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Abstract 
This thesis uses electricity data sourced from Nord Pool and weather data obtained from Norsk 

Klimaservicesenter, seeking to forecast day-ahead spot prices by leveraging temperature-based 

demand forecasts. Through this analysis, we aim to examine the feasibility of developing a 

model that can be utilised by participants in the electricity market bidding process. A significant 

portion of our research efforts has been dedicated to exploring a SARIMAX model, which is 

widely employed in this field of research. However, we have also thoroughly examined and 

tested various alternative models to assess their viability by considering them as potential 

benchmarks.  

 

The thesis is structured into several chapters, beginning with an initial introduction that provides 

an overview of the electricity market in Norway. This section serves to establish the context 

and background for our research. Following the introduction, we delve into the presentation of 

the data and methods employed to address our research question. This chapter outlines the 

specific datasets utilised and the methodologies implemented in our analysis. Finally, we 

conclude the thesis by presenting our results and the implications our study might have for the 

participants in the Nord Pool day-ahead market. 

 

Our findings reveal a notable spurious correlation between temperature and spot price. 

However, we acknowledge that relying solely on weather variables is insufficient due to the 

influence of external factors on pricing decisions. Nevertheless, our research has yielded 

satisfactory results, with the best models achieving an overall error ranging between 5-10%. 

Our main model consistently performed well, although there were instances where alternative 

models outperformed it on specific days or weeks. 
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1. Introduction 

The electricity market plays an important role in the socio-economic development of a country, 

serving as a vital foundation for various sectors such as industry, transportation, and 

households. Recent years have witnessed an increasing emphasis on understanding pricing 

patterns, driven by several factors. 

 

Norway's electricity market has experienced significant transformations over the past decade, 

fuelled by efforts towards liberalisation and integration with international electricity networks. 

These changes have made comprehending price dynamics more challenging, as they are 

influenced by various factors such as weather patterns, market demand, fuel prices and 

regulatory policies (Statnett, n.d.). Notably, regulatory policies focused on promoting and 

integrating green energy sources have further amplified the impact of weather conditions on the 

electricity market. This heightened dependence on weather patterns arises from the green 

energy boom and the existing reliance on weather for renewable energy generation. 

 

Consequently, understanding specific weather patterns and their impact on the electricity 

market has become increasingly important. By gaining insights into these relationships, 

stakeholders can navigate the complexities presented by the interplay of weather, demand, and 

regulatory factors. 

 

This thesis aims to contribute to a deeper understanding of the influence of weather patterns on 

the electricity demand and pricing. Through comprehensive data analysis and the application 

of forecasting techniques, this research will develop models capable of predicting electricity 

prices while considering the interdependence of weather conditions. We aim to develop models, 

based on the available data, that empower electricity buyers with the ability to make informed 

bids in the electricity auction, thus enhancing their decision-making process. 
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2. Literature review 

The aspects brought to light in the introduction have led to increased amounts of research on 

weather effects on the electricity market as well as research on how to forecast electricity 

demand and spot prices. This is because electricity, by nature, cannot be stored and is therefore 

more vulnerable to uncertainty regarding climatic situations. 

 

2.1 Studies on weather effects on demand and price  

Kang and Reiner (2022) conducted a comprehensive investigation on the influence of weather 

conditions on household electricity consumption in Ireland. Their findings reveal a noteworthy 

relationship between temperature and electricity demand, indicating a consistent negative 

effect. A decrease in temperature leads to an increase in consumption, suggesting that colder 

weather prompts higher energy usage among households. 

Additionally, the study explores the correlation between rainfall and electricity demand. It is 

observed that residents tend to stay indoors during rainy periods, leading to a subsequent rise 

in electricity consumption during those hours. This connection between rainfall and increased 

energy usage varies depending on the time of day. 

 

Furthermore, Kang and Reiner (2022) examine the disparities in weather's impact on electricity 

demand between workdays and weekends. While both workdays and weekends demonstrate a 

negative relationship between temperature and demand, the study identifies certain variations 

in their respective influences. Specifically, weekends exhibit a higher sensitivity to temperature 

changes compared to workdays. 

However, it's important to note that as Kang and Reiner (2022) focus exclusively on the 

household sector, the observed differences in weather impact may not be as significant when 

considering total consumption across all sectors as we do in this thesis. 

 

In their study, Tanaka et al. (2022) examine the relationship between temperature and electricity 

spot prices, highlighting an indirect connection. They find that temperature directly influences 

the total electricity consumption, which in turn, has a direct impact on market prices. The  
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research focuses specifically on various spot price zones in Germany, enabling the authors to 

analyse the weather effects on each region separately. 

 

Through their analysis, Tanaka et al. (2022) generate forecasts that reveal distinct weather 

change effects on consumption for different regions. This indicates that the response of 

electricity consumption to weather fluctuations varies across spot price zones in Germany. 

Moreover, the study emphasises that while the effect of weather changes on the spot market 

may be smaller in magnitude, it remains significant and noteworthy. 

 

By providing insights into the complex relationship between temperature, electricity 

consumption and spot prices, Tanaka et al. (2022) contribute valuable information on the impact 

of weather on the electricity market. Their study underscores regional disparities and the 

significance of weather-related factors in price dynamics. 

 

2.2 Studies on forecasting electricity prices 

In terms of forecasting electricity prices, there are several research articles dedicated to the 

topic. Weron (2014) reviews the available solutions, revealing several different modelling 

approaches. The article highlights the attractiveness of a statistical approach because it allows 

for a physical interpretation of its components, making them easier to understand and study. It 

is underlined that the statistical method stands a good chance in the power markets due to the 

constant seasonality prevailing in all periods. 

 

Weron (2014) provides an overview of the commonly used statistical models in electricity price 

forecasting. One widely applied benchmark model is the similar-day approach, which often 

employs the naïve method as a simple implementation. Another crucial class of models for 

electricity price time series is the autoregressive models. Among them, the AutoRegressive 

Moving Average (ARMA) model stands as the standard model that considers both the random 

nature and time correlations of the data. 

 

Extensions of the ARMA model are also discussed, including the AutoRegressive Integrated 

Moving Average (ARIMA) model. The ARIMA model incorporates differencing as a tool to  
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handle non-stationary series. Additionally, the Seasonal AutoRegressive Integrated Moving 

Average (SARIMA) model is introduced. This model incorporates seasonal components into 

the models to capture recurring patterns in the data. 

 

Moreover, Weron (2014) highlights that many research papers on electricity price forecasting 

propose time series models that incorporate exogenous variables such as consumption and 

temperature. To accommodate the inclusion of these exogenous factors, generalised versions 

of the basic models are employed. Specifically, the ARMAX, ARIMAX, and SARIMAX models 

are mentioned as the generalised counterparts of ARMA, ARIMA, and SARIMA, respectively. 

These models enable the integration of external variables, allowing for a more comprehensive 

analysis of the factors influencing electricity prices. 

 

In Weron's study (2014), Computational Intelligence tools are also acknowledged for their 

valuable characteristics in electricity price forecasting. These tools possess the ability to handle 

complexity and non-linearity, which often makes them more suitable for modelling specific 

scenarios compared to traditional statistical methods. It is important to note, however, that this 

advantage does not necessarily guarantee better point forecasts in general. Instead, their strength 

lies in their effectiveness for short-term forecasting, as evidenced by the excellent performance 

reported by several authors in the field. 

 

One of the primary classes of Computational Intelligence techniques highlighted in the study is 

Artificial Neural Networks (ANNs). ANNs are well-suited for both single period forecasting 

and multi-period forecasting, such as predicting electricity prices for one hour or for a day 

consisting of 24 hours. The flexibility and adaptability of ANNs allow them to capture intricate 

patterns and relationships within the data, enabling more accurate predictions in short-term 

forecasting scenarios (Weron, 2014). 

 

We find that the most similar approach to our case is presented in Kristiansen's study (2012), 

where an autoregressive model is introduced for forecasting Nord Pool day-ahead prices. The 

model incorporates forecasted demand as an explanatory variable, alongside lagged price 

values and dummy variables to account for seasonality. This approach demonstrated strong 

performance, returning weekly and hourly percentage errors averaging around 5%. 
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performance, returning weekly and hourly percentage errors averaging around 5%.
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In Tanrisevers’ et al. 's research (2021), the authors discuss the increasing complexity of bidding 

strategies in Day-Ahead markets, leading to intricate combinatorial auctions. As a result, more 

advanced optimization techniques are needed to efficiently clear these markets. The article 

specifically highlights the prevalence of order types based on linear functions, which determine 

the quantity a bidder is willing to trade at a given price. The objective of the thesis is to provide 

forecasts ahead of the price setting, enabling market participants to better plan their bidding 

strategies in this complex environment. 

 

In our opinion, while there have been numerous studies focusing on weather effects on demand 

and forecasting spot prices using demand as a factor, there are fewer studies that consider the 

indirect influence of weather on prices. We will study this influence during this thesis, with the 

aim of providing a comprehensive understanding of relationships between weather, demand, 

and prices in electricity markets. 
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3. Theory 

In this section, the purpose is to give the reader a general understanding of spot price as a 

concept and how the power market in Norway works in general. We explain how the power 

market is organised, and how the pricing process is conducted by Nord Pool. In addition, a short 

section on the grid zones in Norway and Norwegian energy production will follow. 

 

3.1 Organisation of the power market 

The power market in Norway comprises both the wholesale market and the end-user market. In 

the wholesale market, large quantities of electricity are bought and sold by various participants 

such as producers, brokers, suppliers, energy companies and large industrial customers. 

Meanwhile in the end-user market, individual customers obtain electricity from power 

suppliers. The end-user market in Norway is divided into three equally sized segments: 

households, larger customers, such as stores and businesses, and industrial customers 

(Energifakta Norge, 2022). 

 

The day-ahead market, continuous intraday market, and balancing markets are the key 

components of the wholesale market. Among these, the day-ahead market is the primary 

platform for power trading and involves the largest volumes traded on Nord Pool. Each day at 

10:00 CET, Nord Pool publishes the available capacities on interconnectors and in the grid, 

providing buyers and sellers with two hours to submit their final bids for the auction. The 

bidding process follows the Single Day-ahead Coupling (SDAC) initiative, which aims to 

enhance the overall efficiency of trading by establishing a pan-European cross-zonal day-ahead 

market (NEMO, n.d.). 

 

During the auction buyers and sellers submit their bids, which are then matched with other 

orders. The price for each hour and bidding zone is determined at the meeting point of the sell 

price and buy price while considering network restrictions. The individual results are reported 

to buyers and sellers after publication, typically around 12:45 CET. Once the energy is 

purchased or sold, the customer is obligated to deliver or consume the corresponding amount  
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of energy (Nord Pool, n.d.-a). This process ensures transparency and enables efficient trading 

in the day-ahead market. 

 

The day-ahead market serves the essential purpose of establishing an equilibrium between the 

supply and demand of electricity. This equilibrium is crucial due to the inability to store 

electricity efficiently and the significant costs associated with supply failures. The day-ahead 

market achieves equilibrium by matching the bids made by producers indicating the quantity 

they are willing to supply at specified prices, with the bids made by consumers specifying the 

amount they plan to consume at different prices. This process ensures that the demand for 

electricity is met while minimising social costs (Energifakta Norge, 2022). 

 

The hydropower's high storage capacity plays a vital role in the functionality of the Norwegian 

electricity system. The flexibility provided by hydropower enables easier matching of supply 

and demand in the Norwegian market. This flexibility allows hydropower producers to adjust 

their production levels based on the changing demand, contributing to the stability of the system 

(Energifakta Norge, 2021). Figure 3.1 (Coester et al., 2018) illustrates the supply and demand 

curves in the spot market, visually depicting the relationship between price and quantity in the 

electricity market. 

 

Figure 3.1  
Supply and demand curve on the spot market 
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Overall, the goal of Nord Pool’s Day-ahead market is to maximise social welfare while taking 

into consideration network constraints provided by the transmission system operators (Nord 

Pool, n.d.). 

3.1.1 Price zones 

In addition to system prices, Nord Pool also sets area prices by considering congestion on the 

grid while balancing between purchase and sales bids. Norway's power grid system is divided 

into five zones, as seen in figure 3.2 below (Statnett, 2023).  

 

Figure 3.2  
Norway´s five price zones 

 
 

During this paper we will refer to NO1 as east, NO2 as south, NO3 as mid, NO4 as north and 

NO5 as west. These zones differ both in capacity on the supply side as well as on the demand 

side due to population differences. 
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Norway’s weather-based power system creates varying situations throughout the country, hence 

the separation into zones. There is limited transmission capacity in the power grid system, with 

these bottlenecks proving a decisive factor for the different pricing of the areas (Statnett, 2023).  

 

3.2 Norwegian electricity production 

Norway is one of the leading countries in the world on renewable energy production and 

consumption. Over 90% of Norwegian energy production in 2021 came from hydropower, 

while the majority of the remaining 10% came from wind power, according to Statista (2023). 

 

Figure 3.3  
Distribution of energy production in Norway in 2021 

 
 

A special feature of Norway's hydropower generation is its high storage capacity. More than 

75% of the production capacity is flexible, meaning production can be rapidly increased and 

decreased at low cost. On the other hand, wind power is intermittent, which means electricity 

can only be generated when energy is available (Energifakta Norge, 2021). 
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A special feature of Norway's hydropower generation is its high storage capacity. More than

75% of the production capacity is flexible, meaning production can be rapidly increased and

decreased at low cost. On the other hand, wind power is intermittent, which means electricity

can only be generated when energy is available (Energifakta Norge, 2021).
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4. Data 

In this chapter, we present the data used throughout the analysis of the project, which is a 

combination of electricity market data supplied by Nord Pool and weather data gathered from 

Norsk Klimaservicesenter (Seklima, n.d.). All data gathered are hourly and spans over ten years, 

from 01.01.2013 until 31.12.2022. Additionally, we will present some initial analysis that has 

had an impact on our chosen methodological approach. 

 

4.1 Variable selection 

4.1.1 Norsk klimaservice data 

In our thesis, we aim to examine the link between weather and electricity prices in Norway and 

develop a forecasting model that utilises weather data as a factor. While various weather 

phenomena such as wind, precipitation and temperature can influence electricity prices, we will 

focus primarily on temperature due to several justifications specific to the Norwegian context. 

 

Firstly, when considering the importance of different weather types on spot prices, wind energy 

plays a relatively minor role in Norway's total electricity production mix. As a result, the 

contribution of wind energy to the overall supply is not significant, making it less relevant as a 

predictive factor for electricity prices. Similarly, variations in precipitation have minimal short-

term impact on the availability of water resources for hydropower due to Norway's extensive 

network of water reservoirs, which very rarely reach critically low levels (NVE, n.d.). 

Consequently, precipitation is also excluded as a predictive factor. 

 

Secondly, considering the appliance of our model on real-time weather forecasts, it is essential 

to consider the general accuracy of these forecasts for each weather metric. Temperature 

forecasts are relatively more accurate and less likely to exhibit significant fluctuations 

compared to wind and precipitation forecasts (Drigo, n.d.). Temperature is also less prone to 

displaying very local variations, which can be important when using multiple weather stations 

to cover an entire zone. Hence, including variables that have higher forecast uncertainty could 

lead to a less accurate electricity price forecasting model. 
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Taking these factors into consideration, we conclude that temperature has the most significant 

impact on electricity prices in Norway due to its direct link to consumption, as we will 

demonstrate later in the thesis. 

Temperature 
This variable contains hourly lowest observed temperature in each meteorological station 

considered, given in degrees Celsius. As Kang and Reiner (2022) depicts, there is reason to 

believe there is a direct relationship between temperature and consumption. 

 

There are numerous alternatives for representing temperature in electricity consumption 

analysis, one common measure being heating degree days and cooling degree days. These 

measures might give a better picture in modelling consumption as they are created to directly 

assess the heating and cooling needs. However, the climate in Norway is colder than most 

countries, making the relationship between temperature and consumption for the most part flat 

negative. Hence, the use of actual observed temperature values is in our view more suitable for 

this project. 

4.1.2 Nord Pool data 

Spot price 

Our main dependent variable in this project is the hourly day-ahead prices, expressed in 

Norwegian Kroner per megawatt-hour (NOK/MWh) for all five electricity zones. These prices 

are updated daily after the day-ahead price setting process conducted by Nord Pool. We will 

analyse and utilise historical data on these prices to develop our forecasting model and examine 

the relationship between prices and the weather variable we have selected. 

Consumption 

This variable represents hourly total consumed electricity in megawatt-hours (MWh/h) for all 

of Norway's five electricity zones, serving as an indicator of the demand side in the system 

price equilibrium model. As electricity consumption occurs in response to demand, this variable 

captures the total amount of electricity consumed in each hour for all zones in Norway. It plays 

a crucial role in understanding the relationship between electricity demand and the  
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corresponding pricing dynamics. By incorporating this variable into our analysis, we can better 

assess the interplay between electricity consumption and pricing in the Norwegian electricity 

market. 

