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Abstract 

This study analyzes the performance of the growth optimal Kelly portfolio on the Norwegian 

stock market from February 2003 through December 2022. To measure the strategy’s alpha, 

we employ the Capital Asset Pricing Model, Fama French’s three-factor model and Carhart’s 

four-factor model. The Kelly portfolio generates a higher annual growth rate than the 

benchmark, and consequently a higher ending wealth level. Our results indicate that the 

strategy generates an annualized alpha of 16.8%, significant on a 1% level. However, the 

models show very poor explanatory power, prohibiting us from drawing a meaningful 

conclusion. Furthermore, when accounting for transaction costs, the portfolio no longer 

achieves a higher wealth level than the benchmark, and the corresponding alpha is only 

significant on a 10% level, indicating that the strategy is unable to generate risk-adjusted 

excess returns in the real world.  
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1. Introduction  

Contradicting the highly influential efficient market hypothesis, many investors and financial 

practitioners believe there exists opportunities to exploit and beat the highly informed market 

through active management. With active management, strategies actively try to outperform a 

chosen benchmark and generate alpha. As such, many investing- and trading strategies have 

been generated with the purpose of achieving alpha. Such strategies can generally be 

subcategorized into qualitative and quantitative strategies for asset allocation. With regards to 

quantitative asset allocation Markowitz’ mean variance optimal portfolio is acknowledged as 

the most widely used approach, seeking to generate the optimal portfolios for a given level of 

risk or return. However, Markowitz has been shown to perform poorly in numerous tests of 

the strategy, as performed by Ang (2014) and DeMiguel et al. (2007). In relation, many 

competing strategies have emerged, one such is the Kelly growth optimal portfolio.  

The Kelly growth optimal portfolio seeks to maximize the expected growth rate of capital, 

thereby maximizing the expected value of the logarithm of wealth. The strategy has its 

foundation in John Kelly’s paper “A New Interpretation of Information Rate”. Kelly (1956) 

states that for repeated bets, a bettor should act as to maximize the expected growth rate of 

capital to maximize his expected wealth at the end. This contradicts the previous standard 

notion of purely maximizing expected return in each period, as Kelly proves that following 

this strategy for repeated bets implicates a probability of ruin close to 1 for the bettor. This is 

due to the effects of overbetting. Following, the Kelly criterion calculates the optimal amount 

to bet, given the probabilities and payouts, to maximize the expected growth rate. The 

criterion has since been modified for application in the financial markets. A Kelly growth 

optimal portfolio for the stock market should have several desirable features under the correct 

market conditions, whereas obtaining the highest level of wealth for the investor, while also 

reaching a specific wealth target in less time than essentially any other strategy. However, for 

the stock market, there is essentially an infinite number of possible outcomes, generating 

uncertainty for the Kelly criterion. With known probabilities and payoffs, the Kelly criterion 

will dominate for certain in the long run, although this is not necessarily the case for the 

securities market. Still, we want to test whether a growth optimal Kelly portfolio is able to 

beat the market. Our research question is as follows: 

“Does the growth optimal Kelly portfolio offer alpha?” 
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Our Kelly portfolio is constructed on the basis of Ed Thorp’s (2006) approach outlined in 

“The Kelly Criterion in Blackjack Sports Betting and the Stock Market”. The formula 

calculates the optimal investment fraction in a set of assets based on the expected excess 

returns of the assets, as well as the inverse of the variance-covariance matrix. Thorp’s 

approach is identical to the one outlined by Robert Merton (1969) in “Lifetime Portfolio 

Selection Under Uncertainty: The Continuous-Time Case” when using logarithmic utility. 

Merton constructs the optimal portfolio in a continuous setting for a constant relative or 

absolute risk aversion. The Kelly portfolio maximizes expected utility for an investor with log 

utility, as one maximizes the growth rate by having a log utility. Hence the two approaches 

coincide.   

We implement the Kelly portfolio using monthly rebalancing and a 12-month rolling 

estimation window. Furthermore, as our Kelly portfolio takes on quite aggressive positions, 

we limit the stock selection to the ten stocks on the Oslo Stock Exchange with the highest 

NOK-volume to ensure sufficient liquidity. In addition, we allow for short sales, but apply a 

position size constraint of 25%. The portfolio is constructed using monthly data from 

Bloomberg and Compustat. Additionally, we construct a Markowitz mean-variance portfolio 

to rival Kelly, while we use the OSEBX as our benchmark.  

To test whether the portfolio offers alpha, we regress our excess portfolio returns using the 

Capital Asset Pricing Model (CAPM), the Fama French three-factor model (FF3F) and 

Carhart’s four-factor model (C4F).  

The Kelly portfolio shows great results initially, outperforming both the benchmark and the 

Markowitz portfolio. The strategy also generates alpha on a 5% level in the CAPM, and on a 

1% level in FF3F and C4F. Although, given the portfolio’s high turnover, Kelly no longer 

outperforms the benchmark after accounting for transaction costs, and the alphas are 

consequently reduced considerably, only generating alpha significant on a 10% level in FF3F 

and C4F. However, Kelly exhibits a low market beta, and our factor models show very low 

𝑅𝑅2. Hence, the alpha measures appear inflated and prevent us from drawing any meaningful 

conclusions regarding the alpha.  

We structure the thesis in five main sections. Section 2 presents relevant theoretical 

background on the Kelly criterion, portfolio theory, and the factor models we implement. 

Further, section 3 describes our data collection process and how we construct the portfolios, 
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as well as empirical methodology. In section 4 we analyze the results and test for robustness. 

Finally, in section 5 we conclude our findings.  
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2. Theoretical Background 

2.1 Kelly Criterion Background 

As per MacLean et al. (2010), the Kelly criterion was first properly introduced in 1956 by 

John Larry Kelly Jr. in his paper “A New Interpretation of Information Rate”. In his paper, 

Kelly (1956) introduced a gambler who seeks to maximize the value of his capital. Being 

exposed to a single favorable bet, the gambler could bet his entire fortune to maximize the 

expected value of his capital as the probability for success exceeded the probability for 

failure. However, should the game involve repeated bets, with a probability 𝑝𝑝 of losing, the 

gambler would likely end up broke with this strategy, with a probability approaching 1 as he 

continued indefinitely.  

Kelly then suggested that for repeated bets where one can reinvest one’s winnings, one should 

rather seek to maximize the expected logarithm of capital. The logarithm is additive in 

repeated bets and to which the law of large numbers applies. By seeking to maximize the 

expected logarithm of capital, the gambler would maximize his wealth over a long period of 

time, representing the growth optimal strategy. Should the gambler not be able to reinvest, 

then he would be better of maximizing the expected value of capital on each bet as initially 

proposed. 

Ed Thorp is known as the first to properly utilize the Kelly criterion in practical settings. After 

discovering Kelly’s paper, Thorp started using the concept for gambling, and in 1962 in his 

book “Beat the Dealer”, he introduced the “Kelly gambling system” (Thorp, 1962). This 

system would later be popularized as the Kelly criterion. Thorp initially utilized the criteria in 

blackjack and sports betting. However, he later started his own hedge fund applying the Kelly 

criterion in the financial markets, generating large profits trading warrants in a statistical 

arbitrage strategy (Thorp, 2006). The criterion has since become more popular in finance and 

portfolio theory, where an investor seeks to create an optimal portfolio maximizing the 

expected logarithm of wealth, and thus representing the growth optimal portfolio that leads to 

the highest ending wealth over time. 

2.2 Kelly Criterion Illustration 

A fitting situation to illustrate the Kelly criterion is through a coin toss scenario. With a coin 

toss, we have a simple binomial case where the probabilities for each outcome are known, as 
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well as the subsequent payouts. We base the illustration on Thorp´s (2006) example in “The 

Kelly Criterion in Blackjack Sports Betting and the Stock Market”.  

Thorp´s coin tossing game assumes we have an infinitely wealthy opponent willing to wager 

even money bets made on repeated independent trials of coin tossing of a biased coin. The 

biased coin makes this a favorable game, with a win probability 𝑝𝑝 > 1
2 and the probability of 

loss 𝑞𝑞 = 1 − 𝑝𝑝.  As this is a favorable game, it fits the Kelly criterion. We have 𝑋𝑋0 as our 

initial capital and want to maximize the expected value 𝐸𝐸(𝑋𝑋𝑛𝑛) after n trials. Our problem is to 

decide the optimal fraction 𝐵𝐵𝑘𝑘 to bet on the 𝑘𝑘𝑡𝑡ℎ trial. If the 𝑘𝑘𝑡𝑡ℎ trial is a win, we let 𝑇𝑇𝑘𝑘 = 1, 

and 𝑇𝑇𝑘𝑘 = −1 with a loss. Then, 𝑋𝑋𝑘𝑘 = 𝑋𝑋𝑘𝑘−1 + 𝑇𝑇𝑘𝑘𝐵𝐵𝑘𝑘 for 𝑘𝑘 = 1,2,3, and 𝑋𝑋𝑛𝑛 = 𝑋𝑋0 + ∑ 𝑇𝑇𝑘𝑘𝐵𝐵𝑘𝑘
𝑛𝑛
𝑘𝑘=1 .  

