

The Game Theory of

Penalty Kicks
A framework for approximating Nash equilibria

By Vebjørn Monstad

The Game Theory of

Penalty Kicks
A framework for approximating Nash equilibria

By Vebjørn Manstad

Abstract
This paper presents a game-theoretic analysis of penalty kicks in football. There must exist a

Nash equilibrium in penalty kicks, but the nature of it depends on the unique abilities of the

penalty taker and the goalkeeper. Thus, this study introduces a flexible framework that

approximates a Nash equilibrium, based on a user-inputted set of player-dependent

assumptions. The study also seeks to improve our general understanding of the characteristics

of Nash equilibria in penalty kicks. This is achieved by investigating a diverse set of player-

dependent assumptions, as well as gradually adding new elements of complexity to the models,

and observing the shifts in the equilibrium.

In the most basic model, the players make a simultaneous choice, where the penalty taker

decides where to aim, and the goalkeeper decides which area to cover. The penalty taker isn’t

able to shoot with perfect accuracy, so the hit-coordinate will likely differ from the aim-

coordinate. In later models, the penalty taker is also allowed to choose the velocity of the ball,

which in turn impacts the area coverage of the goalkeeper. In the final model, an element of

sequential choice is added, such that the penalty taker may pretend to shoot, and observe if the

goalkeeper starts to move.

The Counterfactual Regret Minimization algorithm is employed to locate the Nash equilibrium,

while an enhanced Coordinate Search algorithm is developed for determining the optimal aim-

coordinates for the penalty taker. The most complex and realistic model indicates that the

penalty taker should abstain from aiming at the middle region of the goal, and rather either

pretend to shoot, or shoot at one of the sides. This is because the goalkeeper needs to stay in

the middle fairly often, to avoid revealing their intention in the case where the penalty taker

pretends to shoot. It’s also viable for the goalkeeper to commit to diving to either side without

waiting to observe the trajectory of the ball.

Abstract
This paper presents a game-theoretic analysis of penalty kicks in football. There must exist a

Nash equilibrium in penalty kicks, but the nature of it depends on the unique abilities of the

penalty taker and the goalkeeper. Thus, this study introduces a flexible framework that

approximates a Nash equilibrium, based on a user-inputted set of player-dependent

assumptions. The study also seeks to improve our general understanding of the characteristics

of Nash equilibria in penalty kicks. This is achieved by investigating a diverse set of player-

dependent assumptions, as well as gradually adding new elements of complexity to the models,

and observing the shifts in the equilibrium.

In the most basic model, the players make a simultaneous choice, where the penalty taker

decides where to aim, and the goalkeeper decides which area to cover. The penalty taker isn't

able to shoot with perfect accuracy, so the hit-coordinate will likely differ from the aim-

coordinate. In later models, the penalty taker is also allowed to choose the velocity of the ball,

which in tum impacts the area coverage of the goalkeeper. In the final model, an element of

sequential choice is added, such that the penalty taker may pretend to shoot, and observe if the

goalkeeper starts to move.

The Counterfactual Regret Minimization algorithm is employed to locate the Nash equilibrium,

while an enhanced Coordinate Search algorithm is developed for determining the optimal aim-

coordinates for the penalty taker. The most complex and realistic model indicates that the

penalty taker should abstain from aiming at the middle region of the goal, and rather either

pretend to shoot, or shoot at one of the sides. This is because the goalkeeper needs to stay in

the middle fairly often, to avoid revealing their intention in the case where the penalty taker

pretends to shoot. It's also viable for the goalkeeper to commit to diving to either side without

waiting to observe the trajectory of the ball.

Table of Contents
Introduction ... 1

Background and context ... 5

Game theory .. 6

Definition .. 7

A simple toy game .. 9

Nash equilibrium ... 13

Counterfactual regret minimization .. 17

Framework development .. 21

Simultaneous choice ... 22

Domains .. 23

Area coverage ... 25

Hit-coordinates .. 28

Aim-coordinates .. 30

Payoffs .. 31

Symmetry .. 32

An initial result ... 33

Coordinate search .. 34

Leaning options ... 43

Non-uniform velocity .. 51

Sequential choices ... 53

Asymmetry .. 56

Conclusion .. 59

References ... 62

Appendix I .. 64

Appendix II ... 66

Appendix III .. 69

Appendix IV.. 73

Table of Contents
Introduction l

Background and context 5

Game theory 6

Definition 7

A simple toy game 9

Nash equilibrium 13

Counterfactual regret minimization 17

Framework development 21

Simultaneous choice 22

Domains 23

Area coverage 25

Hit-coordinates 28

Aim-coordinates 30

Payoffs 31

Symmetry 32

An initial result 33

Coordinate search 34

Leaning options 43

Non-uniform velocity 51

Sequential choices 53

Asymmetry 56

Conclusion 59

References 62

Appendix I 64

Appendix II 66

Appendix 111 69

Appendix IV 73

1

Introduction
Decision modelling involves formulating, analysing, and solving models, with the aim of

informing our decisions, such that we can better satisfy our objective. Game theory is a branch

of decision modelling that focuses on strategic interaction between rational agents. This paper

presents a game-theoretic analysis of penalty kicks, focusing on the strategic interaction

between the penalty taker and the goalkeeper. The study aims to create a framework for

approximating Nash equilibrium strategies for both players involved.

Football is widely considered to be the most popular sport in the world, with billions of fans

across the globe. Penalty kicks is a highly important subgame of football that can often directly

determine the outcome of the game. In high stakes matches such as knockout rounds of major

international tournaments or cup finals, penalty shootouts are the final deciding factor in

crowning a champion, if the game is drawn. This happened as lately as in the 2022 FIFA world

cup, where Argentina beat France in the final by winning in a penalty shootout. With the size

of the industry, even small improvements of strategy may be worth millions of dollars in certain

situations, making it a significant area of study.

It's clear that penalty kicks can be vitally important in determining the outcome of a football

match. Several studies have explored various aspects of penalty kicks, such as the effectiveness

of different techniques or the psychology of penalty takers and goalkeepers. However, there’s

still much to be explored in terms of the optimal strategic interaction between the two players.

There have also been some studies that have analysed penalty kicks from a game-theoretic

perspective, but these models have been very simple, and not comprehensive attempts at

estimating the characteristics of the optimal play. Therefore, there exist a gap in the literature

that this study intends to fill.

Penalty kicks is an extremely complex game where, apart from a few rule-based constraints,

the strategy space for each player is only really limited by the laws of physics, as well as the

inherent capabilities of the players. Yet, some strategies are certainly better than others, and

there should exist a mixed strategy Nash equilibrium for the game. The sheer complexity of

the game might make the true nature of the equilibrium unknowable to us, but that doesn’t

mean that it doesn’t exist. Nor does it mean that we can’t gain insights about it or make

approximations of what it might look like, which is one of the main objectives in the study.

Introduction
Decision modelling involves formulating, analysing, and solving models, with the aim of

informing our decisions, such that we can better satisfy our objective. Game theory is a branch

of decision modelling that focuses on strategic interaction between rational agents. This paper

presents a game-theoretic analysis of penalty kicks, focusing on the strategic interaction

between the penalty taker and the goalkeeper. The study aims to create a framework for

approximating Nash equilibrium strategies for both players involved.

Football is widely considered to be the most popular sport in the world, with billions of fans

across the globe. Penalty kicks is a highly important subgame of football that can often directly

determine the outcome of the game. In high stakes matches such as knockout rounds of major

international tournaments or cup finals, penalty shootouts are the final deciding factor in

crowning a champion, if the game is drawn. This happened as lately as in the 2022 FIFA world

cup, where Argentina beat France in the final by winning in a penalty shootout. With the size

of the industry, even small improvements of strategy may be worth millions of dollars in certain

situations, making it a significant area of study.

It's clear that penalty kicks can be vitally important in determining the outcome of a football

match. Several studies have explored various aspects of penalty kicks, such as the effectiveness

of different techniques or the psychology of penalty takers and goalkeepers. However, there's

still much to be explored in terms of the optimal strategic interaction between the two players.

There have also been some studies that have analysed penalty kicks from a game-theoretic

perspective, but these models have been very simple, and not comprehensive attempts at

estimating the characteristics of the optimal play. Therefore, there exist a gap in the literature

that this study intends to fill.

Penalty kicks is an extremely complex game where, apart from a few rule-based constraints,

the strategy space for each player is only really limited by the laws of physics, as well as the

inherent capabilities of the players. Yet, some strategies are certainly better than others, and

there should exist a mixed strategy Nash equilibrium for the game. The sheer complexity of

the game might make the true nature of the equilibrium unknowable to us, but that doesn't

mean that it doesn't exist. Nor does it mean that we can't gain insights about it or make

approximations of what it might look like, which is one of the main objectives in the study.

l

2

To make such approximations, it’s necessary to reduce the strategy space down to something

manageable. In other words, we need create a simplified model the game. One way of

understanding this is that the model will be a new game, which is different from penalty kicks,

but it will be a simpler game that imitates the core features of the real game. This will make

the model solvable, meaning that we will be able to determine which strategies are optimal.

The results generated by the model will then serve as an approximation of what might be

optimal in the real game. Notice that the quality of the approximations is strictly contingent on

being able to create a model that successfully imitates the core features of penalty kicks. This

is the primary limitation of the study.

In this research I’ll construct several models of increasing complexity, each of them building

on the foundation of the former. The first model is the simplest and establishes the

fundamentals of the framework. This model discards all but the most essential factors of a

penalty kick. For the penalty taker, the strategic options are limited to selecting a coordinate

point to aim for inside the goal. The penalty taker’s aim-coordinate, which represents the target

inside the goal, may differ from the hit-coordinate due to the penalty taker’s inherent inaccuracy

in shooting. To incorporate this inaccuracy, the coordinates where the ball hits are drawn from

a normal distribution along both the horizontal and vertical axes, using the aim-coordinates as

the mean of the distribution. For the goalkeeper, the strategic options are limited to which area

of the goal to cover – for example one area on the left side, one area in the middle, or one area

on the right side. The model assumes that the penalty taker and the goalkeeper make their

choice simultaneously. If the hit-coordinates are within the goal, and not within the area that

the goalkeeper has chosen to cover, the result is a goal, and otherwise the result is a miss.

Penalty kicks is a zero-sum game, where the penalty taker is awarded a payoff of 1 if the penalty

results in a goal, and 0 if it doesn’t. The goalkeeper receives a payoff of -1 if conceding a goal,

and 0 otherwise. Given all the options available to the players, we can simulate the expected

payoffs associated with each pair of options. This allows us to measure how well two strategies

perform against one another. This is a good starting point, but not sufficient if we want to

effectively learn how to improve the strategies. To pinpoint which strategies are optimal, we

need a self-improving mechanism that continually updates the strategies such that we have a

convergence towards the Nash equilibrium. To achieve this, I’m implementing a machine

learning algorithm used for solving imperfect- information games, called counterfactual regret

minimization. The Counterfactual Regret Minimization algorithm is a reinforcement learning

technique that minimizes the regret of actions in previous iterations, gradually converging

To make such approximations, it's necessary to reduce the strategy space down to something

manageable. In other words, we need create a simplified model the game. One way of

understanding this is that the model will be a new game, which is different from penalty kicks,

but it will be a simpler game that imitates the core features of the real game. This will make

the model solvable, meaning that we will be able to determine which strategies are optimal.

The results generated by the model will then serve as an approximation of what might be

optimal in the real game. Notice that the quality of the approximations is strictly contingent on

being able to create a model that successfully imitates the core features of penalty kicks. This

is the primary limitation of the study.

In this research I ' l l construct several models of increasing complexity, each of them building

on the foundation of the former. The first model is the simplest and establishes the

fundamentals of the framework. This model discards all but the most essential factors of a

penalty kick. For the penalty taker, the strategic options are limited to selecting a coordinate

point to aim for inside the goal. The penalty taker's aim-coordinate, which represents the target

inside the goal, may differ from the hit-coordinate due to the penalty taker's inherent inaccuracy

in shooting. To incorporate this inaccuracy, the coordinates where the ball hits are drawn from

a normal distribution along both the horizontal and vertical axes, using the aim-coordinates as

the mean of the distribution. For the goalkeeper, the strategic options are limited to which area

of the goal to cover - for example one area on the left side, one area in the middle, or one area

on the right side. The model assumes that the penalty taker and the goalkeeper make their

choice simultaneously. If the hit-coordinates are within the goal, and not within the area that

the goalkeeper has chosen to cover, the result is a goal, and otherwise the result is a miss.

Penalty kicks is a zero-sum game, where the penalty taker is awarded a payoff of l if the penalty

results in a goal, and Oif it doesn't. The goalkeeper receives a payoff of -1 if conceding a goal,

and O otherwise. Given all the options available to the players, we can simulate the expected

payoffs associated with each pair of options. This allows us to measure how well two strategies

perform against one another. This is a good starting point, but not sufficient if we want to

effectively learn how to improve the strategies. To pinpoint which strategies are optimal, we

need a self-improving mechanism that continually updates the strategies such that we have a

convergence towards the Nash equilibrium. To achieve this, I 'm implementing a machine

learning algorithm used for solving imperfect- information games, called counterfactual regret

minimization. The Counterfactual Regret Minimization algorithm is a reinforcement learning

technique that minimizes the regret of actions in previous iterations, gradually converging

2

3

towards the Nash equilibrium. This is the methodology used for locating the equilibrium in all

the models. I also develop an algorithm, called coordinate search, which locates the optimal

aim-coordinates within the goal, even if those coordinates weren’t part of the original options.

In a later model, the strategic options available to the penalty taker are extended to incorporate

a choice of velocity. The velocity scales and moves the areas that the goalkeeper chooses

between covering. Generally, if the ball travels at a high velocity, the area is reduced in size,

and if the ball travels slowly, the area gets expanded. Additionally, there is a trade-off between

velocity and accuracy. A higher velocity results in a lower positional accuracy, and vice versa.

The area of the goal that the goalkeeper is able to cover is also dependent on the velocity of the

ball. Additionally, if the ball travels along the ground, the velocity is reduced to account for

friction. This effectively serves as a disincentive to aiming at a low vertical coordinate point.

The final model attempts to better account for sequential choices. It extends the strategic

options of the penalty taker to include an option of first deciding whether to shoot normally, or

to pretend to shoot. If the penalty taker decides to shoot normally, we are essentially entering

the scenario of the second model. If the penalty taker pretends to shoo, we are also in a similar

situation as that of the second model, except the penalty taker becomes limited to shooting with

a low velocity, resulting in a significant handicap. This is because it’s illegal for the penalty

taker to back up and start the run-up again, meaning that the shot now has to be made while

standing still.

While pretending to shoot limits the penalty taker to shooting with a low velocity, it also has a

big potential upside. The goalkeeper may start to move either to the left or the right, giving the

penalty taker solid information about which area of the goal the goalkeeper won’t be able to

cover. For example, if the penalty taker fakes the shot, and the goalkeeper starts moving to the

left, the penalty taker can easily score by aiming to the right. In this case, the handicap of having

to shoot with a low velocity will likely be irrelevant. However, if the goalkeeper stays in the

middle, the penalty taker is essentially forced to play a version of the second model which is

disadvantageous. Thus, if the penalty taker incorporates faking the shot into their strategy, the

goalkeeper is incentivized to stay in the middle more often, making it more advantageous for

the penalty taker to shoot normally and aim to a side.

It's important to understand that the objective of this study is to create a framework for

approximating Nash equilibria in penalty kicks, and not to find a specific solution that is

deemed to be optimal in penalty kicks in general. This is because the Nash equilibrium of the

towards the Nash equilibrium. This is the methodology used for locating the equilibrium in all

the models. I also develop an algorithm, called coordinate search, which locates the optimal

aim-coordinates within the goal, even if those coordinates weren't part of the original options.

In a later model, the strategic options available to the penalty taker are extended to incorporate

a choice of velocity. The velocity scales and moves the areas that the goalkeeper chooses

between covering. Generally, if the ball travels at a high velocity, the area is reduced in size,

and if the ball travels slowly, the area gets expanded. Additionally, there is a trade-off between

velocity and accuracy. A higher velocity results in a lower positional accuracy, and vice versa.

The area of the goal that the goalkeeper is able to cover is also dependent on the velocity of the

ball. Additionally, if the ball travels along the ground, the velocity is reduced to account for

friction. This effectively serves as a disincentive to aiming at a low vertical coordinate point.

The final model attempts to better account for sequential choices. It extends the strategic

options of the penalty taker to include an option of first deciding whether to shoot normally, or

to pretend to shoot. If the penalty taker decides to shoot normally, we are essentially entering

the scenario of the second model. If the penalty taker pretends to shoo, we are also in a similar

situation as that of the second model, except the penalty taker becomes limited to shooting with

a low velocity, resulting in a significant handicap. This is because it's illegal for the penalty

taker to back up and start the run-up again, meaning that the shot now has to be made while

standing still.

While pretending to shoot limits the penalty taker to shooting with a low velocity, it also has a

big potential upside. The goalkeeper may start to move either to the left or the right, giving the

penalty taker solid information about which area of the goal the goalkeeper won't be able to

cover. For example, if the penalty taker fakes the shot, and the goalkeeper starts moving to the

left, the penalty taker can easily score by aiming to the right. In this case, the handicap of having

to shoot with a low velocity will likely be irrelevant. However, if the goalkeeper stays in the

middle, the penalty taker is essentially forced to play a version of the second model which is

disadvantageous. Thus, if the penalty taker incorporates faking the shot into their strategy, the

goalkeeper is incentivized to stay in the middle more often, making it more advantageous for

the penalty taker to shoot normally and aim to a side.

It's important to understand that the objective of this study is to create a framework for

approximating Nash equilibria in penalty kicks, and not to find a specific solution that is

deemed to be optimal in penalty kicks in general. This is because the Nash equilibrium of the

3

4

game is strictly dependent on the inherent capabilities of the players. Some penalty takers will

be able to shoot more accurately than others, and some goalkeepers will be able to cover a

larger area of the goal than others. Additionally, even the same players may not be able to

perform at the same level in all situations. For example, I would expect players to be able to

shoot much more accurately in normal league game, compared to in a penalty shootout in the

world cup final, when stakes are high, and players are likely very nervous. This means that

there are no assumptions about accuracy or goal area that should be viewed as correct. Rather,

some assumptions fit some players in some situations, and other assumptions fit other players

in other situations. Consequently, another main objective is to design framework such that the

user can input the player-dependent assumptions that they think fit their particular set of

players.

game is strictly dependent on the inherent capabilities of the players. Some penalty takers will

be able to shoot more accurately than others, and some goalkeepers will be able to cover a

larger area of the goal than others. Additionally, even the same players may not be able to

perform at the same level in all situations. For example, I would expect players to be able to

shoot much more accurately in normal league game, compared to in a penalty shootout in the

world cup final, when stakes are high, and players are likely very nervous. This means that

there are no assumptions about accuracy or goal area that should be viewed as correct. Rather,

some assumptions fit some players in some situations, and other assumptions fit other players

in other situations. Consequently, another main objective is to design framework such that the

user can input the player-dependent assumptions that they think fit their particular set of

players.

4

5

Background and context
Football, or soccer as it’s called in some regions, is a globally renowned sport. A match involves

two teams, each composed of eleven players, competing on a rectangular field with a goal at

each end. The field is divided in two, where each team defends one half of the field, and attacks

the other. The objective for each team is to manoeuvre a spherical ball into the goal situated at

the end of the opposing team’s half. If a player achieves this, that player has scored a goal. The

duration of a match is contained by a time frame, which generally is 90 minutes. The team that

has scored the most goals at the end of the time frame wins the match. This means that teams

are not only interested in scoring goals, but also to prevent the opposing team from doing so.

A penalty kick is a special subgame of football which occurs when a player commits a foul

within their own penalty area, which is a marked rectangle in front of their goal. The subgame

is a duel between two players – one from each team: the penalty taker and the goalkeeper. In

the penalty kick, the goalkeeper from the team that committed the foul must defend the goal.

The ball is placed on a dot, only 12 yards (approximately 11 meters) away from the centre of

the goal. The other team gets to choose a penalty taker who will kick the ball and attempt to

score a goal.

Various websites (e.g., transfermarkt.co.uk, myfootballfacts.com) track all penalty kicks that

have been awarded in the English Premier League since the league’s inception in 1992. In the

current format of the league, 380 matches are played every season. In the ten seasons between

the 11/12 and 21/22 season, about 105 penalties were awarded per season on average. This

means that a penalty kick has occurred once about every 326th minutes of playtime on average,

which isn’t that rare, considering that each match lasts 90 minutes. Throughout these ten

seasons, about 78.7% of the penalty kicks resulted in a goal. According to myfootballfacts.com,

in the remaining cases, the penalty taker failed to score either as a result of the goalkeeper

stopping the shot, which happened 16.1% of the time, or the ball hitting outside of the goal,

which happened 5.2% of the time.

In an analysis of penalty kicks in football after the year 1997, Dalton et al. (2015) finds that in

matches where a penalty kick was awarded, the team that was awarded the penalty kick ended

up winning in 52.3% of the cases, and only losing 17.5% of the time. Furthermore, if the penalty

kick resulted in a goal, the team won in 60.9% of the cases, and only lost 10.9% of the time. If

the team failed to convert the penalty, the win-rate dropped to a mere 29.4%, and the chance of

a loss increased to a staggering 35.3%.

Background and context
Football, or soccer as it's called in some regions, is a globally renowned sport.A match involves

two teams, each composed of eleven players, competing on a rectangular field with a goal at

each end. The field is divided in two, where each team defends one half of the field, and attacks

the other. The objective for each team is to manoeuvre a spherical ball into the goal situated at

the end of the opposing team's half If a player achieves this, that player has scored a goal. The

duration of a match is contained by a time frame, which generally is 90 minutes. The team that

has scored the most goals at the end of the time frame wins the match. This means that teams

are not only interested in scoring goals, but also to prevent the opposing team from doing so.

A penalty kick is a special subgame of football which occurs when a player commits a foul

within their own penalty area, which is a marked rectangle in front of their goal. The subgame

is a duel between two players - one from each team: the penalty taker and the goalkeeper. In

the penalty kick, the goalkeeper from the team that committed the foul must defend the goal.

The ball is placed on a dot, only 12 yards (approximately 11 meters) away from the centre of

the goal. The other team gets to choose a penalty taker who will kick the ball and attempt to

score a goal.

Various websites (e.g., transfermarkt.co.uk, myfootballfacts.com) track all penalty kicks that

have been awarded in the English Premier League since the league's inception in 1992. In the

current format of the league, 380 matches are played every season. In the ten seasons between

the 11/12 and 21/22 season, about l 05 penalties were awarded per season on average. This

means that a penalty kick has occurred once about every 326thminutes of playtime on average,

which isn't that rare, considering that each match lasts 90 minutes. Throughout these ten

seasons, about 78.7% of the penalty kicks resulted in a goal. According to myfootballfacts.com,

in the remaining cases, the penalty taker failed to score either as a result of the goalkeeper

stopping the shot, which happened 16. l% of the time, or the ball hitting outside of the goal,

which happened 5.2% of the time.

In an analysis of penalty kicks in football after the year 1997, Dalton et al. (2015) finds that in

matches where a penalty kick was awarded, the team that was awarded the penalty kick ended

up winning in 52.3% of the cases, and only losing 17.5% of the time. Furthermore, if the penalty

kick resulted in a goal, the team won in 60.9% of the cases, and only lost 10.9% of the time. If

the team failed to convert the penalty, the win-rate dropped to a mere 29.4%, and the chance of

a loss increased to a staggering 35.3%.

5

6

These dramatic shifts in win-rates demonstrate how vitally important a penalty kick can be to

the outcome of a football match. Consequently, penalty kicks have been subject to extensive

study, encompassing diverse methodologies and areas of focus. Many studies have focused on

statistical analysis of empirical data. This includes the study mentioned earlier, as well as works

by Jordet et al. (2007), who analysed the impact of stress, skill, and fatigue on a penalty kick,

or Bar-Eli et al. (2007) who investigated the determinants of success in penalty kicks, to name

a few. Other studies, such as those conducted by Visscher et al. (2006), and Jordet et al. (2009),

have focused on the psychological aspects of penalty kicks.

Game theory has also been applied to the study of penalty kicks. One such notable study is by

Chiappori et al. (2002). In their research, the authors construct a model of penalty kicks centred

around the idea of a mixed strategy equilibrium. While the model is a good starting point for

understanding penalty kicks through the lens of game theory, it’s too simplistic to adequately

capture the complexity of a real-life penalty kick. To achieve a more nuanced understanding of

Nash equilibria in penalty kicks, more extensive modelling is required. So far, no papers have

been published that attempt this, meaning that there exists a gap in the research, which this

paper will attempt to fill.

In the paper by Chiappori et al., there’s also a focus on testing whether or not player choices

have corresponded well with their approximation of the mixed strategy equilibrium. This is

because the authors view the results of their model as a prediction about human decision-

making. I do not share this perspective. In my view, the solution of the model should be

regarded as guidance for players on how to attain the desired outcome, rather than as a

prediction about the strategies that players have employed historically. There are several

reasons that players may deviate from the equilibrium strategies. For starters, players are almost

certainly ignorant about what the exact equilibrium strategies look like. So, beyond broad

strokes, it’s unreasonable to expect that historical choices and frequencies will line up with

equilibrium strategies.

Game theory
In a game-theoretical analysis, the sole focus is on strategic decision-making. In football, other

factors matter as well, such as technical ability with the ball, or even the ability to control

nerves and maintain composure in high-pressure situations. In my framework, those other

factors are treated as assumptions or parameters in the model. The focus then becomes: Which

These dramatic shifts in win-rates demonstrate how vitally important a penalty kick can be to

the outcome of a football match. Consequently, penalty kicks have been subject to extensive

study, encompassing diverse methodologies and areas of focus. Many studies have focused on

statistical analysis of empirical data. This includes the study mentioned earlier, as well as works

by Jordet et al. (2007), who analysed the impact of stress, skill, and fatigue on a penalty kick,

or Bar-Eli et al. (2007) who investigated the determinants of success in penalty kicks, to name

a few. Other studies, such as those conducted by Visscher et al. (2006), and Jordet et al. (2009),

have focused on the psychological aspects of penalty kicks.

Game theory has also been applied to the study of penalty kicks. One such notable study is by

Chiappari et al. (2002). In their research, the authors construct a model of penalty kicks centred

around the idea of a mixed strategy equilibrium. While the model is a good starting point for

understanding penalty kicks through the lens of game theory, it's too simplistic to adequately

capture the complexity of a real-life penalty kick. To achieve a more nuanced understanding of

Nash equilibria in penalty kicks, more extensive modelling is required. So far, no papers have

been published that attempt this, meaning that there exists a gap in the research, which this

paper will attempt to fill.

In the paper by Chiappari et al., there's also a focus on testing whether or not player choices

have corresponded well with their approximation of the mixed strategy equilibrium. This is

because the authors view the results of their model as a prediction about human decision-

making. I do not share this perspective. In my view, the solution of the model should be

regarded as guidance for players on how to attain the desired outcome, rather than as a

prediction about the strategies that players have employed historically. There are several

reasons that players may deviate from the equilibrium strategies. For starters, players are almost

certainly ignorant about what the exact equilibrium strategies look like. So, beyond broad

strokes, it's unreasonable to expect that historical choices and frequencies will line up with

equilibrium strategies.

Game theory

In a game-theoretical analysis, the sole focus is on strategic decision-making. In football, other

factors matter as well, such as technical ability with the ball, or even the ability to control

nerves and maintain composure in high-pressure situations. In my framework, those other

factors are treated as assumptions or parameters in the model. The focus then becomes: Which

6

7

strategies are optimal, given the assumed level of technical ability? To begin to answer that

question, a solid understanding of game theory is required.

Definition

In common parlance, the word “game” is used to refer to an activity involving decisions,

strategy, competition, and so on. This is in alignment with how the term is used in game theory,

albeit not as specific. However, we generally also think of a game as something that’s done for

entertainment purposes, and that’s not relevant to whether or not an activity is considered a

game in the technical sense. In the textbook “Game Theory: An Introduction” (Rodrigues-Neto,

2014), a game is defined as follows:

“A game consists of players, actions available to each player, and the payoffs that each player

receives for each combination of actions. More formally, a game consists of a set of players, a

set of actions for each player, and a payoff function for each player that maps each possible

combination of actions to a real number representing the payoff that the player receives.”

So, for an activity to be considered a game, it needs to three elements: players, actions, and

payoffs. Implicitly, a game also needs rules, as the rules are the overarching principle that

define the three elements. The rules define the set of possible actions available to each player

at all possible decision points, and the payoffs associated with all possible outcomes. They also

define the flow of the game - who acts when, and what information is available to them at that

decision point. Decisions can be sequential, where players act in turns, with full knowledge of

the previous actions, or they can be simultaneous, where players make their choice without

knowing the decision of the other player(s).

The textbook also provides a definition of the field of game theory:

“Game theory is the study of mathematical models of strategic interaction between rational

decision-makers.”

So, strategic interaction between players is the central theme of game theory. Consequently,

any game worth studying must allow for it. To have interaction between players, you need

multiple players, and to have strategic choices, you need multiple possible actions.

The definition also includes the point that the decision-makers are rational. This effectively

means that the decision-makers have a preference of maximizing their payoffs.

strategies are optimal, given the assumed level of technical ability? To begin to answer that

question, a solid understanding of game theory is required.

Definition

In common parlance, the word "game" is used to refer to an activity involving decisions,

strategy, competition, and so on. This is in alignment with how the term is used in game theory,

albeit not as specific. However, we generally also think of a game as something that's done for

entertainment purposes, and that's not relevant to whether or not an activity is considered a

game in the technical sense. In the textbook "Game Theory: An Introduction" (Rodrigues-Neto,

2014), a game is defined as follows:

"A game consists of players, actions available to each player, and the payoffs that each player

receives for each combination of actions. More formally, a game consists of a set of players, a

set of actions for each player, and a payoff function for each player that maps each possible

combination of actions to a real number representing the payoff that the player receives. "

So, for an activity to be considered a game, it needs to three elements: players, actions, and

payoffs. Implicitly, a game also needs rules, as the rules are the overarching principle that

define the three elements. The rules define the set of possible actions available to each player

at all possible decision points, and the payoffs associated with all possible outcomes. They also

define the flow of the game - who acts when, and what information is available to them at that

decision point. Decisions can be sequential, where players act in tums, with full knowledge of

the previous actions, or they can be simultaneous, where players make their choice without

knowing the decision of the other player(s).

The textbook also provides a definition of the field of game theory:

"Game theory is the study of mathematical models of strategic interaction between rational

decision-makers. "

So, strategic interaction between players is the central theme of game theory. Consequently,

any game worth studying must allow for it. To have interaction between players, you need

multiple players, and to have strategic choices, you need multiple possible actions.

The definition also includes the point that the decision-makers are rational. This effectively

means that the decision-makers have a preference of maximizing their payoffs.

7

8

Some people critique the rationality-assumption, arguing that in experiments, players

sometimes willingly employ strategies that they know won’t maximize their payoff in the

game. Such observations are then used to argue that the player isn’t rational. However, in any

experiment, you cannot know which game the player is truly playing. In my view, if a player

willingly adopts strategies which don’t maximize the intended payoffs, that player is simply

playing a different game, with different payoffs, and is maximizing those instead.

In penalty kicks, it’s generally assumed that the penalty taker and the goalkeeper have

conflicting objectives. We assume the penalty taker is solely interested in scoring a goal, and

that the goalkeeper is solely interested in preventing it. These are the objectives you would

adopt if your sole concern was to win the football match. If this is the case, a rational penalty

taker will employ the strategy they believe maximizes the probability of scoring a goal, and a

rational goalkeeper will employ the strategy they believe minimizes it. In the absence of match

fixing, it looks like we should be confident that players have preferences that align with such

objectives. However, it isn’t necessarily true.

Players may exhibit behavioural biases, causing them to favour certain actions above others,

irrespective of the alternative action yielding a more favourable probability of a goal. For

instance, a goalkeeper may be resistant to staying in the middle of the goal, fearing that it will

leave the impression that there’s a lack of trying, causing backlash from fans and media. In

such a case, the goalkeeper has interests that go beyond the sole concern of winning the football

match. There’s also a concern for reputation. Consequently, the goalkeeper is no longer playing

the game of penalty kicks with payoffs that perfectly align with the payoffs that are assumed

in the game-theoretical models. It isn’t that the player is irrational – it’s just that the player’s

payoffs are different than what is assumed. This is a problem that can lead to a discrepancy

between game-theoretical solutions to models, and what we observe empirically.

While such effects will exist, I believe we can be reasonably confident that most players have

preferences that at least closely mimic those of a player who seeks to maximize the probability

of winning the football match. Just by observing the reactions of players, we can clearly see

that penalty takers generally are delighted by scoring goals, and goalkeepers are delighted if

they manage to prevent it.

Additionally, if players become more aware of what optimal play looks like, they may be more

apt to avoid such behavioural biases. In that sense, solutions to game-theoretical models can

Some people critique the rationality-assumption, argumg that in experiments, players

sometimes willingly employ strategies that they know won't maximize their payoff in the

game. Such observations are then used to argue that the player isn't rational. However, in any

experiment, you cannot know which game the player is truly playing. In my view, if a player

willingly adopts strategies which don't maximize the intended payoffs, that player is simply

playing a different game, with different payoffs, and is maximizing those instead.

In penalty kicks, it's generally assumed that the penalty taker and the goalkeeper have

conflicting objectives. We assume the penalty taker is solely interested in scoring a goal, and

that the goalkeeper is solely interested in preventing it. These are the objectives you would

adopt if your sole concern was to win the football match. If this is the case, a rational penalty

taker will employ the strategy they believe maximizes the probability of scoring a goal, and a

rational goalkeeper will employ the strategy they believe minimizes it. In the absence of match

fixing, it looks like we should be confident that players have preferences that align with such

objectives. However, it isn't necessarily true.

Players may exhibit behavioural biases, causing them to favour certain actions above others,

irrespective of the alternative action yielding a more favourable probability of a goal. For

instance, a goalkeeper may be resistant to staying in the middle of the goal, fearing that it will

leave the impression that there's a lack of trying, causing backlash from fans and media. In

such a case, the goalkeeper has interests that go beyond the sole concern of winning the football

match. There's also a concern for reputation. Consequently, the goalkeeper is no longer playing

the game of penalty kicks with payoffs that perfectly align with the payoffs that are assumed

in the game-theoretical models. It isn't that the player is irrational - it's just that the player's

payoffs are different than what is assumed. This is a problem that can lead to a discrepancy

between game-theoretical solutions to models, and what we observe empirically.

While such effects will exist, I believe we can be reasonably confident that most players have

preferences that at least closely mimic those of a player who seeks to maximize the probability

of winning the football match. Just by observing the reactions of players, we can clearly see

that penalty takers generally are delighted by scoring goals, and goalkeepers are delighted if

they manage to prevent it.

Additionally, if players become more aware of what optimal play looks like, they may be more

apt to avoid such behavioural biases. In that sense, solutions to game-theoretical models can

8

9

help players avoid unconscious biases and help them align their preferences with the intended

objective of maximizing or minimizing the probability of a goal.

A simple toy game

To introduce some key game theory concepts, and its applicability to penalty kicks, I believe it

will be useful to create and examine a very simple version of the game. There are two players,

the penalty taker (PT) and the goalkeeper (GK). The penalty taker has six strategic options: To

shoot far left, to shoot left, to shoot high in the middle, to shoot low in the middle, to shoot

right, or to shoot far right. The goalkeeper has three strategic options: To dive left, to stay in

the middle, or to dive right. The penalty taker and the goalkeeper make their decision

simultaneously, meaning that they do not know what the other will do, at the time of making

their choice.

If the penalty taker scores a goal, they receive a payoff of 1, and if not, they receive a payoff

of 0. If the goalkeeper concedes a goal, they receive a payoff of -1, and if not, they receive a

payoff of 0. If there’s a non-zero and non-certain probability of a goal, the players receive

payoffs equal to the probability. For instance, if a certain combination of choices leaves a 50%

chance of a goal, the penalty taker receives a payoff of 0.5, and the goalkeeper receives a payoff

of -0.5. This type of game falls within the category of zero sum two-player games, because

whatever payoff the penalty taker gains, the goalkeeper loses, so the sum of the payoffs is

always equal to zero. For simple simultaneous choice games like this one, it’s common to

represent the game in the form of a payoff matrix:

 Goalkeeper

Dive left Stay middle Dive right

Penalty

taker

Far left 0.2, -0.2 0.8, -0.8 0.8, -0.8

Left 0, 0 1, -1 1, -1

High middle 1, -1 0, 0 1, -1

Low middle 0.9, -0.9 0, 0 0.9, -0.9

Right 1, -1 1, -1 0, 0

Far right 0.8, -0.8 0.8, -0.8 0.2, -0.2
Table 1: The payoff matrix for a simple model of penalty kicks.

Since the penalty taker has six strategic options, and the goalkeeper has three, there are a total

of 18 possible outcomes. The payoff matrix summarizes the payoffs for both players in all

outcomes of the game. The blue numbers represent the payoffs for the penalty taker, whereas

help players avoid unconscious biases and help them align their preferences with the intended

objective of maximizing or minimizing the probability of a goal.

A simple toy game

To introduce some key game theory concepts, and its applicability to penalty kicks, I believe it

will be useful to create and examine a very simple version of the game. There are two players,

the penalty taker (PT) and the goalkeeper (GK). The penalty taker has six strategic options: To

shoot far left, to shoot left, to shoot high in the middle, to shoot low in the middle, to shoot

right, or to shoot far right. The goalkeeper has three strategic options: To dive left, to stay in

the middle, or to dive right. The penalty taker and the goalkeeper make their decision

simultaneously, meaning that they do not know what the other will do, at the time of making

their choice.

If the penalty taker scores a goal, they receive a payoff of l, and if not, they receive a payoff

of 0. If the goalkeeper concedes a goal, they receive a payoff of -1, and if not, they receive a

payoff of 0. If there's a non-zero and non-certain probability of a goal, the players receive

payoffs equal to the probability. For instance, if a certain combination of choices leaves a 50%

chance of a goal, the penalty taker receives a payoff of 0.5, and the goalkeeper receives a payoff

of -0.5. This type of game falls within the category of zero sum two-player games, because

whatever payoff the penalty taker gains, the goalkeeper loses, so the sum of the payoffs is

always equal to zero. For simple simultaneous choice games like this one, it's common to

represent the game in the form of a payoff matrix:

Goalkeeper

Penalty

taker

Dive left Stay middle Dive right

Far left 0.2, -0.2 0.8, -0.8 0.8, -0.8

Left 0 , 0 l, -1 l, -1

High middle l, -1 0 , 0 l, -1

Low middle 0.9, -0.9 0 , 0 0.9, -0.9

Right l, -1 l, -1 0 , 0

Far right 0.8, -0.8 0.8, -0.8 0.2, -0.2
Table 1: The payoff matrix for a simple model of penalty kicks.

Since the penalty taker has six strategic options, and the goalkeeper has three, there are a total

of 18 possible outcomes. The payoff matrix summarizes the payoffs for both players in all

outcomes of the game. The blue numbers represent the payoffs for the penalty taker, whereas

9

10

the red numbers are the payoffs for the goalkeeper. If the penalty taker chooses to either “shoot

left”, “shoot high middle”, or “shoot right”, we see that the penalty results in a goal 100% of

the time, so long as the goalkeeper doesn’t choose the best corresponding option (i.e., “dive

left” if “shoot left”, etc.). In those cases, the payoffs are 1, and -1. If the goalkeeper selects the

best corresponding option, there’s a 0% chance of a goal, so the payoffs are 0 and 0.

