationship at 

the level of 13.8%, while overall also being the best performing model out of these six, 

reaching a 𝑅𝑅2 of up to 47.2% (adjusted 𝑅𝑅2 40.1%). 

H2: A decrease in annual precipitation leads to a decrease in soybean yield.  

The second hypothesis is concerned with exploring if a significant, positive relationship 

between the annual precipitation and the level of soybean yield exists.  

Again, all six models indicate that there is a significant relationship between the annual 

precipitation and the level of soybean yield at a 1% significance level. 

In this case, the coefficients remain more constant across the different variations of the model, 

ranging from a 1% to a 2% increase in yield with a 100-millimeter increase in annual 

precipitation. The municipality and year fixed effects models (3 and 6) support the 1% relation.  

H3: An increase in average temperature during drier periods leads to a decrease in 

soybean yield.  
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The third hypothesis is concerned with exploring whether a significant, negative relationship 

between the average temperature of the driest quarter and the level of soybean yield exists.  

Model 6 shows that, at a 1% significance level, a one Kelvin increase during the driest quarter 

is associated with a 1.6% decrease in soybean yield.  

Overall, the results show that none of the three presented hypotheses can be rejected based on 

the available data used for analysis.  

7.2 Robustness Analysis 

Clustered Standard Errors 

The first robustness analysis conducted is the inclusion of clustered standard errors, as this 

addresses potential correlation or heteroscedasticity within clusters of observations. 

Observations within the same municipality may exhibit correlated errors due to unobserved 

heterogeneity or common shocks. If this is the case and these correlations are ignored, the 

assumption of independence of errors is ignored, resulting in biased and inefficient standard 

errors. Clustered standard errors are, therefore, more reliable and robust if within-cluster 

dependencies exist. Furthermore, heteroscedasticity may occur when the variance of the error 

term varies systematically across the different municipalities. As this would violate the 

assumption of homoscedasticity, standard errors estimated under this assumption may be 

biased and inefficient. Clustered standard errors allow for the variance to differ across the 

municipality, increasing the accuracy and robustness of the standard error estimates 

(Wooldridge, 2019). 

Using clustered standard errors for the analysis produced the same results for the annual 

average temperature variables, reduced the significance level of annual precipitation from the 

1% to the 5% level, and led to the average temperature of the driest quarter to become 

insignificant. The Average Temperature of the Driest Quarter becoming statistically 

insignificant can be explained by it being highly correlated with the Annual Average 

Temperature (correlation coefficient: 0.85, see Appendix A). Even though this variable is not 

statistically significant with clustered standard errors, this does not necessarily imply that it is 

not a meaningful addition to the model, especially when considering the specific context of it 

adding the coupling effect to the model (Lesk et al., 2021). As can be seen in Table 4, adding 

this coupling variable to the model only slightly changed the model output, which can be used 
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as an argument for keeping all three predictor variables in the model despite the result of the 

clustered standard error robustness check. 

Weights 

As the panel data consists of observations over time and across different regions, which may 

have different levels of variability in their yield and weather data, using weights can help to 

account for the differences in variability across regions and ensure that the estimates are not 

biased towards regions with higher variability. Ideally, weights based on soybean harvesting 

area or production value would be used to assign more weight to the municipalities with higher 

agricultural area/production value and less weight to municipalities with lower agricultural 

area/production value. However, due to limited available data, weights based on average 

municipality yield are used as a proxy (You et al., 2009; Ortiz-Bobea et al., 2021). 

Adding weights to the regression model only slightly changes the variable coefficients while 

maintaining all significance levels. The weighted model suggests that a one Kelvin increase 

in the annual average temperature is associated with a 13.7% decrease in yield compared to 

13.8% of the baseline model. Similarly, a 100-millimeter increase in the annual precipitation 

leads to a 2% increase in yield versus a 1% increase in the model without weights. Lastly, in 

the weighted model, a one Kelvin increase in the average temperature of the driest quarter 

suggests a 1.7% decrease in soybean yield compared to 1.6%. 

