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Abstract 

Industrial salmon farming is becoming an increasingly important industry, both globally and 

in Norway. One of the main risk factors in salmon production is the highly volatile spot price, 

so access to high-quality price forecasts could prove immensely valuable throughout the value 

chain. In this thesis, we therefore attempt to make accurate and reliable forecasts of the salmon 

price 12 months ahead and assess the potential economic value of such forecasts. We chose to 

use tree-based models for this task, and the models applied were decision trees, random forests, 

and xgBoost, with- and without seasonal adjustment.   

The tree-based models displayed different levels of forecast accuracy, however all models 

performed better than the seasonal naïve benchmark. Measured by mean absolute error and 

mean squared error the best performing model was random forest, followed by xgBoost and 

then decision tree. Overall, the seasonally adjusted random forest performed best, with a 

directional accuracy of 82%, implying that the model correctly predicted up- or down price 

movements around 8 out of 10 times. We found that the potential economic value of such 

forecasts to SalMar, the third largest salmon producer in Norway in 2021 with a market share 

of around 11%, could be 51.2 million NOK in additional earnings, corresponding to a 2% 

increase compared to their total 2021 earnings.  
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1. Introduction 

In this chapter we explain the motivation behind choosing to write about salmon price 

forecasting, before defining the research question of the thesis.  

1.1 Motivation 

Securing sustainable food supply is increasingly becoming a major global challenge, as the 

global population is expected to increase to a total of 9.8 billion (United Nations, n.d.) and the 

overall food demand is projected to increase by more than 50% by 2050 (Searchinger et al., 

2019). Increasing demand for food implies more pressure on the world’s resources, and new 

sustainable methods of food production becomes an integral part of the solution. Farmed 

Atlantic salmon is likely to be part of that solution because it is considered a sustainable and 

healthy alternative to other types of meat. For example, the carbon footprint of beef is about 

ten times higher than that of salmon. Pork’s carbon footprint is more than twice as large, and 

even chicken has a 50% larger carbon footprint (Global Salmon Initiative, 2021). 

Comparing the area used to produce 100g of protein from different meat sources also 

highlights the increasing importance of salmon. Farmed salmon requires 3.7 square meters to 

produce 100g of protein, while poultry requires roughly twice that area, pork almost three 

times, beef close to 30 times, and lamb 50 times the area of salmon.  Farmed salmon is also 

the most eco-friendly type of meat measured by feed-conversion. Feed conversion measures 

kg in feed required to increase the animal’s bodyweight by one kg. Salmon’s feed conversion 

ratio is around 1.5, making it extremely efficient in food production. Salmon is also attractive 

measured by edible yield, which is the ratio of edible meat to total body weight. 68% of the 

salmon’s body weight is edible, a much higher yield than other meat types (Global Salmon 

Initiative, 2021). Farmed salmon will therefore be a valuable, sustainable, and eco-friendly 

addition to the future global food supply. 

Another trend which may cause salmon to increase in importance is changing consumer 

preferences. As lifestyle diseases such as obesity, heart disease, stroke and diabetes 

increasingly become major public health problems, the world not only needs more food, but 

healthier food. WHO estimates that by 2030 the proportion of deaths caused by lifestyle 

diseases will increase to 70% (Al-Maskari, n.d.). As consumers become more aware of the 

importance of a healthy diet salmon demand could increase, as salmon is a nutrient-rich food 
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and contributes protein, healthy fats, and several essential vitamins and minerals (Global 

Salmon Initiative, 2021).  

While increased demand is undoubtedly positive for salmon farmers, one of the major risk 

factors in production is the highly volatile salmon spot price. This makes planning decisions 

challenging and represents increased economic risk for the firms operating within the industry 

(Bloznelis, 2018). In fact, salmon price volatility has more than doubled over the last 10 years 

and is now higher than many comparable commodities (Asche et al., 2019). Gaining a more 

complete understanding of what causes price fluctuation, and ultimately producing more 

accurate and reliable forecasts of salmon spot prices could provide huge economic benefits 

throughout the salmon farming value chain. For example, producers could adjust short-term 

supply by harvesting more fish when the price is high, and less when the price is low, allowing 

them to capitalize on high prices.   

1.2 Research Question 

In this master thesis we will attempt to accurately and reliably forecast the salmon spot price 

represented by the Fish Pool Index in NOK per kg by applying different tree-based prediction 

models. We will assess the statistical accuracy as well as the potential economic value of our 

models in addition to investigating which explanatory variables are most important in creating 

price forecasts. We define the following research question: 

Can tree-based prediction models produce accurate and reliable monthly forecasts of the Fish 

Pool Index 12 months ahead, and what may be the potential economic value of such forecasts? 
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2. Background and Literature  

In this chapter, we will take a closer look at the global and Norwegian salmon farming 

industry, and then go through previous academic work within salmon price research and tree-

based models in commodity price prediction. We will use the lessons from this chapter later 

when we build our own models.  

2.1 Salmon Farming Industry 

To do intelligent salmon price forecasting, we need to gain an understanding of how the 

salmon industry works. We will start by exploring the salmon farming industry in a global 

perspective, and then take an even closer look at the Norwegian industry.  

2.1.1 Global Salmon Farming Industry 

Traditionally the vast majority of food production has taken place on land, however this seems 

to be changing as both the per capita food intake and seafood consumption is steadily rising. 

As expressed in figure 1, from 1961 to 2019 the global annual seafood consumption per capita 

has increased from 8.9 kg to 19.8 kg, an increase of more than 120%. The average proportion 

of protein intake accounted for by seafood has also increased, from 4.4% to 6.7% in the same 

period (Ritchie & Roser, 2021).  

 

Figure 1: Global annual seafood consumption per capita from 1961 to 2019 (Ritchie & 
Roser, 2021). 
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With increased demand follows higher production, as evidenced by the rise of industrial 

aquaculture. Historically most of the seafood supply has come from wildly caught animals, 

but since 1970 there has been exponential growth in output from industrial aquaculture. Today 

aquaculture has surpassed wild fishing as the biggest supply source of seafood, as shown in 

figure 2 below. 

 

Figure 2: Global aquaculture and wild fishing production from 1960 to 2015 (Ritchie & 
Roser, 2021). 

An increasingly important element of aquaculture production is Atlantic salmon. Since 2004 

global harvest volumes of Atlantic salmon has increased by over 5% per year on average, and 

in 2021 production reached 2 895 000 tons WFE (whole-fish-equivalent), an all-time-high 

(Kontali Analyse, 2022). The salmon farming industry is expected to grow further in the future 

as increased population growth and changing consumer food preferences will most likely 

increase demand.  

Because salmon requires a certain range of sea temperatures for optimal growth, the industry 

is dominated by a few countries with geographical locations well suited for salmon farming. 

The highest producing countries are Norway, Chile, the United Kingdom, Canada, and the 

Faroe Islands, accounting for some 93% of global production. The largest markets are the 

European Union and the United Kingdom making up 45% of the global market, United States 

with 22%, and Japan with 2.5% (Kontali Analyse, 2022). 
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(Kontali Analyse, 2022). The salmon farming industry is expected to grow further in the future

as increased population growth and changing consumer food preferences will most likely

increase demand.

Because salmon requires a certain range of sea temperatures for optimal growth, the industry

is dominated by a few countries with geographical locations well suited for salmon farming.

The highest producing countries are Norway, Chile, the United Kingdom, Canada, and the

Faroe Islands, accounting for some 93% of global production. The largest markets are the

European Union and the United Kingdom making up 45% of the global market, United States

with 22%, and Japan with 2.5% (Kontali Analyse, 2022).
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2.1.2 Norwegian Salmon Farming Industry 

Norway is by far the largest producer of Atlantic salmon. In 2022, 1 532 000 tons of Atlantic 

salmon was harvested in Norway, accounting for 53% of the global production. Norwegian 

companies also dominate the industry. Eight of the largest 15 salmon farmers in the world are 

Norwegian, with Mowi, Lerøy, and SalMar being the biggest both in terms of harvest volumes 

(Kontali Analyse, 2022), revenues, and market capitalizations (Euronext1, 2, 4, 2023). These 

three companies alone account for nearly a third of the global harvest volume (Kontali 

Analyse, 2022). 

Salmon farming is an increasingly important industry for the Norwegian economy. In 2020 

salmon accounted for 69% of total Norwegian seafood exports (Albertsen et al., 2021), and 

the industry is highlighted as a potential growth area as Norway looks to reduce its dependence 

on petroleum exports. In 2021 close to 9 000 people were directly employed in the industry 

with many more jobs created in adjacent and supporting industries as well (Fiskeridirektoratet, 

2021).  

In the last decades there has been considerable consolidation in the industry. In 2000 there 

were 296 production companies (Asche et al., 2019), while in 2021 there were only 166 

(Fiskeridirektoratet, 2021). This trend is also visible in sales. In 2010, the 10 largest companies 

accounted for a third of all sales, while in 2016 that proportion had doubled to two thirds 

(Asche et al., 2019). Harvest volumes of Norwegian farmed salmon are also quite 

concentrated. The three largest producers in Norwegian waters, Mowi, Lerøy, and SalMar, 

accounted for close to 50% of the total Norwegian harvest in 2021 (Kontali Analyse, 2022). 

In summary, Norwegian supply is now mostly driven by a few large companies.  

2.2 Fish Pool Index 

In 2006, the Fish Pool Index (FPI) was established, introducing a reference price of farmed 

Atlantic salmon which is widely used to settle futures salmon contracts. It is primarily owned 

by Oslo Børs ASA and was licensed by the Norwegian Ministry of Finance to operate as a 

regulated marketplace for fish and seafood derivatives. This means Fish Pool does not offer 

physical trading of fish, but rather financial contracts that are settled based on the spot price.  

The price index is published weekly and includes the current spot price illustrated in figure 3, 

in addition to forward-looking prices reflecting the expectation for the coming months. 
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Furthermore, the Fish Pool index is composed of two elements: the Nasdaq Salmon Index with 

a 95% weight, and Norwegian export prices from SSB with a 5% weight. The Fish Pool index 

includes the following salmon weight classes: 3-4 kg with a 30 % weight, 4-5 kg with a 40% 

weight and 5-6 kg with a 30% weight (Fish Pool1, n.d.). 

 

Figure 3: Development of the Fish Pool Index from 2007 to 2021 (Fish Pool2, 2023). 

Fish Pool financial contracts are primarily used by salmon farmers, -exporters, -importers,         

-processors and -retailers to hedge their salmon price risk. The total trading volume of 2021 

was 72 336 tons (Fish Pool2, 2023), which corresponds to about 4.7% of the total Norwegian 

salmon production of 1 546 000 tons (Fiskeridirektoratet, 2022). The spot price is 

characterized by high volatility with prices ranging from above 60 NOK per kg in January 

2021 to about 45 NOK per kg in October the same year. Considering that 90% of the 

Norwegian Atlantic salmon production is sold at spot price as opposed to futures contracts 

(Ankamah-Yeboah et al., 2017), this demonstrates the importance of the spot price in 

determining value creation.  
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2.3 Literature Review 

The literature on predictive models for the Atlantic Salmon spot price appears to be somewhat 

scarce. There are however some important contributions, and in this section we will go through 

existing literature. Finally, we will summarize what key lessons we derive from this, which 

we will incorporate in our own modelling.  

There are two main branches of salmon price research that are of interest to us: predictive 

models to directly forecast salmon price, and research on salmon price volatility. In addition 

to this, we will investigate the literature on tree-based prediction models used to forecast prices 

of other commodities such as oil and gold.  

2.3.1 Salmon Price Forecasting 

Bloznelis (2018) provides the most recent and arguably most important contribution to 

research on salmon price forecasting. He establishes a benchmark for short-term price 

forecasting of one to five weeks and explores 16 alternative forecasting methods. He includes 

four exogenous variables in the models as predictors, including salmon export volume, share 

prices of salmon farming companies on the Oslo Stock Exchange, the EUR to NOK exchange 

rate, and salmon futures prices. The best predictions are produced by the k-nearest neighbour 

method for 1 week-ahead, vector error correction model for two and three weeks-ahead, and 

futures prices for four and five weeks-ahead. He finds that even though the nominal gains in 

forecast accuracy over a naïve benchmark are small, the economic value of the forecasts are 

significant, suggesting that implementing a trading strategy for timing sales based on price 

forecasts could increase the net profit of a salmon farmer by around 7%.  

Dahl et al. (2021) do not predict the salmon price explicitly, but rather explore the relationship 

between the Fish Pool Index (FPI) and stock prices of major publicly traded salmon companies 

through cointegration analysis. They document that stock prices reflect salmon price 

information earlier than the FPI, identifying a possible source of bias in the salmon futures 

pricing design that relies on the index. The effect is found to be greater for large companies, 

which means that movements in stock prices of large salmon farmers could contain predictive 

power on the FPI. The authors explain that one of the reasons behind this effect may be that 

the FPI reflects current supply- and demand factors, while stock prices are forward-looking, 

discounting future supply- and demand information.  
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Guttormsen (1999) uses six easily applicable procedures to forecast weekly producer prices 

for salmon of different weight classes. This paper focuses on univariate time series-methods, 

and models used were classical additive decomposition, Holt-Winters exponential smoothing, 

autoregressive moving average, vector auto regression, and two naïve benchmarks. Evaluating 

forecasts by mean percentage error, mean absolute percentage error (MAPE), and ratio of 

accurate forecasts, he finds that classical additive decomposition performed best in forecasting 

the up- and down-direction of price movements, correctly predicting the price direction 70-

90% of the time on 4-12 weeks-ahead forecasts. Vector auto regression performed best 

according to accuracy measures, producing a MAPE of 1.20%-1.78%. One key finding is the 

importance of detrending and deseasonalizing salmon price time series data when producing 

forecasts, as salmon prices exhibit yearly seasonality.    

In Anderson & Gu (1995) an approach that combines seasonality removal with a multivariate, 

state-space, time series forecasting model is developed to provide short-term forecasts for the 

United States salmon market. Four versions of the state-space forecasting model are compared 

in terms of their performance on out-of-sample forecasts by the MAPE. Out-of-sample 3-, 6-, 

and 12-month-ahead directional predictions are generated to test performance in terms of 

direction. Empirical results indicated that deseasonalization improved the overall performance 

of the state-space model, and as a result, a linear, deseasonalized state-space forecasting model 

was selected to provide 12 months-ahead out-of-sample forecasts. The best model produced 

an out-of-sample forecast MAPE of 5.48%. 

2.3.2 Salmon Price Volatility 

The literature on salmon price volatility is comparatively more plentiful and recent than that 

of price forecasting. There are two articles in particular that offer insight into the mechanics 

of salmon price volatility.  

The first is Asche et al. (2019) who find that salmon price volatility, measured as the standard 

deviation of log-returns, has more than doubled over the last 10 years, and is now higher than 

many comparable commodities. Having established that, the article then investigates possible 

explanations of this phenomenon and conclude that the likely cause is reduced short-run 

elasticity of supply. Three major developments in the salmon market supply-chain provide 

support for this hypothesis: consolidation of farming companies into fewer and larger units, a 

premium on fixed harvest schedules to satisfy retail demand for stability, and restrictions on 
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new production capacity in conjunction with strong demand promoting “race to raise” harvest 

policies.  

Bloznelis (2016) uses ARMA-GARCH and dynamic correlation models on weekly data from 

1995 to 2013 to examine the behavior of weight-class specific prices. He identifies two periods 

of different volatility regimes, before and after 2006, and finds that both volatility and 

conditional correlations increased after 2006. Specifically, he calculates that the standard 

deviation of log-returns on spot price more than doubled from 3% before 2006 to 7.3% after 

2006. Several possible reasons are offered to explain why this occurred specifically around 

2006. First, the introduction of maximum allowable biomass constraints in Norway in 2005 

put a hard constraint on supply growth. Second, the opening of Fish Pool futures and options 

exchange in 2006, and third, the ISA-crisis in Chile from 2007-2016 which caused demand 

for Norwegian salmon to increase substantially. Compared to cattle, wheat and other 

agricultural commodities, salmon price volatility has been exceptionally high in the latest 

period. The article suggests relevant factors that could help explain this, including volatility in 

supply, volatility in exchange rates (because most of Norwegian harvest volumes are exported, 

and most transactions are invoiced in foreign currencies), and prices of substitutes such as 

beef, pork and chicken, as well as other factors that may influence demand for salmon.   

2.3.3 Tree-based Models in Commodity Price Forecasting 

Tree-based models have shown promise in predictive tasks in recent years. In Chen & He 

(2019) the authors try to develop decision trees to predict WTI crude oil spot-prices and 

compare their accuracy to benchmark models such as multiple linear regression and ARIMA. 

They used a dataset spanning from January 1992 to December 2017, and included eight 

exogenous predictors, including crude oil demand and supply, monthly GDP, CPI, USD 

Exchange Index, and United States Federal Reserve Interest Rate. Their main finding is that 

the decision tree models are expected to have higher forecasting accuracy than the benchmark 

models. Random forest was the best performer with a mean absolute error (MAE) of 1.25 

compared to MAEs of above 2.8 for both multiple linear regression and ARIMA. In addition 

to improved forecast accuracy, the tree-based models also gave a clear understanding of which 

of the predictors were the most important in price prediction, showing that the 1-month lagged 

WTI price provided the largest incremental reduction in MSE. The second most important 

predictor was the USD exchange rate index.  
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Fattah et al. (2021) aim to develop univariate tree-based models and compare their accuracy 

to ARIMA as a benchmark. They used decision trees, random forest, and gradient boosted 

trees to predict monthly gold prices. The dataset ranged from November 1989 to December 

2019 and consisted of 362 observations. 90% of the data were used as a training set, while the 

rest was used to test forecast accuracy. They also find that random forest produced the best 

accuracy with a root mean squared error (RMSE) of 38.5 compared to ARIMA with an RMSE 

of 75.46. The authors explain that tree-based methods can overcome problems of forecasting 

non-linear and non-stationary time series data. 

