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Abstract 

This thesis explores the influence of image features on the predictive performance of hedonic 

price models for Airbnb listings. By integrating machine learning methods, image quality 

features, colour features, and black-box model interpretation methods, the study demonstrates 

the value of these components in the field of property price prediction. This thesis utilizes a 

novel dataset scraped in 2023 from Amsterdam which offers updated insights into the role of 

image features in Airbnb pricing. After deploying 10 different machine learning models, the 

XGBoost model yields the best predictive accuracy based on several performance metrics. 

Although the enhancement in predictive performance of the XGBoost model by inclusion of 

image features was not statistically significant, these features showed non-negligible 

influences and interactions in the decision-making process of the model. These findings imply 

a potential role of image features in refining property price models, providing valuable insights 

for the stakeholders in the fields of hospitality, real estate, advertising, and machine learning 

research.  
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1. Introduction 

In the data-driven era, advancements in computational power and machine learning algorithms 

have revolutionized decision-making processes across various sectors, including the 

hospitality industry. One significant player in this realm is Airbnb, a platform that connects 

individuals offering accommodations (hosts) with those seeking them (guests). An essential 

aspect of a listing’s success on Airbnb is its pricing, which underlines the necessity for 

accurate price prediction models.  

The driving force behind Airbnb price prediction models is to achieve a balance in the rental 

market. Properties priced too high risk being left vacant, as potential tenants are deterred by 

the inflated costs. Conversely, underpricing a property can results in significant potential 

earnings being left on the table. Effective price prediction models can assist in mitigating these 

risks, helping to maintain a stable and fair rental market.  

Existing research on Airbnb price prediction has predominantly focused on conventional 

predictors, such as location, amenities, reviews and host-related features. With the rise of 

sophisticated image analysis techniques, there is an intriguing opportunity to investigate 

whether image-relate features can enhance the accuracy of these models. Images, often being 

the first point of interaction between potential guests and listings, play a substantial role in 

shaping perceptions and decisions.  

The traditional methods used to reveal important features in estimating property prices have 

been hedonic pricing models. The hedonic pricing theory suggests that a good or product in 

itself does not deliver utility. Instead, it is composed of characteristics that each contribute 

some level of utility. As per this framework, the market price paid by a consumer for a 

particular product is linked to the utility derived from these various characteristics (Lancaster, 

1966). In the context of Airbnb listings, each offering does not provide utility in itself, but 

rather, its components or features- such as location, amenities, and potentially images- each 

contribute to its overall utility. Thus, the listing’s price can be tied to the utility these features 

provide. Hedonic models are designed to quantify individual characteristics while maintaining 

interpretability. As a result, most research related to hedonic pricing employs simple 

parametric models that work with structured, conventional data. An excellent illustration of 
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such a model is Ordinary Least Squares (OLS) regression, as it enables the determination of 

attribute-specific prices simply by examining the regression coefficients. Interpreting these 

coefficients might lead to deceptive results. Furthermore, because machine learning methods 

are constructed on complex, nonparametric models, they can assist in identifying new features 

and exposing potential nonlinear dependencies that typically go unnoticed in traditional 

hedonic approaches. The application of machine learning models no longer necessitates them 

being treated as “black boxes”. I perceive this study as part of the modernization of hedonic 

methodology, forming a connection between two disparate research groups.  

In this thesis, I critically examine the hypothesis that image features can improve the predictive 

performance of Airbnb price prediction models. I employ different machine learning models 

and evaluate the impact of various image features alongside traditional ones. I also leverage 

model interpretability methods for black-box models to discern the contribution and 

importance of each feature in the prediction process.  

This study embarked on an exploration of how image-related features might influence and 

potentially improve the accuracy of price prediction models, specifically focusing on the 

Airbnb platform. The motivation behind this research was driven by the intersection of 

technological curiosity and a clear business imperative: to uncover valuable insights that could 

streamline pricing strategies within the hospitality industry.  

The findings of this thesis hold relevance for multiple stakeholders within the Airbnb 

ecosystem. For hosts, it provides an understanding that factors other than image-related 

attributes are likely to be more influential in determining optimal pricing. For guests, it 

underscores the fact that image-related features of a listing, while important for visual appeal 

and information, are not necessarily that indicative of price variations. For Airbnb and similar 

platforms, it helps in setting realistic expectations about the utility of image analysis in their 

predictive modelling and pricing algorithms. 

This research aims to investigate the impact of image-related features on Airbnb price 

predictions by employing machine learning models and interpretation methods to explain the 

extent to which these features contribute to the accuracy and understanding of the prediction 

models. Motivated by this, I will answer the following problem formulation: 

How do image features affect the predictive performance of hedonic price models for Airbnb 

listings? 

6

such a model is Ordinary Least Squares (OLS) regression, as it enables the determination of

attribute-specific prices simply by examining the regression coefficients. Interpreting these

coefficients might lead to deceptive results. Furthermore, because machine learning methods

are constructed on complex, nonparametric models, they can assist in identifying new features

and exposing potential nonlinear dependencies that typically go unnoticed in traditional

hedonic approaches. The application of machine learning models no longer necessitates them

being treated as "black boxes". I perceive this study as part of the modernization ofhedonic

methodology, forming a connection between two disparate research groups.

In this thesis, I critically examine the hypothesis that image features can improve the predictive

performance of Airbnb price prediction models. I employ different machine learning models

and evaluate the impact of various image features alongside traditional ones. I also leverage

model interpretability methods for black-box models to discern the contribution and

importance of each feature in the prediction process.

This study embarked on an exploration of how image-related features might influence and

potentially improve the accuracy of price prediction models, specifically focusing on the

Airbnb platform. The motivation behind this research was driven by the intersection of

technological curiosity and a clear business imperative: to uncover valuable insights that could

streamline pricing strategies within the hospitality industry.

The findings of this thesis hold relevance for multiple stakeholders within the Airbnb

ecosystem. For hosts, it provides an understanding that factors other than image-related

attributes are likely to be more influential in determining optimal pricing. For guests, it

underscores the fact that image-related features of a listing, while important for visual appeal

and information, are not necessarily that indicative of price variations. For Airbnb and similar

platforms, it helps in setting realistic expectations about the utility of image analysis in their

predictive modelling and pricing algorithms.

This research aims to investigate the impact of image-related features on Airbnb pnce

predictions by employing machine learning models and interpretation methods to explain the

extent to which these features contribute to the accuracy and understanding of the prediction

models. Motivated by this, I will answer the following problem formulation:

How do image features affect the predictive performance of hedonic price models for Airbnb

listings?



 7 

The main finding of this study is that, to a modest extent, the incorporation of image features 

enhanced the predictive performance of the top-performing model (XGBoost) when adding 

the image features. Nevertheless, the robustness of this finding was challenged by an 

unsuccessful significance test. On the other hand, certain image features consistently emerged 

across various interpretative methods used for the black-box model, suggesting their valuable 

contribution to the model’s performance.   

The rest of this paper will be structured as follows. First a literature review will be presented 

containing the most relevant literature for this thesis. Secondly, a theory section will be 

dedicated to describing the different methods used for the analysis. Subsequently, the data will 

be presented along with the steps taken to prepare the data for the models. After this, the results 

of the models will be showed. The models will include several variables that are assumed to 

be important price predictors. Then new models will be made where the image features are 

removed to compare results. Next, different interpretation methods will be applied to the best 

performing model. Finally, A conclusion of my findings and suggestions for further research 

will be proposed.   

2. Literature Review 

This thesis intersects multiple strands of literature, providing valuable contributions across 

diverse fields. Primarily, it engages with the extensive body of research exploring the 

determinants of Airbnb pricing, offering fresh insights that can stimulate further studies within 

the hospitality and real estate sectors. Additionally, this thesis enriches the current 

understanding of the predictive capacity and effectiveness of machine learning models for 

property pricing. It does this by offering nuanced insights into their practical applications and 

potential implications. By integrating image recognition to understand the role of image 

features, this work contributes to the growing body of computer vision. Moreover, its findings 

on the significance of visual elements in pricing strategies have implications for marketing 

and advertising fields, thereby expanding its relevance beyond traditional boundaries.  

A range of studies have drawn attention to the potential benefits of machine learning methods 

traditional hedonic pricing models. Moreno-Izquierdo et al. (2018) demonstrated the potential 

advantages of AI and machine learning methods over traditional hedonic pricing models with 

Airbnb data about the Valencian Community. They found that the application of neural 

networks led to more satisfactory price estimations than traditional pricing models. They also 
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found that listings with more photos tend to have higher prices.  In their linear hedonic pricing 

model, Dogru and Pekin (2017) also find that the number of photos is valued by guests. 

Although not used in the context of Airbnb, Potrawa and Tetereva (2022) integrate machine 

learning tools to enhance conventional hedonic pricing models for houses in Rotterdam. They 

find that explainable AI methods can be used for black-box models and uncover nonlinear 

relationships between some predictors and the housing prices. This is something that 

traditional hedonic pricing models cannot do since they fit linear models with Ordinary Least 

Squares Regression.    

Poursaeed et al. (2017) use crowdsourcing to categorize luxury levels of real estate photos and 

showed that it can improve price estimates with neural networks. Ahmed and Moustafa (2016) 

use Speeded Up Robust Features extractor to extract visual features from images. They then 

used Support Vector Machines and Neural Networks to improve the estimation of house 

prices.  

Zhang et al. (2022) delve into the composition of a high-quality image, drawing from 

photography literature to identify 12-human-interpretable image attributes pertaining to 

composition, color, and figure-ground relationship. Their analyses establish systematic 

differences between images that have Airbnb verification symbols and those that do not, and 

they predict how each attribute correlates with property demand, finding significant 

correlations in the theorized direction. The authors used difference-indifference (DiD) analysis 

and deep learning to discover an increase of 8.98% in occupancy rates for properties where 

pictures were taken by professional photographers, compared to the properties where the 

pictures were taken by hosts. Inspired by this paper, I will include a four of the same image 

attributes in my models, but instead of using DiD method, I will use machine learning models. 

