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Abstract

Being able to accurately predict future levels of port congestion is of great value to both

port and ship operators. However, such a prediction tool is currently not available. In this

thesis, a Long Short-Term Memory Recurrent Neural Network is built to fulfill this need.

The prediction model uses information mined from Automatic Identification Systems (AIS)

data, vessel characteristics, weather data, and commodity price data as input variables

to predict the future level of congestion in the port of Paranaguá, Brazil. All data used

in this study are publicly available. The predictions of the proposed model are shown

to be promising with a satisfactory level of accuracy. The conclusion and evaluation of

the presented model are that it serves its purpose and fulfills its objective within the

constraints set by the authors and its inherent limitations.

Keywords – Shipping Industry, Port Congestion, Machine Learning, Long Short-Term

Memory Recurrent Neural Network, Weather Margin, Dijkstra’s Algorithm
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1 Introduction

Ports are an integral part of global maritime shipping. They play a critical role in

supporting global supply chains by ensuring that the inflow and outflow of ships go as

efficiently as possible, which is not an easy task. According to UNCTAD (2019), the global

median time ships spent in ports in 2018 was 23.5 hours. As a consequence of covid-19

and following increased pressure on many supply chains, the median port time increased

through 2019 and 2020 and was measured in 2021 at 25.2 hours (Sirimanne et al., 2019;

Notteboom et al., 2021; Gui et al., 2022). Increased time spent in ports causes congestion,

which can cause significant delays, increased fuel consumption, and even accidents for ship

operators (Meersman et al., 2012). Furthermore, 93.6% of the delays that occur in ports

are due to congestion (Notteboom, 2006). Therefore, being able to accurately predict

future levels of congestion will be largely beneficial for both port operators and shipping

companies during normal operating conditions and also when unexpected events occur.

G2 Ocean, a joint venture company between Gearbulk and Grieg Maritime Group (G2

Ocean AS, 2023), has long experience with port congestion and is looking to improve its

ability to predict future congestion for its fleet. Predicting future port congestion will

help the company limit costs and reduce risk by adjusting speed and negotiating better

terms in their contracts. G2 Ocean has become the world’s largest ship operator in the

open hatch segment, covering 37 trade lanes around the world (G2 Ocean AS, 2022). In

2021, their ships were present in ports more than 3,700 times in more than 60 countries,

making it necessary to know the situation at the next port.

There are many sources of congestion in ports. Uncertainties with port productivity

will always be present and can lead to substantial delays in operations. Congestion can

occur because ships have to wait until a berth becomes available, other ships occupy

loading-discharge facilities, or the entrance or departure gates of the port are congested

(Pruyn et al., 2020). Such problems occur frequently, and previous studies have suggested

probability modeling to combat this measurable uncertainty (Notteboom, 2006). However,

there exist variables affecting port congestion that are not related to port operations

themselves. Weather at sea affects how quickly ships travel and what route will be optimal

to take (Park et al., 2021; Zis et al., 2020). The increased frequency and relative force of
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extreme weather (Portner et al., 2019), make weather variables a greater potential source

of congestion and therefore must be included when predicting future congestion.

Little previous research has been dedicated to predicting port congestion. Most studies

have focused only on measuring congestion, in part due to poor access to high-quality

dynamic data (Yeo et al., 2007; Steven and Corsi, 2012; Leachman and Jula, 2011; Oyatoye

et al., 2011). This data access problem can now be mitigated by using data from the

Automatic Identification System (AIS). AIS is a vessel tracking system and anticollision

system that automatically tracks and shares updates on a vessel’s position and other

voyage information. Ships equipped with an AIS transponder transmit a packet every few

seconds, containing dynamic data such as the vessel’s position, speed over ground, course

over ground, true heading, and rate of turn. Static vessel-specific data, draft, and other

information related to the voyage are transmitted less frequently.

The work of Peng et al. (2022) and Abualhaol et al. (2018a) is used as a basis for the

methodology of this thesis, with regard to the use of deep learning and long short-term

(LSTM) neural network for actual predictions. Furthermore, the thesis takes inspiration

from the work of Fuentes (2021), who clustered vessels according to their position in and

around the port area to detect whether the vessel is in berth, anchorage, or moving.

In addition, this thesis contributes to the existing literature by paying more attention to

the importance of weather variables and other variables with a potential causal effect on

the formation of port congestion. In addition to AIS data, we also collected weather data

from the Copernicus Climate Change Service database, commodity prices from NASDAQ

and Bloomberg, and ship characteristics from Clarksons’ World Fleet Register. The goal

of this thesis is to develop a model capable of predicting future port congestion using

large amounts of publicly available data. To the best of our knowledge, this paper marks

the first application of LSTM RNNs for long-term prediction of port congestion.

In agreement with G2 Ocean, we limit the scope of the thesis to predict congestion in

a single port, Paranaguá port in Brazil. Paranaguá is the second largest port in Brazil

and is frequently visited by the G2 Ocean fleet. The limited scope should not be seen as

a limitation of the model output. Rather, it should be seen as a proof of concept that

such a prediction model is possible to construct and will produce valuable information for

stakeholders in the shipping industry.
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2 Background

As G2 Ocean is one of the world’s largest shipping companies with operations spanning

across multiple regions, various unforeseen disruptions are likely to occur. The entire

maritime shipping industry experienced this in 2021 when the Ever Given vessel, operated

by the company Evergreen, had an accident and blocked the Suez Canal. The canal is

one of the most used shipping routes, where 13.3% of the world’s freight is transported

through it, making it a crucial part of many supply chains (Lee and Wong, 2021). This

led to an immense propagation effect among the following vessels and congestion in ports.

In that situation, a tool with real-time data and forecasts of congestion would be of great

value to all incoming vessel operators.

As mentioned, we limit our study to the port of Paranaguá in Brazil. It is located in

the Paranaguá bay, just south of São Paulo, which is the largest exporter of agricultural

products in the country and the largest bulk port in Latin America (World Port Source,

2023). Additionally, the layout of the port makes it so that the awaiting vessels are

anchored just outside of the bay. The port has 16 berths for commercial vessels (container

and bulk), four berths for liquid cargo and two berths for fertilizer (Portos do Paraná,

Port Authority, 2023).

Figure 2.1: A histogram of turnaround time for bulk carriers visiting Paranaguá.

G2 Ocean has a long history with the port of Paranaguá and has served several local

companies with frequent sailings, mostly transporting goods to the United States and

northern Europe. The main commodities loaded onto the G2 Ocean vessels in Paranaguá

are wood pulp, kraft liner board, and construction lumber. Currently, the demand is

three shipments per month and approximately 50 megatons (Mt) are being shipped by
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G2 Ocean in the Paranaguá port. The company not only ships goods from Brazil but

also brings cargo to the country. However, this occurs mainly during certain seasonal

periods and the cargo is usually fertilizer needed for agricultural production in Brazil. It

is especially during these periods of elevated demand that the company experiences an

increase in port congestion in Paranaguá, which is due to the high increase in fertilizer

transportation to the port.

During the peak fertilizer season, G2 Ocean often evaluates the potential for congestion

as too risky if they are booked on liner terms. Meaning they operate on a schedule with

fixed port rotation at a fixed frequency (Shipping and Freight Resouce, 2023). In these

cases, the company looks to nearby ports such as Itajaí port and Sao Francisco do Sul

port to redirect its cargo. Therefore, it is critical that G2 Ocean is prepared for future

congestion to negotiate terms and space allocation in alternative ports.

To ensure that port congestion predictions are of best use, G2 Ocean has requested a time

span of two to three months for the prediction. Being able to predict future congestion

two to three months in advance will allow the company to delay the sailing of vessels

in case of unusually long waiting time at the port of destination. However, predictions

within a shorter time frame, when the vessel is already at sea, will still be useful since

the ship operators can adjust the speed of the vessel to sail most cost-efficiently. G2

Ocean recognizes the potential to exploit big data and acknowledges the availability of

information. However, until recently, the resources and methods necessary to extract

meaningful patterns have been lacking.

The following sections of the thesis are structured as follows. Section 3 reviews the literature

on port congestion measurement and prediction, the effect of weather on shipping, and

the use of machine learning in this field. The following section provides an explanation of

the different data used in this thesis and the preprocessing that is performed to utilize the

data. Section 5 provides an explanation of the methodological framework and approach

used in this study, followed by an analysis of the results of the prediction model developed.