The expected value of the game is expressed as: 

𝐸𝐸(𝑋𝑋𝑛𝑛) = 𝑋𝑋0 + ∑ 𝐸𝐸(𝐵𝐵𝑘𝑘𝑇𝑇𝑘𝑘

𝑛𝑛

𝑘𝑘=1
) = 𝑋𝑋0 + ∑(𝑝𝑝 − 𝑞𝑞)𝐸𝐸(𝐵𝐵𝑘𝑘

𝑛𝑛

𝑘𝑘=1
) (2.1) 

The game has positive expected value, and we wish to maximize our expected end capital 

𝐸𝐸(𝑋𝑋𝑛𝑛). Logically we would then bet the entirety of our capital in each trial to maximize the 

expected value 𝐸𝐸(𝐵𝐵𝑘𝑘) at each trial, and hence maximize the expected gain in the game. 

However, as the win probability 𝑝𝑝 < 1, and the probability of ruin during the game is 1 − 𝑝𝑝𝑛𝑛, 

we have that lim
𝑛𝑛→∞

[1 − 𝑝𝑝𝑛𝑛] = 1. As seen from Kelly’s paper, when gambling with such a 

strategy, financial ruin is practically certain, naturally making it unappealing when seeking to 

maximize end wealth.  

Oppositely, one can bet to minimize probability of ruin according to Feller (1966), where we 

minimize the probability of ruin by making a minimum bet on each trial. However, this 

strategy also minimizes the expected gain, making this strategy undesirable as well. 

Clearly, the optimal strategy is somewhere in between these two extremes, where we don´t 

assure ruin or minimize the expected gain. The strategy proposed by Kelly (1956) serves as an 

asymptotically optimal strategy. 

As the probabilities and payoffs in the game are constant, we realize that the optimal strategy 

to maximize wealth will likely wager a fixed fraction 𝑓𝑓 of your capital. An assumption of 

infinitely divisible capital is required to make this strategy work. The mathematical derivation 

of the problem is outlined as by Thorp in the appendix in section A1.1.  
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Thorp shows that the optimal fraction to bet is then 𝑓𝑓 = 𝑓𝑓∗ = 𝑝𝑝 − 𝑞𝑞. This is the difference in 

probabilities for win and loss and represents the edge the gambler has in the situation. 

This optimal fraction is illustrated in the following figure: 

Figure 2.1: Illustration of Optimal Bet-Fraction 
The figure illustrates the optimal bet-fraction 𝑓𝑓∗ that on a repeated favorable bet, maximizes the 

expected growth rate of capital, and results in the highest ending wealth (Thorp, 2006). 

 

Figure 2.1 illustrates the optimal fixed fraction 𝑓𝑓∗ to bet. This fraction maximizes the 

expected growth rate of capital and will over time lead to a higher level of wealth than 

essentially any other strategy. Also, the expected time for the current capital 𝑋𝑋𝑛𝑛 to reach any 

fixed preassigned goal is asymptotically least with a strategy that maximizes 𝐸𝐸 log 𝑋𝑋𝑛𝑛 as per 

Thorp (2006). The figure also highlights the dangers of overbetting. With a fraction 𝑓𝑓 

approaching 1, 𝐺𝐺(𝑓𝑓) is rapidly turning negative. So, the probability of going bust even on a 

favorable bet by overbetting is considerable.  

2.3 Kelly Portfolio Theory 

When applying the Kelly criterion to a portfolio of assets, we wish to create a strategy that 

identifies the growth optimal portfolio. Roll (1973) observes that by maximizing the expected 

value of the logarithm of wealth one will achieve the highest expected growth rate of capital, 

resulting in the highest expected ending wealth for the investor. Also, Breiman (1961) has 

shown that the time to reach asymptotically large wealth levels is minimized by the Kelly 

strategy. 

Thorp shows that the optimal fraction to bet is then f = f* = p - q. This is the difference in

probabilities for win and loss and represents the edge the gambler has in the situation.

This optimal fraction is illustrated in the following figure:

Figure 2.1: Illustration of Optimal Bet-Fraction

The figure illustrates the optimal bet-fraction f* that on a repeated favorable bet, maximizes the

expected growth rate of capital, and results in the highest ending wealth (Thorp, 2006).
G ( / )

0 f

Figure 2.1 illustrates the optimal fixed fraction f* to bet. This fraction maximizes the

expected growth rate of capital and will over time lead to a higher level of wealth than

essentially any other strategy. Also, the expected time for the current capital Xn to reach any

fixed preassigned goal is asymptotically least with a strategy that maximizes E log Xn as per

Thorp (2006). The figure also highlights the dangers of overbetting. With a fraction f

approaching l, G(f) is rapidly turning negative. So, the probability of going bust even on a

favorable bet by overbetting is considerable.

2.3 Kelly Portfolio Theory

When applying the Kelly criterion to a portfolio of assets, we wish to create a strategy that

identifies the growth optimal portfolio. Roll (1973) observes that by maximizing the expected

value of the logarithm of wealth one will achieve the highest expected growth rate of capital,

resulting in the highest expected ending wealth for the investor. Also, Breiman (1961) has

shown that the time to reach asymptotically large wealth levels is minimized by the Kelly

strategy.
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Kelly Criterion for a Portfolio of Securities 

Based on the desirable features of the Kelly criterion, we wish to implement a growth optimal 

trading strategy for the stock market. As we are applying the strategy to a portfolio of multiple 

securities in the stock market, we need a formula to calculate the optimal portfolio weights to 

maximize the expected growth rate of the Kelly portfolio. Such a formula is derived by Thorp 

(2006). The mathematical derivation in section A1.2 in the appendix yields the following 

results: 

𝑓𝑓∗ = 𝑚𝑚 − 𝑟𝑟
𝑠𝑠2  (2.2) 

𝑔𝑔∞(𝑓𝑓) = 𝑟𝑟 + 𝑓𝑓(𝑚𝑚 − 𝑟𝑟) − 𝑠𝑠2𝑓𝑓2

2  (2.3) 

𝑔𝑔∞(𝑓𝑓∗) =
(𝑚𝑚 − 𝑟𝑟)2

2𝑠𝑠2 + 𝑟𝑟 (2.4) 

Equation 2.2 for fraction 𝑓𝑓∗, illustrates how much to invest in a single security, where 𝑚𝑚 is 

the expected return, 𝑟𝑟 is the risk-free rate, and 𝑠𝑠2 is the variance of the security.  

We note that equation 2.4 for the maximum growth rate can be rewritten as 𝑔𝑔∞(𝑓𝑓∗) = 𝑆𝑆2

2 + 𝑟𝑟, 

where 𝑆𝑆 equals the Sharpe ratio. Hence, both the optimal allocation and the maximum growth 

rate of the portfolio depends heavily on the Sharpe ratio.  

Equation 2.2 illustrates the bet size in one single risky asset. However, for this paper’s 

problem, we are dealing with a portfolio of securities. Thus, we have to factor in the 

correlation between the securities in our portfolio when determining the optimal bet size. To 

account for opportunity costs and the correlation between the securities in our portfolio, we 

need the joint properties of all current and possible new investments in our portfolio as stated 

by Thorp (2008). Thorp (2006) further modifies the formula for a portfolio of multiple 

securities, as outlined below.  

We first consider an unconstrained case with a riskless security, portfolio fraction 𝑓𝑓0 and 𝑛𝑛 

securities with portfolio fractions 𝑓𝑓1, … 𝑓𝑓𝑛𝑛. We suppose the rate of return on the riskless 

security is 𝑟𝑟, and assume for simplicity that 𝑟𝑟 is also the rate for borrowing, lending and the 

rate paid on short sale proceeds. We let 𝐶𝐶 = (𝑠𝑠𝑖𝑖𝑖𝑖) be the covariance matrix for the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ 

Kelly Criterion for a Portfolio of Securities

Based on the desirable features of the Kelly criterion, we wish to implement a growth optimal

trading strategy for the stock market. As we are applying the strategy to a portfolio of multiple

securities in the stock market, we need a formula to calculate the optimal portfolio weights to

maximize the expected growth rate of the Kelly portfolio. Such a formula is derived by Thorp

(2006). The mathematical derivation in section Al .2 in the appendix yields the following

results:

m - r
f * = (2.2)

s 2 f 2
Bcxlf) = r + f (m - r) - - 2

(2.3)

* (m - r ) 2
Boo([ ) = 2s2 + r

(2.4)

Equation 2.2 for fraction f* , illustrates how much to invest in a single security, where m is

the expected return, r is the risk-free rate, and s2 is the variance of the security.