I am limited to only use for of the same attributes because these are the only attributes that are 

within the computational limits of my resources.  

The same authors wrote a different paper where they found that having verified photos led to 

spillover effects. Namely, listings with verified photos in a neighbourhood led to a higher 

demand for other verified listings in the same area, while unverified listings in these 

neighbourhoods experienced a decrease in demand. This suggests that a high proportion of 

verified listings in a neighbourhood can elevate the neighbourhood’s overall image, increasing 

its attractiveness to potential renters (Zhang et al., 2016). 
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Nguyen et al. (2018) attempt to comprehend how potential Airbnb guests derive first 

impressions from listing images by predicting human impressions of ambiance from listing 

photos. They used crowdsourcing to annotate the images on various physical and ambiance 

attributes. They found that they could best label their images using GoogLeNet  convolutional 

neural network trained on the Places205 dataset, a large collection scene-centric image. In this 

thesis, I will employ the ResNet18 model instead. Fagerstrøm et al. (2017) examined the 

influence of the personal profile images of hosts, specifically their facial expressions, on buyer 

behavior in Airbnb. They found that hosts that had positive facial expressions in their profile 

pictures increased approach behavior and rental likelihood. On the other hand, negative facial 

expressions or the lack of a profile picture altogether reduced demand for their listings. 

Furthermore, Ert et al. (2016) found that trustworthiness inferred from a host’s photo 

significantly impacts the guest’s decision making and that it matters more than review scores. 

These papers support the idea that images on a host’s profile do matter for price setting. 

Kalehbasti et al. (2019) made Airbnb prediction models with a variety of features, including 

rental characteristics, owner information, and customer reviews. Their objective was to create 

the best models they could based on several performance metrics. They tested several 

methodologies for creating the prediction model, ranging from linear regression and tree-based 

models to more complex techniques such as Support Vector Regression  and neural networks. 

They found that having an abundance of features led to high variance and weakened model 

performance on the validation set compared to the training set. However, applying a Lasso-

based feature selection technique reduced this variance. Their best performing model was an 

Support Vector Regression model when estimating performance based on R2 and Mean Square 

Error.  

Luo et al. (2019) developed several machine learning models to predict Airbnb listing prices 

across three cities, New York, Berlin, and Paris. In their case, it was XGBoost and Neural 

networks that performed the best in terms of R2 and Mean Square Error. Particularly notable 

from their research was that training the models on a combined dataset from New York and 

Paris was able to generalize and predict prices in a different city, Berlin, respectively. In fact, 

this transfer learning technique yielded better price predictions in Berlin than when they 

trained the model only using the Berlin dataset. Transfer learning will be incorporated in this 

paper as well but with the goal of labeling Airbnb images.  

9

Nguyen et al. (2018) attempt to comprehend how potential Airbnb guests derive first

impressions from listing images by predicting human impressions of ambiance from listing

photos. They used crowdsourcing to annotate the images on various physical and ambiance

attributes. They found that they could best label their images using GoogLeNet convolutional

neural network trained on the Places205 dataset, a large collection scene-centric image. In this

thesis, I will employ the ResNet18 model instead. Fagerstrøm et al. (2017) examined the

influence of the personal profile images of hosts, specifically their facial expressions, on buyer

behavior in Airbnb. They found that hosts that had positive facial expressions in their profile

pictures increased approach behavior and rental likelihood. On the other hand, negative facial

expressions or the lack of a profile picture altogether reduced demand for their listings.

Furthermore, Ert et al. (2016) found that trustworthiness inferred from a host's photo

significantly impacts the guest's decision making and that it matters more than review scores.

These papers support the idea that images on a host's profile do matter for price setting.

Kalehbasti et al. (2019) made Airbnb prediction models with a variety of features, including

rental characteristics, owner information, and customer reviews. Their objective was to create

the best models they could based on several performance metrics. They tested several

methodologies for creating the prediction model, ranging from linear regression and tree-based

models to more complex techniques such as Support Vector Regression and neural networks.

They found that having an abundance of features led to high variance and weakened model

performance on the validation set compared to the training set. However, applying a Lasso-

based feature selection technique reduced this variance. Their best performing model was an

Support Vector Regression model when estimating performance based on R2 and Mean Square

Error.

Luo et al. (2019) developed several machine learning models to predict Airbnb listing prices

across three cities, New York, Berlin, and Paris. In their case, it was XGBoost and Neural

networks that performed the best in terms of R2and Mean Square Error. Particularly notable

from their research was that training the models on a combined dataset from New York and

Paris was able to generalize and predict prices in a different city, Berlin, respectively. In fact,

this transfer learning technique yielded better price predictions in Berlin than when they

trained the model only using the Berlin dataset. Transfer learning will be incorporated in this

paper as well but with the goal of labeling Airbnb images.



 10 

While the individual methods and techniques applied in this thesis may not be entirely novel, 

the uniqueness lies in their integrated application. This research combines the utilization of 

image quality features and colour features within the context of machine learning framework. 

Furthermore, it employs advanced black-box interpretation methods to explain the feature 

contributions to the prediction model. Significantly, the study applies these combined methods 

to a completely new and contemporary dataset, specifically Airbnb listings scraped in 2023 in 

Amsterdam.  

3. Theory 

3.1 Machine learning 

Defined broadly, a machine learning algorithm is a process that improves its ability to perform 

tasks over time by learning from its experience with data (Goodfellow et al., 2016). This thesis 

will leverage the capabilities of ten distinct supervised machine learning models to predict 

Airbnb prices for various listings. Hence, a brief description of the types of models used will 

be explained.  

Linear models, including Linear Regressions, Lasso, Ridge, and Elastic Net, represent a 

fundamental class of predictive models that assume a linear relationship between the 

dependent variables and the parameters or coefficients of the independent variables in the 

model. The simplest of these, Linear Regression, serves as a foundation for understanding 

statistical relationships and is often a first line approach due to its interpretability. The more 

sophisticated extensions, Lasso, Ridge, and Elastic Net, introduce regularization terms to the 

loss function in order to manage overfitting and multicollinearity.  

Tree based models, including Decision Trees, Random Forests, and XGBoost, offer an 

intuitive way of capturing non-linear relationships and interactions between variables. 

Decision Trees split the data along the features to segregate the target variable into its most 

distinguishable states. However, they can easily overfit the training data. To mitigate this, 

Random forests use an ensemble of different decision trees, built on different subsamples and 

subsets of features, to ensure generalizability and robustness. XGBoost further refines this 

concept by applying a gradient boosting framework, optimizing for both model performance 

and computational efficiency.  
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Models such as K-Nearest Neighbours (KNN) and Support Vector Machines (SVM) leverage 

the geometric properties of the feature space for their predictions. KNN, as a distance-based 

method, predicts the outcome for new instances by examining the outcomes of its nearest 

neighbours in the feature space. The prediction is then made based on the average outcome of 

these nearest neighbours. In the context of regression, SVM operates by constructing an 

optimal hyperplane within the feature space that can best predict continuous outcomes. The 

objective of SVM is to fit the best hyperplane that minimizes the error between the predicted 

and actual values, often resulting in a robust model with considerable prediction accuracy. In 

constructing this hyperplane, SVM mainly considers those instances in the data that are hardest 

to accurately predict, known as “support vectors”. By focusing on these challenging instances, 

SVM aims to maximize generalization performance, thereby yielding a model that is robust to 

variability in data (Wilimitis, 2021).  

Artificial Neural Networks, inspired by the biological neural networks that constitute the 

human brain, are a powerful tool for modelling complex patterns and high-dimensional data. 

They consist of interconnected layer of nodes or “neurons” where each connection can 

transmit a signal from one neuron to another. The receiving neuron processes the signal and 

signals downstream neurons connected to it. Neural networks’ capacity to learn from errors, 

model non-linear relationships, and handle large-scale data make them particularly effective 

in various prediction tasks.  

3.2 Transfer Learning 

This thesis uses transfer learning to label the images, which will then be used as predictors in 

the models. Consequently, a clarification of what transfer learning entails will follow in this 

section of the thesis.  

Transfer learning is a machine learning technique that involves using a pre-trained model as a 

starting point for a new task, rather than training a new model from scratch. Transfer learning 

has become increasingly popular in recent years, particularly in the field of computer vision. 

In transfer learning, a pre-trained model is typically trained on a large dataset, such as 

ImageNet, which contains millions of images across thousands of classes. The pre-trained 

model learns to recognize a wide variety of visual patterns and features that are relevant to 

many different tasks. To use transfer learning, the pre-trained model is typically modified by 

replacing the final layer(s) with a new layer(s) that is specific to the new task.  
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Transfer learning has several advantages over training a new model from scratch. First, 

transfer learning can significantly reduce the amount of data and computational resources 

required to train a new model, as the pre-trained model has already learned to recognize a wide 

variety of visual patterns and features. Secondly, it often results in improved performance on 

new tasks, as the model has already developed an understanding of many relevant visual 

features that can be utilized in new contexts. Lastly, transfer learning can help to mitigate the 

problem of overfitting. This is because pre-trained models, having been trained on large 

datasets, are already equipped with the ability to generalize to unseen images effectively.  

 

3.3 Performance Metrics 

To evaluate how the image features affect the predictive performance of hedonic price models, 

we need to quantify the model performance. Mainly, this will be achieved by comparing the 

models based on three performance metrics, which are commonly used in the related literature. 

Root Mean Square Error (RMSE) is a common metric used to measure the error of a prediction 

model of a continuous variable. It is defined as  

 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √1
𝑛𝑛 ∑

𝑛𝑛

𝑖𝑖=1
(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦̂𝑦)2 

 

(1) 

 

RMSE is a metric that measures the average magnitude of prediction error in the mode, 

essentially determining how far off the model’s predictions are from the observed values. It 

does this by calculating the square root of the average squared differences between the 

predicted and observed values. A lower RMSE indicates a better fit of the model to the data, 

as the predicted values are closer to the actual ones (Hodson, 2022). 