Afterwards, we discuss the findings in the Discussion section and disclose the limitations

with our approach. Finally, we present our conclusions in Section 8.
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3 Literature Review

3.1 Port Operations and Congestion

The transportation of cargo from an origin country to a destination country involves three

key components: the movement of the cargo to and from the outbound and inbound sea

ports, the handling and loading onto the ship within the port terminals, and the oceanic

journey of the cargo onboard a vessel. At the end of the shipment, the cargo is unloaded

from the ship and trans-loaded onto other means of transport. When this process is seen

as a system, it becomes clear that the sea port plays a crucial role at both the origin

and destination ends. Inefficiencies in ports, such as slow loading/unloading, workforce

problems, or limited connections to land transportation, significantly detract from the

overall efficiency of the transportation process. In addition, ships arriving at the port at

other times than planned also contribute to increased uncertainty and inefficiencies. The

direct consequence of all this is, ultimately, queueing, longer waiting times, and congestion

(Meersman et al., 2012).

Other researchers have used different ways to measure and quantify port congestion. Yeo

et al. (2007) estimated and simulated traffic congestion in the Busan port by calculating

the number of vessels waiting, the time interval between the arrival of the vessel and

the time of service on the berth. Another attempt to measure congestion was made by

Steven and Corsi (2012) who used a relationship between the total number of container

vessel calls and the total number of container berths available in the port. However, this

measure will only cover the congestion present at the berth, so they add a second measure

using the ratio of number of containers that are lifted over number of cranes at the port.

Leachman and Jula (2011) calculated container flow times in US ports and used them as

a measure of congestion where ports with higher flow times were more congested. All of

these studies have used data from port authorities or industry players, making the data

heterogeneous and prone to inconsistencies. Furthermore, the articles maintain a limited

view of congestion and do not account for other plausible sources of congestion.

With access to more accurate, homogeneous and consistent data along with the emergence

of machine learning, researchers have been able to measure, better categorize, and predict
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future port congestion. Abualhaol et al. (2018a) utilizes AIS data to accurately measure

congestion pressure in different parts of port areas. They developed three port congestion

indicators that provide an accurate representation of congestion. The indicators are spatial

complexity, spatial density, and time criticality. Although the researchers did not predict

future congestion in this article, they did present a set of indicators that can be used for

predictions. Note that the authors did not include any other data in their model than

those that can be found in the AIS data. We aim to include other data on port congestion

in this thesis.

In a later paper, Abualhaol et al. (2018b) used their set of congestion indicators to forecast

future port congestion in the port of Singapore. They do this using an LSTM Recurrent

Neural Network (RNN) model and their prediction results were promising, demonstrating

that such a prediction model using AIS data can be used in congestion prediction with

confidence.

The precision of AIS data has made it possible to precisely detect different stages of port

operations, from berthing, anchorage, and waiting to vessels passing by. Fuentes (2021)

developed a method to dynamically identify ships anchored within a port area, as well as

being served at the berth area using AIS data. Fuentes makes use of the density-based

spatial clustering of applications with noise (DBSCAN) algorithm. The algorithm classifies

positions (points) into clusters based on parameters selected by the user (Ester et al.,

1996).

Peng et al. (2022) continued on the path started by Abualhaol et al. (2018a) and Fuentes

(2021). They also used AIS data and created clusters of berths and anchorages in 20 of

the largest ports in the world. To measure congestion, they used two dimensions: traffic

volume and turnaround time. Contrary to Fuentes (2021), Peng et al. built a prediction

model for actual hourly congestion and used an LSTM RNN to do so. Like the work of

Abualhaol et al. (2018b), the results of their predictions are promising. However, they

find that individual port congestion measures perform best when developed with respect

to port-specific attributes.

In their study of 2022, Bai et al. clustered and located individual ports without

differentiating between berth and anchorage. The study did not aimed to predict

congestion, but only to measure it and investigate its economic impact. To quantify and
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measure port congestion, the authors calculated the time span from the vessel’s entry into

the recognized port area to its exit. Subsequently, they defined actual congestion by the

difference between the actual observed time in the port and the normally required time

for loading and discharging, which they had access to. The normally required time for

loading and discharging is data we do not have access to for the vessels in our dataset.

Our data are relatively heterogeneous consisting of vessels of different sizes and storage

capabilities, and we do not know the volume of loading/unloading per ship. However, this

is desired to model reality with a high degree of accuracy.

3.2 Weather Effect

The effect of different weather conditions on the speed of a ship, the chosen route, and

ultimately the travel time is well documented (Kuroda and Sugimoto, 2022; Adland

et al., 2015; Zis et al., 2020; Taskar and Andersen, 2020; Nilsson and Nilsson, 2021;

Knive and Liane, 2022). Ships at sea facing severe weather conditions must adjust

their movements accordingly to reduce risk (Adland et al., 2015; Heij and Knapp, 2015).

Adjustments to speed and course will bring additional uncertainty to the estimated arrival

time (ETA) of the vessel at its destination and may result in operational delays at the port.

Furthermore, since each ship has its own route, they will experience different external

operating conditions in space and time (Ando, 2014). Therefore, we see meteorological

data as a critical factor to include in a prediction model on future port congestion.

The use of meteorological and oceanographic data in ship routing has received increasing

attention in recent years. Zis et al. (2020) conducted a meta-study of research articles

focused on the area of weather routing and voyage optimization. They found that weather

routing has evolved over the years, and earlier strategies have mainly focused on avoiding

areas with severe storms. However, more complex objectives have emerged as technology

and data quality have improved. Today, weather forecasting provides more detailed and

accurate information with better spatial and temporal resolution. This improved data

quality and availability can aid in the development of algorithms to determine the optimal

path for a voyage. Additionally, the widespread use of AIS generates vast amounts of data

on ships’ sailing speed and position. This can be used to track deviations from traditional

routes due to weather and measure the actual benefits of weather routing, particularly in
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terms of saving total voyage time.

Mao et al. (2016) used weather and oceanographic information along with data on the

engine performance of the vessel to predict the speed of the sailing with the three statistical

models: auto-regression, least squares estimates, and the maximum likelihood method.

The authors find that wind speed and wave height have a considerable effect on vessel

speed, both positive and negative. Meaning that the speed of the vessel can not only be

reduced due to an increase in weather margins, it can also be increased. This is due to

the fact that the direction of the wind and wave that correlates with the direction of the

voyage can help “push” the vessel in the desired direction.

In order to increase the number of explanatory variables in the data, we collect data

on weather variables from a third-party service. We collect data from the Copernicus

Climate Change Service database of the European Union Space Programme, and match

the coordinates of the vessel with the meteorological data at the corresponding coordinates.

3.3 Machine Learning

Machine learning is defined as the use of formal structures (i.e. machines) to make

inferences (i.e. learning) (Clarke et al., 2009). Machine learning problems can typically

be divided into two categories: supervised and unsupervised problems. In unsupervised

learning, training data consist only of input values, and the objective of the algorithm is

to extract meaningful patterns or structures from the data (Bishop, 2006). Supervised

learning involves using a training dataset that consists of input examples paired with their

corresponding target outputs. The algorithm aims to learn a mapping function that can

accurately predict the target output for new observations (Gkerekos et al., 2019).

There is a growing research trend focused on artificial intelligence and machine learning

techniques to improve fuel efficiency in ships, predict sailing speeds, and route selection

(Zis et al., 2020). Many studies in this field rely on the use of artificial neural networks

(ANN) and other machine learning methods to forecast fuel consumption in various sea

conditions, with the aim of optimizing voyages to reduce fuel usage or ensure timely

arrivals (Wang et al., 2016; Zheng et al., 2019; Du et al., 2019; Mao et al., 2016; Beşikçi

et al., 2020). These models have been shown to be effective in predicting fuel, cost, and

emission savings. And, as mentioned above, recent studies have even used ANNs to model
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and predict port congestion (Abualhaol et al., 2018a; Peng et al., 2022).

Deep Neural Networks (DNN) are frequently used to predict road traffic flow, with a

variety of models being applied, including combinations of Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) (Wu et al., 2020; Bogaerts et al., 2020).

Due to the time series characteristics of the AIS data, Peng et al. (2022) applied an RNN

as their prediction model. Furthermore, due to its proven efficiency in predicting road

traffic congestion (Mohanty et al., 2020; Shin et al., 2020), an LSTM RNN approach was

implemented.