When the penalty taker shoots to the far right or the far left, there’s a 20% chance that they will

miss the goal entirely. This is reflected in the payoffs. Even if the goalkeeper stays in the

middle, or dives in the wrong direction, the penalty taker only receives a payoff of 0.8 (and the

goalkeeper receives -0.8), as opposed to 1 (and -1). The upside of shooting far right or far left,

is that even if the goalkeeper dives in the correct direction, there’s a 20% chance to score

regardless. In these instances, the payoffs are 0.2 for the penalty taker, and -0.2 for the

goalkeeper.

The final option for the penalty taker is to aim low in the middle. With this option, there’s a

10% chance that the goalkeeper manages to stop the shot, despite choosing to dive to the left

or the right. Those scenarios give a payoff of 0.9 for the penalty taker, and -0.9 for the

goalkeeper. If the penalty taker shoots low in the middle, and the goalkeeper chooses to stay in

the middle, the shot is always stopped, meaning that the payoffs are 0 and 0. Notice that the

penalty taker also has the options to “shoot high middle”. This option performs equally well

when the goalkeeper stays in the middle, but better if the goalkeeper dives to either side.

In game theory, if an option always performs worse than another option, regardless of what the

opponent does, we call the option strictly dominated. If it sometimes performs worse than the

other option, but sometimes equally well, it’s weakly dominated. The “shoot low middle”

option is therefore weakly dominated by the “shoot high option”. An example of a strictly

dominated option for the penalty taker could be “shoot outside of the goal”. This would result

in a payoff of 0, regardless of what the goalkeeper does. Such an option would be strictly

dominated by the “shoot far right”- and “shoot far left”-options, as these options always receive

a positive payoff. The “shoot left”-, “shoot right”-, “shoot high middle”-, and “shoot low

middle”-options would actually only weakly dominate “shoot outside of the goal”-option, as

these options sometimes also give a payoff of 0.

Weakly dominated options underperform relative to the alternative if, and only if, the opponent

employs a strategy where the non-equal outcomes sometimes occur. So, for example, the “shoot

low middle”-option only underperforms relative to the “shoot high middle”-option if the

the red numbers are the payoffs for the goalkeeper. If the penalty taker chooses to either "shoot

left", "shoot high middle", or "shoot right", we see that the penalty results in a goal 100% of

the time, so long as the goalkeeper doesn't choose the best corresponding option (i.e., "dive

left" if "shoot left", etc.). In those cases, the payoffs are l, and -1. If the goalkeeper selects the

best corresponding option, there's a 0% chance of a goal, so the payoffs are 0 and 0.

When the penalty taker shoots to the far right or the far left, there's a 20% chance that they will

miss the goal entirely. This is reflected in the payoffs. Even if the goalkeeper stays in the

middle, or dives in the wrong direction, the penalty taker only receives a payoff of 0.8 (and the

goalkeeper receives -0.8), as opposed to l (and -1). The upside of shooting far right or far left,

is that even if the goalkeeper dives in the correct direction, there's a 20% chance to score

regardless. In these instances, the payoffs are 0.2 for the penalty taker, and -0.2 for the

goalkeeper.

The final option for the penalty taker is to aim low in the middle. With this option, there's a

l 0% chance that the goalkeeper manages to stop the shot, despite choosing to dive to the left

or the right. Those scenarios give a payoff of 0.9 for the penalty taker, and -0.9 for the

goalkeeper. If the penalty taker shoots low in the middle, and the goalkeeper chooses to stay in

the middle, the shot is always stopped, meaning that the payoffs are 0 and 0. Notice that the

penalty taker also has the options to "shoot high middle". This option performs equally well

when the goalkeeper stays in the middle, but better if the goalkeeper dives to either side.

In game theory, if an option always performs worse than another option, regardless of what the

opponent does, we call the option strictly dominated. If it sometimes performs worse than the

other option, but sometimes equally well, it's weakly dominated. The "shoot low middle"

option is therefore weakly dominated by the "shoot high option". An example of a strictly

dominated option for the penalty taker could be "shoot outside of the goal". This would result

in a payoff of 0, regardless of what the goalkeeper does. Such an option would be strictly

dominated by the "shoot far right"- and "shoot far left"-options, as these options always receive

a positive payoff. The "shoot left"-, "shoot right"-, "shoot high middle"-, and "shoot low

middle"-options would actually only weakly dominate "shoot outside of the goal"-option, as

these options sometimes also give a payoff of 0.

Weakly dominated options underperform relative to the alternative if, and only if, the opponent

employs a strategy where the non-equal outcomes sometimes occur. So, for example, the "shoot

low middle"-option only underperforms relative to the "shoot high middle"-option if the

10

11

goalkeeper employs a strategy where “dive left” or “dive right” is chosen with a non-zero

frequency.

In game theory, a player’s strategy is a set of probabilities that correspond to their available

options in the game. Here, the penalty taker has six available options. The strategy for the

penalty taker is then a set of six probabilities. The strategy of the goalkeeper, which has three

strategic options, is a set of three probabilities. The player must select among the available

options, and this means that the probabilities must sum to one. An example of a strategy is the

uniform strategy, which picks each option with equal probability. If both players employ this

strategy, the penalty taker would select each option with a probability of ⅙, and the goalkeeper

would select each option with a probability of ⅓. As an example, the uniform strategy for the

penalty taker can be described as [far left: ⅙, left: ⅙, high middle: ⅙, low middle: ⅙, right: ⅙,

far right: ⅙].

The uniform strategy is an example of a what’s called a mixed strategy. A mixed strategy is a

strategy where at least two options are selected with a non-zero probability. Conversely, a pure

strategy is a strategy that selects one option with a 100% frequency, and never selects any of

the other options. As an example, if the goalkeeper employs a pure strategy of “stay middle”,

the strategy can be described as: [dive left: 0, stay middle: 1, dive right: 0].

If we assume the penalty taker employs the uniform strategy, and the goalkeeper employs the

pure strategy of “stay middle”, we can calculate the expected value (EV) of their respective

strategies using the formula:

𝐸𝐸𝐸𝐸 =∑(𝑝𝑝𝑖𝑖 ∗ 𝑝𝑝𝑗𝑗 ∗ 𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗)
𝑖𝑖,𝑗𝑗

Here, 𝑖𝑖 represents the options available to the penalty taker, and 𝑗𝑗 represents the options

available to the goalkeeper.

𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 =
1
6 (0.8 + 1 + 0 + 0 + 1 + 0.8) = 0.6

Given the pure goalkeeper strategy, only the outcomes in the “stay middle”-column of Table 1

can occur – and given the uniform penalty taker strategy, each of those outcomes occur with

an equal probability of ⅙. Therefore, the payoffs from the middle column are distributed with

equal weighting. The calculation for the expected value of the strategy of the goalkeeper would

goalkeeper employs a strategy where "dive left" or "dive right" is chosen with a non-zero

frequency.

In game theory, a player's strategy is a set of probabilities that correspond to their available

options in the game. Here, the penalty taker has six available options. The strategy for the

penalty taker is then a set of six probabilities. The strategy of the goalkeeper, which has three

strategic options, is a set of three probabilities. The player must select among the available

options, and this means that the probabilities must sum to one. An example of a strategy is the

uniform strategy, which picks each option with equal probability. If both players employ this

strategy, the penalty taker would select each option with a probability of¼, and the goalkeeper

would select each option with a probability of½. As an example, the uniform strategy for the

penalty taker can be described as [far left: ¼, left: ¼, high middle: ¼, low middle: ¼, right: ¼,

far right: ¼].

The uniform strategy is an example of a what's called a mixed strategy. A mixed strategy is a

strategy where at least two options are selected with a non-zero probability. Conversely, a pure

strategy is a strategy that selects one option with a l 00% frequency, and never selects any of

the other options. As an example, if the goalkeeper employs a pure strategy of "stay middle",

the strategy can be described as: [dive left: 0, stay middle: l, dive right: 0].

If we assume the penalty taker employs the uniform strategy, and the goalkeeper employs the

pure strategy of "stay middle", we can calculate the expected value (EV) of their respective

strategies using the formula:

E V = L (P i -», *EVij)
i.j

Here, i represents the options available to the penalty taker, and j represents the options

available to the goalkeeper.

1
EVPT=6 (0.8 + 1 + 0 + 0 + 1 + 0.8) = 0.6

Given the pure goalkeeper strategy, only the outcomes in the "stay middle"-column of Table l

can occur - and given the uniform penalty taker strategy, each of those outcomes occur with

an equal probability of¼. Therefore, the payoffs from the middle column are distributed with

equal weighting. The calculation for the expected value of the strategy of the goalkeeper would

11

12

be similar, but since this is a two-player zero sum game, there is no need to make the

calculation. The expected values of the strategies must sum to zero, meaning that:

𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺 = −𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 = −0.6

For a moment, let’s stay with the assumption that the goalkeeper plays a pure “stay middle”-

strategy, and that this strategy is fixed. Given this, what should the penalty taker do in order to

maximize their payoff? Both of the choices that involve shooting towards the middle yield a

payoff of zero. The options of shooting to the “far left” or the “far right” yield a payoff of 0.8,

whereas the options of shooting to the “left” or to the “right” yield a payoff of 1. Therefore, it’s

clear that to maximize their payoffs, the penalty taker should stick with either shooting “right”,

or “left”. Such a strategy is called the best response strategy. It’s the best possible response

against a specific strategy – in this case, the goalkeeper’s pure “stay middle”-strategy.

There may exist only one best response strategy, or there may exist infinitely many. For there

to only exist one best response strategy, one option needs to outperform all others, such that

the best response strategy becomes a pure strategy of always selecting that option. In game

theory, when two options yield the same payoff, we say that the player is indifferent between

the options. In this case, “left” and “right” yield to same payoff, so the penalty taker is

indifferent between the options, and there are infinitely many best response strategies. This is

because the penalty taker maximizes their payoff regardless of the probability weightings of

“left” and “right”, as long as those weightings sum to 1, meaning that there are infinitely many

combinations.

Let’s now assume the penalty taker employs one of the possible best response strategies,

namely, to shoot “left” with a probability of 0.5, and to shoot “right” with a probability of 0.5.

If we let the goalkeeper update their strategy, what should the goalkeeper do in order to

maximize their payoff? Now, “stay middle” is guaranteed to yield a payoff of -1, whereas “dive

left” and “dive right” both have a 50% probability of yielding a payoff of 0, and an 50%

probability of yielding a payoff of -1. This means that the expected payoff of “dive left” and

“dive right” is now equal to -0.5. This is preferable to the guaranteed payoff of -1 when

selecting “stay middle”. Therefore, the goalkeeper’s best response strategy involves only

selecting the “dive left”- or “dive right”-options, and again, this means that there’s an infinite

amount of best response strategies.

We could continue down this path and assume that the goalkeeper now adopts a strategy that

selects “dive left” with a probability of 0.5, and “dive right” with a probability of 0.5, and that

be similar, but since this is a two-player zero sum game, there is no need to make the

calculation. The expected values of the strategies must sum to zero, meaning that:

EVcK = - E V P T= - 0 . 6

For a moment, let's stay with the assumption that the goalkeeper plays a pure "stay middle"-

strategy, and that this strategy is fixed. Given this, what should the penalty taker do in order to

maximize their payoff? Both of the choices that involve shooting towards the middle yield a

payoff of zero. The options of shooting to the "far left" or the "far right" yield a payoff of 0.8,

whereas the options of shooting to the "left" or to the "right" yield a payoff of l. Therefore, it's

clear that to maximize their payoffs, the penalty taker should stick with either shooting "right",

or "left". Such a strategy is called the best response strategy. It's the best possible response

against a specific strategy - in this case, the goalkeeper's pure "stay middle"-strategy.

There may exist only one best response strategy, or there may exist infinitely many. For there

to only exist one best response strategy, one option needs to outperform all others, such that

the best response strategy becomes a pure strategy of always selecting that option. In game

theory, when two options yield the same payoff, we say that the player is indifferent between

the options. In this case, "left" and "right" yield to same payoff, so the penalty taker is

indifferent between the options, and there are infinitely many best response strategies. This is

because the penalty taker maximizes their payoff regardless of the probability weightings of

"left" and "right", as long as those weightings sum to l, meaning that there are infinitely many

combinations.

Let's now assume the penalty taker employs one of the possible best response strategies,

namely, to shoot "left" with a probability of0.5, and to shoot "right" with a probability of 0.5.

If we let the goalkeeper update their strategy, what should the goalkeeper do in order to

maximize their payoff? Now, "stay middle" is guaranteed to yield a payoff of -1, whereas "dive

left" and "dive right" both have a 50% probability of yielding a payoff of 0, and an 50%

probability of yielding a payoff of -1. This means that the expected payoff of "dive left" and

"dive right" is now equal to -0.5. This is preferable to the guaranteed payoff of -1 when

selecting "stay middle". Therefore, the goalkeeper's best response strategy involves only

selecting the "dive left"- or "dive right"-options, and again, this means that there's an infinite

amount of best response strategies.

We could continue down this path and assume that the goalkeeper now adopts a strategy that

selects "dive left" with a probability of 0.5, and "dive right" with a probability of 0.5, and that

12

13

the penalty taker is free to update their strategy again. The penalty taker would then end up

with a single best response strategy of always shooting “high middle”. Given this, if we let the

goalkeeper readjust, they would favour to always select “stay middle”. In the next iteration, the

penalty taker would be back to being indifferent between “shoot left” and “shoot right”. This

back-and-forth would continue indefinitely.

As we have seen, whenever we have perfect knowledge about the strategy the opponent

employs, we can find the optimal strategy against that strategy. It’s even rather trivial to do so.

The only problem with this is that, in reality, it’s highly unlikely that you find yourself in a

situation where you have perfect knowledge about the strategy of the opponent. So, what we

really need to answer is: What should we do, assuming that we don’t know which strategy the

opponent employs?

Nash equilibrium

In 1951, a paper that would revolutionize the field of game theory was published. It was called

“Non-Cooperative Games”, and the author was an American mathematician named John Nash.

In his paper, Nash introduced and formalized a concept that would later be named after him:

the Nash equilibrium. In 1994, he was jointly awarded the Nobel Memorial Prize in Economics

for this particular contribution.

The word “equilibrium” has its roots in two Latin words, “aequus” and “libra”. The former

means “equal” or “even”, and the latter can be translated to “balance” or “scales”. In general,

an equilibrium is a state of stability in a system. This has relevance to many fields beyond game

theory. For example, in physics, it can refer to a state in which all forces acting on an object

are in balance, resulting in constant velocity, or in ecology, it can refer to a state in which the

birth rate equals the death rate, resulting in a stable population.

A Nash equilibrium is a set of strategies that are such that no player can increase their payoff

by unilaterally deviating from their current strategy. In other words, we have a Nash

equilibrium when all players are playing the best response strategy (to each other’s strategies)

simultaneously. So, in game theory, just like in other fields, an equilibrium refers to a state of

stability in a system. It refers to a state of a game where all players are maximizing their

payoffs, resulting in stable strategies.

In his original paper, Nash proved that every non-cooperative game with a finite number of

players, and a finite number of possible actions, has at least one Nash equilibrium. In the game

of penalty kicks, there’s only two players. However, if space is continuous, one can argue that

the penalty taker is free to update their strategy again. The penalty taker would then end up

with a single best response strategy of always shooting "high middle". Given this, i fwe let the

goalkeeper readjust, they would favour to always select "stay middle". In the next iteration, the

penalty taker would be back to being indifferent between "shoot left" and "shoot right". This

back-and-forth would continue indefinitely.

As we have seen, whenever we have perfect knowledge about the strategy the opponent

employs, we can find the optimal strategy against that strategy. It's even rather trivial to do so.

The only problem with this is that, in reality, it's highly unlikely that you find yourself in a

situation where you have perfect knowledge about the strategy of the opponent. So, what we

really need to answer is: What should we do, assuming that we don 1 know which strategy the

opponent employs?

Nash equilibrium

In 1951, a paper that would revolutionize the field of game theory was published. It was called

"Non-Cooperative Games", and the author was an American mathematician named John Nash.

In his paper, Nash introduced and formalized a concept that would later be named after him:

the Nash equilibrium. In 1994, he was jointly awarded the Nobel Memorial Prize in Economics

for this particular contribution.

The word "equilibrium" has its roots in two Latin words, "aequus" and "libra". The former

means "equal" or "even", and the latter can be translated to "balance" or "scales". In general,

an equilibrium is a state of stability in a system. This has relevance to many fields beyond game

theory. For example, in physics, it can refer to a state in which all forces acting on an object

are in balance, resulting in constant velocity, or in ecology, it can refer to a state in which the

birth rate equals the death rate, resulting in a stable population.

A Nash equilibrium is a set of strategies that are such that no player can increase their payoff

by unilaterally deviating from their current strategy. In other words, we have a Nash

equilibrium when all players are playing the best response strategy (to each other's strategies)

simultaneously. So, in game theory, just like in other fields, an equilibrium refers to a state of

stability in a system. It refers to a state of a game where all players are maximizing their

payoffs, resulting in stable strategies.

In his original paper, Nash proved that every non-cooperative game with a finite number of

players, and a finite number of possible actions, has at least one Nash equilibrium. In the game

of penalty kicks, there's only two players. However, if space is continuous, one can argue that

13

14

we have an infinite number of possible actions. Regardless, when modelling penalty kicks, we

can treat space as being discrete, such that the number of options will be finite and countable.

Therefore, there will be at least one Nash equilibrium in all models.

In addition to players simultaneously maximizing payoffs, the properties of a Nash equilibrium

can also be understood from a dual perspective. Exploitability is a metric that assesses the

potential vulnerabilities or weaknesses in a player’s strategy, quantifying the degree to which

an opponent can deviate from their current strategy and gain an advantage. More specifically,

exploitability measures how much expected value an opponent could gain by adopting the best

response strategy relative to their current strategy. In a Nash equilibrium, all players are playing

best response strategies simultaneously, so all of their strategies have an exploitability of zero.

Consequently, a Nash equilibrium is a set of strategies that arise when all players are

minimizing the exploitability of their strategy. So, there are two sides to the coin: When all

players maximize payoffs, all players minimize exploitability, and vice versa.

From this perspective it becomes natural to view the Nash equilibrium strategies as maximally

defensive strategies. It’s a set of strategies that are impossible to gain an advantage against. In

penalty kicks, if two teams with players of equal technical ability alternated between playing

as the penalty taker and as the goalkeeper, and one team employed true Nash equilibrium

strategies, it would be impossible for the opposing team to achieve an expected value above

zero. However, if the opposing team sometimes selects suboptimal options, their expected

value will be negative. To illustrate this, let’s examine the solution of the simple toy game from

Table 1. The Nash equilibrium strategies turn out to be:

Penalty taker: [far left: 0, left: ⅓, high middle: ⅓, low middle: 0, right: ⅓, far right: 0]

Goalkeeper: [dive left: ⅓, stay middle: ⅓, dive right: ⅓]

Given these strategies, the expected payoff for the penalty taker will be ⅔, and -⅔ for the

goalkeeper. This is found by taking the probability of each scenario multiplied with the payoff

associated with that scenario and adding them all up.

In the solution, both players are employing mixed strategies, meaning that this is a mixed-

strategy Nash equilibrium. A player is indifferent between two options if both options yield the

same expected value. We also know that the players are maximizing their payoffs. This gives

rise to an important corollary: If a player maximizes payoffs, and employs a mixed strategy,

the player must be indifferent between the options that are chosen at a non-zero frequency. If

we have an infinite number of possible actions. Regardless, when modelling penalty kicks, we

can treat space as being discrete, such that the number of options will be finite and countable.

Therefore, there will be at least one Nash equilibrium in all models.

In addition to players simultaneously maximizing payoffs, the properties of a Nash equilibrium

can also be understood from a dual perspective. Exploitability is a metric that assesses the

potential vulnerabilities or weaknesses in a player's strategy, quantifying the degree to which

an opponent can deviate from their current strategy and gain an advantage. More specifically,

exploitability measures how much expected value an opponent could gain by adopting the best

response strategy relative to their current strategy. In a Nash equilibrium, all players are playing

best response strategies simultaneously, so all of their strategies have an exploitability of zero.

Consequently, a Nash equilibrium is a set of strategies that arise when all players are

minimizing the exploitability of their strategy. So, there are two sides to the coin: When all

players maximize payoffs, all players minimize exploitability, and vice versa.

From this perspective it becomes natural to view the Nash equilibrium strategies as maximally

defensive strategies. It's a set of strategies that are impossible to gain an advantage against. In

penalty kicks, if two teams with players of equal technical ability alternated between playing

as the penalty taker and as the goalkeeper, and one team employed true Nash equilibrium

strategies, it would be impossible for the opposing team to achieve an expected value above

zero. However, if the opposing team sometimes selects suboptimal options, their expected

value will be negative. To illustrate this, let's examine the solution of the simple toy game from

Table l. The Nash equilibrium strategies tum out to be:

Penalty taker: [far left: 0, left: ½, high middle: ½, low middle: 0, right: ½, far right: 0]

Goalkeeper: [dive left: ½, stay middle: ½, dive right: ½]

Given these strategies, the expected payoff for the penalty taker will be ½, and -½ for the

goalkeeper. This is found by taking the probability of each scenario multiplied with the payoff

associated with that scenario and adding them all up.

In the solution, both players are employing mixed strategies, meaning that this is a mixed-

strategy Nash equilibrium. A player is indifferent between two options if both options yield the

same expected value. We also know that the players are maximizing their payoffs. This gives

rise to an important corollary: If a player maximizes payoffs, and employs a mixed strategy,

the player must be indifferent between the options that are chosen at a non-zero frequency. If

14

15

this wasn’t the case, the player could increase their expected payoff by deviating from the

current strategy and selecting the more favourable option. So, let’s check that all the options a

player plays at a non-zero probability actually yield the same expected value:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡:

{

 𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

2
3

𝐸𝐸𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 =
2
3

𝐸𝐸𝐸𝐸𝑟𝑟𝑖𝑖𝑖𝑖ℎ𝑙𝑙 =
2
3

 𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑝𝑝𝑃𝑃𝑡𝑡:

{

 𝐸𝐸𝐸𝐸𝑚𝑚𝑖𝑖𝑑𝑑𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −23
𝐸𝐸𝐸𝐸𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 = −23
𝐸𝐸𝐸𝐸𝑚𝑚𝑖𝑖𝑑𝑑𝑙𝑙 𝑟𝑟𝑖𝑖𝑖𝑖ℎ𝑙𝑙 = −

2
3

Once again, the expected values are derived by multiplying the probability of the scenarios

with their associated payoffs and add them all up. As we can see, each option for each player

yields the same expected payoff, which is also equal to the expected payoff of their overall

strategy. This verifies that the players are indifferent between the options. To verify that the set

of strategies qualify as a Nash equilibrium, we also need to examine the expected value of the

other options available to the players (in this case, only to the penalty taker):

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡:

{

 𝐸𝐸𝐸𝐸𝑙𝑙𝑠𝑠𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 0.2 ∗

1
3 + 0.8 ∗

1
3 + 0.8 ∗

1
3 = 0.6

𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 = 0.9 ∗
1
3 + 0 ∗

1
3 + 0.9 ∗

1
3 = 0.6

𝐸𝐸𝐸𝐸𝑙𝑙𝑠𝑠𝑟𝑟 𝑟𝑟𝑖𝑖𝑖𝑖ℎ𝑙𝑙 = 0.2 ∗
1
3 + 0.8 ∗

1
3 + 0.8 ∗

1
3 = 0.6

As we can see, all of these options are inferior to the played options, as they only yield an

expected value of 0.6, as opposed to ⅔. This means that it’s impossible for either player to

increase their payoff by deviating from their current strategy, verifying that the current

strategies qualify as a Nash equilibrium.

The lower expected value associated with “far left”, “low middle”, or “far right” illustrate how

a Nash equilibrium strategy can obtain an advantage against certain opponents. Any opponent

who employs a strategy that plays either “far left”, “low middle” or “far right” with a non-zero

frequency will be at a disadvantage and lose expected value against the Nash equilibrium

strategy. In a simple toy game such as this one, it may seem trivial to avoid such options.

However, in an actual penalty kick, where the available options are far more complex, it can

be very difficult to discern which options will lose expected value. Therefore, adopting Nash

equilibrium strategies can be very fruitful, and yield a significant advantage against such

opponents.

this wasn't the case, the player could increase their expected payoff by deviating from the

current strategy and selecting the more favourable option. So, let's check that all the options a

player plays at a non-zero probability actually yield the same expected value:

Penalty taker:

2
E V i e f t = 3

2
E V h i g h m i d d l e = 3

2
E V r i g h t = 3

Goalkeeper:

2
E V d i v e l e f t = -3

2
E V s t a y m i d d l e = - 3

2
EV dive r i g h t = -3

Once again, the expected values are derived by multiplying the probability of the scenarios

with their associated payoffs and add them all up. As we can see, each option for each player

yields the same expected payoff, which is also equal to the expected payoff of their overall

strategy. This verifies that the players are indifferent between the options. To verify that the set

of strategies qualify as a Nash equilibrium, we also need to examine the expected value of the

other options available to the players (in this case, only to the penalty taker):

Penalty taker:

1 1 1
E V f a r l e f t = 0.2 * 3+ 0.8 * 3 + 0.8 * 3 = 0.6

1 1 1
E V z o w m i d d l e = 0.9 * 3 + 0 * 3+ 0.9 * 3 = 0.6

1 1 1
E V f a r r i g h t = 0.2 * 3+ 0.8 * 3+ 0.8 * 3 = 0.6

As we can see, all of these options are inferior to the played options, as they only yield an

expected value of 0.6, as opposed to ½. This means that it's impossible for either player to

increase their payoff by deviating from their current strategy, verifying that the current

strategies qualify as a Nash equilibrium.

The lower expected value associated with "far left", "low middle", or "far right" illustrate how

a Nash equilibrium strategy can obtain an advantage against certain opponents. Any opponent

who employs a strategy that plays either "far left", "low middle" or "far right" with a non-zero

frequency will be at a disadvantage and lose expected value against the Nash equilibrium

strategy. In a simple toy game such as this one, it may seem trivial to avoid such options.

However, in an actual penalty kick, where the available options are far more complex, it can

be very difficult to discern which options will lose expected value. Therefore, adopting Nash

equilibrium strategies can be very fruitful, and yield a significant advantage against such

opponents.

15

16

When up against the Nash equilibrium strategies, in a two-player zero sum game, where both

players play both roles equally often, the best you can do is to tie. A common misconception is

that to do so, you have to adopt Nash equilibrium strategies yourself. However, it’s enough to

successfully avoid playing any of the suboptimal options. The frequencies at which the optimal

options are selected don’t have to align with those of the equilibrium. For instance, in the toy

game, you could employ a set of strategies where you always choose “high middle” as the

penalty taker, and always “stay middle” as the goalkeeper, and still tie against the Nash

equilibrium strategies. This is because, when holding the opponent’s strategy constant, the

“high middle” option has the same expected value as the strategy of the penalty taker, and the

“stay middle” option has the same expected value as the strategy of the goalkeeper. While such

a set of strategies would tie against the Nash equilibrium strategies, they would be highly

exploitable.

So, there are two classes of exploitable strategies. There are the ones that lose expected value

against the Nash equilibrium strategies, simply as a result of selecting suboptimal options with

a non-zero frequency. Then there’s the other class, which never selects suboptimal options, but

are exploitable because the frequencies are suboptimal. Gaining an advantage against this

second class of exploitable strategies is only possible by deviating from the Nash equilibrium

as well. It requires the adoption of a strategy that actively attempts to take advantage of the

weaknesses of the strategy of the opponent. Such strategies are called exploitative strategies.

Unlike Nash equilibrium strategies, which are maximally defensive, exploitative strategies are

offensive in nature. As the exploitative strategy is created in an attempt to exploit the

vulnerabilities in the opponent’s strategy, it deviates from the Nash equilibrium, thereby

introducing vulnerabilities of its own. This is risky, because if the opponent’s strategy is

misjudged, and it actually turns out that the opponent is one step ahead, as opposed to the

reverse, you end up losing expected value rather than gaining it. For instance, if the penalty

taker believes the goalkeeper never chooses “stay middle”, the penalty taker may adopt an

exploitative strategy of always choosing “high middle”. If the penalty taker is correct, the

penalty kick will always result in a goal, meaning that their expected payoff will increase to 1.

This is a solid improvement relative to the expected payoff of ⅔, which the penalty taker would

be entitled to if both players adopted Nash equilibrium strategies. However, the penalty taker

may be mistaken in their assumptions about the goalkeeper’s strategy. In the worst case, where

the penalty taker is just entirely wrong, the goalkeeper could employ a strategy of selecting

When up against the Nash equilibrium strategies, in a two-player zero sum game, where both

players play both roles equally often, the best you can do is to tie. A common misconception is

that to do so, you have to adopt Nash equilibrium strategies yourself. However, it's enough to

successfully avoid playing any of the suboptimal options. The frequencies at which the optimal

options are selected don't have to align with those of the equilibrium. For instance, in the toy

game, you could employ a set of strategies where you always choose "high middle" as the

penalty taker, and always "stay middle" as the goalkeeper, and still tie against the Nash

equilibrium strategies. This is because, when holding the opponent's strategy constant, the

"high middle" option has the same expected value as the strategy of the penalty taker, and the

"stay middle" option has the same expected value as the strategy of the goalkeeper. While such

a set of strategies would tie against the Nash equilibrium strategies, they would be highly

exploitable.

So, there are two classes of exploitable strategies. There are the ones that lose expected value

against the Nash equilibrium strategies, simply as a result of selecting suboptimal options with

a non-zero frequency. Then there's the other class, which never selects suboptimal options, but

are exploitable because the frequencies are suboptimal. Gaining an advantage against this

second class of exploitable strategies is only possible by deviating from the Nash equilibrium

as well. It requires the adoption of a strategy that actively attempts to take advantage of the

weaknesses of the strategy of the opponent. Such strategies are called exploitative strategies.

Unlike Nash equilibrium strategies, which are maximally defensive, exploitative strategies are

offensive in nature. As the exploitative strategy is created in an attempt to exploit the

vulnerabilities in the opponent's strategy, it deviates from the Nash equilibrium, thereby

introducing vulnerabilities of its own. This is risky, because if the opponent's strategy is

misjudged, and it actually tums out that the opponent is one step ahead, as opposed to the

reverse, you end up losing expected value rather than gaining it. For instance, if the penalty

taker believes the goalkeeper never chooses "stay middle", the penalty taker may adopt an

exploitative strategy of always choosing "high middle". If the penalty taker is correct, the

penalty kick will always result in a goal, meaning that their expected payoff will increase to l.

This is a solid improvement relative to the expected payoff of½, which the penalty taker would

be entitled to if both players adopted Nash equilibrium strategies. However, the penalty taker

may be mistaken in their assumptions about the goalkeeper's strategy. In the worst case, where

the penalty taker is just entirely wrong, the goalkeeper could employ a strategy of selecting

16

17

“stay middle” with a 100% frequency, which then results in a zero probability of a goal, and

expected payoffs of zero to both players.

Once you enter the realm of exploitative strategies, it’s really all a question of who can be one

step ahead of the other. That’s not to say that there’s no place for deviating from the Nash

equilibrium. Sometimes, you truly have solid information the specific tendencies of the

opponent, and it would be foolish not to try to take advantage of it. However, the question I

originally raised regarded what to do when there’s a lack of information. What do we do if

we’re completely agnostic about the composition of the opponent’s strategy? The answer is

that the Nash equilibrium strategies function as the best baseline approach.

Additionally, an improved knowledge about what the Nash equilibrium strategies look like may

also help players recognize vulnerabilities in the opponent’s gameplan. After all, it’s hard to

know in which manner the opponent is deviating from the Nash equilibrium, if you don’t have

an idea about what the equilibrium looks like. Therefore, knowledge about Nash equilibrium

strategies is not only useful for players that want to develop an unexploitable gameplan, but

also for players that want to actively attack the weaknesses of the opponent.

So, now that it’s clear that we want to find the Nash equilibrium strategies, the question

becomes: How can we find them? The toy game is simple enough that you can solve it simply

by thinking about it, and verifying the solution by hand. However, once there are many more

combinations of options, this isn’t feasible. In the example, we continuously updated one

player’s strategy to be the best response strategy to the other player’s fixed strategy, alternating

between which player’s strategy was held fixed, and which player’s strategy was being

updated. This resulted in an indefinite back-and-forth, and there was no convergence towards

an equilibrium. Thankfully, there exists an algorithm we can use.

Counterfactual regret minimization
In a paper called “Regret Minimization in Games with Incomplete Information”, Zinkevick et

al. (2007) introduced the Counterfactual Regret Minimization (CFR) algorithm. The algorithm

is an effective method for approximating Nash equilibrium strategies in games with incomplete

information, particularly for two-player zero sum games. The paper demonstrates the

algorithm’s ability to learn near-optimal strategies for various games. Notably, the algorithm

has been used to approximate optimal play in games as complex as No Limit Texas Hold’em

(Moravčík et al., 2017), creating AI agents operating at a superhuman level of precision. The

success of the algorithm in games like poker has also inspired researchers to explore its

"stay middle" with a l 00% frequency, which then results in a zero probability of a goal, and

expected payoffs of zero to both players.

Once you enter the realm of exploitative strategies, it's really all a question of who can be one

step ahead of the other. That's not to say that there's no place for deviating from the Nash

equilibrium. Sometimes, you truly have solid information the specific tendencies of the

opponent, and it would be foolish not to try to take advantage of it. However, the question I

originally raised regarded what to do when there's a lack of information. What do we do if

we're completely agnostic about the composition of the opponent's strategy? The answer is

that the Nash equilibrium strategies function as the best baseline approach.

Additionally, an improved knowledge about what the Nash equilibrium strategies look like may

also help players recognize vulnerabilities in the opponent's gameplan. After all, it's hard to

know in which manner the opponent is deviating from the Nash equilibrium, if you don't have

an idea about what the equilibrium looks like. Therefore, knowledge about Nash equilibrium

strategies is not only useful for players that want to develop an unexploitable gameplan, but

also for players that want to actively attack the weaknesses of the opponent.

So, now that it's clear that we want to find the Nash equilibrium strategies, the question

becomes: How can we find them? The toy game is simple enough that you can solve it simply

by thinking about it, and verifying the solution by hand. However, once there are many more

combinations of options, this isn't feasible. In the example, we continuously updated one

player's strategy to be the best response strategy to the other player's fixed strategy, alternating

between which player's strategy was held fixed, and which player's strategy was being

updated. This resulted in an indefinite back-and-forth, and there was no convergence towards

an equilibrium. Thankfully, there exists an algorithm we can use.

Counterfactual regret minimization

In a paper called "Regret Minimization in Games with Incomplete Information", Zinkevick et

al. (2007) introduced the Counterfactual Regret Minimization (CFR) algorithm. The algorithm

is an effective method for approximating Nash equilibrium strategies in games with incomplete

information, particularly for two-player zero sum games. The paper demonstrates the

algorithm's ability to learn near-optimal strategies for various games. Notably, the algorithm

has been used to approximate optimal play in games as complex as No Limit Texas Hold'em

(Moraveik et al., 2017), creating AI agents operating at a superhuman level of precision. The

success of the algorithm in games like poker has also inspired researchers to explore its

17

18

potential in various other applications. An example of such an application is negotiation or

bargaining scenarios (Baarslag, Kaisers, Gerding, & Jonker, 2017). I’m going to use the CFR-

algorithm to approximate Nash equilibrium in penalty kicks. This chapter will serve as an

introduction to how the algorithm works.

Counterfactual regret is a key concept to understand in the CFR-algorithm. At any decision

point, a player may employ a mixed strategy, meaning more than one option is selected with a

non-zero frequency. Nevertheless, every time the player is faced with a decision, they need to

pick a specific action. For instance, in a penalty kick, the penalty taker may employ a mixed

strategy where they sometimes aim to shoot to the left side and sometimes to the right side, but

that doesn’t mean that they can aim to shoot to both sides at once. Every time they take a

penalty kick, they must choose a specific side. The choice that was made can be viewed as the

factual choice, whereas the choices that could have been made, but weren’t, are the

counterfactual choices. So, when we are talking about counterfactual regret, we are talking

about regret associated with possible actions that weren’t taken.

All choices have an expected value. The expected value of a choice is the payoff the player will

receive on average by making that choice. Usually, this will be subject to which strategy the

opponent employs. If the opponent has a strategy that performs well against a choice, that

choice will have a lower expected value than if the strategy of the opponent performs poorly

against it. For instance, if the penalty taker chooses to aim to shoot to the left, and the

goalkeeper’s strategy rarely involves diving in that direction, the penalty taker’s choice will

have a much higher expected value than if the goalkeeper employs a strategy that dives in that

direction frequently. We can only know the expected value of the penalty taker’s choice if we

have perfect information about the strategy of the goalkeeper. To calculate regret, we need to

be in possession of that knowledge.

Counterfactual regret is a measure the difference in expected value between choices. It

measures the expected value of a counterfactual choice, relative to the factual choice, given a

specific opponent strategy. It quantifies how much better or worse off a player would have been

if they had chosen a different action. If a counterfactual choice would have resulted in a higher

expected value than the factual choice, the regret is positive, and if the opposite is true, the

regret is negative. The regret associated with a counterfactual option is simply a comparison of

expected value (EV) between that option and the factual option. Mathematically, the

counterfactual regret can be expressed as:

potential in various other applications. An example of such an application is negotiation or

bargaining scenarios (Baarslag, Kaisers, Gerding, & Jonker, 2017). I 'm going to use the CFR-

algorithm to approximate Nash equilibrium in penalty kicks. This chapter will serve as an

introduction to how the algorithm works.

Counterfactual regret is a key concept to understand in the CPR-algorithm. At any decision

point, a player may employ a mixed strategy, meaning more than one option is selected with a

non-zero frequency. Nevertheless, every time the player is faced with a decision, they need to

pick a specific action. For instance, in a penalty kick, the penalty taker may employ a mixed

strategy where they sometimes aim to shoot to the left side and sometimes to the right side, but

that doesn't mean that they can aim to shoot to both sides at once. Every time they take a

penalty kick, they must choose a specific side. The choice that was made can be viewed as the

factual choice, whereas the choices that could have been made, but weren't, are the

counterfactual choices. So, when we are talking about counterfactual regret, we are talking

about regret associated with possible actions that weren't taken.

All choices have an expected value. The expected value of a choice is the payoff the player will

receive on average by making that choice. Usually, this will be subject to which strategy the

opponent employs. If the opponent has a strategy that performs well against a choice, that

choice will have a lower expected value than if the strategy of the opponent performs poorly

against it. For instance, if the penalty taker chooses to aim to shoot to the left, and the

goalkeeper's strategy rarely involves diving in that direction, the penalty taker's choice will

have a much higher expected value than if the goalkeeper employs a strategy that dives in that

direction frequently. We can only know the expected value of the penalty taker's choice if we

have perfect information about the strategy of the goalkeeper. To calculate regret, we need to

be in possession of that knowledge.