Mean Absolute Error (MAE) is defined as 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛 ∑|𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖|

𝑛𝑛

𝑖𝑖=1
 

 
(2) 
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MAE is calculated as the average of the absolute differences between the predicted and 

observed values, because it uses absolute value of the difference, the MAE does not heavily 

penalize large errors, making it more robust to outliers compared to RMSE. A lower MAE 

indicates a better model performance, implying the predictions are closer to the observed 

values. 

R squared is defined as 

 𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖 − 𝑦̅𝑦)2𝑛𝑛

𝑖𝑖=1
 

 
(3) 

 

R2 is a statistical measure that represents the proportion of the variance for a dependent 

variable that is explained by the independent variables in a regression model. R2 ranges from 

0 to 1, with 0 indicating that the model explains none of the variability of the response data 

around its mean, and 1 indicating that the model explains all the variability of the response 

data around its mean. In other words, a higher R2 means our model fits our data better. 

3.4 Interpretable Machine Learning Methods 

It is possible to expand our understanding of the effect image features have on the machine 

learning models’ precision beyond just the performance metrics. Specifically, we can expand 

our understanding of the effects image features might have on the predictions if we explore 

which predictors matter in making the predictions. Consequently, the methods used to interpret 

the impact of the predictors will be presented in this part of the thesis.  

3.4.1 Permutation Feature Importance 

The Permutation Feature Importance (PFI) quantifies the significance of a feature by assessing 

the rise in the predictive error of the model when the feature is randomly shuffled. The 

underlying principle here is that, if an important feature’s values are randomly reordered in 

the training set, it would disrupt the inherent relationship between the feature and the target 

variable, thus leading to a deterioration in the model’s performance. Essentially, this approach 

hinges on the comparison between a baseline performance metric (such as RMSE) and the 
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metric obtained post permutation of a particular feature’s values within the training dataset 

(Boehmke & Greenwell, 2019).  Fisher et al. (2019) provides a model-agnostic approach to 

computing the feature importance and serves as an expansion of the method proposed by 

Breiman (2001). 

The inputs of the model are the trained model 𝑓𝑓 , the feature matrix x, the target vector y, and 

an error measure L(y,𝑓𝑓(X)).The steps to retrieving the PFI scores are as follows: 

1. Compute the original error of the model eorig = L(y,𝑓𝑓(X)) 

2. For each feature j in the matrix: 

- A new feature matrix Xperm is created by randomly shuffling the values of the current 

feature j in the data X, effectively disrupting the relationship between this feature and 

the actual outcome y.  

- The error eperm is estimated based on the predictions on this permuted data so eperm= 

L(Y,𝑓𝑓(𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)). 

- The permutation Feature Importance is calculated as either the quotient FIJ = eperm/eorig 

or the difference between the permuted error and the original error FIJ = eperm-eorig. 

3. Finally, features are ranked in descending order of their Permutation Feature Importance. 

The order signifies the relative importance of each feature in the trained model.  

3.4.2 Accumulated Local Effects 

Accumulated Local Effects (ALE) is a technique used to explain the predictions of any 

machine learning model. It measures the main effects of the features, meaning the effect of 

each feature after accounting for the average effects for all other features (Kim, 2022). Molnar 

(2023) proposes this equation for computing ALE:  

 
𝑓̂̃𝑓𝑗𝑗,𝐴𝐴𝐴𝐴𝐴𝐴(𝑥𝑥) = ∑ 1

𝑛𝑛𝑗𝑗(𝑘𝑘)

𝑘𝑘𝑗𝑗(𝑥𝑥)

𝑘𝑘=1
∑ [𝑓̂𝑓(𝑧𝑧𝑘𝑘,𝑗𝑗, 𝑥𝑥−𝑗𝑗

(𝑖𝑖) − 𝑓̂𝑓(𝑧𝑧𝑘𝑘−1,𝑗𝑗, 𝑥𝑥−𝑗𝑗
(𝑖𝑖)]

𝑖𝑖:𝑥𝑥𝑗𝑗
(𝑖𝑖)∈𝑁𝑁𝑗𝑗(𝑘𝑘)

 

 

(4) 

 

1. First, the range of the feature is partitioned into many intervals. These intervals are 

usually determined by the quantiles of the feature’s distribution.  

2. Next, for each interval z, the differences in the predictions are calculated, as 

represented in the brackets of the equation. Specifically, the feature of interest j in the 
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data instance i is replaced by the upper bound 𝑧𝑧𝑘𝑘,𝑗𝑗 and lower bound 𝑧𝑧𝑘𝑘−1,𝑗𝑗 of the 

interval, leaving other features 𝑥𝑥−𝑗𝑗 constant. The difference in predictions gives us the 

local effect of that feature for the instances in the interval.  

3. Thirdly, the average of the local effects across all instances in each interval are 

computed. This means adding up all the effects and dividing the number of instances 

in the interval. 𝑁𝑁𝑗𝑗(𝑘𝑘) represents the set of instances for which the j-th feature falls 

within the k-th interval. 

4. Furthermore, the averaged effects across all intervals up to each point in the feature’s 

range are accumulated. This results in the uncentered ALE at that point. If a feature 

value lies in the third interval, for example, its uncentered ALE would be the sum of 

the effects of the first, second, and third intervals.  

The resulting ALE of a feature at a certain value can be interpreted as the main effect of 

the feature at that value compared to the average prediction of the data. For example, an 

ALE estimate of -1 at 𝑥𝑥𝑗𝑗 =2 means that when the j-th feature has a value of 2, the prediction 

is lowered by 1 compared to the average prediction. 
 

3.4.3 H-statistic 

The H-statistic measures interaction effects of the features. It can be used to measure the 

interaction effects of one feature with all other features or it can measure pairwise interaction 

effects. The former method will be used in this thesis, which is originally introduced by 

Friedman and Popescu (2008) and later adapted by (Molnar, 2023). The equation for the H-

statistic is: 

 𝐻𝐻𝑗𝑗𝑗𝑗
2 =

∑ [𝑓̂𝑓(𝑥𝑥(𝑖𝑖)) − 𝑃𝑃𝐷𝐷𝑗𝑗(𝑥𝑥𝑗𝑗
(𝑖𝑖)) − 𝑃𝑃𝐷𝐷−𝑗𝑗(𝑥𝑥−𝑗𝑗

(𝑖𝑖))]
2𝑛𝑛

𝑖𝑖=1

∑ 𝑓̂𝑓2𝑛𝑛
𝑖𝑖=1 (𝑥𝑥(𝑖𝑖))

 

 

(5) 

 

In this equation, the prediction of the model for the i-th instance in the data is denoted by 

𝑓𝑓(𝑥𝑥(𝑖𝑖)). The second term represents the partial dependence of the j-th feature. Moreover, the 

third term represents the partial dependence for the other features (denoted -j) for the i-th 

instance. The numerator calculates the squared difference between the prediction of the i-th 
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2 rr=l [l(x(i))- PDlx;i))- PD_lxnr
Hik = L7=1/ (xCi)) (5)
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instance and the combined effect of the partial dependences of the j-th feature and all other 

features. This essentially measures the deviation of the model’s prediction from what would 

be predicted by considering only the partial dependences, for each instance. The denominator 

of the equation is the sum of the squares of the model’s predictions for all instance in the data. 

This acts as a kind of normalization term, ensuring that the measure of dependence that is 

calculated is scaled appropriately. 

When the value of the H-statistic is 1, it signifies that the feature’s influence on the prediction 

solely arises through interactions, meaning it has no direct effect. Conversely, a value of 0 

implies there are no interactions, suggesting that the influence stems exclusively from the main 

effect (O’Sullivan, 2021).  

3.4.4 Shapley Values 

The Shapley Value is a concept that was initially developed in the field of cooperative game 

theory. It provides a way to fairly distribute the gain among all players in a cooperative game 

based on their individual contributions. It is particularly useful in situations where the 

contributions of players are interdependent, and hence the total gain cannot simply be divided 

equally or based on individual contributions. In the context of machine learning and 

particularly model interpretability, Shapley Values have been adapted to measure the 

importance of features in a predictive model. The prediction for a particular instance can be 

considered as the “total gain”, and the “players” are the features used in the model. The aim is 

to distribute the “gain” (i.e., the prediction for the instance) among the features based on their 

individual contributions.   

However, as with the original application in game theory, calculating Shapley Values can be 

computationally expensive, especially when the number of features is large. This has led to 

the development of various approximation methods, such as the model-agnostic approach by 

Štrumbelj and Kononenko (2014): 

 𝜙̂𝜙𝑗𝑗 =
1
𝑀𝑀 ∑((𝑓̂𝑓(𝑥𝑥+𝑗𝑗

𝑚𝑚 )
𝑀𝑀

𝑚𝑚=1
− 𝑓̂𝑓(𝑥𝑥−𝑗𝑗

𝑚𝑚 )) 

 

(6) 
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M

¢1=:I ((l(x1r1) - f(x71}))
m = l

(6)



 17 

1. For each iteration (m=1,…,M), a random instance (z) is drawn from the data matrix X. 

2. Next, a random permutation (o) of the feature values is selected. 

3. The instances x and z are then reordered according to this permutation, creating xo and 

zo. 

4. Two new instances are created: 

- One with the j-th feature: x+j. Here, Feature values up to the j-th feature are 

taken from xo and the remaining feature taken from zo.  

- One without the j-th feature: x-j. Here feature values up to and including the (j-

1)-th feature are taken from xo, but the j-th feature is taken from zo and the 

remaining features are taken from zo as well. 