Alternative Variables 

Another well-implemented approach to assessing model robustness is the substitution of the 

predictor variables with suitable alternatives that capture similar constructs (Peterman et al., 

2021; Deschênes et al., 2007). To do so, the annual average temperature is being replaced by 

the average temperature during the hottest quarter, the annual precipitation by the precipitation 

during the driest quarter and the average temperature of the driest quarter by the precipitation 

of the warmest quarter.  

All three substitute variables were found to be significant at a 1% level. The effect of the 

average temperature of the hottest quarter on yield seems smaller than that of the average 

annual temperature, with a 6.7% decrease per Kelvin, compared to the 13.8%. However, the 

direction and general trend align with that of the baseline model, and as this substitute variable 

only represents one-quarter of the annual temperature, a deviation to some extent was to be 

expected. Similar results can be observed regarding the precipitation of the driest quarter as a 
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substitute for annual precipitation, suggesting a 10% increase in yield with a 100-millimeter 

increase in precipitation. Again, the direction of the relation is supported by this result, and 

the higher value of the coefficient can be explained by the increased risk of drought stress 

during the driest quarter. The replacement variable accounting for the heat-moisture coupling 

effect, precipitation during the warmest quarter, suggests that a 100-millimeter increase in 

precipitation leads to a 2% increase in yield productivity. As this variable measures the 

coupling effect from the opposite perspective (measuring precipitation instead of 

temperature), it supports the results of the baseline model.  

Including outliers 

As outliers were previously removed from the data set and hence the model, another robustness 

check is the inclusion of outliers in the model. Outliers can have a significant impact on 

regression results, affecting coefficient estimates, standard errors, and model fit. By including 

outliers in the analysis, it can be examined whether the estimated coefficients remain robust 

and whether the model performance is stable in the presence of extreme observations. This 

helps to evaluate the sensitivity of the results to influential data points. If the coefficients 

change substantially or become insignificant in the presence of outliers, it indicates potential 

instability or fragility in the estimated relationships (Finger, 2010; Newlands et al., 2014). 

The inclusion of previously dropped outliers resulted in no changes in the regression 

coefficients or the significance levels. This seems like a reasonable result considering that the 

number of extreme outliers dropped from the model was very small, with only five 

observations.  

Balanced panel 

Lastly, as the panel used for the regression analysis is unbalanced, robustness analysis is 

conducted by removing missing values from the data set to obtain a balanced panel for 

comparison of results. This serves the purpose of evaluating the sensitivity of the estimated 

coefficients and overall model performance to variations in the panel's composition by 

assessing whether the results hold when only considering a subset of observations that have 

complete data over the entire panel period (Reimers & Klasen, 2013). 

Similarly, to adding weights to the regression model, using the balanced instead of the 

unbalanced panel only slightly changes the coefficients. For annual average temperature, that 
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change is from -13.8% to -13.1%, for annual precipitation from 1% to 2%, and for the average 

temperature of the driest quarter from -1.6% to -1.8%.  

Overall, it can be observed that the robustness tests support the model results of the baseline 

model, suggesting that the findings are robust and not overly sensitive to specific modeling 

choices or assumptions.  

A summary of all results of the robustness analysis can be found in Table 5.  
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Table 5: Yield Regression Robustness Analysis 
  
  Dependent variable: 
   
  ln(Yield) 
 Baseline 

Model 
Clustered 

SE Weights Alternative 
variables 

Including 
outliers 

Balanced 
panel 

  

Annual average 
temperature -0.138*** -0.138*** -0.137***  -0.138*** -0.131*** 

 (0.005) (0.023) (0.005)  (0.005) (0.007) 
       

Annual 
precipitation 0.0001*** 0.0001** 0.0002***  0.0001*** 0.0001*** 

 (0.00001) (0.0001) (0.00001)  (0.00001) (0.00001) 
       