Counterfactual regret is a measure the difference in expected value between choices. It

measures the expected value of a counterfactual choice, relative to the factual choice, given a

specific opponent strategy. It quantifies how much better or worse off a player would have been

if they had chosen a different action. If a counterfactual choice would have resulted in a higher

expected value than the factual choice, the regret is positive, and if the opposite is true, the

regret is negative. The regret associated with a counterfactual option is simply a comparison of

expected value (EV) between that option and the factual option. Mathematically, the

counterfactual regret can be expressed as:

18

19

𝑅𝑅𝑃𝑃𝑅𝑅𝑡𝑡𝑃𝑃𝑃𝑃𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝑙𝑙𝑜𝑜𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑟𝑟𝑙𝑙𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝑙𝑙𝑜𝑜𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐 − 𝐸𝐸𝐸𝐸𝑙𝑙𝑠𝑠𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑙𝑙 𝑙𝑙𝑜𝑜𝑙𝑙𝑖𝑖𝑙𝑙𝑐𝑐

There’s always only one factual option, but there may be many counterfactual options. If a

decision point has 𝑃𝑃 possible options, there will be 𝑃𝑃 − 1 counterfactual options, and just as

many counterfactual regret values.

Now that we understand the concept of counterfactual regret, it’s time to focus on how the

algorithm works. The algorithm is iterative, meaning that it simulates many rounds of play. To

simulate a round of play, actions for both players are chosen randomly, according to the

probability weightings of their strategies. In the first iteration, both players are playing

strategies where all possible choices are weighted with equal probability. From one iteration to

the next, the strategies of the players are updated. The principle which decides the composition

of the strategies for the next iteration is called regret matching.

At each iteration, the counterfactual regret values for all possible choices are computed. This

gets added to the sum of counterfactual regret values for each option, throughout all previous

iterations. Each option has its respective sum of counterfactual regret. These sums form the

basis of deciding the strategies in the next iteration. Some sums will be negative, and others

will be positive. If the counterfactual regret sum of an option is negative, that option will have

zero probability in the next strategy. The strategy for the next iteration will only match the

positive regret sums. The probabilities of all options in a strategy needs to sum to one, so to

determine the next strategy, the positive regret sums are normalized. As an example, if there

are five options, A, B, C, D, and E, and these have the respective counterfactual regret sums of

-10, 20, 10, 20, and -10, option A and E will be played with zero probability in the next iteration,

since their sums are negative. Option B and D both have sums equal to 20, and should therefore

be played equally often, whereas option C, which has a sum of 10, should be played half as

often as those. In this case, the next strategy would then be to play option B with a probability

of 0.4, option C with a probability of 0.2, and option D with a probability of 0.4.

The counterfactual regret sums have a specific and useful interpretation. The sum for a specific

action is a measure of how the player would have performed, had they chosen that action in all

iterations, as opposed to the long sequence of mixed strategies that was otherwise chosen

throughout the iterations. If the regret sum for an action is positive, it means that the player

would have performed better by always choosing that action, and if it’s negative, it means that

they would have performed worse. So, when the strategies are updated in accordance with the

R e g r e t c o u n t e r f a c t u a l option = EVcounterfactual option - EVfactual option

There's always only one factual option, but there may be many counterfactual options. If a

decision point has n possible options, there will be n - 1 counterfactual options, and just as

many counterfactual regret values.

Now that we understand the concept of counterfactual regret, it's time to focus on how the

algorithm works. The algorithm is iterative, meaning that it simulates many rounds of play. To

simulate a round of play, actions for both players are chosen randomly, according to the

probability weightings of their strategies. In the first iteration, both players are playing

strategies where all possible choices are weighted with equal probability. From one iteration to

the next, the strategies of the players are updated. The principle which decides the composition

of the strategies for the next iteration is called regret matching.

At each iteration, the counterfactual regret values for all possible choices are computed. This

gets added to the sum of counterfactual regret values for each option, throughout all previous

iterations. Each option has its respective sum of counterfactual regret. These sums form the

basis of deciding the strategies in the next iteration. Some sums will be negative, and others

will be positive. If the counterfactual regret sum of an option is negative, that option will have

zero probability in the next strategy. The strategy for the next iteration will only match the

positive regret sums. The probabilities of all options in a strategy needs to sum to one, so to

determine the next strategy, the positive regret sums are normalized. As an example, if there

are five options, A, B, C, D, and E, and these have the respective counterfactual regret sums of

-10, 20, l 0, 20, and -10, option A and E will be played with zero probability in the next iteration,

since their sums are negative. Option B and D both have sums equal to 20, and should therefore

be played equally often, whereas option C, which has a sum of l 0, should be played half as

often as those. In this case, the next strategy would then be to play option B with a probability

of 0.4, option C with a probability of 0.2, and option D with a probability of 0.4.

The counterfactual regret sums have a specific and useful interpretation. The sum for a specific

action is a measure of how the player would have performed, had they chosen that action in all

iterations, as opposed to the long sequence of mixed strategies that was otherwise chosen

throughout the iterations. If the regret sum for an action is positive, it means that the player

would have performed better by always choosing that action, and if it's negative, it means that

they would have performed worse. So, when the strategies are updated in accordance with the

19

20

principle of regret matching, we are effectively only selecting actions that would have

overperformed in the past, and avoiding the actions that would have underperformed.

One might think that by updating the strategies in accordance with regret matching, the

strategies end up converging towards a Nash equilibrium. That’s not necessarily the case. The

strategies that are updated across iterations are not guaranteed to converge to a Nash

equilibrium, because they depend on the opponent’s strategy, which is also changing over time.

You can easily end up with an endless cycle of updates and counter-updates, which switches

between overshooting and undershooting the true Nash equilibrium frequencies. In such cases,

the updated strategies can be very exploitable, despite having been arrived at through many

iterations.

The CFR-algorithm converges towards a Nash equilibrium solution in another manner. In two-

player zero-sum games, the average of the strategies used throughout all iterations will

converge towards a Nash equilibrium. Even if the current strategy is an endless cycle of

overshooting and undershooting equilibrium frequencies, the average strategy will be in-

between and over time it approaches Nash equilibrium. To calculate the average strategy, the

algorithm keeps track of the sum of all strategies that have been employed throughout all

iterations. By normalizing the sum of the strategies, such that the probabilities add up to one,

we get the average strategy, and thereby also a Nash equilibrium solution.

In the time since the original paper about the CFR-algorithm was published, others have made

various adjustments in order to make the algorithm converge faster. Brown and Sandholm

(2019) ran tests on various discounted regret minimization techniques, which are variations of

the CFR-algorithm which implement a discount rate. There are several ways to implement

discounting, but one simple way of doing it is to discount the earlier iteration’s contributions

towards the sum of strategies that have been used. This effectively makes later iterations count

disproportionately more towards the average strategy. Since the very early iterations can be

quite far off from equilibrium strategies, this can make the algorithm converge quicker.

However, when the discount rate is applied in this manner it also means that, given enough

iterations, the contribution from the early iterations will approach zero. This effectively puts a

cap on the number of iterations that can contribute towards the approximate solution. The result

is that the algorithm converges faster, but that the approximation cannot be as precise as if the

algorithm used a discount rate of zero.

principle of regret matching, we are effectively only selecting actions that would have

overperformed in the past, and avoiding the actions that would have underperformed.

One might think that by updating the strategies in accordance with regret matching, the

strategies end up converging towards a Nash equilibrium. That's not necessarily the case. The

strategies that are updated across iterations are not guaranteed to converge to a Nash

equilibrium, because they depend on the opponent's strategy, which is also changing over time.

You can easily end up with an endless cycle of updates and counter-updates, which switches

between overshooting and undershooting the true Nash equilibrium frequencies. In such cases,

the updated strategies can be very exploitable, despite having been arrived at through many

iterations.

The CPR-algorithm converges towards a Nash equilibrium solution in another manner. In two-

player zero-sum games, the average of the strategies used throughout all iterations will

converge towards a Nash equilibrium. Even if the current strategy is an endless cycle of

overshooting and undershooting equilibrium frequencies, the average strategy will be in-

between and over time it approaches Nash equilibrium. To calculate the average strategy, the

algorithm keeps track of the sum of all strategies that have been employed throughout all

iterations. By normalizing the sum of the strategies, such that the probabilities add up to one,

we get the average strategy, and thereby also a Nash equilibrium solution.

In the time since the original paper about the CPR-algorithm was published, others have made

various adjustments in order to make the algorithm converge faster. Brown and Sandholm

(2019) ran tests on various discounted regret minimization techniques, which are variations of

the CPR-algorithm which implement a discount rate. There are several ways to implement

discounting, but one simple way of doing it is to discount the earlier iteration's contributions

towards the sum of strategies that have been used. This effectively makes later iterations count

disproportionately more towards the average strategy. Since the very early iterations can be

quite far off from equilibrium strategies, this can make the algorithm converge quicker.

However, when the discount rate is applied in this manner it also means that, given enough

iterations, the contribution from the early iterations will approach zero. This effectively puts a

cap on the number of iterations that can contribute towards the approximate solution. The result

is that the algorithm converges faster, but that the approximation cannot be as precise as if the

algorithm used a discount rate of zero.

20

21

Framework development
In the previous chapter, I introduced some basic game theory, and outlined why Nash

equilibrium strategies are useful. I also introduced a method of approximating equilibria – the

counterfactual regret minimization algorithm. Now it’s time to start developing the framework,

creating models that effectively mimics the most important aspects of a real-life penalty kick,

allowing us to gain insight about Nash equilibria in the real game. To be able to solve for a

Nash equilibrium, the models must be defined in accordance with the technical definition of a

game. This means that we define the players of the game, all the possible actions in the game,

and the payoffs each player receives for any combination of actions.

In penalty kicks, there’s only two players: the penalty taker and the goalkeeper. Furthermore,

throughout the framework, I assume that the penalty taker and the goalkeeper both have

preferences that are best satisfied by maximizing the likelihood of their team winning the

football match. This implies that the penalty taker has the objective of maximizing the

probability of scoring a goal, and that the goalkeeper has the objective of minimizing it. Just

like in the simple toy game from the previous chapter, the payoffs of the players are connected

to a simple metric: goals scored, and goals conceded. When the penalty taker scores, their

payoff is 1, and the goalkeeper’s payoff is -1. If the penalty kick doesn’t result in a goal, both

players receive a payoff of zero. However, usually, the outcome from a combination of actions

won’t be guaranteed to either result in a goal or not. Therefore, for each combination of actions,

the penalty taker receives a payoff equal to the probability that the outcome is a goal, and the

goalkeeper receives a payoff equal to the negative probability.

The set of possible actions available to each player also needs to be defined. These are defined

by the rules of the game, which are underlying assumptions of the models. When studying

penalty kicks, it’s important to be aware that some assumptions are player-dependent, meaning

that they depend on the inherent abilities of the players. For example, some penalty takers will

be able to shoot more accurately than others, and some goalkeepers will be able to cover a

larger area of the goal than others. On the other hand, some assumptions are player-

independent, meaning that they do not depend on the specific attributes of the penalty taker or

the goalkeeper. Let’s begin by outlining the player-independent assumptions, before moving

on to the player-dependent ones.

Framework development
In the previous chapter, I introduced some basic game theory, and outlined why Nash

equilibrium strategies are useful. I also introduced a method of approximating equilibria - the

counterfactual regret minimization algorithm. Now it's time to start developing the framework,

creating models that effectively mimics the most important aspects of a real-life penalty kick,

allowing us to gain insight about Nash equilibria in the real game. To be able to solve for a

Nash equilibrium, the models must be defined in accordance with the technical definition of a

game. This means that we define the players of the game, all the possible actions in the game,

and the payoffs each player receives for any combination of actions.

In penalty kicks, there's only two players: the penalty taker and the goalkeeper. Furthermore,

throughout the framework, I assume that the penalty taker and the goalkeeper both have

preferences that are best satisfied by maximizing the likelihood of their team winning the

football match. This implies that the penalty taker has the objective of maximizing the

probability of scoring a goal, and that the goalkeeper has the objective of minimizing it. Just

like in the simple toy game from the previous chapter, the payoffs of the players are connected

to a simple metric: goals scored, and goals conceded. When the penalty taker scores, their

payoff is l, and the goalkeeper's payoff is -1. If the penalty kick doesn't result in a goal, both

players receive a payoff of zero. However, usually, the outcome from a combination of actions

won't be guaranteed to either result in a goal or not. Therefore, for each combination of actions,

the penalty taker receives a payoff equal to the probability that the outcome is a goal, and the

goalkeeper receives a payoff equal to the negative probability.

The set of possible actions available to each player also needs to be defined. These are defined

by the rules of the game, which are underlying assumptions of the models. When studying

penalty kicks, it's important to be aware that some assumptions are player-dependent, meaning

that they depend on the inherent abilities of the players. For example, some penalty takers will

be able to shoot more accurately than others, and some goalkeepers will be able to cover a

larger area of the goal than others. On the other hand, some assumptions are player-

independent, meaning that they do not depend on the specific attributes of the penalty taker or

the goalkeeper. Let's begin by outlining the player-independent assumptions, before moving

on to the player-dependent ones.

21

22

Simultaneous choice
In reality, the decisions made throughout a penalty kick takes place over several seconds. The

penalty taker and the goalkeeper effectively start making strategic decisions from the moment

the run-up to the ball begins. For the penalty taker, it can be argued that the decisions end the

moment where the ball has been kicked, and it starts travelling towards the goal. For the

goalkeeper, decisions are being made up until the point where either the ball has crossed the

goal line, or it’s clear that the ball cannot cross it any longer. The point is, in reality, both players

make decisions throughout a continuous time dimension.

Even every slight tweak in body language counts as a decision, and in the true Nash equilibrium

all such possible movements would have to be accounted for. Accounting for such factors

would make the system immensely complex, and it would be far beyond our current

capabilities. However, I believe we can deduce that some of these options cannot be part of the

true Nash equilibrium. Let’s examine an example regarding body language: Imagine that the

penalty taker runs towards the ball in such a manner that it’s revealed that the shot will go

towards a specific side. Can such a run-up be part of the Nash equilibrium? Clearly not, because

in such a case, the goalkeeper would always be able to move early in the right direction,

resulting in a low probability of a goal. The same is true if the goalkeeper dances around in the

goal in such a way that it reveals where they will dive. Then the penalty taker would just shoot

to the opposite side, resulting in a very high probability of a goal.

From deduction, it’s clear that players should conceal information about their action from their

opponent. When the penalty taker kicks the ball, they should not have information about which

area of the goal the goalkeeper will defend. On the other hand, the penalty taker is forced to

reveal where they are shooting eventually – when the ball is kicked, and it starts travelling

towards the goal. This means that the goalkeeper will be able to react to the trajectory of the

ball.

Another important element in penalty kicks is that both players have a non-zero reaction time.

Even if the goalkeeper starts moving shortly before the ball is kicked, the penalty taker won’t

necessarily be able to react to it. Similarly, the goalkeeper will not be able to react to the

trajectory of the ball instantaneously. This effectively means that players have an additional

window of time of which their action is concealed, regardless of whether or not the opponent

has made their move.

Simultaneous choice

In reality, the decisions made throughout a penalty kick takes place over several seconds. The

penalty taker and the goalkeeper effectively start making strategic decisions from the moment

the run-up to the ball begins. For the penalty taker, it can be argued that the decisions end the

moment where the ball has been kicked, and it starts travelling towards the goal. For the

goalkeeper, decisions are being made up until the point where either the ball has crossed the

goal line, or it's clear that the ball cannot cross it any longer. The point is, in reality, both players

make decisions throughout a continuous time dimension.

Even every slight tweak in body language counts as a decision, and in the true Nash equilibrium

all such possible movements would have to be accounted for. Accounting for such factors

would make the system immensely complex, and it would be far beyond our current

capabilities. However, I believe we can deduce that some of these options cannot be part of the

true Nash equilibrium. Let's examine an example regarding body language: Imagine that the

penalty taker runs towards the ball in such a manner that it's revealed that the shot will go

towards a specific side. Can such a run-up be part of the Nash equilibrium? Clearly not, because

in such a case, the goalkeeper would always be able to move early in the right direction,

resulting in a low probability of a goal. The same is true if the goalkeeper dances around in the

goal in such a way that it reveals where they will dive. Then the penalty taker would just shoot

to the opposite side, resulting in a very high probability of a goal.

From deduction, it's clear that players should conceal information about their action from their

opponent. When the penalty taker kicks the ball, they should not have information about which

area of the goal the goalkeeper will defend. On the other hand, the penalty taker is forced to

reveal where they are shooting eventually - when the ball is kicked, and it starts travelling

towards the goal. This means that the goalkeeper will be able to react to the trajectory of the

ball.

Another important element in penalty kicks is that both players have a non-zero reaction time.

Even if the goalkeeper starts moving shortly before the ball is kicked, the penalty taker won't

necessarily be able to react to it. Similarly, the goalkeeper will not be able to react to the

trajectory of the ball instantaneously. This effectively means that players have an additional

window of time of which their action is concealed, regardless of whether or not the opponent

has made their move.

22

23

Since players make their decisions without knowing what the opponent will do, penalty kicks

can be modelled as a simultaneous choice game, with a single decision point. Notice that the

goalkeeper can wait to observe the trajectory of the ball before making their move, but that

does not make the decision sequential. This is because the decision to wait is made

simultaneously, whereas the movements beyond that point are not. The same is true even if the

goalkeeper decides to dive to a side. In such a case, the goalkeeper will already be moving once

they realize what the trajectory of the ball is. That doesn’t mean they can’t make further

movements to adjust to the trajectory.

Domains
Football goals have a rectangular frame that consist of two vertical goalposts and a horizontal

crossbar that connects them. In 11-a-side senior football, the goal is 24 feet wide and 8 feet tall.

In meters, this translates to a width of approximately 7.33 meters, and a height of approximately

2.44 meters. The measurements of a football goal were originally defined using the imperial

measurement system, hence the round numbers when measured in feet. Using feet as the unit

of measurement will be more convenient and may provide a better understanding and

appreciation of the dimensions involved.

The height is measured from the ground and up to the bottom edge of the crossbar, while the

width is measured as the distance between the inside edges of the goalposts. To describe the

goal, a two-dimensional coordinate system will be used, as depicted in Figure 1. The horizontal

axis represents the width of the goal, and the vertical axis represents the height. Depth is not a

concern in this framework. The figure presents a cross-sectional view of space along the goal

line, from the perspective of the penalty taker. The thick black lines correspond to the goalposts

and the crossbar.

With the use of (𝑥𝑥, 𝑃𝑃)-coordinates, we can precisely describe spatial points in and around the

goal. The origin of the coordinate system is located at the very bottom left corner of the goal,

where the inside of the left goalpost meets the ground. The inside of the right goalpost is located

along the line where 𝑥𝑥 = 24. It intersects with the bottom edge of the crossbar positioned along

the line where 𝑃𝑃 = 8.

Since players make their decisions without knowing what the opponent will do, penalty kicks

can be modelled as a simultaneous choice game, with a single decision point. Notice that the

goalkeeper can wait to observe the trajectory of the ball before making their move, but that

does not make the decision sequential. This is because the decision to wait is made

simultaneously, whereas the movements beyond that point are not. The same is true even if the

goalkeeper decides to dive to a side. In such a case, the goalkeeper will already be moving once

they realize what the trajectory of the ball is. That doesn't mean they can't make further

movements to adjust to the trajectory.

Domains

Football goals have a rectangular frame that consist of two vertical goalposts and a horizontal

crossbar that connects them. In l l-a-side senior football, the goal is 24 feet wide and 8 feet tall.

In meters, this translates to a width of approximately 7.33 meters, and a height of approximately

2.44 meters. The measurements of a football goal were originally defined using the imperial

measurement system, hence the round numbers when measured in feet. Using feet as the unit

of measurement will be more convenient and may provide a better understanding and

appreciation of the dimensions involved.

The height is measured from the ground and up to the bottom edge of the crossbar, while the

width is measured as the distance between the inside edges of the goalposts. To describe the

goal, a two-dimensional coordinate system will be used, as depicted in Figure l. The horizontal

axis represents the width of the goal, and the vertical axis represents the height. Depth is not a

concern in this framework. The figure presents a cross-sectional view of space along the goal

line, from the perspective of the penalty taker. The thick black lines correspond to the goalposts

and the crossbar.

With the use of (x,y)-coordinates, we can precisely describe spatial points in and around the

goal. The origin of the coordinate system is located at the very bottom left comer of the goal,

where the inside of the left goalpost meets the ground. The inside of the right goalpost is located

along the line where x = 24. It intersects with the bottom edge of the crossbar positioned along

the line where y = 8.

23

24

Figure 1: The goal in a two-dimensional coordinate system, from the perspective of the penalty taker.

Coordinates provide a means of specifying the exact point where the ball connects with the

goal during a penalty kick. The ball has width and height, so we are actually only describing

which point the centre of the ball hits, and not the entire area that the ball occupies. According

to FIFA-regulations, the circumference of the ball must be between 27 and 28 inches. If we

assume that the ball has a circumference of 27.5 inches, the ball will have a radius of

approximately 4.38 inches, or 0.365 feet. In this study, for simplicity, I will assume that the ball

remains in its original shape and doesn’t deform or change shape due to factors such as impact

with the ground. These assumptions imply that all coordinate points where 𝑃𝑃 < 0.365 are

unfeasible, as it would mean that a portion of the ball is below the ground surface. The domain

of possible hit-positions can then be defined as 𝑥𝑥𝑥𝑥[−∞,∞], which means that the x-coordinate

can take on any real number value, and 𝑃𝑃𝑥𝑥[0.365,∞], which means that the y-coordinate must

be greater or equal to 0.365.

According to FIFA-regulations, both the goalposts and the crossbar can have a maximum

diameter of 5 inches, or approximately 0.417 feet. In professional leagues and competitions,

the goalposts and crossbar are typically at or near the maximum limit, so for the purposes of

this study, I’ll assume that they are at the maximum allowed diameter. Given the diameter of

the goalposts and crossbar, and the radius of the ball, we can identify all coordinate points

where there would be overlap between the area of the ball and the area of the frame of the goal.

As long as the shot doesn’t end up above the goal, there will be contact with the left goalpost

if −0.782 < 𝑥𝑥 < 0.365, and with the right goalpost if 23.635 < 𝑥𝑥 < 24.782, and as long as

the shot doesn’t end up to either side of the goal, there will be contact with the crossbar if

7.635 < 𝑃𝑃 < 8.782.

- 10

- s

- 6

4

- 2

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 1: The goal in a two-dimensional coordinate system, f rom the perspective of the penalty taker.

Coordinates provide a means of specifying the exact point where the ball connects with the

goal during a penalty kick. The ball has width and height, so we are actually only describing

which point the centre of the ball hits, and not the entire area that the ball occupies. According

to FIFA-regulations, the circumference of the ball must be between 27 and 28 inches. If we

assume that the ball has a circumference of 27.5 inches, the ball will have a radius of

approximately 4.38 inches, or 0.365 feet. In this study, for simplicity, I will assume that the ball

remains in its original shape and doesn't deform or change shape due to factors such as impact

with the ground. These assumptions imply that all coordinate points where y < 0.365 are

unfeasible, as it would mean that a portion of the ball is below the ground surface. The domain

of possible hit-positions can then be defined as xc[-cc, cc], which means that the x-coordinate

can take on any real number value, and yc[0.365, cc], which means that they-coordinate must

be greater or equal to 0.365.

According to FIFA-regulations, both the goalposts and the crossbar can have a maximum

diameter of 5 inches, or approximately 0.417 feet. In professional leagues and competitions,

the goalposts and crossbar are typically at or near the maximum limit, so for the purposes of

this study, I ' l l assume that they are at the maximum allowed diameter. Given the diameter of

the goalposts and crossbar, and the radius of the ball, we can identify all coordinate points

where there would be overlap between the area of the ball and the area of the frame of the goal.

As long as the shot doesn't end up above the goal, there will be contact with the left goalpost

if -0 .782 < x < 0.365, and with the right goalpost if 23.635 < x < 24.782, and as long as

the shot doesn't end up to either side of the goal, there will be contact with the crossbar if

7.635 < y < 8.782.

24

25

Sometimes the ball will come into contact with a goalpost or the crossbar, but still bounce into

the goal. I need to define exactly which coordinate points this occurs at. According to FIFA-

regulations, both the goalposts and the crossbars should be rounded. The ball is of course also

round. For simplicity, I’ll disregard spin of the ball as a factor in the framework. We know

from physics that if the ball doesn’t spin, it should leave the point of contact at the same angle

that it entered. Using trigonometry, I can calculate which coordinates result in a goal, absent

of goalkeeper intervention. It turns out that a good approximation of the domain of hit-positions

that result in a goal are 𝑥𝑥𝑥𝑥⟨0.257, 23.743⟩ and 𝑃𝑃𝑥𝑥[0.365, 7.751⟩. The calculation where I

derive this domain is presented in Appendix I.

If the ball hits the frame of the goal and rebounds during a penalty shootout, the ball is out of

play, meaning that the penalty taker cannot score from a rebound. However, if the ball rebounds

from a penalty during normal play, the ball is still in play, so the penalty taker may strike the

ball again and manage to score. In this framework, I’ll assume that rebounds are out of play.

This means that the framework is best suited for penalty shootouts. On the other hand, allowing

for scoring on a rebound shouldn’t have a massive impact on result, so the framework is still

useful for analysing other penalties as well. A simple way of attempting to account for scorable

rebounds would be to expand the domain of hit-positions that result in a goal slightly.

Area coverage
Now it’s time to move on to the player-dependent assumptions. Throughout all iterations of the

framework, the strategic options of the goalkeeper are limited to choosing which area of the

goal to defend. Starting out, I will begin with three different area options, and later on two more

options will be added. The initial options are “stay middle”, “commit left”, and “commit right”.

It’s natural to assume that, in the equilibrium, as the penalty taker is about to kick the ball, the

goalkeeper is standing in the middle of the goal. If the goalkeeper would stand to a particular

side, they would have a very poor reach to the opposite side, which would likely lead to a

higher scoring rate for the penalty taker. Therefore, it should be a safe assumption.

The penalty taker and the goalkeeper make a simultaneous decision of which coordinate to aim

for, and which area to defend. The area that corresponds to the “stay middle”-option is meant

to represent the area a goalkeeper will be able to defend, if they stay in the middle, waiting to

observe the trajectory of the ball. The “commit left”- and “commit right”-options are intended

to represent the area a goalkeeper is able to cover if they commit to diving in that direction

before observing where the ball is headed. Whether or not an area is defended is decided

Sometimes the ball will come into contact with a goalpost or the crossbar, but still bounce into

the goal. I need to define exactly which coordinate points this occurs at. According to FIFA-

regulations, both the goalposts and the crossbars should be rounded. The ball is of course also

round. For simplicity, I ' l l disregard spin of the ball as a factor in the framework. We know

from physics that if the ball doesn't spin, it should leave the point of contact at the same angle

that it entered. Using trigonometry, I can calculate which coordinates result in a goal, absent

of goalkeeper intervention. It tums out that a good approximation of the domain of hit-positions

that result in a goal are xc(0.257, 23.743) and yc[0.365, 7.751). The calculation where I

derive this domain is presented in Appendix I.

If the ball hits the frame of the goal and rebounds during a penalty shootout, the ball is out of

play, meaning that the penalty taker cannot score from a rebound. However, if the ball rebounds

from a penalty during normal play, the ball is still in play, so the penalty taker may strike the

ball again and manage to score. In this framework, I ' l l assume that rebounds are out of play.

This means that the framework is best suited for penalty shootouts. On the other hand, allowing

for scoring on a rebound shouldn't have a massive impact on result, so the framework is still

useful for analysing other penalties as well. A simple way of attempting to account for scorable

rebounds would be to expand the domain of hit-positions that result in a goal slightly.

Area coverage

Now it's time to move on to the player-dependent assumptions. Throughout all iterations of the

framework, the strategic options of the goalkeeper are limited to choosing which area of the

goal to defend. Starting out, I will begin with three different area options, and later on two more

options will be added. The initial options are "stay middle", "commit left", and "commit right".

It's natural to assume that, in the equilibrium, as the penalty taker is about to kick the ball, the

goalkeeper is standing in the middle of the goal. If the goalkeeper would stand to a particular

side, they would have a very poor reach to the opposite side, which would likely lead to a

higher scoring rate for the penalty taker. Therefore, it should be a safe assumption.

The penalty taker and the goalkeeper make a simultaneous decision of which coordinate to aim

for, and which area to defend. The area that corresponds to the "stay middle"-option is meant

to represent the area a goalkeeper will be able to defend, if they stay in the middle, waiting to

observe the trajectory of the ball. The "commit left"- and "commit right"-options are intended

to represent the area a goalkeeper is able to cover if they commit to diving in that direction

before observing where the ball is headed. Whether or not an area is defended is decided

25

26

entirely deterministically, meaning that all coordinates within the area are guaranteed to be

defended, and all coordinates outside of it are not.

I looked for data on average save frequencies in different parts of the goal, given a specific

goalkeeper action (such as diving to a specific side before observing the trajectory of the ball),

but was unable to find something satisfactory. Therefore, the best I could do was to create save-

areas that seem reasonable to me. This isn’t a big problem, because goalkeeper area coverage

is a player-dependent assumption, so there isn’t a singular set of area coverage-assumptions

that can be viewed as correct. It would have been preferable to know the average save

frequencies given a specific action, but it isn’t necessary. While the areas I have chosen may

not exactly mimic the average save areas across all goalkeepers, they may be a good fit for

some specific goalkeeper.

The different area options can be defined within our two-dimensional coordinate system. This

is done using inequality expressions. The size and positioning of the areas are dependent on

the velocity of the ball. This is accounted for using what I call the velocity-factor, 𝑣𝑣. Not that

the velocity-factor is not intended to mimic a specific velocity measurement, such as

meters/second. It’s simply there to scale and define the locations of the areas.

A lower velocity means that it takes a longer time for the ball to travel towards the goal. If the

goalkeeper has chosen “stay middle”, the lower velocity will result in further reach, and an

expansion of the area. If the goalkeeper has chosen “commit left” or “commit right”, the lower

velocity will result in the location of the area to move further away from the from the centre of

the goal. Figure 2, Figure 3, and Figure 4 illustrate the area-coverage for the various options,

given that the velocity of the ball is high (𝑣𝑣 = 10), medium (𝑣𝑣 = 8.5), and low (𝑣𝑣 = 7),

respectively. The blue area represents the area coverage of the “stay middle”-option, whereas

the green areas represent the area coverage when the goalkeeper selects “commit left” or

“commit right”.

entirely deterministically, meaning that all coordinates within the area are guaranteed to be

defended, and all coordinates outside of it are not.

I looked for data on average save frequencies in different parts of the goal, given a specific

goalkeeper action (such as diving to a specific side before observing the trajectory of the ball),

but was unable to find something satisfactory. Therefore, the best I could do was to create save-

areas that seem reasonable to me. This isn't a big problem, because goalkeeper area coverage

is a player-dependent assumption, so there isn't a singular set of area coverage-assumptions

that can be viewed as correct. It would have been preferable to know the average save

frequencies given a specific action, but it isn't necessary. While the areas I have chosen may

not exactly mimic the average save areas across all goalkeepers, they may be a good fit for

some specific goalkeeper.

The different area options can be defined within our two-dimensional coordinate system. This

is done using inequality expressions. The size and positioning of the areas are dependent on

the velocity of the ball. This is accounted for using what I call the velocity-factor, v. Not that

the velocity-factor is not intended to mimic a specific velocity measurement, such as

meters/second. It's simply there to scale and define the locations of the areas.

A lower velocity means that it takes a longer time for the ball to travel towards the goal. If the

goalkeeper has chosen "stay middle", the lower velocity will result in further reach, and an

expansion of the area. If the goalkeeper has chosen "commit left" or "commit right", the lower

velocity will result in the location of the area to move further away from the from the centre of

the goal. Figure 2, Figure 3, and Figure 4 illustrate the area-coverage for the various options,

given that the velocity of the ball is high (v = 10), medium (v = 8.5), and low (v = 7),

respectively. The blue area represents the area coverage of the "stay middle"-option, whereas

the green areas represent the area coverage when the goalkeeper selects "commit left" or

"commit right".

26

27

Figure 2: Possible area coverage when the velocity-factor is equal to 10.

Figure 3: Possible area coverage when the velocity-factor is equal to 8.5.

Figure 4: Possible area coverage when the velocity-factor is equal to 7.

10

8

Ir \6 --

\

)-/-- +- /
4 I \
2 I \ I J

I I I\ I J I I

\ J \ J
-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 2: Possible area coverage when the velocity-factor is equal to 10.

8-

- - + - - 4 - - - - - - + - - - F - -

2 - - - - - . - - - t

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 3: Possible area coverage when the velocity-factor is equal to 8.5.

- -10

8 v 16 J
I : \

4- -- - -- - \
2- - - - -

\ \ I \ / J
-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 4: Possible area coverage when the velocity-factor is equal to 7.

27

28

The areas are defined mathematically as follows:

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃:
(𝑥𝑥 − 12)2

8 +
(𝑃𝑃 − 2 − 0.2𝑣𝑣)2

8 ≤ 22.5 − 1.85𝑣𝑣

𝐶𝐶𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃:

{

(𝑥𝑥 + 2 − 0.9𝑣𝑣)2

3 +
(𝑃𝑃 + 0.5 − 0.25𝑣𝑣)2

2 ≤ 6 ,7 < 𝑣𝑣 ≤ 10

(𝑥𝑥 − 3.4)2
3 +

(𝑃𝑃 − 3.2)2
2 ≤ 6 ,0 ≤ 𝑣𝑣 ≤ 7

𝐶𝐶𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑃𝑃 𝑡𝑡𝑖𝑖𝑅𝑅ℎ𝑃𝑃:

{

(𝑥𝑥 − 26 + 0.9𝑣𝑣)2

3 +
(𝑃𝑃 + 0.5 − 0.25𝑣𝑣)2

2 ≤ 6 ,7 < 𝑣𝑣 ≤ 10

(𝑥𝑥 − 20.6)2
3 +

(𝑃𝑃 − 3.2)2
2 ≤ 6 ,0 ≤ 𝑣𝑣 ≤ 7

The velocity-factor, 𝑣𝑣, has the domain 𝑣𝑣𝑥𝑥[0, 10]. This is designed to be such that when 𝑣𝑣 = 0,

the “stay middle”-option covers the entire goal. When 𝑣𝑣 = 10, the penalty taker shoots with

the highest velocity they are capable of. The “commit left” and “commit right”-areas are don’t

change in the when 𝑣𝑣 ≤ 7. You can imagine that when the velocity-factor is this low, the

goalkeeper has already landed on the ground, and their reach doesn’t change.

In the first few iterations of the model, the velocity-factor is assumed to be uniform. That is,

penalty taker always shoots with the same velocity-factor, regardless of where they are aiming.

I will solve the model for when 𝑣𝑣 = 10, when 𝑣𝑣 = 8.5, and when 𝑣𝑣 = 7, as illustrated in the

previous figures. In later iterations of the framework, the penalty taker will be allowed to

choose between the different velocity-factors as well.

Hit-coordinates
In the initial model, the penalty taker only has one strategic choice: which coordinate point to

aim for. Relating to this strategic choice is an assumption that applies to all players: No penalty

taker is able to shoot with perfect accuracy. Therefore, the coordinate point that is aimed for

isn’t necessarily the coordinate point the ball ends up hitting. We can be extremely confident

in this assumption. If it wasn’t true, we would expect to observe players that would never miss

the goal, or players that would always be able to place the ball in areas of the goal that are out

of reach of the goalkeeper. This is not what we observe in the real world.

The inaccuracy of the shot can be modelled using a probability distribution. While it’s clear

that no penalty taker can shoot with perfect accuracy, it’s unclear which distribution the

inaccuracy follows. Ultimately, this will be player dependent, meaning that some players may

The areas are defined mathematically as follows:

(x - 12)2 (y - 2 - 0.2v)2
Stay middle:

8
+

8
22.5 - 1.85v

Commit le f t :

Commit right:

(x + 2 - 0.9v)2 (y + 0.5 - 0.25v)2
3 + 2 6

(x - 3.4)2 (y - 3.2)2
3 + 2 6

(x - 26 + 0.9v)2 (y + 0.5 - 0.25v)2
3 + 2 6

(x - 20.6)2 (y - 3.2)2
3 + 2 6

,7 < v 10

,0 v 7

,7 < v 10

,0 v 7

The velocity-factor, v, has the domain vE[0,10]. This is designed to be such that when v= 0,

the "stay middle"-option covers the entire goal. When v = 10, the penalty taker shoots with

the highest velocity they are capable of The "commit left" and "commit right"-areas are don't

change in the when v 7. You can imagine that when the velocity-factor is this low, the

goalkeeper has already landed on the ground, and their reach doesn't change.

In the first few iterations of the model, the velocity-factor is assumed to be uniform. That is,

penalty taker always shoots with the same velocity-factor, regardless of where they are aiming.

I will solve the model for when v = 10, when v= 8.5, and when v= 7, as illustrated in the

previous figures. In later iterations of the framework, the penalty taker will be allowed to

choose between the different velocity-factors as well.

Hit-coordinates

In the initial model, the penalty taker only has one strategic choice: which coordinate point to

aim for. Relating to this strategic choice is an assumption that applies to all players: No penalty

taker is able to shoot with perfect accuracy. Therefore, the coordinate point that is aimed for

isn't necessarily the coordinate point the ball ends up hitting. We can be extremely confident

in this assumption. If it wasn't true, we would expect to observe players that would never miss

the goal, or players that would always be able to place the ball in areas of the goal that are out

of reach of the goalkeeper. This is not what we observe in the real world.

The inaccuracy of the shot can be modelled using a probability distribution. While it's clear

that no penalty taker can shoot with perfect accuracy, it's unclear which distribution the

inaccuracy follows. Ultimately, this will be player dependent, meaning that some players may

28

29

shoot in a manner that follows one type of distribution, while others might follow a different

distribution. Additionally, as far as I’m aware, there hasn’t been any studies that investigate

how accurately players are able to shoot, and in which manner they are inaccurate. Empirical

data on where penalties have historically hit wouldn’t help, because while we can observe

where the shot ended up hitting, we do not know where the penalty taker was aiming to hit. So,

to effectively study the inaccuracy of penalty takers, you would require the player to specify

where they are aiming before they shoot. I would urge future researchers to conduct such a

study, as it would help improve the assumptions of the framework.

Throughout the framework, I’m going to assume that the inaccuracy of the players follows a

bivariate normal distribution, where the aim coordinate is the mean of the distribution. The

distribution is symmetrical, so it means that players are equally likely to be inaccurate in either

direction of where they aim. I don’t see much of a reason to expect players to for example be

inaccurate more often to the left than to the right, so this seems reasonable to me. The degree

of inaccuracy can be described by the standard deviation. It could be argued that the standard

deviation in the horizontal and vertical directions may not be equal, but as a baseline

assumption, I’m going to assume that it is. Figure 5 illustrates an example of a hit-distribution

of a penalty kick where the penalty taker aims at coordinate (4, 4) and has a standard deviation

of 2 in both the horizontal and vertical direction.

Figure 5: The hit-distribution of a penalty taker with a standard deviation of 2 that aims at coordinate (4, 4).

Here, the green area represents the coordinates that are within one standard deviation of the

aim-coordinate. There’s roughly a 68.2% chance that the penalty taker hits within this area.