4.1.3 Created variable 

Weekday 

This variable represents the day of the week in our time series dataset, providing information 

about the specific weekday for each observation. By including this factor variable in our model, 

we can capture and analyse patterns that are unique to specific weekdays. This variable 

essentially serves the same purpose as the dummy variable incorporated in the study developed 

by Kristiansen (2012). It is particularly valuable when dealing with time series data that exhibits 

weekly seasonal patterns, as the variable provides a more comprehensive understanding of the 

dynamics within the time series. 

 

4.2 Pre- processing 

In this project, the programming language R and the integrated development environment (IDE) 

RStudio are utilised for data handling and analysis. R is chosen due to its suitability for dataset 

analysis, along with its extensive collection of packages for data gathering, visualisation and 

time series modelling. The project can technically be divided into two main parts: pre-

processing and analysis. Separate R scripts are employed for each part, with one script dedicated 

to pre-processing tasks that prepare the data for analysis. Another script contains the analytical 

steps, including model training, validation, and testing. 

 

The following R packages are used in this project: 

Tidyverse: A comprehensive collection of open-source packages (such as ggplot2, dplyr, etc.) 

that simplifies coding tasks by following a consistent design philosophy. 

Readxl: Enables the loading and reading of Excel documents into R data frames. 

Lubridate: Designed to facilitate working with dates in R, making date manipulation tasks more 

straightforward. 
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Stringr: Provides a set of functions specifically designed to simplify working with strings (text 

elements). 

Strex: Contains additional string manipulation functions that complement the functionality 

provided by the stringr package. 

Fpp3: A collection of packages created by the authors of the book "Forecasting: principles and 

practice 3rd ed.", Rob Hyndman and George Athanasopoulos. These packages cover a wide 

range of forecasting tasks, from time series data manipulation to the development of forecasting 

models. 

4.2.1 Data cleaning 

The cleaning process of this project is carried out with the goal of creating a single analysis-

ready dataset that includes all utilised variables, matched on time. The steps involved in this 

process include merging the collected weather and electricity data for each zone, as well as 

replacing any missing values in the merged set. 

4.2.2 Aggregation of weather variables 

The weather data are aggregated based on the population distribution within each power zone. 

Here is a summary of the aggregation process for each zone: 

East 

This zone consists of two meteorological stations, Blindern in Oslo and Stavsberg in Hamar. 

The population in and around Oslo is the most densely populated area in Norway, so the weather 

station in Oslo has a greater impact on electricity demand. The impact of the weather stations 

is weighted with 85% for Oslo and 15% for Hamar, considering the potential different climate 

in the northern regions of eastern Norway. Mathematically, the aggregating can be written in 

the following manner: 

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  =  0.85𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑂𝑂𝐸𝐸𝑂𝑂𝑂𝑂 + 0.15𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐻𝐻𝐸𝐸𝐻𝐻𝐸𝐸𝐻𝐻 
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tempEast 0.85temp0510 + 0.15tempHamar
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South  

The south zone is complex to aggregate due to its large area, which includes the southern part 

of western Norway, the southern coast and the western parts of eastern Norway. To capture the 

climatic situation in this diverse zone, three meteorological stations are included. The most 

populated area in the southern part of western Norway is represented by a station in Sola, 

Stavanger, which is given a weight of 40%. The eastern area of the zone, including towns in 

Telemark and Vestfold, is represented by a station in Porsgrunn, weighted at 35%. The 

remaining 25% weight is assigned to the southern coast, represented by a station in Kjevik, 

Kristiansand.  

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑆𝑆𝑂𝑂𝑆𝑆𝐸𝐸ℎ  =  0.4𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝐻𝐻 + 0.35𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑃𝑃𝑂𝑂𝐻𝐻𝐸𝐸𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 + 0.25𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐾𝐾𝐻𝐻𝐾𝐾𝐸𝐸𝐸𝐸𝐾𝐾𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝑆𝑆𝐾𝐾 

Mid  

The mid zone includes the middle part of Norway, including Trøndelag and the northern area 

of the western coast. The population is evenly distributed between Trøndelag and the towns on 

the west coast such as Ålesund and Molde. Therefore, two meteorological stations are included 

with equal weights, one in Trondheim and the other in Vigra, Ålesund.  

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑀𝑀𝐾𝐾𝐾𝐾  =  0.5𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑇𝑇𝐻𝐻𝑂𝑂𝑆𝑆𝐾𝐾ℎ𝑆𝑆𝐾𝐾𝐻𝐻 + 0.5𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝Å𝑂𝑂𝑆𝑆𝐸𝐸𝑆𝑆𝑆𝑆𝐾𝐾 

North 

The north zone covers all of Norway north of Trøndelag, which is a sparsely populated area. 

The population is concentrated in and around Tromsø, with smaller towns located further south. 

To represent these areas, one meteorological station is included in Tromsø and another in 

Skamdal, close to Mo i Rana, with equal weights.  

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑁𝑁𝑂𝑂𝐻𝐻𝐸𝐸ℎ  =  0.5𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑇𝑇𝐻𝐻𝑂𝑂𝐻𝐻𝐸𝐸ø + 0.5𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑀𝑀𝑂𝑂 𝐾𝐾 𝑅𝑅𝐸𝐸𝑆𝑆𝐸𝐸  

West 

This zone includes the populated area in and around Bergen and extends east inland towards 

central parts of southern Norway, which have a different climate. The inland areas are sparsely  
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populated area in the southern part of western Norway is represented by a station in Sola,

Stavanger, which is given a weight of 40%. The eastern area of the zone, including towns in

Telemark and Vestfold, is represented by a station in Porsgrunn, weighted at 35%. The

remaining 25% weight is assigned to the southern coast, represented by a station in Kjevik,

Kristiansand.

t e m p s o u t h 0 . 4 t e m p s t a v a n g e r + 0 . 3 5 t e m p P o r s g r u n n + 0 . 2 5 t e m p K r i s t i a n s a n d

Mid

The mid zone includes the middle part of Norway, including Trøndelag and the northern area

of the western coast. The population is evenly distributed between Trøndelag and the towns on

the west coast such as Ålesund and Molde. Therefore, two meteorological stations are included

with equal weights, one in Trondheim and the other in Vigra, Ålesund.

t e m p M i d O . S t e m p T r o n d h e i m + O . S t e m p Å l e s u n d

North

The north zone covers all of Norway north of Trøndelag, which is a sparsely populated area.

The population is concentrated in and around Tromsø, with smaller towns located further south.

To represent these areas, one meteorological station is included in Tromsø and another in

Skamdal, close to Mo i Rana, with equal weights.

t e m p N o r t h O . S t e m p T r o m s ø + O . S t e m p M o i Rana

West

This zone includes the populated area in and around Bergen and extends east inland towards

central parts of southern Norway, which have a different climate. The inland areas are sparsely
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populated, so most significance is given to the meteorological station in Bergen, with an 

assigned weight of 75%. The remaining 25% is assigned to a station in Sogndal.  

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑊𝑊𝑆𝑆𝐸𝐸𝐸𝐸  =  0.75𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐵𝐵𝑆𝑆𝐻𝐻𝑆𝑆𝑆𝑆𝑆𝑆 + 0.25𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑆𝑆𝑂𝑂𝑆𝑆𝑆𝑆𝐾𝐾𝐸𝐸𝑂𝑂 

 

Missing values occasionally occur in the weather data. In zones with two meteorological 

stations, missing values are replaced with the corresponding value from the other station at the 

same hour. In the south zone, which has three meteorological stations, missing values are 

replaced with the mean of the observations from the other two stations to simplify the process. 

 

By aggregating the weather variables based on population distribution and handling missing 

values, the project ensures a representative view of the climate situation in each power zone for 

residents and industries in Norway. 

 

4.3 Initial analysis of data 

Performing initial analysis and detecting patterns in the data is crucial for model selection and 

development. Seasonalities and correlations between variables are important insights to 

consider. We create trend lines using the smoothed conditional means function (geom_smooth) 

from the ggplot2 package to help visualise these patterns and aid in understanding the data. 

 

The smoothed conditional means function uses locally estimated scatterplot smoothing 

(LOESS) to create trend lines. LOESS is a technique that helps identify patterns in data by 

fitting a smooth curve to the scatterplot while considering the local neighbourhood of each 

point. This approach is particularly useful when dealing with datasets that have a large number 

of observations, making it difficult to plot each point individually (Wickham et. al., n.d). 

 

By using the trend line, we can observe the general trend in the data and identify any notable 

patterns or trends. Conducting this initial analysis and visualising the data gives valuable 

insights into the data's characteristics, which can guide the model selection and development 

process. 
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4.3.1 Time period for analysis 

In recent times, a confluence of events on the global stage has led to a significant surge in 

electricity prices throughout Europe. The primary factor behind this abnormal increase can be 

traced to a shortage of access to natural gas, compounded by a lack of Russian exportation. 

Several factors have contributed to this situation, including political tensions, disruptions in gas 

supply routes, and a shift towards renewable energy sources. Politically motivated conflicts and 

strained relations between certain nations have hindered the smooth flow of natural gas, leading 

to reduced availability and higher prices. Furthermore, the transition towards renewable energy, 

while commendable in the long run, has caused an interim dependency on natural gas as a 

backup source, intensifying the impact of its scarcity. As a result, Europe finds itself grappling 

with abnormally high electricity prices, Norway included (Statnett, n.d.). 

 

Figure 4.1  
Spot price yearly aggregated 
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As figure 4.1 shows, the development in price from late 2020 have been extreme and has had 

little to do with abnormal weather or consumption. Hence, we will in this study focus on years 

pre-dating this development.   

4.3.2 Seasonality 

Our initial analysis uncovered multiple seasonalities in our data, especially concerning 

consumption, which is not surprising given its commonly observed relationship with 

temperature. We will present discoveries made below. 

Daily seasonalities 

The plots shown below indicate that there are daily seasonal patterns related to both 

consumption and price. The values are averaged across all zones, and hours. 

 

Figure 4.2  
Consumption hourly aggregated 

 
 

The pattern observed in figure 4.2 provides valuable insights into the consumption behaviour 

in the electricity market. Commonly, a consumption peak appears daily around 10:00 - 11:00 

and remains at high levels before declining rapidly from around 20:00 in the evening. The daily 

consumption peak during working hours aligns with the fact that approximately two-thirds of  
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The pattern observed infigure 4.2 provides valuable insights into the consumption behaviour

in the electricity market. Commonly, a consumption peak appears daily around 10:00 - l 1:00

and remains at high levels before declining rapidly from around 20:00 in the evening. The daily

consumption peak during working hours aligns with the fact that approximately two-thirds of
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the total consumption is attributed to industry and businesses. As businesses and industrial 

factories typically operate at full capacity during the morning hours, the electricity demand 

increases, leading to the consumption peak around 10:00 - 11:00. This can be attributed to the 

increased energy usage in manufacturing processes, office buildings, and other commercial 

activities. 

 

Furthermore, the sustained high levels of consumption throughout the day indicate that the 

demand remains relatively constant during working hours, reflecting the continued energy 

needs of industries and businesses. As the evening approaches, the electricity demand starts to 

decline rapidly from around 20:00, which can be attributed to the end of the workday and the 

reduced energy requirements during night-time hours. 

 

It is also worth noting that residential homes typically experience higher heating demands 

during the morning hours, especially during colder periods, which can contribute to the 

consumption peak observed during that time. This can be attributed to the need for heating in 

residential buildings as people wake up and prepare for their day. 

 

Figure 4.3  
Spot price hourly aggregated 
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The graph of daily spot prices exhibits a similar pattern to the consumption plot, albeit with 

some differences. This observation suggests a potential correlation between the variables and 

provides valuable insights into the dynamics of the electricity market. 

 

The observed similarity in patterns between the spot prices and consumption suggests a 

relationship between the two variables. This correlation can be attributed to the fundamental 

principles of supply and demand in the electricity market. As the consumption increases during  

 

peak hours, the demand for electricity rises, which can put upward pressure on prices due to the 

limited availability of supply. Similarly, as the consumption decreases during non-peak hours, 

the demand decreases, which can lead to a decrease in prices. 

 

The dip in prices appearing around 14:00 -15:00, distinct from the consumption pattern, 

indicates a unique behaviour in the electricity market. This dip can be influenced by various 

factors, such as changes in electricity supply or market dynamics. One possible explanation is 

the availability of additional electricity generation resources during that time, which can lead 

to increased supply and consequently lower prices. It could also be related to the behaviour of 

market participants, such as the scheduling of electricity production or the presence of specific 

contracts or pricing mechanisms during that time period. 

 

The return of prices to levels similar to consumption towards the evening suggests a 

convergence of supply and demand conditions. As evening approaches and consumption 

decreases, prices have the potential to revert back to levels seen earlier in the day, assuming the 

supply conditions remain relatively stable. 

Weekly seasonality 

There are clear weekly seasonalities observed in the data. During weekends, electricity 

consumption is, on average, 150-200 MWh lower per hour compared to workdays. The lowest 

consumption is typically recorded on Sundays, as several businesses and industries are shut 

down during weekends. The table below shows average hourly electricity consumption in Mwh 

for each weekday, aggregated on all zones and rounded to the closest whole digit: 
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Table 4.1  
Hourly average consumption across all zones for each weekday 

 
 

A similar pattern is present when aggregating hourly spot prices for each weekday. The 

similarities implies that there is a correlation between prices and consumption in our time series. 

Average price for each weekday in NOK is shown below, rounded to the closest whole digit: 

 

Table 4.2  
Hourly average spot price across all zones, given in NOK per Mwh 

 
 

4.3.3 Correlation 

The analysis shown above indicates that the price follows the consumption to a degree which 

implies that there might be a direct correlation between prices and consumption in our data, 

matching the discoveries made by Kristiansen (2012). Kang and Reiner (2022) define a direct 

negative relationship between consumption and temperature. These observations in addition to 

the article from Tanaka (2022) sets the foundation for our expectations when studying 

correlations between variables closer. 
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Table 4.1
Hourly average consumption across all zones for each weekday

Day Amount consumed
Mon 3058 Mwh
Tue 3074 Mwh
Wed 3071 Mwh
Thu 3072 Mwh
Fri 3056Mwh
Sat 2906 Mwh
Sun 2858Mwh

A similar pattern is present when aggregating hourly spot prices for each weekday. The

similarities implies that there is a correlation between prices and consumption in our time series.

Average price for each weekday in NOK is shown below, rounded to the closest whole digit:

Table 4.2
Hourly average spot price across all zones, given in NOK per Mwh

Day Price
Mon 419 NOK
Tue 428 NOK
Wed 421 NOK
Thu 420NOK
Fri 410NOK
Sat 382 NOK
Sun 368 NOK

4.3.3 Correlation

The analysis shown above indicates that the price follows the consumption to a degree which

implies that there might be a direct correlation between prices and consumption in our data,

matching the discoveries made by Kristiansen (2012). Kang and Reiner (2022) define a direct

negative relationship between consumption and temperature. These observations in addition to

the article from Tanaka (2022) sets the foundation for our expectations when studying

correlations between variables closer.
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Figure 4.4  
Relationship between consumption and spot price 

 
 

The plot highlighting the relationship between energy consumption and spot prices provides a 

visual representation of the potential impact of consumption on prices. By filtering the data on 

pre-dating 2021, we aim to exclude the influence of external factors that have distorted the 

relationship between consumption and prices in recent times. 

 

The clear pattern observed in the plot suggests that consumption indeed plays a significant role 

in influencing spot prices. As consumption levels increase, spot prices tend to follow a similar 

trend. This relationship aligns with the basic principles of supply and demand, where higher 

demand typically leads to higher prices. 
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The plot highlighting the relationship between energy consumption and spot prices provides a

visual representation of the potential impact of consumption on prices. By filtering the data on

pre-dating 2021, we aim to exclude the influence of external factors that have distorted the

relationship between consumption and prices in recent times.

The clear pattern observed in the plot suggests that consumption indeed plays a significant role

in influencing spot prices. As consumption levels increase, spot prices tend to follow a similar

trend. This relationship aligns with the basic principles of supply and demand, where higher

demand typically leads to higher prices.
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Figure 4.5  
Relationship between temperature and consumption 

 
 

The above plot clearly demonstrates a noticeable pattern showcasing an inverse relationship 

between temperature and consumption. This indicates that temperature plays a crucial role in 

influencing consumption levels. This trend holds true for temperatures below approximately 

10-12 degrees Celsius. The consumption stays generally close to a constant level above this 

point, showing that electricity consumption in Norway is almost exclusively used for heating 

rather than cooling. These findings have led us to believe that temperature might have a 

significant effect on the price, indirectly. 