Baser et al. (2023) attempts to predict daily gold commodity prices specifically using tree-

based models. Models used were decision trees, adaptive boosting (AdaBoost), random forest, 

gradient boosting, and extreme gradient boosting (xgBoost). Four metrics were used to 

evaluate models: RMSE, MAE, MSE, and 𝑅𝑅!. Gradient boosting produced the best forecasts 

according to all performance metrics, with a MAE of 0.47, which was marginally lower than 

the MAE of xgBoost and random forest, but significantly lower than that of decision trees and 

AdaBoost. The authors conclude that tree-based models demonstrated “astounding” potential 

in regression problems to forecast the future price of gold.  

2.3.4 Key Takeaways from Literature Review 

What follows is a short summary of key lessons we have learned from the literature, and 

factors we will try to incorporate in our predictive models. 

• Salmon prices exhibit 1-year seasonality patterns. Both Bloznelis (2018), Guttormsen 

(1999), and Anderson & Gu (1995), all find that deseasonalizing their price time series 

data generally improves forecast accuracy. We will explain how we account for this 

seasonality in more detail in section 3.6 Time Series Decomposition. 

• Salmon prices are highly volatile compared to other commodity prices. This is the 

consensus finding by Asche et al. (2019) and Bloznelis (2016) and means that our 

models must be flexible and able to capture non-linearities in the time series.  

• Salmon farmers’ stock prices may contain predictive power on the Fish Pool Index. 

This is the main message from Dahl et al.  (2021). Consequently, we will include Oslo 

Stock Exchange’s Seafood Index as a predictor in our models.  

• Asche et al. (2019) and Bloznelis (2016) both seem to suggest that short-term supply 

inelasticity is one of the main causes of salmon price volatility. In other words, supply 
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is not able to quickly adjust to changes in demand. This motivates the inclusion of 

demand factors as predictors in our models. Demand factors we will include are prices 

of substitute protein sources, consumer purchasing power, and salmon import 

statistics. Other factors assumed to influence salmon prices include environmental 

factors, such as sea temperatures, biological factors, like sea lice, other diseases, 

treatments and feed consumption, and financial factors, including exchange rates and 

stock prices. 

• There is a difference between the statistical and economic value of forecasts. As 

Bloznelis (2018) shows, even marginally better forecasts in terms of statistical 

accuracy could translate to huge economic value. Thus, we will evaluate our forecasts 

both based on statistical measures and potential economic value.   

• Tree-based methods has demonstrated great potential in both oil and gold price 

predictions as suggested by Chen & He (2019), Fattah et al. (2021), and Baser et al. 

(2023), and to our knowledge these methods are entirely unexplored in regard to 

salmon spot price predictions. Therefore, our work will provide a new contribution to 

salmon price forecasting. 
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3. Methodology 

In this thesis we will attempt to forecast the salmon price using tree-based prediction models. 

Specifically, we will use decision trees, random forest and xgBoost. We choose these models 

because they are flexible and able to capture non-linearities in the time series, as emphasized 

in section 2.3.4 Key Takeaways from Literature Review. These models involve segmenting the 

predictor space into many simple regions. To make predictions we normally use the mean of 

the training observations in the region to which it belongs (Hastie et al., 2013). As the name 

suggests, tree-based models can be visualized as a tree structure. The node at the top of the 

tree is called the root node, while the nodes in the tree that have branches beneath them are 

called internal nodes or splits. The nodes at the bottom of the tree are called terminal nodes or 

leaves (Nielsen, 2016). One example is shown under section 3.2 Decision Tree in figure 4. 

In this chapter we will define a simple benchmark model, then explain in further detail how 

the tree-based models work and illustrate some advantages and challenges of using this type 

of models to do time series forecasting. We will also elucidate how we assess which variables 

are most important in predicting the Fish Pool Index. Finally, we describe how we aim to 

evaluate the quality of the models we develop.   

3.1 Simple Benchmark Model (Seasonal Naïve) 

Before delving into the more complex tree-based models, it may be useful to define a very 

simple forecasting model that will serve as a benchmark with which to compare the more 

complex models. If the more complex models fail to beat this simple benchmark based on the 

evaluation metrics that are described in section 3.9 Evaluation of Forecasts, one would be 

better served by employing the simple model. 

In this analysis we will use the seasonal naïve model (SNAIVE) as the simple benchmark. In 

the SNAIVE-model, each forecast is set to be equal to the last observed value from the same 

season. For instance, with monthly data the forecast for next January is set equal to the 

observed value from last January, the forecast for next February is set equal to the observed 

value from last February, and so on. This is expressed mathematically in equation (1) below. 

(1)    𝑦𝑦#"#$|" = 𝑦𝑦"	#	$	'	((*	#	+) 
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because they are flexible and able to capture non-linearities in the time series, as emphasized

in section 2.3.4 Key Takeaways from Literature Review. These models involve segmenting the

predictor space into many simple regions. To make predictions we normally use the mean of

the training observations in the region to which it belongs (Hastie et al., 2013). As the name

suggests, tree-based models can be visualized as a tree structure. The node at the top of the

tree is called the root node, while the nodes in the tree that have branches beneath them are

called internal nodes or splits. The nodes at the bottom of the tree are called terminal nodes or

leaves (Nielsen, 2016). One example is shown under section 3.2 Decision Tree infigure 4.

In this chapter we will define a simple benchmark model, then explain in further detail how

the tree-based models work and illustrate some advantages and challenges of using this type

of models to do time series forecasting. We will also elucidate how we assess which variables

are most important in predicting the Fish Pool Index. Finally, we describe how we aim to

evaluate the quality of the models we develop.

3.1 Simple Benchmark Model (Seasonal Naive)

Before delving into the more complex tree-based models, it may be useful to define a very

simple forecasting model that will serve as a benchmark with which to compare the more

complex models. If the more complex models fail to beat this simple benchmark based on the

evaluation metrics that are described in section 3.9 Evaluation of Forecasts, one would be

better served by employing the simple model.

In this analysis we will use the seasonal naive model (SNAIVE) as the simple benchmark. In

the SNAIVE-model, each forecast is set to be equal to the last observed value from the same

season. For instance, with monthly data the forecast for next January is set equal to the

observed value from last January, the forecast for next February is set equal to the observed

value from last February, and so on. This is expressed mathematically in equation (J) below.

(J) Yr+hlT = Y r + h - m ( k + 1)
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In this equation m is the seasonal period, and k is the integer part of ($#+)
(

, that is the number 

of complete years in the forecast period prior to time 𝑇𝑇 + ℎ (Athanasopoulos & Hyndman, 

2018).  

3.2 Decision Tree 

Decision tree is the simplest kind of tree-based model we will use in this analysis. We apply 

this algorithm because it is easily interpretable, able to handle complex non-linear 

relationships in data, and do not require feature scaling or normalization (Hastie et al., 2013). 

In addition, decision trees will serve as another simple model with which to compare the more 

complex random forest and xgBoost models. Decision trees can be used both for classification 

and regression purposes, but as we want to forecast a numerical variable we will limit our 

discussion to regression trees.  

Decision trees utilize a “top-down, greedy” approach known as recursive binary splitting. 

Recursive binary splitting works by selecting the predictor 𝑋𝑋- and the cutpoint s such that 

splitting the predictor space into {X | 𝑋𝑋- < 𝑠𝑠}, the region of predictor space in which 𝑋𝑋- takes 

on a value less than s, and {X | 𝑋𝑋- ≥ 𝑠𝑠}, the region of predictor space in which 𝑋𝑋- takes on a 

value greater or equal than s, leads to the greatest possible reduction in prediction inaccuracy. 

As an example, one of the X-variables we will use is monthly Norwegian harvest volumes of 

farmed salmon. A decision tree will then split the range of harvest observations based on what 

split best predicts the response variable, which in our case is the Fish Pool Index.  

Generally, for any predictor j and any cutpoint s, we define the partition as in equation (2): 

(2)   𝑅𝑅1(𝑗𝑗, 𝑠𝑠) = {𝑋𝑋|𝑋𝑋𝑗𝑗 < 𝑠𝑠} and 𝑅𝑅#(𝑗𝑗, 𝑠𝑠) = {𝑋𝑋|𝑋𝑋$ ≥ 𝑠𝑠}, 

and we seek the values of j and s that minimize equation (3): 

(3) 

. (𝑦𝑦. − 𝑦𝑦0/+)!
.:	1!∈/"(-,4)

+ . (𝑦𝑦. − 𝑦𝑦0/!)!
.:	1!∈/#(-,4)

	, 

where 𝑦𝑦#/"is the average of the response variable for the training observations in 𝑅𝑅+ and 𝑦𝑦#/#is 

the average of the response variable for the training observations in 𝑅𝑅! (Hastie et al., 2013). 
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In this equation m is the seasonal period, and k is the integer part of ( h + l ) ' that is the number
m

of complete years in the forecast period prior to time T+ h (Athanasopoulos & Hyndman,

2018).

3.2 Decision Tree

Decision tree is the simplest kind of tree-based model we will use in this analysis. We apply

this algorithm because it is easily interpretable, able to handle complex non-linear

relationships in data, and do not require feature scaling or normalization (Hastie et al., 2013).

In addition, decision trees will serve as another simple model with which to compare the more

complex random forest and xgBoost models. Decision trees can be used both for classification

and regression purposes, but as we want to forecast a numerical variable we will limit our

discussion to regression trees.

Decision trees utilize a "top-down, greedy" approach known as recursive binary splitting.

Recursive binary splitting works by selecting the predictor Xj and the cutpoint s such that

splitting the predictor space into {X I Xj < s}, the region of predictor space in which Xj takes

on a value less than s, and {X I Xj :2:s}, the region of predictor space in which Xj takes on a

value greater or equal than s, leads to the greatest possible reduction in prediction inaccuracy.

As an example, one of the X-variables we will use is monthly Norwegian harvest volumes of

farmed salmon. A decision tree will then split the range of harvest observations based on what

split best predicts the response variable, which in our case is the Fish Pool Index.

Generally, for any predictor j and any cutpoint s, we define the partition as in equation (2):

(2) R1(j,s) = {XIXj < s} and R2(j,s) = {XIXj s},

and we seek the values o f} ands that minimize equation (3):

(3)

i: X i E R 2 ( j ,s)

where YR i is the average of the response variable for the training observations in R1 and YR zis

the average of the response variable for the training observations in R2 (Hastie et al., 2013).
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In the harvest volume example, the observations range from 74 545 to 165 760 tons (see table 

4). One could imagine a decision tree defining a split s = 122 152, which would divide the 

harvest volume variable in two roughly equal parts: 𝑅𝑅+ where harvest volume < 122 152, and 

𝑅𝑅! where harvest volume ≥ 122 152. The predicted value of the Fish Pool Index would then 

be the average observed FPI-values in 𝑅𝑅+ and 𝑅𝑅! respectively.  

Next, the process is repeated, but instead of splitting the entire predictor space, we split one of 

the two previously identified regions, 𝑅𝑅+ or 𝑅𝑅!. Now we would have three regions, and again 

we would split one of these three regions further with the same optimization problem as above. 

In this way we build a tree-like structure as illustrated in figure 4 below, with subgroups of 

predictor space until a stopping criterion is reached. In our case the stopping criterion will be 

the so-called “complexity parameter”, which is the minimum improvement in the model 

needed at each node.  

 

Figure 4: Illustration of how recursive binary splitting leads to a tree-like model structure 
(Hastie et al., 2013). 

To forecast with decision trees, we use the rpart- and caret-packages in R. rpart is a package 

that contains the decision tree-algorithm, while the caret-package is chosen because it offers 

an easy way to optimize hyperparameters when developing predictive models. In this instance 

we conduct a grid search to find the optimal value of the complexity parameter which 

determines the number of nodes in the decision trees. The optimal value of this parameter will 

be determined by rolling-origin cross validation as explained in section 3.7 Rolling-Origin 

Nested Cross Validation. This involves creating a trainControl-object that will define the cross 

validation-process. Finally, we use the train-function to build the decision trees. 
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In the harvest volume example, the observations range from 74 545 to 165 760 tons (see table

4). One could imagine a decision tree defining a splits = 122 152, which would divide the
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To forecast with decision trees, we use the rpart- and caret-packages in R. rpart is a package

that contains the decision tree-algorithm, while the caret-package is chosen because it offers

an easy way to optimize hyperparameters when developing predictive models. In this instance

we conduct a grid search to find the optimal value of the complexity parameter which

determines the number of nodes in the decision trees. The optimal value of this parameter will

be determined by rolling-origin cross validation as explained in section 3.7 Rolling-Origin

Nested Cross Validation. This involves creating a trainControl-object that will define the cross

validation-process. Finally, we use the train-function to build the decision trees.
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3.3 Random Forest 

While decision trees have several advantages, including simplicity and interpretability, a 

commonly cited disadvantage is that single decision trees generally do not have the same level 

of predictive accuracy as more complex models, and are prone to overfitting the training data 

set. However, by aggregating many decision trees the predictive performance can be 

substantially improved, and the risk of overfitting to training data reduced. One of the methods 

to do so is random forest. Compared to xgBoost, an advantage with random forest is that it is 

known to be more efficient with large datasets and that it requires less hyperparameter tuning 

(Hastie et al., 2013). These reasons explain why we employ the random forest algorithm in 

our analysis.  

Random forest is based upon “bagged” decision trees. Bagging is the method of bootstrap 

aggregation, a general-purpose procedure for reducing the variance of a statistical learning 

method, thereby increasing prediction accuracy. This first involves bootstrapping, which 

means taking repeated samples from a single training data set with replacement. In our case 

we will generate B different bootstrapped training data sets. Then a different decision tree is 

fit on each of the B training data sets to obtain the best tree 𝑓𝑓5∗6(𝑥𝑥) given that particular dataset. 

Predictions are made by averaging all the predictions made by the B different trees as presented 

in equation (4) below. 

(4)   	

𝑓𝑓5678(𝑥𝑥) =
1
𝐵𝐵 .𝑓𝑓5∗6

9

6:+

(𝑥𝑥) 

In our random forests model, we apply a method very similar to bagging, but with a small 

tweak that decorrelates the trees. We build B different decision trees, and each time a split is 

made, a random sample of r predictors is chosen as split candidates from the full set of p 

predictors. Then the split is made by using one of those r predictors. At every split a new 

sample of r predictors 	is chosen as split candidates. Predictor subsampling means that each 

individual tree has high variance, but low bias. The average of the predictions of many trees 

still has low bias, but also lower variance (Hastie et al., 2013).   

By forcing our model to choose between only a subset of predictors we secure that the 

correlation between the individual trees is lower. To understand why, imagine an example 
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While decision trees have several advantages, including simplicity and interpretability, a

commonly cited disadvantage is that single decision trees generally do not have the same level

of predictive accuracy as more complex models, and are prone to overfitting the training data

set. However, by aggregating many decision trees the predictive performance can be

substantially improved, and the risk of overfitting to training data reduced. One of the methods

to do so is random forest. Compared to xgBoost, an advantage with random forest is that it is

known to be more efficient with large datasets and that it requires less hyperparameter tuning

(Hastie et al., 2013). These reasons explain why we employ the random forest algorithm in

our analysis.

Random forest is based upon "bagged" decision trees. Bagging is the method of bootstrap

aggregation, a general-purpose procedure for reducing the variance of a statistical learning

method, thereby increasing prediction accuracy. This first involves bootstrapping, which

means taking repeated samples from a single training data set with replacement. In our case

we will generate B different bootstrapped training data sets. Then a different decision tree is

fit on each of the B training data sets to obtain the best treet: (x) given that particular dataset.

Predictions are made by averaging all the predictions made by the B different trees as presented

in equation (4) below.

(4)
B

A 1 '\"' A*b
fbag(x) = B L, f (x)

b = l

In our random forests model, we apply a method very similar to bagging, but with a small

tweak that decorrelates the trees. We build B different decision trees, and each time a split is

made, a random sample of r predictors is chosen as split candidates from the full set of p

predictors. Then the split is made by using one of those r predictors. At every split a new

sample of r predictors is chosen as split candidates. Predictor subsampling means that each

individual tree has high variance, but low bias. The average of the predictions of many trees

still has low bias, but also lower variance (Hastie et al., 2013).

By forcing our model to choose between only a subset of predictors we secure that the

correlation between the individual trees is lower. To understand why, imagine an example
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with one very strong predictor and several weak predictors. If the model was allowed to use 

the full set of p predictors at each split, it would probably choose to split based on the strong 

predictor very often, and we would end up with B regression trees that all looked very similar 

to each other and produced very similar predictions. In other words, the individual trees would 

be very highly correlated with each other, and the reduction in variance obtained by averaging 

predictions would be smaller than if we averaged across uncorrelated predictions. This 

explains why random forest may perform better than ordinary bagging (Hastie et al., 2013).   

To build the random forest models in R, we again employ the caret-package, but this time in 

conjunction with the randomForest-package. Now it is the mtry-hyperparameter, which 

corresponds to the r parameter introduced above, we would like to optimize by rolling-origin 

nested cross validation. We do this by running a grid search where we try mtry-values from 

five to 50 with an interval of five. We try a fairly wide range of mtry-values, but still lower 

than the total number of predictors in the dataset to capture the benefits of predictor 

subsampling at each split in the trees. In other words, we try 10 different values and allow the 

train function to find the optimal value. When applying the train-function we specify the 

method-argument to “rf”, which will build random forest-models. 