The yellow and green areas combined represent the coordinates that are within two standard

deviations away from the aim-coordinate. The chance that the shot will hit within these areas

shoot in a manner that follows one type of distribution, while others might follow a different

distribution. Additionally, as far as I 'm aware, there hasn't been any studies that investigate

how accurately players are able to shoot, and in which manner they are inaccurate. Empirical

data on where penalties have historically hit wouldn't help, because while we can observe

where the shot ended up hitting, we do not know where the penalty taker was aiming to hit. So,

to effectively study the inaccuracy of penalty takers, you would require the player to specify

where they are aiming before they shoot. I would urge future researchers to conduct such a

study, as it would help improve the assumptions of the framework.

Throughout the framework, I 'm going to assume that the inaccuracy of the players follows a

bivariate normal distribution, where the aim coordinate is the mean of the distribution. The

distribution is symmetrical, so it means that players are equally likely to be inaccurate in either

direction of where they aim. I don't see much of a reason to expect players to for example be

inaccurate more often to the left than to the right, so this seems reasonable to me. The degree

of inaccuracy can be described by the standard deviation. It could be argued that the standard

deviation in the horizontal and vertical directions may not be equal, but as a baseline

assumption, I 'm going to assume that it is. Figure 5 illustrates an example of a hit-distribution

of a penalty kick where the penalty taker aims at coordinate (4, 4) and has a standard deviation

of 2 in both the horizontal and vertical direction.

12 14 16 18 20 22 24 26

Figure 5: The hit-distribution of a penalty taker with a standard deviation of 2 that aims at coordinate (4, 4).

Here, the green area represents the coordinates that are within one standard deviation of the

aim-coordinate. There's roughly a 68.2% chance that the penalty taker hits within this area.

The yellow and green areas combined represent the coordinates that are within two standard

deviations away from the aim-coordinate. The chance that the shot will hit within these areas

29

30

is about 95.4%. Finally, the outer edge of the red area is three standard deviations away from

the mean. The chance that the ball will hit within the red, yellow, or green areas is about 99.7%.

I established earlier that it’s not feasible to hit a y-coordinate that is below 𝑃𝑃 = 0.365, as this

would imply that part of the ball is below the ground. When drawing hit-positions from the

probability distribution, you could end up with y-coordinates below that. In those cases, I move

the y-coordinate up to 𝑃𝑃 = 0.365 and keep the x-coordinate as its drawn. This often ends up

meaning that it’s much more likely to end up with a y-coordinate of 0.365 than a slightly higher

coordinate of say 0.5. At first glance, this could feel unintuitive, but it’s actually completely

reasonable. If the ball rolls across the ground, it ends up at coordinates where 𝑃𝑃 = 0.365,

whereas a coordinate where 𝑃𝑃 = 0.5 means that the ball is a very specific height above the

ground, which is much more unlikely. One slight caveat is that in reality not all shots which

have a drawn y-coordinate below the threshold would end up being in contact with the ground

when it crosses the line. The ball could also bounce in the ground and hit a higher y-coordinate

in some situations. However, such an effect probably wouldn’t impact the results much, so it’s

not something I’m going to try to account for.

When the ball comes into contact with the ground, there is increased friction, slowing the ball

down. I account for this by introducing a friction-factor. If the drawn y-coordinate is below

0.365, the velocity-factor 𝑣𝑣 is reduced in proportion with the friction factor. This means that

the hit-velocity can be different from the initial velocity in the system. The hit-velocity is

determined by the following equation:

ℎ𝑖𝑖𝑃𝑃 𝑣𝑣𝑃𝑃𝑃𝑃𝐺𝐺𝑣𝑣𝑖𝑖𝑃𝑃𝑃𝑃 = 𝑣𝑣𝑃𝑃𝑃𝑃𝐺𝐺𝑣𝑣𝑖𝑖𝑃𝑃𝑃𝑃 − (0.365 − 𝑃𝑃) ∗ 𝑙𝑙𝑡𝑡𝑖𝑖𝑣𝑣𝑃𝑃𝑖𝑖𝐺𝐺𝑃𝑃

As an example, if the initial velocity factor is set to 10, the drawn y-coordinate is -1, and the

friction factor is 0.1, the hit-velocity will be 9.8635. This effectively functions as a small

disincentive for the penalty taker to aim low, as the reduced velocity will have a

disadvantageous impact on the goalkeeper area coverage. It’s unclear what a realistic friction

factor should be, but throughout the framework I’m using a rather small value of 0.1.

Aim-coordinates
As mentioned, the strategic options of the penalty taker are limited to choosing where in the

goal to aim. The area inside the goal is a continuous space, meaning that there are infinitely

many possible coordinates. However, to solve the model, it’s necessary to have a finite number

of possible choices. Therefore, I need to pick a set of coordinates that the penalty taker can

is about 95.4%. Finally, the outer edge of the red area is three standard deviations away from

the mean. The chance that the ball will hit within the red, yellow, or green areas is about 99.7%.

I established earlier that it's not feasible to hit ay-coordinate that is below y = 0.365, as this

would imply that part of the ball is below the ground. When drawing hit-positions from the

probability distribution, you could end up with y-coordinates below that. In those cases, I move

they-coordinate up t o y = 0.365 and keep the x-coordinate as its drawn. This often ends up

meaning that it's much more likely to end up with ay-coordinate of 0.365 than a slightly higher

coordinate of say 0.5. At first glance, this could feel unintuitive, but it's actually completely

reasonable. If the ball rolls across the ground, it ends up at coordinates where y = 0.365,

whereas a coordinate where y = 0.5 means that the ball is a very specific height above the

ground, which is much more unlikely. One slight caveat is that in reality not all shots which

have a drawn y-coordinate below the threshold would end up being in contact with the ground

when it crosses the line. The ball could also bounce in the ground and hit a higher y-coordinate

in some situations. However, such an effect probably wouldn't impact the results much, so it's

not something I'm going to try to account for.

When the ball comes into contact with the ground, there is increased friction, slowing the ball

down. I account for this by introducing a friction-factor. If the drawn y-coordinate is below

0.365, the velocity-factor v is reduced in proportion with the friction factor. This means that

the hit-velocity can be different from the initial velocity in the system. The hit-velocity is

determined by the following equation:

hit ve loc i ty= velocity - (0.365 - y) * friction

As an example, if the initial velocity factor is set to l 0, the drawn y-coordinate is -1, and the

friction factor is 0.1, the hit-velocity will be 9.8635. This effectively functions as a small

disincentive for the penalty taker to aim low, as the reduced velocity will have a

disadvantageous impact on the goalkeeper area coverage. It's unclear what a realistic friction

factor should be, but throughout the framework I'm using a rather small value of O.l.

Aim-coordinates

As mentioned, the strategic options of the penalty taker are limited to choosing where in the

goal to aim. The area inside the goal is a continuous space, meaning that there are infinitely

many possible coordinates. However, to solve the model, it's necessary to have a finite number

of possible choices. Therefore, I need to pick a set of coordinates that the penalty taker can

30

31

choose from. In this first solution, my main aim is to illustrate how the model works, so I will

keep it fairly simple. The penalty taker gets to choose from 55 different coordinate points, as

illustrated in Figure 6.

Figure 6: Aim options for the penalty taker in the first iteration of the framework.

Notice that I have allowed for the penalty taker to aim at coordinates where y<0.365. This may

feel unintuitive given that the ball cannot hit such coordinates. However, I believe it makes a

lot of sense. You could imagine a footballer kicking a ball from the edge of a cliff: Is it possible

for the footballer to aim at a point lower than him? Of course, and it would also be possible to

hit those points. In a penalty kick, it’s also possible to aim at the lower points - the only

difference is that the ground prevents the shot from hitting those coordinates. If the penalty

taker aims far below the ground, the result will almost certainly be that the ball rolls across the

ground as it passes the goal line, which is what happens in the model. Anyone who has

experience playing football knows that it’s quite easy to achieve a shot that rolls across the

ground, so this is realistic.

Payoffs

The penalty taker has 55 different aiming-options, and the goalkeeper has three different area-

options. This means that there’s a total of 165 possible combinations of aim-options and area-

options. Table 1 in the previous chapter, presented a pay-off matrix for a simple toy game with

just 18 possible combinations. The pay-off matrix consists of information about the payoffs for

each player in all 18 scenarios. Without complete information about the payoffs in each

scenario, the game isn’t even properly defined, and that’s a prerequisite for being able to solve

it. Therefore, I need to find the payoffs associated with each of the 165 possible scenarios.

choose from. In this first solution, my main aim is to illustrate how the model works, so I will

keep it fairly simple. The penalty taker gets to choose from 55 different coordinate points, as

illustrated in Figure 6.

- 10

- s

- 6

4

- 2

-2 2 4 6 8 10 12 14 16 18 20 22 24 26+,
Figure 6: Aim options for the penalty taker in the first iteration of the framework.

Notice that I have allowed for the penalty taker to aim at coordinates where y<0.365. This may

feel unintuitive given that the ball cannot hit such coordinates. However, I believe it makes a

lot of sense. You could imagine a footballer kicking a ball from the edge of a cliff: Is it possible

for the footballer to aim at a point lower than him? Of course, and it would also be possible to

hit those points. In a penalty kick, it's also possible to aim at the lower points - the only

difference is that the ground prevents the shot from hitting those coordinates. If the penalty

taker aims far below the ground, the result will almost certainly be that the ball rolls across the

ground as it passes the goal line, which is what happens in the model. Anyone who has

experience playing football knows that it's quite easy to achieve a shot that rolls across the

ground, so this is realistic.

Payoffs

The penalty taker has 55 different aiming-options, and the goalkeeper has three different area-

options. This means that there's a total of 165 possible combinations of aim-options and area-

options. Table l in the previous chapter, presented a pay-off matrix for a simple toy game with

just 18 possible combinations. The pay-off matrix consists of information about the payoffs for

each player in all 18 scenarios. Without complete information about the payoffs in each

scenario, the game isn't even properly defined, and that's a prerequisite for being able to solve

it. Therefore, I need to find the payoffs associated with each of the 165 possible scenarios.

31

32

The expected values (payoffs) for both players in each scenario is found by simulation. As an

example, let’s say we are operating within a system where the velocity-factor is equal to 10,

and that the penalty taker’s hit-distribution has a standard deviation of 2 in both the vertical

and horizontal direction, regardless of which coordinate is being aimed for. Let’s then assume

the penalty taker aims at coordinate (4, 4), just like the illustration in Figure 5, and that the

goalkeeper chooses “commit left”, covering the leftmost green area illustrated in Figure 2. This

would then be one out of the 165 possible scenarios. To find the probability of a goal in this

scenario, I draw hit-coordinates from the hit-distribution and check whether or not the

coordinate is (1) within the domain which can result in a goal, and (2) outside of the area that

is covered by the goalkeeper. Doing this over a large number of iterations, will provide a good

estimate of the probability of a goal, given the specific combination of strategic choices. The

payoff for the penalty taker will be equal to the probability of a goal, and the payoff for the

goalkeeper will be the negative value of the payoff for the penalty taker.

The same simulation is done for all 165 scenarios. This gives us the complete information about

the payoffs for both players in all possible outcomes of the game. I could present this

information in a pay-off matrix, just like I did in the toy game in Table 1. However, with 165

combinations, the matrix would be very large, so it wouldn’t be very practical. The code used

to find the payoffs in each scenario is presented in Appendix II.

Symmetry

In the model I’ve outlined, all assumptions are perfectly symmetrical. They are all mirrored

across the line 𝑥𝑥 = 12. When this is the case, nearly all scenarios have a different but

symmetrical counterpart. For example, the scenario where the penalty taker aims for (4, 4) and

the goalkeeper chooses “commit left”, has a symmetrical counterpart where the penalty taker

aims for coordinate (20, 4), and the goalkeeper chooses “commit right”. The only scenarios

that don’t have a symmetrical counterpart are the ones where the penalty taker aims at a

coordinate where 𝑥𝑥 = 12, and the goalkeeper chooses “stay middle”.

A scenario and its symmetric counterpart are equivalent. That is, the probability of a goal is the

same regardless of if the scenario is (4, 4) and “commit left”, or if it’s (20, 4) and “commit

right”. Therefore, the symmetrical scenarios are assigned the average payoffs of the two

scenarios, such that they end up with the same payoffs.

Perfectly symmetrical assumptions also have implications with regards to Nash equilibrium

strategies. The equivalence between a scenario and its symmetrical counterpart implies that

The expected values (payoffs) for both players in each scenario is found by simulation. As an

example, let's say we are operating within a system where the velocity-factor is equal to 10,

and that the penalty taker's hit-distribution has a standard deviation of 2 in both the vertical

and horizontal direction, regardless of which coordinate is being aimed for. Let's then assume

the penalty taker aims at coordinate (4, 4), just like the illustration in Figure 5, and that the

goalkeeper chooses "commit left", covering the leftmost green area illustrated in Figure 2. This

would then be one out of the 165 possible scenarios. To find the probability of a goal in this

scenario, I draw hit-coordinates from the hit-distribution and check whether or not the

coordinate is (l) within the domain which can result in a goal, and (2) outside of the area that

is covered by the goalkeeper. Doing this over a large number of iterations, will provide a good

estimate of the probability of a goal, given the specific combination of strategic choices. The

payoff for the penalty taker will be equal to the probability of a goal, and the payoff for the

goalkeeper will be the negative value of the payoff for the penalty taker.

The same simulation is done for all 165 scenarios. This gives us the complete information about

the payoffs for both players in all possible outcomes of the game. I could present this

information in a pay-off matrix, just like I did in the toy game in Table l. However, with 165

combinations, the matrix would be very large, so it wouldn't be very practical. The code used

to find the payoffs in each scenario is presented in Appendix II.

Symmetry

In the model I've outlined, all assumptions are perfectly symmetrical. They are all mirrored

across the line x = 12. When this is the case, nearly all scenarios have a different but

symmetrical counterpart. For example, the scenario where the penalty taker aims for (4, 4) and

the goalkeeper chooses "commit left", has a symmetrical counterpart where the penalty taker

aims for coordinate (20, 4), and the goalkeeper chooses "commit right". The only scenarios

that don't have a symmetrical counterpart are the ones where the penalty taker aims at a

coordinate where x = 12, and the goalkeeper chooses "stay middle".

A scenario and its symmetric counterpart are equivalent. That is, the probability of a goal is the

same regardless of if the scenario is (4, 4) and "commit left", or if it's (20, 4) and "commit

right". Therefore, the symmetrical scenarios are assigned the average payoffs of the two

scenarios, such that they end up with the same payoffs.

Perfectly symmetrical assumptions also have implications with regards to Nash equilibrium

strategies. The equivalence between a scenario and its symmetrical counterpart implies that

32

33

there must exist a set of Nash equilibrium strategies that are symmetrical across 𝑥𝑥 = 12 as

well. That is, there must exist a Nash equilibrium where “commit left” is played at the same

frequency as “commit right”, and coordinate (4, 4) is selected as often as coordinate (20, 4), et

cetera.

An initial result

By implementing the counterfactual regret minimization (CFR) algorithm, I can locate the

Nash equilibrium solution of the model. The essential parts of the code relating to the CFR-

algorithm is presented in Appendix III. Let’s select a velocity factor of 10, a standard deviation

of 2, and a friction factor of 0.1, as the specific assumptions to solve for. Using 1,000,000

iterations to simulate payoffs for each scenario, I arrive at the solution presented in Table 2.

(4, 4): 0.427

Commit left: 0.461

(12, 4): 0.146

Stay middle: 0.078

Expected values: ±0.724

(20, 4): 0.427

Commit right: 0.467

Exploitability: <0.0001 & <0.0001
Table 2: An initial result. (Rounded to 3 decimals)

In the solution, the penalty taker has an expected value of 0.724, and the goalkeeper has an

expected value of -0.724. This is because the probability of a goal is 0.724. The penalty taker

selects three out of the 55 possible aiming coordinates with a non-zero frequency. These

coordinates are (4, 4), (12, 4), and (20, 4). The penalty taker is indifferent between these

coordinates, meaning that they yield the same expected value (which is also 0.724). All other

aiming coordinates perform worse, yielding a lower expected value. For the goalkeeper, all

three options are viable.

The strategies of the players are exploitable for <0.0001. This means that, assuming the strategy

of the opponent is held constant, it’s impossible for either player to gain more than 0.0001 in

expected value by deviating from their current strategy. At the Nash equilibrium, both strategies

will have an exploitability of zero. Since this is an approximation, the value is slightly positive

– however, it’s very low, meaning that the approximation is a very good one.

While the solution is good, its applicability to penalty kicks is only as good as the assumptions.

In this case, the penalty taker had access to 55 different aiming options, whereas in reality, it’s

possible to aim anywhere in the goal. The 55 different options are spaced 2 feet apart. In the

true equilibrium, the penalty taker may prefer aiming at coordinates in between those options.

there must exist a set of Nash equilibrium strategies that are symmetrical across x = 12 as

well. That is, there must exist a Nash equilibrium where "commit left" is played at the same

frequency as "commit right", and coordinate (4, 4) is selected as often as coordinate (20, 4), et

cetera.

An initial result

By implementing the counterfactual regret minimization (CFR) algorithm, I can locate the

Nash equilibrium solution of the model. The essential parts of the code relating to the CFR-

algorithm is presented in Appendix III. Let's select a velocity factor of l 0, a standard deviation

of 2, and a friction factor of 0.1, as the specific assumptions to solve for. Using 1,000,000

iterations to simulate payoffs for each scenario, I arrive at the solution presented in Table 2.

(4, 4): 0.427

Commit left: 0.461

(12, 4): 0.146

Stay middle: 0.078

Expected values: ±0. 724

Exploitability: <0.0001 & <0.0001

(20, 4): 0.427

Commit right: 0.467

Table 2: An initial result. (Rounded to 3 decimals)

In the solution, the penalty taker has an expected value of 0.724, and the goalkeeper has an

expected value of -0.724. This is because the probability of a goal is 0.724. The penalty taker

selects three out of the 55 possible aiming coordinates with a non-zero frequency. These

coordinates are (4, 4), (12, 4), and (20, 4). The penalty taker is indifferent between these

coordinates, meaning that they yield the same expected value (which is also 0.724). All other

aiming coordinates perform worse, yielding a lower expected value. For the goalkeeper, all

three options are viable.

The strategies of the players are exploitable for <0.000l. This means that, assuming the strategy

of the opponent is held constant, it's impossible for either player to gain more than 0.0001 in

expected value by deviating from their current strategy. At the Nash equilibrium, both strategies

will have an exploitability of zero. Since this is an approximation, the value is slightly positive

- however, it's very low, meaning that the approximation is a very good one.

While the solution is good, its applicability to penalty kicks is only as good as the assumptions.

In this case, the penalty taker had access to 55 different aiming options, whereas in reality, it's

possible to aim anywhere in the goal. The 55 different options are spaced 2 feet apart. In the

true equilibrium, the penalty taker may prefer aiming at coordinates in between those options.

33

34

One way to account for this would be to simply add more options. This method would work,

but it wouldn’t be very practical. The more options are added, the more computational time is

required to find a good solution.

If I want the spacing between the options to be quite small, for example ⅒ of the current

distance, the number of aiming options would grow to over 5000, making the required

computational time extremely long. Therefore, I want a better way of determining which

options should be available to the penalty taker.

Coordinate search
To locate the optimal aiming options, I developed an algorithm which I call coordinate search.

The algorithm builds upon the framework I’ve presented so far but adds an iterative process

which adds and removes aiming options based on the solutions the CFR-algorithm arrives at.

Appendix IV presents the essential parts of the code relating to the coordinate search algorithm.

Here, I will explain the algorithm conceptually.

The first iteration of the coordinate search algorithm is similar to what I have presented earlier.

One exception is that the initial aiming options are spaced 1.6 feet apart, with the outer options

being space 0.8 feet from the posts or the bar. This means that there are 90 initial aiming options

instead of 55, and 270 total scenarios instead of 155. The spacing between the coordinates may

seem arbitrary at first, but it’s a conscious design choice. When 1.6 feet is divided by two

several times, we get distances such as 0.4 feet, 0.2 feet, or 0.1 feet. These are examples of

distances between aiming coordinates which I want solutions for.

Once the CFR-algorithm arrives at a solution, the coordinate search algorithm discards some

aiming options, and adds some new ones. The options that were chosen at a non-zero frequency

are kept, and the other options are discarded. The new coordinates are chosen such that they

surround the coordinates that weren’t discarded. As an example, if coordinate (4, 4) is played

with a non-zero probability in the penalty taker’s Nash equilibrium strategy, whereas the

surrounding coordinates (2.4, 2.4), (2.4, 4), (2.4, 5.6), (4, 2.4), (4, 5.6), (5.6, 2.4), (5.6, 4), and

(5.6, 5.6) are never played, then the coordinate (4, 4) is kept, and the surrounding coordinates

are discarded. Furthermore, new coordinates surrounding (4, 4) are added, such that the

distance between the points are halved (in this case from 1.6 feet to 0.8 feet). This means that

coordinates (3.2, 3.2), (3.2, 4), (3.2, 4,8), (4, 3.2), (4, 4.8), (4.8, 3.2), (4.8, 4), and (4.8, 4.8) are

added as new aiming options. If there were two other frequently selected coordinates - perhaps

one in the middle, such as (12, 4), and one on the right, such as (20, 4) - we would have a total

One way to account for this would be to simply add more options. This method would work,

but it wouldn't be very practical. The more options are added, the more computational time is

required to find a good solution.

If I want the spacing between the options to be quite small, for example ½o of the current

distance, the number of aiming options would grow to over 5000, making the required

computational time extremely long. Therefore, I want a better way of determining which

options should be available to the penalty taker.

Coordinate search

To locate the optimal aiming options, I developed an algorithm which I call coordinate search.

The algorithm builds upon the framework I've presented so far but adds an iterative process

which adds and removes aiming options based on the solutions the CPR-algorithm arrives at.

Appendix IV presents the essential parts of the code relating to the coordinate search algorithm.

Here, I will explain the algorithm conceptually.

The first iteration of the coordinate search algorithm is similar to what I have presented earlier.

One exception is that the initial aiming options are spaced 1.6 feet apart, with the outer options

being space 0.8 feet from the posts or the bar. This means that there are 90 initial aiming options

instead of 55, and 270 total scenarios instead of 155. The spacing between the coordinates may

seem arbitrary at first, but it's a conscious design choice. When 1.6 feet is divided by two

several times, we get distances such as 0.4 feet, 0.2 feet, or 0.1 feet. These are examples of

distances between aiming coordinates which I want solutions for.

Once the CPR-algorithm arrives at a solution, the coordinate search algorithm discards some

aiming options, and adds some new ones. The options that were chosen at a non-zero frequency

are kept, and the other options are discarded. The new coordinates are chosen such that they

surround the coordinates that weren't discarded. As an example, if coordinate (4, 4) is played

with a non-zero probability in the penalty taker's Nash equilibrium strategy, whereas the

surrounding coordinates (2.4, 2.4), (2.4, 4), (2.4, 5.6), (4, 2.4), (4, 5.6), (5.6, 2.4), (5.6, 4), and

(5.6, 5.6) are never played, then the coordinate (4, 4) is kept, and the surrounding coordinates

are discarded. Furthermore, new coordinates surrounding (4, 4) are added, such that the

distance between the points are halved (in this case from 1.6 feet to 0.8 feet). This means that

coordinates (3.2, 3.2), (3.2, 4), (3.2, 4,8), (4, 3.2), (4, 4.8), (4.8, 3.2), (4.8, 4), and (4.8, 4.8) are

added as new aiming options. If there were two other frequently selected coordinates - perhaps

one in the middle, such as (12, 4), and one on the right, such as (20, 4) - we would have a total

34

35

of 27 aiming options in the next iteration, as these options would also be surrounded by new

coordinates.

In the first iteration of the coordinate search, the frequently selected options will always be

surrounded by other coordinates (unless the coordinate is one of the outermost options). In the

next iterations, it’s quite common that a frequently selected option doesn’t have any available

options on some of its sides. To continue the example, if in the second iteration the coordinate

(3.2, 4.8) is a playable option, there won’t exist surrounding points to the left of it, or above it.

In such a case, new options are added such that (3.2, 4.8) is surrounded, without the distance

being halved. The aiming options for the next iteration on this side of the goal would then be

(2.4, 4), (2.4, 4.8), (2.4, 5.6), (3.2, 4), (3.2, 4.8), (3.2, 5.6), (4, 4), (4, 4.8), and (4, 5.6). Some

of these aiming options were present in the first iteration, but not in the second. The expected

payoffs in the scenarios corresponding to some of those coordinates has already been calculated

and can therefore be retrieved without additional simulation.

If the solution in the third iteration is such that coordinate (3.2, 4.8) still is being selected with

a non-zero probability, the coordinate is kept, and new aim options are added around it. Since

the coordinate (3.2, 4.8) is already surrounded by other coordinates (with a spacing of 0.8 feet),

the distance is halved, such that the distance between the coordinate and the new coordinates

are only 0.4 feet. The new coordinates will then be (2.8, 4.4), (2.8, 4.8), (2.8, 5.2), (3.2, 4.4),

(3.2, 5.2), (3.6, 4.4), (3.6, 4.8), and (3.6, 5.2).

In addition to the mechanism I have presented so far, there’s another way that new aiming

options can be added. At each step of the coordinate search, the expected value of all the

discarded options is calculated. This is done with respect to the strategy that the goalkeeper

employed in the latest solution. If a previously discarded aiming option yields a higher expected

value than the expected value of the strategy of the penalty taker, the coordinate is added back

in again. New options are also added around the coordinate, in accordance with the same

principles that have already been outlined. By adding new coordinates in between the

previously available aiming coordinates, the coordinate search algorithm gradually locates

better and better aiming options.

The user defines a desired specificity, which is the acceptable distance between coordinates.

For instance, if the user sets the specificity to 0.2 feet, the algorithm will abstain from adding

coordinates that are such that the distance to another coordinate will be less than 0.2 feet.

of 27 aiming options in the next iteration, as these options would also be surrounded by new

coordinates.

In the first iteration of the coordinate search, the frequently selected options will always be

surrounded by other coordinates (unless the coordinate is one of the outermost options). In the

next iterations, it's quite common that a frequently selected option doesn't have any available

options on some of its sides. To continue the example, if in the second iteration the coordinate

(3.2, 4.8) is a playable option, there won't exist surrounding points to the left of it, or above it.

In such a case, new options are added such that (3.2, 4.8) is surrounded, without the distance

being halved. The aiming options for the next iteration on this side of the goal would then be

(2.4, 4), (2.4, 4.8), (2.4, 5.6), (3.2, 4), (3.2, 4.8), (3.2, 5.6), (4, 4), (4, 4.8), and (4, 5.6). Some

of these aiming options were present in the first iteration, but not in the second. The expected

payoffs in the scenarios corresponding to some of those coordinates has already been calculated

and can therefore be retrieved without additional simulation.

If the solution in the third iteration is such that coordinate (3.2, 4.8) still is being selected with

a non-zero probability, the coordinate is kept, and new aim options are added around it. Since

the coordinate (3.2, 4.8) is already surrounded by other coordinates (with a spacing of 0.8 feet),

the distance is halved, such that the distance between the coordinate and the new coordinates

are only 0.4 feet. The new coordinates will then be (2.8, 4.4), (2.8, 4.8), (2.8, 5.2), (3.2, 4.4),

(3.2, 5.2), (3.6, 4.4), (3.6, 4.8), and (3.6, 5.2).

In addition to the mechanism I have presented so far, there's another way that new aiming

options can be added. At each step of the coordinate search, the expected value of all the

discarded options is calculated. This is done with respect to the strategy that the goalkeeper

employed in the latest solution. If a previously discarded aiming option yields a higher expected

value than the expected value of the strategy of the penalty taker, the coordinate is added back

in again. New options are also added around the coordinate, in accordance with the same

principles that have already been outlined. By adding new coordinates in between the

previously available aiming coordinates, the coordinate search algorithm gradually locates

better and better aiming options.

The user defines a desired specificity, which is the acceptable distance between coordinates.

For instance, if the user sets the specificity to 0.2 feet, the algorithm will abstain from adding

coordinates that are such that the distance to another coordinate will be less than 0.2 feet.

35

36

Eventually, the option search algorithm will locate a set of points which are likely to be optimal,

given the acceptable specificity. This occurs when (1) all the aiming options that are selected

with a non-zero probability are surrounded by other aiming options which are spaced out with

a distance equal to the specificity, and (2) none of the discarded aiming options have a higher

expected pay-off than the strategy of the penalty taker.

I previously stated that it would require over 5000 aiming options to check for every coordinate

if the distance between the coordinates were just 0.2 feet. With the coordinate search algorithm,

I effectively achieve the same result, without needlessly having to check thousands of options.

This reduces the required computational time immensely, making it feasible to solve the game

with such a high degree of coordinate-specificity. However, there is a technical possibility of

missing optimal coordinates when using the coordinate search algorithm. The algorithm relies

on identifying the optimal coordinates by means of nearby coordinates, assuming that if a

coordinate is optimal, nearby coordinates will also be optimal in earlier iterations. Technically,

there is the possibility that an in-between coordinate is viable, whereas no available nearby

coordinates ever are. In such a case, that point would be missed.

If we imagine that the initial aim options were spaced out with a larger distance, such as 3.2

feet, or even 6.4 feet, this could start becoming likely. However, when the maximum distance

between aiming options is as only 1.6 feet, optimal coordinates are very unlikely to be

overlooked. I could have made the initial aiming options be spaced out by 0.8 feet instead, but

this would increase the computational time, which is a trade-off I believe isn’t worth making.

Using the coordinate search algorithm, I’m able to solve the game for a diverse set of

assumptions. I used three different velocity-factors: High velocity (𝑣𝑣 = 10), medium velocity

(𝑣𝑣 = 8.5), and low velocity (𝑣𝑣 = 7). Furthermore, there are seven different degrees of

inaccuracy. Table 3, Table 4, and Table 5 present the solutions. I defined the specificity to be

equal to 0.2 feet, meaning that no points can be spaced closer together than that distance. I used

100,000 iterations to simulate the available scenarios in the first step of the coordinate search,

1,000,000 iterations in the subsequent steps, and 10,000,000 iterations in the last step which

arrives at the final solution. All strategies in the solutions have an exploitability of <0.00001,

meaning that they are excellent approximations of a Nash equilibrium.

Eventually, the option search algorithm will locate a set of points which are likely to be optimal,

given the acceptable specificity. This occurs when (l) all the aiming options that are selected

with a non-zero probability are surrounded by other aiming options which are spaced out with

a distance equal to the specificity, and (2) none of the discarded aiming options have a higher

expected pay-off than the strategy of the penalty taker.

I previously stated that it would require over 5000 aiming options to check for every coordinate

if the distance between the coordinates were just 0.2 feet. With the coordinate search algorithm,

I effectively achieve the same result, without needlessly having to check thousands of options.

This reduces the required computational time immensely, making it feasible to solve the game

with such a high degree of coordinate-specificity. However, there is a technical possibility of

missing optimal coordinates when using the coordinate search algorithm. The algorithm relies

on identifying the optimal coordinates by means of nearby coordinates, assuming that if a

coordinate is optimal, nearby coordinates will also be optimal in earlier iterations. Technically,

there is the possibility that an in-between coordinate is viable, whereas no available nearby

coordinates ever are. In such a case, that point would be missed.

If we imagine that the initial aim options were spaced out with a larger distance, such as 3.2

feet, or even 6.4 feet, this could start becoming likely. However, when the maximum distance

between aiming options is as only 1.6 feet, optimal coordinates are very unlikely to be

overlooked. I could have made the initial aiming options be spaced out by 0.8 feet instead, but

this would increase the computational time, which is a trade-off I believe isn't worth making.

Using the coordinate search algorithm, I'm able to solve the game for a diverse set of

assumptions. I used three different velocity-factors: High velocity (v = 10), medium velocity

(v = 8.5), and low velocity (v = 7). Furthermore, there are seven different degrees of

inaccuracy. Table 3, Table 4, and Table 5 present the solutions. I defined the specificity to be

equal to 0.2 feet, meaning that no points can be spaced closer together than that distance. I used

100,000 iterations to simulate the available scenarios in the first step of the coordinate search,

1,000,000 iterations in the subsequent steps, and 10,000,000 iterations in the last step which

arrives at the final solution. All strategies in the solutions have an exploitability of <0.0000 l,

meaning that they are excellent approximations of a Nash equilibrium.

36

37

 High velocity (v=10)

SD=1

(2.6, 5.4): 0.49
Commit left: 0.492

(12.0, 5.4): 0.019
Stay middle: 0.015

Exp. values: ±0.962

(21.4, 5.4): 0.49
Commit right: 0.492

Exploitability: <0.00001 & <0.00001

SD=1.25

(2.8, 5.4): 0.478
Commit left: 0.485

(12.0, 5.2): 0.044
Stay middle: 0.031

Exp. values: ±0.906

(21.2, 5.4): 0.478
Commit right: 0.485

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.8, 5.0): 0.461
Commit left: 0.478

(12.0, 5.2): 0.077
Stay middle: 0.044

Exp. values: ±0.846

(21.2, 5.0): 0.461
Commit right: 0.478

Exploitability: <0.00001 & <0.00001

SD=1.75

(3.0, 4.8): 0.45
Commit left: 0.473

(12.0, 4.8): 0.006
(12.0, 5.0): 0.094

Stay middle: 0.055

Exp. values: ±0.791

(21.2, 4.8): 0.45
Commit right: 0.473

Exploitability: <0.00001 & <0.00001

SD=2

(3.2, 4.4): 0.44
Commit left: 0.468

(12.0, 4.8): 0.12
Stay middle: 0.064

Exp. values: ±0.742

(20.8, 4.4): 0.44
Commit right: 0.468

Exploitability: <0.00001 & <0.00001

SD=2.25

(3.6, 4.2): 0.441
Commit left: 0.464

(12.0, 4.2): 0.001
(12.0, 4.4): 0.118

Stay middle: 0.073

Exp. values: ±0.703

(20.4, 4.2): 0.441
Commit right: 0.464

Exploitability: <0.00001 & <0.00001

SD=2.5

(3.6, 3.8): 0.006
(3.8, 3.8): 0.436

Commit left: 0.459

(12.0, 3.8): 0.115
Stay middle: 0.081

Exp. values: ±0.67

(20.2, 3.8): 0.006
(20.2, 3.8): 0.436

Commit right: 0.459

Exploitability: <0.00001 & <0.00001
Table 3: Nash equilibrium solutions when the penalty taker shoots with a high velocity (v=10). (Rounded to 3 decimals)

High velocity (v=l0)
(2.6, 5.4): 0.49 (12.0, 5.4): 0.019 (21.4, 5.4): 0.49

Commit left: 0.492 Stay middle: 0.015 Commit right: 0.492

SD=l

Exp. values: ±0.962
Exploitability: <0.00001 & <0.00001

(2.8, 5.4): 0.478 (12.0, 5.2): 0.044 (21.2, 5.4): 0.478
Commit left: 0.485 Stay middle: 0.031 Commit right: 0.485

SD=l.25

Exp. values: ±0.906
Exploitabilitv: <0.00001 & <0.00001

(2.8, 5.0): 0.461 (12.0, 5.2): 0.077 (21.2, 5.0): 0.461
Commit left: 0.478 Stay middle: 0.044 Commit right: 0.478

SD=l.5

Exp. values: ±0.846
Exploitability: <0.00001 & <0.00001

(3.0, 4.8): 0.45 (12.0, 4.8): 0.006 (21.2, 4.8): 0.45
Commit left: 0.473 (12.0, 5.0): 0.094 Commit right: 0.473

Stay middle: 0.055
SD=l.75

Exp. values: ±0. 791
Exploitability: <0.00001 & <0.00001

(3.2, 4.4): 0.44 (12.0, 4.8): 0.12 (20.8, 4.4): 0.44
Commit left: 0.468 Stay middle: 0.064 Commit right: 0.468

SD=2

Exp. values: ±0. 742
Exploitabilitv: <0.00001 & <0.00001

(3.6, 4.2): 0.441 (12.0, 4.2): 0.001 (20.4, 4.2): 0.441
Commit left: 0.464 (12.0, 4.4): 0.118 Commit right: 0.464

Stay middle: 0.073
SD=2.25

Exp. values: ±0. 703
Exploitability: <0.00001 & <0.00001

(3.6, 3.8): 0.006 (12.0, 3.8): 0.115 (20.2, 3.8): 0.006
(3.8, 3.8): 0.436 Stay middle: 0.08l (20.2, 3.8): 0.436

Commit left: 0.459 Commit right: 0.459
SD=2.5

Exp. values: ±0.67
Exploitability: <0.00001 & <0.00001

Table 3: Nash equilibrium solutions when the penalty taker shoots with a high velocity (v=lO}. (Rounded to 3 decimals)

37

38

 Medium velocity (v=8.5)

SD=1

(2.6, 5.8): 0.491
Commit left: 0.469

(12.0, 4.4): 0.007
(12.0, 4.6): 0.012

Stay middle: 0.061

Exp. values: ±0.937

(21.4, 5.8): 0.491
Commit right: 0.469

Exploitability: <0.00001 & <0.00001

SD=1.25

(2.8, 5.6): 0.488
Commit left: 0.44

(12.0, 4.4): 0.025
Stay middle: 0.119

Exp. values: ±0.871

(21.2, 5.6): 0.488
Commit right: 0.44

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.8, 5.4): 0.488
Commit left: 0.415

(12.0, 4.2): 0.023
Stay middle: 0.171

Exp. values: ±0.803

(21.2, 5.4): 0.488
Commit right: 0.415

Exploitability: <0.00001 & <0.00001

SD=1.75

(3.0, 5.0): 0.448
(3.0, 5.2): 0.044

Commit left: 0.394

(12.0, 4.0): 0.015
Stay middle: 0.213

Exp. values: ±0.74

(21.0, 5.0): 0.448
(21.0, 5.2): 0.044

Commit right: 0.394

Exploitability: <0.00001 & <0.00001

SD=2

(3.0, 4.6): 0.225
(3.2, 4.8): 0.275

Commit left: 0.36

Stay middle: 0.28

Exp. values: ±0.686

(21.0, 4.6): 0.225
(20.8, 4.8): 0.275

Commit right: 0.36

Exploitability: <0.00001 & <0.00001

SD=2.25

(3.0, 4.2): 0.107
(3.2, 4.2): 0.388
(3.2, 4.4): 0.005

Commit left: 0.308

Stay middle: 0.383

Exp. values: ±0.64

(21.0, 4.2): 0.107
(20.8, 4.2): 0.388
(20.8, 4.4): 0.005

Commit right: 0.308

Exploitability: <0.00001 & <0.00001

SD=2.5

(3.2, 3.6): 0.475
(3.4, 3.8): 0.024

Commit left: 0.311

Stay middle: 0.377

Exp. values: ±0.602

(20.8, 3.6): 0.475
(20.6, 3.8): 0.024

Commit right: 0.311

Exploitability: <0.00001 & <0.00001
Table 4: Nash equilibrium solutions when the penalty taker shoots with a medium velocity (v=8.5). (Rounded to 3 decimals)