LSTMs were originally created to address the challenge of long-term dependencies, which

hinder the effectiveness of traditional RNNs due to issues such as exploding and vanishing

gradient problems (Hochreiter and Schmidhuber, 1997). The finished model of the study

was a stacked multilayer LSTM model with three layers. This model structure is the most

widely used and is known to make reasonable predictions (Greff et al., 2017). Abualhaol

et al. (2018b) also used an LSTM RNN model for their well-performing prediction model

of port congestion in the port of Singapore. The researchers opted to use a stacked

multilayer model consisting of five layers.

3.4 Performance Metrics

To measure the accuracy of the model’s predictions, we need to select performance metrics.

However, no performance metric is optimal in all cases, as each metric has its drawbacks

and advantages. Therefore, it is important to choose the performance metric based on the

purpose of the prediction and the nature of the model (Swalin, A., 2007). Therefore, a

selection of several metrics will be useful. Our chosen metric selection consists of some of

the most commonly used ones: the root mean squared error (RMSE), the mean absolute

error (MAE), and the symmetric mean absolute percentage error (sMAPE).

RMSE is an absolute measure of the fit (Abebe et al., 2020). It shows the proximity

between the values of the estimation model and the values of the observed data, and is

the square root of the variance (i.e. standard deviation) of the individual differences in

the residuals. Abebe et al. (2020) argue that for models that are developed with the

purpose of predicting, this measure is an appropriate choice when evaluating the accuracy

of the model’s predictions. On the contrary, Abebe et al., Willmott and Matsuura (2005)
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argues that RMSE is a poor measure of prediction error. The main drawback of RMSE

according to Willmott and Matsuura, is that the impact of each error on the total error is

proportional to its square. Consequently, larger errors have a relatively stronger impact

on overall error compared to smaller errors. The mathematical definition of RMSE is

shown below.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.1)

Willmott and Matsuura (2005) recommend the use of MAE instead of RMSE. MAE is a

straightforward, yet efficient metric to quantify the expected errors of the predictions. It

does this by adding the absolute differences between the predicted and actual observed

values before dividing by the number of samples. Therefore, a lower MAE value is preferred,

since it indicates a lower expected prediction error. The mathematical definition of MAE

is shown below.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.2)

When reviewing comparable research with the same objective as this thesis, we see

that RMSE and MAE are preferred measurements of predictive precision (Peng et al.,

2022; Abualhaol et al., 2018b). A drawback of MAE is that it is difficult to interpret

when comparing models on data of diferrent scales. MAPE is trying to overcome this

by measuring it as a percentage. Although MAPE is scale-independent and easier to

interpret, it still has its own drawbacks. According to Gkerekos et al. (2019), the error

metric favors underestimated predictions, since there is a maximum limit of 100% error

for such predictions, while there is no corresponding limit for overestimated predictions.

These issues are solved by sMAPE which sets the upper limit to 200% and treats the

actual observation values of zero as equal to the upper limit. These adjustments make the

sMAPE a comparable but improved variant of the MAPE. The mathematical definition

of sMAPE is shown below.

sMAPE =
1

n

n∑
i=1

|yi − ŷi|
(|yi| − |ŷi|)/2

(3.3)
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4 Data

This section describes the methodology for data acquisition, preprocessing, and feature

selection. Our data processing approach is similar to the workflow demonstrated by Abebe

et al. (2020). A detailed illustration of the data methodology can be found in Appendix

A1.

4.1 AIS Data

The AIS provides high-frequency real-time positioning data on almost all commercial

vessels. Originally, AIS was developed with the purpose of avoiding ship collisions and for

governmental monitoring (UN Statistics, 2020), but over time it has become a powerful

tool that not only provides operational decision makers with valuable real-time information,

but also gives researchers the possibility of studying maritime trade processes and flows in

detail. Moreover, collecting AIS data was initially a challenging process due to being highly

regionalized. Communication between ships or between ships and the coast using AIS

was initially limited to the VHF radio wave range, which provided coverage of only 10-20

nautical miles, thus imposing constraints on direct communication distances. However,

from 2008, AIS data transmission has improved worldwide, as satellites with AIS receivers

are now able to receive data transmitted by ships (Yang et al., 2019).

There are two types of AIS transceivers, Class A and Class B, which differ in their

reported data fields and reporting frequencies. A Class A transceiver from a ship transmits

information in 15 data fields, classified as static, dynamic, and voyage-related (Table

4.1). Dynamic information is automatically sent by Class A transceivers every two to ten

seconds when the ship is moving and every three minutes when it is anchored. Class A

transceiver transmits static and voyage-related information every six minutes, regardless

of the ship’s navigational status. In contrast, Class B transponders transmit a reduced

set of data, excluding the IMO (International Maritime Organization) number, draft,

destination, ETA, rate of turn, and navigation status, and the frequency of these reports

is a minimum of five seconds.

Although there are many positives with AIS data, there still exist some limitations and

drawbacks with the data itself. The large number of errors and inaccuracies that can be
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tool that not only provides operational decision makers with valuable real-time information,

but also gives researchers the possibility of studying maritime trade processes and flows in

detail. Moreover, collecting AIS data was initially a challenging process due to being highly

regionalized. Communication between ships or between ships and the coast using AIS

was initially limited to the VHF radio wave range, which provided coverage of only 10-20

nautical miles, thus imposing constraints on direct communication distances. However,

from 2008, AIS data transmission has improved worldwide, as satellites with AIS receivers

are now able to receive data transmitted by ships (Yang et al., 2019).

There are two types of AIS transceivers, Class A and Class B, which differ in their

reported data fields and reporting frequencies. A Class A transceiver from a ship transmits

information in 15 data fields, classified as static, dynamic, and voyage-related (Table

4.1). Dynamic information is automatically sent by Class A transceivers every two to ten

seconds when the ship is moving and every three minutes when it is anchored. Class A

transceiver transmits static and voyage-related information every six minutes, regardless

of the ship's navigational status. In contrast, Class B transponders transmit a reduced

set of data , excluding the IMO (International Maritime Organization) number, draft,

destination, ETA, rate of turn, and navigation status, and the frequency of these reports

is a minimum of five seconds.

Although there are many positives with AIS data , there sti l l exist some limitations and

drawbacks with the data itself. The large number of errors and inaccuracies that can be



12 4.2 Meteorological Data

Table 4.1: AIS Data Fields

Static Dynamic Voyage Related

MMSI Vessel Position Vessel Draft
Call Sign and Name Position Time Stamp in UTC Hazardous Cargo (Type)

IMO Number Course Over Ground (COG) Destination
Length and Beam Speed Over Ground (SOG)

Type of Vessel Navigational Status
Location of Antenna Rate of turn (ROT)

found result from several of the variables being manually reported (Yang et al., 2019).

Data that are manually reported in AIS are static information, such as MMSI (Maritime

Mobile Service Identity), vessel length and width, IMO number, name, type, call sign, and

voyage-related information, such as estimated time of arrival (ETA), draft, and intended

destination. As a result, missing or inaccurate ETAs have frequently been reported

(Baldauf et al., 2008; Watson et al., 2015). Moreover, Baldauf et al. (2008) also found

other inconsistencies in other AIS variables. Therefore, it is important to process the data

accordingly and to consider the implications of erroneous information when working with

AIS data.

4.2 Meteorological Data

Based on its effect on speed, route and risk, meteorological and oceanographic data are

included in our prediction model. Historical data are retrieved from the Copernicus

Climate Change Service database of the European Union Space Programme, which

provides easy-to-access data on past, present, and future forecasts of weather and ocean

parameters. More specifically, we use the ERA51 hourly data on single-level datasets,

which contain historical data from 1979 to the present.

ERA5 data at the single level consist of parameters such as wind speed and direction, wave

height, current and swell direction, temperature, and precipitation. Studies have shown

that wave and wind conditions exert the most significant influence on ships (Carlton,

2018), while current and swell conditions have less influence (Adland et al., 2020; Abebe

et al., 2020). Therefore, we only include wind speed and direction, wave height, and local

precipitation as input variables in our prediction model.