 

However, to include both temperature and consumption in the spot price model can complicate 

the interpretation of the price forecast, as already heavily correlated variables such as 

consumption forecasted via temperature and actual temperature might lead to multicollinearity. 

The results would be less reliable as well since the deployment of the model with forecasted 

temperature instead of actual observations would magnify the negative effect of weather 

forecast errors.  
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The above plot clearly demonstrates a noticeable pattern showcasing an inverse relationship

between temperature and consumption. This indicates that temperature plays a crucial role in

influencing consumption levels. This trend holds true for temperatures below approximately

10-12 degrees Celsius. The consumption stays generally close to a constant level above this

point, showing that electricity consumption in Norway is almost exclusively used for heating

rather than cooling. These findings have led us to believe that temperature might have a

significant effect on the price, indirectly.

However, to include both temperature and consumption in the spot price model can complicate

the interpretation of the price forecast, as already heavily correlated variables such as

consumption forecasted via temperature and actual temperature might lead to multicollinearity.

The results would be less reliable as well since the deployment of the model with forecasted

temperature instead of actual observations would magnify the negative effect of weather

forecast errors.
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5. Methodology 

This chapter will provide a comprehensive overview of the methodological approach employed 

in this project, focusing on the creation, deployment, and evaluation of our forecasting models. 

We delve into the theoretical underpinnings that are fundamental, covering essential concepts 

and principles. Furthermore, we will discuss the specific models we have utilised, highlighting 

their relevance and applicability. By presenting the theoretical foundation alongside the 

practical implementation of the models, we aim to provide an understanding of our 

methodology and its effectiveness in generating accurate forecasts. 

 

5.1 Time series modelling 

A time series refers to a sequential collection of observations recorded over time, typically at 

regular intervals. The specific time intervals considered may vary depending on the scope and 

nature of the project. Time series forecasting aims to predict the future continuation of such 

observations by analysing patterns inherent in the data. Time series data often exhibit various 

patterns, such as trends, seasonalities, or cyclic behaviours, making them valuable resources in 

forecasting projects. These time series are composed of different components, each representing 

an underlying pattern that contributes to the overall behaviour of the data (Hyndman & 

Athanasopoulos, 2021). 

5.1.1 Forecasting horizon 

In electricity price forecasting models, the forecasting horizons are typically categorised into 

short-term, medium-term, and long-term forecasts. Each category serves different purposes and 

timeframes in the energy industry. 

 

Short-term forecasts are focused on hourly or daily predictions and are primarily utilised for 

day-to-day operational planning. They provide valuable insights into near-term electricity price 

fluctuations and are commonly used by market participants for activities such as scheduling  
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energy generation and consumption, optimising trading strategies, and managing supply-

demand imbalances.  

 

Medium-term forecasts cover a time span ranging from a few days to a few months. They are 

employed for activities such as balance sheet calculations, risk management, and evaluating 

potential hedging strategies. These forecasts help market participants make informed decisions 

related to resource allocation, budgeting, and portfolio management. 

 

Long-term electricity price forecasts extend over quarters or even years. They are typically 

utilised for strategic planning and investment decision-making. Market participants, including 

energy companies, investors, and policymakers, rely on long-term forecasts to assess the 

economic viability of new projects, evaluate profitability, and plan long-term energy 

procurement or infrastructure development (Weron, 2014). 

 

In this project, the focus is on developing a short-term forecasting model for day-ahead 

electricity prices, aiming to assist market participants in making informed decisions regarding 

bidding prices and volumes for the upcoming day. The model utilises meteorological data to 

generate daily forecasts of hourly spot prices. By focusing on short-term forecasting, the model 

can leverage the more accurate and precise weather forecasts available for the near future. 

 

Furthermore, studying patterns in different climatic situations is important as the impact of 

temperature on electricity demand varies throughout the year. By deploying the forecasting 

models on both winter and summer dates, the project aims to capture and analyse the distinct 

patterns and dynamics associated with different seasons. The combination of short-term 

forecasting and the consideration of different climatic situations enables the development of a 

more robust and accurate model for day-ahead spot price forecasts. This information can 

empower market participants to make well-informed bidding decisions, optimise their trading 

strategies, and effectively manage their operations in the electricity market. 
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5.1.2 Cross validation 

To ensure a reliable assessment of how well a forecast model generalises to unseen data, it is 

crucial to evaluate its performance on data that was not used during the model fitting process, 

which helps provide a reliable assessment of how well the model generalises to unseen data. To 

is commonly achieved by dividing into training and test sets, where the training data is used to 

estimate model parameters, while the test data used to evaluate the model's performance. 

 

The division of data into training and test sets is commonly done by allocating a certain 

proportion of the full dataset to each set. It is typical to allocate around 75-80% of the data for 

training and the remaining portion for testing. This approach allows the model to learn from a 

substantial portion of the data while still providing an independent dataset for evaluation. 

 

Another variation of the validation process is time series cross-validation. In this approach, a 

series of training sets and corresponding test sets are created. The test set typically consists of 

a single observation that immediately follows each training set. This method captures the 

temporal dependence in time series data and provides a more realistic evaluation of the model's 

performance (Hyndman & Athanasopoulos, 2021).  

Chapter 5.10 in Hyndman & Athanasopoulos (2021) provides an illustration of the procedure: 

 

Figure 5.1  
Illustration of the time series cross validation process 
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The blue dots represent the training set while the orange ones represent the test set. The 

procedure starts with using a training set which contains n observations, forecasting n+1. The 

next step will include the original 𝑛𝑛 + 1 value and forecast 𝑛𝑛 + 2. To calculate the accuracy, 

one simply averages the error of the forecasted values from each “roll”. Because of the nature 

of this procedure, the method is often referred to as an “evaluation on a rolling forecasting 

origin” (Hyndman & Athanasopoulos, 2021). 

 

In our analysis, we are interested in forecasting day-to-day, which in our case with hourly data 

would mean forecasting 24 steps ahead over a period of one week. The initial training set will 

contain one year of data and will, for each roll, include one additional day - forecasting the next 

day. This will result in 7 folds of data containing forecasts from Monday till Sunday. 

The decision to limit the training period to one year, specifically from summer/winter 2018 to 

the same period in 2019, is based on several factors. Firstly, we find that the accuracy of the 

forecasts does not significantly improve with training periods longer than a year. By focusing 

on a one-year training period, computational time can be optimised without sacrificing forecast 

accuracy. Secondly, when selecting the time period for analysis, the project aims to use data 

from "normal" years that are close to present time. This choice ensures that the training data 

reflects recent patterns and trends in electricity consumption and spot prices. By considering 

data from recent years, the models can capture the most relevant and up-to-date information for 

forecasting. 

Additionally, the decision to start the training set one year before the chosen forecasting period 

(summer and winter) in 2019 avoids including a seasonal period twice. For example, if the 

training data were from January 2018 to July 2019, the months from January to July would be 

repeated in both the training and forecasting periods. This repetition could potentially introduce 

bias and unevenly fit the model, giving more weight to the seasonal impact of those specific 

months. 

The time series cross-validation procedure has both been used to determine the accuracy of our 

models and to produce our final forecasts, as it is a good way of forecasting multiple steps 

ahead, with a rolling training set, resembling a real-life scenario with the latest data. As 

mentioned, we split the data used in a summer- and winter to capture the seasonal climate  
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change. This is done both when addressing the optimal model to proceed with and when our 

final forecasts are computed. 

5.1.3 Transformation 

In time series forecasting, the objective is to accurately predict future values based on historical 

data and patterns. Simplifying these patterns can lead to improved model performance and more 

accurate forecasts. One approach to achieve this is through mathematical transformations. Two 

common methods are: taking the natural logarithm of the observations or using a power 

transformation (Hyndman & Athanasopoulos, 2021). 

 

Power transformations involve raising the observations to a certain power, such as squaring or 

cubing them, to achieve the desired transformation. These transformations can help stabilise 

variances or linearise relationships between variables, making them more amenable to 

modelling and analysis. 

 

Box-Cox transformation is a flexible technique that combines both logarithmic and power 

transformations. In this analysis, we will use a modified version of the Box-Cox transformation 

(Box, 1964) developed by Bickel and Doksum (1981), which allows for negative values 

(Hyndman & Athanasopoulos, 2021). Although consumption values are never negative, we 

choose this modified version to maintain consistency in our analysis, as we will apply the Box-

Cox transformation to the spot price, which can be negative, to investigate if it improves the 

accuracy of forecasts or not. 

The modified Box-Cox transformation can be represented as follows: 

 

 
Where: 

 is the transformed observations, 

 is the original observations and 

 is the transformation parameter. 
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Where:

Wt is the transformed observations,
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The transformation will with 𝞴𝞴 ≠ 0  use a power transformation. If 𝞴𝞴 = 0 a natural logarithm 

will be used. The estimation of 𝞴𝞴 can be obtained by utilising the R package fpp3, which uses 

the method presented in Guerrero (1993) to calculate the optimal value. The optimal value of 𝞴𝞴 

will minimise the variation across the time series, often resulting in more accurate forecasts. 

5.1.4 Model selection 

Given the frequent instances where one must choose between models with varying parameters, 

the Corrected Akaike Information Criterion (AICc) plays a vital role in guiding the selection 

process towards identifying the optimal model. AICc is a bias-corrected version of Akaike 

Information Criterion (AIC) utilised to avoid small sample bias (Hyndman & Athanasopoulos, 

2021). Even though one does not encounter this bias, the use of AICc is still generally used as 

the tradeoff in using AICc instead of AIC is minimal compared to the potential benefit in 

avoiding bias. As the extra calculations are no problem when working on a computer, the AICc 

will be used in this thesis. The AICc will take into account how well-fit the model is, along with 

penalising models which have an excessive number of parameters. The lower the AICc value 

is, the better fit the model has. The general AICc is typically modelled as following: 

 

 

 
Where: 

 is the likelihood for the model, 

 is the number of parameters estimated and 

 is the number of observations in the data. 

 

The model which returns the lowest AICc will be the one that fits the data the best, hence often 

producing good forecasts. When choosing between the same models with different parameters, 

we will, in most cases, utilise the AICc. 
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AIC = -2log(L)+ 2k

AICc = AIC + 2k(k + l)
n - k - l

Where:

L is the likelihood for the model,

k is the number of parameters estimated and

n is the number of observations in the data.

The model which returns the lowest AICc will be the one that fits the data the best, hence often

producing good forecasts. When choosing between the same models with different parameters,

we will, in most cases, utilise the AICc.
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5.2 Forecasting models 

Several forecasting models have been employed throughout this project. The main model used 

to incorporate exogenous effects into our model is the SARIMAX model. Additionally, we have 

included a variety of benchmark models to gain a better understanding of the data’s behaviour 

from a forecasting perspective and to assess the actual impact of the exogenous variables. 

Statistical models deployed include SARIMAX, SNAÏVE and ETS. Furthermore, we have 

included a Neural Network as a computational intelligence model. Lastly, we also include a 

combinational model to study the effect of aggregating the different forecasting models. 

5.2.1 SNAÏVE 

The Seasonal Näive (SNAÏVE) model is based on the naïve method, where all forecasts are set 

to the value of the last observation. The difference is that instead of simply copying the last 

observation, the SNAÏVE sets each forecast to be equal to the last observation from the same 

season. This means that forecasts for a particular hour are set to the same hour of the previous 

day/week, or forecasts of a particular day are set to the same day of the previous month 

(Hyndman & Athanasopoulos, 2021). The SNAÏVE can be expressed as following: 

 

 
Where: 

 is the forecast horizon, 

 is the forecasted value ℎ  timesteps ahead, 

 is the seasonal period and 

 is the integer part of (𝒉𝒉 − 𝟏𝟏)/𝒎𝒎, which represent the number of seasonal periods that have 

occurred during ℎ. 

 

The overall simplicity of the SNAÏVE model makes it suitable as a benchmark for comparing 

against other more computationally intensive models. The seasonal component in the model  
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observation, the SNAIVE sets each forecast to be equal to the last observation from the same

season. This means that forecasts for a particular hour are set to the same hour of the previous

day/week, or forecasts of a particular day are set to the same day of the previous month

(Hyndman & Athanasopoulos, 2021). The SNAIVE can be expressed as following:

"Yt+hlt = Yt+h-m(k+l )
Where:

h is the forecast horizon,
A,

Yt+hlt is the forecasted value h timesteps ahead,

m is the seasonal period and

k is the integer part of (h - 1) /m , which represent the number of seasonal periods that have

occurred during h.

The overall simplicity of the SNAIVE model makes it suitable as a benchmark for comparing

against other more computationally intensive models. The seasonal component in the model
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even makes it a suitable candidate as an accurate model for scenarios where values between 

periods do not differ heavily from each other (Hyndman & Athanasopoulos, 2021). 

5.2.2 ETS 

Exponential smoothing is a forecasting method that can be considered “one step” more complex 

than typical naïve methods. The easiest way in looking at the exponential smoothing model, is 

to think of it as a combination of the naïve and the simple average models. While the naïve 

method is “only” looking at the most recent observations and considers only those as important 

for future forecasts, the average method works as the polar opposite; every historical 

observation is taken into account, treating them as equals for future forecasts. Both methods 

can be seen as quite extreme, and a combination of these is often a preferred option. This is 

where the exponential smoothing model comes into play. 

 

The idea behind exponential smoothing is toincorporate not only the most recent observation, 

but also older observations. However, the weight assigned to each observation diminishes as 

the observation gets older, meaning recent observations carry more weight in the forecast 

compared to older observations. This weighting scheme allows for a flexible and adaptive 

approach to capturing patterns and trends in the data (Hyndman & Athanasopoulos, 2021). A 

simple exponential smoothing (SES) model´s forecast equation can be represented as follows:  

 
where: 

  is the value of a one-step ahead forecast, 

 is the smoothing parameter, taking a value between 0 and 1 and 

 is the value of the observation at time 𝑡𝑡. 

 

In 1957, Holt introduced an enhancement to exponential smoothing by incorporating a trend 

component into the model (Holy, 1957). This advancement allowed for the capture of trend 

patterns in time series data. Three years later, Winters further extended the model by including 

the ability to capture seasonal patterns as well (Winters, 1960). With these additions, the 

exponential smoothing model evolved into what is commonly known as ETS (Error, Trend,  
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Seasonality), which encompasses the error term as well as trend and seasonal components in 

the forecasting equation. 

 

However, the Holt-Winters (ETS) equation varies depending on the nature of the seasonal 

component. The seasonal component can be split into two varieties: additive and multiplicative 

methods. The preferred method depends on the characteristics of the data being analysed. If the 

seasonal variation remains relatively constant throughout the time series, an additive method is 

preferred, whereas if the seasonal variation varies in proportion to the time series, the latter is 

favourable (Hyndman & Athanasopoulos, 2021).  

The following forecast equations can be modelled as: 

 

Additive 

     (forecast equation) 

  (level component) 

    (trend component) 

   (seasonal component) 

 

Where: 

 are smoothing parameters taking values between 0 and 1, respectively representing 

weights for the level, trend and seasonality, 

 is the seasonal period, 

 is the forecasting horizon, 

 is the forecasted value ℎ timesteps ahead and 

 is the integer part of (ℎ − 1)/𝑡𝑡 , which represent the number of seasonal periods that have 

occurred during ℎ. 
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Additive

Yt+hlt = it + hbt + 8t+h-m(k+l)

Lt = a(yi - B t - m ) + (l - a)(i t - l + bt-d
bt = fl"(l.t - l t - 1 ) + (l - /3)bt-l

St = 'Y(Yt - l t - 1 - bt-1) + (l - ,y)st-m

(forecast equation)

(level component)

(trend component)

(seasonal component)

Where:

a. fl,"Yare smoothing parameters taking values between O and l, respectively representing

weights for the level, trend and seasonality,

m is the seasonal period,

h is the forecasting horizon,

Yt+hlt is the forecasted value h timesteps ahead and

k is the integer part of (h - 1) /m , which represent the number of seasonal periods that have

occurred during h.
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Multiplicative 

    (forecast equation) 

   (level component)  

   (trend component) 

   (seasonal component) 

 

Where: 

All parameters represent the same as in the additive model. 

5.2.3 SARIMAX 

The Autoregressive Integrated Moving Average (ARIMA) makes up the foundation for the 

most significant model applied in this project, the SARIMAX. It is essential to understand 

several key concepts before delving into variations of ARIMA forecasting models. This 

subsection will present the theoretical framework for the concepts utilised in the development 

of ARIMA models. 