SD=l

Medium velocity (v=8.5)
(2.6, 5.8): 0.491

Commit left: 0.469
(12.0, 4.4): 0.007
(12.0, 4.6): 0.012

Stay middle: 0.061

(21.4, 5.8): 0.491
Commit right: 0.469

Exp. values: ±0.937
Exploitability: <0.00001 & <0.00001

SD=l.25

(2.8, 5.6): 0.488 (12.0, 4.4): 0.025 (21.2, 5.6): 0.488
Commit left: 0.44 Stay middle: 0.119 Commit right: 0.44

Exp. values: ±0.871
Exploitabilitv: <0.00001 & <0.00001

SD=l.5

(2.8, 5.4): 0.488 (12.0, 4.2): 0.023 (21.2, 5.4): 0.488
Commit left: 0.415 Stay middle: 0.171 Commit right: 0.415

Exp. values: ±0.803
Exploitability: <0.00001 & <0.00001

SD=l.75

(3.0, 5.0): 0.448 (12.0, 4.0): 0.015 (21.0, 5.0): 0.448
(3.0, 5.2): 0.044 Stay middle: 0.213 (21.0, 5.2): 0.044

Commit left: 0.394 Commit right: 0.394

Exp. values: ±0. 74
Exploitability: <0.00001 & <0.00001

SD=2

(3.0, 4.6): 0.225 Stay middle: 0.28 (21.0, 4.6): 0.225
(3.2, 4.8): 0.275 (20.8, 4.8): 0.275

Commit left: 0.36 Commit right: 0.36

Exp. values: ±0.686
Exploitabilitv: <0.00001 & <0.00001

SD=2.25

(3.0, 4.2): 0.107 Stay middle: 0.383 (21.0, 4.2): 0.107
(3.2, 4.2): 0.388 (20.8, 4.2): 0.388
(3.2, 4.4): 0.005 (20.8, 4.4): 0.005

Commit left: 0.308 Commit right: 0.308

Exp. values: ±0.64
Exploitability: <0.00001 & <0.00001

SD=2.5

(3.2, 3.6): 0.475 Stay middle: 0.377 (20.8, 3.6): 0.475
(3.4, 3.8): 0.024 (20.6, 3.8): 0.024

Commit left: 0.311 Commit right: 0.311

Exp. values: ±0.602
Exploitability: <0.00001 & <0.00001

Table 4: Nash equilibrium solutions when the penalty taker shoots with a medium velocity (v=B.5}. (Rounded to 3 decimals)

38

39

 Low velocity (v=7)

SD=1

(1.8, 5.4): 0.32
(2.0, 5.4): 0.18

Commit left: 0.027

Stay middle: 0.946

Exp. values: ±0.885

(22.2, 5.4): 0.32
(22.0, 5.4): 0.18

Commit right: 0.027

Exploitability: <0.00001 & <0.00001

SD=1.25

(2.0, -0.4): 0.025
(2.0, 5.4): 0.475

Commit left: 0.051

Stay middle: 0.898

Exp. values: ±0.787

(22.0, -0.4): 0.025
(22.0, 5.4): 0.475

Commit right: 0.051

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.0, -0.6): 0.025
(2.0, 4.8): 0.475

Commit left: 0.069

Stay middle: 0.863

Exp. values: ±0.696

(22.0, -0.6): 0.025
(22.0, 4.8): 0.475

Commit right: 0.069

Exploitability: <0.00001 & <0.00001

SD=1.75

(2.0, -0.6): 0.027
(2.0, 4.4): 0.473

Commit left: 0.082

Stay middle: 0.835

Exp. values: ±0.62

(22.0, -0.6): 0.027
(22.0, 4.4): 0.473

Commit right: 0.082

Exploitability: <0.00001 & <0.00001

SD=2

(2.0, -0.2): 0.004
(2.0, 3.8): 0.494
(2.0, 4.0): 0.001

Commit left: 0.09

Stay middle: 0.819

Exp. values: ±0.559

(22.0, -0.2): 0.004
(22.0, 3.8): 0.494
(22.0, 4.0): 0.001

Commit right: 0.09

Exploitability: <0.00001 & <0.00001

SD=2.25

(2.0, 3.0): 0.324
(2.2, 3.4): 0.176

Commit left: 0.104

Stay middle: 0.792

Exp. values: ±0.51

(22.0, 3.0): 0.324
(21.8, 3.4): 0.176

Commit right: 0.104

Exploitability: <0.00001 & <0.00001

SD=2.5

(2.2, 1.6): 0.025
(2.2, 1.8): 0.09
(2.2, 2.0): 0.004
(2.2, 2.4): 0.377
(2.2, 2.6): 0.004

Commit left: 0.101

Stay middle: 0.798

Exp. values: ±0.471

(21.8, 1.6): 0.025
(21.8, 1.8): 0.09
(21.8, 2.0): 0.004
(21.8, 2.4): 0.377
(21.8, 2.6): 0.004

Commit right: 0.101
Exploitability: <0.00001 & <0.00001

Table 5: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=7). (Rounded to 3 decimals)

SD=l

Low velocity (v=7)
(1.8, 5.4): 0.32
(2.0, 5.4): 0.18

Commit left: 0.027

Stay middle: 0.946 (22.2, 5.4): 0.32
(22.0, 5.4): 0.18

Commit right: 0.027

Exp. values: ±0.885
Exploitability: <0.00001 & <0.00001

SD=l.25

(2.0, -0.4): 0.025 Stay middle: 0.898 (22.0, -0.4): 0.025
(2.0, 5.4): 0.475 (22.0, 5.4): 0.475

Commit left: 0.05l Commit right: 0.05 l

Exp. values: ±0. 787
Exploitabilitv: <0.00001 & <0.00001

SD=l.5

(2.0, -0.6): 0.025 Stay middle: 0.863 (22.0, -0.6): 0.025
(2.0, 4.8): 0.475 (22.0, 4.8): 0.475

Commit left: 0.069 Commit right: 0.069

Exp. values: ±0.696
Exploitability: <0.00001 & <0.00001

SD=l.75

(2.0, -0.6): 0.027 Stay middle: 0.835 (22.0, -0.6): 0.027
(2.0, 4.4): 0.473 (22.0, 4.4): 0.473

Commit left: 0.082 Commit right: 0.082

Exp. values: ±0.62
Exploitability: <0.00001 & <0.00001

SD=2

(2.0, -0.2): 0.004 Stay middle: 0.819 (22.0, -0.2): 0.004
(2.0, 3.8): 0.494 (22.0, 3.8): 0.494
(2.0, 4.0): 0.001 (22.0, 4.0): 0.001

Commit left: 0.09 Commit right: 0.09

Exp. values: ±0.559
Exploitabilitv: <0.00001 & <0.00001

SD=2.25

(2.0, 3.0): 0.324 Stay middle: 0.792 (22.0, 3.0): 0.324
(2.2, 3.4): 0.176 (21.8, 3.4): 0.176

Commit left: 0.104 Commit right: 0.104

Exp. values: ±0.51
Exploitability: <0.00001 & <0.00001

SD=2.5

(2.2, 1.6): 0.025 Stay middle: 0.798 (21.8, 1.6): 0.025
(2.2, 1.8): 0.09 (21.8, 1.8): 0.09
(2.2, 2.0): 0.004 (21.8, 2.0): 0.004
(2.2, 2.4): 0.377 (21.8, 2.4): 0.377
(2.2, 2.6): 0.004 (21.8, 2.6): 0.004

Commit left: 0.101 Exp. values: ±0.471 Commit right: 0.101
Exploitability: <0.00001 & <0.00001

Table 5: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=l}. (Rounded to 3 decimals)

39

40

The increased specificity of the permittable coordinates allows the penalty taker to increase

their expected value. This is illustrated when comparing the initial result from Table 2 with the

corresponding result in Table 3. In the initial result, the penalty taker ended up aiming for

coordinates (4, 4), (12, 4), and (20, 4), as these were the best coordinates available. This yielded

an expected value of 0.724. After running the coordinate search (with a specificity of 0.2 feet),

I find that the preferred aim-coordinates are (3.2, 4.4), (12.0, 4.8), and (20.8, 4.4). When

allowed to aim for those coordinates, their penalty taker’s expected value increases to 0.742.

In this instance, this effectively means that the penalty taker has managed to increase the

probability of a goal by 1.8%, as a result of choosing slightly more optimal coordinates.

Figure 7: Expected values for the penalty taker in the Nash equilibrium solutions.

Figure 7 illustrates the expected value for the penalty taker for all the combinations of

assumptions. We should expect the penalty taker to achieve a higher expected value if they are

able to shoot more accurately. The figure demonstrates this, as an increase in standard deviation

results in a decrease in expected value. Similarly, with all else being equal, we should expect

the penalty taker to have a higher expectation when shooting with a higher velocity. This is

because the area the goalkeeper is able to cover is smaller when the velocity is high. Again,

this concept is illustrated in the figure. Assuming that the standard deviation is equal, the

penalty taker’s expected value is highest if the velocity is high, and lowest if the velocity is

low. This holds for all the seven values of standard deviation that I solved for.

The increased specificity of the permittable coordinates allows the penalty taker to increase

their expected value. This is illustrated when comparing the initial result from Table 2 with the

corresponding result in Table 3. In the initial result, the penalty taker ended up aiming for

coordinates (4, 4), (12, 4), and (20, 4), as these were the best coordinates available. This yielded

an expected value of0.724. After running the coordinate search (with a specificity of 0.2 feet),

I find that the preferred aim-coordinates are (3.2, 4.4), (12.0, 4.8), and (20.8, 4.4). When

allowed to aim for those coordinates, their penalty taker's expected value increases to 0.742.

In this instance, this effectively means that the penalty taker has managed to increase the

probability of a goal by 1.8%, as a result of choosing slightly more optimal coordinates.

1.0
SD

- 1.0
- 1.25
c::::::J 1.5
c::::::J 1.75

0.8 c::::::J 2.0

- 2.25
- 2.5

QI
0.6ro>

"CJ
QI.....u
QI
0..><0.4

UJ

0.2

0.0
High velocity (V=lO) Medium velocity (v=B.S) Low velocity (v=7)

Figure 7: Expected valuesfor the penalty taker in the Nash equilibrium solutions.

Figure 7 illustrates the expected value for the penalty taker for all the combinations of

assumptions. We should expect the penalty taker to achieve a higher expected value if they are

able to shoot more accurately. The figure demonstrates this, as an increase in standard deviation

results in a decrease in expected value. Similarly, with all else being equal, we should expect

the penalty taker to have a higher expectation when shooting with a higher velocity. This is

because the area the goalkeeper is able to cover is smaller when the velocity is high. Again,

this concept is illustrated in the figure. Assuming that the standard deviation is equal, the

penalty taker's expected value is highest if the velocity is high, and lowest if the velocity is

low. This holds for all the seven values of standard deviation that I solved for.

40

41

Figure 8: Aiming options utilized by the penalty taker in the Nash equilibrium solutions.

Figure 8 illustrates which aiming options the penalty taker utilizes in the various Nash

equilibrium solutions. This is valuable for a couple of reasons. First of all, it demonstrates that

there are large general areas of the goal which the penalty taker should avoid aiming for,

regardless of the assumptions about inaccuracy and area coverage. Secondly, we see a clear

trend between inaccuracy and the exact location of the optimal coordinates. If the inaccuracy

increases, the optimal coordinate tends to shift downwards, and also horizontally towards the

centre of the goal. This happens because if the inaccuracy of the penalty taker increases, and

10

8

6

4

2

0

-2

10

8

6

4

2

0

-2

10

8

6

4

2

0

-2

0 a<o El
o. I .o- • •

High velocity (v=lO)

\ f, '

Medium velocity (v=8.5)

SD

• 1.0
0 1.25
0 1.5
0 1.75
0 2.0
• 2.25
• 2.5

Cl C>
0 0
0 0g g• •• •I I
I I

tj

Low velocity (v=7)

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 8: Aiming options utilized by the penalty taker in the Nash equilibrium solutions.

Figure 8 illustrates which aiming options the penalty taker utilizes in the various Nash

equilibrium solutions. This is valuable for a couple ofreasons. First of all, it demonstrates that

there are large general areas of the goal which the penalty taker should avoid aiming for,

regardless of the assumptions about inaccuracy and area coverage. Secondly, we see a clear

trend between inaccuracy and the exact location of the optimal coordinates. If the inaccuracy

increases, the optimal coordinate tends to shift downwards, and also horizontally towards the

centre of the goal. This happens because if the inaccuracy of the penalty taker increases, and
41

42

the same coordinate is aimed for, the chance of missing the goal increases. Therefore, the

penalty taker adjusts their aim-coordinate such that there’s a larger distance towards the post

and the crossbar.

Figure 9: The frequencies of which the penalty taker selects a central coordinate.

Figure 10: The frequencies at which the goalkeeper selects "stay middle".

Figure 9 and Figure 10 illustrate the frequencies at which the penalty taker and the goalkeeper

select their respective central options (i.e., a coordinate at the line 𝑥𝑥 = 12, or “stay middle”).

These figures illustrate that the penalty taker only selects a central coordinate if the goalkeeper

rarely does the same. This is because the goalkeeper virtually always manages to save the shot

if both players select a central option. Additionally, we see that the goalkeeper selects “stay

middle” more frequently if the velocity is lower. This makes sense, given that “stay middle”

provides an increased reach when the velocity is lowered, whereas the “commit left”- and

“commit right”-options are just shifter further towards the side.

the same coordinate is aimed for, the chance of missing the goal increases. Therefore, the

penalty taker adjusts their aim-coordinate such that there's a larger distance towards the post

and the crossbar.
Penalty taker aiming for a central coordinate

1 . 0 - - - - - - - - - - - -

0.8

SD

>, 0.6 -1.0
u -1.25
c = 1.5QJ
::i = 1.750-
QJ = 2.0
i.t 0.4 - 2.25

- 2.5

0.2

-0.0 .,___.- __ _ _ . _ L , - - . . . L _ - ' - - -

High velocity (v= lO)

Goalkeeper selecting "stay middle"
1 . 0 -

Figure 9: Thefrequencies of which the penalty taker selects a central coordinate.

-

Medium velocity (v=B.S)

0.8

SD

>, 0.6 -1.0
u - 1.25
c = 1.5QJ
::i = 1.750-
QJ = 2.0
i.t 0.4

- 2.25
- 2.5

0.2

Low velocity (v=7)

High velocity (v= lO) Medium velocity (v=B.S) Low velocity (v=7)

Figure 10: Thefrequencies at which the goalkeeper selects "stay middle".

Figure 9 and Figure l Oillustrate the frequencies at which the penalty taker and the goalkeeper

select their respective central options (i.e., a coordinate at the line x = 12, or "stay middle").

These figures illustrate that the penalty taker only selects a central coordinate if the goalkeeper

rarely does the same. This is because the goalkeeper virtually always manages to save the shot

if both players select a central option. Additionally, we see that the goalkeeper selects "stay

middle" more frequently if the velocity is lower. This makes sense, given that "stay middle"

provides an increased reach when the velocity is lowered, whereas the "commit left"- and

"commit right"-options are just shifter further towards the side.

42

43

Leaning options
So far, the goalkeeper has been restricted to three options: “commit left”, “stay middle”, and

“commit right”. The “commit left”- and “commit right”-options fully commit the goalkeeper

to diving to a specific side, without having observed the trajectory of the ball. In the “stay

middle”-option, the goalkeeper stays in the middle and observes the trajectory before moving.

While these are options that goalkeepers frequently utilize in real-life penalty kicks, they aren’t

the only possible options. It’s also conceivable that the goalkeeper can start to lean towards a

side, without fully committing to diving in a certain direction, such as in the “commit left”-

and “commit right”-options.

To model this alternative, I introduce two new options for the goalkeeper: “lean left” and “lean

right”. These options can be viewed as half-committing to a certain direction. Compared to the

“stay middle”-option, the advantage is that the leaning-options allow the goalkeeper to have

additional reach in a certain direction, while also covering the central parts of the goal.

However, when leaning in a certain direction, the disadvantage is that the reach of the

goalkeeper in the opposite direction is reduced. The leaning-options can be described

mathematically:

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃:
(𝑥𝑥 − 7.5 − 0.25𝑣𝑣)2

7 +
(𝑃𝑃 − 1.5 − 0.2𝑣𝑣)2

7 ≤ 18 − 1.4𝑣𝑣

𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑖𝑖𝑅𝑅ℎ𝑃𝑃:
(𝑥𝑥 − 16.5 + 0.25𝑣𝑣)2

7 +
(𝑃𝑃 − 1.5 − 0.2𝑣𝑣)2

7 ≤ 18 − 1.4𝑣𝑣

Figure 11, Figure 12, and Figure 13 illustrate the possible area coverage for the goalkeeper

when the velocity is high (𝑣𝑣 = 10), medium (𝑣𝑣 = 8.5), and low (𝑣𝑣 = 7), with the leaning-

options included.

Figure 11: Possible area coverage when the velocity-factor is equal to 10.

Leaning options

So far, the goalkeeper has been restricted to three options: "commit left", "stay middle", and

"commit right". The "commit left"- and "commit right"-options fully commit the goalkeeper

to diving to a specific side, without having observed the trajectory of the ball. In the "stay

middle"-option, the goalkeeper stays in the middle and observes the trajectory before moving.

While these are options that goalkeepers frequently utilize in real-life penalty kicks, they aren't

the only possible options. It's also conceivable that the goalkeeper can start to lean towards a

side, without fully committing to diving in a certain direction, such as in the "commit left"-

and "commit right"-options.

To model this alternative, I introduce two new options for the goalkeeper: "lean left" and "lean

right". These options can be viewed as half-committing to a certain direction. Compared to the

"stay middle"-option, the advantage is that the leaning-options allow the goalkeeper to have

additional reach in a certain direction, while also covering the central parts of the goal.

However, when leaning in a certain direction, the disadvantage is that the reach of the

goalkeeper in the opposite direction is reduced. The leaning-options can be described

mathematically:

(x - 7.5 - 0.25v)2 (y - 1.5 - 0.2v)2
Lean l e f t :

7
+

7
18 - 1.4v

(x - 16.5 + 0.25v)2 (y - 1.5 - 0.2v)2
Lean right:

7
+

7
18 - 1.4v

Figure 11, Figure 12, and Figure 13 illustrate the possible area coverage for the goalkeeper

when the velocity is high (v = 10), medium (v = 8.5), and low (v = 7), with the leaning-

options included.

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 11: Possible area coverage when the velocity-factor is equal to 10.

43

44

Figure 12: Possible area coverage when the velocity-factor is equal to 8.5.

Figure 13: Possible area coverage when the velocity-factor is equal to 7.

Just like before, but with the leaning options included, I can run the coordinate search algorithm

to solve for a diverse set of assumptions. Again, the desired specificity is set to 0.2 feet. In the

first step of the coordinate search, 100,000 iterations are used to simulate scenario payoffs,

whereas in the subsequent steps 1,000,000 iterations are used, and in the final step 10,000,000

iterations are used. All strategies in the solutions have an exploitability of less than 0.00001.

The results are presented in Table 6, Table 7, and Table 8.

8-

2 - - - - + - +

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 12: Possible area coverage when the velocity-factor is equal to 8.5.

- - + - - 8 -

- - + - - 2 -

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 13: Possible area coverage when the velocity-factor is equal to 7.

Just like before, but with the leaning options included, I can run the coordinate search algorithm

to solve for a diverse set of assumptions. Again, the desired specificity is set to 0.2 feet. In the

first step of the coordinate search, l 00,000 iterations are used to simulate scenario payoffs,

whereas in the subsequent steps 1,000,000 iterations are used, and in the final step 10,000,000

iterations are used. All strategies in the solutions have an exploitability of less than 0.00001.

The results are presented in Table 6, Table 7, and Table 8.

44

45

 High velocity (v=10)

SD=1

(2.6, 5.4): 0.492
Lean left: 0.008

Commit left: 0.492

(12.0, 5.4): 0.016

Exp. values: ±0.962

(21.4, 5.4): 0.492
Lean right: 0.008

Commit right: 0.492

Exploitability: <0.00001 & <0.00001

SD=1.25

(2.6, 5.2): 0.484
Lean left: 0.016

Commit left: 0.484

(12.0, 5.2): 0.033

Exp. values: ±0.906

(21.4, 5.2): 0.484
Lean right: 0.016

Commit right: 0.484

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.8, 5.0): 0.47
(3.0, 5.2): 0.004
Lean left: 0.023

Commit left: 0.477

(12.0, 5.0): 0.052

Exp. values: ±0.845

(21.2, 5.0): 0.47
(21.0, 4.2): 0.004
Lean right: 0.023

Commit right: 0.477

Exploitability: <0.00001 & <0.00001

SD=1.75

(3.0, 4.8): 0.468
Lean left: 0.03

Commit left: 0.47

(12.0, 4.8): 0.003
(12.0, 5.0): 0.062

Exp. values: ±0.789

(21.0, 4.8): 0.468
Lean right: 0.03

Commit right: 0.47

Exploitability: <0.00001 & <0.00001

SD=2

(3.2, 4.4): 0.018
(3.2, 4.6): 0.444
(3.4, 4.6): 0.003
Lean left: 0.037

Commit left: 0.463

(12.0, 4.6): 0.072

Exp. values: ±0.74

(20.8, 4.4): 0.018
(20.8, 4.6): 0.444
(20.6, 4.6): 0.003
Lean right: 0.037

Commit right: 0.463

Exploitability: <0.00001 & <0.00001

SD=2.25

(3.4, 4.0): 0.033
(3.6, 4.2): 0.426
Lean left: 0.043

Commit right: 0.457

(12.0, 4.4): 0.082

Exp. values: ±0.7

(20.6, 4.0): 0.033
(20.4, 4.2): 0.426
Lean right: 0.043

Commit right: 0.457

Exploitability: <0.00001 & <0.00001

SD=2.5

(3.6, 3.6): 0.004
(3.6, 3.8): 0.001
(3.8, 3.6): 0.009
(3.8, 3.8): 0.443
Lean left: 0.048

Commit left: 0.452

(12.0, 3.8): 0.006
(12.0, 4.0): 0.079

Exp. values: ±0.668

(20.4, 3.6): 0.004
(20.4, 3.8): 0.001
(20.2, 3.6): 0.009
(20.2, 3.8): 0.443
Lean right: 0.048

Commit right: 0.452
Exploitability: <0.00001 & <0.00001

Table 6: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=10). (Rounded to 3 decimals)

High velocity (v=l0)
(2.6, 5.4): 0.492 (12.0, 5.4): 0.016 (21.4, 5.4): 0.492
Lean left: 0.008 Lean right: 0.008

Commit left: 0.492 Commit right: 0.492
SD=l

Exp. values: ±0.962
Exploitability: <0.00001 & <0.00001

(2.6, 5.2): 0.484 (12.0, 5.2): 0.033 (21.4, 5.2): 0.484
Lean left: 0.016 Lean right: 0.016

Commit left: 0.484 Commit right: 0.484
SD=l.25

Exp. values: ±0.906
Exploitabilitv: <0.00001 & <0.00001

(2.8, 5.0): 0.47 (12.0, 5.0): 0.052 (21.2, 5.0): 0.47
(3.0, 5.2): 0.004 (21.0, 4.2): 0.004
Lean left: 0.023 Lean right: 0.023

SD=l.5 Commit left: 0.477 Commit right: 0.477

Exp. values: ±0.845
Exploitability: <0.00001 & <0.00001

(3.0, 4.8): 0.468 (12.0, 4.8): 0.003 (21.0, 4.8): 0.468
Lean left: 0.03 (12.0, 5.0): 0.062 Lean right: 0.03

Commit left: 0.47 Commit right: 0.47
SD=l.75

Exp. values: ±0. 789
Exploitability: <0.00001 & <0.00001

(3.2, 4.4): 0.018 (12.0, 4.6): 0.072 (20.8, 4.4): 0.018
(3.2, 4.6): 0.444 (20.8, 4.6): 0.444
(3.4, 4.6): 0.003 (20.6, 4.6): 0.003

SD=2 Lean left: 0.037 Lean right: 0.037
Commit left: 0.463 Commit right: 0.463

Exp. values: ±0. 74
Exploitabilitv: <0.00001 & <0.00001

(3.4, 4.0): 0.033 (12.0, 4.4): 0.082 (20.6, 4.0): 0.033
(3.6, 4.2): 0.426 (20.4, 4.2): 0.426
Lean left: 0.043 Lean right: 0.043

SD=2.25 Commit right: 0.457 Commit right: 0.457

Exp. values: ±0. 7
Exploitability: <0.00001 & <0.00001

(3.6, 3.6): 0.004 (12.0, 3.8): 0.006 (20.4, 3.6): 0.004
(3.6, 3.8): 0.001 (12.0, 4.0): 0.079 (20.4, 3.8): 0.001
(3.8, 3.6): 0.009 (20.2, 3.6): 0.009

SD=2.5 (3.8, 3.8): 0.443 (20.2, 3.8): 0.443
Lean left: 0.048 Lean right: 0.048

Commit left: 0.452 Exp. values: ±0.668 Commit right: 0.452
Exploitability: <0.00001 & <0.00001

Table 6: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=lO}. (Rounded to 3 decimals)

45

46

 Medium velocity (v=8.5)

SD=1

(2.0, 5.2): 0.436
(2.2, 5.4): 0.064
Lean left: 0.488

Commit left: 0.012

Exp. values: ±0.915

(22.0, 5.2): 0.436
(21.8, 5.4): 0.064
Lean right: 0.488

Commit right: 0.012

Exploitability: <0.00001 & <0.00001

SD=1.25

(2.2, 5.0): 0.333
(2.2, 5.2): 0.167
Lean left: 0.43

Commit left: 0.07

Exp. values: ±0.844

(21.8, 5.0): 0.333
(21.8, 5.2): 0.167
Lean right: 0.43

Commit right: 0.07

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.4, 4.8): 0.313
(2.4, 5.0): 0.187
Lean left: 0.352

Commit left: 0.148

Exp. values: ±0.777

(21.6, 4.8): 0.313
(21.6, 5.0): 0.187
Lean right: 0.352

Commit right: 0.148

Exploitability: <0.00001 & <0.00001

SD=1.75

(2.6, 4.6): 0.286
(2.8, 4.6): 0.214
Lean left: 0.297

Commit left: 0.203

Exp. values: ±0.719

(21.4, 4.6): 0.286
(21.2, 4.6): 0.214
Lean right: 0.297

Commit right: 0.203

Exploitability: <0.00001 & <0.00001

SD=2

(3.0, 4.2): 0.325
(3.0, 4.4): 0.175
Lean left: 0.289

Commit left: 0.211

Exp. values: ±0.673

(21.0, 4.2): 0.325
(21.0, 4.4): 0.175
Lean right: 0.289

Commit right: 0.211

Exploitability: <0.00001 & <0.00001

SD=2.25

(3.2, 3.8): 0.171
(3.2, 4.0): 0.329
Lean left: 0.282

Commit left: 0.218

Exp. values: ±0.635

(20.8, 3.8): 0.171
(20.8, 4.0): 0.329
Lean right: 0.282

Commit right: 0.218

Exploitability: <0.00001 & <0.00001

SD=2.5

(3.2, 3.4): 0.004
(3.2, 3.6): 0.429
(3.2, 3.8): 0.067

Commit left: 0.313

Stay middle: 0.374

Exp. values: ±0.602

(20.8, 3.4): 0.004
(20.8, 3.6): 0.429
(20.8, 3.8): 0.067

Commit right: 0.313

Exploitability: <0.00001 & <0.00001
Table 7: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=8.5). (Rounded to 3 decimals)

SD=l

Medium velocity (v=8.5)
(2.0, 5.2): 0.436
(2.2, 5.4): 0.064
Lean left: 0.488

Commit left: 0.012

(22.0, 5.2): 0.436
(21.8, 5.4): 0.064
Lean right: 0.488

Commit right: 0.012

Exp. values: ±0.915
Exploitability: <0.00001 & <0.00001

SD=l.25

(2.2, 5.0): 0.333 (21.8, 5.0): 0.333
(2.2, 5.2): 0.167 (21.8, 5.2): 0.167
Lean left: 0.43 Lean right: 0.43

Commit left: 0.07 Commit right: 0.07

Exp. values: ±0.844
Exploitabilitv: <0.00001 & <0.00001

SD=l.5

(2.4, 4.8): 0.313 (21.6, 4.8): 0.313
(2.4, 5.0): 0.187 (21.6, 5.0): 0.187
Lean left: 0.352 Lean right: 0.352

Commit left: 0.148 Commit right: 0.148

Exp. values: ±0. 777
Exploitability: <0.00001 & <0.00001

SD=l.75

(2.6, 4.6): 0.286 (21.4, 4.6): 0.286
(2.8, 4.6): 0.214 (21.2, 4.6): 0.214
Lean left: 0.297 Lean right: 0.297

Commit left: 0.203 Commit right: 0.203

Exp. values: ±0. 7l 9
Exploitability: <0.00001 & <0.00001

SD=2

(3.0, 4.2): 0.325 (21.0, 4.2): 0.325
(3.0, 4.4): 0.175 (21.0, 4.4): 0.175
Lean left: 0.289 Lean right: 0.289

Commit left: 0.211 Commit right: 0.211

Exp. values: ±0.673
Exploitabilitv: <0.00001 & <0.00001

SD=2.25

(3.2, 3.8): 0.171 (20.8, 3.8): 0.171
(3.2, 4.0): 0.329 (20.8, 4.0): 0.329
Lean left: 0.282 Lean right: 0.282

Commit left: 0.218 Commit right: 0.218

Exp. values: ±0.635
Exploitability: <0.00001 & <0.00001

SD=2.5

(3.2, 3.4): 0.004 Stay middle: 0.374 (20.8, 3.4): 0.004
(3.2, 3.6): 0.429 (20.8, 3.6): 0.429
(3.2, 3.8): 0.067 (20.8, 3.8): 0.067

Commit left: 0.313 Commit right: 0.313

Exp. values: ±0.602
Exploitability: <0.00001 & <0.00001

Table 7: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=B.5}. (Rounded to 3 decimals)

46

47

 Low velocity (v=7)

SD=1

(1.6, 5.8): 0.5
Lean left: 0.5

Exp. values: ±0.761

(22.4, 5.8): 0.5
Lean right: 0.5

Exploitability: <0.00001 & <0.00001

SD=1.25

(1.8, 5.4): 0.5
Lean left: 0.5

Exp. values: ±0.676

(22.2, 5.4): 0.5
Lean right: 0.5

Exploitability: <0.00001 & <0.00001

SD=1.5

(2.0, 4.8): 0.478
(2.0, 5.0): 0.022

Lean left: 0.5

Exp. values: ±0.616

(22.0, 4.8): 0.478
(22.0, 5.0): 0.022

Lean right: 0.5

Exploitability: <0.00001 & <0.00001

SD=1.75

(2.4, -0.4): 0.17
(2.4, 4.0): 0.003
(2.4, 4.2): 0.318
(2.4, 4.4): 0.009
Lean left: 0.483

Commit left: 0.017

Exp. values: ±0.579

(21.6, -0.4): 0.17
(21.6, 4.0): 0.003
(21.6, 4.2): 0.318
(21.6, 4.4): 0.009
Lean right: 0.483

Commit right: 0.017
Exploitability: <0.00001 & <0.00001

SD=2

(2.4, 0.2): 0.025
(2.4, 3.4): 0.356
(2.4, 3.8): 0.008
(2.6, 0.0): 0.057
(2.6, 3.6): 0.053
Lean left: 0.386

Stay middle: 0.148

Exp. values: ±0.549

(21.6, 0.2): 0.025
(21.6, 3.4): 0.356
(21.6, 3.8): 0.008
(21.4, 0.0): 0.057
(21.4, 3.6): 0.053
Lean right: 0.386

Commit left: 0.039 Exploitability: <0.00001 Commit right: 0.039

SD=2.25

(2.0, 3.2): 0.343
(2.2, 3.0): 0.107
(2.2, 3.2): 0.05

Commit left: 0.103

Stay middle: 0.794

Exp. values: ±0.51

(22.0, 3.2): 0.343
(21.8, 3.0): 0.107
(21.8, 3.2): 0.05

Commit right: 0.103

Exploitability: <0.00001 & <0.00001

SD=2.5

(2.2, 2.0): 0.181
(2.2, 2.4): 0.318

Commit left: 0.104

Stay middle: 0.792

Exp. values: ±0.471

(21.8, 2.0): 0.181
(21.8, 2.4): 0.318

Commit right: 0.104

Exploitability: <0.00001 & <0.00001
Table 8: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=7). (Rounded to 3 decimals)

Low velocity (v=7)
(1.6, 5.8): 0.5 (22.4, 5.8): 0.5
Lean left: 0.5 Lean right: 0.5

SD=l

Exp. values: ±0. 761
Exploitability: <0.00001 & <0.00001

(1.8, 5.4): 0.5 (22.2, 5.4): 0.5
Lean left: 0.5 Lean right: 0.5

SD=l.25

Exp. values: ±0.676
Exploitabilitv: <0.00001 & <0.00001

(2.0, 4.8): 0.478 (22.0, 4.8): 0.478
(2.0, 5.0): 0.022 (22.0, 5.0): 0.022

Lean left: 0.5 Lean right: 0.5
SD=l.5

Exp. values: ±0.616
Exploitability: <0.00001 & <0.00001

(2.4, -0.4): 0.17 (21.6, -0.4): 0.17
(2.4, 4.0): 0.003 (21.6, 4.0): 0.003
(2.4, 4.2): 0.318 (21.6, 4.2): 0.318

SD=l.75 (2.4, 4.4): 0.009 (21.6, 4.4): 0.009
Lean left: 0.483 Lean right: 0.483

Commit left: 0.017 Exp. values: ±0.579 Commit right: 0.017
Exploitability: <0.00001 & <0.00001

(2.4, 0.2): 0.025 Stay middle: 0.148 (21.6, 0.2): 0.025
(2.4, 3.4): 0.356 (21.6, 3.4): 0.356
(2.4, 3.8): 0.008 (21.6, 3.8): 0.008

SD=2 (2.6, 0.0): 0.057 (21.4, 0.0): 0.057
(2.6, 3.6): 0.053 (21.4, 3.6): 0.053
Lean left: 0.386 Exp. values: ±0.549 Lean right: 0.386

Commit left: 0.039 Exploitabilitv: <0.0000l Commit right: 0.039
(2.0, 3.2): 0.343 Stay middle: 0.794 (22.0, 3.2): 0.343
(2.2, 3.0): 0.107 (21.8, 3.0): 0.107
(2.2, 3.2): 0.05 (21.8, 3.2): 0.05

SD=2.25 Commit left: 0.103 Commit right: 0.103

Exp. values: ±0.51
Exploitability: <0.00001 & <0.00001

(2.2, 2.0): 0.181 Stay middle: 0.792 (21.8, 2.0): 0.181
(2.2, 2.4): 0.318 (21.8, 2.4): 0.318

Commit left: 0.104 Commit right: 0.104
SD=2.5

Exp. values: ±0.47 l
Exploitability: <0.00001 & <0.00001

Table 8: Nash equilibrium solutions when the penalty taker shoots with a low velocity (v=l}. (Rounded to 3 decimals)

47

48

Figure 14: The expected value for the penalty taker in the Nash equilibrium solutions.

Figure 14 illustrates the expected value for the penalty taker in all the different solutions. Once

again, we observe that the expected value is correlated with the penalty taker’s ability to shoot

accurately, and that a higher velocity yields a higher expected value, given the same standard

deviation. The figure also illustrates the reduction in the penalty taker’s expected value

compared to the previous solution, where the goalkeeper only had three available options. The

expected values in the previous solutions are illustrated by the grey bars in the background.

Figure 15: The frequency of which the penalty taker aims at a central coordinate.

l . D
SD- l . D

- 1.25
C:::J 1.5
C:::J 1.75

0.8 C:::J 2.0

- 2.25
- 2.5

QJ
:; 0.6
(0
>

"Cl
QJ

.j.Ju
QJc..
><0.4
L.U

0.2

0.0
High velocity (V=lO} Medium velocity (v=8.S) Low velocity (v=7)

Figure 14: The expected valuefor the penalty taker in the Nash equilibrium solutions.

Figure 14 illustrates the expected value for the penalty taker in all the different solutions. Once

again, we observe that the expected value is correlated with the penalty taker's ability to shoot

accurately, and that a higher velocity yields a higher expected value, given the same standard

deviation. The figure also illustrates the reduction in the penalty taker's expected value

compared to the previous solution, where the goalkeeper only had three available options. The

expected values in the previous solutions are illustrated by the grey bars in the background.

Penalty taker aiming for a central coordinate
1 . 0 - - - - - - -

0.8

SD

>, 0.6 - 1.0
u - 1.25
c = 1.5(IJ
:J = 1.75C"
(IJ = 2.0I...
LL 0.4

- 2.25
- 2.5

0.2

0.0
- - - [] I

High velocity (v = l O) Medium velocity (v=8.S) Low velocity (v= 7)

Figure 15: Thefrequency of which the penalty taker aims at a central coordinate.

48

49

Figure 16: The frequency of which the goalkeeper selects an option that covers the central coordinates.

Figure 15 illustrates the frequencies of which the penalty taker aims at a central coordinate

(𝑥𝑥 = 12). Figure 16 illustrates how often the goalkeeper selects an option that can cover those

central coordinates. In this new solution, this includes “stay middle”, as before, but also “lean

left” and “lean right”. As in the previous solution, we see that the penalty taker only aims for a

central coordinate if the goalkeeper rarely selects those options.

In many combinations of assumptions, the “lean left”- and “lean right”-options are now

preferred instead of the “stay middle”-option. The leaning options have a very good save rate

assuming that the penalty taker aims at a central coordinate, but also have a better chance of

stopping the shot if the penalty taker shoots to the same direction they are leaning. However, if

the penalty taker shoots to the opposite direction, the leaning options have virtually no chance

of stopping the shot. On the other hand, given most assumptions, the “stay middle”-option can

stop the shot to either side, but the probability is quite low. We see that “stay middle” is still

being preferred when the velocity is lowered, and standard deviation is quite high. This happens

because the “stay middle”-option actually has quite a far reach given those assumptions.

However, in most combinations of assumptions, it’s better to choose the leaning options and

half-commit to one of the sides, and still cover the middle. That said, in a later model, we will

see that the leaning options may not be quite as good as they seem in this model.

The reduction expected values illustrated in Figure 14 should also be understood in relation to

when the leaning options are being utilized. This and the previous model are identical with the

exception of the goalkeeper having two new available options. There are only two outcomes:

Either the new options have zero impact, or they increase the goalkeeper’s expected value (and

1.0

0.8

>, 0.6
u
c
Q)
::,
er

LL 0.4

0.2

Goalkeeper selecting "lean left", "lean right", or "stay_mid_d_le"

SD

- 1.0
- 1.25= 1.5= 1.75= 2.0
- 2.25
- 2.5

i;:s:sJ Stay middle

High velocity (v= lO) Medium velocity (v=8.5) Low velocity (v=7)

Figure 16: Thefrequency of which the goalkeeper selects an option that covers the central coordinates.

Figure 15 illustrates the frequencies of which the penalty taker aims at a central coordinate

(x = 12). Figure 16 illustrates how often the goalkeeper selects an option that can cover those

central coordinates. In this new solution, this includes "stay middle", as before, but also "lean

left" and "lean right". As in the previous solution, we see that the penalty taker only aims for a

central coordinate if the goalkeeper rarely selects those options.