3.4 xgBoost 

Another approach for improving the prediction accuracy of a decision tree is called boosting, 

and this technique has spawned several types of boosted tree-models. In this analysis we will 

focus on one application of boosting, namely Extreme Gradient Boosting, or xgBoost as it is 

also commonly known. We use this model because it usually provides more accurate 

predictions than simple decision trees and random forests, as it applies a differentiable loss 

function with a regularization term. We also employ this algorithm because it can capture 

complex relationships and interactions between features, which means it handles non-linear 

patterns (Hastie et al., 2013). This is valuable to us as it seems the Fish Pool Index 

demonstrates a high degree of non-linearity, as shown in figure 3. 

When we apply boosting the trees are grown sequentially, which means that each tree uses 

information from previously grown trees by fitting new decision trees to the residuals from 

previously grown trees. This means a tree is fit using the current residuals rather than the 

outcome Y (in our case the Fish Pool Index), as the response. Then, this new decision tree is 

added into the fitted function in order to update the residuals. By fitting new decision trees to 
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the residuals, our model slowly improves in areas where it was weak originally (Hastie et al., 

2013).   

xgBoost utilizes boosting, and in addition weights are assigned to all the independent 

variables, which are then used to build sequential decision trees generating predictions. 

Variables that the tree is unable to predict receives increased weighting, and these variables 

are then fed to the next decision tree. These individual decision trees are then averaged to 

provide reliable predictions.  

What makes xgBoost special is that it incorporates a regularized model to prevent overfitting. 

When we apply xgBoost we minimize the regularized objective of equation (5): 

(5) 	
𝑙𝑙(𝛷𝛷) = 1𝑙𝑙(𝑦𝑦3% , 𝑦𝑦%)

%

+ 1𝛺𝛺(𝑓𝑓&)
&

 

             Where 𝛺𝛺(𝑓𝑓) = √𝑇𝑇 + '
#
𝜆𝜆||𝑤𝑤||# 

In this equation l is a differentiable convex loss function that measures the difference between 

the prediction 𝑦𝑦#. and the target 𝑦𝑦. . The second term Ω penalizes the complexity of the 

regression tree functions, and this additional regularization term helps to smooth the final 

learnt weights w to avoid overfitting. T is the number of leaves in each tree. Each 𝑓𝑓* 

corresponds to an independent tree structure q (which represents the structure of each tree that 

maps an example to the corresponding leaf index) and leaf weights w. 𝜆𝜆 is the regularization 

parameter and determines how much more complex models are penalized compared to simpler 

ones. The regularized objective will tend to select a model employing simple and predictive 

functions (Chen & Guestrin, 2016).  

In addition to this regularized objective, two techniques are used to further prevent overfitting. 

The first is shrinkage which scales newly added weights by a factor η after each step of tree 

boosting. Shrinkage reduces the influence of each individual tree and leaves space for future 

trees to improve the model. The second technique is predictor subsampling, the same 

technique as described above in section 3.3 Random Forest (Chen & Guestrin, 2016). 

To train the xgBoost-models, we again employ the caret-package in R, this time in 

combination with the xgboost-package. Our xgBoost model has several hyperparameters that 

need to be optimized through the grid search method. Ideally, we would prefer to run a much 

larger grid search, but we are constrained by computational resources. Therefore, we attempt 
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(5)
l(<P) = Ll(yi ,Yi) + LI l ( fk )

i k

Where n(f) = -Jf + A11w I I
2

2
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to choose the most relevant values for all hyperparameters only. The chosen values and the 

explanation of each hyperparameter is presented in table 1 below. 

Table 1: Overview of hyperparameters in the xgBoost model (Kuhn, 2019).

 

Next, we will allow the train-function to find the optimal values, and we specify the method-

argument to “xgbTree” to employ the xgBoost-algorithm. 

3.5 Variable Importance 

Another advantage of using tree-based models is the availability of variable importance 

measures. Gaining a more complete understanding of what causes salmon price fluctuations 

could prove valuable for salmon farmers in their decision making. Variable importance 

attempts to measure each feature’s relative importance when developing the tree model, or in 

other words, how important that particular feature is for the predictive accuracy of the model. 

So, for each tree model, each feature will receive a variable importance score. The variable 

importance calculation can be done in multiple ways, and each method has advantages and 

drawbacks, but in this analysis we will use the varImp-function from the caret-package. The 

advantage of this function is that it scales the variable importance in such a way that the 

maximum value is 100, enabling easier comparisons across different models. Because each 

model contains 12 different models, one for each forecast horizon, we average the variable 

importance over these 12 models to obtain the final variable importance scores. Further 

explanation of why we employ 12 different models can be found in section 3.8 Direct 

Forecasting. 

Variable importance is computed differently for the different tree models. For decision trees, 

where we use the rpart-package in R, the reduction in the loss function attributed to each 

feature at each split is calculated, and the sum is returned. Since there may be candidate 

variables that are important but are not used in a split, the top competing variables are also 

included at each split. For random forest, the function calculates the prediction accuracy 
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to choose the most relevant values for all hyperparameters only. The chosen values and the

explanation of each hyperparameter is presented in table J below.

Table J: Overview of hyperparameters in the xgBoost model (Kuhn, 2019).
Hyperparameters

Hyperparameter Values Explanation
nrounds 50, 100 Controls the maximum number of iterations.
eta 0.1, 0.3 Learning rate, i.e., the rate at which our model learns patterns in data.
max_depth 4, 8 Depth of the tree. The larger the depth, the more complex the model; higher chances of overfilling.
gamma 0, 2.5, 5.0 Higher the value, higher the regularization which penalize large coefficients not improving the model.
colsample_bytree 0.5, 0.8 Controls the number of features supplied to a tree.
min_child_weight 2, 3
subsample 0.5, 0.8

Refers to the minimum number of instances required in a child node.
Controls the number of observations supplied to a tree.

Next, we will allow the train-function to find the optimal values, and we specify the method-

argument to "xgbTree" to employ the xgBoost-algorithm.

3.5 Variable Importance

Another advantage of using tree-based models is the availability of variable importance

measures. Gaining a more complete understanding of what causes salmon price fluctuations

could prove valuable for salmon farmers in their decision making. Variable importance

attempts to measure each feature's relative importance when developing the tree model, or in

other words, how important that particular feature is for the predictive accuracy of the model.

So, for each tree model, each feature will receive a variable importance score. The variable

importance calculation can be done in multiple ways, and each method has advantages and

drawbacks, but in this analysis we will use the varlmp-function from the caret-package. The

advantage of this function is that it scales the variable importance in such a way that the

maximum value is l 00, enabling easier comparisons across different models. Because each

model contains 12 different models, one for each forecast horizon, we average the variable

importance over these 12 models to obtain the final variable importance scores. Further

explanation of why we employ 12 different models can be found in section 3.8 Direct

Forecasting.

Variable importance is computed differently for the different tree models. For decision trees,

where we use the rpart-package in R, the reduction in the loss function attributed to each

feature at each split is calculated, and the sum is returned. Since there may be candidate

variables that are important but are not used in a split, the top competing variables are also

included at each split. For random forest, the function calculates the prediction accuracy
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measured by mean squared error (MSE) on the out-of-bag portion of the data for each tree. 

Then the same is done after permuting each feature. The difference between the two accuracies 

is then averaged over all trees and normalized by the standard error. In xgBoost, variable 

importance is based on a “gain”-measure. Gain indicates the contribution of each feature to 

the model by measuring the reduction in node impurity, meaning how well the trees split the 

data. Each gain of each feature is summarized in each tree, and then averaged over the number 

of trees (Kuhn, 2019). Considering that the variable importance is computed differently for 

each tree model, we will be careful with direct comparisons across models. However, we are 

mostly interested in which variables stand out as the most important, not necessarily the 

numerical value of the variable importance measure.  

3.6 Time Series Decomposition 

We know from the literature on salmon prices that there exist 1-year seasonal patterns in the 

price movements, as Bloznelis (2018), Guttormsen (1999), and Anderson & Gu (1995) all find 

that deseasonalizing their price data generally improves forecast accuracy. We will attempt to 

account for seasonality using a time series decomposition method. Decomposing a time series 

involve splitting it into several components, each component representing a different pattern 

in the series. There are usually three components to a time series: trend-cycle, season, and a 

remainder.  

The trend-cycle component is the long-term pattern of the time series, this could for instance 

be an up- or down-movement over time. The seasonal component is a systematic, calendar-

related variation in the time series. One relevant example could be the higher harvest volumes 

of salmon in autumn due to higher salmon growth in summer with warmer sea temperatures. 

Salmon harvest volumes could thus be said to exhibit seasonality. The remainder term is 

whatever is left after calculating the trend-cycle and season-components. An additive time 

series decomposition would take the form as presented in equation (6).  

(6)    𝐹𝐹𝐹𝐹𝐹𝐹% =	𝑦𝑦𝑖𝑖 = 𝑇𝑇𝑖𝑖 + 𝑆𝑆𝑖𝑖 + 𝑅𝑅𝑖𝑖 

In this equation 𝑦𝑦. is the observation at time i, 𝑇𝑇. is the trend-cycle component, 𝑆𝑆. is the 

seasonal component, and 𝑅𝑅. is the remainder (Athanasopoulos & Hyndman, 2018). 

In this analysis we will apply a method known as STL decomposition. STL is an acronym for 

“seasonal and trend decomposition using Loess”. The STL method has several advantages: it 
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measured by mean squared error (MSE) on the out-of-bag portion of the data for each tree.

Then the same is done after permuting each feature. The difference between the two accuracies

is then averaged over all trees and normalized by the standard error. In xgBoost, variable

importance is based on a "gain"-measure. Gain indicates the contribution of each feature to

the model by measuring the reduction in node impurity, meaning how well the trees split the

data. Each gain of each feature is summarized in each tree, and then averaged over the number

of trees (Kuhn, 2019). Considering that the variable importance is computed differently for

each tree model, we will be careful with direct comparisons across models. However, we are

mostly interested in which variables stand out as the most important, not necessarily the

numerical value of the variable importance measure.

3.6 Time Series Decomposition

We know from the literature on salmon prices that there exist l-year seasonal patterns in the

price movements, as Bloznelis (2018), Guttormsen (1999), and Anderson & Gu (1995) all find

that deseasonalizing their price data generally improves forecast accuracy. We will attempt to

account for seasonality using a time series decomposition method. Decomposing a time series

involve splitting it into several components, each component representing a different pattern

in the series. There are usually three components to a time series: trend-cycle, season, and a

remainder.

The trend-cycle component is the long-term pattern of the time series, this could for instance

be an up- or down-movement over time. The seasonal component is a systematic, calendar-

related variation in the time series. One relevant example could be the higher harvest volumes

of salmon in autumn due to higher salmon growth in summer with warmer sea temperatures.

Salmon harvest volumes could thus be said to exhibit seasonality. The remainder term is

whatever is left after calculating the trend-cycle and season-components. An additive time

series decomposition would take the form as presented in equation (6).

(6)

In this equation Yi is the observation at time i, Ti is the trend-cycle component, Si is the

seasonal component, and Ri is the remainder (Athanasopoulos & Hyndman, 2018).

In this analysis we will apply a method known as STL decomposition. STL is an acronym for

"seasonal and trend decomposition using Loess". The STL method has several advantages: it
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will handle any type of seasonality, the seasonal component is allowed to change over time, 

and the rate of change can be controlled. In addition, the smoothness of the trend-cycle can be 

controlled. Also, the method can be robust against outliers, so that a few unusual observations 

will not unduly affect the estimates of trend-cycle and season (Athanasopoulos & Hyndman, 

2018).  

To produce deseasonalized forecasts, we will first perform STL decomposition on the Fish 

Pool Index observations in our dataset, then remove the seasonal term from these observations, 

which will be 𝑆𝑆. from the equation above. Next, we will utilize this new deseasonalized Fish 

Pool Index as the response variable in the tree-based prediction models. After predictions are 

made, we will simply add the seasonal component back to the predictions and obtain the final 

forecasts. This process is summarized below: 

1. Perform STL decomposition on the Fish Pool Index (FPI) time series and obtain an 

equation of the form presented in equation (6). 

2. Produce a deseasonalized response variable 𝑦𝑦.<4 = 𝑦𝑦. − 𝑆𝑆.. 

3. Use 𝑦𝑦.<4as the response variable in the decision tree, random forest and xgBoost, and 

generate predictions 𝑦𝑦#.<4. 

4. Add back the seasonal component to obtain the final forecast, 𝑦𝑦#. = 𝑦𝑦#.<4 + 𝑆𝑆.. 

To perform the STL decomposition in R, we use the STL-function from the feasts-package.  

3.7 Rolling-Origin Nested Cross-Validation 

Cross-validation is a standard technique used in predictive analytics for the purposes of testing 

and improving model quality. As we are dealing with time series data, traditional cross-

validation techniques may become problematic. This is because of the temporal dependencies 

in time series, which means one must ensure that all observations in the training data set occurs 

chronologically before all the observations in the testing data set. To accurately simulate real-

world forecasting, we cannot use information from the future to forecast said future. It also 

does not make sense to use information from the future to predict values from the past. At any 

given point in time, we must utilize information available at that point in time and produce 

forecasts into the future. 
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and improving model quality. As we are dealing with time series data, traditional cross-

validation techniques may become problematic. This is because of the temporal dependencies

in time series, which means one must ensure that all observations in the training data set occurs

chronologically before all the observations in the testing data set. To accurately simulate real-

world forecasting, we cannot use information from the future to forecast said future. It also

does not make sense to use information from the future to predict values from the past. At any

given point in time, we must utilize information available at that point in time and produce

forecasts into the future.
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In this analysis we will employ a method called rolling-origin nested cross-validation. This is 

based upon nested cross-validation which builds an outer loop for error estimation and an inner 

loop for parameter tuning. The inner loop works by splitting the training set into a training 

subset and a validation set. The model is then trained on the training subset, and the predictive 

accuracy is tested against the observations in the validation set. The hyperparameter values 

that minimize forecast error on the validation set are chosen. There is also an outer loop, which 

splits the dataset into multiple different training and test sets. The error on each split is then 

averaged in order to compute a robust estimate of model error (Simon & Varma, 2006).  

Rolling-origin nested cross-validation also involves successively updating the forecasting 

origin and producing forecasts from each new origin (Tashman, 2000).  In other words, we 

successively update the test set while assigning all previous data into the training set. To make 

the most of our data, each split into training and validation sets is moved chronologically 

forward by one single observation. Figure 5 below is an illustration of this process. 

 

Figure 5: Illustration of rolling-origin nested cross validation (Petropoulos & Svetunkov,  
2018). 

To implement rolling-origin nested cross validation in R, we create a trainControl-object with 

the caret-package. We specify that the method should be “timeslice”, and we choose the value 

of the initial window-parameter to be 36. We choose 36 months, three full years, to ensure 

enough data when training the first model and to allow the model to capture the one-year 

seasonal pattern. This means that the first model will be trained on the 36 first observations in 

the dataset, while the next model will be trained on the 37 first observations, and so on until 

the whole training data set is used. We set the horizon-parameter to one, meaning that we 
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In this analysis we will employ a method called rolling-origin nested cross-validation. This is

based upon nested cross-validation which builds an outer loop for error estimation and an inner

loop for parameter tuning. The inner loop works by splitting the training set into a training

subset and a validation set. The model is then trained on the training subset, and the predictive

accuracy is tested against the observations in the validation set. The hyperparameter values

that minimize forecast error on the validation set are chosen. There is also an outer loop, which

splits the dataset into multiple different training and test sets. The error on each split is then

averaged in order to compute a robust estimate of model error (Simon & Varma, 2006).
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origin and producing forecasts from each new origin (Tashman, 2000). In other words, we
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the most of our data, each split into training and validation sets is moved chronologically

forward by one single observation. Figure 5 below is an illustration of this process.

Testdataset

.__ T_ra_i_m_·n_g .....11 Validation

.__ T_ra__in_ing __.l l Validation

.__ T_ra_,_·n_in_g .....11 Validation

_ _ _ _ _ _ _T_ra_in_i_n_g __.l l Validation

Figure 5: Illustration of rolling-origin nested cross validation (Petropoulos & Svetunkov,
2018).

To implement rolling-origin nested cross validation in R, we create a trainControl-object with

the caret-package. We specify that the method should be "timeslice", and we choose the value

of the initial window-parameter to be 36. We choose 36 months, three full years, to ensure

enough data when training the first model and to allow the model to capture the one-year

seasonal pattern. This means that the first model will be trained on the 36 first observations in

the dataset, while the next model will be trained on the 37 first observations, and so on until

the whole training data set is used. We set the horizon-parameter to one, meaning that we
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evaluate forecasts based on one test observation. We then use this trainControl-object to 

specify the cross-validation procedure in the train-function when building the models.  

3.8 Direct Forecasting 

When making multi-period time series forecasts, we face a choice between different 

forecasting methods. One option is the so-called recursive method. It involves identifying and 

fitting an initial model to the time series and producing multi-step ahead forecasts by a 

sequence of one-step ahead forecasts. At each new forecast horizon, previously made forecasts 

are plugged in to replace unknown future values (Bhansali, 1999). In this analysis we are 

interested in producing monthly predictions one year ahead, and therefore we will create a 12-

step ahead forecast. For example, if we were to employ the recursive method and produce a 

12-step ahead forecast in December 2020, the December 2021-forecast would depend heavily 

on the forecasted values in January 2021, February 2021, …, November 2021. 