Average 
temperature 
driest quarter 

-0.016*** -0.016 -0.017***  -0.016*** -0.018*** 

 (0.001) (0.013) (0.001)  (0.001) (0.001) 
       

Average temp 
hottest quarter 

   -0.067***   

    (0.003)   
       

Precipitation 
driest quarter 

   0.001***   

    (0.00003)   
       

Precipitation 
warmest quarter 

   0.0002***   

    (0.00001)   

  

Municipality FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Observations 21,234 21,234 21,234 21,118 21,284 14,354 
R2 0.472 0.472 0.501 0.461 0.470 0.488 
Adjusted R2 0.401 0.401 0.433 0.388 0.399 0.423 
Residual Std. 
Error 

0.208 (df = 
18705) 

0.208 (df = 
18705) 

0.004 (df = 
18705) 

0.210 (df = 
18591) 

0.209 (df = 
18750) 

0.210 (df = 
12717) 

  

Note:  * p<0.1; **p<0.05; ***p<0.01 
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7.3 Interpretation of Results 

When it comes to interpreting the regression model results, two fundamental prerequisites are 

important to consider. First, the coefficients associated with the independent variables in a 

logged model represent the estimated percentage change in the dependent variable for a one-

unit increase in the corresponding independent variable, holding all other independent 

variables constant. And secondly, while the Kelvin and Celsius scale differ in zero points of 

the thermometer, they are related unit for unit, meaning that a one-unit increase in the Kelvin 

scale is equal to a one-degree increase in Celsius which was confirmed by running the model 

after transforming all values to Celsius resulting in the same beta coefficients (Libretexts, 

2020).  

Accordingly, the results of the regression analysis can be interpreted as follows. A one-degree 

Celsius increase in annual average temperature led to a 13.8% decrease in average annual 

soybean yield in Brazil. Additionally, the results suggest that a 100-millimeter increase in 

annual precipitation is associated with a 1.5% increase in average annual soybean yield in 

Brazil. Lastly, a one-degree Celsius increase in the average temperature during the driest 

quarter of the year was found to lead to a 1.6% decrease in average annual soybean yield in 

Brazil. 

It can be argued that these results can, in fact, be interpreted as causal due to the use of random 

variation in weather over time to identify the relationship between yield and temperature, and 

precipitation (Dell et al., 2014).  

The robustness testing showed that temperature is the most significant variable out of the three 

included in the model, as shown in the analysis with clustered standard errors. As it is further 

the predictor variable with the highest coefficient, it can be concluded that temperature is the 

most relevant in estimating yield productivity within this model.  

Comparing these findings with those of other scholars shows a trend that supports the results 

of the presented regression analysis. For example, Silva et al. (2023), who conducted a similar 

study limited to the Cerrado biome, an area that covers around 20% of Brazil’s territory, 

concluded that a one-degree Celsius increase in temperature reduces productivity by 6% 

within all municipalities in the Cerrado biome, but up to 32% in the Matopiba region, a subarea 

of the biome. This increased sensitivity in the Matopiba region was explained by the already 

higher average temperature within the area by the authors. Furthermore, a 100-millimeter 

increase in precipitation was associated with a reduction of 0.2% to 1% in soybean yield. These 
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results are based on observations made between 1980 through 2016 and, similarly to the model 

presented in this research, include fixed effects and detrending variables to account for 

technological advances, irrigation growth, etc..  

According to various climate change models, the trend of increasing temperatures and more 

frequent droughts can be categorized as long-term changes in the climate, which are expected 

to continue throughout the following decades (IPCC, 2020). Depending on different scenarios, 

Brazil is expected to experience an increase in annual average temperature between one to five 

degrees Celsius and an average decrease in precipitation between 5% and 20% within this 

century, with high variation across the country’s regions (PBMC, 2013).  