In many combinations of assumptions, the "lean left"- and "lean right"-options are now

preferred instead of the "stay middle"-option. The leaning options have a very good save rate

assuming that the penalty taker aims at a central coordinate, but also have a better chance of

stopping the shot if the penalty taker shoots to the same direction they are leaning. However, if

the penalty taker shoots to the opposite direction, the leaning options have virtually no chance

of stopping the shot. On the other hand, given most assumptions, the "stay middle"-option can

stop the shot to either side, but the probability is quite low. We see that "stay middle" is still

being preferred when the velocity is lowered, and standard deviation is quite high. This happens

because the "stay middle"-option actually has quite a far reach given those assumptions.

However, in most combinations of assumptions, it's better to choose the leaning options and

half-commit to one of the sides, and still cover the middle. That said, in a later model, we will

see that the leaning options may not be quite as good as they seem in this model.

The reduction expected values illustrated in Figure 14 should also be understood in relation to

when the leaning options are being utilized. This and the previous model are identical with the

exception of the goalkeeper having two new available options. There are only two outcomes:

Either the new options have zero impact, or they increase the goalkeeper's expected value (and

49

50

thereby reduce the penalty taker’s). If the options aren’t viable, they will have zero impact on

results, but if they are, they will improve the goalkeeper’s expectancy. The leaning options are

frequently utilized when standard deviation is low and when velocity is medium or low. These

are also the combinations of assumptions where the penalty taker’s expected value is reduced.

Figure 17: Aiming options utilized by the penalty taker in the Nash equilibrium solutions.

Figure 17 illustrates which aiming options are utilized by the penalty taker in the Nash

equilibrium solutions. Again, there are large areas of the goal where the penalty taker should

thereby reduce the penalty taker's). If the options aren't viable, they will have zero impact on

results, but if they are, they will improve the goalkeeper's expectancy. The leaning options are

frequently utilized when standard deviation is low and when velocity is medium or low. These

are also the combinations of assumptions where the penalty taker's expected value is reduced.

10

8

6

4

2

0

-2

10

8

6

4

2

0

-2

10

8

6

4

2

0

-2

, g "I

High velocity (v=lO)

" I

Medium velocity (v=S.5)

SD
• 1.0
0 1.25
0 1.5
0 1.75
0 2.0
• 2.25
• 2.5

•.J (
: :

/"l. 1'

0 0

Low velocity (v= 7)

0 2 4 6 8 10 12 14 16 18 20 2 2 24

Figure 17: Aiming options utilized by the penalty taker in the Nash equilibrium solutions.

Figure 17 illustrates which aiming options are utilized by the penalty taker in the Nash

equilibrium solutions. Again, there are large areas of the goal where the penalty taker should

50

51

never aim, and there’s a clear trend between the exact location of the optimal points and the

standard deviation. A higher standard deviation leads to lower aim-coordinates that are

horizontally closer to the centre of the goal.

Non-uniform velocity
Up until this point, it has been assumed that the penalty taker is forced to shoot with a specific

pre-defined velocity-factor, and that the velocity-factor is uniform across all aiming-

coordinates. Additionally, the goalkeeper has had perfect information about which specific

velocity-factor that has been available to the penalty taker. These assumptions aren’t realistic.

In a real-life penalty kick, the penalty taker has the flexibility to vary the velocity-factor for

different aiming-coordinates, or even to mix up which velocity-factor is selected for the same

coordinate. This adds an additional layer of decision-making to their strategy. The goalkeeper

will still have perfect information about which velocity-factors are allowed. However, now

there will be potential variability in the selected velocity-factor. This introduces the need for

the goalkeeper to design their strategy in a more robust manner, such that it can handle all the

possible choices of velocity.

In this iteration of the framework, I will allow the penalty taker to choose between the three

different velocity-factors we have become familiar with. That is, high velocity (𝑣𝑣 = 10),

medium velocity (𝑣𝑣 = 8.5), and low velocity (𝑣𝑣 = 7). In principle, you could add many more,

but for every option that’s added, a whole new set of scenarios become possible, increasing the

computational time required to solve the game. These three options are sufficient to illustrate

the important changes that occur in the equilibrium strategies.

I also considered adding making the achieved velocity follow a probability distribution, such

that it could be different from the velocity that’s aimed for. This would be similar to how the

hit-coordinate differs from the aim-coordinate, and I do believe this would be more realistic.

However, unlike with the hit- and aim-coordinates, I don’t believe that adding a probabilistic

element to determine the achieved velocity adds anything significant to the model, such that

results change in any interesting ways. It only increases the variability in results, making the

CFR-algorithm converge slower than it otherwise would have. Therefore, I decided to make

the achieved velocity be entirely deterministic. This means that, absent from friction with the

ground, the velocity that’s aimed for is the velocity that’s achieved.

Now that there’s variability in the possible choices of velocity, we need to account for how

these impacts other assumptions in the framework. Although this will be player-dependent, I

never aim, and there's a clear trend between the exact location of the optimal points and the

standard deviation. A higher standard deviation leads to lower aim-coordinates that are

horizontally closer to the centre of the goal.

Non-uniform velocity

Up until this point, it has been assumed that the penalty taker is forced to shoot with a specific

pre-defined velocity-factor, and that the velocity-factor is uniform across all aiming-

coordinates. Additionally, the goalkeeper has had perfect information about which specific

velocity-factor that has been available to the penalty taker. These assumptions aren't realistic.

In a real-life penalty kick, the penalty taker has the flexibility to vary the velocity-factor for

different aiming-coordinates, or even to mix up which velocity-factor is selected for the same

coordinate. This adds an additional layer of decision-making to their strategy. The goalkeeper

will still have perfect information about which velocity-factors are allowed. However, now

there will be potential variability in the selected velocity-factor. This introduces the need for

the goalkeeper to design their strategy in a more robust manner, such that it can handle all the

possible choices of velocity.

In this iteration of the framework, I will allow the penalty taker to choose between the three

different velocity-factors we have become familiar with. That is, high velocity (v = 10),

medium velocity (v = 8.5), and low velocity (v = 7). In principle, you could add many more,

but for every option that's added, a whole new set of scenarios become possible, increasing the

computational time required to solve the game. These three options are sufficient to illustrate

the important changes that occur in the equilibrium strategies.

I also considered adding making the achieved velocity follow a probability distribution, such

that it could be different from the velocity that's aimed for. This would be similar to how the

hit-coordinate differs from the aim-coordinate, and I do believe this would be more realistic.

However, unlike with the hit- and aim-coordinates, I don't believe that adding a probabilistic

element to determine the achieved velocity adds anything significant to the model, such that

results change in any interesting ways. It only increases the variability in results, making the

CPR-algorithm converge slower than it otherwise would have. Therefore, I decided to make

the achieved velocity be entirely deterministic. This means that, absent from friction with the

ground, the velocity that's aimed for is the velocity that's achieved.

Now that there's variability in the possible choices of velocity, we need to account for how

these impacts other assumptions in the framework. Although this will be player-dependent, I

51

52

believe it would generally be safe to assume that the penalty taker’s positional accuracy varies

based on the velocity-factor. I would expect players to be able to shoot more accurately when

shooting with a lower velocity, and vice versa, meaning that there’s a trade-off between velocity

and accuracy.

I adapted both the standard CFR-algorithm and the coordinate search algorithm to be able to

include a choice of velocity. The code is largely still similar to the code presented in Appendix

II, Appendix III, and Appendix IV,so it does not warrant its own appendix. However, the

complete code can be found at github.com/Monstad/Penalty-Kicks.

In the model, I assume that the penalty taker has a standard deviation of 2 when choosing the

high velocity (𝑣𝑣 = 10), a standard deviation of 1.75 when selecting the medium velocity (𝑣𝑣 =
8.5), and a standard deviation of 1.5 when choosing the low velocity (𝑣𝑣 = 7). This

encompasses the trade-off between accuracy and velocity. When running a coordinate search

with a specificity of 0.2 feet, I get the solution presented in Table 9. In the first step of the

coordinate search, the payoffs are simulated using 100,000 iterations, whereas in the

subsequent steps it uses 1,000,000 iterations, and in the final step it uses 10,000,000.

v=10, (3.2, 4.2): 0.466

Commit left: 0.377

Lean left: 0.123

v=7, (12.0, 3.0): 0.027

v=7, (12.0, 3.2): 0.041

Expected values: ±0.751

v=10, (20.8, 4.2): 0.466

Commit right: 0.377

Lean right: 0.123

Exploitability: <0.00001 & <0.00001
Table 9: The Nash equilibrium solution in a model with non-uniform velocity. (Rounded to 3 decimals)

The solution illustrates a concept that can be applied more generally: When aiming in the

middle of the goal, it’s favourable to shoot with a lower velocity. There are two reasons for

this. Firstly, when the penalty taker shoots with a lower velocity, and the goalkeeper selects

“commit left” or “commit right”, the area covered by the goalkeeper is further away from the

centre of the goal. This is because the goalkeeper is already in the air, moving away from the

centre, and when the velocity is lower, the ball reaches the goal at a later point in time, meaning

that the goalkeeper has moved further away. Secondly, because of the trade-off between

accuracy and velocity, the penalty taker is more accurate, meaning that the chance of a goal if

the goalkeeper guesses incorrectly is further increased.

From previous models, we know if the goalkeeper chooses “lean left”, “stay middle”, or “lean

right” too often, the expected value of aiming at a central coordinate really suffers. It’s only

believe it would generally be safe to assume that the penalty taker's positional accuracy varies

based on the velocity-factor. I would expect players to be able to shoot more accurately when

shooting with a lower velocity, and vice versa, meaning that there's a trade-off between velocity

and accuracy.

I adapted both the standard CPR-algorithm and the coordinate search algorithm to be able to

include a choice of velocity. The code is largely still similar to the code presented in Appendix

II, Appendix III, and Appendix IV,so it does not warrant its own appendix. However, the

complete code can be found at github.com/Monstad/Penalty-Kicks.

In the model, I assume that the penalty taker has a standard deviation of 2 when choosing the

high velocity (v = 10), a standard deviation of 1.75 when selecting the medium velocity (v =

8.5), and a standard deviation of 1.5 when choosing the low velocity (v = 7). This

encompasses the trade-off between accuracy and velocity. When running a coordinate search

with a specificity of 0.2 feet, I get the solution presented in Table 9. In the first step of the

coordinate search, the payoffs are simulated using 100,000 iterations, whereas in the

subsequent steps it uses 1,000,000 iterations, and in the final step it uses 10,000,000.

v=l0, (3.2, 4.2): 0.466

Commit left: 0.377

Lean left: 0.123

v=7, (12.0, 3.0): 0.027

v=7, (12.0, 3.2): 0.041

v=l0, (20.8, 4.2): 0.466

Commit right: 0.377

Lean right: 0.123

Expected values: ±0. 751

Exploitability: <0.00001 & <0.00001
Table 9: The Nash equilibrium solution in a model with non-uniform velocity. (Rounded to 3 decimals)

The solution illustrates a concept that can be applied more generally: When aiming in the

middle of the goal, it's favourable to shoot with a lower velocity. There are two reasons for

this. Firstly, when the penalty taker shoots with a lower velocity, and the goalkeeper selects

"commit left" or "commit right", the area covered by the goalkeeper is further away from the

centre of the goal. This is because the goalkeeper is already in the air, moving away from the

centre, and when the velocity is lower, the ball reaches the goal at a later point in time, meaning

that the goalkeeper has moved further away. Secondly, because of the trade-off between

accuracy and velocity, the penalty taker is more accurate, meaning that the chance of a goal if

the goalkeeper guesses incorrectly is further increased.

From previous models, we know if the goalkeeper chooses "lean left", "stay middle", or "lean

right" too often, the expected value of aiming at a central coordinate really suffers. It's only

52

https://github.com/Monstad/Penalty-Kicks

53

viable for the penalty taker to aim for a central coordinate if the goalkeeper employs a strategy

which involves choosing “commit left” or “commit right” quite frequently. Additionally, it’s

under these conditions the strategy of shooting with a low velocity when aiming centrally

shines. Therefore, we can conclude that if it’s viable to aim for a central coordinate, this should

be done using a low velocity.

The solution of Table 9 can be compared with the solution in Table 6 where the penalty taker

is forced to shoot with a uniformly high velocity (𝑣𝑣 = 10) and a standard deviation of 2. In

both solutions, the penalty taker aims at a central coordinate with approximately the same

frequency; 0.072 in the uniform model, and 0.068 in the non-uniform one. However, in the

uniform model, the goalkeeper only chooses an option that covers a central coordinate (in this

case, “lean left” and “lean right”) with a total frequency of 0.064. In the non-uniform model,

“lean left” and “lean right” are chosen at a combined frequency of 0.262. The goalkeeper has

to adjust in this manner, because otherwise the success rate of aiming at a central coordinate

becomes too good. This is a consequence of how advantageous it is to aim centrally with a low

velocity. In the uniform model, when the penalty taker has to shoot with a velocity of 10 when

aiming centrally, there is a greater chance of missing the goal (as a consequence of the velocity-

accuracy trade-off), and also a greater chance of occasionally stopping the shot despite

choosing “commit left” or “commit right” (because of both factors).

When the goalkeeper employs the leaning options more often, it also has consequences for

which side-coordinates are optimal to aim for. The “commit left”- and “commit right”-options

have the furthest reach, and since the penalty taker knows that these will occur more rarely, it

becomes optimal choose an aim-coordinate with a slightly larger margin of error in respect to

the post and the crossbar. Therefore, the side-coordinate shift slightly downwards and towards

the centre of the goal. Compared to the solution of the uniform model, the additional choice of

velocity has shifted the equilibrium in such a way that the expected value for the penalty taker

increases from 0.74 to 0.751.

Sequential choices
In all models, I have treated penalty kicks as a simultaneous choice game with one decision

point. In reality, a penalty kick is a dynamic event with multiple decision points. It involves

strategic interaction that unfolds over time, not merely at one isolated moment.

To some extent, the previous models have implicitly implemented this with regards to the area

coverage of the goalkeeper. The goalkeeper makes a simultaneous choice of “commit left”,

viable for the penalty taker to aim for a central coordinate if the goalkeeper employs a strategy

which involves choosing "commit left" or "commit right" quite frequently. Additionally, it's

under these conditions the strategy of shooting with a low velocity when aiming centrally

shines. Therefore, we can conclude that if it's viable to aim for a central coordinate, this should

be done using a low velocity.

The solution of Table 9 can be compared with the solution in Table 6 where the penalty taker

is forced to shoot with a uniformly high velocity (v = 10) and a standard deviation of 2. In

both solutions, the penalty taker aims at a central coordinate with approximately the same

frequency; 0.072 in the uniform model, and 0.068 in the non-uniform one. However, in the

uniform model, the goalkeeper only chooses an option that covers a central coordinate (in this

case, "lean left" and "lean right") with a total frequency of 0.064. In the non-uniform model,

"lean left" and "lean right" are chosen at a combined frequency of 0.262. The goalkeeper has

to adjust in this manner, because otherwise the success rate of aiming at a central coordinate

becomes too good. This is a consequence of how advantageous it is to aim centrally with a low

velocity. In the uniform model, when the penalty taker has to shoot with a velocity of l 0 when

aiming centrally, there is a greater chance of missing the goal (as a consequence of the velocity-

accuracy trade-off), and also a greater chance of occasionally stopping the shot despite

choosing "commit left" or "commit right" (because of both factors).

When the goalkeeper employs the leaning options more often, it also has consequences for

which side-coordinates are optimal to aim for. The "commit left"- and "commit right"-options

have the furthest reach, and since the penalty taker knows that these will occur more rarely, it

becomes optimal choose an aim-coordinate with a slightly larger margin of error in respect to

the post and the crossbar. Therefore, the side-coordinate shift slightly downwards and towards

the centre of the goal. Compared to the solution of the uniform model, the additional choice of

velocity has shifted the equilibrium in such a way that the expected value for the penalty taker

increases from 0.74 to 0.751.

Sequential choices

In all models, I have treated penalty kicks as a simultaneous choice game with one decision

point. In reality, a penalty kick is a dynamic event with multiple decision points. It involves

strategic interaction that unfolds over time, not merely at one isolated moment.

To some extent, the previous models have implicitly implemented this with regards to the area

coverage of the goalkeeper. The goalkeeper makes a simultaneous choice of "commit left",

53

54

“lean left”, “stay middle”, “lean right”, or “commit right”, without observing the trajectory of

the ball. However, once that choice is made, and the trajectory is observed, it’s assumed that

the goalkeeper will adapt to the information about where the ball is headed. A specific area

coverage doesn’t really represent an area which the goalkeeper can cover simultaneously.

Rather, it represents the area that the goalkeeper can cover after observing the trajectory of the

ball, contingent on the choice of area. For example, if the goalkeeper chooses “lean left”, the

goalkeeper already starts leaning to the left without seeing where the ball is headed. Still, at

some point, the goalkeeper will observe where the ball is going, and adapt to it. If the

goalkeeper observes the ball going far left, they can start diving to the left, and if they observe

the ball going towards the middle, they can start reversing the lean and try to cover the middle.

The goalkeeper also has the option of “stay middle”, which involves not moving until the

trajectory of the ball is observed. So, in previous models, there is an element of sequential

choice in the goalkeeper’s actions.

On the other hand, it has always been assumed that that penalty taker has zero information

about the choice of the goalkeeper when deciding where to aim. In reality, the penalty taker

sometimes tries to obtain information about the goalkeeper’s intended move before making

their final decision. A common tactic is to try to pretend to shoot, and see if the goalkeeper

moves. If this is successful, and the goalkeeper starts to move, the penalty taker can shoot in

the opposite direction. In this model, I’m going to implement such an option.

It's possible to implement this while also maintaining the structure of a simultaneous choice

game with one decision point. I can add the option “fake the shot” to the penalty taker’s aim-

options. When choosing this option, the penalty taker does the run-up to the ball, as if they are

about to shoot, but then stops to see if the goalkeeper reveals their action. Instead of simulating

the payoffs in the scenarios associated with this option, these can be added exogenously. For

example, we can assume that in the scenarios where the goalkeeper starts to move, i.e., in the

scenarios [“fake the shot”, “commit left”], [“fake the shot”, “lean left”], [“fake the shot”, “lean

right”], and [“fake the shot”, “commit right”], the penalty taker will score with a 100%

probability, making the expected payoff equal to 1. This is because the penalty taker can simply

shoot in the opposite direction to where the goalkeeper is moving.

In the remaining scenario, [“fake the shot”, “stay middle”], the goalkeeper hasn’t moved, and

will stand a much better chance of stopping the shot. According to FIFA-regulations, the

penalty taker is not allowed to step backwards and do the run-up to the ball once again. This

"lean left", "stay middle", "lean right", or "commit right", without observing the trajectory of

the ball. However, once that choice is made, and the trajectory is observed, it's assumed that

the goalkeeper will adapt to the information about where the ball is headed. A specific area

coverage doesn't really represent an area which the goalkeeper can cover simultaneously.

Rather, it represents the area that the goalkeeper can cover after observing the trajectory of the

ball, contingent on the choice of area. For example, if the goalkeeper chooses "lean left", the

goalkeeper already starts leaning to the left without seeing where the ball is headed. Still, at

some point, the goalkeeper will observe where the ball is going, and adapt to it. If the

goalkeeper observes the ball going far left, they can start diving to the left, and if they observe

the ball going towards the middle, they can start reversing the lean and try to cover the middle.

The goalkeeper also has the option of "stay middle", which involves not moving until the

trajectory of the ball is observed. So, in previous models, there is an element of sequential

choice in the goalkeeper's actions.

On the other hand, it has always been assumed that that penalty taker has zero information

about the choice of the goalkeeper when deciding where to aim. In reality, the penalty taker

sometimes tries to obtain information about the goalkeeper's intended move before making

their final decision. A common tactic is to try to pretend to shoot, and see if the goalkeeper

moves. If this is successful, and the goalkeeper starts to move, the penalty taker can shoot in

the opposite direction. In this model, I 'm going to implement such an option.

It's possible to implement this while also maintaining the structure of a simultaneous choice

game with one decision point. I can add the option "fake the shot" to the penalty taker's aim-

options. When choosing this option, the penalty taker does the run-up to the ball, as if they are

about to shoot, but then stops to see if the goalkeeper reveals their action. Instead of simulating

the payoffs in the scenarios associated with this option, these can be added exogenously. For

example, we can assume that in the scenarios where the goalkeeper starts to move, i.e., in the

scenarios ["fake the shot", "commit left"], ["fake the shot", "lean left"], ["fake the shot", "lean

right"], and ["fake the shot", "commit right"], the penalty taker will score with a 100%

probability, making the expected payoff equal to l. This is because the penalty taker can simply

shoot in the opposite direction to where the goalkeeper is moving.

In the remaining scenario, ["fake the shot", "stay middle"], the goalkeeper hasn't moved, and

will stand a much better chance of stopping the shot. According to FIFA-regulations, the

penalty taker is not allowed to step backwards and do the run-up to the ball once again. This

54

55

effectively means that the penalty taker is forced to shoot from a position of standing still.

When this is the case, it rules out shooting with a high velocity, as this would only be feasible

with the momentum from a run-up. When the penalty taker has to shoot with a velocity that’s

lower than usual, the goalkeeper will be able to cover a larger area, and stand a better chance

of preventing a goal. This is the drawback of trying to “fake the shot”.

If we enter the scenario of [“fake the shot”, “stay middle”], one might think that the penalty

taker can attempt to “fake the shot” once again. However, this shouldn’t be effective. When the

shot has been faked once, the penalty taker is already forced to shoot standing still. Therefore,

if “fake the shot” is attempted once again, there can be no additional drawback, and the

goalkeeper knows this. If the goalkeeper then ever selects anything other than “stay middle”,

the penalty taker should always continue faking the shot, hoping that the goalkeeper will

eventually move. However, if the penalty taker always selects “fake the shot”, the goalkeeper

should always select “stay middle”. Therefore, we can assume that the goalkeeper always

selects “stay middle” after the first time the penalty taker selects “fake the shot”. This means

that we don’t have to consider any sort of infinite regress where the penalty taker always selects

“fake the shot”.

The penalty taker should have a lower expected payoff in the scenario [“fake the shot”, “stay

middle”], compared to their overall expectancy. In this model, I’m going to assume that the

penalty taker manages to score 60% of the time in this scenario, making the expected payoffs

0.6 and -0.6. I adapted the code to accommodate for the inclusion of the “fake the shot” option.

The complete code can be found at github.com/Monstad/Penalty-Kicks.

The model builds upon the non-uniform velocity model. This means that it includes the three

choices of velocity, i.e., high (𝑣𝑣 = 10), medium (𝑣𝑣 = 8.5), and low (𝑣𝑣 = 7). The trade-off

between velocity and accuracy is the same as in the previous model, meaning that for high

velocity, the standard deviation is 2, for medium it’s 1.75, and for low it’s 1.5.

All five options are available to the goalkeeper: “commit left”, “lean left”, “stay middle”, “lean

right”, and “commit right”. When running a coordinate search with a specificity of 0.2 feet, I

get the solution presented in Table 10. In the first step of the coordinate search, the payoffs are

simulated using 100,000 iterations, whereas in the subsequent steps it uses 1,000,000 iterations,

and in the final step it uses 10,000,000.

effectively means that the penalty taker is forced to shoot from a position of standing still.

When this is the case, it rules out shooting with a high velocity, as this would only be feasible

with the momentum from a run-up. When the penalty taker has to shoot with a velocity that's

lower than usual, the goalkeeper will be able to cover a larger area, and stand a better chance

of preventing a goal. This is the drawback of trying to "fake the shot".

If we enter the scenario of ["fake the shot", "stay middle"], one might think that the penalty

taker can attempt to "fake the shot" once again. However, this shouldn't be effective. When the

shot has been faked once, the penalty taker is already forced to shoot standing still. Therefore,

if "fake the shot" is attempted once again, there can be no additional drawback, and the

goalkeeper knows this. If the goalkeeper then ever selects anything other than "stay middle",

the penalty taker should always continue faking the shot, hoping that the goalkeeper will

eventually move. However, if the penalty taker always selects "fake the shot", the goalkeeper

should always select "stay middle". Therefore, we can assume that the goalkeeper always

selects "stay middle" after the first time the penalty taker selects "fake the shot". This means

that we don 't have to consider any sort of infinite regress where the penalty taker always selects

"fake the shot".

The penalty taker should have a lower expected payoff in the scenario ["fake the shot", "stay

middle"], compared to their overall expectancy. In this model, I 'm going to assume that the

penalty taker manages to score 60% of the time in this scenario, making the expected payoffs

0.6 and -0.6. I adapted the code to accommodate for the inclusion of the "fake the shot" option.

The complete code can be found at github.com/Monstad/Penalty-Kicks.

The model builds upon the non-uniform velocity model. This means that it includes the three

choices of velocity, i.e., high (v = 10), medium (v = 8.5), and low (v = 7). The trade-off

between velocity and accuracy is the same as in the previous model, meaning that for high

velocity, the standard deviation is 2, for medium it's 1.75, and for low it's 1.5.

All five options are available to the goalkeeper: "commit left", "lean left", "stay middle", "lean

right", and "commit right". When running a coordinate search with a specificity of 0.2 feet, I

get the solution presented in Table 10. In the first step of the coordinate search, the payoffs are

simulated using l 00,000 iterations, whereas in the subsequent steps it uses 1,000,000 iterations,

and in the final step it uses 10,000,000.

55

https://github.com/Monstad/Penalty-Kicks

56

v=10, (3.2, 3.6): 0.347

v=10, (3.2, 3.8): 0.007

v=10, (3.4, 3.6): 0.007

v=10, (3.4, 3.8): 0.005

Commit left: 0.246

Fake the shot: 0.268

Stay middle: 0.509

Expected values: ±0.796

v=10, (20.8, 3.6): 0.347

v=10, (20.8, 3.8): 0.007

v=10, (20.6, 3.6): 0.007

v=10, (20.6, 3.8): 0.005

Commit right: 0.246

Exploitability: <0.00001 & <0.00001
Table 10: The Nash equilibrium solution in a model with "fake the shot". (Rounded to 3 decimals)

Allowing the penalty taker to “fake the shot” forces the goalkeeper to select “stay middle” with

a relatively high frequency (0.509). This is because “stay middle” is the only option that

performs well against “fake the shot”. As a consequence of the frequent utilization of “stay

middle”, the penalty taker never aims for a central coordinate.

Unlike in the previous models, the goalkeeper completely stops utilizing the “lean left”- and

“lean right”-options. If the penalty taker selects “fake the shot”, the leaning options perform

very poorly, as they reveal that one of the sides in the goal will be open. Additionally, if the

penalty taker decides to aim for one of the sides, the leaning options underperform compared

to the “commit left”- or “commit right”-options. So, in this model, the leaning options are much

worse than they seemed in previous models. They are only to be used against penalty takers

that rarely or never chooses to “fake the shot”.

Compared to the solution of the non-uniform velocity model, the expected value for the penalty

taker has increased from 0.751 to 0.796, which is quite a significant increase. This illustrates

that “fake the shot” is a quite effective option. It essentially forces the goalkeeper to “stay

middle” quite often, which in turn increases the effectiveness of aiming for a side-coordinate.

This is much preferable to the previous strategy, which attempted to deter the goalkeeper from

choosing “commit left” or “commit right” by sometimes aiming at central coordinates, using a

low velocity.

Asymmetry
Throughout the framework, I have operated with assumptions that are perfectly symmetrical

and mirrored across the line 𝑥𝑥 = 12. In a real-life penalty kick, the player-dependent

assumptions may not always be perfectly symmetrical. In the run-up to the ball, the penalty

taker usually runs at an angle, creating a curved trajectory as they approach the ball. In other

words, the run-up is usually not a straight line, and is therefore asymmetrical. Additionally, the

penalty taker kicks the ball, and the foot of the penalty taker isn’t symmetrical either. Such

v=l0, (3.2, 3.6): 0.347

v=l0, (3.2, 3.8): 0.007

v=l0, (3.4, 3.6): 0.007

v=l0, (3.4, 3.8): 0.005

Fake the shot: 0.268

Stay middle: 0.509

v=l0, (20.8, 3.6): 0.347

v=l0, (20.8, 3.8): 0.007

v=l0, (20.6, 3.6): 0.007

v=l0, (20.6, 3.8): 0.005

Commit left: 0.246 Expected values: ±0. 796 Commit right: 0.246

Exploitability: <0.00001 & <0.00001
Table 10: The Nash equilibrium solution in a model with "fake the shot". (Rounded to 3 decimals)

Allowing the penalty taker to "fake the shot" forces the goalkeeper to select "stay middle" with

a relatively high frequency (0.509). This is because "stay middle" is the only option that

performs well against "fake the shot". As a consequence of the frequent utilization of "stay

middle", the penalty taker never aims for a central coordinate.

Unlike in the previous models, the goalkeeper completely stops utilizing the "lean left"- and

"lean right"-options. If the penalty taker selects "fake the shot", the leaning options perform

very poorly, as they reveal that one of the sides in the goal will be open. Additionally, if the

penalty taker decides to aim for one of the sides, the leaning options underperform compared

to the "commit left"- or "commit right"-options. So, in this model, the leaning options are much

worse than they seemed in previous models. They are only to be used against penalty takers

that rarely or never chooses to "fake the shot".

Compared to the solution of the non-uniform velocity model, the expected value for the penalty

taker has increased from 0.751 to 0.796, which is quite a significant increase. This illustrates

that "fake the shot" is a quite effective option. It essentially forces the goalkeeper to "stay

middle" quite often, which in tum increases the effectiveness of aiming for a side-coordinate.

This is much preferable to the previous strategy, which attempted to deter the goalkeeper from

choosing "commit left" or "commit right" by sometimes aiming at central coordinates, using a

low velocity.

Asymmetry

Throughout the framework, I have operated with assumptions that are perfectly symmetrical

and mirrored across the line x = 12. In a real-life penalty kick, the player-dependent

assumptions may not always be perfectly symmetrical. In the run-up to the ball, the penalty

taker usually runs at an angle, creating a curved trajectory as they approach the ball. In other

words, the run-up is usually not a straight line, and is therefore asymmetrical. Additionally, the

penalty taker kicks the ball, and the foot of the penalty taker isn't symmetrical either. Such

56

57

factors can potentially lead to other asymmetries in further along in the system. For example,

it might be the case that a penalty taker is able to shoot slightly more accurately to one side,

compared to the other.

Moreover, the symmetry of a goalkeeper’s area coverage can also be called into question.

Humans typically show a preference for one hand over the other, with the majority favouring

their right hand. This often translates into an unequal distribution of strength, with the preferred

hand or arm exhibiting more strength. If the goalkeeper is stronger in one of the arms, they

may be able to stop more shots when using that arm, resulting in a slightly larger area coverage

when diving to one of the sides.

Despite the potential for asymmetry in penalty kicks, assuming perfect symmetry still serves

as a valuable starting point for analysis. However, when introducing asymmetry into the model,

the equilibrium will shift away from the perfectly symmetric solutions we’ve seen so far. I want

to showcase the general direction of these equilibrium shifts, and the logic behind them. To do

so, I’m going use the framework to solve a simple asymmetric model. For simplicity, let’s

restrict the penalty taker to a uniform choice of high velocity (𝑣𝑣 = 10). Let’s also say that the

standard deviation is 1.9 if the penalty taker aims at a coordinate in the leftmost third of the

goal, i.e., where 𝑥𝑥 < 8. In the middle third of the goal, when 8 ≤ 𝑥𝑥 ≤ 16, the standard

deviation is 2, and in the rightmost third of the goal, when 𝑥𝑥 > 16 the standard deviation is

2.1. The goalkeeper is allowed all five options for area coverage, “commit left”, “lean left”,

“stay middle”, “lean right”, and “commit right”.

When running a coordinate search with a specificity of 0,2 feet, I get the solution presented in

Table 11. This was achieved using 100,000 scenario iterations to simulate payoffs in the first

step of the algorithm, then 1,000,0000 iterations in the subsequent steps, followed by

10,000,000 iterations in the final step.

(3.0, 4.8): 0.564

Commit left: 0.545

(12.2, 4.6): 0.002

(12.4, 4.6): 0.069

Expected values: ±0.743

(20.6, 4.2): 0.365

Lean right: 0.072

Commit right: 0.383

Exploitability: <0.00003 & <0.00002
Table 11: The Nash equilibrium solution of a model with asymmetric accuracy. (Rounded to 3 decimals)

When the penalty taker is more accurate when shooting to the left, as opposed to the right, the

Nash equilibrium becomes asymmetric. The penalty taker aims significantly more often to the

factors can potentially lead to other asymmetries in further along in the system. For example,

it might be the case that a penalty taker is able to shoot slightly more accurately to one side,

compared to the other.

Moreover, the symmetry of a goalkeeper's area coverage can also be called into question.

Humans typically show a preference for one hand over the other, with the majority favouring

their right hand. This often translates into an unequal distribution of strength, with the preferred

hand or arm exhibiting more strength. If the goalkeeper is stronger in one of the arms, they

may be able to stop more shots when using that arm, resulting in a slightly larger area coverage

when diving to one of the sides.

Despite the potential for asymmetry in penalty kicks, assuming perfect symmetry still serves

as a valuable starting point for analysis. However, when introducing asymmetry into the model,

the equilibrium will shift away from the perfectly symmetric solutions we've seen so far. I want

to showcase the general direction of these equilibrium shifts, and the logic behind them. To do

so, I 'm going use the framework to solve a simple asymmetric model. For simplicity, let's

restrict the penalty taker to a uniform choice of high velocity (v = 10). Let's also say that the

standard deviation is 1.9 if the penalty taker aims at a coordinate in the leftmost third of the

goal, i.e., where x < 8. In the middle third of the goal, when 8 x 16, the standard

deviation is 2, and in the rightmost third of the goal, when x > 16 the standard deviation is

2.1. The goalkeeper is allowed all five options for area coverage, "commit left", "lean left",

"stay middle", "lean right", and "commit right".

When running a coordinate search with a specificity of 0,2 feet, I get the solution presented in

Table 11. This was achieved using l 00,000 scenario iterations to simulate payoffs in the first

step of the algorithm, then 1,000,0000 iterations in the subsequent steps, followed by

10,000,000 iterations in the final step.

(3.0, 4.8): 0.564

Commit left: 0.545

(12.2, 4.6): 0.002

(12.4, 4.6): 0.069

(20.6, 4.2): 0.365

Lean right: 0.072

Commit right: 0.383

Expected values: ±0. 743

Exploitability: <0.00003 & <0.00002
Table 11: The Nash equilibrium solution of a model with asymmetric accuracy. (Rounded to 3 decimals)

When the penalty taker is more accurate when shooting to the left, as opposed to the right, the

Nash equilibrium becomes asymmetric. The penalty taker aims significantly more often to the

57

58

left (0.564) than to the right (0.365). Furthermore, when aiming to the left, the penalty taker

aims at a coordinate that’s higher, and also closer to the post. This is in line with the results

found in the first few models, and a necessary adjustment to take full advantage of the better

accuracy when aiming to this side.

The goalkeeper also moves more frequently to the left, selecting “commit left” 54.5% of the

time. Notice that this is not enough to deter the penalty taker from aiming more often to their

more accurate side. This illustrates what how the equilibrium generally shifts when the penalty

taker has one side with favourable assumptions. The penalty taker aims more often to the

favourable side, and the goalkeeper covers that side more often.

Now, let’s solve another model, where the penalty taker has a standard deviation of 2, that’s

uniform across all coordinates, but the goalkeeper’s area coverage is slightly larger when

choosing “commit left” than when choosing “commit right”. The right side of the inequality is

6.5 for “commit left” and 6 for “commit right”:

𝐶𝐶𝐺𝐺𝑚𝑚𝑚𝑚𝑖𝑖𝑃𝑃 𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃:

{

(𝑥𝑥 + 2 − 0.9𝑣𝑣)2

3 +
(𝑃𝑃 + 0.5 − 0.25𝑣𝑣)2

2 ≤ 6.5 ,7 < 𝑣𝑣 ≤ 10

(𝑥𝑥 − 3.4)2
3 +

(𝑃𝑃 − 3.2)2
2 ≤ 6.5 ,0 ≤ 𝑣𝑣 ≤ 7

Apart from these changes, the model is similar to the one before. When running the

coordinate search with a specificity of 0.2 feet, I get the solution presented in Table 12.

(3.4, 4.6): 0.419

Commit left: 0.0462

(12.0, 4.6): 0.002

(12.0, 4.8): 0.076

Expected values: ±0.733

(20.8, 4.4): 0.011

(20.8, 4.6): 0.492

Lean right: 0.07

Commit right: 0.468

Exploitability: <0.00004 & <0.00002
Table 12: The Nash equilibrium solution in a model with asymmetric area coverage. (Rounded to 3 decimals)

In this solution, the penalty taker aims more frequently to the right than to the left. Additionally,

the goalkeeper chooses to move to the right 53.8% of the time, either by choosing “commit

right” or “lean right”. This can be understood through the same lens as before. In the previous

model, the penalty taker aimed more frequently to the left, because the left side had the

favourable attribute of a better accuracy. In this model, the penalty taker aims more frequently

to the right, because the right side has the favourable attribute of a smaller area coverage for

the goalkeeper.

left (0.564) than to the right (0.365). Furthermore, when aiming to the left, the penalty taker

aims at a coordinate that's higher, and also closer to the post. This is in line with the results

found in the first few models, and a necessary adjustment to take full advantage of the better

accuracy when aiming to this side.

The goalkeeper also moves more frequently to the left, selecting "commit left" 54.5% of the

time. Notice that this is not enough to deter the penalty taker from aiming more often to their

more accurate side. This illustrates what how the equilibrium generally shifts when the penalty

taker has one side with favourable assumptions. The penalty taker aims more often to the

favourable side, and the goalkeeper covers that side more often.

Now, let's solve another model, where the penalty taker has a standard deviation of 2, that's

uniform across all coordinates, but the goalkeeper's area coverage is slightly larger when

choosing "commit left" than when choosing "commit right". The right side of the inequality is

6.5 for "commit left" and 6 for "commit right":

(x + 2 - 0.9v)2 (y + 0.5 - 0.25v)2
3 + 2 6.5

(x - 3.4)2 (y - 3.2)2
3 + 2 65

Apart from these changes, the model is similar to the one before. When running the

Commit le f t :
,7 < v 10

,0 v 7

coordinate search with a specificity of 0.2 feet, I get the solution presented in Table 12.

(3.4, 4.6): 0.419

Commit left: 0.0462

(12.0, 4.6): 0.002

(12.0, 4.8): 0.076

Expected values: ±0. 733

Exploitability: <0.00004 & <0.00002

(20.8, 4.4): 0.01l

(20.8, 4.6): 0.492

Lean right: 0.07

Commit right: 0.468

Table 12: The Nash equilibrium solution in a model with asymmetric area coverage. (Rounded to 3 decimals)

In this solution, the penalty taker aims more frequently to the right than to the left. Additionally,

the goalkeeper chooses to move to the right 53.8% of the time, either by choosing "commit

right" or "lean right". This can be understood through the same lens as before. In the previous

model, the penalty taker aimed more frequently to the left, because the left side had the

favourable attribute of a better accuracy. In this model, the penalty taker aims more frequently

to the right, because the right side has the favourable attribute of a smaller area coverage for

the goalkeeper.