Stationarity 

A time series process is considered stationary if its properties remain unchanged by a change 

of time origin, meaning the joint probability distribution must be unaffected by shifting times 

of observations backwards and forwards. In practice this means that for stationary models, mean 

and variance remain constant over time (Jain & Singh, 2003). In many cases the data is not 

stationary, especially in the case of seasonality dominated series such as the electricity 

consumption and the electricity price data studied in this project. The ARIMA process 

incorporates steps for making a non-stationary time series stationary, and there exists 

commonly applied methods to determine whether a time series is stationary or not.  
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Differencing 

Time series differencing is a technique used to stabilise the mean and variance of a time series 

by eliminating any trend or seasonality present. The mean can be stabilised by removing any 

trend, for example by fitting a trend line and subtracting it prior to fitting the model. Variance 

can be stabilised by the use of transformations, which means converting the data to contain 

period-to-period differences rather than actual values (Nau, 2020). Consequently, the 

differenced series contains changes between consecutive observations in the original series and 

can be written as follows: 

 

. 

Seasonal differencing 

Seasonal differencing is distinct from standard differencing in that it captures seasonal changes 

instead of periodic changes, focusing on changes from one season to the next. For example, in 

an hourly dataset with daily seasonality one season will contain 24 hours, meaning the seasonal 

difference is:  

 

. 

Stationarity testing 

A unit root test is used in time series analysis to test whether the data is stationary by looking 

for the presence of a unit root. In unit root testing, it is assumed that the time series being tested 

can be presented in the following manner: 

. 

Where: 

represents a deterministic component, 

 represents a stochastic component and 

 is a stationary error.  

The test aims to confirm whether 𝑧𝑧𝐸𝐸 contains a unit root. 
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can be written as follows:

Y" t = Yt - Y t - 1

Seasonal differencing

Seasonal differencing is distinct from standard differencing in that it captures seasonal changes

instead of periodic changes, focusing on changes from one season to the next. For example, in

an hourly dataset with daily seasonality one season will contain 24 hours, meaning the seasonal

difference is:

Yt - Y t - 2 4 !

Stationarity testing

A unit root test is used in time series analysis to test whether the data is stationary by looking

for the presence of a unit root. In unit root testing, it is assumed that the time series being tested

can be presented in the following manner:

Yt =: D1t + Zt + € t

Where:

D'trepresents a deterministic component,

Zt represents a stochastic component and

ct is a stationary error.

The test aims to confirm whether z, contains a unit root.
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A commonly used tool to test for stationarity in time series data is the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS)-test. Like other hypothesis tests, the KPSS-test contains a null hypothesis 

that is evaluated on the provided data to determine the plausibility of the hypothesis. The p-

value returned from the test serves as the evaluator and in the KPSS-test, the null hypothesis 

assumes that the data is stationary. Small p-values means we reject the null hypothesis - the 

data is not stationary. Large p-values however means we confirm the null hypothesis - the data 

is stationary. 

  

The KPSS-test is based on a linear regression, assuming the following equation:  

. 

The equation consists of a deterministic trend 𝜉𝜉𝑡𝑡 , a random walk 𝑟𝑟𝐸𝐸 and a stationary error 𝜀𝜀𝐸𝐸 .  

𝑟𝑟𝐸𝐸 can be defined as: 

, 

Where 𝑢𝑢𝐸𝐸 are independent and identically distributed random values (0, 𝜎𝜎²𝑆𝑆) . The stationarity 

hypothesis is 𝜎𝜎²𝑆𝑆 = 0, resulting in a constant random walk for 𝑟𝑟𝐸𝐸. Since 𝜀𝜀𝐸𝐸  is assumed to be 

stationary, if there is no trend in the data the model is stationary around a level 𝑟𝑟0 (Kwiatkowski 

et al., 1992). 

 

To determine whether seasonal differencing is appropriate, we can measure the seasonal 

strength of the model. The strength of seasonality can be defined as follows: 

 
Where: 

  is the seasonal component,  

 is the remainder component, and 

 indicates the variance.  

 

First part of the equation specifies the minimum value as 0, meaning that the strength is 

measured on a scale from 0 to 1, with a higher value indicating stronger seasonality. The 

relationship between the variance of the remainder and the seasonal component is the key to  
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'

Where ut are independent and identically distributed random values (0, CJ2u) . The stationarity
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_ . .· Var(rt)
F8 = max(O,1 - ( ) )V a r S t + rt

Where:

8t is the seasonal component,

rt is the remainder component, and

V ar indicates the variance.

First part of the equation specifies the minimum value as 0, meaning that the strength is
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measure the seasonal strength. A significantly higher variation in seasonal variance means the 

second part of the equation returns close to zero, which in turn means the equation returns a 

value close to 1. Vice versa, a higher remainder variance will return 𝐹𝐹𝐸𝐸 close to 0. When 

applying the test, a seasonal differencing is suggested if the seasonal strength 𝐹𝐹𝐸𝐸  >=  0.64 

(Hyndman & Athanasopoulos, 2021). 

Autocorrelation 

Autocorrelation refers to the measure of the linear relationship between lagged values of a time 

series. In the presence of autocorrelation, random errors are often positively correlated over 

time, indicating that each random error is more likely to be similar to the previous random error 

than if the errors were independent of each other. The correlation coefficient between two 

values in a time series is called the autocorrelation function (ACF). For a time series 𝑌𝑌𝐸𝐸, the 

ACF can be expressed as: 

 
Where the value of 𝑘𝑘 is the considered number of lags. 

 

Another method of looking at autocorrelation is to focus on the direct association between 𝑌𝑌𝐸𝐸 

and 𝑌𝑌𝐸𝐸−𝑘𝑘, filtering out the impact of the values in between. By doing a transformation on the 

time series and then calculating the correlation of the transformed series we obtain the partial 

autocorrelation function (PACF). 

 

A common practice when studying autocorrelation is to plot these functions as ACF and PACF 

plots. These plots provide a graphical representation of the functions that are easier to interpret, 

which makes them useful as tools to identify orders in the model (The Pennsylvania State 

University, n.d.). 

Autoregressive component 

In autoregressive (AR) models, the variable of interest is forecasted using a linear combination 

of its own lagged values:  

 
 

 

42

measure the seasonal strength. A significantly higher variation in seasonal variance means the

second part of the equation returns close to zero, which in tum means the equation returns a

value close to l . Vice versa, a higher remainder variance will return F5close to O. When

applying the test, a seasonal differencing is suggested if the seasonal strength F5 >= 0.64

(Hyndman & Athanasopoulos, 2021).

Autocorrelation

Autocorrelation refers to the measure of the linear relationship between lagged values of a time

series. In the presence of autocorrelation, random errors are often positively correlated over

time, indicating that each random error is more likely to be similar to the previous random error

than if the errors were independent of each other. The correlation coefficient between two

values in a time series is called the autocorrelation function (ACF). For a time series Yt, the

ACF can be expressed as:

Corr(¥;, I't-k) : k = l, 2,. . . .
Where the value of k is the considered number oflags.

Another method of looking at autocorrelation is to focus on the direct association between Yt

and Yt-k, filtering out the impact of the values in between. By doing a transformation on the

time series and then calculating the correlation of the transformed series we obtain the partial

autocorrelation function (PACF).

A common practice when studying autocorrelation is to plot these functions as ACF and PACF

plots. These plots provide a graphical representation of the functions that are easier to interpret,

which makes them useful as tools to identify orders in the model (The Pennsylvania State

University, n.d.).

Autoregressive component

In autoregressive (AR) models, the variable of interest is forecasted using a linear combination

of its own lagged values:

Yt = c+ ¢1Yt-1+ Ø 2 Y t - 2 + - .. tppYt-p+ et
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Where 𝜙𝜙𝑝𝑝 is the autoregressive coefficient for the belonging lag, and 𝜀𝜀𝐸𝐸 are the error term at 

time 𝑡𝑡. An advantage of autoregressive models is their flexibility in terms of dealing with a 

wide variety of different patterns in time series data (Hyndman & Athanasopoulos, 2021). 

Moving Average component 

As with autoregressive models, moving average (MA) models study past observations to predict 

the future. However, rather than looking at actual observations in the past, these models use 

past forecast errors to predict, using the following model: 

 
Where 𝜃𝜃𝑞𝑞  is the coefficient of the moving average term and 𝜀𝜀𝐸𝐸 denotes white noise. 

ARIMA 

The concepts of autoregression, differencing, and moving average are combined into ARIMA, 

constituting the components, and being denoted as parameters in the model. The model is 

classified as “ARIMA (p,d,q)”, where: 

● p is the number of autoregressive terms 

● d is the number of differences needed for stationarity 

● q is the number of lagged forecast errors 

 

The general forecasting equation for a differenced series can be written as 

 
where 𝑌𝑌𝐸𝐸´ is the differenced series, while the right side of the equation consists of lagged values 

of the time series along with lagged errors. The model also contains a constant c, which mainly 

has an impact on long-term forecasts (Hyndman & Athanasopoulos, 2021). By letting 𝑦𝑦 denote 

the 𝑑𝑑th difference of 𝑌𝑌, we can describe 𝑌𝑌𝐸𝐸 as follows: 

● 𝑑𝑑 =  0 : 𝑌𝑌𝐸𝐸 = 𝑦𝑦𝐸𝐸 

● 𝑑𝑑 =  1 : 𝑌𝑌𝐸𝐸´ =  𝑦𝑦𝐸𝐸 − 𝑦𝑦𝐸𝐸−1 

● 𝑑𝑑 =  2 : 𝑌𝑌𝐸𝐸´´ =  (𝑦𝑦𝐸𝐸 − 𝑦𝑦𝐸𝐸−1) − (𝑦𝑦𝐸𝐸−1 − 𝑦𝑦𝐸𝐸−2) = 𝑦𝑦𝐸𝐸 − 2𝑦𝑦𝐸𝐸−1 + 𝑦𝑦𝐸𝐸−2. 

For clarification, we would like to specify that for 𝑑𝑑 =  2, the model does not display the 

difference from two periods ago, but rather signifies a difference of an already differenced 𝑌𝑌 

(Nau, 2020).  
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Where c/Jp is the autoregressive coefficient for the belonging lag, and Et are the error term at

time t. An advantage of autoregressive models is their flexibility in terms of dealing with a

wide variety of different patterns in time series data (Hyndman & Athanasopoulos, 2021).

Moving Average component

As with autoregressive models, moving average (MA) models study past observations to predict

the future. However, rather than looking at actual observations in the past, these models use

past forecast errors to predict, using the following model:

Yt= c+ et + 01et -1 + 0 2 e t - 2 + - •• +0qet-q
Where 0q is the coefficient of the moving average term and Et denotes white noise.

ARIMA

The concepts of autoregression, differencing, and moving average are combined into ARIMA,

constituting the components, and being denoted as parameters in the model. The model is

classified as "ARIMA (p,d,q)", where:

• p is the number of autoregressive terms

• d is the number of differences needed for stationarity

• q is the number of lagged forecast errors

The general forecasting equation for a differenced series can be written as

Yt ...= c + ØtY"t-p+ Øqct-q + et

where Ye'is the differenced series, while the right side of the equation consists oflagged values

of the time series along with lagged errors. The model also contains a constant c, which mainly

has an impact on long-term forecasts (Hyndman & Athanasopoulos, 2021). By letting y denote

the dthdifference of Y, we can describe Yt as follows:

•
•
•

d

d

d

0: Yt =Yt

1 : Y/ = Yt - Yt -1

2 : Y / ' = (Yt - Yt-1) - (Yt-1 - Yt -2 ) =Yt - 2Yt-1 + Yt-2·
For clarification, we would like to specify that for d = 2, the model does not display the

difference from two periods ago, but rather signifies a difference of an already differenced Y

(Nau, 2020).
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Identifying order of ARIMA models 

The first and most important step when fitting an ARIMA model is to identify the order of 

differencing needed to make a time series stationary, by applying tests such as the KPSS test. 

 

After achieving a stationary time series, the next step is to identify numbers of AR and MA 

terms needed by looking at the ACF and the PACF plots (Nau, 2020). These are the general 

rules when identifying terms with ACF and PACF plots: 

 

● AR process (p, d, 0): 

A gradually declining ACF plot, combined with a sharp cut-off in PACF, indicates an AR 

process. The number of AR terms is decided by the number of significant PACF lags before the 

sharp cut-off. 

 

● MA process (0, d, q): 

A gradually declining PACF plot, combined with a sharp cut-off in ACF, indicates a MA 

process. The number of MA terms is decided by the number of significant ACF lags before the 

sharp cut-off. 

 

● ARMA process (p, d, q): 

If both plots are gradually declining, it is an indication of an ARMA process with both 

autoregressive and moving average terms. The number of terms to include for each component 

is not obvious, usually being decided by testing for different values and studying the estimation 

results with help from information criteria such as the AICc (Virenrehal, 2022). 

SARIMA and SARIMAX 

ARIMA models, in themselves, lack the ability to capture seasonal effects in time series. The 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model is a version of the 

ARIMA model which adds a seasonal part to represent the seasonal effect. The components of 

the seasonal part have the same structure as the non-seasonal part but differ in that they operate 

over multiple lags equal to the number of periods in a season.  

The model can be classified as ARIMA(p,d,q) x (P,D,Q), where:  
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ARIMA model which adds a seasonal part to represent the seasonal effect. The components of
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● P denotes the number of seasonal AR-terms  

● D denotes the number of seasonal differences 

● Q denotes the number of seasonal MA-terms (Nau, 2020). 

 

The SARIMAX further extends on SARIMA by adding exogenous predictor variables. This 

model is especially useful in cases with high outside influence on the predicted variable coming 

from other exogenous factors, as it is able to handle these external effects. 

 

Identifying orders of SARIMAX model 
Identifying orders of SARIMAX models follows a similar procedure as ARIMA models, 

starting with identifying whether differencing is needed. However, one should first determine 

whether a seasonal differencing is needed and then decide on whether a non-seasonal 

differencing is required. The main rules for identifying orders of SARIMAX models are as 

follows: 

 

● If the seasonal pattern is strong and consistent, it is recommended to use one order of 

seasonal differencing. However, it is advised to not use more than one order of seasonal 

differencing or more than two orders of differencing in total. 

 

● Seasonal AR process (P, D, 0): 

A gradually declining ACF plot, combined with a sharp cutoff in the PACF plot, indicates a 

seasonal autoregressive model. We expect significant spikes once every seasonal period, for 

example every 7th lag for a daily series with weekly seasonality.  

 

• Seasonal MA process (0, D, P): 

A gradually declining PACF plot, combined with a sharp cutoff in the ACF plot, indicates a 

seasonal moving average model. As with AR processes, we expect significant spikes once every 

seasonal period. 

 

In general, a rule of thumb is to try avoiding using both terms, as this is likely to lead to an 

overfitted model (Virenrehal, 2022). 
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Identifying orders of SARIMAX model

Identifying orders of SARIMAX models follows a similar procedure as ARIMA models,

starting with identifying whether differencing is needed. However, one should first determine

whether a seasonal differencing is needed and then decide on whether a non-seasonal

differencing is required. The main rules for identifying orders of SARIMAX models are as

follows:

• If the seasonal pattern is strong and consistent, it is recommended to use one order of

seasonal differencing. However, it is advised to not use more than one order of seasonal
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seasonal moving average model. As with AR processes, we expect significant spikes once every
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In general, a rule of thumb is to try avoiding using both terms, as this is likely to lead to an

overfitted model (Virenrehal, 2022).
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5.2.4 Artificial neural network 

Computational Intelligence models create approaches that are capable of adapting to complex 

dynamic systems, by combining elements like learning and evolution. Neural network models 

are designed to mimic how the human brain works - of course in a very simplified manner. 

Their design can be seen as a network of interconnected neurons organised in layers. Typically 

in forecasting, the network consists of an input layer (predictors), one or multiple hidden layers 

(which makes the model non-linear with the use of activation functions) and an output layer 

(output/forecasts). This type of network is more commonly known as a multilayer feed-forward 

network (Hyndman & Athanasopoulos, 2021). 

Chapter 12.4 in the book by Hyndman and Athanasopoulos (2021) provides an illustrative 

depiction of this type of network. 

 

Figure 5.2  
Illustration of a multilayer feed-forward neural network 

 
 

Each layer receives inputs from the previous and produces an output, which is then fed forward 

to the next layer. The connections between every neuron have weights which differ. These 

weights initially adopt random values and are subsequently refined through a learning algorithm 

that aims to minimise the discrepancy between the predicted output and the actual output. To 

prevent the weights from growing excessively, a decay parameter is introduced and set to a 

value of 0.1 (Hyndman & Athanasopoulos, 2021). 
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that aims to minimise the discrepancy between the predicted output and the actual output. To

prevent the weights from growing excessively, a decay parameter is introduced and set to a

value of0.1 (Hyndman & Athanasopoulos, 2021).
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The general linear function of weights assigned to the input layer can be defined as follows: 

 
This weighing process is then modified in the hidden layer, making it non-linear. For example, 

with the use of a sigmoid function: 

 
Where: 

 is the weights assigned to the inputs, 

 is the bias to each input, 

 is the inputs and 

 represents the sigmoid activation function. 