We note that equation 2.4 for the maximum growth rate can be rewritten as g00(f*) = 52 + r,
2

where S equals the Sharpe ratio. Hence, both the optimal allocation and the maximum growth

rate of the portfolio depends heavily on the Sharpe ratio.

Equation 2.2 illustrates the bet size in one single risky asset. However, for this paper's

problem, we are dealing with a portfolio of securities. Thus, we have to factor in the

correlation between the securities in our portfolio when determining the optimal bet size. To

account for opportunity costs and the correlation between the securities in our portfolio, we

need the joint properties of all current and possible new investments in our portfolio as stated

by Thorp (2008). Thorp (2006) further modifies the formula for a portfolio of multiple

securities, as outlined below.

We first consider an unconstrained case with a riskless security, portfolio fraction fo and n

securities with portfolio fractions [i, ... fn. We suppose the rate of return on the riskless

security is r, and assume for simplicity that r is also the rate for borrowing, lending and the

rate paid on short sale proceeds. We let C = ( s i i ) be the covariance matrix for the i'" and /h
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security with 𝑖𝑖, 𝑗𝑗 = 1, … , 𝑛𝑛. 𝑀𝑀 = (𝑚𝑚1, … , 𝑚𝑚𝑛𝑛)𝑇𝑇 is the row vector such that 𝑚𝑚𝑖𝑖 is the drift rate 

for the 𝑖𝑖𝑡𝑡ℎ security for 𝑖𝑖 = 1, … , 𝑛𝑛. Our portfolio then satisfies: 

𝑓𝑓0 + ⋯ + 𝑓𝑓𝑛𝑛 = 1 (2.5) 

𝑚𝑚 = 𝑓𝑓0𝑟𝑟 + 𝑓𝑓1𝑚𝑚1 + ⋯ + 𝑓𝑓𝑛𝑛𝑚𝑚𝑛𝑛 = 𝑟𝑟 + 𝑓𝑓1(𝑚𝑚1 − 𝑟𝑟) + ⋯ + 𝑓𝑓𝑛𝑛(𝑚𝑚𝑛𝑛 − 𝑟𝑟)
= 𝑟𝑟 + 𝐹𝐹𝑇𝑇(𝑀𝑀 − 𝑅𝑅) 

(2.6) 

𝑠𝑠2 = 𝐹𝐹𝑇𝑇𝐶𝐶𝐹𝐹 (2.7) 

Here, 𝐹𝐹𝑇𝑇 = (𝑓𝑓1, … , 𝑓𝑓𝑛𝑛), and 𝑅𝑅 is the column vector (𝑟𝑟, 𝑟𝑟, … , 𝑟𝑟)𝑇𝑇 of length 𝑛𝑛. 

Our previous formulas for one single security apply to 𝑔𝑔∞(𝑓𝑓1, … , 𝑓𝑓𝑛𝑛) = 𝑚𝑚 − 𝑠𝑠2

2 . We now have 

a standard quadratic maximization problem. By using the equations above that our portfolio 

satisfies and solving the simultaneous equations 𝜕𝜕𝑔𝑔∞
𝜕𝜕𝑓𝑓𝑖𝑖

= 0 for 𝑖𝑖 = 1, … , 𝑛𝑛, we get: 

𝐹𝐹∗ = 𝐶𝐶−1[𝑀𝑀 − 𝑅𝑅] (2.8) 

𝑔𝑔∞(𝑓𝑓1
∗, … , 𝑓𝑓𝑛𝑛

∗) = 𝑟𝑟 +
(𝐹𝐹∗)𝑇𝑇𝐶𝐶𝐹𝐹∗

2  (2.9) 

The vector of optimal fractions in equation 2.8 is calculated by multiplying the inverse of the 

variance-covariance matrix with the excess return vector. To achieve a unique solution, we 

require 𝐶𝐶−1 to exist, so det 𝐶𝐶 ≠ 0. If all the securities in our portfolio are uncorrelated, then 

𝑓𝑓𝑖𝑖
∗ = (𝑚𝑚𝑖𝑖 − 𝑟𝑟)/𝑠𝑠𝑖𝑖

2, which when 𝑛𝑛 = 1 is identical to equation 2.2 for one single security. 

Equation 2.9 represents the maximum growth rate of the optimal portfolio. 

Merton’s Lifetime Portfolio Selection 

Stutzer (2003) states that the growth optimal portfolio is the portfolio maximizing the 

expected log utility of wealth. Hence, we can also apply the framework by Merton (1969) 

where he develops optimal portfolios over an investor’s lifetime in continuous time for 

investors with constant relative or absolute risk aversion. Merton finds that the optimal 

fraction 𝑤𝑤∗ to invest in a single risky asset can be written as: 

𝑤𝑤∗ = (𝑎𝑎 − 𝑟𝑟)
𝜎𝜎2𝛿𝛿  (2.10) 

security with i , j = 1, ... , n. M= (mi, ... , mn)T is the row vector such that mi is the drift rate

for the ith security for i = 1, ... , n. Our portfolio then satisfies:

fo + ..· + t; = 1 (2.5)

m= for+ f1m1 + ... + fnmn = r + f1Cm1 - r ) + ... + fnCmn - r) (2.6)
= r + FT(M- R)

s z = F T C F (2.7)

Here, FT = (fi, ... J n ) , and R is the column vector (r , r, ... , r)T oflength n.

2

Our previous formulas for one single security apply to g00(fi, ... J n ) = m - :..._We now have
2

a standard quadratic maximization problem. By using the equations above that our portfolio

satisfies and solving the simultaneous equations 88900 = 0 for i = 1, ... , n, we get:
li

F* = c-1[M- R] (2.8)

(2.9)

The vector of optimal fractions in equation 2.8 is calculated by multiplying the inverse of the

variance-covariance matrix with the excess return vector. To achieve a unique solution, we

require c-1to exist, so det C =I=0. If all the securities in our portfolio are uncorrelated, then

f/ = ( m i - r ) / s l , which when n= 1 is identical to equation 2.2 for one single security.

Equation 2.9 represents the maximum growth rate of the optimal portfolio.

Merton's Lifetime Portfolio Selection

Stutzer (2003) states that the growth optimal portfolio is the portfolio maximizing the

expected log utility of wealth. Hence, we can also apply the framework by Merton (1969)

where he develops optimal portfolios over an investor's lifetime in continuous time for

investors with constant relative or absolute risk aversion. Merton finds that the optimal

fraction w* to invest in a single risky asset can be written as:

* (a - r)
w = ( J 2 0

(2.10)
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Where 𝑎𝑎 is the expected return, 𝑟𝑟 is the risk-free rate, 𝜎𝜎2 is the variance and 𝛿𝛿 is Pratt’s 

relative risk aversion measure.  

When extending the model to several risky assets, Merton derives the formula for the optimal 

fractions 𝑤𝑤∗ in the case of many assets:  

𝑤𝑤∞
∗ (𝑡𝑡) = 1

(1 − 𝛾𝛾) Ω−1(𝑎𝑎 − �̂�𝑟) (2.11) 

Here, 𝛾𝛾 is a measure of risk aversion, defined as 1 − 𝛾𝛾 ≡ 𝛿𝛿. Ω−1 is the inverse of the 

variance-covariance matrix, and 𝑎𝑎 and 𝑟𝑟 still represent the expected return and risk-free rate.  

With logarithmic utility, we have that 𝑈𝑈(𝑤𝑤) = log(𝑤𝑤). Arrow (1964) and Pratt (1963) defines 

the Arrow-Pratt coefficient of relative risk aversion as:  

𝛿𝛿 = 𝑤𝑤𝑈𝑈′′(𝑤𝑤)
𝑈𝑈′(𝑤𝑤)  (2.12) 

From equation 2.12, we have that 𝛿𝛿 = 1 for log utility, and consequently, 𝛾𝛾 = 0. As a result, 

when deriving the optimal portfolio for an investor maximizing the expected log utility of 

wealth we have: 

𝑤𝑤∗ = (𝑎𝑎 − 𝑟𝑟)
𝜎𝜎2  (2.13) 

For a single risky asset, and: 

𝑤𝑤∞
∗ (𝑡𝑡) = Ω−1(𝑎𝑎 − �̂�𝑟) (2.14) 

When extending the portfolio to several risky assets. We note that the results are identical to 

those derived by Thorp (2006) but with different mathematical notations. Thus, our approach 

is also robust in a more general utility setting.  

Alternative Kelly Approaches 

MacLean, Thorp and Ziemba (2010) express that to achieve the perfect growth optimal 

strategy, we require accurately known probabilities distributions and payoffs, which we do 

not have for the securities market. Merton (1969) in his model assumes that the risky assets 

Where a is the expected return, r is the risk-free rate, CJ2 is the variance and o is Pratt's

relative risk aversion measure.