Appendix E and F contain visual representations of the climate projection data for temperature 

and precipitation modeled from the global climate model compilations of the Coupled Model 

Inter-comparison Projects overseen by the World Climate Research Program, which are the 

basis for the Intergovernmental Panel on Climate Change (IPCC) reports. Appendix G further 

highlights the differences in regional climate projections based on the National Assessment 

Report (RAN1) of the Brazilian Panel on Climate Change (PBMC).  

These projections on a country, and even more so on a regional level, demonstrate the 

relevance of the presented regression results. While weather fluctuations are already impacting 

yield productivity, thus far, technological developments have shown limited historical 

adaptation potential to extreme heat. The main strategies currently observed in Brazil are the 

expansion of farmland and an increase in irrigated land area. Further strategies to adapt to a 

changing climate include extensive changes in the overall farming systems, requiring 

significant investments or even land abandonment. Current research concludes that 

technological inventions will be needed to reduce water dependency under changing climatic 

conditions, as the current system is deemed unsustainable in the long run (Silva et al., 2023). 
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8. Economic Implications for Global Supply Chains  

Connecting these results back to the global soybean supply chain, it becomes clear that a 

changing climate, which has been shown to likely have an adverse effect on Brazilian soybean 

production, will also have direct implications for global soybean trade and hence a relevant 

spill over effect on many other economies. As supply chains are highly linked, and with soy 

being a commodity used across many industries, a potential shift in supply will affect many 

companies, industries, and even countries as a whole.  

First and foremost, a relevant question for the future will be if technological advances will be 

able to allow for profitable soybean production within Brazil under challenging climatic 

conditions while there is a continuously growing global demand for soy. Additionally, or 

alternatively, it will be interesting to understand if the improving conditions for soybean 

growth in other areas of the world will be able to compensate for the potential yield losses in 

the leading exporter country Brazil, which currently many countries and industries have built 
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source of export revenue, and hence to this day extremely important for the Brazilian 

economy. 

Linking these findings to the decomposition of climate change drivers impacting supply chain 

management by Dasaklis & Pappis (2013) presented in section 2.1.2 shows the relevance of 

implementing a sustainable supply chain approach to (Brazilian) soybean.  

In the regulatory area, Brazilian soy production is already facing challenges with the Soy 

Moratorium and other international agreements driving the demand for “zero deforestation 

soy”. As mentioned before, one strategy to overcome challenging climatic conditions thus far 

has been the expansion of cropland, which the results of this research support is likely to be 

further needed in the future; however, simultaneously conflicts regulatory interventions for 
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here, under consideration of the presented findings, is that higher irrigation levels will be 

needed in the future to balance the effects of higher temperatures and less precipitation on crop 

productivity. Combined with the issue of deforestation and the likely expected improved 

growing conditions in other countries, this might further incentivize many organizations to 

shift towards alternative sources of soybean.  

Lastly, as sufficiently discussed, climate change is also expected to have relevant physical 

impacts on soybean supply through changing conditions and extreme weather patterns. These 

physical attributes will pose significant strategic and profitability challenges for the Brazilian 

soybean supply.  

Overall, the combination of all these factors raises many relevant questions regarding potential 

future sustainable supply chain management decisions on the strategic as well as operational 

levels. The global soybean supply chain network is likely to change as climate change is 

imposing a variety of new criteria for the selection of suppliers and accounting for challenges 

in production planning and potential disruptions. 

Considering the, in the definitions identified, three dimensions of sustainable supply chain 

management: economic, environmental, and social, the findings of this research emphasize 

that there will likely be significant challenges in achieving and maintaining a sustainable 

global soybean supply chain, with Brazil being the leading producer and exporter. Climate 

change can be expected to have relevant impacts in all three dimensions a decreasing 

productivity will have economic implications for the Brazilian economy, environmental 

implications for the Brazilian biosphere, especially the Amazonian rainforest, and social 

implications, mainly but not exclusively, for farmers and other workers across the soybean 

supply chain. 