 

When working with specific time series (as presented), it is typically advantageous to use 

lagged values of the response variable as inputs in the network. This approach makes the use 

of a neural network autoregression (NNAR) convenient.  

 

When there are seasonal data, it is common to use both a number of lagged values (𝑝𝑝) and a 

number of last observed values from the same season (𝑃𝑃) as inputs (Hyndman & 

Athanasopoulos, 2021). If we combine these parameters with the number of nodes in the hidden 

layer (𝑘𝑘) we end up with a seasonal autoregressive neural network with the notation of 𝑆𝑆𝑆𝑆𝑆𝑆 −
 𝑁𝑁𝑁𝑁(𝑝𝑝, 𝑃𝑃, 𝑘𝑘). 

5.2.5 Combination model 

Combining the strengths of multiple forecasting approaches has been widely acknowledged as 

an effective strategy to enhance forecast accuracy. In a seminal article by Clemen (1989) titled 

"Combining Forecasts: A Review and Annotated Bibliography," the author concludes that the 

consensus among studies is clear: combining multiple forecasts results in improved forecast 

accuracy (Clemen, 1989). 
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number of last observed values from the same season (P) as inputs (Hyndman &
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Combining the strengths of multiple forecasting approaches has been widely acknowledged as

an effective strategy to enhance forecast accuracy. In a seminal article by Clemen (1989) titled

"Combining Forecasts: A Review and Annotated Bibliography," the author concludes that the

consensus among studies is clear: combining multiple forecasts results in improved forecast

accuracy (Clemen, 1989).
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Building upon this research, we propose a hybrid forecasting model that leverages the predictive 

capabilities of the several included models presented in this chapter. Each of these models 

brings unique strengths to the forecasting process.  

 

The SARIMAX and ETS models are well-suited for capturing trend and seasonality patterns in 

time series data. They consider the historical patterns and dynamics to make accurate 

predictions. On the other hand, the neural network model excels at capturing complex nonlinear 

relationships within the data due to its ability to learn intricate patterns and dependencies. To 

provide a baseline reference, we also include the seasonal naïve model, which relies solely on 

historical observations and captures the seasonal patterns present in the data. 

 

There are several ways to combine forecasting models. However, as stated Hyndman and 

Athanasopoulos in the book “Forecasting: Principles and Practice 3rd ed.”: “using a simple 

average has proven hard to beat.” (Hyndman & Athanasopoulos, 2021). Therefore, we propose 

the use of a model averaging algorithm. 

 

5.3 Development of models 

All models studied in this project have been developed through R with corresponding packages. 

We will present our approach in forecasting the electricity demand before we describe the 

implementation of the different types of models applied in forecasting the price. 

5.3.1 Electricity demand 

From the basis of observations made in the initial analysis, we have included temperature and 

a weekday factor variable as exogenous variables to capture the impact of temperature changes 

and weekly seasonality. We account for the exogenous variables and seasonalities by deploying 

a SARIMAX-model.  
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Implementation of SARIMAX model 

Because we have different zones, which can differ between our forecasting periods in summer 

and winter, we start with a general training set consisting of one year of data (1. January 2018 

- 1. January 2019) and analyse this period across each zone to look for similarities. Since the 

patterns are similar, it opens up the possibility to use the same model in every zone, both 

reducing computational time while also making our analysis easier to interpret and to deploy 

for an eventual end user. 

 

In order to create a general forecasting model for all zones, we utilise the specified training set 

and focus on the mid zone. We consider the mid zone as representative due to its relative 

proximity to all other zones, making it an appropriate basis zone for constructing the model. 

The further construction of our model will be inspired by the process illustrated at chapter 9.7 

in Hyndman and Athanasopoulos (2021):  
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- l. January 2019) and analyse this period across each zone to look for similarities. Since the

patterns are similar, it opens up the possibility to use the same model in every zone, both
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for an eventual end user.
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proximity to all other zones, making it an appropriate basis zone for constructing the model.

The further construction of our model will be inspired by the process illustrated at chapter 9.7
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Figure 5.3  
The construction-process of SARIMAX model 

 
 

To begin the process, since there are no abnormal values or outliers in the consumption data, 

our first step is to stabilise the variance in the time series. We accomplish this by performing a 

modified Box-Cox transformation. Then, to further develop the model, we run multiple tests to 

make sure that the data we are analysing are stabilised. 

 

First, we will test the data for the need of seasonal differencing by testing the seasonal strength 

(𝐹𝐹𝐸𝐸) of the data. As imagined, the seasonal strength is way above the threshold of 0,64, meaning 

the need for seasonal differencing is present. Next, we test for first differencing using a KPSS- 

test, which returns a 𝐻𝐻0 that is not rejected. Accordingly, the need for first differencing is not 

present. 

50

Figure 5.3
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possible candidate models.
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7. Calculate forecasts.

To begin the process, since there are no abnormal values or outliers in the consumption data,

our first step is to stabilise the variance in the time series. We accomplish this by performing a

modified Box-Cox transformation. Then, to further develop the model, we run multiple tests to

make sure that the data we are analysing are stabilised.

First, we will test the data for the need of seasonal differencing by testing the seasonal strength

(f's) of the data. As imagined, the seasonal strength is way above the threshold of0,64, meaning

the need for seasonal differencing is present. Next, we test for first differencing using a KPSS-

test, which returns a H0 that is not rejected. Accordingly, the need for first differencing is not

present.
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Moving on, we determine the orders of our SARIMAX models by plotting the ACF/PACF on 

the differenced data: 

 

Figure 5.4  
ACF/ PACF plot of seasonally differenced consumption data 

 
 

The ACF plot gradually declines, while the PACF plot displays a sharp cut-off. With the rules 

of non-seasonal orders in mind, this describes an autoregressive process. Since the PACF cuts 

off after one significant spike, it indicates an AR (1) process. Considering the seasonal orders, 

we see significant spikes in the PACF occurring in the first and 24th lag, indicating a seasonal 

AR (2) process. Ultimately, this results in a SARIMAX (1,0,0)(2,1,0)24  process. 

 

To make sure we use the best model available, we will include multiple manually created 

variations of this model, as well as an automatically detected model. The latter is based on the 

Hyndman- Khandakar algorithm (Hyndman & Khandakar, 2008) and will iterate through 

multiple steps: 

 

51

Moving on, we determine the orders of our SARIMAX models by plotting the ACF/PACF on

the differenced data:

Figure 5.4
ACF/ PACF plot of seasonally differenced consumption data
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The ACF plot gradually declines, while the PACF plot displays a sharp cut-off With the rules

of non-seasonal orders in mind, this describes an autoregressive process. Since the PACF cuts

off after one significant spike, it indicates an AR ( l ) process. Considering the seasonal orders,

we see significant spikes in the PACF occurring in the first and 24th lag, indicating a seasonal

AR (2) process. Ultimately, this results in a SARIMAX (1,0,0)(2,1,0)24 process.

To make sure we use the best model available, we will include multiple manually created

variations of this model, as well as an automatically detected model. The latter is based on the

Hyndman- Khandakar algorithm (Hyndman & Khandakar, 2008) and will iterate through

multiple steps:
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1. Number of differencing needed - determined using repeated KPSS-tests and testing the 

seasonal strength (𝐹𝐹𝐸𝐸) 

2. Order of the model (𝑝𝑝, 𝑞𝑞) (𝑃𝑃, 𝑄𝑄) are determined. 

a. Four initial models are fitted. 

b. The model with the smallest AICc will be set as the “current model”. 

c. Variations of the current model are considered, where it will vary 𝑝𝑝/𝑞𝑞 and 𝑃𝑃/𝑄𝑄 and 

include/exclude 𝑐𝑐 (constant) from the current model. The best model considered so far becomes 

the new current model. 

d. Repeat step 2(c) until no lower AICc can be found. 

 

The automatic models we have chosen are programmed such that no “default” shortcuts are 

implemented. This makes the model very computationally heavy as it will accordingly test 

every possible combination of the model’s order. Additionally, it won’t approximate the value 

of the likelihood for the models but rather use the exact computation, which often results in a 

well-performing model. In our case, the computation ended with a (2, 0, 2)(2, 1, 0)24  model, 

which we will evaluate along with the seven manually made ones. 

 

We decide upon which model to proceed with by comparing the AICc scores for the eight 

models created on the initial training set, continuing with the three models that return the lowest 

AICc scores. To ultimately decide for which model to use, we do a time series cross validation 

(tsCV) on the final three models. This is done because even though a model may have a good 

AICc score, it won't always be the model that produces the best forecasts. Nevertheless, a good 

AICc score indicates a good fit, which is why we will limit the cross validation to the three 

models with the best fit. 

 

The three combinations of orders that have the best fit and will continue to the tsCV process 

are (2, 0, 2)(2, 1, 0)24, (1, 0, 1)(2, 1, 0)24,  and (1, 0, 2)(2, 1, 0)24. Because our final 

forecasting model will produce results for both summer and winter, we make two new training 

sets. We will run our tsCV on a summer and a winter set, each containing a year of data, 

producing forecasts for the week prior to our final forecasting horizon. 
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l. Number of differencing needed - determined using repeated KPSS-tests and testing the

seasonal strength (F5)

2. Order of the model (p, q) (P,Q) are determined.

a. Four initial models are fitted.

b. The model with the smallest AICc will be set as the "current model".

c. Variations of the current model are considered, where it will vary p/ q and P/ Q and

include/exclude c (constant) from the current model. The best model considered so far becomes

the new current model.

d. Repeat step 2(c) until no lower AICc can be found.

The automatic models we have chosen are programmed such that no "default" shortcuts are

implemented. This makes the model very computationally heavy as it will accordingly test

every possible combination of the model's order. Additionally, it won't approximate the value

of the likelihood for the models but rather use the exact computation, which often results in a

well-performing model. In our case, the computation ended with a (2, 0, 2)(2, 1, 0)24 model,

which we will evaluate along with the seven manually made ones.

We decide upon which model to proceed with by comparing the AICc scores for the eight

models created on the initial training set, continuing with the three models that return the lowest

AICc scores. To ultimately decide for which model to use, we do a time series cross validation

(tsCV) on the final three models. This is done because even though a model may have a good

AICc score, it won't always be the model that produces the best forecasts. Nevertheless, a good

AICc score indicates a good fit, which is why we will limit the cross validation to the three

models with the best fit.

The three combinations of orders that have the best fit and will continue to the tsCV process

are (2,0,2)(2,1,0)24, (1,0,1)(2,1,0)24, and (1,0,2)(2,1,0)24. Because our final

forecasting model will produce results for both summer and winter, we make two new training

sets. We will run our tsCV on a summer and a winter set, each containing a year of data,

producing forecasts for the week prior to our final forecasting horizon.
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After running tsCV on both periods in each zone, we end up with a 

SARIMAX(1, 0, 2)(2, 1, 0)24 model as the generally best performing model for forecasting 

demand. This is supported by conducting an accuracy test on each forecast and comparing the 

errors of the three models, giving each model a score from one to three respective to their error 

value, selecting the lowest error value as the best. 

 

Having found the generally best performing model, we test the residuals for white noise. This 

is done to determine if all information in the data is captured, by testing whether any patterns 

remain in the residuals (Hyndman & Athanasopoulos, 2021). Testing can be done by examining 

the ACF plot of the residuals and/or by conducting a portmanteau test, such as a ljung- box test. 

As an example, we will present a plot of the residuals for the winter period in the mid zone 

(although all the fits are very similar in how the residuals behaves): 

 

Figure 5.5   
ACF/ PACF plot of the optimal model´s residuals 

 
 

By examining the ACF plot, multiple spikes can be observed above the blue dotted significance 

line, indicating that the residuals do not resemble white noise. Furthermore, a ljung- box test  
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By examining the ACF plot, multiple spikes can be observed above the blue dotted significance

line, indicating that the residuals do not resemble white noise. Furthermore, a ljung- box test
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confirms this observation by rejecting 𝐻𝐻0. However, passing all tests is not always feasible with 

the data provided (Hyndman & Athanasopoulos, 2021). In our case, considering the promising 

results obtained from the accuracy measures, we will proceed with the selected 

(1, 0, 2)(2, 1, 0)24 model.  

 

As the forecasting equation will vary depending on the order of the terms, an easy model 

definition (Aric LaBarr, 2021) will be provided to give a better idea of the specific model: 

 

 
 

Where: 

 is the forecasted value at time 𝑡𝑡, 

 is the constant term or intercept, 

 is the coefficient for lag- 1 of the autoregressive term, 

 and  are the coefficients for lag- 1 and -2 of the moving average terms, 

 and  are the coefficients for lag- 24 and -48 of the seasonal autoregressive term, 

 and  are the coefficients for the exogenous variables 𝑤𝑤𝑑𝑑𝑤𝑤𝑦𝑦𝐸𝐸and 𝑡𝑡𝑚𝑚𝑛𝑛_𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐸𝐸 and 

 is the error term at time 𝑡𝑡. 

5.3.2 Spot price 

While we decided to solely focus on SARIMAX models to forecast consumption, we deploy a 

range of alternative models presented earlier in this chapter. 

Implementation of SARIMAX model 

When choosing the optimal SARIMAX model for the spot price, we will follow the exact same 

procedure as with the consumption model. 
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confirms this observation by rejecting H0. However, passing all tests is not always feasible with

the data provided (Hyndman & Athanasopoulos, 2021). In our case, considering the promising

results obtained from the accuracy measures, we will proceed with the selected

(1, 0, 2)(2,1, 0)24 model.

As the forecasting equation will vary depending on the order of the terms, an easy model

definition (Arie LaBarr, 2021) will be provided to give a better idea of the specific model:

Yt = Y·t - Y t - 2 4

Yt= c+ ¢1 Y t - 1 + 0 1 e t - 1 + 0 2 e t - 2 + 11Y t - 2 4+ 12 Y t - 4 8 + fli wdayt + .82-min_tem:pt + et

Where:

f';:is the forecasted value at time t,

C is the constant term or intercept,

Øm.is the coefficient for lag- l of the autoregressive term,

01and ,02 are the coefficients for lag- l and -2 of the moving average terms,

'"h and 'Y2-are the coefficients for lag- 24 and -48 of the seasonal autoregressive term,

/3m.and /3z are the coefficients for the exogenous variables wdaytand m i n t e m p , and

et is the error term at time t.

5.3.2 Spot price

While we decided to solely focus on SARIMAX models to forecast consumption, we deploy a

range of alternative models presented earlier in this chapter.

Implementation of SARIMAX model

When choosing the optimal SARIMAX model for the spot price, we will follow the exact same

procedure as with the consumption model.
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Given the nature of the electricity data, it is important to consider the presence of high values 

that may be perceived as outliers. Although they deviate somewhat from the majority of 

observations, these values are not erroneous but rather represent occasional peaks in the data. 

Excluding such values could lead to a loss of important information, as they are inherent to the 

underlying dynamics of the electricity data.  

 

To assess the need for data transformation, we first examine whether the data requires any 

logarithmic or power transformations. However, after carefully evaluating the characteristics 

of the data and the time series, it has been concluded that such transformations are unnecessary. 

Consequently, we will test the need for first- and/or seasonal-differencing.  

 

Following the earlier procedure, we start off by testing the seasonal strength of the data. This 

results in a 𝐹𝐹𝐸𝐸 of 0.626, which is marginally lower than the significance level of 0.64. Based on 

the significance level criteria, it is determined that there is no need for seasonal differencing in 

the data. However, the results of the KPSS- test suggest there is a need for first differencing to 

achieve stationarity. 

 

Having data that have passed both stationarity tests, the order of terms in the SARIMAX model 

can be detected by the ACF/PACF: 
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Given the nature of the electricity data, it is important to consider the presence of high values

that may be perceived as outliers. Although they deviate somewhat from the majority of

observations, these values are not erroneous but rather represent occasional peaks in the data.

Excluding such values could lead to a loss of important information, as they are inherent to the

underlying dynamics of the electricity data.

To assess the need for data transformation, we first examine whether the data requires any

logarithmic or power transformations. However, after carefully evaluating the characteristics

of the data and the time series, it has been concluded that such transformations are unnecessary.

Consequently, we will test the need for first- and/or seasonal-differencing.

Following the earlier procedure, we start off by testing the seasonal strength of the data. This

results in a f5of 0.626, which is marginally lower than the significance level of 0.64. Based on

the significance level criteria, it is determined that there is no need for seasonal differencing in

the data. However, the results of the KPSS- test suggest there is a need for first differencing to

achieve stationarity.