1European ReAnalysis, 5th generation.
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The reason for including local precipitation is to capture the effect of rainfall in the

region on soybean production, as rainfall is the main factor responsible for fluctuations in

agricultural yield (Carmello and Sant’Anna Neto, 2016). These precipitation data are

collected in Lucas do Rio Verde, the center of Brazil’s highest-producing soybean region

(Martinelli et al., 2017). Precipitation data is also collected in the port of Paranaguá

because rain has a disruptive effect on port operations because heavy rain can cause

visibility problems for both ship crews and stevedores, as well as flood problems. As late

as 2022, the port of Paranaguá was cut off from road and rail access due to flooding

caused by heavy rain (Mano, 2022).

More details about the variables and the necessary feature engineering will be covered in

Section 4.4.2.

4.3 Additional Data

In addition to the AIS and meteorological data, we want our prediction model to include

other types of data that could influence the traffic of vessels in and around the port

of Paranaguá. This is information on vessel-specific characteristics, and financial and

agricultural data such as soybean, bunker oil, and fertilizer price.

Information on the vessels themselves, such as deadweight tonnage, size, and draft, will be

included in the model and is retrieved from the Clarksons’ World Fleet Register database.

Vessel statistics are collected for individual vessels in the final AIS dataset. The reasoning

behind including this information in the model is that the size of the vessel will affect the

operational capabilities of the port, as larger vessels need more space and might occupy a

larger number of available cranes for a longer period of time. The deadweight tonnage

and draft of a vessel will influence the possibility of accessing the berth area, as well as

the time spent at the berth. This is due to the variability in the water level in the port

area along with these vessel specifications, which will decide the accessibility of the port

for the individual vessel.

The cost of shipping is highly dependent on the price of the fuel that the ship uses, known

as bunker oil, bunker fuel, or marine fuel (Notteboom and Vernimmen, 2009). We make

the assumption that an increase in bunker oil prices, resulting in higher costs for the

company, can impact the decision to sail immediately or delay, as well as the speed of
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the voyage, subsequently affecting port traffic. This is why we choose to include the

price of bunker oil as a predictor in our model. Historical daily data on bunker price was

retrieved from Bloomberg. As the price of bunker oil can vary between locations, we chose

to retrieve data from the price in the Rotterdam port, as this port is the second largest

bunkering port in the world (Wijaya, 2023).

Brazil is one of the world’s largest soybean producers (Statista, 2023), supplying more

than 50% of soybeans in the world according to the US Department of Agriculture (2023).

The price of soybeans reflects the potential earnings of the producers in Brazil, and we

assume that they will be inclined to produce and sell more when their earnings are higher,

leading to increased activity in the port. Historical data on soybean prices in Brazil are

gathered from NASDAQ, which provides historical and real-time prices for financial assets

and commodities (NASDAQ, 2023).

Lastly, we include weekly data on fertilizer prices in Brazil. This is done in order to

capture how changes in production volume, either random or seasonally, might affect port

activity. We believe that such changes will be captured by the fertilizer price because

agricultural produce is the largest export in the Paranaguá port, and fertilizer plays a

crucial role in agricultural production. Weekly historical data on the local price of fertilizer

in Brazil are retrieved from Bloomberg.

4.4 Data Preprocessing

The scope and objective of this thesis are clear: to build a port congestion prediction

model in the Paranaguá port in Brazil using AIS data with vessel-specific information,

selected meteorological and oceanographic data points, as well as agricultural and financial

data. When including many data sources, it is essential to preprocess the variables so

that they represent reality and can be used in the finished model.

4.4.1 Processing AIS Data

AIS data were retrieved for the period January 2013 to June 2019, which was the period of

time to which we had access from all data sources. Initially, the data included all vessels

in the world for that period. Therefore, we filtered out all observations except those who

either had Paranaguá as their destination or reported that their current location was in
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the port area. Furthermore, we filter to keep only vessels classified as bulk carriers, as

these are the only types of vessel in the data set that visit the main port of Paranaguá.

There is also a large amount of container traffic in the port (Ward, 2016) but we lack

data on these types of vessel and there is little overlap in shared resources between the

two types of vessel, so we believe that omitting container vessels in our analysis will have

little impact.

There may be some spillover effect of traffic from nearby ports in periods of high port

traffic. However, the port of Itajaí, located just south of Paranaguá, mainly handles

container cargo such as frozen foods, machinery and other equipment, so any spillover

from Itajaí is less likely. The port of São Francisco do Sul, also located south of Paranaguá,

is a large trading port for cellulose pulp and fertilizer, much like Paranaguá, creating an

opportunity for spillover to occur. However, this thesis will not include an analysis of

potential spillover and its influence on port congestion in Paranaguá.

The estimated time of arrival (ETA) is a variable in AIS that is known to often be

inaccurate, as previously described (Baldauf et al., 2008; Watson et al., 2015). We also

found this to be the case for our data, with missing values, ETAs reported to be many

days in the past, and other unreliable reported arrival times (Figure 4.1). Therefore, we

opted to disregard the reported ETA values and instead calculate the estimated arrival

time manually. We did this using the Dijkstra algorithm, which is one of the most widely

used pathfinding algorithms, and a detailed description of this calculation is found in the

methodology section.

Furthermore, when examining the AIS data further, we noticed inaccuracies with some

IMO numbers. The IMO number is a unique seven-digit number that is assigned to

propelled, seagoing merchant ships of 100 gross tonnage and above with some exemptions

(pleasure yachts, war ships) (International Maritime Organization, 2023). Observations

with IMO numbers that were either of the wrong length, had the same number through

all digits, or had missing values were discarded.

Lastly, we need to acknowledge the time irregularity in the AIS data. As the data are

collected from different sensors and are broadcast from the vessels at a variable rate, and

a differing number of ships being in range of AIS stations, the resulting observations

are not evenly spread out on the time axis. Unevenly spaced time series has fewer
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Figure 4.1: Distance (nautical miles) and estimated TTA using reported AIS ETA. TTA
is calculated as the difference between the start of a trip and reported ETA. Note that all
negative values are faulty.

methods for analysis and is harder to predict than regularly spaced time series. Therefore,

time regularity is an important precondition for most common time series prediction

models (Weerakody et al., 2021). Usually, the approach used to predict uneven time

series is to transform the data into a regularly spaced time series, either by interpolation

or downsampling, which causes bias and loss of information (Eckner, 2012). Manually

downsampling the data to the extent of having the same number of observations per day

would be detrimental to the model’s practical objective and use case; therefore, we keep

the data and observations as they were originally. Newly developed methods, such as

LSTM, combined with increased available computing power, have made it feasible to

predict large, unevenly spaced time series in their unaltered forms.

Since there is no constant interval between observations, predicting a specific time horizon

is impossible. Rather, one would predict a specific number of observations. Since the

objective of this paper is to make a one- to three-month forecast, we need to find a proxy

for that amount of time. The average number of observations per month is 1, 233 or

roughly 1, 200, so the number of observations to predict to forecast three months would

be 1, 200× 3 months = 3, 600 observations.
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4.4.2 Weather Data Encoding

Meteorological and oceanographic data was retrieved and matched with the corresponding

points in space and time for the vessels in the cleaned AIS dataset. Wind data was

transformed from using the northward and eastward component system into separate

variables for direction and strength. Wind data follows the meteorological convention

where the data are divided into two components, u which is positive for a west-to-east

flow (eastward wind) and v which is positive for a south-to-north flow (northward wind)

(Blanchonnet, 2018). We hypothesize that the presence of wind is a bigger factor than

the specific direction of the wind in whether ships will need to enter port. Therefore, by

transforming the two directional components into a speed and direction component, we

make the variables easier to interpret for humans. The transformation is done using the

following equations:

VS =
√
u2 + v2 (4.1)

Vd = atan2(−u,−v)× 180

π
+ 180 (4.2)

Equation 4.1 returns the wind strength in meters per second. Equation 4.2 returns the

direction of the wind in the range of 0-359 degrees.

The observations of the wind and wave height data are matched to the observations

of the ships by finding the closest match by date and geographical haversine distance.

Observations of precipitation are matched with the rest of the observations in the dataset

by date.
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5 Methodology

5.1 Spatiotemporal Data Mining

5.1.1 Vessel Turnaround Time

LSTM is a supervised model, which means that it needs a labeled dataset where the

output value is already known. Since we do not directly possess a variable for the level of

port congestion, one must be synthesized from the other variables. To be able to quantify

the level of port congestion, we first need to define port congestion. Waiting time is a

common indicator used by online services that monitor current port congestion, used

by industry leaders such as Marine Traffic (Marine Traffic, 2023) and also in academic

research articles (Yeo et al., 2007). The waiting time is also easy to interpret for the ship

operators.