To fully understand the complexity of the global soybean supply chain, and climate change’s 

impact on it and to then develop strategies further for shifting towards a more sustainable 

soybean supply chain management, much more information and consideration is needed than 

the scope of this research can cover. Nonetheless, as the aim of this thesis was to provide 

relevant data and analysis as a starting point to better understand the current situation as well 

as to assess future threats through changing conditions, the findings of this research can be 

used to open the conversation and encourage collaboration in this field.  
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9. Conclusion, Limitations, and Future Research 

This thesis aims to contribute to understanding the potential impact of climate change on the 

global soybean supply chain by investigating the interrelationship between soybean crop 

productivity and relevant weather variables such as annual precipitation and average 

temperature. To do so, panel regression model analysis was conducted using historic soybean 

yield and weather data from 2011 – 2020 on a municipality level. The results were tested and 

validated through several robustness checks. 

The findings support all three developed hypotheses: A decrease in soybean yield was found 

to be associated with an increase in the annual average temperature, a decrease in the annual 

precipitation, and an increase in the average temperature during the driest quarter. Annual 

average temperature was found to have the highest impact on soybean yield, with a one-degree 

Celsius increase leading to a 13.8% decrease in yield. A 100-millimeter increase in annual 

precipitation was found to be associated with a 1.5% increase in average annual soybean yield, 

and a one-degree Celsius increase in the average temperature during the driest quarter of the 

year was found to lead to a 1.6% decrease in crop productivity. These findings contribute to 

the limited literature and growing discussion of climate variation’s impact on agricultural 

output. 

However, several limitations to this research also need to be highlighted. The main limitations 

are related to the used data sets, which are based on a lack of availability and accessibility of 

the required data.  

First and foremost, it is essential to mention that the use of annual weather data limits the value 

of the research output as it does not allow accounting for weather variation throughout the 

year. Having daily weather data to, for example, account for days of heat through temperature 

bins as well as uneven intra-annual precipitation distribution has been found to be relevant in 

improving regression results. Therefore, the analysis would have benefitted from the 

availability and inclusion of additional weather variables that consider the frequency of the 

different weather realizations, revealing nonlinear effects (Fishman, 2016). 

Similarly, the analysis could further be enhanced through a higher spatial resolution, e.g., 

using gridded geospatial data instead of municipality level data.  

Another main limitation regarding the underlying data is the few years of observations. The 

ten-year time period is a fairly short period resulting in a limited sample size. 
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Moreover, it is important to mention that the presented model does not account for other 

climate-related variables, such as the concentration of CO2 in the atmosphere and its 

fertilization effects on soybean yield that could be relevant but are challenging to account for 

(Silva et al., 2023). 

Lastly, further research could benefit from including and testing additional weights, applying 

the geographically weighted regression technique, and further exploring the clustering of 

standard errors on different levels. 

By contextualizing the results of this research within the global sustainable soybean supply 

chain management theory, this thesis further adds to the relevant discussion of the economic 

implications of climate change and advocates for how an increase in available climate data 

and analysis can limit potentially harmful consequences. Finally, this thesis aims to encourage 

further research in the field to provide more information to policy- and decision-makers within 

the still-developing field of sustainable supply chain management. 

Beyond the scope of this research, an exciting topic for future research will be the actual 

application of climate projection data to forecast soybean yield using estimates from historic 

weather fluctuations to investigate the long-term impacts of climate change on soybean yield 

productivity in Brazil. The major challenge in this field lies in assessing and accounting for 

how much adaptation is likely to occur (Dell et al., 2014). Nonetheless, the availability of any 

research and data in this field is highly relevant and valuable. Hence, further research in this 

area, building on the findings and limitations of this study, is highly encouraged.  
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11. Appendices 

11.1 Appendix A: Correlation Matrix 

 Temperature Precipitation 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1.00 -0.60 0.29 -0.74 0.43 0.79 -0.59 0.75 0.85 0.92 0.96 -0.25 0.04 -0.61 0.59 0.10 -0.68 -0.52 0.05 