Having data that have passed both stationarity tests, the order of terms in the SARIMAX model

can be detected by the ACF/PACF:
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Figure 5.6  
ACF/ PACF plot of differenced spot price data 

 
 

Studying the plots, we detect a pattern where both the ACF and PACF gradually decline, which, 

according to the rules defined in the theoretical section, indicates an ARMA process with both 

AR and MA terms present. In deciding upon seasonal terms, we have to take into consideration 

the rule of thumb to not include both seasonal ACF and PACF terms. We decided upon a 

seasonal AR-process, as the ACF plot seems to decline at a slower rate than the PACF plot. As 

the first spike is significantly stronger than any other in the PACF-plot, we ultimately decide 

upon an AR (1) process, which leaves us with a (1, 1, 1)(1, 0, 0)24 process. 

 

As done earlier, we test the manually made one with 7 other variations, whereas one of the 

models is automatically detected with the Hyndman- Khandakar algorithm with no shortcuts. 

The automatic procedure ended with a model with the order of (1, 1, 3)(2, 0, 0)24. 

 

The three models returning the lowest AICc, thus advancing further into the tsCV step, are 

(1, 1, 3)(2, 0, 0)24, (1, 1, 2)(2, 0, 0)24, and (1, 1, 2)(1, 0, 0)24. After computing rolling  
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Figure 5.6
ACF/ PACF plot of differenced spot price data
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Studying the plots, we detect a pattern where both the ACF and PACF gradually decline, which,

according to the rules defined in the theoretical section, indicates an ARMA process with both

AR and MA terms present. In deciding upon seasonal terms, we have to take into consideration

the rule of thumb to not include both seasonal ACF and PACF terms. We decided upon a

seasonal AR-process, as the ACF plot seems to decline at a slower rate than the PACF plot. As

the first spike is significantly stronger than any other in the PACF-plot, we ultimately decide

upon an AR ( l ) process, which leaves us with a (1, 1, 1)(1, 0, 0)24 process.

As done earlier, we test the manually made one with 7 other variations, whereas one of the

models is automatically detected with the Hyndman- Khandakar algorithm with no shortcuts.

The automatic procedure ended with a model with the order of (1, 1, 3)(2, 0, 0)24.

The three models returning the lowest AICc, thus advancing further into the tsCV step, are

(1, 1, 3)(2, 0, 0)24, (1, 1, 2)(2, 0, 0)24, and (1, 1, 2)(1, 0, 0)24. After computing rolling
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forecasts for each of the models, the model which generally scores the best across each of the 

zones and the two periods are the SARIMAX (1, 1, 2)(2, 0, 0)24.  

 

The Ljung- Box hypothesis test has also been applied to the optimal model to test for white 

noise in the residuals. However, the p-value is below the threshold of retaining 𝐻𝐻0, consequently 

failing the test. Nevertheless, despite the presence of some patterns in the residuals that the 

model fails to detect, the accuracy of the temporary forecasts is promising. 

 

Given that the spot price model and the consumption model exhibit a different order, we will 

provide the specific mathematical notation (Aric LaBarr, 2021) for the spot price SARIMAX 

model: 

 

 
 

Where: 

 is the forecasted value at time 𝑡𝑡, 

 is the constant term or intercept, 

 is the coefficient for lag- 1 of the autoregressive term, 

 represent the differenced data, 

 and  are the coefficients for lag- 1 and -2 of the moving average terms, 

 and  are the coefficients for lag- 24 and -48 of the seasonal autoregressive terms, 

 and  are the coefficients for the exogenous variables 𝑤𝑤𝑑𝑑𝑤𝑤𝑦𝑦𝐸𝐸and 𝑡𝑡𝑚𝑚𝑛𝑛_𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝐸𝐸 and 

 is the error term at time 𝑡𝑡 

Implementation of ETS model 

Because there are several possible combinations of the ETS model for each zone and forecasting 

period, we let R find the best model for us. This calculation tests an amalgam of combinations 

for smoothing parameters and determines whether the error, trend and seasonality are additive 

or multiplicative (or non-existent), choosing the model that minimises the AICc.  
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forecasts for each of the models, the model which generally scores the best across each of the

zones and the two periods are the SARIMAX (1, 1, 2)(2, 0, 0)24.

The Ljung- Box hypothesis test has also been applied to the optimal model to test for white

noise in the residuals. However, the p-value is below the threshold ofretaining H0, consequently

failing the test. Nevertheless, despite the presence of some patterns in the residuals that the

model fails to detect, the accuracy of the temporary forecasts is promising.

Given that the spot price model and the consumption model exhibit a different order, we will

provide the specific mathematical notation (Arie LaBarr, 2021) for the spot price SARIMAX

model:

Where:

f";;is the forecasted value at time t,

C is the constant term or intercept,

Øm.is the coefficient for lag- l of the autoregressive term,

åYt represent the differenced data,

01 and ,02 are the coefficients for lag- l and -2 of the moving average terms,

'Yl and 'Y2 are the coefficients for lag- 24 and -48 of the seasonal autoregressive terms,

Øtand Øzare the coefficients for the exogenous variables wdaytand m i n t e m p , and

et is the error term at time t

Implementation of ETS model

Because there are several possible combinations of the ETS model for each zone and forecasting

period, we let R find the best model for us. This calculation tests an amalgam of combinations

for smoothing parameters and determines whether the error, trend and seasonality are additive

or multiplicative (or non-existent), choosing the model that minimises the AICc.
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The chosen model for all zones and forecasting periods is 𝐸𝐸𝐸𝐸𝑆𝑆(𝑆𝑆, 𝑁𝑁, 𝑆𝑆), which indicates an 

additive error and seasonality with no trend. A common pattern observed in the smoothing 

parameters, 𝛼𝛼 and 𝛾𝛾 (respectively belonging to the error and seasonality term), across the 

different fits is a relatively high 𝛼𝛼 and a very low 𝛾𝛾 . This means that the model will react 

quickly to changes in price but won’t overly rely on the seasonal patterns, as they may appear 

erratic. 

Implementation of Neural Network model 

As with the ETS model, there are multiple variations which can be used in the parameters of a 

SAR- NN. To determine the best fit for our data, we will automatically select the parameters 

that minimise the overall error. Since we have seasonal data, the 𝑃𝑃 is set to 1 by default, which 

means that the model will use one observation from the latest similar season (24 hours behind 

the point forecast). The optimal value of 𝑝𝑝 will be the order in which the autoregressive term 

minimises the AICc (Hyndman & Athanasopoulos, 2021). At default, 𝑘𝑘 will be set to 

. 

When fitting the models to the different periods and zones, we observe some differences. 

However, the differences are minimal and consists mainly of ±2 in the optimal value of the 𝑝𝑝- 

term. 

 

The most frequently selected model is the 𝑆𝑆𝑆𝑆𝑆𝑆 −  𝑁𝑁𝑁𝑁(37, 1, 19), meaning the network that 

minimises the error has 37 lagged observations of the dependent variable, 1 seasonal lagged 

variable and 19 nodes in the hidden layer. This network could be illustrated as follows (Lenail, 

n.d.): 
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The chosen model for all zones and forecasting periods is ETS(A, N, A), which indicates an

additive error and seasonality with no trend. A common pattern observed in the smoothing

parameters, a and y (respectively belonging to the error and seasonality term), across the

different fits is a relatively high a and a very low y . This means that the model will react

quickly to changes in price but won't overly rely on the seasonal patterns, as they may appear

erratic.

Implementation of Neural Network model

As with the ETS model, there are multiple variations which can be used in the parameters of a

SAR- NN. To determine the best fit for our data, we will automatically select the parameters

that minimise the overall error. Since we have seasonal data, the P is set to l by default, which

means that the model will use one observation from the latest similar season (24 hours behind

the point forecast). The optimal value of p will be the order in which the autoregressive term

minimises the AICc (Hyndman & Athanasopoulos, 2021). At default, k will be set to

= (p+ P+ 1)/2_
When fitting the models to the different periods and zones, we observe some differences.

However, the differences are minimal and consists mainly of ±2 in the optimal value of the p-

term.

The most frequently selected model is the SAR - NN(37,1, 19), meaning the network that

minimises the error has 37 lagged observations of the dependent variable, l seasonal lagged

variable and 19 nodes in the hidden layer. This network could be illustrated as follows (Lenail,

n.d.):
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Figure 5.7  
The neural network architecture with optimal parameters 

 

 
 

Implementation of SNAÏVE model 

Being the simplest of our models, it is also the easiest to implement. The observations for each 

day will simply reflect the same hour the previous day. 
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Figure 5.7
The neural network architecture with optimal parameters
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Implementation of SNAlVE model

Being the simplest of our models, it is also the easiest to implement. The observations for each

day will simply reflect the same hour the previous day.
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Implementation of Combination model 

Using a simple linear function, we calculate the average of the forecast values provided by each 

individual model. The linear function treats all models equally, without assigning any specific 

weights or preferences. Averaging the forecasts with equal weight ensures a model that 

appropriately reflects general errors and uncertainties associated with the models (Hyndman & 

Athanasopoulos, 2021). 
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Implementation of Combination model

Using a simple linear function, we calculate the average of the forecast values provided by each

individual model. The linear function treats all models equally, without assigning any specific

weights or preferences. Averaging the forecasts with equal weight ensures a model that

appropriately reflects general errors and uncertainties associated with the models (Hyndman &

Athanasopoulos, 2021).
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6. Results 

In this chapter, we will present our forecasting results for the different models presented in the 

methodology chapter. The specific weeks chosen for evaluation are from 10th February to 17th 

February 2019 and from 9th June to 16th June 2019. We will start by defining which evaluation 

tools are selected for different parts of the process before presenting results with visual plots 

and tables, followed by short briefs on the most interesting findings and patterns. To ensure a 

balanced presentation, the plots in the result chapter will exclusively depict zone west (please 

refer to the appendix for graphs related to the remaining zones). This decision is based on the 

geographical location of NHH within this zone, as we aim to avoid an excessive number of 

plots that might overshadow the main content of the thesis. 

 

6.1 Error evaluation tools 

Error in forecasting models refers to the difference between an observed value and the 

forecasted value, meaning the unpredictable part of an observation. Forecasts differ from 

residuals in that they are calculated on the test set and can involve multi-step forecasts, whereas 

residuals are calculated based on one-step. We can divide error evaluation tools into scale-

dependent errors, percentage errors, and scaled errors. Percentage and scaled error evaluation 

tools are utilised to compare forecast accuracy across series with different units, while scale-

dependent methods calculate errors on the same scale as the data (Hyndman & Athanasopoulos, 

2021).  

6.1.1 Mean Absolute Error 

The most widely used measures of accuracy in electricity price forecasting are based on 

absolute errors. Mean Absolute Error (MAE) is commonly used in series with hourly 

observations by taking the mean over 24 observations for daily mean absolute error or by taking 

the mean over 168 (number of hours in a week) observations for weekly mean absolute error 

(Weron, 2014). MAE gets rid of offsetting issues deriving from a mix of negative and positive 

errors. The formula for MAE can be written as follows: 
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6.1.2 RMSE 

Another commonly adopted method in electricity price forecasting is the Root Mean Squared 

Error (RMSE). As with MAE, RMSE avoids offsetting from a mix of negative and positive 

values by taking a square root of the deviation (Hyndman & Athanasopoulos, 2021). 

Mathematically, RMSE can be written as: 

 

 
 

MAE and RMSE are very similar in theory, so determining which one to use in practice can be 

difficult to interpret. The difference between the models is that RMSE assigns higher weights 

to more extreme errors. In the case of MAE, an error of 200 NOK in spot price returns twice as 

high error value compared to an error of 100 NOK. For RMSE however, the first case returns 

more than twice as high error value, meaning RMSE assigns higher weight to values further 

away from actual observations (Zach, 2021). Which metric to prefer ultimately depends on the 

nature of the project and the relative importance of avoiding more extreme errors. 

6.1.3 MAPE 

Another very popular evaluation metric is the Mean Absolute Percentage Error (MAPE), which 

differs from MAE only in that it returns percentages from the actual observation instead of raw 

value. This metric has the advantage of being unit-free, hence it is frequently used as an 

evaluation method in time series forecasting in general (Hyndman & Athanasopoulos, 2021). 

MAPE can be presented as follows:  
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6.1.2 RMSE

Another commonly adopted method in electricity price forecasting is the Root Mean Squared

Error (RMSE). As with MAE, RMSE avoids offsetting from a mix of negative and positive

values by taking a square root of the deviation (Hyndman & Athanasopoulos, 2021).

Mathematically, RMSE can be written as:

RMSE-=
l :1i

- L(Actua.li - Forecasti)2
n . lt = .

MAE and RMSE are very similar in theory, so determining which one to use in practice can be

difficult to interpret. The difference between the models is that RMSE assigns higher weights

to more extreme errors. In the case of MAE, an error of200 NOK in spot price returns twice as

high error value compared to an error of 100 NOK. For RMSE however, the first case returns

more than twice as high error value, meaning RMSE assigns higher weight to values further

away from actual observations (Zach, 2021). Which metric to prefer ultimately depends on the

nature of the project and the relative importance of avoiding more extreme errors.

6.1.3 MAPE

Another very popular evaluation metric is the Mean Absolute Percentage Error (MAPE), which

differs from MAE only in that it returns percentages from the actual observation instead of raw

value. This metric has the advantage of being unit-free, hence it is frequently used as an

evaluation method in time series forecasting in general (Hyndman & Athanasopoulos, 2021).

MAPE can be presented as follows:
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As a rule of thumb, it is generally stated that a well performing model returns a MAPE not 

exceeding 5% (Swanson, 2015). 

 

Comparing the different metrics, MAPE has an advantage in terms of interpretation, as 

percentage error gives a direct indication of the relative distance between forecasts and actual 

observations. However, a disadvantage occurs in cases where values drop close to zero. In these 

cases, smaller errors may display very large percentage errors, which can be problematic, 

especially if the lower values are not easier to precisely forecast. The strengths of MAPE 

outweigh the weaknesses in terms of our consumption forecasts since consumption values never 

drop anywhere near towards zero. However, for spot price, the case is the opposite, as price 

irregularly might drop to around zero for certain hours, meaning that not only will small 

absolute errors return dramatically large MAPE values, but many of the larger forecast errors 

will appear in these instances as well, since the rapid irregular drops are hard to predict (Weron, 

2014). Since all forecasts are made on the same scale as the data, there is no necessity for 

considering using a scaled-independent evaluation method. 

 

Our forecasts are divided into two parts: forecasts of electricity consumption and forecasts of 

spot price. The different characteristics of these parts leads us to the decision of using different 

metrics in each part, as we have no intention of comparing consumption forecasts with price 

forecasts. We will use MAPE for the consumption forecasts and MAE for the spot price 

forecasts. We use MAE instead of RMSE since many of the more extreme errors, in our view, 

occur because of abnormal situations in the data that cannot be traced well to changes in 

consumption and weather data, but rather to external factors not included in this project. Hence, 

we do not see it as beneficial to assign higher weights to more extreme errors. 

 

 

 

 

 

63

l · Actual, - Forecast,
M Å P E = - .

n i = i Actual,
x 100

As a rule of thumb, it is generally stated that a well performing model returns a MAPE not

exceeding 5% (Swanson, 2015).

Comparing the different metrics, MAPE has an advantage in terms of interpretation, as

percentage error gives a direct indication of the relative distance between forecasts and actual

observations. However, a disadvantage occurs in cases where values drop close to zero. In these

cases, smaller errors may display very large percentage errors, which can be problematic,

especially if the lower values are not easier to precisely forecast. The strengths of MAPE

outweigh the weaknesses in terms of our consumption forecasts since consumption values never

drop anywhere near towards zero. However, for spot price, the case is the opposite, as price

irregularly might drop to around zero for certain hours, meaning that not only will small

absolute errors return dramatically large MAPE values, but many of the larger forecast errors

will appear in these instances as well, since the rapid irregular drops are hard to predict (Weron,

2014). Since all forecasts are made on the same scale as the data, there is no necessity for

considering using a scaled-independent evaluation method.

Our forecasts are divided into two parts: forecasts of electricity consumption and forecasts of

spot price. The different characteristics of these parts leads us to the decision of using different

metrics in each part, as we have no intention of comparing consumption forecasts with price

forecasts. We will use MAPE for the consumption forecasts and MAE for the spot price

forecasts. We use MAE instead ofRMSE since many of the more extreme errors, in our view,

occur because of abnormal situations in the data that cannot be traced well to changes in

consumption and weather data, but rather to external factors not included in this project. Hence,

we do not see it as beneficial to assign higher weights to more extreme errors.
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6.2 Consumption forecast results 

Presented below are the results of our demand forecasts for summer and winter obtained from 

our chosen SARIMAX model. The forecasted values will be further applied as exogenous 

predictors in our spot price forecasts.  

6.2.1 Summer results 

Table 6.1  
Electricity demand forecast - MAPE - summer (09.06.- 16.06.2019) 

 
 

As shown in table 6.1, the overall performance is adequate, with an overall MAPE average of 

4.852%. The majority of forecasts satisfy the rule of thumb of a MAPE below 5%. Despite that, 

the model struggles to capture all patterns, specifically on Tuesdays and Sundays. Additionally, 

the model performs relatively poorly on Tuesdays and Saturdays in the east zone.  