Another option is to do what is known as direct forecasting. Direct forecasting entails building 

a separate model for each forecast horizon. This means that for a 12-step ahead forecast, we 

would build 12 different models, each one with a different response variable (Bhansali, 1999).  

We are interested in making monthly predictions, so the response variable in the first model 

would be the one-month lead value of the Fish Pool Index (𝑦𝑦(#+), the second would be the 

two-month lead value (𝑦𝑦(#!), and so on. The first model would then produce the one-step 

ahead forecast (𝑦𝑦#(#+), the second model would produce the two-step ahead forecast (𝑦𝑦#(#!), 

and so on until one reaches the end of the forecast horizon.  

In this thesis we choose to use the direct forecasting method because of two main reasons. 

First, we want our forecasts to be robust against model misspecification. The biggest risk with 

recursive forecasts seems to be error propagation. If a mistake is made when building the one-

step ahead forecasting model, this will cause a chain of errors throughout the forecasting 

horizon. On the other hand, a direct forecasting method builds a new model for each forecast 

horizon and is thus less sensitive to poor models on any specific horizon (Marcellino et al., 

2006).  

The second reason we choose the direct method is because it is a more practical one. We are 

building multivariate models, which means that to do recursive forecasting we would need to 

forecast not only the dependent variable (the Fish Pool Index) recursively into the future, but 
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are plugged in to replace unknown future values (Bhansali, 1999). In this analysis we are

interested in producing monthly predictions one year ahead, and therefore we will create a 12-

step ahead forecast. For example, if we were to employ the recursive method and produce a

12-step ahead forecast in December 2020, the December 2021-forecast would depend heavily

on the forecasted values in January 2021, February 2021, ..., November 2021.

Another option is to do what is known as direct forecasting. Direct forecasting entails building

a separate model for each forecast horizon. This means that for a 12-step ahead forecast, we

would build 12 different models, each one with a different response variable (Bhansali, 1999).

We are interested in making monthly predictions, so the response variable in the first model

would be the one-month lead value of the Fish Pool Index (Ym+i), the second would be the

two-month lead value CYm+z), and so on. The first model would then produce the one-step

ahead forecast (Ym+i), the second model would produce the two-step ahead forecast (Ym+z),

and so on until one reaches the end of the forecast horizon.

In this thesis we choose to use the direct forecasting method because of two main reasons.

First, we want our forecasts to be robust against model misspecification. The biggest risk with

recursive forecasts seems to be error propagation. If a mistake is made when building the one-

step ahead forecasting model, this will cause a chain of errors throughout the forecasting

horizon. On the other hand, a direct forecasting method builds a new model for each forecast

horizon and is thus less sensitive to poor models on any specific horizon (Marcellino et al.,

2006).

The second reason we choose the direct method is because it is a more practical one. We are

building multivariate models, which means that to do recursive forecasting we would need to

forecast not only the dependent variable (the Fish Pool Index) recursively into the future, but
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also all the feature variables. This seems like a complex and high-risk strategy, as our forecasts 

would not only be dependent on forecasted values of the Fish Pool Index, but also on 

forecasted values of all features as well.  

3.9 Evaluation of Forecasts 

To evaluate the quality of our models, we will test their forecasting accuracy against the actual 

observations of the Fish Pool Index in 2021. In other words, we will use data from December 

2020 to forecast the FPI throughout 2021, and then evaluate how close our forecasts are to the 

actual observations of the FPI. It is important to emphasize that these are out-of-sample 

forecasts, as we do not use data from 2021 to train our models. All data from 2021 are in the 

test data set. We explain this further in section 4.4.3 Train and Test Split. We will use three 

statistical accuracy measures, as well as evaluate the potential economic value of the forecasts 

to salmon farmers.  

3.9.1 Evaluation of Statistical Forecast Accuracy 

The first two statistical accuracy measures will evaluate the distance between observations 

and forecasts. The closer these measures are to zero, the more accurate predictions. The third 

will measure the accuracy in predicting the directional up- or down-movement from month to 

month, and a higher value is therefore better. 

The first statistical measure we will utilize is mean absolute error (MAE). As expressed in 

equation (7), this is quite simply the mean of the absolute values of the differences between 

observations and forecasts of the response variable Y, which in our case is the Fish Pool Index. 

(7) 

𝑀𝑀𝑀𝑀𝑀𝑀 =	
1
𝑛𝑛.|𝑦𝑦. − 𝑦𝑦#.|

=

.:+

 

Here n is the number of observations, 𝑦𝑦. is the i-th observation of the response variable Y, and 

𝑦𝑦#. is the i-th forecast of Y. The advantage of this measure is that the MAE is expressed in the 

same unit as the observation 𝑦𝑦., so it is very easily interpretable.  
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observations of the Fish Pool Index in 2021. In other words, we will use data from December

2020 to forecast the FPI throughout 2021, and then evaluate how close our forecasts are to the
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3.9.1 Evaluation of Statistical Forecast Accuracy

The first two statistical accuracy measures will evaluate the distance between observations

and forecasts. The closer these measures are to zero, the more accurate predictions. The third

will measure the accuracy in predicting the directional up- or down-movement from month to

month, and a higher value is therefore better.

The first statistical measure we will utilize is mean absolute error (MAE). As expressed in

equation (7), this is quite simply the mean of the absolute values of the differences between

observations and forecasts of the response variable Y, which in our case is the Fish Pool Index.

(7)

n

M A E = ¾ I 1 Y i - yd
i = l

Here n is the number of observations, Yi is the i-th observation of the response variable Y, and

Yi is the i-th forecast of Y The advantage of this measure is that the MAE is expressed in the

same unit as the observation Yi, so it is very easily interpretable.
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The second measure of statistical accuracy we will employ is the mean squared error (MSE). 

This is the mean of the squared differences between observations and forecasts, which is 

expressed in equation (8) below. 

(8) 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛.(𝑦𝑦. − 𝑦𝑦#.)!

=

.:+

 

Here n is again the number of observations, while 𝑦𝑦. are observations of Y, and 𝑦𝑦#. are the 

corresponding forecasts of Y.  

One difference between MSE and MAE is that MSE overweighs large differences between 

observation and forecast, because the difference is multiplied by itself. The MSE punishes 

very large forecasting errors more severely than the MAE. Both MAE and MSE measure the 

Euclidean distance between observation and forecast and will thus provide insight into how 

close forecasts are to the actual observations of the Fish Pool Index.  

Another measure that will prove insightful is the directional accuracy (DA). Instead of 

measuring closeness to observations, it measures how often forecasts get the directional up- 

or down-movement of the Fish Pool Index correct. To do this, one approach is to first compute 

a dummy-variable 𝑈𝑈. that takes the value 1 if the observation at time i, 𝑦𝑦., is larger than the 

observation from the previous period,	𝑦𝑦.'+, and 0 if 𝑦𝑦. is smaller than 𝑦𝑦.'+. Then we create a 

similar 𝑈𝑈A. that is 1 when the forecast at time i, 𝑦𝑦#., is larger than the forecast from the previous 

period, 𝑦𝑦#.'+, and 0 when 𝑦𝑦#. is smaller than 𝑦𝑦#.'+. We can then produce a so-called confusion 

matrix by counting how often the predicted movements correspond to the actual movements. 

The form is presented in table 2 below. 

Table 2: Confusion matrix. 

 Actual Up-movement Actual Down-movement 

Predicted Up-movement True Positives (TP) 

(If U( = U?( = 1) 

False Positives (FP) 

(If U( < U?() 

Predicted Down-movement False Negatives (FN) 

(If U( > U?()  

True negatives (TN) 

(If U( = U?( = 0) 
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The second measure of statistical accuracy we will employ is the mean squared error (MSE).

This is the mean of the squared differences between observations and forecasts, which is

expressed in equation (8) below.

(8)

1f 2MSE = L ,(Yi - Y i )
i = 1

Here n is again the number of observations, while Yi are observations of Y, and Yi are the

corresponding forecasts of Y.

One difference between MSE and MAE is that MSE overweighs large differences between

observation and forecast, because the difference is multiplied by itself The MSE punishes

very large forecasting errors more severely than the MAE. Both MAE and MSE measure the

Euclidean distance between observation and forecast and will thus provide insight into how

close forecasts are to the actual observations of the Fish Pool Index.

Another measure that will prove insightful is the directional accuracy (DA). Instead of

measuring closeness to observations, it measures how often forecasts get the directional up-

or down-movement of the Fish Pool Index correct. To do this, one approach is to first compute

a dummy-variable Ui that takes the value l if the observation at time i, Y i , is larger than the

observation from the previous period, Y i - i , and Oif Yi is smaller than Yi- l · Then we create a

similar Vi that is l when the forecast at time i, Yi , is larger than the forecast from the previous

period, Y i - i , and Owhen Yi is smaller than Yi- l · We can then produce a so-called confusion

matrix by counting how often the predicted movements correspond to the actual movements.

The form is presented in table 2 below.

Table 2: Confusion matrix.

Actual Up-movement

Predicted Up-movement True Positives (TP)

(If U i = Di = 1)

Predicted Down-movement False Negatives (FN)

nru, > Di)

Actual Down-movement

False Positives (FP)

nru, < Di)

True negatives (TN)

(If U i = Di = 0)
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In equation (9), we obtain directional accuracy by summing the true positives and negatives, 

expressed as a percentage. 

(9)   𝐷𝐷𝑀𝑀 = +
=
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑁𝑁𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁𝑁𝑁𝑃𝑃𝑃𝑃𝑇𝑇𝑠𝑠) 

Here n is the number of observations. DA then pays no attention to how big the difference 

between observation and forecast is, instead it just measures the probability that a forecasted 

up- or down-movement will correspond to the actual movement. If for instance directional 

accuracy equals 80% and a forecast for the next time period indicates an up-movement (i.e. 

𝑦𝑦. <	𝑦𝑦#.#+), we should expect the direction of the forecast to be correct about 8 out of 10 times, 

that is, 𝑦𝑦. < 𝑦𝑦.#+ with 80% probability.  

3.9.2 Evaluation of Economic Value of Forecasts 

We will also attempt to measure the economic value of the forecasts in the perspective of a 

salmon farmer by utilizing a similar approach as introduced by Bloznelis (2018). Assume a 

particular farmer has 𝑋𝑋0$7>?@4A	?BCD(@ volume per month ready for harvesting, which could be 

done immediately or with a delay of one month at no additional cost. Knowing the direction 

of a change in the spot price could lead to considerable economic gain if the farmer were to 

time the harvest to when the price is higher.  

If the salmon farmer was to make his harvest decisions at random, then one would expect him 

to be correct only 50% of the time and the net value added of the forecasts would be zero. This 

will serve as our benchmark. By comparing how much the salmon farmer could increase 

revenue applying our forecasts instead of the simple benchmark strategy, we can then evaluate 

the economic value of our forecasts. This involves first finding the mean absolute price 

difference 𝑋𝑋0E>.F@	<.GG@>@=F@ between two months in our data, which is expressed in equation 

(10) below. 

(10) 

𝑋𝑋0E>.F@	<.GG@>@=F@ 	= 	
∑ |𝑥𝑥. − 𝑥𝑥.#+|.
.:+

𝑛𝑛  

In this equation 𝑥𝑥. is the price of a particular month, and 𝑛𝑛 is the number of observations in 

the data. Next, in equation (11) we compute the potential economic gain per month given a 

perfect forecast 𝐺𝐺E@>G@FA	GB>@F74A. 
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In equation (9), we obtain directional accuracy by summing the true positives and negatives,

expressed as a percentage.

(9) D A = !:..(True Posit ives+ True Negatives)
n

Here n is the number of observations. DA then pays no attention to how big the difference

between observation and forecast is, instead it just measures the probability that a forecasted

up- or down-movement will correspond to the actual movement. If for instance directional

accuracy equals 80% and a forecast for the next time period indicates an up-movement (i.e.

Yi < Yi+i) , we should expect the direction of the forecast to be correct about 8 out of l 0 times,

that is, Yi < Y i + l with 80% probability.

3.9.2 Evaluation of Economic Value of Forecasts

We will also attempt to measure the economic value of the forecasts in the perspective of a

salmon farmer by utilizing a similar approach as introduced by Bloznelis (2018). Assume a

particular farmer has X harves t vo lume volume per month ready for harvesting, which could be

done immediately or with a delay of one month at no additional cost. Knowing the direction

of a change in the spot price could lead to considerable economic gain if the farmer were to

time the harvest to when the price is higher.

If the salmon farmer was to make his harvest decisions at random, then one would expect him

to be correct only 50% of the time and the net value added of the forecasts would be zero. This

will serve as our benchmark. By comparing how much the salmon farmer could increase

revenue applying our forecasts instead of the simple benchmark strategy, we can then evaluate

the economic value of our forecasts. This involves first finding the mean absolute price

difference Xprice d i f f e r e n c e between two months in our data, which is expressed in equation

(JO) below.

(JO)

Xprice d i f f e r e n c e
r :=1 l x i - Xi+1 l

n

In this equation xi is the price of a particular month, and n is the number of observations in

the data. Next, in equation (J J) we compute the potential economic gain per month given a

perfect forecast G p e r f e c t forecast ·
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(11) 

𝐺𝐺E@>G@FA	GB>@F74A =	𝑋𝑋	P E>.F@	<.GG@>@=F@ 	× 0.5	𝑋𝑋0$7>?@4A	?BCD(@ 

Now, in equation (12), we utilize our best performing model and calculate potential economic 

gain per month of timely forecasting associated with this model, 𝐺𝐺6@4A	(B<@C. 

(12) 

𝐺𝐺6@4A	(B<@C =	𝐺𝐺E@>G@FA	GB>@F74A ×	𝐷𝐷𝑀𝑀6@4A	(B<@C 	− 	𝐺𝐺E@>G@FA	GB>@F74A 	× (1 −	𝐷𝐷𝑀𝑀6@4A	(B<@C)	 

Here 𝐷𝐷𝑀𝑀6@4A	(B<@C is the directional accuracy of the best performing model of this study, 

stating the probability of accurately predicting up- or down-movements in price. This means 

our forecasts will have economic value if they have directional accuracy above 50%. 
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( I I )

Gper fec t forecast = X price d i f f e r e n c e X 0.5 Xharves t vo lume

Now, in equation (J2), we utilize our best performing model and calculate potential economic

gain per month of timely forecasting associated with this model, Gbest m o d e l .

(12)

Gbest m o d e l = Gper fec t forecast X D A b e s t m o d e l - Gper fec t forecas t X (1 - D A b e s t m o d e l )

Here D A b e s t m o d e l is the directional accuracy of the best performing model of this study,

stating the probability of accurately predicting up- or down-movements in price. This means

our forecasts will have economic value if they have directional accuracy above 50%.
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4. Data 

The data of this study is a collection of variables composed from multiple public sources. In 

this chapter we will first describe how the dataset is structured and the selection of variables. 

Next, we present descriptive statistics of the feature variables, which includes correlation with 

the Fish Pool Index and summary statistics. Finally, we explain several pre-processing steps 

that was necessary to model the data.  

4.1 Introduction to Dataset 

The original dataset consists of one response variable and 33 explanatory variables, and spans 

from January 2007 to December 2021. The data occurs at a monthly frequency and entails a 

total of 180 observations. Originally, we envisioned more than 180 observations, but we were 

limited by the fact that complete data were not available further back in time. Another problem 

we encountered when obtaining data was low data frequency. For example, several possible 

explanatory variables were only available at annual frequency and could therefore not be 

included in the analysis. 

As the data was collected from multiple public sources, some initial steps had to be performed 

for the variables to be comparable. For instance, some variables occurred at daily or weekly 

frequency and were therefore aggregated to monthly frequency. For variables expressed in 

monetary value such as Fish Pool forward prices, we aggregated by computing the mean, while 

for variables that expressed volume such as Norwegian exports, we aggregated by 

summarizing. Furthermore, we aggregated some variables that provided similar information. 

For example, dead fish, low quality fish, escaped fish and other fish loss was transformed to 

one variable, as we were interested in the absolute value of fish loss as opposed to the cause 

of fish loss. 

For each variable a hypothesis about how and when it is likely to impact the salmon spot price 

was derived. Based on this we computed new variables that were lagged in order to capture 

features that would impact the spot price several months later in time. For instance, at month 

m, a variable that is lagged three months express the observation of that variable at month m-

3. The number of lags chosen for each individual feature variable will be further described in 

the next section, 4.2 Variable Selection. 
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4.2 Variable Selection 

The response variable of this study is the Fish Pool Index, which express the salmon spot price 

in NOK per kg. When predicting this response, the prediction accuracy depends upon the 

feature variables considered. Variable selection was therefore done through comprehensive 

research and input from our supervisor, Stein Ivar Steinshamn, and Hans Vanhauwaert 

Bjelland from Sintef.  

Even though the Fish Pool Index express the global spot price, we simplified supply by only 

including variables based on Norwegian data. This was considered reasonable as Norway is 

by far the largest farmed salmon producer, accounting for over half of the global supply. With 

regards to demand, variables were chosen based on the largest markets being the European 

Union and United Kingdom making up 45% of the global market, followed by United States 

at 22% (Kontali Analyse, 2022). 

An overview of the explanatory variables can be viewed in table 3. The figure is organized 

based upon the variable's influence on either supply or demand. This follows from the 

interaction of price, supply and demand, as suggested by general market mechanism theory. 

In addition, some other variables were included which can drive both supply and demand. 

Below follows an in-depth description of the selection and data-retrieval process of each 

variable. 

Table 3: Overview of explanatory variables. 

 
* Negative short-term- and positive long-term correlation. 
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Union and United Kingdom making up 45% of the global market, followed by United States

at 22% (Kontali Analyse, 2022).