When extending the model to several risky assets, Merton derives the formula for the optimal

fractions w* in the case of many assets:

1
W e t ) = e i _ y) n - l e a - f) e2.11)

Here, y is a measure ofrisk aversion, defined as 1 - y =o.n-1is the inverse of the

variance-covariance matrix, and a and r still represent the expected return and risk-free rate.

With logarithmic utility, we have that uew) = logtw). Arrow (1964) and Pratt (1963) defines

the Arrow-Pratt coefficient ofrelative risk aversion as:

wu"ew)
o = - - -

u'ew)
e2.12)

From equation 2.12, we have that o = 1 for log utility, and consequently, y = 0. As a result,

when deriving the optimal portfolio for an investor maximizing the expected log utility of

wealth we have:

ea - r)
w* = - - -

CJz
e2.13)

For a single risky asset, and:

W e t ) = n - l e a - f) e2.14)

When extending the portfolio to several risky assets. We note that the results are identical to

those derived by Thorp (2006) but with different mathematical notations. Thus, our approach

is also robust in a more general utility setting.

Alternative Kelly Approaches

MacLean, Thorp and Ziemba (2010) express that to achieve the perfect growth optimal

strategy, we require accurately known probabilities distributions and payoffs, which we do

not have for the securities market. Merton (1969) in his model assumes that the risky assets
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follow geometric Brownian motion. Hence, there is uncertainty involved in the real world, 

and not one perfect approach, but rather different alternatives related to the Kelly criterion’s 

objective of maximizing the expected growth rate of a portfolio of securities. As such, other 

approaches than the one we pursue in this paper exists as possible alternatives to achieve a 

growth optimal Kelly portfolio. 

One alternative approach is to apply the standard criterion from Thorp (2006) qualitatively. 

With qualitative investing, the investor disregards the correlation between the securities, 

solely focusing on stock picking instead. As a result, such an investor can use the formula for 

one single security that we have introduced earlier:  

𝑓𝑓∗ = 𝑚𝑚 − 𝑟𝑟
𝑠𝑠2  (2.15) 

With 𝑚𝑚 being the expected return of the asset, 𝑟𝑟 the risk-free rate, and 𝑠𝑠2 the variance of the 

asset. The formula will then propose a fraction 𝑓𝑓∗ to bet on each investment, ignoring 

potential covariance between the stocks in the portfolio. Disregarding the covariance can be 

dangerous when designing an optimal portfolio. However, for a concentrated portfolio, this 

can be a good qualitative approach to favor the most attractive investments individually, while 

also hindering overbetting. Ziemba (2005) shows that Warren Buffet invests in a manner that 

resembles such a strategy.  

An alternative quantitative approach is Luenberger’s Portfolio of Maximum Growth Rate 

presented in his book “Investment Science”. Luenberger (1998) states that we obtain the 

optimal growth portfolio by maximizing the growth rate 𝑣𝑣. This is accomplished by finding 

the weights 𝑤𝑤1, … , 𝑤𝑤𝑛𝑛 that solve: 

max ∑ 𝑤𝑤𝑖𝑖𝜇𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1
− 1

2 ∑ 𝑤𝑤𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 (2.16) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡 ∑ 𝑤𝑤𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1
 (2.17) 

Using Luenberger’s approach we seek to maximize the growth rate in each period to generate 

the highest growth rate. The formula looks to weigh in on the securities with the highest 

expected returns, while also penalizing for variance. However, such a portfolio will be highly 

concentrated to only a select securities with the highest historical returns. Also, Merton and 

follow geometric Brownian motion. Hence, there is uncertainty involved in the real world,

and not one perfect approach, but rather different alternatives related to the Kelly criterion's

objective of maximizing the expected growth rate of a portfolio of securities. As such, other

approaches than the one we pursue in this paper exists as possible alternatives to achieve a

growth optimal Kelly portfolio.

One alternative approach is to apply the standard criterion from Thorp (2006) qualitatively.

With qualitative investing, the investor disregards the correlation between the securities,

solely focusing on stock picking instead. As a result, such an investor can use the formula for

one single security that we have introduced earlier:

m - r
f * = (2.15)

With m being the expected return of the asset, r the risk-free rate, and s2 the variance of the

asset. The formula will then propose a fraction f* to bet on each investment, ignoring

potential covariance between the stocks in the portfolio. Disregarding the covariance can be

dangerous when designing an optimal portfolio. However, for a concentrated portfolio, this

can be a good qualitative approach to favor the most attractive investments individually, while

also hindering overbetting. Ziemba (2005) shows that Warren Buffet invests in a manner that

resembles such a strategy.

An alternative quantitative approach is Luenberger's Portfolio of Maximum Growth Rate

presented in his book "Investment Science". Luenberger (1998) states that we obtain the

optimal growth portfolio by maximizing the growth rate v. This is accomplished by finding

the weights Wi, . . . , Wn that solve:

n n

maxLw i µ i -½LwiCJiJwi
i = l i = l

(2.16)

n

subject to Lwi = 1
i = l

(2.17)

Using Luenberger's approach we seek to maximize the growth rate in each period to generate

the highest growth rate. The formula looks to weigh in on the securities with the highest

expected returns, while also penalizing for variance. However, such a portfolio will be highly

concentrated to only a select securities with the highest historical returns. Also, Merton and
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Samuelson (1974) show that such a log mean-variance approach is not consistent with 

expected utility theory.  

Kelly Drawbacks 

Despite its many favorable properties, there are some drawback and weaknesses with the 

Kelly criterion. First, in the setting of portfolio management with several securities, we use 

historical returns for expected returns, variances and covariances. Chopra and Ziemba (1993) 

have shown that such quantities can have huge estimation errors. As a result, we will not 

know the true probabilities and the constructed Kelly portfolio will not fully represent the 

optimal growth portfolio. This is not in essence a drawback with the Kelly criterion, but rather 

how we implement it given the circumstances. Furthermore, equity prices do not have a given 

set of outcomes with assigned probabilities. Meaning, that for our chosen market, the Kelly 

criterion should not be completely accurate in practice.  

Even if we could model the distributions correctly, there are further drawbacks. Thorp (2008) 

states that as time 𝑡𝑡 tends to infinity the Kelly bettor’s fortune will, with probability tending to 

1, permanently surpass that of a bettor following any essentially different strategy. So, for the 

Kelly portfolio to dominate for certain, we would need to invest for the long run. Many 

investors might not have this patience, or liquidity to run a trading strategy for a sufficient 

time period.  

Furthermore, Hausch and Ziemba (1985) and Clark and Ziemba (1987) have demonstrated 

that the Kelly criterion often instruct the investor to bet large portions of his capital on what is 

perceived as favorable bets. Consequently, the strategy can be quite risky, and may in periods 

result in drawdowns that are uncomfortably large for the average investor. Furthermore, 

Thorp (2008) expresses that while the growth optimal Kelly strategy will dominate in the long 

run it can be extremely volatile at times. 

Fractional Kelly  

A solution to the possibly uncomfortable volatility of the full Kelly strategy is to implement 

fractional Kelly strategies. Thorp (2008) explains fractional Kelly strategies, where the 

investor to reduce volatility and the risk of large drawdowns, bet a fraction 𝑠𝑠 of the original 

Kelly weights, with 0 < 𝑠𝑠 < 1. Using a fractional Kelly strategy will result in a lower 

expected growth rate of the portfolio, but also lower volatility. However, MacLean, Thorp, 

Zhao and Ziemba (2010) show that the wealth accumulated from the full Kelly strategy does 

Samuelson (1974) show that such a log mean-variance approach is not consistent with

expected utility theory.

Kelly Drawbacks

Despite its many favorable properties, there are some drawback and weaknesses with the

Kelly criterion. First, in the setting of portfolio management with several securities, we use

historical returns for expected returns, variances and covariances. Chopra and Ziemba (1993)

have shown that such quantities can have huge estimation errors. As a result, we will not

know the true probabilities and the constructed Kelly portfolio will not fully represent the

optimal growth portfolio. This is not in essence a drawback with the Kelly criterion, but rather

how we implement it given the circumstances. Furthermore, equity prices do not have a given

set of outcomes with assigned probabilities. Meaning, that for our chosen market, the Kelly

criterion should not be completely accurate in practice.

Even if we could model the distributions correctly, there are further drawbacks. Thorp (2008)

states that as time t tends to infinity the Kelly bettor's fortune will, with probability tending to

l, permanently surpass that of a bettor following any essentially different strategy. So, for the

Kelly portfolio to dominate for certain, we would need to invest for the long run. Many

investors might not have this patience, or liquidity to run a trading strategy for a sufficient

time period.