Rather than using the vessel’s waiting time at anchor before they are allowed to enter

the berth area, we want to use a measure of congestion that will capture the entire port

visit. In addition, ship operators most often go directly to berth when arriving at the

port. Therefore, we adapt a similar congestion measure to Peng et al. (2022) and Bai

et al. (2022), using the vessel turnaround time as our port congestion measure.

We create an algorithm that calculates how long it takes a vessel to visit the port. Two

geofence areas are created by manually creating polygons in the areas where the vessels

are observed anchoring and berthing (Figure 5.1). A more dynamic approach would use a

clustering algorithm to dynamically identify these areas. A complete visit is defined as

entering the anchorage zone from the open sea, entering the berthing area, and then leaving

the port. The turnaround is averaged per day from the day it entered the anchorage area,

i.e. if only one ship entered the anchorage area on the first of January and left the port

on the third, the average turnaround time for the first of January would be two days.

The algorithm generates a time series with some gaps on days when no vessels were

observed to make a full visit. These values are filled in with linear interpolation. A moving

average with n = 15 days is created to reduce the jaggedness of the time series. The result

can be seen in Figure 5.2 below, where the top panel shows the moving average time series.
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Figure 5.1: A map of the Paranaguá port area with the geofenced areas of interest; the
berthing zone where vessels are in port, the anchoring zone where vessels are waiting to
enter the port, and the navigation zone where vessels are moving between them. Also on
the map is the port of São Francisco do Sul with corresponding anchoring cluster, south
of Paranaguá.

The other four panels below show the same time series but are split using seasonal and

trend decomposition using Loess2 (Cleveland et al., 1990). It is decomposed additively,

which means that adding the four components together results in the full time series. The

first component is the trend, which shows that there was a considerable reduction during

2016 but that it was relatively stable afterwards. The second component, the seasonality,

shows that there seemingly is a pattern that repeats over the year-cycle with peaks around

New Year’s and a lower turnaround time during the summer moths. This corresponds to

some extent with the seasonality of soy production in Brazil, with December and January

experiencing the peak of the rainy season and soybean exportation beginning in early

February (Cordonnier, 2021). The third component is the intra-week seasonality, showing

a pattern of fluctuations with a turnaround time on Sundays and Mondays lower than

the rest of the week. The last component is the remainder, which is all the fluctuations

that the previous components cannot explain. The magnitude of the remainder is roughly

2Locally Estimated Scatterplot Smoothing

5.1 Spatiotemporal Data Mining 19

Map of Paranagua area with geofence polygons and a sample of AIS-observations
25.00 ° s , - - - - - - - , - - . . , , . . . - - - - - , - . . . . . , . . - - - - ..- - - - - - - ,

z

25.50 °S

(l)
cl.e25.75 °s
,...i

26.00 °S

• .
26.25 °S

1guåsmr
2 6 . 5 0 ° S , _ _ - - - - - - - - - - - - - - - -

Geofenced areas
Anchoring zone
Berthing zone

48.9 °W 48.6 °W 48.3 °W 48.0 °W
Longitude

47.7°W

Figure 5.1: A map of the Paranaguå port area with the geofenced areas of interest; the
berthing zone where vessels are in port, the anchoring zone where vessels are waiting to
enter the port, and the navigation zone where vessels are moving between them. Also on
the map is the port of Sao Francisco do Sul with corresponding anchoring cluster, south
of Paranaguå.
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that the previous components cannot explain. The magnitude of the remainder is roughly
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the same as the yearly seasonality, which means that there are significant unexplained

variances.

Figure 5.2: An STL-decomposition of the last three years showing the linear components
of turnaround. The full turnaround can be seen in the top panel.

Finally, we now have the label value that our model will try to predict. This dependent

variable is the turnaround time and is calculated as the time from the first time the vessel

enters the geofence area of the port until it leaves the same area.

5.1.2 Synthesizing ETA with Dijkstra’s Algorithm

Knowing when ships will arrive at the port is essential information to predict congestion.

The AIS dataset that we have access to has an Estimated Time to Arrival (ETA) variable.

However, as explained in Section 4.4.1 the reliability is sub-par due to the manual input

nature of the variable. Therefore, we need to calculate our own ETA for each observation

to replace the unreliable ETA variable. To accomplish this, we must use a pathfinding

algorithm, as the time required to reach Paranaguá varies significantly depending on

where the vessel is and how much land is needed to be navigated past. Eurostat has

already created a Java library called SeaRoute for the purpose of calculating the shortest

route over water between two coordinate points, which we utilize. This library is based

on Dijkstra’s algorithm, an algorithm for finding the shortest path between two nodes in

a weighted graph (Dijkstra, 1959). The distance is used to calculate a new value for ETA
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by multiplying it by the average steaming speed in the dataset.

In our dataset, no bulk carriers were observed passing through the Panama canal when

traveling to Paranaguá. For one of the more common routes in our dataset where going

through the canal would be faster; anywhere from the North American west coast to

Paranaguá, the canal route would only be 600 nautical miles shorter, translating to roughly

two days of sailing. The canal, on the other hand, will often take longer due to waiting

times in addition to incurring significant passage costs. Therefore, we opted to remove

the ability for vessels to transit through the Panama canal when calculating the ETA.

Figure 5.3: A map of ships traveling to Paranaguá color-coded to show estimated
time-to-arrival.

The ETA variable itself is not useful for the LSTM network, as it needs the current

timestamp of the observation as well to make it relevant to measure when the vessel will

arrive. Therefore, the ETA variable is transformed into a time-to-arrival (TTA) variable

by taking the difference between the ETA and the current timestamp of the observation.

5.2 LSTM Neural Network

The LSTM neural network is an advance of traditional RNN (Hochreiter and Schmidhuber,

1997). The main difference between LSTM and RNN networks is that LSTMs have a

more complex architecture with a memory cell and gates that allow them to selectively
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remember or forget information. On the other hand, RNNs have a simple structure where

each output is dependent on the previous output and a hidden state, which is passed

from one time step to the next. However, the problem with traditional RNNs is that they

suffer from vanishing or exploding gradients, making it challenging to capture long-term

dependencies. The vanishing or exploding gradient problems are a common issue that can

occur during the training of deep neural networks. It happens when gradients become

very small or very large as they propagate backwards through the network during training,

which can result in slow training or even failure to converge. On the other hand, LSTMs

are designed to address the problem of vanishing gradients by incorporating a memory

cell, which allows them to remember or forget information at each time step selectively.

This makes LSTMs better suited for tasks that require the network to capture long-term

dependencies and remember past information. Therefore, it is more suitable for time-series

prediction, particularly for time-series data that exhibit seasonality.

Figure 5.4: A diagram showing the structure of a long short-term memory neural
network.

The basic components of an LSTM network are three gates and a cell state (Olah, 2015).

The forget gate ft, takes the previous hidden state, ht−1, and the current input xt as

input, and using a sigmoid layer, determines the amount of the previous cell state, Ct−1,

to "forget" by returning a value between zero and one.

ft = σ(Wf · [ht−1, xt] + bf ) (5.1)

Next, the model will decide what information will be stored in the cell state. This is

determined by the input gate, it, and the input node, C̃t. The input gate using a sigmoid
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The basic components of an LSTM network are three gates and a cell state (Olah, 2015).

The forget gate ft, takes the previous hidden state, h t - l , and the current input Xt as

input, and using a sigmoid layer, determines the amount of the previous cell state, C t - l ,

to "forget II by returning a value between zero and one.

(5.1)

Next, the model will decide what information will be stored in the cell state. This is

determined by the input gate, i t , and the input node, Ct. The input gate using a sigmoid
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layer determines the values that are to be updated. The input node creates a vector of

new candidate values that can potentially be added to the cell state.

it = σ(Wi · [ht−1, xt] + bi) (5.2)

C̃t = tanh (WC · [ht−1, xt] + bC) (5.3)

The cell state from the previous cell is updated with the values from the forget gate and

the input gate. Subsequently, the cell state is multiplied by the forget value ft and then

updated by adding it ∗ C̃t, which is the vector of candidate values scaled by how much

the input node decided to update each state value.