58

59

Conclusion
In the outset of this study, the primary goal was to analyse penalty kicks in football from a

decision modelling standpoint. This implies that the game is treated as a decision problem,

where the only focus is on strategic choices, and thereby the strategic interaction between

players. The central research problem was to develop a framework which allows us to

approximate Nash equilibria in penalty kicks. Beyond the development of the framework, the

paper seeks to gradually develop our understanding of the characteristics of a Nash equilibrium

when applied to penalty kicks. This objective was achieved by initiating with a simple model

and progressively integrating additional layers of complexity. With each element introduced,

we observed the subsequent shifts in the equilibrium, and thereby gained a deeper

understanding about the nature of the Nash equilibrium in penalty kicks.

To locate the Nash equilibrium in the various models, the counterfactual regret minimization

(CFR) algorithm was used. Additionally, I developed an algorithm called coordinate search,

which locates optimal aiming coordinates for the penalty taker.

In the first model, the velocity and the standard deviation were uniform across all coordinates.

The goalkeeper was limited to three options – “commit left”, “stay middle”, and “commit

right”. By using the coordinate search algorithm, I solved this model for a diverse set of

assumptions of velocity and standard deviation. In doing so, I uncovered that large areas within

the goal were never aimed for, regardless of the combination of velocity and standard deviation.

The viable aim-coordinates moved slightly depending on the assumptions, and there was a clear

trend to the movement. The less accurately the penalty taker is able to shoot, the optimal aim-

coordinates tend to move lower, and also horizontally towards the centre of the goal. For the

goalkeeper, all three options were viable in all combinations of assumptions.

In the second model, the options available to the goalkeeper are expanded to include two new

options – “lean left” and “lean right”. Again, I used the coordinate search algorithm and solved

the model for a diverse set of assumptions of velocity and standard deviation. The general trend

regarding the positioning of the aim-coordinates were consistent with the findings in the first

model. However, the leaning options proved to be quite advantageous, often being preferred

instead of the original “stay middle”-option. The leaning options were advantageous because

they allowed the goalkeeper a better chance at stopping a shot to one of the sides, while still

having a good chance at stopping shots in the middle.

Conclusion
In the outset of this study, the primary goal was to analyse penalty kicks in football from a

decision modelling standpoint. This implies that the game is treated as a decision problem,

where the only focus is on strategic choices, and thereby the strategic interaction between

players. The central research problem was to develop a framework which allows us to

approximate Nash equilibria in penalty kicks. Beyond the development of the framework, the

paper seeks to gradually develop our understanding of the characteristics of a Nash equilibrium

when applied to penalty kicks. This objective was achieved by initiating with a simple model

and progressively integrating additional layers of complexity. With each element introduced,

we observed the subsequent shifts in the equilibrium, and thereby gained a deeper

understanding about the nature of the Nash equilibrium in penalty kicks.

To locate the Nash equilibrium in the various models, the counterfactual regret minimization

(CFR) algorithm was used. Additionally, I developed an algorithm called coordinate search,

which locates optimal aiming coordinates for the penalty taker.

In the first model, the velocity and the standard deviation were uniform across all coordinates.

The goalkeeper was limited to three options - "commit left", "stay middle", and "commit

right". By using the coordinate search algorithm, I solved this model for a diverse set of

assumptions of velocity and standard deviation. In doing so, I uncovered that large areas within

the goal were never aimed for, regardless of the combination of velocity and standard deviation.

The viable aim-coordinates moved slightly depending on the assumptions, and there was a clear

trend to the movement. The less accurately the penalty taker is able to shoot, the optimal aim-

coordinates tend to move lower, and also horizontally towards the centre of the goal. For the

goalkeeper, all three options were viable in all combinations of assumptions.

In the second model, the options available to the goalkeeper are expanded to include two new

options - "lean left" and "lean right". Again, I used the coordinate search algorithm and solved

the model for a diverse set of assumptions of velocity and standard deviation. The general trend

regarding the positioning of the aim-coordinates were consistent with the findings in the first

model. However, the leaning options proved to be quite advantageous, often being preferred

instead of the original "stay middle"-option. The leaning options were advantageous because

they allowed the goalkeeper a better chance at stopping a shot to one of the sides, while still

having a good chance at stopping shots in the middle.

59

60

In the third model, the options available to the penalty taker were expanded to include a choice

of velocity. In previous models, the velocity-factor was set to a single specific value, and was

uniform across all coordinates. In the new model, the penalty taker could choose different a

velocity-factor for different coordinates. The solution of this model revealed that if it’s optimal

to aim for a central coordinate, this should be done using a low velocity. There are two reasons

for this: First, the ball takes a longer time to reach the goal, and when the goalkeeper dives to

either side (by choosing “commit left” or “commit right”), there’s more time for them to move

away from the centre of the goal. Secondly, there’s a trade-off between accuracy and velocity.

The penalty taker is able to shoot more accurately when shooting with a low velocity.

This forth model is the most complex and realistic, and provides the best approximation of a

Nash equilibrium in a real-life penalty kick. In this model, I introduce an element of sequential

choice, where the penalty taker can “fake the shot”, and observe if the goalkeeper starts to

move in a specific direction. If the goalkeeper starts to move, the penalty taker can easily score

by aiming for the opposite side of the goal. Consequently, “stay middle” is the only option that

performs well against “fake the shot”. This forces the goalkeeper to “stay middle” quite

frequently. In turn, this results in that the penalty taker never aims for a central coordinate. The

“lean left”- and “lean right”-options perform poorly when the penalty taker chooses “fake the

shot”. They also underperform compared to the “commit left”- and “commit right”-options

when the penalty taker aims for a side-coordinate. Consequently, the leaning-options aren’t

being utilized at all.

Finally, I briefly examined some cases where the player-dependent assumptions are

asymmetrical. In the first case, the penalty taker is able to shoot more accurately to one of the

sides, and in the second case, the goalkeeper is able to cover a slightly larger area on one side

of the goal. In the first case, the more favourable side for the penalty taker is the side where

they are able to shoot more accurately. In the second case, the more favourable side is where

the goalkeeper can cover a smaller area. Both of these cases illustrate the same principle: When

the assumptions are asymmetrical, the penalty taker aims more often to their favourable side,

and the goalkeeper also selects options that cover that side more often.

A real-life penalty kicks scenario is extremely complex, and any model needs to make

significant simplifications. The applicability of the results is therefore inherently contingent on

how well the models manages to capture the essential dynamics of a penalty kick. Herein lies

the main limitation of the study. It’s vital to approach the results with a clear understanding of

In the third model, the options available to the penalty taker were expanded to include a choice

of velocity. In previous models, the velocity-factor was set to a single specific value, and was

uniform across all coordinates. In the new model, the penalty taker could choose different a

velocity-factor for different coordinates. The solution of this model revealed that if it's optimal

to aim for a central coordinate, this should be done using a low velocity. There are two reasons

for this: First, the ball takes a longer time to reach the goal, and when the goalkeeper dives to

either side (by choosing "commit left" or "commit right"), there's more time for them to move

away from the centre of the goal. Secondly, there's a trade-off between accuracy and velocity.

The penalty taker is able to shoot more accurately when shooting with a low velocity.

This forth model is the most complex and realistic, and provides the best approximation of a

Nash equilibrium in a real-life penalty kick. In this model, I introduce an element of sequential

choice, where the penalty taker can "fake the shot", and observe if the goalkeeper starts to

move in a specific direction. If the goalkeeper starts to move, the penalty taker can easily score

by aiming for the opposite side of the goal. Consequently, "stay middle" is the only option that

performs well against "fake the shot". This forces the goalkeeper to "stay middle" quite

frequently. In tum, this results in that the penalty taker never aims for a central coordinate. The

"lean left"- and "lean right"-options perform poorly when the penalty taker chooses "fake the

shot". They also underperform compared to the "commit left"- and "commit right"-options

when the penalty taker aims for a side-coordinate. Consequently, the leaning-options aren't

being utilized at all.

Finally, I briefly examined some cases where the player-dependent assumptions are

asymmetrical. In the first case, the penalty taker is able to shoot more accurately to one of the

sides, and in the second case, the goalkeeper is able to cover a slightly larger area on one side

of the goal. In the first case, the more favourable side for the penalty taker is the side where

they are able to shoot more accurately. In the second case, the more favourable side is where

the goalkeeper can cover a smaller area. Both of these cases illustrate the same principle: When

the assumptions are asymmetrical, the penalty taker aims more often to their favourable side,

and the goalkeeper also selects options that cover that side more often.

A real-life penalty kicks scenario is extremely complex, and any model needs to make

significant simplifications. The applicability of the results is therefore inherently contingent on

how well the models manages to capture the essential dynamics of a penalty kick. Herein lies

the main limitation of the study. It's vital to approach the results with a clear understanding of

60

61

the simplifications, and an appreciation of the potential gaps between the models and a real

penalty kick.

Future research into the nature of the player-dependent assumptions would help to strengthen

our confidence in the applicability of the solutions to the models. For instance, an empirical

study could investigate average area coverage of professional goalkeepers. This could be done

by observing historical penalty kicks, and grouping the goalkeeper actions into different

categories (i.e., “commit left” if the goalkeeper already fully committed to diving left before

observing the trajectory of the ball, etc.), and monitoring for which hit-coordinates the

goalkeeper managed to stop the shot. Such a study should also monitor the relationship between

velocity and area coverage.

It would also be helpful to have data on the inaccuracy of penalty takers. This cannot be

obtained by looking at historical data, because you would need to know the aim-coordinate of

the penalty taker, and not just the hit-coordinate. Therefore, such a study would need to collect

data, by having professional players specify their aim-coordinate before shooting, and then

observing the inaccuracy of the shot. Such a study should also investigate the relationship

between velocity and inaccuracy.

Future research could also explore multiple avenues for improving the underlying framework

of the models. For instance, transitioning from the 2-dimensional approach to a 3-dimensional

one could offer a more comprehensive representation of the game. Furthermore, researchers

could also seek to develop a truly sequential model, where the players have more than one

decision point as the penalty taker approaches the ball. Such developments could ultimately

lead to an even deeper and more nuanced understanding of the most intense and crucial

situation in football – the penalty kick.

the simplifications, and an appreciation of the potential gaps between the models and a real

penalty kick.

Future research into the nature of the player-dependent assumptions would help to strengthen

our confidence in the applicability of the solutions to the models. For instance, an empirical

study could investigate average area coverage of professional goalkeepers. This could be done

by observing historical penalty kicks, and grouping the goalkeeper actions into different

categories (i.e., "commit left" if the goalkeeper already fully committed to diving left before

observing the trajectory of the ball, etc.), and monitoring for which hit-coordinates the

goalkeeper managed to stop the shot. Such a study should also monitor the relationship between

velocity and area coverage.

It would also be helpful to have data on the inaccuracy of penalty takers. This cannot be

obtained by looking at historical data, because you would need to know the aim-coordinate of

the penalty taker, and not just the hit-coordinate. Therefore, such a study would need to collect

data, by having professional players specify their aim-coordinate before shooting, and then

observing the inaccuracy of the shot. Such a study should also investigate the relationship

between velocity and inaccuracy.

Future research could also explore multiple avenues for improving the underlying framework

of the models. For instance, transitioning from the 2-dimensional approach to a 3-dimensional

one could offer a more comprehensive representation of the game. Furthermore, researchers

could also seek to develop a truly sequential model, where the players have more than one

decision point as the penalty taker approaches the ball. Such developments could ultimately

lead to an even deeper and more nuanced understanding of the most intense and crucial

situation in football - the penalty kick.

61

62

References
Bar-Eli, M., Azar, O. H., Ritov, I., Keidar-Levin, Y., & Schein, G. (2007). Action bias among

elite soccer goalkeepers: The case of penalty kicks. Journal of Economic Psychology,

28(5), 606–621. https://doi.org/10.1016/j.joep.2006.12.001

Baarslag, T., Kaisers, M., Gerding, E., Jonker, C. M., & Gratch, J. (2017). When will

negotiation agents be able to represent us? The challenges and opportunities for

autonomous negotiators. In C. Sierra (Ed.), Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (pp. 4684-4690). International

Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2017/653

Brown, N., & Sandholm, T. (2019). Solving Imperfect-Information Games via Discounted

Regret Minimization. Proceedings of the AAAI Conference on Artificial Intelligence,

33(01), 1829-1836. https://doi.org/10.1609/aaai.v33i01.33011829

Chiappori, P. A., Levitt, S., & Groseclose, T. (2002). Testing Mixed-Strategy Equilibria

When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer. American

Economic Review, 92(4), 1138–1151. https://doi.org/10.1257/00028280260344678

Dalton, K., Guillon, M., & Naroo, S. A. (2015). An Analysis of Penalty Kicks in Elite

Football Post 1997. International Journal of Sports Science & Coaching, 10(5), 815–

827. https://doi.org/10.1260/1747-9541.10.5.815

Fédération Internationale de Football Association. (2023). Laws of the Game 2023/2024.

FIFA. Retrieved from

https://digitalhub.fifa.com/m/50518593a0941079/original/khhloe2xoigyna8juxw3-

pdf.pdf

Jordet, G., Hartman, E., Visscher, C., & Lemmink, K. A. P. M. (2007). Kicks from the

penalty mark in soccer: The roles of stress,skill, and fatigue for kick outcomes.

Journal of Sports Sciences, 25(2), 121–129.

https://doi.org/10.1080/02640410600624020

References
Bar-Eli, M., Azar, 0. H., Ritov, I., Keidar-Levin, Y., & Schein, G. (2007). Action bias among

elite soccer goalkeepers: The case of penalty kicks. Journal of Economic Psychology,

28(5), 606-621. https://doi.org/10.1016/j.joep.2006.12.001

Baarslag, T., Kaisers, M., Gerding, E., Jonker, C. M., & Gratch, J. (2017). When will

negotiation agents be able to represent us? The challenges and opportunities for

autonomous negotiators. In C. Sierra (Ed.), Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence (pp. 4684-4690). International

Joint Conferences on Artificial Intelligence. https:/!doi.org/l 0.24963/ijcai.2017/653

Brown, N., & Sandholm, T. (2019). Solving Imperfect-Information Games via Discounted

Regret Minimization. Proceedings of the AAAI Conference on Artificial Intelligence,

33(01), 1829-1836. https:/!doi.org/l 0.1609/aaai.v33i01.33011829

Chiappari, P. A., Levitt, S., & Groseclose, T. (2002). Testing Mixed-Strategy Equilibria

When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer. American

Economic Review, 92(4), 1138-115l. https:/!doi.org/l 0.1257/00028280260344678

Dalton, K., Guillon, M., & Naroo, S. A. (2015). An Analysis of Penalty Kicks in Elite

Football Post 1997. International Journal of Sports Science & Coaching, l0(5), 815-

827. https:/!doi.org/l 0.1260/1747-9541.10.5.815

Federation Internationale de Football Association. (2023). Laws of the Game 2023/2024.

FIFA. Retrieved from

https://digitalhub.fifa.com/m/50518593a0941079/original/khhloe2xoigyna8juxw3-

pdf.pdf

Jordet, G., Hartman, E., Visscher, C., & Lemmink, K. A. P. M. (2007). Kicks from the

penalty mark in soccer: The roles of stress,skill, and fatigue for kick outcomes.

Journal of Sports Sciences, 25(2), 121-129.

https:/!doi.org/l 0.1080/02640410600624020

62

https://doi.org/10.1016/j.joep.2006.12.001
https://doi.org/10.24963/ijcai.2017/653
https://doi.org/10.1609/aaai.v33i01.33011829
https://doi.org/10.1257/00028280260344678
https://doi.org/10.1260/1747-9541.10.5.815
https://digitalhub.fifa.com/m/50518593a0941079/original/khhloe2xoigyna8juxw3-pdf.pdf
https://digitalhub.fifa.com/m/50518593a0941079/original/khhloe2xoigyna8juxw3-pdf.pdf
https://doi.org/10.1080/02640410600624020

63

Jordet, G., Hartman, E., & Sigmundstad, E. (2009). Temporal links to performing under

pressure in international soccer penalty shootouts. Psychology of Sport and Exercise,

10(6), 621–627. https://doi.org/10.1016/j.psychsport.2009.03.004

Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard, N., Davis, T., Waugh, K.,

Johanson, M., & Bowling, M. (2017). DeepStack: Expert-level artificial intelligence

in heads-up no-limit poker. Science, 356(6337), 508–513.

https://doi.org/10.1126/science.aam6960

MyFootballFacts. (n.d.). Premier League Penalty Statistics. MyFootballFacts. Retrieved from

https://www.myfootballfacts.com/premier-league/all-time-premier-league/premier-

league-penalty-statistics/

Nash, J. (1951). Non-Cooperative Games. The Annals of Mathematics, 54(2), 286.

https://doi.org/10.2307/1969529

Rodrigues-Neto, J. (2014). Game Theory, An Introduction, by Steven Tadelis (Princeton

University Press, Princeton, NJ, 2013), pp. xv + 396. Economic Record, 90(291),

551–552. https://doi.org/10.1111/1475-4932.12156

Transfermarkt. (n.d.). Premier League Penalty Statistics. Transfermarkt. Retrieved from

https://www.transfermarkt.co.uk/premier-

league/topErhalteneElfmeter/wettbewerb/GB1

Visscher, C., Elferink-Gemser, M. T., & Lemmink, K. A. P. M. (2006). Interval Endurance

Capacity of Talented Youth Soccer Players. Perceptual and Motor Skills, 102(1), 81–

86. https://doi.org/10.2466/pms.102.1.81-86

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007). Regret Minimization in

Games with Incomplete Information. In Proceedings of the 20th Annual Conference on

Neural Information Processing Systems (NIPS 2007). Retrieved from

https://papers.nips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

Jordet, G., Hartman, E., & Sigmundstad, E. (2009). Temporal links to performing under

pressure in international soccer penalty shootouts. Psychology of Sport and Exercise,

J0(6), 621-627. https://doi.org/10.1016/j.psychsport.2009.03.004

Moravöik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, N., Davis, T., Waugh, K.,

Johanson, M., & Bowling, M. (2017). DeepStack: Expert-level artificial intelligence

in heads-up no-limit poker. Science, 356(6337), 508-513.

https:/!doi.org/l 0.1126/science.aam6960

MyFootballFacts. (n.d.). Premier League Penalty Statistics. MyFootballFacts. Retrieved from

https:!/www.myfootballfacts.com/premier-league/all-time-premier-league/premier-

league-penalty-statistics/

Nash, J. (1951). Non-Cooperative Games. The Annals of Mathematics, 54(2), 286.

https:/!doi.org/l 0.2307/1969529

Rodrigues-Neto, J. (2014). Game Theory, An Introduction, by Steven Tadelis (Princeton

University Press, Princeton, NJ, 2013), pp. x v + 396. Economic Record, 90(291),

551-552. https:/!doi.org/l 0.1111/1475-4932.12156

Transfermarkt. (n.d.). Premier League Penalty Statistics. Transfermarkt. Retrieved from

https:!/www.transfermarkt.co.uk/premier-

league/topErhalteneElfmeter/wettbewerb/GBl

Visscher, C., Elferink-Gemser, M. T., & Lemmink, K. A. P. M. (2006). Interval Endurance

Capacity of Talented Youth Soccer Players. Perceptual and Motor Skills, 102(1), 81-

86. https:/!doi.org/l 0.2466/pms.102.1.81-86

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007). Regret Minimization in

Games with Incomplete Information. In Proceedings of the 20th Annual Conference on

Neural Information Processing Systems (NIPS 2007). Retrieved from

https://papers.nips.cc/paper/2007/file/08d98638c6fcdl 94a4bl e6992063e944-Paper.pdf

63

https://doi.org/10.1016/j.psychsport.2009.03.004
https://doi.org/10.1126/science.aam6960
https://www.myfootballfacts.com/premier-league/all-time-premier-league/premier-league-penalty-statistics/
https://www.myfootballfacts.com/premier-league/all-time-premier-league/premier-league-penalty-statistics/
https://doi.org/10.2307/1969529
https://doi.org/10.1111/1475-4932.12156
https://www.transfermarkt.co.uk/premier-league/topErhalteneElfmeter/wettbewerb/GB1
https://www.transfermarkt.co.uk/premier-league/topErhalteneElfmeter/wettbewerb/GB1
https://doi.org/10.2466/pms.102.1.81-86
https://papers.nips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

64

Appendix I
This appendix presents the calculation that derives a good

approximation the domain of hit-coordinates that can result in a goal.

The penalty taker shoots from a distance of 11 meters, or

approximately 36 feet. In the figure on the right, point 𝐶𝐶 represents the

11-meter mark, point 𝐵𝐵 represents to the centre of the goal, and point

𝐴𝐴 represents the point of contact when a shot hits the left post. The

distance between the centre of the goal and the left post is 12 feet. The

angle ∠𝐶𝐶𝐴𝐴𝐵𝐵 is then given by tan−1(36/12) ≈ 71.57°. The 𝐴𝐴𝐵𝐵

distance of 12 is technically slightly off, since the point of contact

won’t be exactly on the edge of the post, but this is a sufficient

approximation, as it will hardly change the angle at all.

In the figure below, we zoom in on point 𝐴𝐴, and add a circle with point

𝐷𝐷 as its centre. The circle represents the left post. The line 𝐹𝐹𝐺𝐺 is the

tangent line at the point of contact. The angle ∠𝐶𝐶𝐴𝐴𝐸𝐸 represents the

angle that the ball enters the point of contact. Since the ball will leave

the point of contact at the same angle that it entered, ∠𝐶𝐶𝐴𝐴𝐸𝐸 = ∠𝐸𝐸𝐴𝐴𝐵𝐵.

If the sum of these angles is greater than 71.57°, the ball will bounce

into the goal.

It’s apparent that ∠𝐵𝐵𝐴𝐴𝐹𝐹 = 90° −
∠𝐸𝐸𝐴𝐴𝐵𝐵. I want to find the angle

∠𝐵𝐵𝐴𝐴𝐹𝐹 that is such that ∠𝐶𝐶𝐴𝐴𝐸𝐸 +
∠𝐸𝐸𝐴𝐴𝐵𝐵 ≈ 71.57°.
That’s the case if both angles are

half of 71.57°, meaning that

∠𝐶𝐶𝐴𝐴𝐸𝐸 = ∠𝐸𝐸𝐴𝐴𝐵𝐵 ≈ 35.79°.
Therefore, the critical angle is:

∠𝐵𝐵𝐴𝐴𝐹𝐹 = 90° − 35.79° ≈ 54.21°

At the point of contact, both the ball and the left post will have the same tangent line 𝐹𝐹𝐺𝐺. By

giving the tangent line a set angle of 54.21° to the goal line, I can find the x-coordinate that is

Appendix I
This appendix presents the calculation that derives a good

approximation the domain of hit-coordinates that can result in a goal.

The penalty taker shoots from a distance of 11 meters, or

approximately 36 feet. In the figure on the right, point C represents the

l l-meter mark, point B represents to the centre of the goal, and point

A represents the point of contact when a shot hits the left post. The

distance between the centre of the goal and the left post is 12 feet. The

angle LCAB is then given by tan-1(36/12) 71.57°. The AB

distance of 12 is technically slightly off, since the point of contact

won't be exactly on the edge of the post, but this is a sufficient

approximation, as it will hardly change the angle at all.

In the figure below, we zoom in on point A, and add a circle with point

D as its centre. The circle represents the left post. The line FG is the

tangent line at the point of contact. The angle LCAE represents the

angle that the ball enters the point of contact. Since the ball will leave

the point of contact at the same angle that it entered, LCAE = LEAB.

If the sum of these angles is greater than 71.57°, the ball will bounce

into the goal.

A AB= 12

B C = 36

B

D

J k - . - - - - - - - - - - - 8

G

It's apparent that LBAF = 90° -

LEAB. I want to find the angle

LBAF that is such that LCAE +
LEAB 71.57°.

That's the case if both angles are

half of 71.57°, meaning that

LCAE = LEAB 35.79°.

Therefore, the critical angle is:

LBAF = 90° - 35.79° 54.21°

c

At the point of contact, both the ball and the left post will have the same tangent line FG. By

giving the tangent line a set angle of 54.21° to the goal line, I can find the x-coordinate that is

64

65

such that the ball bounces in the exact direction of the goal line. The x-coordinates to the right

of this will then result in a goal, if they are to the left of the right post and below the crossbar.

In the figure on the right, the circle

with a centre of point 𝐸𝐸 represents

the ball. Point 𝐷𝐷 is located at a

negative x-coordinate equal to that

of the radius of the post. The post

has a diameter of 0.417 feet, so

point 𝐷𝐷 is located at x-coordinate

-0.2085. What I need to find is the

x-coordinate of point 𝐸𝐸; the centre

of the ball. Since I have the

location of point 𝐷𝐷, I can find the

x-coordinate of point 𝐸𝐸 by adding

the distances 𝐷𝐷𝐷𝐷 and 𝐴𝐴𝐴𝐴.

By normalizing the radius of the left post to 1, we can find the proportional distance of 𝐷𝐷𝐷𝐷 to

the radius of the circle. Since ∠𝐴𝐴𝐴𝐴𝐷𝐷 = 90°, ∠𝐹𝐹𝐴𝐴𝐷𝐷 = 90° − 54.21°, and ∠𝐹𝐹𝐴𝐴𝐷𝐷 = 90°, the

angle ∠𝐷𝐷𝐴𝐴𝐷𝐷 must also equal 54.21°. Since the distance 𝐴𝐴𝐷𝐷 is normalized to 1, the distance

𝐷𝐷𝐷𝐷 is given by sin(54.21°) ≈0.811. Similarly, the distance 𝐴𝐴𝐴𝐴 will have the same proportion

to the radius of the ball, which is 0.365. The critical x-coordinate by the left post is then given

by −0.2085 + (0.2085 + 0.365) ∗ 0.811 ≈ 0.257. On the other side of the goal, the ball

needs the same margin, resulting in a critical x-coordinate by the right post of 24 − 0.257 =
23.743. At these x-coordinates, the ball will leave the post and follow a line perpendicular to

the goal line, whereas x-coordinates in between will result in a goal. This gives us the domain

of x-values that can result in a goal:

𝑥𝑥𝑥𝑥⟨0.257, 23.743⟩

For the y-coordinate, the calculation is exactly the same. The only difference is that the

distance from the centre of the goal to the crossbar is 8 feet, instead of 12. This gives us a

slightly more open angle to the 11-meter mark of approximately 77.36°, reducing the required

margin slightly. Since only the y-values above or equal to 0.365 are feasible, the following

domain can result in a goal:

𝑃𝑃𝑥𝑥[0.365, 7.751⟩

such that the ball bounces in the exact direction of the goal line. The x-coordinates to the right

of this will then result in a goal, if they are to the left of the right post and below the crossbar.

In the figure on the right, the circle

with a centre of point E represents

the ball. Point D is located at a

negative x-coordinate equal to that

of the radius of the post. The post

D

has a diameter of 0.417 feet, so

point D is located at x-coordinate

-0.2085. What I need to find is the

x-coordinate of point E; the centre

of the ball. Since I have the

location of point D, I can find the

x-coordinate of point E by adding

the distances DH and AI.

By normalizing the radius of the left post to l, we can find the proportional distance of DH to

the radius of the circle. Since L/AH = 90°, LFAH = 90° - 54.21°, and LFAD = 90°, the

E

G

angle LDAH must also equal 54.21°. Since the distance AD is normalized to l, the distance

DH is given by sin(54.21°) 0.811. Similarly, the distance AI will have the same proportion

to the radius of the ball, which is 0.365. The critical x-coordinate by the left post is then given

by -0 .2085 + (0.2085 + 0.365) * 0.811 0.257. On the other side of the goal, the ball

needs the same margin, resulting in a critical x-coordinate by the right post of 24 - 0.257 =
23.743. At these x-coordinates, the ball will leave the post and follow a line perpendicular to

the goal line, whereas x-coordinates in between will result in a goal. This gives us the domain

of x-values that can result in a goal:

Xc(0.257, 23.743)

For the y-coordinate, the calculation is exactly the same. The only difference is that the

distance from the centre of the goal to the crossbar is 8 feet, instead of 12. This gives us a

slightly more open angle to the l l-meter mark of approximately 77.36°, reducing the required

margin slightly. Since only the y-values above or equal to 0.365 are feasible, the following

domain can result in a goal:

yc[0.365, 7.751)

65

66

Appendix II
This appendix covers the essential parts of the code used for simulating the payoffs in each

possible outcome of the game. See github.com/Monstad/Penalty-Kicks for the complete code.

AIM_OPTIONS = []
x_values = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
y_values = [-2, 0, 2, 4, 6]
for x_value in x_values:
 for y_value in y_values:
 AIM_OPTIONS.append((x_value, y_value))

AREA_EQUATIONS = {
 'commit_left': lambda x, y, v: ((x + 2 - 0.9*v)**2)/3 + ((y + 0.5 - 0.25*v)**2)/2 <= 6,
 'stay_middle': lambda x, y, v: ((x - 12)**2)/8 + ((y - 2 - 0.2*v)**2)/8 <= 22.5 - 1.85*v,
 'commit_right': lambda x, y, v: ((x - 26 + 0.9*v)**2)/3 + ((y + 0.5 - 0.25*v)**2)/2 <= 6,
}
AREA_OPTIONS = list(AREA_EQUATIONS.keys())

AIM_OPTIONS defines the strategic options for the penalty taker, and AREA_EQUATIONS

and AREA_OPTIONS define the strategic options for the goalkeeper. The 𝑣𝑣-value in the

AREA_EQUATIONS is the velocity-factor. It defines the size of the area the goalkeeper is able

to cover. A larger velocity factor results in a smaller area, and vice versa.

In this example, the penalty taker has 55 different coordinates to aim for, and the goalkeeper

has three different areas they can cover. This means that there are 165 different combinations

of choices that can occur. I’m going to simulate the expected values (the chance of a goal

occurring) in each of these scenarios. The process is exactly the same if there’s a different

number of scenarios.

def getHitCoordinate(aim_coordinate, sd, velocity):
 hit_coordinate = np.random.normal(aim_coordinate, sd, size=2)
 hit_velocity = velocity
 if hit_coordinate[1] < LOWER_BOUND:
 hit_velocity = velocity - (LOWER_BOUND - hit_coordinate[1]) * FRICTION
 hit_velocity = max(hit_velocity, 0)
 hit_coordinate[1] = max(LOWER_BOUND, hit_coordinate[1])
 return hit_coordinate, hit_velocity

The hit_coordinate is drawn from a bivariate normal distribution. The mean of the distribution

is given by the aim_coordinate. The standard deviation, which is equal in both the vertical and

horizontal direction, is given by sd. The LOWER_BOUND represents the smallest possible 𝑃𝑃-

value for the hit_coordinate. This is the 𝑃𝑃-value that’s such that the ball touches the ground

when it crosses the goal line. If the hit_coordinate that’s drawn is below this threshold, the ball

will make contact with the ground during at least some portion of its trajectory towards the

goal. This leads to an increase in friction, reducing the velocity factor, and consequently

expanding the area that the goalkeeper is able to cover. As the drawn hit_coordinate moves

further below the threshold, the ball will be in contact with the ground for longer, resulting in

Appendix II
This appendix covers the essential parts of the code used for simulating the payoffs in each

possible outcome of the game. See github.com/Monstad/Penalty-Kicks for the complete code.

AIM_OPTIONS = []
x_values = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22]
y_values = [-2, 0, 2, 4, 6]
for x_value in x_values:

for y_value in y_values:
AIM_OPTIONS.append((x_value, y_value))

AREA_EQUATIONS = {
'commit_left': lambda x, y, v:((x+ 2 - 0.9*v)**2)/3 + ((y + 0.5 - 0.25*v)**2)/2 <= 6,
'stay_middle': lambda x, y, v:((x - 12)**2)/8 + ((y - 2 - 0.2*v)**2)/8 <= 22.5 - 1.85*v,
'commit_right': lambda x, y, v:((x - 26+ 0.9*v)**2)/3 + ((y + 0.5 - 0.25*v)**2)/2 <= 6,

}
AREA_OPTIONS = list(AREA_EQUATIONS.keys())

AIM_OPTIONS defines the strategic options for the penalty taker, and AREA_EQUATIONS

and AREA_OPTIONS define the strategic options for the goalkeeper. The v-value in the

AREA_EQUATIONS is the velocity-factor. It defines the size of the area the goalkeeper is able

to cover. A larger velocity factor results in a smaller area, and vice versa.

In this example, the penalty taker has 55 different coordinates to aim for, and the goalkeeper

has three different areas they can cover. This means that there are 165 different combinations

of choices that can occur. I 'm going to simulate the expected values (the chance of a goal

occurring) in each of these scenarios. The process is exactly the same if there's a different

number of scenarios.

def getHitCoordinate(aim_coordinate, sd, velocity):
hit_coordinate = np.random.normal(aim_coordinate, sd, size=2)
hit_velocity = velocity
if hit_coordinate[l] < LOWER_BOUND:

hit_velocity = velocity - (LOWER_BOUND - hit_coordinate[l]) * FRICTION
hit_velocity = max(hit_velocity, 0)

hit_coordinate[l] = max(LOWER_BOUND, hit_coordinate[l])
return hit_coordinate, hit_velocity

The hit coordinate is drawn from a bivariate normal distribution. The mean of the distribution

is given by the aim_coordinate. The standard deviation, which is equal in both the vertical and

horizontal direction, is given by sd. The LOWER_BOUND represents the smallest possible y-

value for the hit_coordinate. This is the y-value that's such that the ball touches the ground

when it crosses the goal line. If the hit coordinate that's drawn is below this threshold, the ball

will make contact with the ground during at least some portion of its trajectory towards the

goal. This leads to an increase in friction, reducing the velocity factor, and consequently

expanding the area that the goalkeeper is able to cover. As the drawn hit_coordinate moves

further below the threshold, the ball will be in contact with the ground for longer, resulting in

66

https://github.com/Monstad/Penalty-Kicks

67

even more friction and larger goalkeeper areas. For instance, if the FRICTION factor is 0.1 and

the hit_coordinate is one unit below the LOWER_BOUND, the hit_velocity will be reduced by

0.1. For a hit_coordinate two units below, the hit_velocity will decrease by 0.2, and so on. The

velocity factor has a domain of 𝑣𝑣𝑥𝑥[0, 10], so I use the max-function to ensure that the value

doesn’t drop below zero. Similarly, if the 𝑃𝑃-value of the hit_coordinate is drawn to be below

the LOWER_BOUND, the max-function sets it equal to the LOWER_BOUND.

def isInsideScoringArea(hit_coordinate):
 return LEFT_BOUND < hit_coordinate[0] < RIGHT_BOUND and hit_coordinate[1] < UPPER_BOUND

The isInsideScoringArea()-function returns True if the hit_coordinate is within the scoring

area, and False otherwise. The boundaries of the scoring area is defined by the LEFT_BOUND,

RIGHT_BOUND, and UPPER_BOUND, as was derived in Appendix I. Since the

hit_coordinate cannot be below the LOWER_BOUND, it’s not necessary to include that in the

condition.

def isSavedShot(hit_coordinate, hit_velocity, area):
 equation = AREA_EQUATIONS.get(area)
 return equation(hit_coordinate[0], hit_coordinate[1], hit_velocity)

The isSavedShot()-function returns True if the hit_coordinate is within the area the goalkeeper

has decided to cover, and False otherwise. By combining the isSavedShot()-function with the

isInsideScoringArea()-function, I can check whether or not a goal has been achieved.

def getScenarioEV(iterations, aim_coordinate, area, velocity, std_dev):
 goal = 0
 for _ in range(iterations):
 hit_coord, hit_velocity = getHitCoordinate(aim_coordinate, std_dev, velocity)
 if isInsideScoringArea(hit_coord) and not isSavedShot(hit_coord, hit_velocity, area):
 goal += 1
 return goal/iterations

The getScenarioEV()-function simulates penalty kicks where the penalty taker aims for a

specific aim_coordinate, and the goalkeeper covers a specific area. By counting the number of

goals and dividing by the number of iterations, I get a good approximation of the probability

of a goal, given those choices. The probability of a goal is the expected value for the penalty

taker, whereas the expected value of the goalkeeper is equal to the negative probability of a

goal.

def getScenarioData(iterations, aim_options, area_options, velocity, std_dev):
 scenario_data = {}
 for i in range(len(aim_options)):
 for j in range(len(area_options)):
 ev = getScenarioEV(iterations, aim_options[i], area_options[j], velocity, std_dev)
 scenario_data[(aim_options[i], area_options[j])] = ev
 if SYMMETRIC:
 scenario_data = makeScenariosSymmetric(scenario_data, aim_options, area_options)
 return scenario_data

even more friction and larger goalkeeper areas. For instance, if the FRICTION factor is 0.1 and

the hit coordinate is one unit below the LOWER_BOUND, the hit_velocity will be reduced by

0.1. For a hit_coordinate two units below, the hit_velocity will decrease by 0.2, and so on. The

velocity factor has a domain of vE[O,10], so I use the max-function to ensure that the value

doesn't drop below zero. Similarly, if the y-value of the hit_coordinate is drawn to be below

the LOWER_BOUND, the max-function sets it equal to the LOWER_BOUND.

def isinsideScoringArea(hit_coordinate):
return LEFT_BOUND < hit_coordinate[0] < RIGHT_BOUND and hit_coordinate[l] < UPPER_BOUND

The islnsideScoringAreaQ-function returns True if the hit coordinate is within the scoring

area, and False otherwise. The boundaries of the scoring area is defined by the LEFT_BOUND,

RIGHT_BOUND, and UPPER_BOUND, as was derived in Appendix I. Since the

hit coordinate cannot be below the LOWER_BOUND, it's not necessary to include that in the

condition.

def isSavedShot(hit_coordinate, hit_velocity, area):
equation= AREA_EQUATIONS.get(area)
return equation(hit_coordinate[0], hit_coordinate[l], hit_velocity)

The isSavedShotQ-function returns True if the hit coordinate is within the area the goalkeeper

has decided to cover, and False otherwise. By combining the isSavedShotQ-function with the

islnsideScoringAreaQ-function, I can check whether or not a goal has been achieved.

def getScenarioEV(iterations, aim_coordinate, area, velocity, std_dev):
goal= 0
for_ in range(iterations):

hit_coord, hit_velocity = getHitCoordinate(aim_coordinate, std_dev, velocity)
if isinsideScoringArea(hit_coord) and not isSavedShot(hit_coord, hit_velocity, area):

goal+= l
return goal/iterations

The getScenarioEVQ-function simulates penalty kicks where the penalty taker aims for a

specific aim_coordinate, and the goalkeeper covers a specific area. By counting the number of

goals and dividing by the number of iterations, I get a good approximation of the probability

of a goal, given those choices. The probability of a goal is the expected value for the penalty

taker, whereas the expected value of the goalkeeper is equal to the negative probability of a

goal.

def getScenarioData(iterations, aim_options, area_options, velocity, std_dev):
scenario_data = {}
for i in range(len(aim_options)):

for j in range(len(area_options)):
ev= getScenarioEV(iterations, aim_options[i], area_options[j], velocity, std_dev)
scenario_data[(aim_options[i], area_options[j])] = ev

if SYMMETRIC:
scenario_data = makeScenariosSymmetric(scenario_data, aim_options, area_options)

return scenario_data

67

68

The getSenarioData()-function employs the getScenarioEV()-function to estimate the

probability of a goal in all the 165 different scenarios. The resulting data is then saved in a

dictionary, where the keys consist of tuples containing all possible combinations of

aim_options and area_options, and the corresponding values are the probabilities of a goal in

each scenario.