Furthermore, Rausch and Ziemba (1985) and Clark and Ziemba (1987) have demonstrated

that the Kelly criterion often instruct the investor to bet large portions of his capital on what is

perceived as favorable bets. Consequently, the strategy can be quite risky, and may in periods

result in drawdowns that are uncomfortably large for the average investor. Furthermore,

Thorp (2008) expresses that while the growth optimal Kelly strategy will dominate in the long

run it can be extremely volatile at times.

Fractional Kelly

A solution to the possibly uncomfortable volatility of the full Kelly strategy is to implement

fractional Kelly strategies. Thorp (2008) explains fractional Kelly strategies, where the

investor to reduce volatility and the risk of large drawdowns, bet a fraction c of the original

Kelly weights, with 0 < c < 1. Using a fractional Kelly strategy will result in a lower

expected growth rate of the portfolio, but also lower volatility. However, MacLean, Thorp,

Zhao and Ziemba (2010) show that the wealth accumulated from the full Kelly strategy does
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not stochastically dominate the fractional Kelly wealth, where the downside is often more 

favorable with a fraction of less than one invested. Following, there is a tradeoff of risk and 

return with the fraction in the Kelly portfolio. With cases of large uncertainty from intrinsic 

volatility of estimation errors, the investor can gain security by reducing the Kelly investment 

fraction. As we are in this paper dealing with historical returns as estimates for expected 

returns and covariances, we naturally have considerable estimation errors. Consequently, in 

such an instance, implementing a fractional Kelly may be desirable to reduce the risk of 

overbetting due to uncertainty. 

Markowitz Mean-Variance  

Thorp (1971) acknowledges the Markowitz mean-variance approach as the most widely used 

guide to portfolio selection. Moreover, Thorp (1969) also states that the Kelly criterion should 

replace the Markowitz criterion as the guide to portfolio selection. Thus, we consider the 

Markowitz mean-variance portfolio a rival strategy to the Kelly growth optimal portfolio. 

Harry Markowitz first introduced the theory in 1952 in his paper “Portfolio Selection”. 

Markowitz (1952) states that the investor should seek to maximize expected return and 

minimize variance, this will yield the best risk-adjusted return. Markowitz creates a set of 

efficient portfolios that produce the highest expected return for a given level of risk, or the 

lowest level of risk for a given expected return. Through diversification one can up to a point 

lower the risk in the portfolio without sacrificing expected return. The efficient portfolios 

create the efficient frontier in the mean-variance space.  

On the efficient frontier lies the tangent portfolio. This is the given portfolio with the highest 

Sharpe ratio. With the existence of a risk-free rate, an investor can combine the tangent 

portfolio with a riskless bond to achieve the highest risk adjusted return. The subsequent 

allocation to the risk-free rate and the tangent portfolio will depend on the risk aversion of the 

investor, where the use of leverage is allowed.  

When implementing the Markowitz mean-variance approach, we can add several constraints 

regarding position sizes, overall weight, and short positions. This can serve as risk 

management of the portfolio, or to fit a specified investment mandate.  

Markowitz’ model assumes perfect capital markets. Furthermore, it requires inputs on 

expected returns, variance and covariances. Quality inputs of such parameters can be hard to 

obtain, often forcing us to use historical data. Chopra and Ziemba (1993) has shown that the 
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use of historical data can cause sizeable estimation errors in both means, variances and 

covariances. Mean-variance optimization is very sensitive to errors in such estimates, with 

errors in means having considerably the most degrading effect, followed by errors in 

variances and covariances respectively. Following, Ang (2014) has shown the Markowitz 

portfolio to perform poorly when tested and compared to alternative strategies. Also, 

DeMiguel et al. (2007) finds that the equally weighted 1/𝑁𝑁 portfolio outperforms Markowitz.  

Closely related to Markowitz mean-variance theory is the CAPM. In the CAPM world, every 

investor holds the market portfolio as the market portfolio is the tangent portfolio. Holding the 

market portfolio eliminates the idiosyncratic risk, leaving the investor with the undiversifiable 

systematic risk. From Tobin (1958), an investor will hold a combination of the tangent market 

portfolio and the risk-free rate in relation to their risk aversion.  

Kelly vs Markowitz  

MacLean et al. (2010) explains how the Kelly growth optimal investment strategy differs 

from the standard Markowitz mean-variance approach in the sense that it is a multi-period 

model. Whereas Markowitz seeks to maximize the expected returns for a given level of risk, 

or vice versa, for a single period, the Kelly approach is interested in geometric or compound 

rates of return. The growth optimal strategy maximizes 𝐸𝐸 [log 𝑋𝑋] to achieve the portfolio with 

the highest growth over a prolonged period of time. Furthermore, the Kelly strategy is always 

geometric mean-variance efficient and has the highest growth rate of all such strategies. 

Contrastingly, Thorp (1971) shows that the Kelly strategy is not necessarily arithmetic mean-

variance efficient.  

A Kelly investor’s focus is achieving the highest end wealth, paying less attention to the risk 

adjusted return compared to a Markowitz investor. In Kelly portfolio theory the geometric 

average dominates the arithmetic average as this is the rate of which the portfolio will 

compound over time.  

2.4 Efficient Market Hypothesis and Active Portfolio Management 

Active vs Passive Portfolio Management  

Both Kelly and Markowitz are actively managed portfolio strategies. Active management 

refers to the approach of actively trying to outperform a benchmark. Passive management 

refers to the approach of trying to replicate the market index or benchmark return while 
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keeping transaction costs at a minimum. Active management necessitates more frequent 

trading, leading to higher transaction costs relative to passive management.  

For actively managed portfolios, the manager seeks to generate alpha. Consequently, we 

analyze whether this is generated by the Kelly portfolio with regards to the Norwegian stock 

market. Alpha is defined as the portfolio performance in excess of a benchmark, adjusted for 

risk (Jensen, 1967). There are several empirical studies like for instance Malkiel (2003) and 

Fama and French (2010) that suggest that on average active fund managers are unable to 

outperform their benchmarks when accounting for transaction costs. On the other hand, Berk 

and van Binsbergen (2014) find that while fund managers may generate alpha, the value does 

not necessarily benefit the fund investor, but rather the managers themselves.  

Efficient Market Hypothesis  

The achievability of alpha with active management depends on how efficient the market is. 

The Efficient Market Hypothesis (EMH) states that new information on individual stocks or 

market conditions is immediately reflected in stock prices. The EMH comes in three forms; 

weak-, semi-strong-, and strong form, as proposed by Fama (1970). The weak form implies 

that stock prices reflect all past information. The semi-strong form implies that stock prices 

reflect all publicly available information. The strong form implies that stock prices reflect all 

information, both public and private. Our Kelly portfolio relies on historical data for asset 

allocation in the search for alpha.  

The challenge for the Kelly portfolio and active management is to outperform a benchmark 

over a prolonged period, to demonstrate persistent skill. Bodie, Kane and Marcus (2009) 

review various studies and suggest that markets are generally close to efficient, this implies it 

can be difficult for the Kelly portfolio to consistently outperform the market. However, there 

are numerous market anomalies like for instance the size effect by Banz (1981) and the book-

to-market effect by Stattman (1980) which are questioning the EMH, even though Fama and 

French (1993) argue that these effects can be explained as risk premiums.  

2.5 Factor Models 

We seek to evaluate the performance of Kelly and Markowitz relative to a benchmark. 

Therefore, we utilize the Capital Asset Pricing Model, Fama and French's (1992) three-factor 

model, and Carhart's (1997) four-factor model to measure the alpha of the portfolios. 
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Capital Asset Pricing Model 

The Capital Asset Pricing Model was introduced in the 1960’s by William Sharpe (1964), 

John Lintner (1965) and Jan Mossin (1966).  

In a CAPM world, investors are only compensated for the systematic risk which is the risk 

that cannot be mitigated by diversifying. Hence, the CAPM functions as a single-factor model 

for evaluating alpha, where the single factor is the excess return of the market portfolio, 

known as the market risk factor. When measuring alpha with CAPM, we obtain the alpha 

described by Jensen (1967), widely known as Jensen’s alpha. Jensen’s Alpha can be 

expressed as: 

𝛼𝛼 = 𝑅𝑅𝑖𝑖 − (𝑟𝑟𝑓𝑓 + 𝛽𝛽(𝑅𝑅𝑀𝑀 − 𝑟𝑟𝑓𝑓)) (2.18) 

Consequently, we run the following time-series regression of the CAPM to estimate Jensen’s 

alpha: 

𝑅𝑅𝑖𝑖𝑡𝑡 − 𝑅𝑅𝐹𝐹𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑅𝑅𝑀𝑀𝑡𝑡 − 𝑅𝑅𝐹𝐹𝑡𝑡) + 𝜖𝜖𝑖𝑖𝑡𝑡 (2.19) 

Where 𝑅𝑅𝑖𝑖𝑡𝑡 − 𝑅𝑅𝐹𝐹𝑡𝑡  represents the excess return of asset or portfolio 𝑖𝑖 at time 𝑡𝑡. 𝛼𝛼 denotes the 

excess return of the portfolio or asset that cannot be explained by the included factor, which is 

the excess return of the market portfolio. 𝛽𝛽 represents the sensitivity of the asset’s return 

relative to the return of the overall market portfolio. 𝜖𝜖𝑖𝑖𝑡𝑡 is the error term and reflects the 

variability in the data that is not explained by the regression model. 