Ct = ft ∗ Ct−1 + it ∗ C̃t (5.4)

Next, the hidden state, or more simply the output, ht, is set by the output gate ot, which

is a sigmoid layer that determines which parts of the cell state to output. The cell state

goes through a tanh function, which reshapes the cell state to have a value between -1

and 1. Finally, the weight of the sigmoid layer is multiplied by the output of the tanh

function, and the result is the new hidden state.

ot = σ(Wo[ht−1, xt] + bo) (5.5)

ht = ot ∗ tanh (Ct) (5.6)

5.3 Multi-Step Multivariate LSTM Model

The objective of this thesis requires us to build a multi-step multivariate model. This is a

model that predicts more than one unit of time ahead (multi-step), and takes in more

than one independent variable as input (multivariate) (Pang, 2020).

Creating a single prediction model to predict any desired horizon would be ideal. However,

such a model is unfortunately so timely and computationally demanding that it is simply

not possible with the hardware and software to which we have access. Therefore, six

models are built, each model being optimized to its own prediction span ranging from one
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to twelve weeks. Each model uses an input matrix of two times the number of desired

output values with 21 independent variables.

The models are built and trained using the Keras library in Python, which is an open

source interface for the popular TensorFlow library built by Google Brain (Helms et al.,

2018). The models are trained on a powerful workstation with 64GB of RAM and a CPU

with 24 logical threads, each running at up to 4.6GHz. We decided to implement the

model on a CPU instead of a GPU due to the relatively easier implementation complexity

and ease of debugging. In addition, most consumer GPUs lack the necessary amount of

RAM to implement larger models directly.

5.3.1 Data Preparation for LSTM

Before the data can be used as input in the LSTM model, it needs further preparation.

First, the data must be divided into training, validation, and test sets. This is done to

avoid overfitting (Aggarwal, 2015). We split the data so that the training set consists of

all observations for the first 34 months of the dataset, the validation set for the following

6 months, and the test set consists of the remaining 17 months, corresponding to a 60%,

10% and 30% split.

Next in data preparation is feature scaling. Feature scaling is essential when working

with data where the features have different ranges or units of measure. It is especially

important to scale the data when working with machine learning models that utilize

optimization techniques, as neural networks do. This aims to ensure that each feature

contributes equally to the model and to avoid the dominant influence of features with

higher values (Bhandari, 2020).

We scale our data by normalization, that is, scale the feature values to a range of 0-1.

The mathematical formula for scaling using normalization is shown in Equation 5.7.

Furthermore, we also transform the validation and test data using the minimum and

maximum values of the features in the training set. In this way, we avoid potential data

leakage during testing.

x∗ =
x−min(x)

max(x)−min(x)
(5.7)
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We now have a final dataset that includes all the 21 desired input variables, as well

as the turnaround time as the dependent variable. The final dataset consists of AIS

data, Clarksons’ World Fleet Register data, commodity price data, weather data, and

self-generated variables. The complete data are shown in Table 5.1, including the number

of observations and the time span of the data.

Table 5.1: Complete Dataset

AIS Clarkson’s Commodity Weather Self-Generated

Length Overall Gross Tonnage Bunker Oil Price Wind Speed Turnaround Time
Beam Deadweight Tonnage Fertilizer Price Wind Direction Time To Arrival

Speed over Ground Length Soybean Price Wave Height Distance
Course over Ground Age Temperature at Ship Position

Draft Precipitation Paranaguá
Precipitation Lucas do Rio Verde

Number of observations: 67,578
Date span: 2013-04-29 - 2019-07-27

Data must be fed into LSTM models in a specific manner. First, the data are divided

into input sequences two times the size of the desired output. Hence, when the desired

prediction horizon is one week, corresponding to 300 data points, the length of the input

sequence is 600 points. Then, multiple sequences are pooled, creating one batch. The

optimal number of sequences that make up one batch, known as batch size, is determined

by hyperparameter tuning, which is covered in Section 5.3.3. Lastly, LSTM models require

the input data to be three-dimensional where the first dimension is the number of samples,

the second dimension is the sequence length, and the third is the number of features.

LSTMs follow the sliding-window prediction principle. This means that one input sequence

is used to predict one output sequence before sliding one data point and repeating the

same procedure, creating overlapping sequences (Figure 5.5). In our case, for a one-week

prediction horizon, the previous 600 data points were used to predict the next 300 points.

Figure 5.5: Sliding window technique for one week prediction. An input sequence of 600
data points is used to predict the output sequence of 300 points, before sliding one data
point and repeating the process.
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5.3.2 Model Training

During training, the neural network learns by updating its parameters using an

optimization algorithm that adjusts the weights and biases of the nodes in the network.

This process continues until the model reaches a point where a given loss measure stops

improving. The loss measure is set by us and can be any performance measure used for

regression problems. We set the loss measure for the training of our models to be the

mean squared error (MSE), as it is a widely used measurement of the performance of

the prediction model (Brownlee, 2019). This metric is only used to evaluate performance

during model training.

Adam3 is an optimization algorithm commonly used in neural network training that

uses adaptive learning rates and momentum to accelerate convergence (Kingma and Ba,

2014). It maintains past gradients and squared gradients to adjust the learning rate for

each parameter and uses momentum to smooth out the optimization process. Adam is

particularly robust to noisy or sparse gradients and has been shown to converge faster

than other optimization algorithms on many deep learning tasks.

An epoch is a complete iteration through a dataset during the training phase of a model.

During an epoch, the model is trained on each data point in the dataset and the weights

of the model are adjusted to optimize the performance of the model (Chollet, 2021).

Choosing the right number of epochs is important, as the model needs enough time to

learn the patterns in the date to avoid underfitting. On the other hand, it must not be

allowed to train for so long that it starts memorizing the training data, i.e. overfitting.

Early stopping is a method where one uses a dynamic number of epochs, stopping only

when the validation loss stops improving after multiple epochs. In our case, if training

does not result in a lower loss for three consecutive epochs, the model stops training and

uses the weight and biases from the best epoch.

5.3.3 Hyperparameter Optimization

The model training process identifies the fitting values for most parameters. However,

some parameters cannot be directly learned during this process. These are called

hyperparameters. Hyperparameter optimization, or tuning, is the problem of finding
3The name is derived from Adaptive Moment Estimation.
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the fitting values for these parameters (Feurer and Hutter, 2019). The hyperparameters

that need to be tuned to find their optimal values are the number of layers in the neural

network, the number of units in each layer, the dropout ratio after each layer, and the

batch size of sequences fed into the model.

In terms of the tuning itself, it is performed using the KerasTuner tuning library (O’Malley

et al., 2019). There are several methods to perform parameter search, where the most used

methods are Random search, Grid search, and Bayesian optimization. All have their own

advantages, but we have opted for using the Random Search method because of its ability

to discover hyperparameter combinations that are harder to see intuitively. Random

Search uses a random selection process within a bounded domain of hyperparameter

values and finds the optimal parameter values within the set domain (Brownlee, 2020).

5.4 Model Structure

After the hyperparameter tuning has been completed, the optimal network structure for

each model is the result. These structures are shown in Table 5.2.

All models have the structure of three LSTM layers, where the first two layers are fed into

a dropout layer with a dropout rate of 20%. A dropout layer is used in neural networks

to prevent overfitting by randomly setting a fraction of the input units to zero during

each training iteration, forcing the network to learn a more robust and generalizable set

of features. Finally, this is fed into a dense layer that outputs a vector containing the

number of points corresponding to the desired prediction span.

The larger the forecasting horizon, the more units the model should have in the hidden

layers. Due to the limited computing power available to us, the larger models are too

large to sufficiently learn the information in the data. The two largest models with a

horizon of eighth and twelve weeks have fewer units in the hidden layers compared to the

models with shorter horizons. However, they took more than four times the time to train

and were left to run for multiple days on a professional workstation. Thus, one should not

look at the performance of these models as proof of their inability to predict accurately

for longer horizons, rather that the computational complexity increases severely with a

longer forecasting horizon. Consequently, it was impossible to train the 12-week model,

and we had no choice but to leave this model out and continue with only the 1- to 8-week
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longer forecasting horizon. Consequently, it was impossible to train the 12-week model,

and we had no choice but to leave this model out and continue with only the 1- to 8-week
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models.