An overview of the explanatory variables can be viewed in table 3. The figure is organized

based upon the variable's influence on either supply or demand. This follows from the

interaction of price, supply and demand, as suggested by general market mechanism theory.

In addition, some other variables were included which can drive both supply and demand.

Below follows an in-depth description of the selection and data-retrieval process of each

variable.

Table 3: Overview of explanatory variables.
Explanatory Variables

Feature Influence Variable Name Measurement Unit Hypothesized FPI Correlation Number of Lags (in months)

Supply Standing Biomass Tons Negative 3.6. 9, 12
Smolt Release Thousand Individuals Negative 12. 18.24
Sea Temperature Mean in Degrees Celsius Negative 2 .3 .4
Feed Consumption Tons Negative 2 .3 .4
Sea Lice Individuals per Fish Both* 3. 12
Fish Loss Thousand Individuals Positive 3. 12. 21
Wind Mean Highest Median Positive
Harvest Volume Tons WFE Negative
Norwegian Exports Tons Negative I
Cages in Norway Individual Cages Negative I, 2, 3

Demand Price of Beef US Cents pr Pound Positive 2.5
Price of Lamb US Cents pr Pound Positive 2.5
Price of Pork US Cents pr Pound Positive 2.5
Price of Poultry US Cents pr Pound Positive 2.5
CPI Euro Union % Annual Change Positive 2 ,4 ,6
CPI Norway % Annual Change Positive 2 .4 .6
CPI US % Annual Change Positive 2 ,4 ,6
US Imports Thousand USD Positive I

Other Oslo Seafood Index NOK Positive I. 3. 5
FPI Forward Price NOK Positive 1.2.3 ,4 ,5 ,6 .7 .8 .9 .10.11.12
NOK-EUR Rate NOK Positive 3. 12
NOK-USD Rate NOK Positive 3. 12

*Negativeshort-term- and positive long-term correlation.
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Standing Biomass 

The Standing Biomass data was retrieved from Fiskeridirektoratet2 (2023) and express tons of 

salmon in Norwegian facilities at a given month. As valuation of farmed salmon is mainly 

based upon size distribution and quality, biomass can provide insight into farmers’ harvest 

volume (Mowi, 2020). Considering that salmon is fresh produce, an increase in harvest volume 

will likely increase short-term supply, which in turn will impact the spot price negatively. This 

leads to a hypothesized negative correlation between standing biomass and the Fish Pool 

Index. As to when the effect on the price will be apparent, large manufacturers such as Mowi 

(2020) and SalMar (2022) suggests that salmon spend about 12 to 24 months in sea before 

harvested. However, diverse age groups in sea suggests a large proportion of the biomass will 

impact short-term supply because the oldest fish will be larger and weigh more. We therefore 

operate with lags of three, six, nine and twelve months. 

Smolt Release 
The Smolt Release data was also retrieved from Fiskeridirektoratet4 (2023) and indicate 

release of smolt in Norwegian facilities measured in thousands. Smolt release is the process 

where juvenile fish transition from an existence in freshwater to a life in the sea. There they 

live in cages, which are large, enclosed nets suspended in the ocean by flotation devices until 

the fish are ready for harvest (SalMar, 2022). This usually takes 12 to 24 months (Mowi, 

2020), which suggests smolt release may be a good indicator of supply at that time. Because 

of this, we model with lags of 12, 18 and 24 months. 

Sea Temperature 
Sea temperature is an important factor for salmon farming. The data exhibits the mean 

temperature in Norway measured in degrees Celsius and was obtained from Lusedata (Selnæs, 

2023). Lusedata graciously provided us with data from 2007 to 2011 that was not publicly 

available. The remaining data from 2012 to 2021 was available on the Lusedata website. 

Originally the data occurred at a weekly frequency, but it was later aggregated to monthly 

frequency by computing the mean. At the ideal sea temperature between 8 and 14°C, farmed 

Atlantic salmon eats well and grows quickly. However, with rising temperature, the growth 

rate may increase further and shorten production time. Historically this has been the case in 

Chile, which at 10°C has the highest mean temperature of the salmon producing regions. If 

the temperature becomes either too high or too low, the salmon gets stressed, eats less, 

experiences reduced growth and may even die (Mowi, 2020). Knowing that temperature is an 

important driver for production time and that warmer temperatures in summer influences 
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harvest volumes in autumn, this suggests a negative correlation with the FPI and a short- to 

medium-term effect on supply. Consequently, we have introduced lags of two, three and four 

months. 

Feed Consumption 

The feed consumption data was retrieved from Fiskeridirektoratet3 (2023) and indicate 

reported feed consumption at Norwegian facilities measured in tons. Even minor 

modifications in feeding may to a large extent affect the growth and quality of farmed Atlantic 

salmon, which in turn will affect supply. Feeding also makes up the largest share of the total 

cost in production (SalMar, 2022) and naturally the older, bigger fish will consume the largest 

amount of feed. These are almost slaughter-ready, which suggest that the effect on supply 

would be short-term. Thus, we operate with lags of two, three and four months. We assume 

the correlation with the Fish Pool index to be negative as increased supply would presumably 

have negative effect on the spot price. 

Sea Lice 
Salmon lice are natural seawater parasites that could threaten fish welfare, damage the quality 

of the salmon’s flesh and in the worst cases, lead to disease and death. Norwegian authorities 

therefore have clear guidelines for handling of the lice. As the threat increase with the number 

of lice found in the cage, a maximum number of lice is permitted, and all Norwegian suppliers 

must count and report on this weekly (SalMar, 2022). The data was retrieved from Lusedata 

(Selnæs, 2023) and include data from 2007 to 2011 that was not publicly available. It states 

the average number of individual lice per fish during a month in Norway. Originally the data 

had a weekly frequency and consisted of three variables: moving lice, fixed lice and adult 

female lice per fish. These were later aggregated by computing the monthly average. High 

amounts of sea lice can cause premature harvest, which signal an increase in short-term supply 

with negative effect on price and reduction of long-term supply with positive effect on price. 

To capture both effects, we introduced lags of three and twelve months.  

Fish Loss 

Fish loss is defined as the number of fish either reported as dead, disposed of due to low 

quality, escaped, or lost due to other causes such as counting errors. The data was retrieved 

from Fiskeridirektoratet5 (2023) and is expressed in thousands individuals. In Norwegian 

farming facilities around 15% of the production is usually discarded, which underlines the risk 

in relation to production volume (Hoddevik, 2023). Fish loss affects salmon of all ages and 
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sizes, thus fish loss influence both short- and long-term supply. An increase in fish loss will 

affect supply negatively which in turn would increase the spot price, and the hypothesized 

correlation with the Fish Pool Index is therefore positive. This effect on price is expected to 

occur with lags of three, twelve and twenty-one months. 

Wind 

Waves occur when wind blows over the sea surface. This could lead to extreme weather 

conditions and reduce short-term harvest of farmed salmon as necessary sea transportation 

from the cages to slaughterhouses becomes challenging. We assume that the corresponding 

effect on the spot price is positive and occur with a one-month lag. We retrieved the wind data 

from Norsk Klimaservicesenter (2023). It is expressed as the mean of the highest median wind 

per month at the following Norwegian locations: Bergen Florida, Bodø Vi, Halten Fyr, 

Sortland, Svolvær Lufthavn, Tafjord, Vega Vallsjø, Vigra and Ørsta-Volda Lufthamn. These 

stations were chosen as they are located within areas where much of the Norwegian salmon 

farming takes place.  

Harvest Volume 

Harvest volume is the reported harvest of slaughtered salmon in tons whole-fish-equivalent 

(WFE) from Norwegian suppliers. This data was retrieved from Fiskeridirektoratet6 (2023) 

and include all fish extracted from the cages, excluding fish that have been moved or sold 

alive. Harvest is an obvious indicator of very short-term supply as salmon is fresh produce. 

The effect on price will therefore be almost immediate, hence a one-month lag. In addition, 

the harvest pattern is largely influenced by seasonal fluctuation, such as warmer months when 

the fish grows quicker and higher demand during certain holidays (Bloznelis, 2018). Such 

increased supply will presumably have a negative effect on price, thus the hypothesized 

correlation with the Fish Pool Index is negative. 

Norwegian Exports 
Norwegian exports indicate tons of salmon sold internationally from Norwegian producers per 

month. This data was retrieved from SSB (2023). Norway exports nearly all its production and 

is the main supplier of salmon in Europe, the largest salmon market in the world (Bloznelis, 

2018). Again, because of the short expiry associated with salmon products, exported volume 

is likely to follow harvested volume closely. For this reason, an increase in Norwegian export 

is thought to have very short-term effect on supply, thereby influencing the Fish Pool Index 

negatively with a one-month lag.  
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Cages in Norway 

In Norway, aquaculture is a permit-based industry, meaning the salmon farmers must acquire 

a legal disposition for commercial salmon production. Because of high demand for such 

permits, the Norwegian government control the number of allowed cages and when permits 

are sold. The data express the number of cages with live salmon and rainbow trout in Norway 

and was acquired from Fiskeridirektoratet1 (2023). The number of cages can be interpreted as 

a measure of investments in the Norwegian salmon farming industry, as the acquisition of 

permits can be expensive and signify plans for future salmon farming. If the number of cages 

increase, we expect an increase in short- to medium-term supply and therefore the correlation 

with the spot price is supposed to be negative. We have chosen lags of one, two and three 

months.  

Price of Alternative Proteins 

According to the Food and Agriculture Organization of the United Nations (2022), beef, lamb, 

poultry, and pork are the most consumed meats in the world. As alternative animal protein 

sources these are natural substitutes for salmon. The data of these four proteins was obtained 

from the Federal Reserve Bank of St. Louis1, 2, 3, 4 (2023) and are expressed in US Cents per 

pound, which amount to about 0.45 kg. These products may impact demand of salmon as 

consumer preferences could shift in favor of these goods if the price of salmon increase. A 

reduction in demand of salmon will consequently have an adverse effect on the spot price, 

leading to a hypothesized positive correlation with the Fish Pool Index. Considering the time 

it takes for consumers to adapt to price changes in alternative proteins, we assume a short- to 

medium-term effect in demand for salmon. The effect on the Fish Pool Index is expected with 

lags of two and five months. 

Consumer Price Index Year-over-Year Changes 
Inflation results in higher production costs, which in turn means salmon farmers will require 

higher prices. Moreover, inflation affects consumers' purchasing power and demand 

negatively, again signaling change in the spot price. The most well-known indicator of 

inflation is the Consumer Price Index (CPI), which measures the change in the prices paid by 

consumers for a selection of goods over time (Bryan & Cecchetti, 1993). In this analysis we 

utilize data from Eurostat (2023) that measures percentage annual CPI change in the European 

Union, United States and Norway. This means that February 2020 will be measured against 

the previous year, February 2019. The European Union and the United States was chosen due 

to these being the largest markets (Kontali Analyse, 2022). We also include the Norwegian 
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CPI as this may influence production costs. Increased CPI means higher inflation and would 

presumably result in a higher spot price, and therefore the presumed correlation with the Fish 

Pool Index is positive. It is difficult to determine when consumers and producers will adjust 

their demand in response to a change in the CPI, but we assume a short- to medium term effect. 

Based on this we apply lags of two, four, and six months.  

US Imports 
Considering that the United States is one of the main markets for Norwegian farmed salmon, 

US imports should provide insight into short-term demand. The data was retrieved from the 

National Oceanic and Atmospheric Administration (2023), and it states the value of US 

imports of fresh and frozen farmed Atlantic salmon. It is expressed in thousand USD and 

measured as customs value, meaning the price actually paid for merchandise when sold for 

export to the US, excluding import duties, freight, insurance, and similar charges. Increased 

import value suggests increased short-term demand and will have an almost immediate 

positive effect on the Fish Pool Index. We therefore apply a one-month lag.  

Oslo Seafood Index 

The Oslo Seafood Index measures the development in the seafood industry through stock 

prices of large salmon farming companies listed on the Oslo Stock Exchange. Such stock 

prices may contain information about future supply and demand, as discovered by Dahl et al. 

(2021), unlike the Fish Pool Index that expresses current supply- and demand information. 

This data was acquired from Euronext3 (2023), is expressed in NOK and consists of daily data 

that was aggregated by computing the monthly mean. Positive changes in stock prices means 

that investors expect increased revenues and earnings for salmon farmers. It is reasonable to 

assume that this will correspond with an increase in the salmon spot price. Therefore, we 

assume a positive correlation between the seafood index and the FPI in the short- to medium-

term future. We utilize lags of one, three and five months.  

Fish Pool Forward Prices 
The forward prices reflect the price expectations for member companies of Fish Pool for the 

coming months, based on contracts, orders, as well as interests to buy or sell at Fish Pool. It is 

expressed in NOK. We include one- to twelve-months ahead futures prices because this 

corresponds to our forecast horizon. This means the forward price 12 in February 2020 

indicates the forward price at that time twelve months ahead, for February 2021. The data was 

retrieved from Fish Pool3 (2023) and originally occurred at daily frequency but was aggregated 
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imports of fresh and frozen farmed Atlantic salmon. It is expressed in thousand USD and

measured as customs value, meaning the price actually paid for merchandise when sold for

export to the US, excluding import duties, freight, insurance, and similar charges. Increased

import value suggests increased short-term demand and will have an almost immediate

positive effect on the Fish Pool Index. We therefore apply a one-month lag.

Oslo Seafood Index

The Oslo Seafood Index measures the development in the seafood industry through stock

prices of large salmon farming companies listed on the Oslo Stock Exchange. Such stock

prices may contain information about future supply and demand, as discovered by Dahl et al.

(2021), unlike the Fish Pool Index that expresses current supply- and demand information.

This data was acquired from Euronext) (2023), is expressed in NOK and consists of daily data

that was aggregated by computing the monthly mean. Positive changes in stock prices means

that investors expect increased revenues and earnings for salmon farmers. It is reasonable to

assume that this will correspond with an increase in the salmon spot price. Therefore, we

assume a positive correlation between the seafood index and the FPI in the short- to medium-

term future. We utilize lags of one, three and five months.

Fish Pool Forward Prices

The forward prices reflect the price expectations for member companies of Fish Pool for the

coming months, based on contracts, orders, as well as interests to buy or sell at Fish Pool. It is

expressed in NOK. We include one- to twelve-months ahead futures prices because this

corresponds to our forecast horizon. This means the forward price 12 in February 2020

indicates the forward price at that time twelve months ahead, for February 2021. The data was

retrieved from Fish Pooh (2023) and originally occurred at daily frequency but was aggregated
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by computing the monthly mean. The forward price is expected to correlate positively with 

the Fish Pool Index, as an increase in the forward price indicates a similar development in the 

spot price. 

Exchange Rates 

Exchange rates are important because they somewhat explain foreign consumers’ purchasing 

power relative to Norwegian cost of production (Bloznelis, 2018). Most of the raw materials 

required for salmon farming production in Norway are bought from Europe or the United 

States, in addition to the fact that these are the largest consuming markets. In other words, the 

vast majority of currency flows for Norwegian salmon producers are dominated by 

conversions of NOK to EUR and USD, both on the cost and revenue side (Mowi, 2020). We 

therefore include NOK to EUR and NOK to USD rates that was retrieved from Norges Bank 

1, 2 (2023). Depreciation in NOK means NOK-EUR and NOK-USD exchange rates increase. 

This will increase the salmon export prices measured in NOK, but at the same time entail 

increased costs associated with imported raw materials, hence indicating an increase in the 

spot price. Appreciation in NOK however will have the opposite effect. This implies a positive 

correlation with the Fish Pool Index. The effect on supply is most likely to be long-term 

because harvest is planned a long time ahead and difficult to change. The impact on demand 

is expected to be in the medium term, as consumption could be adjusted faster. Based on these 

expectations, the lags on exchange rates are set to three and twelve months.  

4.3 Descriptive Statistics 

In this section we present descriptive statistics as a way to explore patterns in the data. This 

involves feature summary statistics, which provide an overview of various statistical measures 

for each feature variable, in addition to visualization of the variables. Finally, we calculate 

correlation between each feature variable and the Fish Pool Index. 

4.3.1 Feature Summary Statistics 

In table 4 below, we show the minimum and maximum, first and third quantiles, median and 

mean values for each feature variable. This provides an overview of our data. In appendix 1 

we also present graphs of all features. From these we observe some important patterns in the 

data. First, we notice that the variables standing biomass, smolt release, sea temperature, feed 

consumption, harvest volume and cages in Norway appear to exhibit seasonality. Secondly, 
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is expected to be in the medium term, as consumption could be adjusted faster. Based on these
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4.3 Descriptive Statistics

In this section we present descriptive statistics as a way to explore patterns in the data. This

involves feature summary statistics, which provide an overview of various statistical measures

for each feature variable, in addition to visualization of the variables. Finally, we calculate

correlation between each feature variable and the Fish Pool Index.

4.3.1 Feature Summary Statistics

In table 4 below, we show the minimum and maximum, first and third quantiles, median and

mean values for each feature variable. This provides an overview of our data. In appendix I

we also present graphs of all features. From these we observe some important patterns in the

data. First, we notice that the variables standing biomass, smolt release, sea temperature, feed

consumption, harvest volume and cages in Norway appear to exhibit seasonality. Secondly,
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prices of alternative protein sources appear to be highly volatile, and lastly, we observe that 

the NOK has depreciated against both EUR and USD within the period.  

Table 4: Feature summary statistics. 

 

4.3.2 Correlation with Fish Pool Index 

Correlation between the feature variables could provide information of patterns in our data 

and indicate the strength and direction of a particular variable’s effect on the Fish Pool index. 

In appendix 4 we have gathered scatter plots of all features plotted against the Fish Pool Index. 