There are several empirical contradictions to the CAPM suggesting that it does not capture all 

appropriate risk factors to explain variation in the cross-sectional returns. Fama and French 

(1992) argues that the 𝛽𝛽 in CAPM is inadequate in explaining the cross-section of returns. As 

a result, we also employ multifactor models such as the Fama French three-factor model and 

Carhart four-factor model.  

Multifactor Models 

Fama and French (1992) point out the size effect discovered by Banz (1981), who observed 

that market equity or market capitalization contributes to explaining the cross-sectional 

variation of returns. Another notable finding is from Stattman (1980) and Rosenberg, Reid 

and Lanstein (1985), who found a positive relationship between average returns on US stocks 

and the book-to-market equity ratio. Fama and French consolidated these discoveries and 
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Where Ri t - R Ft represents the excess return of asset or portfolio i at time t. a denotes the

excess return of the portfolio or asset that cannot be explained by the included factor, which is

the excess return of the market portfolio. /3represents the sensitivity of the asset's return

relative to the return of the overall market portfolio. Eit is the error term and reflects the

variability in the data that is not explained by the regression model.
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and the book-to-market equity ratio. Fama and French consolidated these discoveries and
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further developed the CAPM single-factor model by adding the size- (SMB) and value factor 

(HML) to construct the Fama French three-factor model. By including size- and value risk, 

the model considers the fact that small cap stocks tend to outperform large cap stocks and that 

high book-to-market firms (value stocks) tend to outperform low book-to-market firms 

(growth stocks).  

According to Carhart (1997), Fama and French’s three-factor model falls short in explaining 

the fluctuations in returns of momentum-sorted portfolios. As a result, Carhart proposes a 

four-factor model by extending the three-factor model with an additional momentum factor 

(UMD) to capture the effect of 1-year momentum. The momentum factor was identified by 

Jagadeesh and Titman (1993) and aims to capture the tendency that outperforming stocks 

continue their outperformance relative to their peers, while underperforming stocks tends to 

persist in underperformance.  

Carhart’s four-factor model builds upon the three-factor model by extending its variables with 

the momentum factor. When estimating alpha we run the following time-series regression: 

𝑅𝑅𝑖𝑖𝑡𝑡 − 𝑅𝑅𝐹𝐹𝑡𝑡 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖(𝑅𝑅𝑀𝑀𝑡𝑡 − 𝑅𝑅𝐹𝐹𝑡𝑡) + 𝑠𝑠𝑖𝑖𝑆𝑆𝑀𝑀𝐵𝐵 + ℎ𝑖𝑖𝐻𝐻𝑀𝑀𝐻𝐻 + 𝑠𝑠𝑖𝑖UMD + 𝜖𝜖𝑖𝑖𝑡𝑡 (2.20) 

The model extends the CAPM single-factor model in equation 2.19 with the SMB, HML and 

UMD factor. SMB (small minus big) is recognized as the size factor or size premium and is 

given as the return spread of small and large stocks measured by the market capitalization. 𝑠𝑠𝑖𝑖 

is the coefficient that measures the portfolio’s sensitivity or exposure to the size factor, 

indicating whether the portfolio is tilted towards small or large firms. HML (high minus low) 

is recognized as the value factor or value premium and is given as the difference in returns 

between high- and low book-to-market firms. ℎ𝑖𝑖 measures the portfolio’s sensitivity or 

exposure to the value factor, indicating whether the portfolio is tilted towards high or low 

book-to-market firms. UMD (up minus down) is recognized as the momentum factor and is 

given as the difference in returns between the top- and bottom-performing firms. The 

coefficient 𝑠𝑠𝑖𝑖 represents the portfolio’s sensitivity to the momentum factor, indicating 

whether the portfolio is tilted towards positive or negative momentum firms.  

Limitations of the Factor Models 

Fama and French (1992) argue that the 𝛽𝛽 in the single-factor CAPM is inadequate in 

explaining the cross-section of returns. Therefore, they extend the model by introducing the 

size and value factor. Carhart (1997) further extends the three-factor model with an additional 
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momentum factor to also capture the momentum effect. However, the factor models have only 

achieved partial success in empirical tests. Gregory et al. (2013) and Fama and French (2012) 

exhibit that the model falls short in explaining variation in returns for portfolios based on size 

and momentum.  

The primary issue of the factor models is the exclusion of other relevant factors that may 

explain the cross-section of returns. This issue may lead to a potentially misleading alpha. To 

address this limitation, Fama and French (2015) added a profitability and an investment factor 

to their three-factor model, resulting in the Fama and French five-factor model. 

However, an important finding is that simply adding more variables does not necessarily 

result in a model more adequate in explaining cross-section of returns. Blitz et al. (2016) 

found that adding more variables has drawbacks, mainly because the included factors interact 

which makes it more challenging to summarize the cross section of returns. Further, the Fama 

French (2015) five-factor model still ignores the momentum factor, although several 

researchers like Chui, Titman and Wei (2010) and Asness, Moskowitz and Pedersen (2013) 

conclude that momentum premia are present all over the world.  

While the Fama French models have shown evidence of failure, they remain widely used in 

empirical asset pricing, likely due to their superiority over common alternatives such as the 

CAPM.  

2.6 Risk-Adjusted Performance Measures  

Sharpe Ratio 

The Sharpe ratio is a reward-to-volatility measure proposed by William F. Sharpe (1964) in 

his study on the CAPM. The Sharpe ratio is a measure of the excess return of the portfolio 

relative to the standard deviation or volatility of the return. The Sharpe can be expressed as: 

𝑆𝑆ℎ𝑎𝑎𝑟𝑟𝑝𝑝𝑠𝑠 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡 =
𝑅𝑅𝑖𝑖 − 𝑟𝑟𝑓𝑓

𝜎𝜎𝑖𝑖
 (2.21) 

In our analysis, we consider the Sharpe ratio as a risk-adjusted performance measure for the 

Kelly portfolio, highlighting whether the excess return the strategy obtains is a result of a 

higher level of risk.  

Sortino Ratio 
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R· - r 1
Sharpe ratio = -1 --

CJi
(2.21)
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higher level of risk.
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The Sortino ratio is a modification of the Sharpe ratio and is a result of Sortino and Price 

(1994) who criticized the Sharpe ratio for penalizing large positive returns as the standard 

deviation increases. The standard deviation is defined as the upside risk plus the downside 

risk. As a result, the Sharpe ratio penalizes both positive and negative volatility. Based on 

this, Sortino and Price suggest the Sortino ratio, which only penalizes the returns as the 

downside deviation increases. Following, the Sortino closely resembles a symmetric 

downside-risk Sharpe ratio as proposed by Ziemba (2005). Such a measure can be appropriate 

for evaluating high return, volatile portfolios such as the Kelly portfolio. The Sortino ratio can 

be expressed as:  

𝑆𝑆𝑡𝑡𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑡𝑡 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡 = 𝑅𝑅𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑅𝑅
𝜎𝜎𝑖𝑖𝑑𝑑

 (2.22) 

Where 𝑅𝑅𝑖𝑖 is the portfolio return, 𝑀𝑀𝑀𝑀𝑅𝑅 is the minimum acceptable rate of return, and 𝜎𝜎𝑖𝑖𝑑𝑑  is the 

downside deviation of the portfolio return in excess of the 𝑀𝑀𝑀𝑀𝑅𝑅. The downside deviation is 

the square root of the sum of the squared differences of the portfolio return and the minimum 

acceptable return when the portfolio returns fall short of the minimum acceptable return. The 

downside deviation can be expressed as: 

𝜎𝜎𝑖𝑖𝑑𝑑 = √(
∑ [𝑀𝑀𝑀𝑀𝑁𝑁(𝑅𝑅𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑅𝑅; 0)]2𝑁𝑁

𝑖𝑖=1
𝑁𝑁 − 1 ) (2.23) 

The Kelly portfolio can be very volatile, with a lot of variation related to its upwards 

fluctuations. As such, it can be heavily penalized by the Sharpe ratio. Therefore, the Sortino 

ratio acts as an appropriate statistic to evaluate the performance of our Kelly portfolio.  