5. The marginal contribution is computed as ϕ𝑗𝑗
𝑚𝑚 = 𝑓𝑓(𝑥𝑥+𝑗𝑗) − 𝑓𝑓(𝑥𝑥−𝑗𝑗) 

6. The average Shapley Value is computed: ϕ𝑗𝑗(𝑥𝑥) = 1
𝑀𝑀 ∑ ϕ𝑗𝑗

𝑚𝑚𝑀𝑀
𝑚𝑚=1  (Molnar, 2023) 

 

3.4.5 Local Interpretable Model-Agnostic Explanations 

Local Interpretable Model-Agnostic Explanations (LIME) is a local interpretation method 

used to explain individual predictions. Introduced by Ribeiro et al. (2016), LIME is a particular 

implementation of what are known as local surrogate models. Local surrogate models are 

simple models utilized to interpret individual predictions of more complex, black-box machine 

learning models. These surrogate models are trained to mimic the predictions of the original 

black-box model.  

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔 ∈ 𝐺𝐺

𝐿𝐿(𝑓𝑓, 𝑔𝑔, 𝜋𝜋𝑥𝑥) + Ω(𝑔𝑔) 

 

(7) 

 

Here, g denotes the explanation model for a specific instance x and is typically a simple model 

such as linear regression. The model is designed to minimize the loss L, represented by a 

metric like RMSE, which measures how close the explanation is to the original model’s 

prediction, denoted by f. At the same time, the model’s complexity, Ω(𝑔𝑔), should be kept to a 

minimum, which often translates to using fewer features.  
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l. For each iteration (m=l,. . .,M), a random instance (z) is drawn from the data matrix X.
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3.4.5 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-Agnostic Explanations (LIME) is a local interpretation method

used to explain individual predictions. Introduced by Ribeiro et al. (2016), LIME is a particular
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prediction, denoted by f At the same time, the model's complexity, D.(g ), should be kept to a

minimum, which often translates to using fewer features.



 18 

G denotes the set of potential explanations, such as all possible linear regression models. The 

proximity measure, 𝜋𝜋𝑥𝑥, outlines the size of the neighbourhood around instance x that is 

considered for the explanation. In practice, LIME is primarily tasked with optimizing the loss 

part, leaving the user to determine the complexity, for instance by selecting the maximum 

number of features that the linear regression can utilize (Molnar, 2023). Here are the steps for 

training local surrogate models: 

1. Choose the instance you are interested in and for which you require an explanation of 

its black box prediction. 

2. Introduce variations into the dataset and acquire the black box predictions for these 

new data points.  

3. Allocate weights to the new samples based on their proximity to the instance of 

interest. 

4. Construct a weighted, interpretable model on the dataset with the introduced 

variations. 

5. Interpret the local model to explain the prediction. 

4. Dataset 

The data utilized in this thesis is sourced from Inside Airbnb, a project dedicated to providing 

free, publicly available data about Airbnb listings globally. The specific dataset used was 

scraped by Inside Airbnb on March 9, 2023 and contains all of the listings in Amsterdam that 

were on the Airbnb websites at that time. Furthermore, the dataset only contains information 

that is publicly displayed, and does not contain any personal information like private host 

responses or exact addresses. The dataset contains 6998 observations before cleaning. 

4.1 Cleaning and Pre-processing 

Data cleaning and pre-processing involves identifying and handling missing values, dealing 

with outliers, converting data types, and creating new variables as needed. I will also explore 

the data to identify patterns or trends and use visualization techniques to gain insights into the 

data. Most of the data was retrieved as a CSV format while the geometry data used for mapping 

purposes was contained in geojson files.  
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4.2 Image Data 

This thesis acquires thumbnail images of the listings by accessing the URL to the thumbnails 

that are present in the dataset from Inside Airbnb. Different image recognition methods are 

used to extract features from these images that will be used in the prediction models.  

4.2.1 Blind/Refereneless Image Spatial Quality Evaulator 

In this thesis, I apply the Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 

model, a popular no-reference image quality assessment metric, to evaluate the perceived 

quality of digital images. The goal of Brisque is to predict the quality of an image without 

comparing it to a reference image or relying on any specific knowledge of the image content 

or context. Brisque is based on a machine learning approach that uses a trained support vector 

regression (SVR) model to estimate the quality of an image. The SVR model is trained using 

a set of natural images and their corresponding subjective quality scores obtained through 

subjective judgements. The model is designed to capture statistical regularities of the image 

and has been shown to be effective in predicting perceived image quality (Mittal et al., 2012). 

To calculate the Brisque score for an image, the image is first preprocessed by down sampling 

and divided into non-overlapping blocks. Then, the statistical features are extracted from each 

block and combined into a feature vector that represents the entire image. Finally, the feature 

vector is passed through the trained SVR model to estimate the perceived quality score. The 

output of Brisque is a quality score between 0 and 100, where higher scores indicate higher 

perceived quality. Brisque has been shown to be highly correlated with human perception of 

image quality and has been used in a wide range of applications, including image and video 

processing, compression, and transmission (Mittal et al., 2012).  

BRISQUE scores were computed in Python, during which the images were converted into 

grayscale (2-dimensional) and their pixel intensity values were normalized to floating point 

numbers within the range [0,1]. A timer was inserted into the code to see how long it would 

take to complete the computations. When running the computations on the CPU the estimated 

time was 25 hours. Therefore, an attempt was made to run it in Google Colab’s cloud services 

since they have publicly available tensor GPU’s that can process image computations 

exceptionally fast when attaching the CUDA library. The code was able to successfully run 

until it was forcefully stopped due to my free compute units being used up after scoring 8% of 
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the images. However, the estimated time was 1 hour and 45 minutes for all the images when 

running in the cloud. The remaining brisque scores for the images were computed locally with 

my own GPU which did not have the same computational speed as the GPU that Google Colab 

had, but it was faster than running it on the CPU as the time it took for the remaining 92% of 

the images was approximately 13 hours. 

Given that the BRISQUE model was not trained on the specific images used in this thesis, 

some calculated scores fell outside the typical 0-100 range. It should be noted that these scores, 

while not within the expected range, still provide relative measures of perceived image quality. 

The highest score was 117 and the lowest was -28. The images in Figure 1 and Figure 2 display 

the pictures with the highest and the lowest BRISQUE score, respectively. 

 

 

4.2.2 Image labels 

In order to label the images with scene classification, a pretrained model called ResNet18 was 

used. The weights for the model as well as the labels were downloaded from the Places website 

(Zhou et al., 2018a). The class names for the 365 scene categories were read from a 

downloaded text file and the images were loaded from a folder using the Python imaging 

Library (PIL). Then, they were converted to the expected format that was needed as input for 

the model. Most of the images were originally in RGB format which is the correct input format 

for the model, but a few were also in BGR and RGBA format and needed to be converted. The 

process of preparing the images also involved converting them to 256*256 pixels first, then 

Figure 1- Highest brisque 
score, 117 (lowest quality) 

Figure 2- Lowest brisque 
score, -28 (highest quality) 
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cropping them to 224*224. Afterwards, the images were converted to a tensor format which 

is needed for the neural network. Furthermore, the color channels were normalized with the 

means equal to 0.485, 0.456 and 0.406, and standard deviations equal to 0.229, 0.224 and 

0.225 for the colors red, green and blue, respectively. These transformations are commonly 

used when working with the ResNet models and can improve the accuracy and performance 

of the model (Zhou et al., 2018b). Table 1 showcases the ten most recurrent labels, as generated 

by the model. 

 

Table 1-Top image labels from the ResNet18 model 

Given the similarity among some of the labels, the price prediction models might perform 

better if similar labels are consolidated into a single category. On the other hand, it can also 

lead to loss of information which is detrimental to the validity of the results. However, it can 

be beneficial to recode similar labels to the same label to increase the occurrences, thereby 

making it simpler for the models to use these as predictors. Therefore, images with the label 

home_theater were recoded to television_room, and hotel_room, bed_chamber and 

dorm_room were recoded to bedroom. Zhou et al. (2018a) supplement their study with an 

additional file outlining a scene hierarchy, which distinguishes whether the images are indoor 

or outdoor. I incorporated this dataset with the labels to examine whether this feature would 

contribute to better price predictions.  

Moreover, the method of transfer learning employed here carries a limitation, given that I did 

not personally train any part of the model. An alternate approach could have involved utilizing 

human input to label a subset of the images, thereby allowing for the optimization of the 

ResNet model parameters specifically tailored to my image set.  
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4.2.3 Hue, Saturation & Value 

Hue, Saturation and Value (HSV) is a colour model that is extensively used in computer 

graphics and image analysis. It offers an alternative to the more prevalent RGB and RGBA 

color models commonly used in digital imagery. The HSV model is uniquely designed to align 

more closely with human colour perception. It characterizes colours based on three distinct 

aspects, each with a range that can vary depending on the specific software being utilized. The 

definitions that I will provide are based on the OpenCV library, a popular tool for image 

processing in Python (Bradski, 2000). 

Hue distinguishes one color from another, and it is defined within a range of [0,179]. Figure 3 

visually represents the spectrum of colours as defined by their respective hues in the HSV 

model. “Warm hue” refers to a certain range within the colour spectrum often associated with 

evoking emotional responses. Warm hues, which include colours such as red and yellow, are 

commonly linked with increased levels of excitement. On the contrary, cool hues like blue and 

green tend to evoke feelings of relaxation (Valdez & Mehrabian, 1994).  

Saturation describes the intensity or purity of the color. A colour at full saturation contains no 

elements of white or black, whereas a desaturated colour has components of white or black 

added to it. Essentially, a colour with higher saturation appears more vivid, while a colour 

with lower saturation seems grayer. Saturation in the HSV model spans a range of [0,255]. 

Value is also recognized as brightness and indicates the lightness or darkness of a colour. A 

colour with a high value is bright, whle a colour with a low vaue is darker. The 

brightness/value range in the HSV model is [0,255] (Faisal,2023). Figure 4 visually illustrates 

the interplay of the three components of the HSV model, demonstrating how hue, saturation, 

and value collaboratively determine a colour’s representation.  
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4.2.4 Clarity 

Assessing the clarity, or the sharpness, of the images in our dataset can be an interesting 

predictor for our study, as clearer images are generally perceived as being of higher quality 

and could potentially influence the price of an Airbnb listing. In order to assess the clarity of 

the images, I used the variance of the Laplacian operator as a metric. This method has been 

shown to be a reliable indicator of image clarity in previous studies (Pech-Pacheco et al., 

2000).  