From this we observe both linear and non-linear relationships, which again underlines the 

importance of flexible models.  

In table 5 below, we display the correlations between the Fish Pool Index and each feature, 

and how they compare to our hypotheses as first presented in table 3. The correlation measure 

is the Pearson correlation coefficient, which takes values between -1 and 1, indicating the 

degree of negative or positive correlations.  
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prices of alternative protein sources appear to be highly volatile, and lastly, we observe that

the NOK has depreciated against both EUR and USD within the period.

Table 4: Feature summary statistics.

Feature summary statistics

variable minimum qi median mean q3 maximum
biomass_tons 555800.90 669813.96 721082.08 722280.60 772394.00 905447.00
cpi_euro_union -0.50 0.50 l.SO 1.38 2.00 5.30
cpi_norway -0.20 l.SO 1.95 2.23 3.12 6.10
cpi_usa -1.10 0.80 1.40 1.59 2.00 8.00
feed_consumption 58240.08 97199.51 130001.51 136963.87 178632.71 234578.40
fish_loss 2034.74 3535.56 4180.23 4213.66 4821.35 12755.94
forward_price_I 25.21 39.06 53.78 50.55 60.87 74.29
forward_price_l0 24.92 40.57 55.33 50.33 61.63 66.23
forward_price_I1 25.41 40.13 55.51 SO.IO 61.10 67.55
forward_price_l2 26.03 39.50 55.49 49.92 60.75 67.38
forward_price_2 24.80 39.06 54.42 50.60 60.43 74.88
forward_price_3 24.93 40.34 54.39 50.65 60.41 74.18
forward_price_4 24.76 40.49 53.71 50.77 61.68 73.84
forward_price_S 24.67 40.50 53.94 50.94 62.52 72.64
forward_price_6 24.30 39.78 54.20 50.94 62.99 71.54
forward_price_7 24.32 39.82 54.73 50.81 63.11 70.62
forward_price_8 24.32 39.83 55.25 50.68 62.50 67.47
forward_price_9 24.56 40.00 55.12 50.49 62.04 66.59
harvest_norway_weight 74545.40 96239.93 103376.39 106580.87 116106.25 165759.50
highest_median_wind 9.88 13.25 15.58 15.33 17.21 21.12
nok_eur 7.32 8.35 9.33 9.15 9.80 11.34
nok_usd 5.56 6.19 8.25 7.77 8.60 10.44
price_beef 159.07 183.52 192.24 199.54 205.49 272.30
price_larnb 86.12 98.61 111.59 114.22 125.19 165.10
price_pork 46.19 60.87 73.56 74.71 84.27 128.67
price_poultry 73.86 105.09 112.54 114.53 l19.87 168.45
sea_lice 0.22 0.74 0.92 0.98 1.17 2.03
sea_temp 3.75 6.24 8.52 9.04 11.71 14.83
seafood_index 151.90 427.24 879.06 902.92 1424.73 1828.63
smolt_release 0.00 7319.12 22335.26 24253.81 38895.67 59790.26
total_cages_norway 3189.00 3535.50 3716.00 3689.14 3864.00 4156.00
total_nor_exports_tons 54273.00 65169.25 74749.00 75897.44 83777.00 125314.00
us_imports_usd_thousands 64757.00 180618.47 239442.78 238061.01 289544.13 412605.26

4.3.2 Correlation with Fish Pool Index

Correlation between the feature variables could provide information of patterns in our data

and indicate the strength and direction of a particular variable's effect on the Fish Pool index.

In appendix 4 we have gathered scatter plots of all features plotted against the Fish Pool Index.

From this we observe both linear and non-linear relationships, which again underlines the

importance of flexible models.

In table 5 below, we display the correlations between the Fish Pool Index and each feature,

and how they compare to our hypotheses as first presented in table 3. The correlation measure

is the Pearson correlation coefficient, which takes values between -1 and l, indicating the

degree of negative or positive correlations.
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Table 5: Actual and hypothesized correlation between the Fish Pool Index and feature 
variables. 

 

It is worth noting the positive coefficients for supply-side variables such as Norwegian 

biomass, Norwegian harvest volume, and Norwegian export volume, which contradicts our 

original hypotheses. This seems to indicate that in our dataset, high Norwegian supply 

generally corresponds with high values of the Fish Pool Index. However, all twelve forward 

prices, as well as the exchange rates, the Oslo seafood index and US import volumes exhibit 

strong positive correlation in line with our expectations. Prices of alternative protein sources 

have varying correlations, but the price of poultry seems to be highly positively correlated. 
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Table 5: Actual and hypothesized correlation between the Fish Pool Index and feature
variables.

Correlations with Fish Pool Index

Variable Correlation Hypothesis
biomass_tons 0.5986770 Negative
cpi_euro_union -0.3061125 Positive
cpi_norway 0.4149535 Positive
cpi_usa -0.0812649 Positive
feed_consumption 0.2027229 Negative
fish_loss 0.3403953 Positive
forward_price_l 0.9692885 Positive
forward_price_l0 0.9138394 Positive
forward_price_l1 0.9288639 Positive
forward_price_12 0.9296392 Positive
forward_price_2 0.9356862 Positive
forward_price_3 0.9092672 Positive
forward_price_4 0.8923558 Positive
forward_price_5 0.8867557 Positive
forward_price_6 0.8832132 Positive
forward_price_7 0.8809280 Positive
forward_price_8 0.8847188 Positive
forward_price_9 0.8946164 Positive
harvest_norway_weight 0.4617161 Negative
highest_median_wind -0.0520701 Positive
nok_eur 0.7251798 Positive
nok_usd 0.8084085 Positive
price_beef 0.5313196 Positive
price_lamb -0.4568284 Positive
price_pork -0.1312507 Positive
price_poultry 0.7653189 Positive
sea_lice -0.2370635 Both
sea_temp -0.0829308 Negative
seafood_index 0.7855944 Positive
smolt_release 0.0344333 Negative
total_cages_norway -0.2519067 Negative
total_nor_exports_tons 0.3816630 Negative
us_imports_usd_thousands 0.8296351 Positive

It is worth noting the positive coefficients for supply-side variables such as Norwegian

biomass, Norwegian harvest volume, and Norwegian export volume, which contradicts our

original hypotheses. This seems to indicate that in our dataset, high Norwegian supply

generally corresponds with high values of the Fish Pool Index. However, all twelve forward

prices, as well as the exchange rates, the Oslo seafood index and US import volumes exhibit

strong positive correlation in line with our expectations. Prices of alternative protein sources

have varying correlations, but the price of poultry seems to be highly positively correlated.
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4.4 Pre-processing of Data 

Raw data is usually not ready for modelling, and therefore needs some pre-processing to make 

the data consistent and reliable. Pre-processing is the concept of transforming the raw data 

into a clean and understandable data set, which may involve removing missing values, noisy 

data and dealing with other inconsistencies before executing any analysis (Singh et al., 2021). 

In this section we will describe the pre-processing, starting with handling of missing values, 

before describing the several variable adjustments that was made. Finally, we explain the 

splitting of data into separate training and testing sets. 

4.4.1 Missing Values 

Missing values are values that were intended to be obtained during data collection, but due to 

various reasons are absent. The problem of such values is a common occurrence in all real-

world data. If not treated correctly, this could reduce the statistical power of the analysis and 

lead to biased estimates, causing invalid conclusions (Kang, 2013). Moreover, many machine 

learning algorithms fail if the data contain missing values. This highlights the importance of 

dealing with them. 

In this study, we aimed to prevent the problem of missing values by collecting data carefully, 

and we therefore encountered no missing values in the original data set. However, as described 

in section 3.8 Direct Forecasting and section 4.1 Introduction to Dataset, we constructed lead- 

and lag-variables which led to missing values as there was no data prior to January 2007 and 

after December 2021. The absence of these values appeared to have no pattern or be related to 

other variables in the data, which is referred to as Missing Completely at Random (Kang, 

2013).   

The advantage of such missing values is that the estimated parameters are not biased by the 

absence of the data. If the dataset is large enough, then listwise deletion is considered a 

reasonable strategy. This involves simply dropping the rows that do not have complete data 

for all variables and analyzing the remaining data (Kang, 2013). Utilizing this approach meant 

we dropped all cases containing missing values, which reduced the data from 180 to 145 

observations. One drawback of this however, was that it significantly reduced our data size, 

which in turn could lead to a loss of statistical power. To increase the reliability of our analysis, 

46

4.4 Pre-processing of Data

Raw data is usually not ready for modelling, and therefore needs some pre-processing to make

the data consistent and reliable. Pre-processing is the concept of transforming the raw data

into a clean and understandable data set, which may involve removing missing values, noisy

data and dealing with other inconsistencies before executing any analysis (Singh et al., 2021).

In this section we will describe the pre-processing, starting with handling of missing values,

before describing the several variable adjustments that was made. Finally, we explain the

splitting of data into separate training and testing sets.

4.4.1 Missing Values

Missing values are values that were intended to be obtained during data collection, but due to

various reasons are absent. The problem of such values is a common occurrence in all real-

world data. If not treated correctly, this could reduce the statistical power of the analysis and

lead to biased estimates, causing invalid conclusions (Kang, 2013). Moreover, many machine

learning algorithms fail if the data contain missing values. This highlights the importance of

dealing with them.

In this study, we aimed to prevent the problem of missing values by collecting data carefully,

and we therefore encountered no missing values in the original data set. However, as described

in section 3.8 Direct Forecasting and section 4.1 Introduction to Dataset, we constructed lead-

and lag-variables which led to missing values as there was no data prior to January 2007 and
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2013).
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absence of the data. If the dataset is large enough, then listwise deletion is considered a

reasonable strategy. This involves simply dropping the rows that do not have complete data
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we compare the more complex models to a seasonal naïve serving as a simple benchmark, as 

described in section 3.1 Simple Benchmark Model.  

4.4.2 Variable Adjustments 

As mentioned in section 4.1 Introduction to Dataset, new lagged variables were computed in 

order to capture the delayed effect of features that would impact the spot price several months 

later in time. Next, we removed all original feature variables, meaning we utilized only the 

lagged variables. The intention of this was to just use information that was available at the 

time of forecast, meaning we forecast the spot price at least one month ahead in time. 

Consequently, our data set now entails 61 explanatory variables as opposed to 33 in the 

original data set. 

4.4.3 Train and Test Split 

In machine learning, dividing the data into separate training and testing data sets is common 

practice. This approach utilizes the training data to fit the model, before applying the model to 

the previously unseen test set and evaluating the prediction accuracy (Hastie et al., 2013). In 

our case, the training set consists of data from January 2007 to December 2020, while the test 

set consists of observations from January 2021 to December 2021. We chose this split as we 

want a test set with equal number of observations as our forecast horizon. In addition, we 

aimed for a large training set since we have a relatively small sample and prefer more training 

data to develop the algorithm. 
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5. Analysis and Results 

In this chapter, we will look at the results obtained from the models described in chapter 3 

Methodology. We will evaluate the quality of each model based on forecasting accuracy as 

explained in section 3.9.1 Evaluation of Statistical Forecast Accuracy, and then assess the 

feature variable importance as described in section 3.5 Variable Importance. Finally, we will 

compare the models to each other.  

5.1 Seasonal Naïve 

As explained in section 3.1 Simple Benchmark Model, the seasonal naïve (SNAIVE) method 

serves as a simple benchmark against which we can compare the quality of our more complex 

models. From this we know that the SNAIVE forecast equals the last observed value from the 

corresponding season. Considering that this study consists of monthly data and employs a test 

data set from January 2021 to December 2021, the SNAIVE forecasts simply equal the 

observed Fish Pool Index values from January 2020 to December 2020. In figure 6 below we 

compare the forecasts with the actual observations in a graph. 

 

Figure 6: Seasonal naïve forecast compared to the Fish Pool Index. 
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5.l Seasonal Narve

As explained in section 3.1 Simple Benchmark Model, the seasonal narve (SNAIVE) method
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data set from January 2021 to December 2021, the SNAIVE forecasts simply equal the
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Figure 6: Seasonal naive forecast compared to the Fish Pool Index.
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From figure 6 we observe that the seasonal naïve is quite poor in predicting the Fish Pool 

Index in 2021. We find that the mean absolute error (MAE) is 11.54, while the mean squared 

error (MSE) equals 200.35. The directional accuracy (DA) is 45%, indicating that the 

SNAIVE-method perform worse than a coin toss in predicting whether the FPI will go up or 

down in the next month. The results are summarized in table 13 under section 5.5 Summary 

of Results.   

5.2 Decision Tree 

In this section we will present the results of the decision trees without and with seasonal 

adjustment.  

5.2.1 Decision Trees without Seasonal Adjustment 

By implementing the procedure outlined in section 3.2 Decision Tree in R, we obtain forecasts 

as expressed in figure 7 below. 

 

Figure 7: Decision tree forecast compared to the Fish Pool Index. 

It appears that the forecasts for 2021 are quite inaccurate. The MAE is 7.87, which is a 

substantial improvement compared to the SNAIVE-forecast of 11.54, but still high compared 

to the more complex tree-models (see table 13). The MSE is 100.04, while the DA is 27%. 

While the forecasts are significantly closer to the actual observations according to MAE and 
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Index in 2021. We find that the mean absolute error (MAE) is 11.54, while the mean squared

error (MSE) equals 200.35. The directional accuracy (DA) is 45%, indicating that the

SNAIVE-method perform worse than a coin toss in predicting whether the FPI will go up or

down in the next month. The results are summarized in table J3 under section 5.5 Summary

of Results.

5.2 Decision Tree

In this section we will present the results of the decision trees without and with seasonal

adjustment.

5.2.1 Decision Trees without Seasonal Adjustment

By implementing the procedure outlined in section 3.2 Decision Tree in R, we obtain forecasts

as expressed in figure 7 below.
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Figure 7: Decision tree forecast compared to the Fish Pool Index.

It appears that the forecasts for 2021 are quite inaccurate. The MAE is 7.87, which is a

substantial improvement compared to the SNAIVE-forecast of 11.54, but still high compared

to the more complex tree-models (see table J3). The MSE is 100.04, while the DA is 27%.

While the forecasts are significantly closer to the actual observations according to MAE and
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MSE, decision trees are worse than the seasonal naïve forecast in predicting the directional 

change of the Fish Pool Index over the next month.  

Table 6: Variable importance in the decision tree models. 

 

From table 6 we observe that the most important explanatory variables in constructing the 

decision trees seems to have been the seafood index with three- and one-month lags, the price 

of poultry with five lags, and the NOK-USD exchange rate with three lags. These values are 

the average of the variable importance scores across all 12 individual decision trees. See 

appendix 2 for plots of the 12 trees, where each tree provides an easy to interpret illustration 

of which variables are most important in predicting the Fish Pool Index. 

5.2.2 Decision Trees with Seasonal Adjustment 

Now, we seasonally adjust the Fish Pool Index by doing an STL decomposition and 

subtracting the seasonal component. Then we employ this seasonally adjusted FPI as the 

response variable in the decision trees and add back the seasonal component to obtain the final 

forecasts. This procedure is explained in detail in section 3.6 Time Series Decomposition. In 

R, we use the STL-function from the feasts-package to do the seasonal decomposition. The 

rest of the procedure is similar as described in chapter 3.2 Decision Tree. Using this method, 

we obtain forecasts as seen in figure 8 below. 
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MSE, decision trees are worse than the seasonal narve forecast in predicting the directional

change of the Fish Pool Index over the next month.

Table 6: Variable importance in the decision tree models.

Variable Importance Decision Tree

Variable Variable Importance
seafood_index_lag3 58.54
seafood_index_lag I 58.04
price_poultry_lag5 52.59
nok_usd_lag3 45.09
cpi_euro_union_lag2 43.65
seafood_index_lag5 39.39
price_poultry_lag2 38.35
cpi_euro_union_lag4 37.97
forward_price_l 33.49
cpi_euro_union_lag6 32.92
nok_eur_lag12 29.51
price_beef_lag5 28.80
nok_usd_lag12 23.38
price_lamb_lag5 20.75
biomass_tons_lag3 19.48
forward_price_12 18.95
biomass_tons_lag9 16.92
price_lamb_lag2 16.37
forward_price_2 16.26
price_pork_lag5 15.98

From table 6 we observe that the most important explanatory variables in constructing the

decision trees seems to have been the seafood index with three- and one-month lags, the price

of poultry with five lags, and the NOK-USD exchange rate with three lags. These values are

the average of the variable importance scores across all 12 individual decision trees. See

appendix 2 for plots of the 12 trees, where each tree provides an easy to interpret illustration

of which variables are most important in predicting the Fish Pool Index.

5.2.2 Decision Trees with Seasonal Adjustment

Now, we seasonally adjust the Fish Pool Index by doing an STL decomposition and

subtracting the seasonal component. Then we employ this seasonally adjusted FPI as the

response variable in the decision trees and add back the seasonal component to obtain the final

forecasts. This procedure is explained in detail in section 3.6 Time Series Decomposition. In

R, we use the STL-function from the feasts-package to do the seasonal decomposition. The

rest of the procedure is similar as described in chapter 3.2 Decision Tree. Using this method,

we obtain forecasts as seen infigure 8 below.
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Figure 8: Decision tree with seasonal adjustment forecast compared to the Fish Pool Index. 

By first glance it does appear that forecasting accuracy has improved compared to the non-

seasonally adjusted decision trees. This is confirmed by the accuracy measures. MAE is down 

to 7.18, while MSE is 74.85. DA has also significantly improved and is now at 55% accuracy. 

Table 7: Variable importance in the seasonally adjusted decision trees. 
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Figure 8: Decision tree with seasonal adjustment forecast compared to the Fish Pool Index.