Information Ratio 

The information ratio was introduced by Treynor and Black (1973). In our analysis, the 

information ratio functions as a risk-adjusted performance measure to evaluate the Kelly and 

Markowitz returns relative to the benchmark. The information ratio can be expressed as:  

𝑀𝑀𝑛𝑛𝑓𝑓𝑡𝑡𝑟𝑟𝑚𝑚𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡 = 𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑏𝑏
𝜎𝜎(𝑅𝑅𝑖𝑖 − 𝑅𝑅𝑏𝑏) (2.24) 

Where 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑏𝑏 are the return of the portfolio and benchmark, respectively. The 

denominator is recognized as the tracking error and is the standard deviation of the excess 

The Sortino ratio is a modification of the Sharpe ratio and is a result of Sortino and Price

(1994) who criticized the Sharpe ratio for penalizing large positive returns as the standard

deviation increases. The standard deviation is defined as the upside risk plus the downside

risk. As a result, the Sharpe ratio penalizes both positive and negative volatility. Based on

this, Sortino and Price suggest the Sortino ratio, which only penalizes the returns as the

downside deviation increases. Following, the Sortino closely resembles a symmetric

downside-risk Sharpe ratio as proposed by Ziemba (2005). Such a measure can be appropriate

for evaluating high return, volatile portfolios such as the Kelly portfolio. The Sortino ratio can

be expressed as:

R· - M A R
Sortino ratio =- 1 - - -

CJirt
(2.22)

Where Ri is the portfolio return, MAR is the minimum acceptable rate ofreturn, and CJirt is the

downside deviation of the portfolio return in excess of the MAR. The downside deviation is

the square root of the sum of the squared differences of the portfolio return and the minimum

acceptable return when the portfolio returns fall short of the minimum acceptable return. The

downside deviation can be expressed as:

(I,f=1[MIN(Ri
- MAR;0)]2)

N - 1
(2.23)

The Kelly portfolio can be very volatile, with a lot of variation related to its upwards

fluctuations. As such, it can be heavily penalized by the Sharpe ratio. Therefore, the Sortino

ratio acts as an appropriate statistic to evaluate the performance of our Kelly portfolio.

Information Ratio

The information ratio was introduced by Treynor and Black (1973). In our analysis, the

information ratio functions as a risk-adjusted performance measure to evaluate the Kelly and

Markowitz returns relative to the benchmark. The information ratio can be expressed as:

R· - R b
Information Ratio = ( 1

)
(J Ri - Rb (2.24)

Where Ri and Rb are the return of the portfolio and benchmark, respectively. The

denominator is recognized as the tracking error and is the standard deviation of the excess
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portfolio returns. The tracking error is the additional risk of the portfolio relative to the risk of 

the benchmark, and it reveals to what extent the portfolio tracks the benchmark. A low 

tracking error implies that the portfolio closely follows the benchmark, whereas a large 

tracking error indicates that the portfolio differs from the benchmark (Kinnel, 2021).  

A positive information ratio indicates that the portfolio outperforms the benchmark given its 

level of risk.  
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3. Methodology 

3.1 Data 

Data Sample  

For our analysis we wish to use securities from the Norwegian stock market with a sample 

period from 2003 to 2023. To ensure that we are able to properly execute the desired trades in 

our Kelly portfolio, we require stocks with a satisfactory amount of liquidity. Therefore, we 

limit our sample to the OBX index on the Oslo Stock Exchange (OSE). The OBX index 

comprises the twenty-five most liquid companies listed on the primary index of the Oslo 

Stock Exchange, with a semi-annual rebalancing. 

Data Collection 

To obtain the constituents of the OBX index, we utilize the Compustat Capital IQ database 

from the Wharton Research Data Services (n.d.) website. We obtain a list of the tickers of 

stocks included in the OBX index from 2003 to 2023.  

We employ the tickers obtained from Compustat and procure the monthly stock prices for the 

OBX index through Bloomberg. We also retrieve monthly observations of the 10-year 

Norwegian government bond rate from Bloomberg as our risk-free rate. Bloomberg includes 

delisted firms, hence our sample is explicitly free of survivorship bias. Survivorship bias 

refers to the exclusion of firms that go bankrupt from a sample prior to their actual 

bankruptcy. Additionally, the prices provided by Bloomberg are adjusted for corporate actions 

such as stock splits, dividends, and other events such as rights offerings and spin-offs. We 

compute the return of the stock prices, using simple returns.  

Bloomberg does not have sufficient historical data for the trading volumes. As a result, we use 

the Compustat database to collect daily trading volumes of the stocks. We use daily 

observations as we assume all trading by the Kelly strategy is executed in a single trading day. 

Compustat provides all financial and accounting information reported by the subsequent 

firms, thereby mitigating the look-ahead bias of the sample. Utilizing information not 

accessible during the designated timeframe will result in look-ahead bias and diminish the 

reliability of the analysis.  
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Securities in the sample may be delisted during the one-year sample period. If a company is 

delisted due to bankruptcy, we set a negative return of -100%. It is noteworthy that none of 

the firms comprising the sample set went bankrupt during the sample period, hence a possible 

bias from this assumption, will not affect the alpha of the Kelly portfolio in any direction. 

However, Tandberg ASA, included in the 2010 sample, was delisted in March 2010 following 

its acquisition by Cisco Systems Inc (DN, 2010). In this case, we set the return for the 

subsequent months to zero, assuming that the acquisition was executed at Tandberg ASA's 

share price at the time of delisting. Consequently, the sample set now comprises only nine 

stocks until the next rebalancing.  

In order to explain the cross-section of returns for Kelly and Markowitz with the CAPM, 

Fama French’s three-factor model and Carhart’s four-factor model, we obtain monthly asset 

pricing factors for the Oslo Stock Exchange. We retrieve the factors from Bernt Arne 

Ødegaard’s (2023) website. Ødegaard has employed Fama and French’s methodology to 

compute the pricing factors using stocks listed on the Oslo Stock Exchange.  

In terms of data collection, it is important to note that the selection of database is a crucial 

factor influencing the outcomes and conclusions of the analysis. The Bloomberg Terminal is 

one of the most popular databases and deemed to be a dependable source of financial data. 

When it comes to Compustat, Liu (2020) found that Compustat data had a high degree of 

accuracy. Furthermore, Fama and French used Compustat in their influential papers on the 

three- and five-factor models (Fama and French, 1992, 1993, 2015). Regarding the pricing 

factors for the Oslo Stock Exchange, Ødegaard has published these factors consistently for 

several years, and is a recognized economist. Therefore, we deem Ødegaard as a reliable 

source.  

Adjusting for Transaction Costs 

As we are analyzing actively managed portfolios, transaction costs are anticipated to have a 

significant impact on returns. Furthermore, transaction costs play a considerable role in our 

analysis of the portfolios’ ability to generate alpha. Transactions costs can, as per Demsetz 

(1968) definition, refer to the cost incurred while exchanging ownership titles. For the stock 

market, Demsetz states that brokerage fees and bid-ask spreads account for most of the 

transaction costs. Therefore, we have chosen to concentrate on the bid-ask spread and 

brokerage fees as a proxy for transaction costs in our analysis. We assume that a trade on 

Securities in the sample may be delisted during the one-year sample period. If a company is
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average requires to cross half of the bid-ask spread, in line with Hyde (2016). Further, we 

apply a brokerage fee of 0.049%, as offered by Nordnet (n.d.).  

Bloomberg lacks data for bid ask-spreads for certain years in our time period. However, 

Compustat has sufficient high and low prices for our sample period. Hence, we apply the 

spread estimator of Corwin and Schultz (2012) to estimate bid-ask spreads from daily high 

and low prices. The respective daily high and low prices are retrieved from Compustat. The 

derivation of the Corwin and Schultz estimator is highlighted in the appendix in section A1.3.  

As we operate with monthly data, we want to estimate the monthly bid-ask spreads for the 

stocks in our sample. In compliance with Corwin and Schultz (2012) we set all the negative 

spread estimates equal to zero prior to computing the monthly average. They argue this will 

yield more accurate spread estimates, as opposed to including or excluding the negative 

spreads. Furthermore, we notice that on certain days, the closing price of certain stocks equals 

its high and low price, which may indicate that the stock is illiquid that day. As a result, we 

get disproportionately low daily spread estimates as the high and low price are equal, which 

will lower our monthly average spread estimates. To address this downward bias, we exclude 

all daily observations where the closing price is equivalent to the high and low prices.   

There are several different well-known spread estimators, such as the Roll (1984) covariance 

estimator and the Hasbrouck (2005) estimator. However, we implement the more recent 

estimator proposed by Corwin and Schultz (2012). They proclaim that the estimator is more 

accurate than Roll’s and more user-friendly relative to Hasbrouck’s, which requires an 

iterative process. Moreover, Abdi and Ranaldo (2017) find that the Corwin-Schultz estimator  

exhibits a strong correlation with the effective spread levels of US stocks. Also, it is important 

to note that as an estimator, there are several underlying assumptions that can potentially bias 

the spread estimates. To mitigate this, we adjust for overnight price changes and negative 

spread values. Furthermore, we adjust for the same price for all daily trades, in compliance 

with Corwin and Schultz (2012).   