The Laplacian operator is a second-order derivative measure, which, when applied to an 

image, accentuates areas of rapid intensity change, such as edges. The variance of these 

highlighted areas provides a scalar measure of clarity: a high variance suggests a well-focused 

image with clear edges, while a low variance indicates a blurry image (Sagar, 2021). This 

method was implemented in Python using the OpenCV library. OpenCV’s efficient 

computation allowed for quick calculation the Laplacian and its variance for each image in the 

dataset. In this case, the Laplacian operator was applied after gray-scaling the images. 

4.2.5 Preprocessing of Non-Image data 

To provide a comprehensive comparison between models that incorporate image features and 

those that do not, it is essential to also consider non-image related features. These traditional 

features offer a basis of comparison, allowing us to understand the value added, if any, by the 

Figure 3- Hue range, 

sourced from: (Choosing the 
Correct Upper and Lower 
HSV Boundaries for Color 
Detection With`Cv::inRange` 
(OpenCV), n.d.). 

 

 

Figure 4- Colour 
wheel,  

sourced from: 
(File:HSV Color Solid 
cylinder.png - 
Wikimedia Commons, 
n.d.). 

 

23

017/11/28 23:08:04 CST

50
(1) H-S (H: 0-180, S: 0-255, V: 255)

100 (

150

20 Jo •o 50 60 70 ao 90 I
H-S (H: 0-180, S: 255, V: 2&&)

Figure 3- Hue range,

sourced from: (Choosing the
Correct Upper and Lower
HSV Boundaries for Color
Detection With 'Cv::inRange'
(OpenCV), n.d.).

Figure 4- Colour
wheel,

sourced from:
(File:HSV Color Solid
cylinder.png -
Wikimedia Commons,
n.d.).

4.2.4 Clarity

Assessing the clarity, or the sharpness, of the images in our dataset can be an interesting

predictor for our study, as clearer images are generally perceived as being of higher quality

and could potentially influence the price of an Airbnb listing. In order to assess the clarity of

the images, I used the variance of the Laplacian operator as a metric. This method has been

shown to be a reliable indicator of image clarity in previous studies (Pech-Pacheco et al.,

2000).

The Laplacian operator is a second-order derivative measure, which, when applied to an

image, accentuates areas of rapid intensity change, such as edges. The variance of these

highlighted areas provides a scalar measure of clarity: a high variance suggests a well-focused

image with clear edges, while a low variance indicates a blurry image (Sagar, 2021). This

method was implemented in Python using the OpenCV library. OpenCV's efficient

computation allowed for quick calculation the Laplacian and its variance for each image in the

dataset. In this case, the Laplacian operator was applied after gray-scaling the images.

4.2.5 Preprocessing of Non-Image data

To provide a comprehensive comparison between models that incorporate image features and

those that do not, it is essential to also consider non-image related features. These traditional

features offer a basis of comparison, allowing us to understand the value added, if any, by the
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inclusion of image data. In this section, the pre-processing steps taken for these features are 

detailed.  

The ”amenities” feature contained a long string of comma-separate values for each Airbnb 

listing. In order to make amenities more useful for analysis, I first created a set of all possible 

amenities by splitting the string into individual values. Considering that there are several 

hundred amenities in total, only the most important ones are kept. The decision of which to 

keep are inspired by the word cloud of amenities in figure 5, the network graph in figure 6, 

and information from Airbnb Resource center (The Amenities Guests Want, 2020). All opening 

curly brackets were removed while the ending curly brackets were replaced with commas 

which are then used as the delimiter. Furthermore, all quotations were removed in addition to 

all leading whitespaces. After this remained a list of all the different amenities listed in the 

dataset. However, a lot of the amenities are very similar and have been converted to share the 

same name. For instance, “wifi” and “internet” will be interpreted as the same amenity and 

will be treated simply as “wifi”. The same applies for all the different descriptions of coffee 

machines like “coffee maker”, “espresso machine” and “espresso maker”. A few examples of 

amenities that were removed are “hangers”, “toilet” and “crib”. I then used the set of possible 

amenities to create binary variables for each amenity, indicating whether or not each listing 

had that amenity. For example, if an Airbnb listing had a TV, the TV variable would be 

assigned a value of 1 and 0 otherwise. The final amenities chosen are illustrated in table 2. 
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Figure 5- Wordcloud of amenities. 

 

In addition to the provided features in the dataset, I have also made new predictor variables 

derived from the ‘description’ field for each listing. This text field contains a detailed 

explanation of the property, provided by the host, and can include aspects about the property’s 

amenities, unique selling points, nearby attractions, house rules, and more. After removing 

stop words like ‘the’, ‘and’, and ‘in’, and all non-english words, a network graph of the most 

used words in the descriptions was made In essence, figure 6 is a network graph of the words 

in the Airbnb descriptions. Each node in the graph represents a word, and each edge represents 

a pair of words that often occur together. The size of the nodes represent how often the words 

occur and the size of the link indicate how frequently the two words occur together. Moreover, 

it can be used to understand the main themes and topics that are mentioned in the descriptions.   

Table 2- List of 
chosen amenities. 
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gym
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parking
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selr_oheck_in
smoking_ allowed
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Table 2- List of
chosen amenities.

In addition to the provided features in the dataset, I have also made new predictor variables

derived from the 'description' field for each listing. This text field contains a detailed

explanation of the property, provided by the host, and can include aspects about the property's

amenities, unique selling points, nearby attractions, house rules, and more. After removing

stop words like 'the', 'and', and 'in', and all non-english words, a network graph of the most

used words in the descriptions was made In essence, figure 6 is a network graph of the words

in the Airbnb descriptions. Each node in the graph represents a word, and each edge represents

a pair of words that often occur together. The size of the nodes represent how often the words

occur and the size of the link indicate how frequently the two words occur together. Moreover,

it can be used to understand the main themes and topics that are mentioned in the descriptions.
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Figure 6- Network graph of popular words in the descriptions 

 

Moreover, an analysis of the top 100 words from the description feature and how the 

frequencies of these words varied across different price ranges was done.To do this, I first 

computed the proportion of each word in each price range. To quantify the association of each 

word with the price range, I fitted a logistic regression model for each word, using the count 

of the word and the total count in each price range as a binomial response, and the price range 

as the predictor.  

After fitting these models, I extracted the estimated coefficients for price range and their 

associated p-values. For the lower price ranges, I selected the words that not only had a 

statistically significant association with the price range (p-value <0.05), but also had the largest 

negative coefficient estimates. These words are more commonly used in descriptions of 

listings with lower price ranges.  For higher price ranges, I followed a similar approach, but 

instead selected the words that had the largest positive coefficient estimates. These words are 

more commonly used in descriptions of listings with higher price ranges. The “low price 

words” and “high price words” are depicted in figure 7 and 8, respectively.   
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Moreover, an analysis of the top l 00 words from the description feature and how the

frequencies of these words varied across different price ranges was done.To do this, I first

computed the proportion of each word in each price range. To quantify the association of each

word with the price range, I fitted a logistic regression model for each word, using the count

of the word and the total count in each price range as a binomial response, and the price range

as the predictor.

After fitting these models, I extracted the estimated coefficients for price range and their

associated p-values. For the lower price ranges, I selected the words that not only had a

statistically significant association with the price range (p-value <0.05), but also had the largest

negative coefficient estimates. These words are more commonly used in descriptions of

listings with lower price ranges. For higher price ranges, I followed a similar approach, but

instead selected the words that had the largest positive coefficient estimates. These words are

more commonly used in descriptions of listings with higher price ranges. The "low price

words" and "high price words" are depicted in figure 7 and 8, respectively.



 27 

 

Figure 7- Most common words for lower priced listings. 

 

Figure 8- Most common words for higher priced listings. 

  

Sentiment scores for each listing have been included based on the reviews and were made 

using a lexical approach. This process started with removing all html tags (like ‘<br />’, ‘<b>’, 

and ‘</b>’) and new line characters (‘\n’), which might interfere with the text analysis. Then, 

a language detector called ‘textcat’ was used to only keep English reviews. Furthermore, each 

comment was broken down into sentences. The final step was to compute sentiment scores on 

each sentence of the review comments. Sentiment scores were calculated using the sentiment 

function in ‘sentimentr’ package, which estimates the sentiment of a sentence by considering 

the impact of each word on the overall sentiment, as well as considering amplifiers, negators, 

and adversative conjunctions. The mean sentiment score for each listing was then calculated 

and used as a predictor in the prediction models. 

Moreover, location-based features were also included. The geographical distribution of Airbnb 

listing prices in Amsterdam can be visualized in figure 9. The map was created using a 
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Sentiment scores for each listing have been included based on the reviews and were made

using a lexical approach. This process started with removing all html tags (like '<br />', '<b>',

and '</b>') and new line characters ('\n'), which might interfere with the text analysis. Then,

a language detector called 'textcat' was used to only keep English reviews. Furthermore, each

comment was broken down into sentences. The final step was to compute sentiment scores on

each sentence of the review comments. Sentiment scores were calculated using the sentiment

function in 'sentimentr' package, which estimates the sentiment of a sentence by considering

the impact of each word on the overall sentiment, as well as considering amplifiers, negators,

and adversative conjunctions. The mean sentiment score for each listing was then calculated

and used as a predictor in the prediction models.

Moreover, location-based features were also included. The geographical distribution of Airbnb

listing prices in Amsterdam can be visualized in figure 9. The map was created using a
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shapefile of Amsterdam neighbourhoods, which was merged with the Airbnb dataset to 

compute the median price per neighbourhood. This shows us that location matters for listing 

price and that the neighbourhood with highest median price is De Pijp-Rivierenbuurt. 