By first glance it does appear that forecasting accuracy has improved compared to the non-

seasonally adjusted decision trees. This is confirmed by the accuracy measures. MAE is down

to 7.18, while MSE is 74.85. DA has also significantly improved and is now at 55% accuracy.

Table 7: Variable importance in the seasonally adjusted decision trees.

Variable Irnportance s.a. Decision Tree

Variable Variable Importance
seafood_index_lag3
price_poultry_lag5
seafood_index_lag l
seafood_index_lag5
nok_usd_lag3
cpi_euro_union_lag4
price_poultry_lag2
forward_price_ l
cpi_euro_union_lag2
price_beef_lag5
forward_price_2
forward_price_9
cpi_usa_lag6
forward_price_3
cpi_euro_union_lag6
forward_price_12
forward_price_11
forward_price_4
forward_price_ l0
us_imports_usd_thousands

65.30
59.30
57.50
50.25
45.75
35.39
33.69
32.83
31.45
25.62
24.65
23.19
22.57
20.84
19.75
18.48
18.05
17.34
16.70
15.83
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In table 7 we see that the most important feature variables in these models again are the 

seafood index with three-, one- and five-month lags, and the price of poultry with five lags. 

See appendix 3 for visualizations of the 12 individual seasonally adjusted decision trees. 

5.3 Random Forest 

In this section we present the results from the random forest models.  

5.3.1 Random Forest without Seasonal Adjustment 

We build random forest-models in R as described in chapter 3.3 Random Forest, and obtain 

forecasts as presented in figure 9 below. 

 

Figure 9: Random forest forecast compared to the Fish Pool Index. 

This time it appears the forecasts are generally quite accurate with the notable exceptions of 

the November and December 2021 forecasts. MAE is 4.77, MSE is 44.07, and DA is 55%. 

This indicates that while the Euclidean distance between forecast and observation is quite 

short, the model still performs roughly equal to a random coin toss in predicting the directional 

movement of the Fish Pool Index one month ahead. Perhaps this means the model is not quite 

able to capture the seasonal price patterns.  
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Figure 9: Random forest forecast compared to the Fish Pool Index.

This time it appears the forecasts are generally quite accurate with the notable exceptions of

the November and December 2021 forecasts. MAE is 4.77, MSE is 44.07, and DA is 55%.

This indicates that while the Euclidean distance between forecast and observation is quite

short, the model still performs roughly equal to a random coin toss in predicting the directional

movement of the Fish Pool Index one month ahead. Perhaps this means the model is not quite

able to capture the seasonal price patterns.
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Table 8: Variable importance in the random forest models. 

 

From table 8, we see that the most important feature variables are EU inflation with a two-

month lag, the seafood index with three- and one-month lags, and the price of poultry with a 

two-month lag.  

5.3.2 Random Forest with Seasonal Adjustment 

We repeat the STL-decomposition and execute all the random forest models again, in the same 

way as described in chapter 3.3 Random Forest, except with the seasonally adjusted Fish Pool 

Index as the response variable. Then we add back the seasonal component, as explained in 

chapter 3.6 Time Series Decomposition to obtain the final forecasts. The forecasts are 

illustrated graphically in figure 10 below. 
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Table 8: Variable importance in the random forest models.

Variable Importance Random Forest

Variable Variable Importance
cpi_euro_union_lag2 82.00
seafood_index_lag3 78.36
seafood_index_lag I 77.91
price_poultry_lag2 75.05
nok_usd_lag3 71.64
seafood_index_lag5 71.05
price_poultry_lag5 69.98
cpi_euro_union_lag4 68.90
price_lamb_lag5 62.82
cpi_euro_union_lag6 58.23
price_beef_lag5 57.07
biomass_tons_lag9 56.44
price_lamb_lag2 56.21
biomass_tons_lag12 54.97
forward_price_4 50.66
forward_price_3 49.67
biomass_tons_lag6 49.47
forward_price_2 47.70
forward_price_l 47.61
forward_price_12 47.50

From table 8, we see that the most important feature variables are EU inflation with a two-

month lag, the seafood index with three- and one-month lags, and the price of poultry with a

two-month lag.

5.3.2 Random Forest with Seasonal Adjustment

We repeat the STL-decomposition and execute all the random forest models again, in the same

way as described in chapter 3.3 Random Forest, except with the seasonally adjusted Fish Pool

Index as the response variable. Then we add back the seasonal component, as explained in

chapter 3.6 Time Series Decomposition to obtain the final forecasts. The forecasts are

illustrated graphically in figure JO below.
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Figure 10: Random forest with seasonal adjustment forecast compared to the Fish Pool 
Index. 

By visual inspection, it seems like the seasonally adjusted random forest models are better 

able to capture the seasonal pattern of price movements. MAE and MSE are slightly higher 

than in the non-seasonally adjusted model at 5.60 and 44.72 respectively, but DA has 

massively improved to 82%. While the average distance between forecast and observation is 

shorter in the non-seasonally adjusted random forest, the directional accuracy is much higher 

in the seasonally adjusted model, suggesting that the STL-decomposition is valuable in 

capturing the seasonal price patterns in the Fish Pool Index.  
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Figure JO: Random forest with seasonal adjustment forecast compared to the Fish Pool
Index.

By visual inspection, it seems like the seasonally adjusted random forest models are better

able to capture the seasonal pattern of price movements. MAE and MSE are slightly higher

than in the non-seasonally adjusted model at 5.60 and 44.72 respectively, but DA has

massively improved to 82%. While the average distance between forecast and observation is

shorter in the non-seasonally adjusted random forest, the directional accuracy is much higher

in the seasonally adjusted model, suggesting that the STL-decomposition is valuable m

capturing the seasonal price patterns in the Fish Pool Index.
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Table 9: Variable importance in the seasonally adjusted random forest models. 

 

From table 9 we again see that the most important variables are the seafood index with three- 

and one-month lags, EU inflation with a two-month lag, and the price of poultry with a two-

month lag.  

5.4 xgBoost 

In this section we will present the results of xgBoost without and with seasonal adjustment.  

5.4.1 xgBoost without Seasonal Adjustment 

By implementing the xgBoost-algorithm with hyperparameter tuning in R as described in 

section 3.4 xgBoost, we obtain forecasts as illustrated in figure 11 below. 
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Table 9: Variable importance in the seasonally adjusted random forest models.

Variable Importances.a. Random Forest

Variable Variable importance
seafood_index_lag3 81.48
cpi_euro_union_lag2 79.50
price_poultry_lag2 79.42
seafood_index_lag l 75.43
cpi_euro_union_lag4 71.93
seafood_index_Iag5 69.3l
price_poultry_Iag5 67.81
nok_usd_lag3 66.82
price_lamb_lag2 65.91
price_lamb_lag5 65.32
cpi_euro_union_lag6 57.89
price_beef_lag5 52.85
cpi_usa_lag6 52.51
price_beef_lag2 49.88
nok_eur_Iag12 49.33
cpi_usa_lag4 48.92
forward_price_3 48.47
nok_usd_lag12 47.93
cpi_usa_lag2 47.65
forward_price_ l0 47.42

From table 9 we again see that the most important variables are the seafood index with three-

and one-month lags, EU inflation with a two-month lag, and the price of poultry with a two-

month lag.

5.4 xgBoost

In this section we will present the results of xgBoost without and with seasonal adjustment.

5.4.1 xgBoost without Seasonal Adjustment

By implementing the xgBoost-algorithm with hyperparameter tuning in R as described in

section 3.4 xgBoost, we obtain forecasts as illustrated in figure JJ below.
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Figure 11: xgBoost forecast compared to the Fish Pool Index. 

Here it seems as though the forecasts are generally quite close to the observations in the first 

half of 2021, and then significantly more inaccurate in the second part. The MAE is 6.38 and 

the MSE is 75.14, which is relatively high compared to random forests, but lower than we 

obtained from decision trees. The directional accuracy is 64%, which is better than a coin toss, 

but still worse than the seasonally adjusted random forest’s DA.  

Table 10: Variable importance in the xgBoost models. 
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Figure IJ: xgBoostforecast compared to the Fish Pool Index.

Here it seems as though the forecasts are generally quite close to the observations in the first

half of 2021, and then significantly more inaccurate in the second part. The MAE is 6.38 and

the MSE is 75.14, which is relatively high compared to random forests, but lower than we

obtained from decision trees. The directional accuracy is 64%, which is better than a coin toss,

but still worse than the seasonally adjusted random forest's DA.

Table I0: Variable importance in the xgBoost models.

Variable Importance xgBoost

Variable Variable Importance
nok_usd_lag3 31.44
forward_price_ I 30.35
price_poultry_lags 29.21
seafood_index_lag3 28.33
seafood_index_lagS 25.74
seafood_index_lag I 18.92
forward_price_3 17.27
price_poultry_lag2 16.29
forward_price_8 14.19
price_lamb_lagS 12.14
forward_price_4 10.27
forward_price_7 9.18
price_lamb_lag2 7.56
cpi_euro_union_lag2 5.07
forward_price_6 4.44
forward_price_9 3.01
fpi_spot_IagS 2.75
nok_eur_lag3 2.57
forward_price_2 2.57
nok_usd_lag12 2.56
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In table 10, we see that the most important explanatory variables in constructing the xgBoost 

models were the NOK-USD exchange rate with a three-month lag, the one-month ahead 

forward price, as well as the price of poultry with a five-month lag, and the seafood index with 

three- five- and one-month lags.  

5.4.2 xgBoost with Seasonal Adjustment 

Again, we performed seasonal adjustment by the method outlined in section 3.6 Time Series 

Decomposition, and then repeated the xgBoost-algorithm as described in section 3.4 xgBoost 

with the seasonally adjusted Fish Pool Index as the response variable. Figure 12 below portray 

the forecasts.  

 

Figure 12: xgBoost with seasonal adjustment forecast compared to the Fish Pool Index. 

The MAE is now slightly higher at 6.46. The MSE has decreased however, and is now 59.40. 

DA has improved significantly, and the seasonally adjusted xgBoost accurately predicts 82% 

of the monthly price directional movements in 2021, equaling seasonally adjusted random 

forest as the highest performing model in terms of DA.  
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In table J0, we see that the most important explanatory variables in constructing the xgBoost

models were the NOK-USD exchange rate with a three-month lag, the one-month ahead

forward price, as well as the price of poultry with a five-month lag, and the seafood index with

three- five- and one-month lags.

5.4.2 xgBoost with Seasonal Adjustment

Again, we performed seasonal adjustment by the method outlined in section 3.6 Time Series

Decomposition, and then repeated the xgBoost-algorithm as described in section 3.4 xgBoost

with the seasonally adjusted Fish Pool Index as the response variable. Figure J2 below portray

the forecasts.
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Figure 12: xgBoost with seasonal adjustment forecast compared to the Fish Pool Index.

The MAE is now slightly higher at 6.46. The MSE has decreased however, and is now 59.40.

DA has improved significantly, and the seasonally adjusted xgBoost accurately predicts 82%

of the monthly price directional movements in 2021, equaling seasonally adjusted random

forest as the highest performing model in terms of DA.
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Table 11: Variable importance in the seasonally adjusted xgBoost models. 

 

In table 11 we see that the seafood index with five- and one-month lags, the NOK-USD 

exchange rate with a three-month lag, and the price of poultry with a five-month lag are the 

most important explanatory variables in the seasonally adjusted xgBoost model.  

5.5 Summary of Results 

To compare the performance of the models we will now present summaries of the obtained 

results. Table 12 below contains the forecasts from all models.  

Table 12: Summary of model forecasts.  
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Table 11: Variable importance in the seasonally adjusted xgBoost models.

Variable Importances.a. xgBoost

Variable Variable Importance
seafood_index_lag5 43.80
nok_usd_lag3 34.36
seafood_index_lag I 29.10
price_poultry_lag5 23.94
forward_price_3 19.33
forward_price_8 17.94
forward_price_ I 15.85
seafood_index_lag3 15.50
forward_price_9 9.46
price_lamb_lag5 7.56
price_lamb_lag2 6.68
forward_price_ 12 5.70
fpi_spot_lag I 4.24
cpi_euro_union_lag2 3.91
nok_usd_lag12 3.56
forward_price_2 2.94
forward_price_ I0 2.73
forward_price_ 11 2.71
price_poultry_lag2 2.40
cpi_euro_union_lag4 2.35

In table 11 we see that the seafood index with five- and one-month lags, the NOK-USD

exchange rate with a three-month lag, and the price of poultry with a five-month lag are the

most important explanatory variables in the seasonally adjusted xgBoost model.

5.5 Summary of Results

To compare the performance of the models we will now present summaries of the obtained

results. Table 12 below contains the forecasts from all models.

Table 12: Summary of model forecasts.
Forecasts

month fpi snaive dt s.a. dt rf s.a. rf xgb s.a. xgb
2021 Jan 45.73 77.11 54.08 59.34 51.39 57.62 51.64 53.79
2021 Feb 54.75 67.72 68.63 70.74 64.22 65.57 61.30 64.92
2021 Mar 64.53 62.90 63.75 72.54 65.31 70.81 63.03 67.99
2021 Apr 63.90 53.04 72.20 72.98 67.47 67.98 70.30 65.96
2021 May 66.23 60.15 69.94 63.00 64.75 66.75 63.74 67.42
2021 Jun 59.58 65.96 72.37 70.48 62.09 64.10 58.54 58.18
2021 Jul 61.13 50.87 60.24 62.03 60.75 57.39 60.06 55.98
2021 Aug 53.89 47.37 68.87 50.53 56.31 51.80 41.06 47.25
2021 Sep 50.17 47.21 53.97 48.23 52.92 47.88 48.96 45.59
2021 Oct 55.57 44.60 49.76 49.52 51.70 51.30 50.73 48.05
2021 Nov 58.68 43.69 59.37 60.58 52.05 53.57 47.20 43.40
2021 Dec 68.64 45.16 48.20 57.44 50.96 57.10 47.41 56.69
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In table 13 below the statistical accuracy measures from all models are summarized. 

Table 13: Statistical evaluation of forecasts. 

 

The model with the lowest MAE is non-seasonally adjusted random forest, with a MAE of 

4.77. Then follows seasonally adjusted random forest, suggesting these models are closest to 

the observations of the Fish Pool Index in 2021, measured by absolute distance. Measured by 

MSE, we see that again, non-seasonally adjusted random forest is the best performer with 

44.07, closely followed by seasonally adjusted random forest at 44.72. The third best 

performer according to MSE is seasonally adjusted xgBoost. In terms of directional accuracy, 

it is seasonally adjusted random forest and seasonally adjusted xgBoost that performs best, 

both with 82% accuracy. Importantly, non-seasonally adjusted random forest, the best 

performer both in terms of MAE and MSE, is among the worst performers in DA.  
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In table J3 below the statistical accuracy measures from all models are summarized.

Table I3: Statistical evaluation of forecasts.

Statistical evaluation

Model MAE MSE DA
Seasonal Naive 11.54 200.35 0.45
Decision Tree 7.87 100.04 0.27
Decision Tree with seasonal adjustment 7.18 74.85 0.55
Random Forest 4.77 44.07 0.55
Random Forest with seasonal adjustment 5.60 44.72 0.82
xgBoost 6.38 75.14 0.64
xgBoost with seasonal adjustment 6.46 59.40 0.82

The model with the lowest MAE is non-seasonally adjusted random forest, with a MAE of

4.77. Then follows seasonally adjusted random forest, suggesting these models are closest to

the observations of the Fish Pool Index in 2021, measured by absolute distance. Measured by

MSE, we see that again, non-seasonally adjusted random forest is the best performer with

44.07, closely followed by seasonally adjusted random forest at 44.72. The third best

performer according to MSE is seasonally adjusted xgBoost. In terms of directional accuracy,

it is seasonally adjusted random forest and seasonally adjusted xgBoost that performs best,

both with 82% accuracy. Importantly, non-seasonally adjusted random forest, the best

performer both in terms of MAE and MSE, is among the worst performers in DA.
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6. Discussion 

In this thesis we have developed several tree-based predictive models to forecast the Fish Pool 

Index, a measure of the Atlantic salmon spot price. The objective was to produce accurate and 

reliable forecasts over a 12-month horizon, which could then be used by salmon farming 

companies in their decision-making to obtain economic gain. First, we developed a seasonal 

naïve forecast as a benchmark against which to measure the performance of the tree-based 

models. Then, we built decision trees, random forests, and xgBoost models without any 

seasonal adjustments before using an STL-decomposition to attempt to capture the seasonality 

of the salmon price. Finally, we evaluated the statistical accuracy of all forecasts. In the 

following chapter we will present and discuss the general findings in this thesis, before 

evaluating the potential economic value of applying the best model to salmon harvesting 

decisions. Finally, we will address possible limitations in our work, and suggest avenues for 

improvements and further research. 

6.1 General Findings 

All forecasts are inevitably inaccurate, and this remains true of the forecasts developed in this 

thesis. The relevant question, however, is what we know about the frequency and magnitude 

of the inaccuracies. The MAEs of the tree-based models ranged from 4.77 to 7.87, while the 

Fish Pool Index in 2021 ranged from 45.7 to 68.6. The average MAE was 6.38, while the 

average Fish Pool Index observation was 58.57, suggesting that our forecasts were inaccurate 

by about 11% on average. The best directional accuracy was 82%, suggesting that the models 

correctly predicted up- or down-movements around 8 out of 10 times. We are reasonably 

satisfied with the forecast accuracy of the best models, which was both random forest models 

with MAEs of 4.77 and 5.60 and DAs between 55% and 82%. If we compare this to the 

seasonal naïve benchmark’s MAE of 11.54 and DA of 45%, it seems quite clear that the more 

complex models added some value in forecast ability.  