2  1.00 -0.28 0.86 0.26 -0.87 0.93 -0.38 -0.67 -0.38 -0.74 0.12 -0.14 0.36 -0.44 -0.20 0.47 0.46 -0.21 

3   1.00 -0.50 -0.22 0.55 -0.61 0.13 0.37 0.14 0.40 -0.15 0.01 -0.17 0.30 0.02 -0.25 -0.29 0.19 

4    1.00 0.10 -0.89 0.89 -0.50 -0.76 -0.47 -0.88 0.22 -0.08 0.48 -0.56 -0.13 0.60 0.49 -0.10 

5     1.00 0.07 0.32 0.31 0.27 0.63 0.27 -0.07 -0.07 -0.20 0.12 -0.05 -0.20 -0.26 -0.02 

6      1.00 -0.92 0.49 0.83 0.62 0.89 -0.21 0.09 -0.46 0.55 0.15 -0.58 -0.60 0.23 

7       1.00 -0.35 -0.68 -0.34 -0.74 0.17 -0.11 0.36 -0.47 -0.16 0.48 0.47 -0.23 

8        1.00 0.45 0.67 0.69 -0.29 -0.02 -0.60 0.52 -0.01 -0.63 -0.12 -0.28 

9         1.00 0.76 0.88 -0.16 0.08 -0.43 0.47 0.16 -0.53 -0.64 0.30 

10          1.00 0.82 -0.15 0.07 -0.53 0.49 0.13 -0.57 -0.46 0.09 

11           1.00 -0.22 0.08 -0.59 0.61 0.15 -0.69 -0.55 0.11 

12            1.00 0.76 0.54 -0.38 0.84 0.60 0.40 0.66 

13             1.00 0.14 0.22 0.90 0.15 0.24 0.51 

14              1.00 -0.69 0.16 0.89 0.32 0.35 

15               1.00 0.08 -0.77 -0.31 -0.23 

16                1.00 0.16 0.19 0.65 

17                 1.00 0.40 0.36 

18                  1.00 -0.23 

19                   1.00 

*The table with variable names and numbers (1-19) can be found in section 5 

11.2 Appendix B: Descriptive Analysis Histograms  
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11. Appendices

l l. l Appendix A: Correlation Matrix

Temperature I Precipitation
2 3 4 5 6 7 8 9 10 li 12 13 14 15 16 17 18 19

I 1.00 -0.60 0.29 -0.74 0.43 0.79 -0.59 0.75 0.85 0.92 0.96 -0.25 0.04 -0.61 0.59 0. IO -0.68 -0.52 0.05- 1.00 -0.28 0.86
,____

-0.87 0.93 -0.38 -0.67 -0.38 -0.74 0.12 -0.14 0.36 -0.44 -0.20 0.47 0.46 -0.21___2_ 0.26

___l_ 1.00 -0.50 -0.22 0.55 -0.61 0.13 0.37 0.14 0.40 -0.15 0.01 -0.17 0.30 0.02 -0.25 -0.29 0.19

____±_ 1.00 0.IO -0.89 0.89 -0.50 -0.76 -0.47 -0.88 0.22 -0.08 0.48 -0.56 -0.13 0.60 0.49 -0.10

---2_ 1.00 0.07 0.32 0.31 0.27 0.63 0.27 -0.07 -0.07 -0.20 0.12 -0.05 -0.20 -0.26 -0.02