Longtitude and latitude will therefore be included as predictors. It would also be possible to 

one-hot encode the neighbourhoods instead of using latitude and longtitude, but I decided not 

to do this to avoid increasing the dimensionality of the dataset. 

 

 

 

 

 

 

 

 

 

 

Median imputations of missing values were done for the “bathrooms”, “bedrooms”, and 

“beds” variables. The median was computed based on the training data and then the imputation 

was applied to the whole dataset. Some of the variables in the raw dataset are likely to only 

contribute noise to the models and have been removed. Examples of these are “id”, “host_id”, 

“host_url” and “listing_url”. For variables “host_response_time” and “host_response_rate”, 

their conversion into categorized formats was deemed necessary due to their limited variability 

in a continuous numeric format. In this process, one category labelled as “unknown” was 

introduced. It was considered more beneficial to retain these observations under this category, 

rather than completely excluding them from the analysis. 

Deciding what to do with outliers can be challenging. Retaining them could potentially hamper 

the predictive performance of the models, while eliminating or transforming them might result 

Figure 9- Map over Amsterdam displaying median price 
based on neighbourhood. 

28

shapefile of Amsterdam neighbourhoods, which was merged with the Airbnb dataset to

compute the median price per neighbourhood. This shows us that location matters for listing

price and that the neighbourhood with highest median price is De Pijp-Rivierenbuurt.

Longtitude and latitude will therefore be included as predictors. It would also be possible to

one-hot encode the neighbourhoods instead of using latitude and longtitude, but I decided not

to do this to avoid increasing the dimensionality of the dataset.

Median price of Airbnb listings in each Amsterdam neighbourhood

"'-.::,
::,
E 52.42:N
ro

_J

52.40:N

52.38:N

52.36·:N

52.:¼:N

52_32CN

52.30:N

52.28:N

Median Price (EUR)

rt;
J150

125

100

4-75CE 4 . S 0 E 4.85CE 4.90:E 4.95'.lE 5.00::E 5.0SCE
Longitude

Figure 9- Map over Amsterdam displaying median price
based on neighbourhood.

Median imputations of missing values were done for the "bathrooms", "bedrooms", and

"beds" variables. The median was computed based on the training data and then the imputation

was applied to the whole dataset. Some of the variables in the raw dataset are likely to only

contribute noise to the models and have been removed. Examples of these are "id", "host_id",

"host_url" and "listing_url". For variables "host_response_time" and "host_response_rate",

their conversion into categorized formats was deemed necessary due to their limited variability

in a continuous numeric format. In this process, one category labelled as "unknown" was

introduced. It was considered more beneficial to retain these observations under this category,

rather than completely excluding them from the analysis.

Deciding what to do with outliers can be challenging. Retaining them could potentially hamper

the predictive performance of the models, while eliminating or transforming them might result
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in information loss. In this thesis, I will primarily interpret models that only transform outliers 

likely to be erroneous, while natural outliers will be preserved. After completing the cleaning 

steps, the dataset is reduced to 6053 observations. This is mostly because some of the URL’s 

to the thumbnail images did not lead to the images. Descriptive statistics for all the input 

variables can be seen in figure A1 in the appendix.  

4.2.6   Near-zero variance filter 

In the analysis, the variables that had little to no variance were identified and removed. 

Variables that showed minimal variation are unlikely to contribute much useful information 

to the predictive model, since they are almost constant for all observations. The variables that 

were removed from this filter were the variables “Wi-Fi”, “pool”, “smoking allowed”, and 

“breakfast”. Wi-Fi is something that most hosts offer. Too few listings include pool and 

breakfast, and it is also very rare that smoking is indeed allowed.  

4.2.7 Normalization  

Next, the variables were normalized in the dataset. Normalization is the process that 

standardizes the range of the independent variables so that they have a range from 0 to 1. The 

normalization parameters are based on the training set and applied to avoid data leakage. 

Normalization can be useful when the variables have different scales. By ensuring that all 

independent variables are on a similar scale, we can help to ensure that the models treat all 

predictors equally and is not unduly influenced by variables simply because they have larger 

scales or wider ranges.  

 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 − min (𝑥𝑥)
max(𝑥𝑥) − min (𝑥𝑥) 

 
(8) 

 

Here, xi represents the original value of a variable, min(x) and max(x) are the minimum and 

maximum values of that variable in the training set, and zi is the normalized value.  
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xi - min ( x )
Z · = - - - - - - -1 max(x) - min ( x ) (8)

Here, Xi represents the original value of a variable, min(x) and max(x) are the minimum and

maximum values of that variable in the training set, and Zi is the normalized value.
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5. Models 

The models have been trained using the Tidymodels package in R (Kuhn & Wickham, 2020). 

To ensure unbiased evaluation and model performance, the dataset was divided into training 

and testing sets. The dataset was randomly sampled into a training set consisting of 75 % of 

the data and 25 % as test set. To further enhance the reliability of the model, K-fold cross-

validation was applied with 10 folds. The training data was used to create stratified folds based 

on the target variable, price. When performing stratified sampling or cross-validation, the goal 

is to ensure that each subgroup or stratum is represented proportionally in the training and test 

sets. In other words, the distribution of the target variable within each subset closely reflects 

the distribution of the entire dataset. By stratifying the data based on the price variable, we 

ensure that each subset of the evaluation contains a representative mix of different price 

ranges. This enhances robustness and reliability of the models. Furthermore, the models will 

be optimized based on all the performance metrics mentioned in the theory section. 

5.1 Tuning Hyperparameters  

In the process of building the machine learning models, hyperparameters were tuned for each 

model to optimize their performance. This involved employing a grid search which is a method 

for hyperparameter tuning where a predefined range of hyperparameter values is methodically 

searched. This method can be computationally expensive but is often used due to its simplicity 

and because it can be highly effective (Ismiguzel, 2023).  

There are different strategies for defining hyperparameter space in grid search. Two common 

approaches were used in this project, namely Regular Grid Search and Latin Hypercube 

Sampling. In a Regular Grid Search, the grid is constructed in a regular pattern, meaning it 

covers the hyperparameter space evenly. It generates all combinations of the specified 

hyperparameter values. This is a brute-force exhaustive searching paradigm where each 

combination of hyperparameters is evaluated. Although it is it is guaranteed to find the optimal 

hyperparameters within the specified range, it can be computationally intensive, especially 

when dealing with many hyperparameters or when hyperparameters can take many values. 

Unlike Regular Grid Search, Latin Hypercube Sampling does not test all combinations of 
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values. Instead, it samples the hyperparameter space in a way that ensures a balanced and 

representative selection of hyperparameter values. The space is divided into a grid, and exactly 

one value is chosen from each row and column. This strategy reduces the computational cost 

compared to the Regular Grid Search and can provide a more efficient exploration of the 

hyperparameter space, especially in cases where it is high-dimensional (Urban & Fricker, 

2010). A Regular Grid Search was applied to all the tuned models expect for the XGBoost 

model and the neural network model. Instead, a Latin Hypercube Sampling approach was used 

because they consisted of many hyperparameters.  

For linear regression, a vanilla model was used, without any hyperparameter tuning. In 

contrast, for Lasso and Ridge regression, a hyperparameter tuning process was applied. The 

key hyperparameter in these cases is the penalty term. In both Lasso (L1 regularization) and 

Ridge (L2 regularization) regression, this penalty term controls the degree of regularization 

applied to the model (James et al., 2021). Regularization is a technique used to prevent 

overfitting by discouraging overly complex models, thereby promoting generalizability to 

unseen data. For Lasso regression, the penalty term is applied to the absolute values of the 

model coefficients. This can lead to some coefficients being set to zero, effectively eliminating 

those features from the model. Ridge regression, on the other hand, applies the penalty to the 

squared values of the coefficients. Unlike Lasso, Ridge cannot set the coefficients to zero but 

can shrink them close to zero.  The Elastic Net model had its mixture parameter tuned to find 

the optimal balance between Lasso and Ridge regression. The tuning results for the Lasso, 

Ridge, and Elastic Net Regression can be seen in figure B1, B2, and B3 the appendix.  

The XGBoost model had several hyperparameters tuned, including depth, minimum number 

of observations in a node, reduction on loss required to make further partition, fraction of the 

samples used to fit the individual base learners, number of variables randomly sampled as 

candidates at each split, and learning rate. The decision tree model had its complexity cost and 

tree depth parameters tuned, while the random forest model had the number of variables 

randomly sampled at each split, and the number of observations in a node parameters tuned. 

The tuning results for the XGBoost, Decision Trees, and Random Forest model can be seen in 

figure B4, B5, and B6 in the appendix. 

The KNN model had the number of neighbours and the weight function parameters tuned. The 

SVM model had a radial basis function (RBF) kernel, where the cost and RBF sigma 

parameters were tuned. Lastly, for the multi-layer perceptron neural network model, several 
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parameters were tuned, including the number of hidden units, penalty parameter, number of 

epochs, and the activation function. The tuning results for the KNN and SVM models can be 

seen in figure B7, B8, and B9.  

When certain selections of hyperparameters yielded similar or identical results on the training 

set, I chose the hyperparameters that yielded the most regularization as this increases the 

simplicity of the model.  