It is also interesting to compare differences in performance within the tree-based models. The 

simplest models were non-seasonally adjusted and seasonally adjusted decision trees, and they 

achieved MAEs of 7.87 and 7.18, with DAs of 27% and 55% respectively. Comparing these 

results to the more complex random forest models, with MAEs of 4.77 and 5.60 with DAs of 

55% and 82%, one gets the impression that there is a decent increase in forecast accuracy with 

60

6. Discussion

In this thesis we have developed several tree-based predictive models to forecast the Fish Pool

Index, a measure of the Atlantic salmon spot price. The objective was to produce accurate and

reliable forecasts over a 12-month horizon, which could then be used by salmon farming

companies in their decision-making to obtain economic gain. First, we developed a seasonal

naive forecast as a benchmark against which to measure the performance of the tree-based

models. Then, we built decision trees, random forests, and xgBoost models without any

seasonal adjustments before using an STL-decomposition to attempt to capture the seasonality

of the salmon price. Finally, we evaluated the statistical accuracy of all forecasts. In the

following chapter we will present and discuss the general findings in this thesis, before

evaluating the potential economic value of applying the best model to salmon harvesting

decisions. Finally, we will address possible limitations in our work, and suggest avenues for

improvements and further research.

6. l General Findings

All forecasts are inevitably inaccurate, and this remains true of the forecasts developed in this

thesis. The relevant question, however, is what we know about the frequency and magnitude
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Fish Pool Index in 2021 ranged from 45.7 to 68.6. The average MAE was 6.38, while the
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correctly predicted up- or down-movements around 8 out of l 0 times. We are reasonably

satisfied with the forecast accuracy of the best models, which was both random forest models

with MAEs of 4.77 and 5.60 and DAs between 55% and 82%. If we compare this to the

seasonal naive benchmark's MAE of 11.54 and DA of 45%, it seems quite clear that the more

complex models added some value in forecast ability.

It is also interesting to compare differences in performance within the tree-based models. The

simplest models were non-seasonally adjusted and seasonally adjusted decision trees, and they

achieved MAEs of 7.87 and 7.18, with DAs of 27% and 55% respectively. Comparing these

results to the more complex random forest models, with MAEs of 4.77 and 5.60 with DAs of

55% and 82%, one gets the impression that there is a decent increase in forecast accuracy with
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increased complexity in the models. There could be many reasons behind this. We know from 

section 3.3 Random Forest, that random forest is a tree ensemble model, averaging predictions 

made by many “bagged” decision trees that only utilize a subset of available predictors at each 

internal split. Given that we have somewhat limited data with only 132 observations in the 

training set, it is conceivable that bootstrapped sampling is a valuable tool in extracting as 

much information as possible from few observations. The predictor subsampling at each split 

could also be part of the reason why random forest generally performed better as it reduces 

the dominance of a few strong predictors. xgBoost also performed somewhat better than the 

simple decision trees. The process of boosting, as explained in chapter 3.4 Extreme Gradient 

Boosting, seems to have extracted some relevant information, as the MAEs are about 15% 

lower. Again, it seems like averaging predictions from many tree models produced higher 

forecast accuracy.  

Another finding worth mentioning is the apparent value of seasonality removal. Decision trees, 

random forest, and xgBoost all performed better when the seasonal component was removed 

from the Fish Pool Index. This effect was quite clear in the case of decision trees as both MAE 

and MSE was lower in the seasonally adjusted case, while DA was significantly higher. In 

random forest, the non-seasonally adjusted model produced marginally lower MAE and MSE, 

but the huge increase in directional accuracy in the seasonally adjusted model, of 82% vs. 

55%, means we would still argue that seasonality removal caused an improvement. In xgBoost 

where the non-seasonally adjusted model provided marginally lower MAE, the seasonally 

adjusted model produced the lowest MSE, and higher DA of 82% vs. 64%. This seems to 

indicate that there is a clear presence of a seasonality in the Fish Pool Index, and that the STL-

decomposition was better able to capture the seasonal swings than the unassisted tree models.  

From the variable importance scores, we observe that the Oslo seafood index appeared among 

the top four most important predictors in all the decision tree-, random forest-, and xgBoost-

models. This finding appears to be in line with the main finding in Dahl et al. (2021) who 

concluded that the stock prices of large salmon companies may contain predictive power on 

the Fish Pool Index. This may suggest that the stock prices of salmon companies incorporate 

forward-looking supply- and demand-information, while the Fish Pool Index mostly reflects 

current supply and demand. In addition, demand variables such as the price of poultry and EU 

inflation seem to be important predictors, which aligns with Asche et al. (2019) and Bloznelis 

(2016) who suggested that short-term supply inelasticity is one of the main causes of salmon 

price volatility. This may indicate that supply is not able to quickly adjust to changes in 
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demand. We also observe that the top five most important variables in all models have lags 

shorter than six months, possibly indicating that more recent data is better suited for use in 

forecasting the Fish Pool Index 12 months ahead, than data lagged more than half a year.  

6.2 Evaluation of Economic Value 

To evaluate the economic value of the best forecasts we will look at the harvest volume of the 

third largest Norwegian salmon farmer, SalMar, and calculate what potential economic gain 

they could obtain by implementing a timely harvesting strategy, as explained in section 3.9.2 

Evaluation of Economic Value of Forecast. Given SalMar’s annual harvest volume of 182 100 

tons in 2021 (SalMar, 2022), their average monthly harvest volume was 15 175 tons. We 

assume that every month SalMar has 15 175 tons available for harvest and could choose to 

delay harvesting by one month at no extra cost. Naturally, it pays to harvest when the price is 

higher. 

The average absolute monthly price difference, 𝑋𝑋0E>.F@	<.GG@>@=F@, of the Fish Pool Index in 

2021 was 4.998 NOK per kg, or 4998 NOK per ton. Given a perfect forecast, SalMar could 

capture the whole price difference, which yields 𝐺𝐺E@>G@FA	GB>@F74A of 4998 NOK × 0.5 × 15 175 

tons = 37.9 MNOK per month, corresponding to 455 MNOK per year. Considering the best 

performing model of this study, the month with the higher price would be correctly predicted 

in close to 82% of the cases. Utilizing this model, we can now calculate potential economic 

gain per month of accurate forecasting associated with this model, 𝐺𝐺6@4A	(B<@C = 37.9 MNOK 

× 81.82% – 37.9 MNOK × (1 – 81.82%) = 24.1 MNOK per month or 289 MNOK per year. 

SalMar had a net profit margin of 17.7% in 2021 (SalMar, 2022). If we assume the same 

margin on additional revenue due to timely harvesting, this would mean 289 MNOK × 17.7% 

= 51.2 MNOK in additional earnings after tax. Given SalMar’s annual earnings of 2668 

MNOK, applying our model could lead to about 2% increase in SalMar’s annual earnings. If 

the salmon farmer was to employ the benchmark and make his harvesting decisions at random, 

then one would expect him to be correct 50% of the time, which would mean no value added 

after subtracting the loss of incorrect forecasts. 

This analysis relies on a few heroic assumptions, but still illustrates that there is potentially 

tremendous economic value in accurate salmon price forecasts. In the real world, one would 

have to account for the extra cost of keeping salmon in cages for an additional month, as well 
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demand. We also observe that the top five most important variables in all models have lags

shorter than six months, possibly indicating that more recent data is better suited for use in
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6.2 Evaluation of Economic Value

To evaluate the economic value of the best forecasts we will look at the harvest volume of the

third largest Norwegian salmon farmer, SalMar, and calculate what potential economic gain

they could obtain by implementing a timely harvesting strategy, as explained in section 3.9.2
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tons in 2021 (SalMar, 2022), their average monthly harvest volume was 15 175 tons. We

assume that every month SalMar has 15 175 tons available for harvest and could choose to
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performing model of this study, the month with the higher price would be correctly predicted

in close to 82% of the cases. Utilizing this model, we can now calculate potential economic

gain per month of accurate forecasting associated with this model, Gbest model= 37.9 MNOK
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as potential negative externalities. For example, holding back a large proportion of the world’s 

salmon harvest in anticipation of higher prices could impact the price itself. It is also 

reasonable to assume that SalMar’s competitors would adjust their behavior accordingly, 

possibly reducing the additional earnings from accurate forecasts. Still, this analysis does 

indicate that accurate forecasts could translate to significant economic gain. 

6.3 Limitations 

Perhaps the biggest limitation in this thesis was limited data availability, which caused the low 

number of observations in the dataset. By carefully examining open data sources we were able 

to retrieve a total of 180 monthly observations spanning from January 2007 to December 2021 

of 33 variables. It proved impossible to find data going further back than this. When we built 

models, we divided into train and test datasets as well as introduced lags to all of the 

explanatory variables. This caused the number of observations in the training set, on which 

the models were fit, to be reduced to 132. Machine learning models such as the ones used in 

this thesis generally thrive on many more observations (usually in the thousands) in order to 

find patterns in the training data that will generalize well to out-of-sample test data. There is 

a risk that our training dataset does not have enough observations for the models to find these 

general patterns in the data.  

Furthermore, with a small training dataset there is also increased risk of overfitting. This is 

because the model fit may be unduly influenced by random patterns in the training data that 

do not generalize well to out-of-sample predictions. With more training data, such random 

patterns would be averaged out, and the model would have less risk of overfitting. We 

attempted to encounter the problem of overfitting by evaluating the forecasts on out-of-sample 

test data. We used no information from 2021 to produce forecasts throughout the whole year. 

Our hypothesis was that if our models were terribly overfitted to the training data, these out-

of-sample forecasts would be quite poor. In our case, the models seem able to generalize 

reasonably well to unseen new data, but it is still quite likely that out-of-sample forecast 

accuracy would improve with more training data. 

Another aspect of limited data availability is inaccessible variables. As mentioned, we 

collected the vast majority of our data set through publicly available sources. We were able to 

find 33 relevant explanatory variables, but it is quite likely that we still missed variables that 

could be valuable in forecasting the Fish Pool Index. An example of a potentially relevant 
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variable may be the age distribution of salmon in cages. If for instance, there were a high 

proportion of mature fish in the cages, one may expect short-term harvest volumes to increase, 

potentially causing the Fish Pool Index to decrease. Other examples of potentially relevant 

variables not included in this analysis may be consumption in the European market, and 

population data in relevant salmon markets. It is of course highly likely that our models would 

perform better if we were able to include all relevant variables in our data. 

In this thesis we have not conducted any variable transformations except for seasonality 

removal of the Fish Pool Index and producing lag- and lead-variables. Traditional time series 

forecasting methods have stationary data as a standard assumption, and therefore stationarity 

tests, and potential logarithmic transformations and differencing are standard procedures in 

the case of non-stationary data. The tree-based methods employed in this thesis do not come 

with strict stationarity requirements, and we have therefore chosen not to perform tests or 

transformations except seasonality removal. It is however still possible that logarithmic 

transformations and/or differencing would lead to more stationary data and therefore a more 

hospitable forecasting environment.  

Another limitation was computational resources. Random forest and xgBoost are quite 

computationally intensive, especially when one needs to optimize several hyperparameters 

simultaneously. This caused us to reduce the available values of the hyperparameters to ensure 

that the search grid in R did not become too large, as this would lead to incredibly slow 

computation. Naturally enough, this was particularly limiting in the xgBoost-case where the 

grid of hyperparameters was largest. We tried to mitigate this problem by ensuring that the 

hyperparameter values we did try were all likely to be relevant for the algorithm.  

6.4 Possible Improvements and Further Research 

One area of potential improvement in future research is to include more data. We have already 

explained why the dataset used in this thesis contains few observations, but as the salmon 

industry becomes more sophisticated, we expect the amount of data that is collected to 

increase. It is therefore likely that one could repeat the analysis done in this thesis with more 

data at some point in the future. This could potentially lead to higher forecast accuracy. 

Another way to increase the number of observations would be to predict the Fish Pool Index 

on a weekly rather than a monthly frequency. This would however also decrease the number 

of features as most of the features employed in this thesis is only available at a monthly 
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frequency. In fact, only the Oslo seafood index, Fish Pool forward prices, sea lice, sea 

temperature, and Norwegian export volumes were available at a weekly frequency. While this 

would increase the number of observations it would come with the cost of excluding 

potentially important predictors.  

This thesis has focused on using tree-based prediction models to do time series forecasting. 

This was because we expected tree-based models would be flexible enough to capture the non-

linearities in the highly volatile Fish Pool Index, and that the literature on tree-based models 

showed promising results in predicting the price of commodities such as oil and gold. 

However, by focusing exclusively on tree-based models, we may have overlooked other 

models that could potentially perform better. For example, it is possible that one could obtain 

higher forecast accuracy by employing methods specifically designed for time series 

forecasting such as ARIMA models. Other predictive models that could yield good results in 

salmon price forecasting may include generalized additive models (GAM), support vector 

machines (SVM), or neural networks, as these are considered flexible and able to capture non-

linear relationships in data.  

We also chose to employ the direct forecasting strategy rather than the recursive method. The 

reasons behind this were outlined in section 3.8 Direct Forecasting. In essence, we wanted to 

reduce the dependency on previously forecasted values in making new forecasts, as this could 

lead to error propagation. Also, we wanted to avoid creating forecasts for all features, as would 

be needed in a multivariate recursive forecasting model. This means however that we had to 

forecast 12 steps ahead directly, for example using information from December 2020 to 

forecast December 2021. It is possible that a recursive model could perform better as it only 

has to forecast one-step ahead, and then use the previous forecast for the next step. This would 

require a very accurate and reliable one-step ahead forecasting model, but still would be an 

interesting avenue for further research.  

We were also constrained by computational resources in determining the optimal values of 

hyperparameters in the tree-based models. This was particularly limiting when developing the 

xgBoost models. With more computational resources one could expand the grid search and 

increase the probability of finding the best hyperparameter values. This would naturally lead 

to higher forecast accuracy and is thus an area of potential future improvement.  
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7. Conclusion 

Industrial salmon farming is becoming an increasingly important industry, both globally and 

in Norway. One of the main risk factors in salmon production is the highly volatile spot price, 

so access to high-quality price forecasts could prove immensely valuable throughout the value 

chain. From academic literature we knew that tree-based models have shown promise in 

commodity price prediction tasks in recent years, so in this thesis we therefore tried to answer 

the following research question: Can tree-based prediction models produce accurate and 

reliable monthly forecasts of the Fish Pool Index 12 months ahead, and what may be the 

potential economic value of such forecasts? 

To explain the variation in the spot price, represented by the Fish Pool Index, we included 

several predictors assumed to have influence on either supply or demand.  First, we established 

a seasonal naïve model as a benchmark with which the more complex tree-based models were 

compared. Decision trees were chosen because they are computationally efficient and easily 

interpretable, while both random forest and xgBoost are more complex, and rely on averaging 

many individual decision trees for improved forecast accuracy. Because random forest and 

xgBoost are more complex, we expected them to perform better. The tree-based models are 

flexible, non-linear, and should be able to capture the high volatility in the Atlantic salmon 

price found by Asche et al. (2019) and Bloznelis (2016). In addition, we attempted to capture 

the one-year seasonality of the Fish Pool Index by employing STL-decomposition to break 

down the time series into trend-cycle, seasonal, and remainder-components, and compare the 

non-seasonally adjusted tree models with their seasonally adjusted counterparts.  

The tree-based models displayed different levels of forecast accuracy, however, they all 

performed significantly better than the seasonal naïve benchmark. In general, the mean 

absolute errors (MAE) of the models ranged from 4.77 to 7.87, while the Fish Pool Index in 

the period ranged from 45.7 to 68.6. The average MAE of the tree-based models was 6.38, 

while the average Fish Pool Index observation was 58.57, suggesting that our forecasts are 

inaccurate by about 11% on average. The best directional accuracy was 82%, implying that 

the models correctly predicted up- or down-movements around 8 out of 10 times. 

We found that both non-seasonally adjusted and seasonally adjusted random forest produced 

the overall best results, with significantly lower MAE and MSE than decision trees and 

xgBoost. The seasonally adjusted random forest also had the highest DA. Furthermore, we 
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found that deseasonalizing the Fish Pool Index generally improved the prediction accuracy, in 

line with the findings of Bloznelis (2018), Guttormsen (1999), and Anderson & Gu (1995), 

suggesting that the spot price does exhibit seasonality. Utilizing the seasonally adjusted 

random forest, which in our view is the best model, we found that the third biggest Norwegian 

farmer, SalMar, could increase their annual earnings by 51.2 million NOK, or some 2%, by 

timing harvest decisions based on our forecasts.  

In our analysis, the most important variables in predicting the Fish Pool Index were the Oslo 

seafood index, as well as demand-related factors such as the price of alternative meats (poultry 

in particular), and inflation in the European Union, the biggest salmon market in the world. 

We also observed that the top five most important variables in all models had lags shorter than 

six months, indicating that more recent data is more relevant in salmon price predictions. This 

was in line with the finding of Dahl et al. (2021), who found that the stock prices of large 

salmon companies may contain predictive power on the Fish Pool Index, as well as Asche et 

al. (2019) and Bloznelis (2016) who theorized that short-term supply inelasticity is the main 

cause of salmon price volatility.  
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Appendix 1 – Feature Vizualisations 
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Appendix l - Feature Vizualisations
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Appendix 2 – Decision Tree Plots 
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Appendix 3 – Seasonally Adjusted Decision Tree Plots 
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Appendix 3 - Seasonally Adjusted Decision Tree Plots
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Appendix 4  – Fish Pool Index against Features 
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