6 1.00 -0.92 0.49 0.83 0.62 0.89 -0.21 0.09 -0.46 0.55 0.15 -0.58 -0.60 0.23
1.00 -0.35 -0.68 -0.34 -0.74 0.17 -0.11 0.36 -0.47 -0.16 0.48 0.47 -0.23- 1.00 0.45 0.67 0.69 -0.29 -0.02 -0.60 0.52 -0.01 -0.63 -0.12 -0.288- 1.00 0.76 0.88 -0.16 0.08 -0.43 0.47 0.16 -0.53 -0.64 0.309- 1.00 0.82 -0.15 0.07 -0.53 0.49 0.13 -0.57 -0.46 0.0910- 1.00 -0.22 0.08 -0.59 0.61 0.15 -0.69 -0.55 0.11li- 1.00 0.76 0.54 -0.38 0.84 0.60 0.40 0.66__J2_

___!l_ 1.00 0.14 0.22 0.90 0.15 0.24 0.51

__!i_ 1.00 -0.69 0.16 0.89 0.32 0.35

___!1_ I 1.00 0.08 -0.77 -0.31 -0.23

16 1.00 0.16 0.19 0.65

t t 1.00 0.40 0.36- 1.00 -0.2318- -
19 1.00

*The table with variable names and numbers (1-19) can be found in section 5

11.2 Appendix B: Descriptive Analysis Histograms

Histogram of Average Annual Yield
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Histogram of Annual Precipitation
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11.3 Appendix C: Descriptive Analysis Scatterplots 
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11.3 Appendix C: Descriptive Analysis Scatterplots

Scatterplot of Yield and Average Temperature of the Driest Quarter
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11.4 Appendix D: Descriptive Analysis Boxplots 
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11.4 Appendix D: Descriptive Analysis Boxplots

Boxplot of Average Temperature in the Driest Quarter in K
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11.5 Appendix E: Climate Projections Temperature 

 
Source: The World Bank Group (2021) 
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Boxplot of Yield in kg/ha
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11.5 Appendix E: Climate Projections Temperature

Projected Mean-Temperature
Brazil; (Ref. Period: 1995-2014), Multi-Model Ensemble
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11.6 Appendix F: Climate Projections Precipitation 

 
Source: The World Bank Group (2021) 

11.7 Appendix G: Regional Climate Projections 

 
Source: PBMC (2013) 
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11.6 Appendix F: Climate Projections Precipitation

Projected Precipitation
Brazil; (Ref. Period: 1995-2014), Multi-Model Ensemble
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11.7 Appendix G: Regional Climate Projections
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figureSEF.6.Regional climate projections
in the Brazilian Amazonia, Cerrado,
Coalinga, Pantanal, Mata Atlöntico
(northeast and south/southeast
sections) and Pampa biomes, for the
beginning (2011 to 2040), middle
(2041 to 2070) and end (2071 -
2100) of the 21st century, based
on the scientific results of global
and regional climate modeling. The
regions with different colors on the
map indicate the geographic domain
of the biomes. The keys are found at
the bottom right corner. [GTl 9]

Source: PBMC (2013)
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11.8 Appendix H: Table State Code 

States 

State Name # Code  
Acre 
Alagoas 
Amapa 
Amazonas 
Bahia 
Ceara 
Distrito Federal  
Espirito Santo 
Goias 
Maranhao 
Mato Grosso 
Mato Grosso do Sul 
Minas Gerais 
Para 
Paraiba 
Parana 
Pernambuco 
Piaui 
Rio de Janeiro 
Rio Grande do Norte 
Rio Grande do Sul 
Rondonia 
Roraima 
Santa Catarina 
Sao Paulo 
Sergipe 
Tocantins 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27  

  

 

 

 

 

 

65

11.8 Appendix H: Table State Code

States

State Name #Code

Acre
Alagoas
Amapa
Amazonas
Bahia
Ceara
Distrito Federal
Espirito Santo
Goias
Maranhao
Mato Grosso
Mato Grosso do Sul
Minas Gerais
Para
Paraiba
Parana
Pemambuco
Piaui
Rio de Janeiro
Rio Grande do Norte
Rio Grande do Sul
Rondonia
Roraima
Santa Catarina
Sao Paulo
Sergipe
Tocantins

l
2
3
4
5
6
7
8
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12
13
14
15
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