 

 

 

 

 

 

 

 

 

 

64

6.2 Consumption forecast results

Presented below are the results of our demand forecasts for summer and winter obtained from

our chosen SARIMAX model. The forecasted values will be further applied as exogenous

predictors in our spot price forecasts.

6.2.1 Summer results

Table 6.1
Electricity demand forecast -MAPE - summer (09.06.- 16.06.2019)

Zone M.on Tue Wed Thu Friva» Sat Sun Weekly
MAPE{%}

South 2.,0,1 7,26 4,03 2,81 2,3 3)1 6,31 4,06
West 2J6 4,43 2,43 2,69 4,15 3}9 6,85 3,76
North 4,31 7,9 3)9 3,59 1,82 5,69 3,29 4,34
East 3,56 16,3 9,65 3).5 3)9 14). 7,55 8).5
Mid 2J5 6,83 2-)4 3,03 3)1 3,38 4,94 3,85
Average 2,918 8,544 4,528 3,074 3,Q34 6,074 5)88 4,852

As shown in table 6.J, the overall performance is adequate, with an overall MAPE average of

4.852%. The majority of forecasts satisfy the rule of thumb of a MAPE below 5%. Despite that,

the model struggles to capture all patterns, specifically on Tuesdays and Sundays. Additionally,

the model performs relatively poorly on Tuesdays and Saturdays in the east zone.
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Figure 6.1  
Actual vs. forecasted consumption values for zone west - summer (09.06.-16.06.2019) 

 
 

The graph shows a pattern where the forecasts generally underestimate during the weekdays 

and overestimate during the weekends, though not to any dramatic degree. The biggest gap 

appearing on Tuesday seems to result more from abnormally high consumption rather than an 

undervalued forecast. 

6.2.2 Winter results 

Table 6.2  
Electricity demand forecast - MAPE - winter (10.02.- 17.02.2019) 

 
 

The winter forecasts improve upon the summer forecasts, returning an average MAPE of 

3.65%. Additionally, there doesn't seem to be any general patterns for this week that the model  
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Figure 6.1
Actual vs. forecasted consumption values for zone west - summer (09.06.-16.06.20J9)
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The graph shows a pattern where the forecasts generally underestimate during the weekdays

and overestimate during the weekends, though not to any dramatic degree. The biggest gap

appearing on Tuesday seems to result more from abnormally high consumption rather than an

undervalued forecast.

6.2.2 Winter results

Table 6.2
Electricity demand forecast -MAPE- winter (10.02.- 17.02.2019)

Zone Mon Tue Wed Tim Friyay Sat Sun Weekiv
MAPE{%}

South 5)6 4,32 2.,05 u 3).7 2.,36 4,28 3,31
West 3)8 n 4,84 1,59 2,41 2) 2,72 3,05
North 1,82 2,44 3,27 2) 5,15 333 l.68 3,05
East 7,4 5,95 8,44 1,22 3,58 5J5 3,83 5,08
Mid 5)4 2)6 6,92 3,54 2,69 2,61 2,56 3)6
Average 4)4 3)34 5,104 l l l 3,42 3,23 3,214 3,65

The winter forecasts improve upon the summer forecasts, returning an average MAPE of

3.65%. Additionally, there doesn't seem to be any general patterns for this week that the model
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fails to capture. Although a recurring issue seems to be present in the east zone, as it doesn't 

quite accomplish the same accuracy as the other zones. However, the general results are up to 

the mark. 

 

Figure 6.2  
Actual vs. forecasted consumption values for zone west - winter (10.02.- 17.02.2019) 

 
 

As with the summer forecast, the model seems to underestimate early in the weekdays. 

However, the forecast improves further into the week and manages to capture the slight drop 

during the weekend, only slightly overestimating in certain periods. 

 

 

 

 

 

 

 

 

 

 

 

66

fails to capture. Although a recurring issue seems to be present in the east zone, as it doesn't

quite accomplish the same accuracy as the other zones. However, the general results are up to

the mark.

Figure 6.2
Actual vs.forecasted consumption values for zone west - winter (10.02.- 17.02.2019)
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As with the summer forecast, the model seems to underestimate early in the weekdays.

However, the forecast improves further into the week and manages to capture the slight drop

during the weekend, only slightly overestimating in certain periods.



67 

 

 

6.3 Spot price forecast results 

This part presents the price forecast results. As with consumption, we will present one table for 

each forecasted time period. Two plots are included for each period: one comparing the patterns 

of performance of all models, while the other displays the best performing model.   

6.3.1 Benchmark for MAE 

As we use MAE to evaluate our spot price models, it is advantageous to declare a benchmark 

value for a good score, as the numbers being on the same scale as the data do not provide the 

same information relative to the actual observed values as percentage errors do. Actual values 

during forecasted periods generally range from around 200 - 350 NOK during the summer, 

while generally ranging between 400 - 500 NOK during the winter. Since spot price, in 

comparison to consumption, is more sensitive to impact by external factors and therefore harder 

to predict by nature, and the lower values means small residuals return higher relative errors, 

we will adjust the rule of thumb benchmark for good results to around 10 percent for the lower 

values. This means that a MAE of 20-30 will be viewed as adequately precise in this part. 
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6.3 Spot price forecast results

This part presents the price forecast results. As with consumption, we will present one table for

each forecasted time period. Two plots are included for each period: one comparing the patterns

of performance of all models, while the other displays the best performing model.

6.3.1 Benchmark for MAE

As we use MAE to evaluate our spot price models, it is advantageous to declare a benchmark

value for a good score, as the numbers being on the same scale as the data do not provide the

same information relative to the actual observed values as percentage errors do. Actual values

during forecasted periods generally range from around 200 - 350 NOK during the summer,

while generally ranging between 400 - 500 NOK during the winter. Since spot price, in

comparison to consumption, is more sensitive to impact by external factors and therefore harder

to predict by nature, and the lower values means small residuals return higher relative errors,

we will adjust the rule of thumb benchmark for good results to around l Opercent for the lower

values. This means that a MAE of 20-30 will be viewed as adequately precise in this part.
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6.3.2 Summer results 

Table 6.3  
Spot price forecast - MAE - summer (09.06.- 16.06.2019) 

 

 
 

Table 6.3 displays varying results across days and zones. In general, the model that seems to 

reliably produce the best forecast is the combination model. The combination model produces 

the best forecast for south, west, and east, whilst being the second best in mid and north. 

Interestingly, SNAÏVE performs the best in these zones but struggles in the rest.  

 

A pattern worth noting is the general underperformance in zone north and mid, especially on 

Monday. A closer look at the data uncovered an abnormal situation in these zones. Prices 

fluctuate from drops to almost zero at night-time to around 300 with steep hourly changes from  
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6.3.2 Summer results

Table 6.3
Spot price forecast -MAE - summer (09.06.- 16.06.2019)

Zone Mon Tue Wed nm Fri Sat Sun Week/v
MAE

South
Snatve 40,0 29,9 !U 26,0 17,4 38,7 17,4 25,8
EFS 48,4 14,8 11,3 29,J 9,1 31) 23,0 24,0
SARIM4X 24,7 28,2 15,0 23,7 10,3 29,0 19,9 21,5
NN 81,J 16,3 10) 27,1 16,1 38,8 12,0 28,8
Combina!ion 27,2 18,5 8,6 25,0 9,4 34,0 14,8 19 6
West
Sræve 42,1 28,2 !U 26,0 17,4 38,8 16J 25,8
EFS 19,7 14,7 10,1 28,4 8,7 30,7 21,5 19,1
SARIM4X 27,8 31,1 4,2 30,7 12,2 21,0 18,2 20,8
NN 28,6 23,6 8,0 27,4 17,9 28,2 18,4 21,7
Combinanon 15,1 19,4 7,2 27,3 10,2 29,4 14,7 17 6
North
Snatve 114,0 44,8 29,3 32,6 38,6 55,8 27,9 49,0
EFS 109,0 94,6 162,0 44,0 17,5 52,6 44,8 75,0
SARIM4X 114,0 75,0 174,0 39) 16) 415 19,2 685
NN 163,0 48,0 24,8 69,1 24,7 25J 138,0 70J
Combination 12J,O 57,9 90,9 26,0 12) 43,J 49,3 57,6
East
Snatve 42,1 28,2 11,5 26,0 17,4 38,8 16,3 25,8
EFS 21,5 16,2 12,9 29,6 9,7 33,0 23,2 20,9
S.4RIM4X 25,0 32,8 13,3 22,8 7,3 32,2 17,1 21,5
NN 62,4 17,8 11,0 31,9 15,1 34,9 12,1 26,5
Combina!ion 14,0 16,8 8,9 26,0 9,7 34,3 13,8 17 7
Mid
Sndive 114,0 44,8 29,3 32,6 38,6 55,8 27,9 49,0
EFS 108,0 93) 177,0 41,5 15,7 52,8 47,0 765
S.4RIM4X 120,0 78,2 78,8 37,5 14,7 37,8 19,3 55,2
NN 150,0 40,8 35,0 53,2 23,9 25,7 111,0 62,8
Combina!ion 121,0 56,2 75,0 23,6 13,0 42,9 42,6 53,5
Average 70.2 38.8 41.3 32.3 16.1 37.1 31.4 38.2

Table 6.3 displays varying results across days and zones. In general, the model that seems to

reliably produce the best forecast is the combination model. The combination model produces

the best forecast for south, west, and east, whilst being the second best in mid and north.

Interestingly, SNAIVE performs the best in these zones but struggles in the rest.

A pattern worth noting is the general underperformance in zone north and mid, especially on

Monday. A closer look at the data uncovered an abnormal situation in these zones. Prices

fluctuate from drops to almost zero at night-time to around 300 with steep hourly changes from
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Monday to Wednesday, resulting in massively undervalued forecasts unable to adapt to the 

steep increases. We do not believe these high errors are an indication of a bad model 

performance as these situations are hard to predict, and we would rather judge the model based 

on performance on the other days for these zones. Nevertheless, the models in both zone mid 

and north still underperform quite a bit, with the exception being Friday. 

 

Figure 6.3  
Actual vs. forecasted spot price for zone west - summer (09.06.- 16.06.2019) 

 
 

As figure 6.3 shows, the amount of negative and positive errors is approximately evenly 

distributed for most days. Certain models tend to mainly either overvalue or undervalue; the 

SNAÏVE model tends to undervalue forecasts for large parts of the week, while ETS, in 

particular, tends to overvalue. Otherwise, most models tend to shift between undervaluing and 

overvaluing, which explains why the aggregating combination model outperforms the others. 

Most underpredictions are made early in the week, while most overpredictions happen during 

the weekend, similar to the demand forecasts.  
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As figure 6.3 shows, the amount of negative and positive errors is approximately evenly

distributed for most days. Certain models tend to mainly either overvalue or undervalue; the

SNAIVE model tends to undervalue forecasts for large parts of the week, while ETS, in

particular, tends to overvalue. Otherwise, most models tend to shift between undervaluing and

overvaluing, which explains why the aggregating combination model outperforms the others.

Most underpredictions are made early in the week, while most overpredictions happen during

the weekend, similar to the demand forecasts.
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Figure 6.4  
Actual vs. forecasted spot price with the best model for zone west - summer (09.06.-
16.06.2019) 

 
This plot shows the best performing model, the combination model. After starting out massively 

underpredicting on Monday, it manages to capture the rest of the pattern on Monday remarkably 

well. Otherwise, the performance is quite consistent, with some exceptions of high 

overpredictions in hours with especially low price observations. Note that the plot is scaled for 

the lines to utilise the whole area, resulting in the Y-axis ranging from 225 to 350, a relatively 

small interval. This may make the predictions appear less precise than they actually are. This 

good performance of the combination model confirms the evenly distributed pattern observed 

in the other models. 
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Figure 6.4
Actual vs. forecasted spot price with the best model for zone west - summer (09.06.-
16.06.2019)
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This plot shows the best performing model, the combination model. After starting out massively

underpredicting on Monday, it manages to capture the rest of the pattern on Monday remarkably

well. Otherwise, the performance is quite consistent, with some exceptions of high

overpredictions in hours with especially low price observations. Note that the plot is scaled for

the lines to utilise the whole area, resulting in the Y-axis ranging from 225 to 350, a relatively

small interval. This may make the predictions appear less precise than they actually are. This

good performance of the combination model confirms the evenly distributed pattern observed

in the other models.
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6.3.3 Winter results 

Table 6.4  
Spot price forecast - MAE - winter (10.02.- 17.02.2019) 

 
 

In general, the results from winter forecasts are more precise, and more importantly, display 

less variation. The only instance where the weekly mean error surpasses 30 is for the ETS 

model, which, in general, is the only model somewhat lacking in performance. Interestingly, 

there is no model that really outshines the others. Contradicting the summer forecast, the 

combination model does not prove to be the best overall model in any zone for this period. 

 

The best forecasts generally happen early in the week, with Monday and Tuesday boasting the 

best average results. All days seem to generally produce precise forecasts, with a slight 

exception on Saturday, where all models are struggling in the mid and north zone. The models  
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6.3.3 Winter results

Table 6.4
Spot price forecast - MAE - winter (10.02.- J7.02.2019)

Zone Mon Tue Wed nm Fri Sat Sun Weekiv
MAE

South
Snafve 6) 14,0 23) 13;9 12,3 15,6 6J 13,2
ETS 20,5 11,4 24,9 27). 21,4 31,8 24,8 2 3 )
SARIM4X 8,0 12,1 IH 20,8 165 17,9 8,0 13,7
NN 6) 11,4 26,6 14,6 12,6 16j n 13,7
Combinæion 7,6 8,7 215 19J 15,3 19,6 85 14J
We,t
Snai\!e 6) 14,0 23) 13,9 12J 15,6 6J 13,2
ETS 20,0 11) 24j 26) 205 31,5 24,2 22,6
S.4RIM4X 5,6 14,0 175 18) 13J 16) 7J 13J
NN 5,9 14) 24,2 13,2 7,0 14,0 n 12,3
Combinæion 5,8 10,0 22,0 18,4 12,2 18,9 7J 135
North
Snatve 16,2 145 17,1 19) 6,9 36,4 20,0 18,6
EFS 15,2 IH 34,2 41,0 22) 54,1 16,8 28,0
S.4RIM4X 95 13,6 21,8 215 9,0 39,9 BJ 18,4
NN 13,8 10,0 16J 26,2 30,8 36,0 37,2 24J
Combination 85 IU 215 26) 4) 41,5 18,9 18,9
East
Snatve 6) 14,0 23) 13,9 12J 15,6 6J 13,2
ETS 24J 14,9 28) 305 25,2 36J 29,4 27,0
S4RIU4X 14,2 6,2 18) 17,1 25J 24) 11 A 16,7
NN 185 18J 16J 16,4 SJ llA 7,6 13J
Combination 7j n 21,0 12j 15,6 20,0 9j 13,4
Mid
Snatve 16,2 145 17) 19) 6,9 36,4 20,0 18,.6
ETS 21) 14,2 39,0 46,2 28,7 58,0 16,2 32,0
S.4RIM4X 9,6 12J 16j 20,9 7,4 35,2 12j 16,3
NN 12J 18,0 33,4 15,7 19,8 37j 34,0 24,3
Combinæion 8,9 IU 255 24,6 6,6 41,5 16,8 19J
Average 11.8 12.6 22.9 21.5 14.8 28.9 15.1 18.2

In general, the results from winter forecasts are more precise, and more importantly, display

less variation. The only instance where the weekly mean error surpasses 30 is for the ETS

model, which, in general, is the only model somewhat lacking in performance. Interestingly,

there is no model that really outshines the others. Contradicting the summer forecast, the

combination model does not prove to be the best overall model in any zone for this period.

The best forecasts generally happen early in the week, with Monday and Tuesday boasting the

best average results. All days seem to generally produce precise forecasts, with a slight

exception on Saturday, where all models are struggling in the mid and north zone. The models
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seem to be struggling in approximately the same degree, which we can track back to a price dip 

appearing early Saturday that the models struggle to capture.  

 

Figure 6.5  
Actual vs. forecasted spot price for zone west - winter (10.02.- 17.02.2019) 

 
 

The general performance of the model is displayed here, showing slight overpredictions for 

most of the week. The underperformance of ETS seems to be mostly consistent throughout, 

displaying overly sensitive reactions to most dips and peaks. This sensitivity damages the 

performance of the combination model, as it only serves to strengthen the error pattern shown 

in the other models. 
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seem to be struggling in approximately the same degree, which we can track back to a price dip

appearing early Saturday that the models struggle to capture.
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The general performance of the model is displayed here, showing slight overpredictions for

most of the week. The underperformance of ETS seems to be mostly consistent throughout,

displaying overly sensitive reactions to most dips and peaks. This sensitivity damages the

performance of the combination model, as it only serves to strengthen the error pattern shown

in the other models.