If all assumptions in the framework are symmetric across the line 𝑥𝑥 = 12, the global

SYMMETRIC-variable should be set to True, and otherwise it should be set to False. If it’s set

to True, the makeScenariosSymmetric()-function will transform the data in such a way that the

symmetric scenarios have equal expected values. For instance, assuming perfect symmetry, the

scenario where the penalty taker aims for coordinate (4, 4) and the goalkeeper chooses

‘commit_left’, is equivalent to the scenario where the penalty taker aims for (20, 4) and the

goalkeeper chooses ‘commit_right’. In this instance, the scenario_data is transformed such that

both these scenarios are assigned the average expected value of the two scenarios.

The getSenarioDataQ-function employs the getScenarioEVQ-function to estimate the

probability of a goal in all the 165 different scenarios. The resulting data is then saved in a

dictionary, where the keys consist of tuples containing all possible combinations of

aim_options and area_options, and the corresponding values are the probabilities of a goal in

each scenario.

If all assumptions m the framework are symmetric across the line x = 12, the global

SYMMETRIC-variable should be set to True, and otherwise it should be set to False. If it's set

to True, the makeScenariosSymmetricQ-function will transform the data in such a way that the

symmetric scenarios have equal expected values. For instance, assuming perfect symmetry, the

scenario where the penalty taker aims for coordinate (4, 4) and the goalkeeper chooses

'commit left', is equivalent to the scenario where the penalty taker aims for (20, 4) and the

goalkeeper chooses 'commit_right'. In this instance, the scenario_data is transformed such that

both these scenarios are assigned the average expected value of the two scenarios.

68

69

Appendix III
This appendix covers the essential parts of the code relating to the counterfactual regret

minimization (CFR) algorithm. See github.com/Monstad/Penalty-Kicks for the complete code.

def getRegret(aim_coordinate, area, scenario_data, aim_options, area_options):
 num_options_pt = len(aim_options)
 num_options_gk = len(area_options)
 regret_pt = [0] * num_options_pt
 regret_gk = [0] * num_options_gk
 exp_value_pt = scenario_data[(aim_coordinate, area)]
 exp_value_gk = -exp_value_pt
 for i in range(num_options_pt):
 alt_exp_value_pt = scenario_data[(aim_options[i], area)]
 regret_pt[i] = alt_exp_value_pt - exp_value_pt
 for i in range(num_options_gk):
 alt_exp_value_gk = -scenario_data[(aim_coordinate, area_options[i])]
 regret_gk[i] = alt_exp_value_gk - exp_value_gk
 return regret_pt, regret_gk

The getRegret()-function calculates all regret-values for both players, given their specific

choices of aim_coordinate and area. The regret for an option is the difference between the

expected value that would have been achieved had that option been chosen (alt_exp_value_pt

or alt_exp_value_gk), and the expected value that was achieved with the option that actually

was chosen (exp_value_pt or exp_value_gk), assuming that the opponent’s choice remains

constant. The regret is positive if the alternative option would have performed better, and

negative if it would have performed worse.

def getStrategy(regret_sum, strategy_sum, num_options, discount_rate=0):
 strategy = [0] * num_options
 normalizing_sum = 0
 for i in range(num_options):
 if regret_sum[i] > 0:
 strategy[i] = regret_sum[i]
 normalizing_sum += strategy[i]
 for i in range(num_options):
 if normalizing_sum > 0:
 strategy[i] = strategy[i] / normalizing_sum
 else:
 strategy[i] = 1.0 / num_options
 strategy_sum[i] = strategy_sum[i] * (1-discount_rate) + strategy[i]
 return strategy, strategy_sum

The getStrategy()-function calculates what strategy should be used for the next iteration of the

CFR-algorithm. It also updates the strategy_sum, which is the sum of all strategies used

throughout all iterations in the CFR-algorithm. The principle for deciding the next strategy is

regret matching. The regret_sum keeps track of the sum of regrets throughout all iterations for

all options, and is used to perform the regret matching. All options that have a positive

regret_sum get assigned their regret_sum as their strategy. Later, the normalizing_sum is used

to normalize the strategy such that it has a sum of one. The strategy is then added to the

strategy_sum. There’s an option to include a discount_rate which effectively makes the early

Appendix III
This appendix covers the essential parts of the code relating to the counterfactual regret

minimization (CPR) algorithm. See github.com/Monstad/Penalty-Kicks for the complete code.

def getRegret(aim_coordinate, area, scenario_data, aim_options, area_options):
num_options_pt = len(aim_options)
num_options_gk = len(area_options)
regret_pt = [0] * num_options_pt
regret_gk = [0] * num_options_gk
exp_value_pt = scenario_data[(aim_coordinate, area)]
exp_value_gk = -exp_value_pt
for i in range(num_options_pt):

alt_exp_value_pt = scenario_data[(aim_options[i], area)]
regret_pt[i] = alt_exp_value_pt - exp_value_pt

for i in range(num_options_gk):
alt_exp_value_gk = -scenario_data[(aim_coordinate, area_options[i])]
regret_gk[i] = alt_exp_value_gk - exp_value_gk

return regret_pt, regret_gk

The getRegretQ-function calculates all regret-values for both players, given their specific

choices of aim_coordinate and area. The regret for an option is the difference between the

expected value that would have been achieved had that option been chosen (alt_exp_value_yt

or alt_exp_value_gk), and the expected value that was achieved with the option that actually

was chosen (exp_value_yt or exp_value_gk), assuming that the opponent's choice remains

constant. The regret is positive if the alternative option would have performed better, and

negative if it would have performed worse.

def getStrategy(regret_sum, strategy_sum, num_options, discount_rate=0):
strategy= [0] * num_options
normalizing_sum = 0
for i in range(num_options):

if regret_sum[i] > 0:
strategy[i] = regret_sum[i]
normalizing_sum += strategy[i]

for i in range(num_options):
if normalizing_sum > 0:

strategy[i] = strategy[i] / normalizing_sum
else:

strategy[i] = 1.0 / num_options
strategy_sum[i] = strategy_sum[i] * (1-discount_rate) + strategy[i]

return strategy, strategy_sum

The getStrategyQ-function calculates what strategy should be used for the next iteration of the

CPR-algorithm. It also updates the strategy_sum, which is the sum of all strategies used

throughout all iterations in the CPR-algorithm. The principle for deciding the next strategy is

regret matching. The regret_sum keeps track of the sum of regrets throughout all iterations for

all options, and is used to perform the regret matching. All options that have a positive

regret_sum get assigned their regret_sum as their strategy. Later, the normalizingsum is used

to normalize the strategy such that it has a sum of one. The strategy is then added to the

strategy_sum. There's an option to include a discount_rate which effectively makes the early

69

https://github.com/Monstad/Penalty-Kicks

70

iterations of the CFR-algorithm count less towards the strategy_sum than the later iterations.

Using a discount rate can lead to faster convergence towards an approximate equilibrium, but

the approximation may not be as precise as without it.

def train(max_exploitability, scenario_data, aim_options, area_options, discount_rate=0):
 num_options_pt = len(aim_options)
 num_options_gk = len(area_options)
 strategy_pt = [1 / num_options_pt] * num_options_pt
 strategy_gk = [1 / num_options_gk] * num_options_gk
 regret_sum_pt = [0] * num_options_pt
 regret_sum_gk = [0] * num_options_gk
 strategy_sum_pt = [0] * num_options_pt
 strategy_sum_gk = [0] * num_options_gk
 optimal_strategy_pt = [0] * num_options_pt
 optimal_strategy_gk = [0] * num_options_gk
 exploitability_pt = 1
 exploitability_gk = 1
 i = 1

 while exploitability_pt > max_exploitability or exploitability_gk > max_exploitability:
 aim = getAction(aim_options, strategy_pt)
 area = getAction(area_options, strategy_gk)

 for j in range(num_options_pt):
 regret_sum_pt[j] += \
 getRegret(aim, area, scenario_data, aim_options, area_options)[0][j]

 for j in range(num_options_gk):
 regret_sum_gk[j] += \
 getRegret(aim, area, scenario_data, aim_options, area_options)[1][j]

 strategy_pt, strategy_sum_pt = \
 getStrategy(regret_sum_pt, strategy_sum_pt, num_options_pt, discount_rate)
 strategy_gk, strategy_sum_gk = \
 getStrategy(regret_sum_gk, strategy_sum_gk, num_options_gk, discount_rate)

 if i % 10000 == 0:
 normalizing_sum_pt = sum(strategy_sum_pt)
 normalizing_sum_gk = sum(strategy_sum_gk)

 for j in range(num_options_pt):
 optimal_strategy_pt[j] = strategy_sum_pt[j] / normalizing_sum_pt

 for j in range(num_options_gk):
 optimal_strategy_gk[j] = strategy_sum_gk[j] / normalizing_sum_gk

 if SYMMETRIC:
 optimal_strategy_pt = makeStrategySymmetricPT(optimal_strategy_pt, aim_options)
 optimal_strategy_gk = makeStrategySymmetricGK(optimal_strategy_gk, area_options)

 _, _, exploitability_pt, exploitability_gk = \
 getExploitability(scenario_data,
 aim_options,
 area_options,
 optimal_strategy_pt,
 optimal_strategy_gk)
 i += 1

 return optimal_strategy_pt, optimal_strategy_gk

The train()-function approximates Nash equilibrium strategies for both the penalty taker and

the goalkeeper. The training is done within a while-loop, which keeps iterating until the

exploitability of the trained strategies are below the threshold defined by max_exploitability.

iterations of the CPR-algorithm count less towards the strategy_sum than the later iterations.

Using a discount rate can lead to faster convergence towards an approximate equilibrium, but

the approximation may not be as precise as without it.

def train(max_exploitability, scenario_data, aim_options, area_options, discount_rate=0):
num_options_pt = len(aim_options)
num_options_gk = len(area_options)
strategy_pt = [l / num_options_pt] * num_options_pt
strategy_gk = [l / num_options_gk] * num_options_gk
regret_sum_pt [0] * num_options_pt
regret_sum_gk = [0] * num_options_gk
strategy_sum_pt = [0] * num_options_pt
strategy_sum_gk = [0] * num_options_gk
optimal_strategy_pt [0] * num_options_pt
optimal_strategy_gk [0] * num_options_gk
exploitability_pt l
exploitability_gk = l
i = l

while exploitability_pt > max_exploitability or exploitability_gk > max_exploitability:
aim= getAction(aim_options, strategy_pt)
area= getAction(area_options, strategy_gk)

for j in range(num_options_pt):
regret_sum_pt[j] += \

getRegret(aim, area, scenario_data, aim_options, area_options)[0][j]

for j in range(num_options_gk):
regret_sum_gk[j] += \

getRegret(aim, area, scenario_data, aim_options, area_options)[l][j]

strategy_pt, strategy_sum_pt = \
getStrategy(regret_sum_pt, strategy_sum_pt, num_options_pt, discount_rate)

strategy_gk, strategy_sum_gk = \
getStrategy(regret_sum_gk, strategy_sum_gk, num_options_gk, discount_rate)

if i% 10000 == 0:
normalizing_sum_pt = sum(strategy_sum_pt)
normalizing_sum_gk = sum(strategy_sum_gk)

for j in range(num_options_pt):
optimal_strategy_pt[j] = strategy_sum_pt[j] / normalizing_sum_pt

for j in range(num_options_gk):
optimal_strategy_gk[j] = strategy_sum_gk[j] / normalizing_sum_gk

if SYMMETRIC:
optimal_strategy_pt = makeStrategySymmetricPT(optimal_strategy_pt, aim_options)
optimal_strategy_gk = makeStrategySymmetricGK(optimal_strategy_gk, area_options)

_, _, exploitability_pt, exploitability_gk = \
getExploitability(scenario_data,

aim_options,
area_options,
optimal_strategy_pt,
optimal_strategy_gk)

i+= l

return optimal_strategy_pt, optimal_strategy_gk

The trainQ-function approximates Nash equilibrium strategies for both the penalty taker and

the goalkeeper. The training is done within a while-loop, which keeps iterating until the

exploitability of the trained strategies are below the threshold defined by max_exploitability.

70

71

In the first iteration of the training process, both players start out with uniform strategies.

Actions are randomly selected for both players, in accordance with their respective strategies.

This is done using the getAction()-function:

def getAction(options, strategy):
 return options[np.random.choice(len(options), p=strategy)]

Given the selected actions, the getRegret()-function is used to update the regret sums for both

players (regret_sum_pt and regret_sum_gk). The regret sums are then used to update the

strategies of the players, in accordance with the principle of regret matching. In this step, it’s

possible to include a discount rate, putting less weight on earlier iterations when updating the

strategies. Once strategies have been updated, new actions are drawn according to those

strategies, and the same steps are repeated again and again.

For every 10,000th iteration, the Nash equilibrium strategies for both players

(optimal_strategy_pt and optimal_strategy_gk) are estimated. This is the average strategies

used throughout all iterations. To find the strategies, I divide the strategy_sum_pt by the

normalizing_sum_pt, and the strategy_sum_gk by the normalizing_sum_gk. Both players will

have the same normalizing sums unless different discount rates are used for the players.

When all assumptions in the model are perfectly symmetrical across the line 𝑥𝑥 = 12, the global

SYMMETRIC-variable should be set to True. When this is the case, the estimated strategies are

updated to take on perfectly symmetric frequencies. This implies that the goalkeeper always

chooses “commit_left” equally often as “commit_right”, and that the penalty taker always

chooses to aim for symmetrical coordinates equally often (such as the coordinates (4, 4) and

(20, 4)). The symmetrical options are assigned frequencies equal to the average frequencies of

both the options.

Once this is done, the exploitability of the strategies is calculated. This is done using the

getExploitability()-function. If the exploitability of either strategy, exploitability_pt or

exploitability_gk, is above the max_exploitability threshold, the while-loop keeps running.

Once the acceptable exploitability is reached, the function returns the estimated strategies,

optimal_strategy_pt and optimal_strategy_gk, and the counterfactual regret minimization

process is complete.

Since exploitability is the metric which determines when the solution is considered satisfactory,

I’m going to explain how it’s calculated. At the essence of the calculation is a comparison of

expected values.

In the first iteration of the training process, both players start out with uniform strategies.

Actions are randomly selected for both players, in accordance with their respective strategies.

This is done using the getActionQ-function:

def getAction(options, strategy):
return options[np.random.choice(len(options), p=strategy)]

Given the selected actions, the getRegretQ-function is used to update the regret sums for both

players (regret_sum_yt and regret_sum_gk). The regret sums are then used to update the

strategies of the players, in accordance with the principle of regret matching. In this step, it's

possible to include a discount rate, putting less weight on earlier iterations when updating the

strategies. Once strategies have been updated, new actions are drawn according to those

strategies, and the same steps are repeated again and again.

For every 10,000th iteration, the Nash equilibrium strategies for both players

(optimal_strategy_yt and optimal_strategy_gk) are estimated. This is the average strategies

used throughout all iterations. To find the strategies, I divide the strategy_sum_yt by the

normalizings u m_yt, and the strategy_sum_gk by the normaliztngsum_gk. Both players will

have the same normalizing sums unless different discount rates are used for the players.

When all assumptions in the model are perfectly symmetrical across the line x = 12, the global

SYMMETRIC-variable should be set to True. When this is the case, the estimated strategies are

updated to take on perfectly symmetric frequencies. This implies that the goalkeeper always

chooses "commit_left" equally often as "commit_right", and that the penalty taker always

chooses to aim for symmetrical coordinates equally often (such as the coordinates (4, 4) and

(20, 4)). The symmetrical options are assigned frequencies equal to the average frequencies of

both the options.

Once this is done, the exploitability of the strategies is calculated. This is done using the

getExploitabilityQ-function. If the exploitability of either strategy, exploitability_yt or

exploitability_gk, is above the max_exploitability threshold, the while-loop keeps running.

Once the acceptable exploitability is reached, the function returns the estimated strategies,

optimal_strategy_yt and optimal_strategy_gk, and the counterfactual regret minimization

process is complete.

Since exploitability is the metric which determines when the solution is considered satisfactory,

I 'm going to explain how it's calculated. At the essence of the calculation is a comparison of

expected values.

71

72

def getStrategyEVs(scenario_data, aim_options, area_options, strategy_pt, strategy_gk):
 exp_value_pt = 0
 for i in range(len(aim_options)):
 for j in range(len(area_options)):
 exp_value_pt += \
 scenario_data[(aim_options[i], area_options[j])] *strategy_pt[i] *strategy_gk[j]
 exp_value_gk = -exp_value_pt
 return exp_value_pt, exp_value_gk

The getStrategyEVs()-function calculates the expected value of a pair of strategies. Remember

that a strategy is only a list of probabilities indicating how often each option is being selected.

When we know the strategies of both players, we know the probability of each possible

outcome of the game. The scenario_data dictionary holds complete information about payoffs

in all possible outcomes. By multiplying the probabilities with the corresponding payoffs we

can find the expected value for both player’s strategies.

def getExploitability(scenario_data, aim_options, area_options, strategy_pt, strategy_gk):
 num_options_pt = len(aim_options)
 num_options_gk = len(area_options)
 exp_value_pt, exp_value_gk = \
 getStrategyEVs(scenario_data, aim_options, area_options, strategy_pt, strategy_gk)
 best_response_ev_pt = 0
 best_response_ev_gk = -1

 for i in range(num_options_pt):
 pure_strategy_pt = [0] * num_options_pt
 pure_strategy_pt[i] = 1
 option_ev = getStrategyEVs(scenario_data,
 aim_options,
 area_options,
 pure_strategy_pt,
 strategy_gk)[0]
 if option_ev > best_response_ev_pt:
 best_response_ev_pt = option_ev

 for i in range(num_options_gk):
 pure_strategy_gk = [0] * num_options_gk
 pure_strategy_gk[i] = 1
 option_ev = getStrategyEVs(scenario_data,
 aim_options,
 area_options,
 strategy_pt,
 pure_strategy_gk)[1]
 if option_ev > best_response_ev_gk:
 best_response_ev_gk = option_ev

 exploitability_pt = best_response_ev_gk - exp_value_gk
 exploitability_gk = best_response_ev_pt - exp_value_pt

 return exp_value_pt, exp_value_gk, exploitability_pt, exploitability_gk

The getExploitability()-function calculates how much expected value the opponent can gain by

deviating from their current strategy, and adopting the best response strategy. The best response

strategy is found by testing all possible pure strategies, and finding the one that performs the

best. The expected value of the best pure strategy is then assigned to the variables

best_response_ev_pt and best_response_ev_gk. To find the exploitability for both players these

values are then compared with the expected values of the current strategies.

def getStrategyEVs(scenario_data, aim_options, area_options, strategy_pt, strategy_gk):
exp_value_pt =0
for i in range(len(aim_options)):

for j in range(len(area_options)):
exp_value_pt += \

scenario_data[(aim_options[i], area_options[j])] *strategy_pt[i] *strategy_gk[j]
exp_value_gk = -exp_value_pt
return exp_value_pt, exp_value_gk

The getStrategyEVsO-function calculates the expected value of a pair of strategies. Remember

that a strategy is only a list of probabilities indicating how often each option is being selected.

When we know the strategies of both players, we know the probability of each possible

outcome of the game. The scenario_data dictionary holds complete information about payoffs

in all possible outcomes. By multiplying the probabilities with the corresponding payoffs we

can find the expected value for both player's strategies.

def getExploitability(scenario_data, aim_options, area_options, strategy_pt, strategy_gk):
num_options_pt = len(aim_options)
num_options_gk = len(area_options)
exp_value_pt, exp_value_gk =\

getStrategyEVs(scenario_data, aim_options, area_options, strategy_pt, strategy_gk)
best_response_ev_pt =0
best_response_ev_gk = -1

for i in range(num_options_pt):
pure_strategy_pt =[0] * num_options_pt
pure_strategy_pt[i] = l
option_ev = getStrategyEVs(scenario_data,

aim_options,
area_options,
pure_strategy_pt,
strategy_gk)[0]

if option_ev > best_response_ev_pt:
best_response_ev_pt = option_ev

for i in range(num_options_gk):
pure_strategy_gk =[0] * num_options_gk
pure_strategy_gk[i] = l
option_ev = getStrategyEVs(scenario_data,

aim_options,
area_options,
strategy_pt,
pure_strategy_gk)[l]

if option_ev > best_response_ev_gk:
best_response_ev_gk = option_ev

exploitability_pt = best_response_ev_gk - exp_value_gk
exploitability_gk = best_response_ev_pt - exp_value_pt

return exp_value_pt, exp_value_gk, exploitability_pt, exploitability_gk

The getExploitabilityQ-function calculates how much expected value the opponent can gain by

deviating from their current strategy, and adopting the best response strategy. The best response

strategy is found by testing all possible pure strategies, and finding the one that performs the

best. The expected value of the best pure strategy is then assigned to the variables

best_response_ev_yt and best_response_ev_gk. To find the exploitability for both players these

values are then compared with the expected values of the current strategies.

72

73

Appendix IV
This appendix covers the essential parts of the code relating to the coordinate search algorithm.

The complete code can be found at github.com/Monstad/Penalty-Kicks. The algorithm

performs an iterative process that locate optimal coordinates. This is done by finding solutions

using the CFR-algorithm, and then updating the available aiming-coordinate at every step.

INITIAL_AIM_OPTIONS = []
x_values = [0.8, 2.4, 4.0, 5.6, 7.2, 8.8, 10.4, 12.0, 13.6, 15.2, 16.8, 18.4, 20.0, 21.6, 23.2]
y_values = [-0.8, 0.8, 2.4, 4.0, 5.6, 7.2]
for x_value in x_values:
 for y_value in y_values:
 INITIAL_AIM_OPTIONS.append((x_value, y_value))

The INITIAL_AIM_OPTIONS are initialized such that the penalty taker can aim at coordinates

across the goal. The coordinates are evenly spaced out with a distance between the points of

1.6 feet, and the distance from the outermost points to the posts or the bar is 0.8 feet.

Throughout the steps of the coordinate search algorithm, these distances will be halved several

times, until an acceptable degree of specificity is reached.

After applying the CFR-algorithm to the INITIAL_AIM_OPTIONS, we get a Nash equilibrium

solution given those options. It’s then time to determine which of the aiming-coordinates

should be kept for the next iteration of the coordinate search.

def getFrequentAimOptions(strategy, aim_options):
 frequent_aim_options = []
 for i in range(len(strategy)):
 if strategy[i] >= 0.0005:
 frequent_aim_options.append(aim_options[i])
 return frequent_aim_options

The getFrequentAimOptions()-function finds the aiming-options that are chosen more than

0.005% of the time in a strategy. When applied to the optimal strategy for the penalty taker (as

given by the CFR-algorithm), it gives us the list of aim-coordinates that should be kept.

In the first step of the coordinate search, the only viable options will be the frequent aim-

options, because these are the only options that have ever existed. However, after the first step,

some aim_options get discarded. Even though these aim_options weren’t optimal when solving

for the set of INITIAL_AIM_OPTIONS, they may become optimal when solving for a different

set of options. Therefore, at every step, the previously discarded options should be

reconsidered. The getOtherViableOptions()-function checks if any of the old options would

have outperformed the available options, given the goalkeepers optimal strategy against the

available options. This is possible because the scenario_data for the discarded scenarios is still

being stored.

Appendix IV
This appendix covers the essential parts of the code relating to the coordinate search algorithm.

The complete code can be found at github.com/Monstad/Penalty-Kicks. The algorithm

performs an iterative process that locate optimal coordinates. This is done by finding solutions

using the CPR-algorithm, and then updating the available aiming-coordinate at every step.

INITIAL_AIM_OPTIONS = []
x_values = [0.8, 2.4, 4.0, 5.6, 7.2, 8.8, 10.4, 12.0, 13.6, 15.2, 16.8, 18.4, 20.0, 21.6, 23.2]
y_values = [-0.8, 0.8, 2.4, 4.0, 5.6, 7.2]
for x_value in x_values:

for y_value in y_values:
INITIAL_AIM_OPTIONS.append((x_value, y_value))

The INITIAL_AIM_OPTIONS are initialized such that the penalty taker can aim at coordinates

across the goal. The coordinates are evenly spaced out with a distance between the points of

1.6 feet, and the distance from the outermost points to the posts or the bar is 0.8 feet.

Throughout the steps of the coordinate search algorithm, these distances will be halved several

times, until an acceptable degree of specificity is reached.

After applying the CPR-algorithm to the INITIAL_AIM_OPTIONS, we get a Nash equilibrium

solution given those options. It's then time to determine which of the aiming-coordinates

should be kept for the next iteration of the coordinate search.

def getFrequentAimOptions(strategy, aim_options):
frequent_aim_options = []
for i in range(len(strategy)):

if strategy[i] >= 0.0005:
frequent_aim_options.append(aim_options[i])

return frequent_aim_options

The getFrequentAimOptionsQ--function finds the aiming-options that are chosen more than

0.005% of the time in a strategy. When applied to the optimal strategy for the penalty taker (as

given by the CPR-algorithm), it gives us the list of aim-coordinates that should be kept.

In the first step of the coordinate search, the only viable options will be the frequent aim-

options, because these are the only options that have ever existed. However, after the first step,

some aim_options get discarded. Even though these aim_options weren't optimal when solving

for the set of INITIAL_AIM_OPTIONS, they may become optimal when solving for a different

set of options. Therefore, at every step, the previously discarded options should be

reconsidered. The getOtherViableOptionsQ--function checks if any of the old options would

have outperformed the available options, given the goalkeepers optimal strategy against the

available options. This is possible because the scenario_data for the discarded scenarios is still

being stored.

73

https://github.com/Monstad/Penalty-Kicks

74

def getOtherViableOptions(scenario_data, aim_options, area_options, strategy_gk, exp_value_pt):
 other_viable_options = []
 for (aim_option, area_option) in scenario_data.keys():
 pure_strategy_pt = [0] * len(aim_options)
 pure_strategy_pt[aim_options.index(aim_option)] = 1
 exp_value_option, _ = getStrategyEVs(scenario_data,
 aim_options,
 area_options,
 pure_strategy_pt,
 strategy_gk)
 if exp_value_option >= exp_value_pt:
 other_viable_options.append(aim_option)
 return other_viable_options

The function compares the expected value of playing a pure strategy of all previous aiming-

coordinates with the expected value of the penalty taker’s strategy. It then returns all the

coordinates which yielded a higher expected value. This can then be used to add some discarded

aim_options back in as an available option. Now, let’s consider how to add new coordinates

that surround the options given by getFrequentAimOptions() and getOtherViableOptions().

def getDistanceToNearestCoordinate(aim_coordinate, aim_options):
 nearest_distance = 1.6
 distance = 1.6
 for option in aim_options:
 for i in range(2):
 if option[i] != aim_coordinate[i]:
 distance = round(abs(option[i] - aim_coordinate[i]), 1)
 if nearest_distance > distance:
 nearest_distance = distance
 return nearest_distance

The getDistanceToNearestCoordinate()-function finds the shortest horizontal or vertical

distance to a nearby coordinate. This is useful, because when adding new aiming-coordinates,

we need to know how close the coordinates should be to a previous coordinate.

def getNewAimOptions(aim_coord, distance, aim_options):
 values = [-distance, 0, distance]
 is_surrounded = False
 surrounding_coords = \
 [(round(aim_coord[0] -i, 1), round(aim_coord[1] -j, 1)) for i in values for j in values]
 if set(surrounding_coords).issubset(set(aim_options)):
 is_surrounded = True
 if distance > SPECIFICITY:
 values = [-distance/2, 0, distance/2]
 new_aim_options = \
 [(round(aim_coord[0] -i, 1), round(aim_coord[1] -j, 1)) for i in values for j in values]
 new_aim_options = list(set(new_aim_options))
 new_aim_options.sort()
 return new_aim_options, is_surrounded

The getNewAimOptions()-function finds new aiming-coordinates that surround a specific

aim_coord. The function checks if the aim_coord is surrounded by other coordinates in

aim_options, spaced out by the given distance. If this is the case, it creates a set of

new_aim_options that surround the aim_coord but are half the distance away. If it’s not the

case, it creates new_aim_options that are the full distance away. Additionally, the function

def getOtherViableOptions(scenario_data, aim_options, area_options, strategy_gk, exp_value_pt):
other_viable_options = []
for (aim_option, area_option) in scenario_data.keys():

pure_strategy_pt = [0] * len(aim_options)
pure_strategy_pt[aim_options.index(aim_option)] = l
exp_value_option, _ = getStrategyEVs(scenario_data,

aim_options,
area_options,
pure_strategy_pt,
strategy_gk)

if exp_value_option >= exp_value_pt:
other_viable_options.append(aim_option)

return other_viable_options

The function compares the expected value of playing a pure strategy of all previous aiming-

coordinates with the expected value of the penalty taker's strategy. It then returns all the

coordinates which yielded a higher expected value. This can then be used to add some discarded

aimoptions back in as an available option. Now, let's consider how to add new coordinates

that surround the options given by getFrequentAimOptions0 and getOtherViableOptions0.

def getDistanceToNearestCoordinate(aim_coordinate, aim_options):
nearest_distance = 1.6
distance = l. 6
for option in aim_options:

for i in range(2):
if option[i] != aim_coordinate[i]:

distance= round(abs(option[i] - aim_coordinate[i]), l)
if nearest_distance > distance:

nearest_distance = distance
return nearest_distance

The getDistanceToNearestCoordinateQ-function finds the shortest horizontal or vertical

distance to a nearby coordinate. This is useful, because when adding new aiming-coordinates,

we need to know how close the coordinates should be to a previous coordinate.

def getNewAimOptions(aim_coord, distance, aim_options):
values= [-distance, 0, distance]
is_surrounded = False
surrounding_coords = \

[(round(aim_coord[0] -i, l), round(aim_coord[l] - j , l)) for i in values for j in values]
if set(surrounding_coords).issubset(set(aim_options)):

is_surrounded = True
if distance> SPECIFICITY:

values= [-distance/2, 0, distance/2]
new_aim_options = \

[(round(aim_coord[0] -i, l), round(aim_coord[l] - j , l)) for i in values for j in values]
new_aim_options = list(set(new_aim_options))
new_aim_options.sort()
return new_aim_options, is_surrounded

The getNewAimOptionsQ-function finds new aiming-coordinates that surround a specific

aim coord. The function checks if the aim_coord is surrounded by other coordinates m

aim_options, spaced out by the given distance. If this is the case, it creates a set of

new_aim_options that surround the aim_coord but are half the distance away. If it's not the

case, it creates new_aim_options that are the full distance away. Additionally, the function

74

75

returns a Boolean value, is_surrounded, which is used to check if all the coordinates have

converged given the desired specificity of the coordinate search.

By combining these functions, we get the general structure of the coordinate search algorithm

(although it has been simplified slightly):

allAimOptions = INITIAL_AIM_OPTIONS
allNewAimOptions = INITIAL_AIM_OPTIONS

scenarioData = getScenarioData(SCENARIO_ITERATIONS,
 INITIAL_AIM_OPTIONS,
 AREA_OPTIONS,
 VELOCITY,
 STD_DEV)

while True:
 optimalStrategyPT, optimalStrategyGK = \
 trainCoordinateSearch(scenarioData, allNewAimOptions, AREA_OPTIONS, DISCOUNT_RATE)

 expValuePT, expValueGK, exploitabilityPT, exploitabilityGK = \
 getExploitability(scenarioData,
 allNewAimOptions,
 AREA_OPTIONS,
 optimalStrategyPT,
 optimalStrategyGK)

 frequentAimOptions = getFrequentAimOptions(optimalStrategyPT, allNewAimOptions)

 otherViableOptions = getOtherViableOptions(scenarioData,
 allAimOptions,
 AREA_OPTIONS,
 optimalStrategyGK,
 expValuePT)

 viableOptions = list(set(frequentAimOptions + otherViableOptions))

 allNewAimOptions = []
 num_converged = 0

 for option in viableOptions:
 distance = getDistanceToNearestCoordinate(option, allAimOptions)
 newAimOptions, isSurrounded = getNewAimOptions(option, distance, allAimOptions)
 allNewAimOptions.extend(newAimOptions)

 if (option in frequentAimOptions) and isSurrounded and distance == SPECIFICITY:
 num_converged += 1

 allNewAimOptions = list(set(allNewAimOptions))
 allAimOptions.extend(allNewAimOptions)

 if len(viableOptions) == len(frequentAimOptions) == num_converged:
 print('Completed the option search.')
 break

 scenarioData = getScenarioData(
 SCENARIO_ITERATIONS,
 allNewAimOptions,
 AREA_OPTIONS,
 VELOCITY,
 STD_DEV,
 existing_data=scenarioData,
 replace=False)

returns a Boolean value, is_surrounded, which is used to check if all the coordinates have

converged given the desired specificity of the coordinate search.

By combining these functions, we get the general structure of the coordinate search algorithm

(although it has been simplified slightly):

allAimOptions = INITIAL_AIM_OPTIONS
allNewAimOptions = INITIAL_AIM_OPTIONS

scenarioData = getScenarioData(SCENARIO_ITERATIONS,
INITIAL_AIM_OPTIONS,
AREA_OPTIONS,
VELOCITY,
STD_DEV)

while True:
optimalStrategyPT, optimalStrategyGK = \

trainCoordinateSearch(scenarioData, allNewAimOptions, AREA_OPTIONS, DISCOUNT_RATE)

expValuePT, expValueGK, exploitabilityPT, exploitabilityGK = \
getExploitability(scenarioData,

allNewAimOptions,
AREA_OPTIONS,
optimalStrategyPT,
optimalStrategyGK)

frequentAimOptions getFrequentAimOptions(optimalStrategyPT, allNewAimOptions)

otherViableOptions getOtherViableOptions(scenarioData,
allAimOptions,
AREA_OPTIONS,
optimalStrategyGK,
expValuePT)

viableOptions = list(set(frequentAimOptions + otherViableOptions))

allNewAimOptions = []
num_converged = 0

for option in viableOptions:
distance= getDistanceToNearestCoordinate(option, allAimOptions)
newAimOptions, isSurrounded = getNewAimOptions(option, distance, allAimOptions)
allNewAimOptions.extend(newAimOptions)

if(option in frequentAimOptions) and isSurrounded and distance
num_converged += l

allNewAimOptions = list(set(allNewAimOptions))
allAimOptions.extend(allNewAimOptions)

SPECIFICITY:

if len(viableOptions) == len(frequentAimOptions)
print('Completed the option search.')
break

num_converged:

scenarioData = getScenarioData(
SCENARIO_ITERATIONS,
allNewAimOptions,
AREA_OPTIONS,
VELOCITY,
STD_DEV,
existing_data=scenarioData,
replace=False)

75

76

The first step is to simulate the scenarioData for the INITIAL_AIM_OPTIONS. Using this

scenarioData, the trainCoordinateSearch()-function then finds the optimal strategies for both

players. The trainCoordinateSearch()-function is just a CFR-algorithm except it doesn’t use

exploitability as a stopping-criteria, but rather stops solving once there are either no options in

either players strategy that gets selected at a low frequency, or when a certain number of

iterations have been reached. The solutions found by the CFR-algorithm, i.e., the

optimalStrategyPT and optimalStrategyGK, are then used with the getFrequentAimOptions()-

and getOtherViableOptions()-functions to locate the viable aiming options. For each viable

option, the getDistanceToNearestCoordinate()- and getNewAimOptions()-functions are used to

find new aiming-coordinates that surround the viable options. This gives us a list of options,

allNewAimOptions, bringing about new scenarios that need to be simulated. Using the

getScenarioData()-function, and keeping the old scenarioData as existing_data, the

scenarioData is updated to include the new scenarios. Once this is complete, the first iteration

of the while-loop is complete, and we enter the second step of the coordinate search.

The coordinate search continues until all the coordinates in frequentAimOptions are surrounded

by coordinates distanced by the desired specificity (for example 0.2 feet). Additionally, all the

viable options must be frequentAimOptions, as opposed to otherViableOptions. Once this is

complete, the frequentAimOptions will contain the optimal aiming-coordinates for the penalty

taker, and we break out of the while-loop. When there are only a few scenarios left, the CFR-

algorithm converges to a very low exploitability. We can re-simulate the scenario payoffs using

extra many iterations, and run the algorithm again for a final solution:

scenarioData = getScenarioData(FINAL_SCENARIO_ITERATIONS,
 frequentAimOptions,
 AREA_OPTIONS,
 existing_data=scenarioData,
 replace=True)

optimalStrategyPT, optimalStrategyGK = \
 train(MAX_EXPLOITABILITY, scenarioData, frequentAimOptions, AREA_OPTIONS)

expValuePT, expValueGK, exploitabilityPT, exploitabilityGK = \
 getExploitability(scenarioData,
 frequentAimOptions,
 AREA_OPTIONS,
 optimalStrategyPT,
 optimalStrategyGK)

showStrategies(frequentAimOptions,
 AREA_OPTIONS,
 optimalStrategyPT,
 optimalStrategyGK,
 expValuePT,
 expValueGK,
 exploitabilityPT,
 exploitabilityGK)

The first step is to simulate the scenarioData for the INITIAL_AIM_OPTIONS. Using this

scenarioData, the trainCoordinateSearchQ--function then finds the optimal strategies for both

players. The trainCoordinateSearchQ--function is just a CPR-algorithm except it doesn't use

exploitability as a stopping-criteria, but rather stops solving once there are either no options in

either players strategy that gets selected at a low frequency, or when a certain number of

iterations have been reached. The solutions found by the CPR-algorithm, i.e., the

optimalStrategyPT and optimalStrategyGK, are then used with the getFrequentAimOptions0-

and getOtherViableOptionsQ--functions to locate the viable aiming options. For each viable

option, the getDistanceToNearestCoordinate0- and getNewAimOptionsQ--functions are used to

find new aiming-coordinates that surround the viable options. This gives us a list of options,

allNewAimOptions, bringing about new scenarios that need to be simulated. Using the

getScenarioDataQ--function, and keeping the old scenarioData as existing_data, the

scenarioData is updated to include the new scenarios. Once this is complete, the first iteration

of the while-loop is complete, and we enter the second step of the coordinate search.

The coordinate search continues until all the coordinates infrequentAimOptions are surrounded

by coordinates distanced by the desired specificity (for example 0.2 feet). Additionally, all the

viable options must be frequentAimOptions, as opposed to otherViableOptions. Once this is

complete, the frequentAimOptions will contain the optimal aiming-coordinates for the penalty

taker, and we break out of the while-loop. When there are only a few scenarios left, the CFR-

algorithm converges to a very low exploitability. We can re-simulate the scenario payoffs using

extra many iterations, and run the algorithm again for a final solution:

scenarioData = getScenarioData(FINAL_SCENARIO_ITERATIONS,
frequentAimOptions,
AREA_OPTIONS,
existing_data=scenarioData,
replace=True)

optimalStrategyPT, optimalStrategyGK = \
train(MAX_EXPLOITABILITY, scenarioData, frequentAimOptions, AREA_OPTIONS)

expValuePT, expValueGK, exploitabilityPT, exploitabilityGK = \
getExploitability(scenarioData,

frequentAimOptions,
AREA_OPTIONS,
optimalStrategyPT,
optimalStrategyGK)

showStrategies(frequentAimOptions,
AREA_OPTIONS,
optimalStrategyPT,
optimalStrategyGK,
expValuePT,
expValueGK,
exploitabilityPT,
exploitabilityGK)

76