Table 5.2: Structure of LSTM Models

Models

1 Week 2 Weeks 3 Weeks 4 Weeks 8 Weeks
Components

Steps In 600 1200 1800 2400 4800
Steps Out 300 600 900 1200 2400

LSTM1 Units 128 128 128 128 64
Dropout 20% 20% 20% 20% 20%

LSTM2 Units 128 128 128 128 64
Dropout 20% 20% 20% 20% 20%

LSTM3 Units 128 128 64 64 48
Dense Units 300 600 900 1200 2400

Batch Size 32 32 32 32 32
Epochs 2 4 5 5 5

Parameters 323,884 352,984 316,292 335,792 194,336
Run Time 2h:52m 8h:03m 12h:17m 12h:39m 25h:54m

The models were trained over different numbers of epochs in which the training ended after

three consecutive epochs in which no improvement in the validation loss was observed.

Then the weights of the best-performing model were restored and used in the trained

model.
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6 Analysis and Discussion

In this section, we present the models’ predictions and evaluate their performance with

the metrics discussed in Section 3.4. Additionally, we compare the models with two more

simple prediction models, and we investigate feature importance. Finally, we discuss the

implications of our results for ship operators and owners.

6.1 Model Predictions

When predicting values for the test set using the five models, the models produced vectors

of predicted points with lengths of 300, 600, 900, 1,200 and 2,400, respectively. These

lengths correspond to forecast horizons of approximately one week (300 points) to eight

weeks (2,400 points) into the future. The predictions were made for the entire test dataset,

which spans a period of roughly 16 months.

Figure 6.1: Predictions using LSTM with different forecast horizons on the test data.
The length of the test set varies slightly due to the differing lengths of the input for each
prediction point.
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Figure 6.1 displays a comparison between the predicted and actual turnaround time values.

Turnaround time is our measure of congestion, meaning that changes in the turnaround

time, positive or negative, are proxies of changes in port congestion. For ship and port

operators, this figure represents the duration spanning a vessel’s entrance to the port until

its departure, providing valuable insights into traffic volume and the level of congestion

experienced at the port.

6.2 Performance Evaluation

Our goal is to evaluate the performance of each model individually, taking into account its

different prediction horizons. This allows us to understand how the accuracy of predictions

changes as the horizon lengthens and predictions are made further into the future. As

shown in Table 6.1, the prediction accuracy remains relatively consistent across different

horizons. However, as expected, the models with the longest horizons exhibit a decline in

performance, except for the one- and two-week prediction horizons, which, surprisingly,

perform worse than the three- and four-week predictions horizons. This might be due

to the shorter input sequence length, making it harder for the model to learn seasonal

patterns and generate accurate predictions.

Table 6.1: LSTM Models Performances

Models

1 Week 2 Weeks 3 Weeks 4 Weeks 8 Weeks
Metric

RMSE 3.178 3.105 3.053 3.063 3.461
MAE 2.554 2.401 2.374 2.529 2.898

sMAPE 0.186 0.176 0.173 0.184 0.198

According to Table 6.1, the one-week model has an average prediction error of 18.6%, as

measured by the sMAPE. In absolute terms, according to the MAE, the model’s average

prediction error is 2.554 hours. This means that on average, the model’s predictions

for turnaround time deviate from the actual values by 2.554 hours. Moreover, the best

performing model is the three-week model, which generated predictions with an average

error of 2.374 hours. Investigating the table further, we observe an improvement in

performance up to the three-week model, where the trend reverses and the average error
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in the turnaround time increases to 2.898 hours for the eight-week model.

Figure 6.2 better visualizes the performance of each LSTM model. The graph illustrates,

through sMAPE, that performance is improved from the one-week model to the three-week

model. Thereafter, the performance notably worsens.

Figure 6.2: sMAPE for different forecasting horizons, one to eight weeks.

6.2.1 Comparing with Benchmark Models

To further assess the performance of our models, we compare their predictions with those

of a benchmark model. While we use established metrics to measure the accuracy of the

predictions of our models, it is also beneficial to compare their predictions with other

simpler prediction models (Dhakal, 2017). A common benchmark model for evaluating

more sophisticated models is the naïve model (Chyndman and Athanasopoulos, 2018). In

addition to the naïve model, we also include a machine learning model that is more complex

than the naïve model but less complex than the LSTM. The aim of this comparison is to

establish whether our proposed method surpasses the performance of alternative models

and to assess if the complexity of our model is justified for the problem at hand.

The benchmark models of our choice are a naïve average forecasting model and an XGBoost

(Extreme Gradient Boosting) decision tree. The former model computes the average of all

input sequences and uses the average as its prediction, while the latter fits an extreme

gradient boosted decision tree where the final prediction is an average over all individual

decision trees. XGBoost is a scalable algorithm based on the gradient boosting framework

put forward by Friedman (2001), and has the reputation of being highly efficient in solving

various types of data science problems (Qiu et al., 2021). It is an ensemble of decision

trees where each new tree attempts to minimize the error of the previous one (Adland
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et al., 2015). The benchmark predictions are shown in Table 6.2.

Table 6.2: Model Performance Comparison with sMAPE

Horizon

1 Week 2 Weeks 3 Weeks 4 Weeks 8 Weeks
Model

Naïve 0.583 0.583 0.583 0.583 0.583
XGBoost 0.685 0.682 0.924 0.819 0.682
LSTM 0.186 0.176 0.173 0.184 0.198

Table 6.2 displays the performance evaluation metrics for the naïve model and the XGBoost

together with the LSTM. The comparison uses only sMAPE as it is a suitable and easy

to interpret performance metric. Furthermore, sMAPE is the best metric to use when

evaluating the degree to which predicted values align relative to actual observed values,

regardless of the error in absolute terms (Kreinovich et al., 2014).

As shown in Table 6.2, our LSTM RNN outperforms the benchmark models. The

performance of the benchmark models remains relatively consistent across different

prediction horizons, similar to the LSTM RNN. Interestingly, as illustrated in Figure 6.3,

the naïve average model performs better than the more complex XGBoost model. This

suggests that it may be challenging for a simple machine learning model to accurately

learn and capture the patterns in the data. As a result, using a simpler approach to

predict the average observed value can lead to more accurate predictions.

Figure 6.3: sMAPE for the XGBoost, Naïve model and LSTM with different forecasting
horizons.
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6.2.2 Feature Importance

Comprehending the rationale behind a model’s prediction is of significant importance,

comparable to the accuracy of the prediction itself. Analyzing feature importance in

machine learning models is crucial for understanding the factors that drive predictions

and for providing model transparency. SHAP4 is a powerful technique for conducting such

an analysis (Lundberg and Lee, 2017) based on Shapley values5. By utilizing SHAP, the

importance of each feature can be quantified, allowing for a comprehensive explanation

of how each feature contributes to the model’s predictions. SHAP provides insights into

the relative influence of different features, highlighting the most significant contributors,

and capturing potential interactions among them. This enables a deeper understanding

of the model’s decision-making process, aiding in model validation, interpretation, and

trust-building.

We acquire the SHAP values using the SHAP library and its DeepExplainer (Lundberg

and Lee, 2017), which is an algorithm to compute the SHAP values for deep learning

models. Computing SHAP values is timely and computationally demanding. Therefore,

we were unable to perform the computations on the original LSTM model but had to

build a smaller yet similar model. This model has the same model structure with respect

to layers, units, and input length as the smallest LSTM model, the one-week model.

However, it differs in the number of output data points, only being 40 points compared

to 300. As the model structure, input variables, and input length are identical, and the

shap values seem unchanging over the time steps, we regard the acquired SHAP values as

representative for the original model.

In Figure 6.4, we present a visual representation of the SHAP values of a subset of the test

set. In this graph, positive SHAP values indicate an incremental increase in turnaround

time, while negative values indicate the opposite effect. Also, the SHAP values represent

the log-odds of the respective directional change in turnaround time occurring. Note that

the SHAP values do not say anything about how different values within the variables are

influencing the turnaround time, only that the variable itself has influence and to what

extent. Although such exact influence is not obtained through the use of SHAP, it is,

4SHapley Additive exPlanations
5For which Lloyd Shapley received a Nobel Memorial Prize in Economic Sciences in 2012.
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however, visualized through the feature values ranging from low to high.

Figure 6.4: A beeswarm plot of SHAP values calculated for each variable using the
SHAP library developed by Lundberg and Lee (2017).