73 

 

 

Figure 6.6  
Actual vs. Forecasted spot price with the best model for zone west - winter (10.02.- 
17.02.2019) 

 
 

The best performing model for zone west during the winter is the neural network model. This 

model captures the beginning and ending of the week remarkably well, as well as the general 

slowly descending pattern towards the end of the week. The weakest point of the model is the 

overprediction on Wednesday, where it fails to detect the price dip from Tuesday. Generally, it 

can be seen in the plot that the predictions for each day strongly resemble the observations from 

the preceding day, indicating that the neural network model weighs the seasonal nature of the 

data considerably. This approach works better in this period than for the summer forecast. 
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Figure 6.6
Actual vs. Forecasted spot price with the best model for zone west - winter (J0.02.-
17.02.2019)
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The best performing model for zone west during the winter is the neural network model. This

model captures the beginning and ending of the week remarkably well, as well as the general

slowly descending pattern towards the end of the week. The weakest point of the model is the

overprediction on Wednesday, where it fails to detect the price dip from Tuesday. Generally, it

can be seen in the plot that the predictions for each day strongly resemble the observations from

the preceding day, indicating that the neural network model weighs the seasonal nature of the

data considerably. This approach works better in this period than for the summer forecast.
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7. Discussion 

In this chapter, we interpret the results obtained from our forecasting models. Our goal is to 

draw meaningful conclusions based on our findings and discuss the implications that our 

findings might hold for the participants on the Nord Pool day-ahead market. Additionally, we 

will discuss some of the limitations of the study that future research could address to gain 

additional knowledge on the topic. 

 

7.1 Consumption forecasting results 

Generally, the patterns show similarities between summer and winter. Early in the week, the 

model tends to underestimate, while during the weekend, it tends to overestimate. This might 

imply that the weekly seasonal effect captured by the weekday variable in the model is not 

sufficient to efficiently capture the weekly pattern of increasing consumption on Mondays after 

the weekend and decreasing consumption after Fridays for weekends. The weekday variable 

appears to have minimal impact on the summer forecasts. However, for the winter forecasts, 

forecasted consumption decreases during the weekend, suggesting that the variable might have 

a significant impact. Consequently, it seems that the temperature variable may hold too much 

weight in the summer period, where changes in temperature have a lesser effect on consumption 

compared to colder periods. 

 

Notably, the eastern zone deviated significantly in performance compared to the other zones. 

The eastern zone is the most populated zone in Norway, accounting for 40 % of the total 

population. It also contains the by far most densely populated region in the country in the urban 

areas in and around Oslo. As a result, the effect on consumption from weather in this zone might 

differ and moreover might be more sensitive to external effects not explained by the model. It 

is likely that the high amount of urban population, combined with the numerous businesses and 

industries in and around Oslo, leads to different sensitivities to the exogenous variables. 
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other parts of the eastern zone.  Additionally, the numerous businesses in central Oslo might 

affect the weight on the weekday variable for parts of the zone in terms of opening and closing 

hours. Ultimately, the differential impact of exogenous factors across urban and rural areas 

within the zone may have a negative effect on the overall performance of a generalised model. 

 

Another noteworthy aspect is the enhanced forecast performance observed during winter 

compared to summer, which potentially supports the initial analysis findings suggesting a 

stronger correlation between temperature and consumption for lower temperatures. However, 

it is also possible that the improvements are simply a result of more stable data during winter, 

since the price forecasting models without the inclusion of weather data also show the same 

improvement for winter compared to summer. It is likely that the difference in performance can 

be explained by a combination of these factors. 

 

In conclusion, the consumption forecasts perform well, which is not surprising considering the 

robust correlations with temperature and consistent seasonal pattern related to industries and 

businesses working hours. There are also far fewer external effects connected to consumption 

compared to price. 

 

7.2 Spot price forecasting results 

7.2.1 Benchmark models 

As the results show, there is no clear indication of any model outperforming the others. 

However, we can interpret from our results that the ETS model underperforms on average, 

mostly due to being overly sensitive, resulting in overestimation of the peaks and lows of the 

forecasting period.  

 

The SNAÏVE model displays some of the biggest variations in performance, notably 

outperforming other models on abnormal data such as the summer period in the north and mid 

zones, whilst relatively struggling to capture patterns during the same period for the other zones. 

The simplicity of the seasonally naïve method proves to be surprisingly effective for data with  
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strong seasonal patterns, as long as the levels of highs and lows are somewhat stable throughout 

the analysis period. The north and mid zones exhibit very high volatility during the summer 

week, which the other models were unable to capture. However, the SNAÏVE model struggles 

on Monday but quickly adjusts and returns generally good results for the rest of the week, as 

the volatile pattern remains consistent. In general, the SNAÏVE model seems to be highly 

effective for stable seasonal patterns. 

 

The neural network model displays some promising results, returning the most accurate 

forecasts for zone west during the winter. However, its performance is mediocre in other 

periods, potentially indicating an overreliance on the daily seasonal patterns, as shown in figure 

6.6.  

 

In cases where the models display differing patterns with both positive and negative errors, the 

combination models deliver great performance. This model effectively balances the strengths 

and weaknesses of the individual models, resulting in high stability. However, in cases where 

the patterns are more similar and one model underperforms, the combination model weakens, 

as for example in the winter forecast, where the ETS model follows a similar pattern as the 

others but with higher errors. Nonetheless, with the appropriate selection of models, we believe 

that a combination model can be the most appropriate and, as mentioned earlier, difficult to 

surpass. 

7.2.2 SARIMAX model 

The SARIMAX model produces generally adequately good forecasts. Out of the 10 weekly 

average results, only two periods/zones return unsatisfactory high MAE values. Furthermore, 

these weeks exhibit abnormal price fluctuations that no other model effectively captures either. 

However, the inclusion of exogenous variables does not seem to significantly enhance the 

model's performance, as the SARIMAX model does not outperform the other benchmark 

models. This suggests that the impact of the exogenous factors may not be as important as 

initially expected, compared to other external effects not considered in this project. 

Alternatively, the relationships between the variables may exhibit nonlinear dynamics instead 

of the linear relationship assumed by the SARIMAX model. Nonetheless, the SARIMAX  

76

strong seasonal patterns, as long as the levels of highs and lows are somewhat stable throughout

the analysis period. The north and mid zones exhibit very high volatility during the summer

week, which the other models were unable to capture. However, the SNAIVE model struggles

on Monday but quickly adjusts and returns generally good results for the rest of the week, as

the volatile pattern remains consistent. In general, the SNAIVE model seems to be highly

effective for stable seasonal patterns.

The neural network model displays some promising results, returning the most accurate

forecasts for zone west during the winter. However, its performance is mediocre in other

periods, potentially indicating an overreliance on the daily seasonal patterns, as shown in figure

6.6.

In cases where the models display differing patterns with both positive and negative errors, the

combination models deliver great performance. This model effectively balances the strengths

and weaknesses of the individual models, resulting in high stability. However, in cases where

the patterns are more similar and one model underperforms, the combination model weakens,

as for example in the winter forecast, where the ETS model follows a similar pattern as the

others but with higher errors. Nonetheless, with the appropriate selection of models, we believe

that a combination model can be the most appropriate and, as mentioned earlier, difficult to

surpass.

7.2.2 SARIMAX model

The SARIMAX model produces generally adequately good forecasts. Out of the l O weekly

average results, only two periods/zones return unsatisfactory high MAE values. Furthermore,

these weeks exhibit abnormal price fluctuations that no other model effectively captures either.

However, the inclusion of exogenous variables does not seem to significantly enhance the

model's performance, as the SARIMAX model does not outperform the other benchmark

models. This suggests that the impact of the exogenous factors may not be as important as

initially expected, compared to other external effects not considered in this project.

Alternatively, the relationships between the variables may exhibit nonlinear dynamics instead

of the linear relationship assumed by the SARIMAX model. Nonetheless, the SARIMAX



77 

 

 

model consistently produces stable and adequate results, indicating that it can rely on the 

incorporated exogenous effects in situations where the reliability of the autoregressive effect is 

weak. 

 

In conclusion, the overall performance suggests that the SARIMAX model is capable of 

handling most situations reasonably well, and in cases of performance dips, the model tends to 

quickly improve, as shown by the lack of consecutive instances of bad MAE values. 

7.3 Critique 

7.3.1 Limitations of model variables 

Throughout this thesis we have assumed spot prices to depend on lagged prices, demand and 

indirectly on temperature and weekday. In reality however, there are numerous other factors 

that also have an effect on the price, which we have chosen not to consider in this project. 

Below, we will present some of the most important factors that were not taken into account in 

our study. 

Reservoir levels 

Since almost all Norwegian electricity is produced from hydropower, the availability of water 

in reservoirs does have an impact on price setting. However, we argue that this relationship 

works in a more complex manner than a simple "less availability equals higher price" and vice 

versa. In the short term, reservoir levels may not have a strong influence on price, but they are 

important factors to be considered in long-term forecasting models. 

Import and export 

Norway partakes in the global power market, with constantly evolving capacity for import and 

export of electricity. Power flows in and out of the country, contributing to a reduced risk of 

power shortages. However, this also means that Norwegian prices are heavily influenced by 

prices abroad, both in Europe and the rest of the world. The interconnectedness of the global 

power market plays a significant role in shaping the electricity prices in Norway. 
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Coal prices 

Unlike Norway's predominantly renewable production, several countries in Europe still rely on 

non-renewable sources such as coal and gas power plants. These countries need to purchase the 

raw materials required for power production. Therefore, high prices of coal and gas can have 

an impact on the amount of electricity produced in these countries, which, in turn, can influence 

electricity prices in Norway. 

Exchange rates 

The exchange rates of the Euro and the US Dollar are two additional factors that impact 

Norwegian electricity prices. In the day-ahead market, hourly prices are determined in Euros. 

An increase in the Euro exchange rate leads to a weakened Norwegian krone, resulting in higher 

recalculated prices in Norway. Furthermore, the Dollar exchange rate is relevant for acquiring 

coal in European coal power plants. Therefore, fluctuations in the Dollar rate can influence the 

amount of coal purchased and produced, which in turn can affect import prices for Norway 

(NTE, n.d.). 

7.3.2 Limitations of methodology 

Model selection 

In this thesis, only one model incorporates the exogenous effect of demand and weather. The 

flexible nature of the SARIMAX model, in addition to the aim of comparing the autoregressive 

capability of this model with other statistical approaches that effectively model based on past 

observations, prove the basis for this decision. Nevertheless, it is clear that the inclusion of 

additional models that take exogenous factors into account could enhance the analysis and 

provide further benefits.  

Aggregation of weather variable 

The aggregation of weather variables in this thesis is based on an intuitive approach. Rough 

estimates of population distributions for each zone are computed, and meteorological data from 

stations located in different areas of the zones are retrieved to account for climatic differences. 

The zone division does not follow the same borders as the counties in Norway, which led to the  
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preference for this estimation approach. The selection of meteorological stations was limited 

due to the lack of data for certain weather metrics or large amounts of missing data in most 

stations. Therefore, the selection was made in a best-case scenario manner, considering multiple 

imperfect estimations, particularly in the zones south, west, and east. However, the decision to 

use only temperature as a weather variable helps mitigate these imperfections, as temperature 

is usually a more stable metric within a specific area compared to rainfall and wind. 

Actual / Forecasted weather 

In this project, we utilise actual observed weather data obtained from Norsk 

Klimaservicesenter's database to generate the demand forecasts. However, the main objective 

of this forecasting project is to develop a model capable of predicting future spot prices by 

utilising weather forecasts rather than relying on actual observations. It is important to note that 

using weather forecasts instead of actual data might have a negative impact on the model's 

performance. However, it is worth mentioning that short-term temperature forecasts tend to be 

accurate, meaning the potential decrease in performance should be of small effect. 

 

7.4 Implications of study  

The results of our study indicate that the SARIMAX model, along with the other benchmark 

models, can be employed as valuable tools in electricity price forecasting. The characteristics 

of the price data make it a suitable and viable object for forecasting purposes. 

 

The findings in our study indicate temperature as a useful predictor of electricity demand, and 

that there in addition are correlations between temperature and price as well. However, it is 

important to note that temperature is just one of many variables that influence electricity prices, 

meaning the impact on the model's performance is not easily interpretable in isolation. We also 

observed that variables such as rainfall and wind speed do not exhibit significant relationships 

with demand or prices, likely due to the ability to store hydropower and the relatively low 

percentage of wind power used in energy production. Concludingly, we find that weather 

effects on electricity price are present, but in a more nonlinear and complex manner than our 

forecasting models are generally able to capture, suggesting that further research and  
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exploration is needed to better understand and incorporate the dynamics of the weather effects. 

 

In terms of practical implications, our findings indicate that incorporating autoregression and 

seasonal effects into the price forecasting methodology proves to be an effective approach. The 

general results suggest that a forecasting model, combined with market participants’ knowledge 

of potential external influences, should prove an effective strategy, aiding said participants in 

making informed decisions on the day-ahead market regarding bidding and pricing values.  
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8. Conclusion 

This master thesis studies the concept of electricity price forecasting on the Nord Pool day-

ahead market in Norway. The electricity market in Norway is today a part of an internationally 

integrated network, which, in turn, has led to increasingly complex price dynamics influenced 

by factors such as weather, policies, demand, and fuel prices. Weather patterns are becoming 

increasingly important as well due to the global focus on utilising renewable energy production. 

By conducting a study on electricity price forecasting and looking into the potential impact of 

weather variables, we aim to aid the future market participants in deciding upon bidding values 

and volumes on the Nord Pool day-ahead market. 

 

Our analysis is done on a combination of lagged price values and market demand, represented 

by consumption in our analysis, both obtained from Nord Pool. Weather variables were 

gathered from Norsk Klimaservicesenter and included temperature, precipitation, and wind 

speed values. However, after some initial analysis, we decided to solely focus on temperature 

as this is the only weather variable that seems to significantly impact demand and price. We 

have incorporated the temperature data into our models as a predictor on demand, which in turn 

is used as a predictor on price due to the correlated nature of these variables. The temperature 

has a direct impact on consumption both in households and larger industries, while consumption 

has a direct impact on price as the day ahead market always aims to establish equilibrium 

between market demand and supply, meaning more resources are required to account for higher 

consumption, affecting the price. 

 

The model used to incorporate temperature data is the SARIMAX model, a model which is able 

to flexibly capture the autoregressive nature of price, combined with impact from exogenous 

factors. Exogenous factors included are the aforementioned demand, as well as a weekday 

factor variable which is included to effectively capture the weekly seasonal variations in 

demand and price patterns. To evaluate the SARIMAX model performance, we have 

additionally included a range of benchmark models, ranging from a simple seasonal naïve 

model to more complex models such as a neural network model. The benchmark models 

produce forecasts solely based on past observations of price, making the direct influence of 

weather and other exogenous factors in the SARIMAX model easier to interpret. 
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Our models return generally promising results, suggesting that the autoregressive nature of 

electricity price on its own can be used to produce accurate forecasts, explained by weekly 

MAE values for all models rarely exceeding 30, which in most cases means less than 10% 

MAPE. We consider this as generally acceptable accuracy, as the nature of the interconnected 

market means a wide range of external factors not easily incorporated in forecasting models 

may affect price fluctuations by uneven amounts.   

 

Our SARIMAX model performs adequately on average in comparison to the benchmark 

models, but the results suggest a relatively high stability in performance. The inclusion of the 

weekday factor variable, temperature, and demand helps explain the stability observed, as these 

external factors serve to mitigate the risk of substantial undervaluation or overvaluation of 

forecasts during periods of intense fluctuations. 

 

Generally speaking, the findings of this study suggest that the SARIMAX model is a helpful 

tool for forecasting electricity prices, with weather and demand positively impacting the overall 

model performance. However, the relationship seems to vary depending on the season and the 

impact of external effects not included in this study, making the direct influence of weather 

complex and nonlinear. We find that the general results, combined with market participants' 

knowledge of potential external influences, may aid these participants in making accurate 

forecasts in real-life situations. 
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Figures for zone east:
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Summer spot:
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Figures for zone mid: 
Summer consumption: 
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Figures for zone mid:
Summer consumption:

Actual(black) vs forecasted consumption
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Figures for zone south: 
Summer consumption: 

 
Winter consumption: 
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Figures for zone south:
Summer consumption:

Actual(black) vs forecasted consumption
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Summer spot:
Actual(black) vs. Forecasted
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Figures for zone north: 
Summer consumption: 

 
Winter consumption: 
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Figures for zone north:

Summer consumption:
Actual(black) vs forecasted consumption
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