5.2 Model Results 

When evaluating the results of the price prediction models with the image features, the test set 

and validation set results exhibited remarkable consistency, with most models demonstrating 

similar performance on the validation set and the test set. This observation attests to the 

robustness of the developed models and their ability to generalize well to unseen data. The 

results for the models with the image features are in Table 3 and the ones without the image 

features are in Table 4. Interestingly, in several cases the test set results marginally surpass the 

validation set results, this somewhat counterintuitive outcome may be attributed to the intrinsic 

variance in the data sets. It is also plausible that the randomly sampled test set was less 

complex or had patterns more closely aligned with the models’ learned parameters, leading to 

marginally better performance.  The best performing model was XGBoost with an RMSE of 

91.81, R2 of 55.91% and an MAE of 58.56. This RMSE suggests that the predictions do not 

predict the actual price with a high degree of accuracy. Nevertheless, the main emphasis of 

this thesis is to see how the image features affect the hedonic price models which requires a 

comparison with the models that do not use these features. Removing the image features from 

the models resulted in a slightly worse performance on the XGBoost model in terms of RMSE 

and MAE. On the other hand, there are no signs of big impacts on the predictive performance 

for any of the models when excluding the image features. This suggests that while the image 

features can have some value, they do not fundamentally alter the performance of the hedonic 

price models. The primary drivers of the predictive performance are likely to be other, more 

traditional features in the models.  
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Having assessed the models’ performance based on various metrics, it is beneficial to also 

examine the nature of the prediction errors using density plots and scatter plots. The mean 

residual of both density plots is slightly above 0, indicating that on average, the models 

overpredict. This is because the frequency of overpredictions is higher. Despite this, the 

presence of a few instances with significantly large underpredictions counteracts this trend, 

thereby nudging the average residual closer to zero. Moreover, the model that excludes the 

image features tends to overprice slightly more than its counterpart. Nevertheless, the 

substantial overlap between the two density plots suggest that the inclusion of image features 

does not radically alter the predictive accuracy of the pricing models. 

 

Figure 10- Density plot of residuals. 
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Figure 10 provides additional insight into the instances where the models falter in delivering 

accurate predictions. It is noteworthy, that the XGBoost models rarely predict a price 

exceeding 800 euros. Discounting the outliers, the errors of the models appear to be 

randomly distributed, as evidenced by their scattering around the diagonal line. Pertinently, 

no significant discrepancy is discernible between the model incorporating image features and 

the one excluding them. This observation aligns with the prior analysis, further reinforcing 

the conclusion that image features do not markedly influence the performance of the pricing 

models.  

 

 

Figure 11- Scatter plot of residuals. 

 

Though there is a minor improvement observed in the optimal model when image features are 

incorporated, it is useful to evaluate the statistical significance of this improvement. A paired 

t-test, a commonly applied method to compare means of paired samples, was initially 

considered. However, it demands an assumption of normal distribution for the differences 

between paired samples. To evaluate this, a histogram, a qq-plot, and a Cullen and Frey graph 

were employed to inspect the residuals of the predictions. These plots are fond in the appendix 

in figure C1, C2, and C3. Furthermore, observations from these analyses suggested deviations 

from normality. Therefore, a Wilcoxon signed-rank test, a non-parametric alternative to the 

paired t-test was deemed more appropriate as it requires fewer assumptions regarding the 

residuals’ distribution.  

The Wilcoxon test examines the null hypothesis that the median difference between pairs of 

observations is zero, implying no significant difference in performance between the two 
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Though there is a minor improvement observed in the optimal model when image features are

incorporated, it is useful to evaluate the statistical significance of this improvement. A paired

t-test, a commonly applied method to compare means of paired samples, was initially

considered. However, it demands an assumption of normal distribution for the differences

between paired samples. To evaluate this, a histogram, a qq-plot, and a Cullen and Frey graph
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in figure Cl , C2, and C3. Furthermore, observations from these analyses suggested deviations

from normality. Therefore, a Wilcoxon signed-rank test, a non-parametric alternative to the

paired t-test was deemed more appropriate as it requires fewer assumptions regarding the

residuals' distribution.

The Wilcoxon test examines the null hypothesis that the median difference between pairs of

observations is zero, implying no significant difference in performance between the two
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models. A significant result would suggest one model consistently outperforms the other. 

However, the Wilcoxon test yielded a p-value of 0.445, not significant at conventional alpha 

level of 0.05. This indicates no evidence of one model consistently outperforming the other.  

While the Wilcoxon test is robust against deviations from normality, it requires symmetry in 

the distribution of differences and independence between pairs. The cross-validation may 

introduce some dependency between predictions, but this mild violation is generally 

acceptable and does not significantly impact the test’s validity when comparing models.  

5.3 Interpreting the Effect of Image Features 

What follows is an interpretation of the relevance of the image features in the XGBoost model. 

Most of the interpretation methods, except ALE, can be affected by correlated features. Figure 

D1 in the appendix shows that there is mostly no multicollinearity in the model. 

5.3.1 Permutation Feature Importance 

In 2, the features of the model are presented, ordered by their importance. The plot was made 

using the “iml” package (Molnar, 2018). All the image features, except those associated with 

image labels, are present in the plot, suggesting they affect the predictive performance of the 

models positively. In addition to using the model-agnostic approach to determine feature 

importance, other methods that are specific to tree-based models were also employed by using 

the “vip” package in R (Greenwell & Boehmke, 2020). Three distinct approaches were 

adopted. Firstly, “gain” the default method, determines the fractional contribution of each 

feature by quantifying the total gain that arises from the splits of the corresponding feature. 

This essentially quantifies the improvement in accuracy attributed to a feature’s splits. 

Secondly, the “cover” method gauges the number of observations that are associated with each 

feature. This allows us to grasp the feature’s representation within the dataset. Lastly, the 

“frequency” method computes the relative number of times each feature is used across all trees 

in the ensemble. This metric essentially highlights the frequency of a feature’s utility in 

shaping the decision trees (Greenwell & Boehmke, 2020). The noteworthy point is that, 

irrespective of the approach used, the image features consistently surfaced as important. This 

consistency reinforces the claim that the image features can improve the performance of the 

pricing models. 
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Figure 12- Variable importance plot. 

 

5.3.2 ALE 

This section foucses on the ALE plot analysis. ALE plots offer a straightforward interpretation. 

The relative effect of a change in the feature value, given the value of that feature, can be 

discerned from the ALE plot. The plots are centered around zero, which facilitates the 

interpreatiotn since the value at each point in the ALE curve signifies the deviation from the 

average prediction.  The rug mapping on the x axes in figure 13 indicates the observations. 

For instance, most of the observations of image clarity are from 0 to 3000, and the number of 

observations with values exceeding that are less frequently occurring in the sample.  

There is a rising effect on the price as image clarity increases, especially beyond a clarity value 

of 2400. This suggests that clearer images tend to yield higher listing prices. From the brisque 

plot, there is an indication that the highest quality images are associated with an average 

increase in price of €20 compared to baseline. The brighter images on average increase the 

price by €5. Conversely, darker images can lower the price on average by the same amount. 

Regarding the image hue, there is an average price increase at low and high hue levels, 
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5.3.2 ALE

This section foucses on the ALE plot analysis. ALE plots offer a straightforward interpretation.

The relative effect of a change in the feature value, given the value of that feature, can be

discerned from the ALE plot. The plots are centered around zero, which facilitates the

interpreatiotn since the value at each point in the ALE curve signifies the deviation from the

average prediction. The rug mapping on the x axes in figure 13 indicates the observations.

For instance, most of the observations of image clarity are from Oto 3000, and the number of

observations with values exceeding that are less frequently occurring in the sample.

There is a rising effect on the price as image clarity increases, especially beyond a clarity value

of 2400. This suggests that clearer images tend to yield higher listing prices. From the brisque

plot, there is an indication that the highest quality images are associated with an average

increase in price of €20 compared to baseline. The brighter images on average increase the

price by €5. Conversely, darker images can lower the price on average by the same amount.

Regarding the image hue, there is an average price increase at low and high hue levels,
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indicating that the average colour for the image is red. As for the saturation level and the image 

level, the effects are either nonexistent or very small.  

As mentioned in the theory section, quantiles of the feature’s distribution are used  to define 

the intervals. This approach ensures equal data instances in each interval, contributing to the 

fair representation of the feature’s effect on the model predictions across its distributions. 

However, this method does come with a downside. Due to the nature of the quantiles, the 

interval lengths can vary significantly, particularly when the feature’s distribution is heavily 

skewed with a majority of either low or high values. This can result in unusual-looking ALE 

plots with potentially misleading interpretations. In this context, the distributions are slightly 

skewed for some of the features even after winsorizing the data.  

 

Figure 13- ALE plots. 
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5.3.3 H-Statistic 

The H-statistic ranks features based on their interaction with other features in the model, with 

the feature having the highest H-statistic placed at the top. This feature is the one that interacts 

the most with all the other features in the model. The length of the bar represents the H-statistic 

for a particular feature. A longer bar implies a higher degree of interaction. If a feature scores 

high in this plot, it means that the effect of this feature on the price variable depends heavily 

on the values of the other features. If a feature scores low on the plot, its effect on price is 

largely independent of the other features. Furthermore, the features with high H-statistic can 

be considered important because of their combined effect with other features. The H-statistics 

can be seen from figure 14. 

Some of the image features show up in the H statistic, namely, “image_brisque”, 

“image_clarity”, “image_saturation”, and “image_value”. However, the highest interaction 

effect among the image features is the brisque score with an H statistic of 0.06. This implies 

that the image features have a small degree of interaction with the other predictors. Remember, 

the H-statistic measures the interaction effects, not the main effect of the features on the target 

variable. Therefore, a feature can have a high importance due to its direct effect on the target 

variable (high feature importance) but have a low H-statistic if it does not interact with other 

features. Conversely, a feature can have a low feature importance but a high H-statistic if it 

mainly affects the target variable through its interactions with other features. To conclude,  
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Figure 14- H-statistics (Interaction measure) 

5.3.4 Shapley Values 

Figure D2 in the appendix displays a SHAP (Shapley Additive explanation) visualization plot 

specifically made for XGBoost and is made with the “SHAPforxgboost” package. Features 

are ordered from top to bottom by the sum of SHAP value magnitude. The x-axis location of 

each dot shows the impact of that feature on the model’s prediction. The SHAP values on the 

left side are linked with lower prices and the SHAP values on the right side are linked with 

higher prices. When the dots are yellow it signifies that the feature value is low, whereas the 

purples values indicate a high feature value. Blue lines are inserted into the plot to emphasize 

image features.    

We can see that when the image clarity is lower (blurrier) the price tends to be lower. When 

the images are clearer, however, the price tends to be higher.  