The most influential feature that affects the turnaround time is the price of soybeans

with a positive effect on the turnaround time, which means that the soybean price causes

higher congestion levels. From the color in the variable, we see that an increase in the

soybean price results in a longer turnaround time. Additionally, we note the importance

of fertilizer price and bunker oil price as predictors. Both have an inverse correlation

with the turnaround time, and the feature values suggest that higher prices results in

lower congestion. This makes intuitive sense since higher prices mean higher costs for

ship operators, as well as for producers of agricultural produce, making it less attractive

to ship goods through the port and thus lowering volume. The significant importance of

financial variables implies that there is a correlation between the commodity market and

the congestion level in Paranaguá.

In addition, weather variables are not of great importance when predicting turnaround time.

Wind direction and wave height show an unclear influence on the change in turnaround

time, having both positive and negative effects. However, their influence is not great.

Lastly, both precipitation in Paranaguá and the soybean producing region Lucas de Rio
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Verde have a negative influence on turnaround time.

We acknowledge a weakness in the feature engineering of the wind direction variable. As

it stands, the wind direction has values between 0 and 359 degrees, with values 0 and

359 having the same effect on a vessel from an operational point of view. The model

does, however, view these values as complete opposites. A better way to format the wind

direction variable would be to transform the values into sine and cosine values, which

would range from -1 to 1 in a continuous manner. This method would make the variable

more interpretable for the model.

6.3 Operational Implications

The findings of this study suggest that machine learning methods in the form of LSTM

RNNs can bring valuable knowledge to ship operators and owners, when used in the

context of port congestion. Being able to predict future port congestion in the port of

destination gives more predictability for both ship and port operators. This, in turn, gives

room for cost savings and risk adjustments throughout the vessel’s journey.

The proposed models provide evidence that valuable insights can be extracted from the

vast amounts of data generated in the shipping industry. With the appropriate analytical

tools, patterns can be identified and used in operational decision making. There is, though,

a high barrier to implementing a model like this in a production setting, as it requires large

amounts of data, processing power, and man hours in the form of research, development,

and maintenance.

More specifically, the operational implications of this study are that the proposed models

are able to give shipping operators, such as G2 Ocean, estimates of what the future

congestion will be at the destination port. The results show that for a prediction horizon

of one week, the model predicts congestion with an average error of 2.554 hours (see MAE

in Table 6.1). Furthermore, when expanding the prediction horizon to eight weeks, the

model estimates future congestion with an average error of 2.898 hours. Visualization

of the average error in turnaround time for different forecasting horizons can be seen in

Figure 6.5.
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Figure 6.5: MAE for different forecasting horizons, one week to eight months. The MAE
score is interpreted as the average error for predicted turnaround time in hours.

The reason we were not able to predict further into the future was due to the large

amount of data and the large parameter space, and thus the model required too much

computational power and time to find the optimal hyperparameters and weights. Lastly,

the number of observations that are fed into the model might need to be higher for the

model to find the long-term patterns required to predict into the future.

Despite the inability of the model to accurately predict port congestion beyond a few

weeks in advance, it still has practical applications. While it may not be suitable for

selecting contracts due to its limited predictive accuracy over longer time horizons, it can

be used by ship operators to determine the optimal speed for their vessel, so as to arrive

when a berth is available. Additionally, if permitted by their contract, the model can

assist ship operators already underway in selecting which port to visit.
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be used by ship operators to determine the optimal speed for their vessel, so as to arrive

when a berth is available. Additionally, if permitted by their contract, the model can

assist ship operators already underway in selecting which port to visit.
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7 Limitations and Further Research

7.1 Limitations

As authors of this thesis, we acknowledge that there are limitations to our study. In

particular, the lack of a publicly available database that contains congestion levels in the

Paranaguá port forced us to construct our own measure of congestion as a dependent

variable. This potentially weakens the validity of the results, as a computed measure of

congestion might not measure the actual congestion with sufficient accuracy. This, of

course, is impossible to be sure of, as no data is available on actual experienced congestion.

Furthermore, using a self-defined congestion measure raises questions regarding the optimal

methodology to quantify congestion and whether our measure is appropriate for this

purpose.

To validate our findings, acquiring data on port activity directly from the port authorities

in Paranaguá would be beneficial. Unfortunately, this is difficult in practice, as there is no

consistent reporting system in place. A standardized reporting system that encompasses

all ports would allow more comprehensive data collection, facilitate more robust analysis,

and ultimately foster a more efficient and informed decision-making process for ship

operators and port authorities alike. The existence of such a system would not only

streamline operations, but would also provide valuable information for stakeholders across

the maritime industry.

When considering the purpose of this thesis as constructing an accurate port congestion

prediction model, it is obvious that the models built in this study are not dynamic enough

nor include enough variables to be useful in other ports than Paranaguá. However, we

would like to emphasize that the results produced by our models could serve as a proof

of concept that it is possible to construct a universal real-time prediction model. Future

researchers should therefore consider the performance of the LSTM RNN models put

forward in this thesis and focus their attention on scaling up a similar model. The scope

of this paper did not encompass the computational power required to train models with

longer forecasting horizons.
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7.2 Further Research

A generalization of the model that could dynamically identify berthing and anchorage

zones would make the model much easier to adopt by ship operators, as well as minimize

the possibility of human error. In addition, more data would be available to validate the

performance of the model. Approaches for automatically identifying vessel clusters and

ports using the density-based spatial clustering of applications with noise (DBSCAN)

algorithm have been implemented by Bai et al. (2022), Fuentes (2021), Fuentes and Adland

(2023) and Peng et al. (2022), but not in combination with a long forecast horizon.

In this thesis, the price of soybeans in Brazil was used as an input variable to capture

the demand for soybeans. However, we recognize that this measure of demand is not

optimal and that soybean crush margins would be a better choice. Unfortunately, we

were unable to access any dataset on soybean crush margins. Therefore, future research

should aim to include the soybean crush margin as a more precise measure of soybean

demand, preferably the crush margin in China, since the country is the largest importer

of soybeans from Brazil (Martinelli et al., 2017).

Furthermore, looking into the potential spillover effect from nearby ports on congestion,

or at least including traffic volume at nearby ports in a prediction model, would be an

interesting exercise for future studies.

Lastly, this study demonstrates the difficulties with long-term prediction models due to

computational complexity. Future studies should therefore take note of the methodology

used here and mitigate these barriers by utilizing a distributed computing cluster with

dedicated GPUs or TPUs.
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8 Conclusion

In this thesis, we have developed five long short-term memory recurrent neural network

models which have been applied to predict future port congestion in Paranaguá port, over

a prediction horizon of one to eight weeks. The computational complexity of the prediction

problem forced us to limit the prediction horizon to eight weeks. Additionally, prediction

models used information mined from AIS data, vessel characteristics, weather data, and

commodity price data as input variables. Furthermore, we compared the prediction results

from these LSTM models with two less complex models; a naïve average and an XGBoost

model.

To our knowledge, this paper marks the first application of LSTM RNNs for long-term

port congestion prediction. Furthermore, this study contributes to the existing literature

by paying more attention to the importance of weather and other variables with causal

effect on the development of port congestion. Our models demonstrated predictions with

a satisfactory level of accuracy to be of practical use in shipping and port operations. In

particular, the models outperformed two simpler models in terms of predictive performance.

They demonstrated precise predictions for up to one month and showed the potential to

predict further. However, they were limited by the computational complexity of the task.

The findings of this study have operational implications for ship operators in terms of

optimizing ship speed and port calls. The proposed prediction models exhibit a growing

average error the more data points are predicted, meaning that as the prediction horizon

extends, the error of the forecast grows, highlighting the need for careful consideration

in long-term predictions. The findings show that it is possible to predict congestion one

week ahead with an average error of 2.55 hours, 2.40 hours for two weeks, 2.37 hours for

three weeks, 2.53 hours for four weeks, and 2.89 hours for the eighth week. Therefore, we

conclude that we succeeded in predicting port congestion weeks in advance with reasonable

precision.

In conclusion, the predictions generated by the proposed models are shown to be promising

with a satisfactory level of accuracy. The final evaluation of the presented models is

that they serve their purpose and fulfills their objective within the constraints set by the

authors and its inherent limitations.
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Appendix

A1 Methodology Illustration

Figure A1.1: Methodology inspired by Abebe et al. (2020)
.
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Al Methodology Illustration
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Figure A l . l : Methodology inspired by Abebe et al. (2020)