The brightness of the image color, represented by the feature “image_value”, showed a 

complex relationship with the predicted price. While brighter images were generally slightly 

more likely to contribute to higher prices, there were notable exceptions where brighter colors 

were associated with lower prices. This finding suggests that the effect of image brightness on 
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5.3.4 Shapley Values

Figure D2 in the appendix displays a SHAP (Shapley Additive explanation) visualization plot

specifically made for XGBoost and is made with the "SHAPforxgboost" package. Features

are ordered from top to bottom by the sum of SHAP value magnitude. The x-axis location of

each dot shows the impact of that feature on the model's prediction. The SHAP values on the

left side are linked with lower prices and the SHAP values on the right side are linked with

higher prices. When the dots are yellow it signifies that the feature value is low, whereas the

purples values indicate a high feature value. Blue lines are inserted into the plot to emphasize

image features.

We can see that when the image clarity is lower (blurrier) the price tends to be lower. When

the images are clearer, however, the price tends to be higher.

The brightness of the image color, represented by the feature "image_value", showed a

complex relationship with the predicted price. While brighter images were generally slightly

more likely to contribute to higher prices, there were notable exceptions where brighter colors

were associated with lower prices. This finding suggests that the effect of image brightness on
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price might depend on other features, as seen from the H-statistic in figure x. Another possible 

explanation is that the relationship is simply not linear, or that the feature causes noise.  

A complex relationship is also the case for the brisque feature. We observe a mixture for both 

yellow (high image quality) and purple (low image quality) dots across both sides of the plot. 

This pattern suggests that the impact of image quality is not linear either.   

As for image saturation, the SHAP values suggest that this image feature plays an interesting 

role in the prediction of price. As we see from the plot, images with higher saturation(vivid 

colors) are more frequently associated with higher predicted prices, as indicated by the 

prevalence of purple dots on the right side. Conversely, images with lower saturation (more 

muted colors or grayscale) are often associated with lower predicted prices, suggested by the 

presence of yellow dots on the left side. This could be interpreted as an indication that more 

vibrant, colorful images tend to be associated with higher-prices listings, while more muted 

images tend to be associated with lower-priced listings. However, as with any other feature, 

the impact of image saturation on price prediction does not exist in isolation and can be 

influenced by the values of other features in the model.  

The SHAP values for image hue reveal that images with a higher value of hue- corresponding 

to specific colors or shades- are associated with both low and high predicted prices. 

As for “image_hue” lower values for this feature are associated with higher prices and that 

slightly higher hues bring the price down. To further examine this we can examine a partial 

dependence plot of the SHAP values in figure x. It seems like the warm colours (red and 

yellow) are associated with higher prices whereas cooler colours (blue and green) are 

associated with lower prices.  
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Figure 15- Partial dependence plot for image hue 

 

5.3.5 LIME 

When it comes to the features that affect the prediction of the most expensive listing in the test 

data, the image features seem to not play a big role. Figure 16 shows that a high quality image 

according to brisque score as a very small positive impact on the price of this listing. The same 

applied for the saturation of the image. Nonetheless, it is the fact that the image has air 

conditioning, has more than one bathroom, and is available for more than 98 days that seem 

to have the highest impact in increasing the price for this prediction. However, on a scale of 0 

to 1, the explanation fit (R2) has a value of 0.52 and the correct prediction would have been a 

price of 1246. We should therefore not put too much faith in these explanations.  
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5.3.5 LIME

When it comes to the features that affect the prediction of the most expensive listing in the test

data, the image features seem to not play a big role. Figure 16 shows that a high quality image

according to brisque score as a very small positive impact on the price of this listing. The same

applied for the saturation of the image. Nonetheless, it is the fact that the image has air

conditioning, has more than one bathroom, and is available for more than 98 days that seem

to have the highest impact in increasing the price for this prediction. However, on a scale of 0

to l, the explanation fit (R2) has a value of 0.52 and the correct prediction would have been a

price of 1246. We should therefore not put too much faith in these explanations.
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Figure 16- LIME plot for the most expensive listing. 

The cheapest listing in the test set costs 77 euros but is predicted to cost 119 euros. In this case 

the image hue has a positive effect on the price whereas the image clarity has a negative one. 

It is rather the fact that the listing has a lack of many bedrooms, bed linen, bathrooms and 

higher priced words in the description that seem to drag the prediction of the price down, to 

name a few. In this case the explanation fit is even worse than for the highest prediction which 

means that we should not trust these local interpretations too much. 
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Figure 16- LIME plot for the most expensive listing.

The cheapest listing in the test set costs 77 euros but is predicted to cost 119 euros. In this case

the image hue has a positive effect on the price whereas the image clarity has a negative one.

It is rather the fact that the listing has a lack of many bedrooms, bed linen, bathrooms and

higher priced words in the description that seem to drag the prediction of the price down, to

name a few. In this case the explanation fit is even worse than for the highest prediction which

means that we should not trust these local interpretations too much.
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Figure 17- LIME plot for the cheapest listing. 
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further source of unexplained variation in prices. Nonetheless, it should be noted that this 
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Moreover, some additional costs that the data does not capture are the additional fees like 

guest fee, cleaning fee, pet fee and local taxes depending on location. These constraints in the 

dataset imply that while it serves as a suitable proof of concept, the study could potentially be 

enhanced with more enhanced data. Access to data detailing actual average nightly rates paid 

by guests, available through platforms such as AirDNA, would offer a more accurate 

representation of Airbnb pricing trends and their prediction.   

While using a pretrained model like ResNet18 speeds up the process and simplifies the 

workload, it may not be perfectly suited to my specific dataset. ResNet18 was trained on a 

general dataset and was not fine-tuned to the specific images used in this thesis. This might 

limit its capacity to accurately label the scenes within this specific context. Future work could 

involve manually labeling some of the images, for example with the use of crowdsourcing to 

improve the label classifications.  

Despite the inclusion of image features such as image labels, hue, saturation, value/brightness, 

and clarity, this thesis did not consider other potential influential image features that could 

provide additional predictive power or insights. For instance, it could be interesting to include 

features related to the spaciousness or the figure-ground relationship of the image. Clear 

figure-ground separations can possibly draw more attention and increase property demand 

(Zhang et al., 2016). Moreover, detecting amenities though images could also potentially 

affect the predictive performance for the listings.  

Another consideration relates to the role of the thumbnail images. It is plausible that a high-

quality or visually appealing thumbnail image could attract more views or clicks on a listing, 

but this might not directly translate is also possible that a good thumbnail image causes more 

traction and clicks on the listing but that it does not result in higher prices. Instead, the impact 

of image features might be more evident in metrics related to user engagement, such as click-

though rates, booking conversion rates, or even guest satisfaction ratings. Additionally, a 

potential limitation of this thesis lies in the use of only the thumbnail images provided for each 

Airbnb listing. As each property listing usually includes multiple images showcasing different 

parts of the property, the thumbnail image alone might not be fully representative of the 

listing’s overall aesthetic and functional appeal. In essence, the use of a single thumbnail 

image alone might not capture the full variety of rooms, amenities, and spaces offered by the 

property. Analysing multiple images would allow for a more comprehensive understanding of 

the property’s visual presentation, which could further enhance the model’s predictive 
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capability. However, this approach would significantly increase the complexity and 

computational demands of the image analysis, which should be considered in the planning 

stages of future studies.  

 

 

7. Conclusion 

The goal of this study was to answer the following problem formulation: 

How do image  features affect the predictive performance of hedonic price models for 

Airbnb listings? 

To answer the problem formulation, the inclusion of image features in the hedonic price 

models for Airbnb listings provided a slight enhancement to the predictive performance of the 

XGBoost model. Specifically, the RMSE of the XGBoost model improved from 93.10 to 91.81 

when adding the image features. While the observed improvement was not statistically 

significant, it underscores the potential utility of image features in refining the predictive 

process. Notably. The impact of these features varied across different models. Several models 

exhibited no performance improvements, or even registered a decline, when the image features 

were incorporated.  

Despite the marginal on overall predictive performance, it is important to highlight that image 

features demonstrated to be important in various model interpretation techniques. The image 

features showed consistent relevance in according to the Permutation Feature Importance 

plots, ALE plots, H-statistics, and Shapley values. This suggests that these features play a role 

in shaping the model’s decision-making process. However, image features pertaining to image 

labels did not reveal notable importance across the interpretation methods used in this study.  

These findings imply that while image features may not drastically boost overall model 

performance, they engage in significant interactions with other features, contributing to model 

complexity and decision-making nuances. This raises further questions about the intricate role 

of image features in hedonic pricing models, warranting continued exploration in this area. 
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Figure A1- Descriptive statistics. 
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Figure A1- Descriptive statistics.
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Figure B1- Lasso Tuning results. 

Figure B2- Ridge tuning results. 

52

AppendixB-Sensitivity analysis

LASSO Regression Tuning
RMSE

69

68

67

66

I
0.45

0.43-

RSQ

0.0001 0.001 O.o1 0.1 10
Regularization (L1)
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Figure B3- Elastic Net tuning results. 

Figure B4- XGBoost tuning results 
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Figure 83- Elastic Net tuning results.
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Figure 84- XG8oost tuning results
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Figure B5- Decision Tree tuning results. 

Figure B6- Random Forest tuning results 
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Figure B7- KNN tuning results. 

Figure B8- SVM tuning results 
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Figure B9- Neural Network tuning results. 
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Figure 89- Neural Network tuning results.
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Appendix C- Statistical tests 

  

Figure C1- Histogram of residuals. 

Figure C2- QQ-plot of residuals. 

Figure C3- Cullen and Frey graph of residuals 
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Figure C1- Histogram of residuals.
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Figure C3- Cullen and Frey graph of residuals
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Appendix D-Interpreting Models 

 

 
 
 
  

Figure D1- Correlation plot for continuous features. 
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Figure 01- Correlation plot for continuous features.
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