3.2 Assumptions and Decisions 

When constructing our portfolios and backtesting the results, we need to make quite a few 

assumptions and decisions for our implementation. These are expressed and explained below. 

Time Horizon 
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The time horizon for our analysis is set to the start of 2003 to the end of 2022. This is a period 

where we find that we have sufficient data, while the analysis is still relatively “long term”. 

However, we note that by choosing 2003 as our starting year, the portfolios are excluded from 

the dot-com bubble and the following crash at the end of the 1990s and start of the 2000s. 

Thus, the performance of the selected portfolios may be affected by this choice.  

Rebalancing 

When constructing optimal portfolios, one calculates the optimal weights for a given time 

period. This time period is not expressed by the calculations, but rather subject to the selected 

rebalancing period. As our quantitative Kelly strategy is more of a trading strategy than an 

investing strategy by nature, we wish to operate with frequent rebalancing, while still 

prohibiting unnecessarily large transaction costs. Consequently, we use a monthly rebalancing 

period for both the growth optimal portfolio and the optimal mean-variance portfolio. After a 

one month holding period, the new optimal weights will subsequently be calculated, and the 

portfolios reweighted.  

Historical Returns 

The basis of the construction of both the Kelly portfolio and the Markowitz portfolio are 

expected returns as well as variances and covariances. We estimate our model inputs using 

historical returns and historical volatility. Chopra and Ziemba (1993) highlights how this can 

be a faulty approach, as the estimation errors in the returns, variances and correlations can be 

substantial. However, this approach is still the most widely used in financial theory. 

To estimate expected returns and the variance covariance matrices, we use a rolling 

estimation window with the previous 12 months as our lookback period. This follows from 

the fact that a short rolling estimation window may precipitate some unwanted problems. First 

of all, a short rolling estimation window will lead to more pro-cyclical portfolios that bet in 

the direction the securities and the market is heading. Secondly, such portfolios will favor 

securities with a strong historical performance in the lookback period. Such securities will 

likely have higher prices given the previous price appreciation, and consequently lower 

expected future returns.  

Using a shorter estimation period could be advantageous in periods of large market 

drawdowns such as the financial crisis, as it could react quickly and go short. However, such 
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strategies may also be limited in the sense that large short positions are difficult to execute in 

a bear market.  

By using a longer period, we are able to achieve a better estimate for the probability that a 

stock will appreciate or depreciate, which enables the Kelly criterion to likely bet more 

accurately over a longer time period. Nonetheless, using an excessively long estimation 

window can also introduce the problem of mean reversion. Hence, we find the rolling 

estimation window of 12 months as appropriate for our analysis. 

Borrowing and Lending 

We assume that the investor has the ability to borrow and lend at the risk-free rate. This is a 

standard assumption in asset pricing theory, and also one that Thorp (2006) assumes when 

deriving formula 2.8 for the growth optimal portfolio for a portfolio of securities. However, 

the mean-variance portfolio in our analysis is assumed to be fully invested in the market at all 

times. As a result, the Markowitz portfolio constructed is unaffected by this assumption. On 

the other hand, the Kelly portfolio takes on extremely large positions when unconstrained. 

Also, the relative position sizes between securities and time periods can vary substantially. If 

we assume a 100% fully invested Kelly portfolio with a long/short strategy, some individual 

weights will be too big from a risk management standpoint, while also restricting available 

stocks due to liquidity requirements. We find it better to use a sufficiently large fractional 

Kelly strategy to achieve “normal” portfolio weights, and rather borrow at the risk-free rate 

when using leverage or lend when short or underweighted, to achieve a 100% net weight. 

Short Sales  

As indicated by Thorp (2006), being able to sell a security short is a desirable feature of the 

stock market for the Kelly criterion. To take advantage of this opportunity we allow for short 

sales in the Kelly portfolio. Following, we do the same with the Markowitz portfolio to make 

the portfolios more comparable.  

Position Sizes 

Both the Kelly portfolio and the Markowitz portfolio can take on quite substantial position 

sizes when unconstrained. We want to avoid the extremely large high-risk positions, so we 

choose to constrain the sizes to a maximum of 25% of the total capital. Such positions are still 

quite large, but our Kelly portfolio is highly concentrated with the possibility of going both 
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By using a longer period, we are able to achieve a better estimate for the probability that a

stock will appreciate or depreciate, which enables the Kelly criterion to likely bet more

accurately over a longer time period. Nonetheless, using an excessively long estimation

window can also introduce the problem of mean reversion. Hence, we find the rolling

estimation window of 12 months as appropriate for our analysis.

Borrowing and Lending

We assume that the investor has the ability to borrow and lend at the risk-free rate. This is a

standard assumption in asset pricing theory, and also one that Thorp (2006) assumes when

deriving formula 2.8 for the growth optimal portfolio for a portfolio of securities. However,

the mean-variance portfolio in our analysis is assumed to be fully invested in the market at all

times. As a result, the Markowitz portfolio constructed is unaffected by this assumption. On

the other hand, the Kelly portfolio takes on extremely large positions when unconstrained.

Also, the relative position sizes between securities and time periods can vary substantially. If

we assume a 100% fully invested Kelly portfolio with a long/short strategy, some individual

weights will be too big from a risk management standpoint, while also restricting available

stocks due to liquidity requirements. We find it better to use a sufficiently large fractional

Kelly strategy to achieve "normal" portfolio weights, and rather borrow at the risk-free rate

when using leverage or lend when short or underweighted, to achieve a l 00% net weight.

Short Sales

As indicated by Thorp (2006), being able to sell a security short is a desirable feature of the

stock market for the Kelly criterion. To take advantage of this opportunity we allow for short

sales in the Kelly portfolio. Following, we do the same with the Markowitz portfolio to make

the portfolios more comparable.

Position Sizes

Both the Kelly portfolio and the Markowitz portfolio can take on quite substantial position

sizes when unconstrained. We want to avoid the extremely large high-risk positions, so we

choose to constrain the sizes to a maximum of 25% of the total capital. Such positions are still

quite large, but our Kelly portfolio is highly concentrated with the possibility of going both

24



 

 25 

long and short, thereby offsetting some of the portfolio’s net weight. The Kelly strategy can 

be unhinged at times with extreme position sizes, see table A3.1 in the appendix. To keep it 

aggressive but to still manage downside risk, we must use such a quantity constraint. 

Naturally, the size of this constraint is an important variable, as the choice of the position size 

constraint will affect the weights and subsequent performance of the portfolio considerably. 

Avoiding the extreme positions is also important for liquidity measures and to make it 

implementable as a strategy. Having to go several thousand percent of the assets under 

management long or short can make the stock availability diminish drastically. Furthermore, 

it severely affects the possibility of running the Kelly strategy in a larger scale. Factoring in 

the availability of leverage and short positions for such volumes, such an unrestricted 

portfolio would be unrealistic to implement properly in the real world.  

Liquidity Requirements and Available Securities 

As the portfolio weights in the Kelly portfolio can be quite aggressive, we have chosen to 

limit our sample to the ten most liquid stocks on the OBX index. An alternative would be to 

include all securities on the OSE above a certain minimum liquidity requirement, however, 

this would force us to make assumptions regarding the capital deployed in our strategy. For 

our approach to determine the ten most liquid stocks, we use the prior 1-year average of daily 

NOK-volume as a proxy for future liquidity. Subsequently, we sort the stocks on the prior 1-

year average NOK-volume and update this selection at the start of each year. The NOK-

volume is computed as:  

𝑁𝑁𝑁𝑁𝑁𝑁 𝑉𝑉𝑡𝑡𝑉𝑉𝑠𝑠𝑚𝑚𝑠𝑠 = 𝐷𝐷𝑎𝑎𝑖𝑖𝑉𝑉𝐷𝐷 𝑇𝑇𝑟𝑟𝑎𝑎𝑇𝑇𝑖𝑖𝑛𝑛𝑔𝑔 𝑉𝑉𝑡𝑡𝑉𝑉𝑠𝑠𝑚𝑚𝑠𝑠 ⋅ 𝐶𝐶𝑉𝑉𝑡𝑡𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔 𝑃𝑃𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠 (4.7) 

Having a fixed number of securities in the portfolio over time can be desirable. When 

calculating optimal portfolios, obtaining high quality covariance estimates can be difficult. By 

having a low fixed number of securities in our portfolios, we find that the inverse covariance 

matrix is more precise, and able to generate more sensible portfolio weights.  

However, by choosing a smaller subset of securities available, and imposing quantity 

constraints, we limit the optimal portfolios to local maximums and not global maximums, 

hence, the performance of the portfolios should be affected negatively. On the other hand, 

they should be more realistic to implement, as well as more desirable from a risk management 

perspective. Furthermore, Ødegaard (2021) states that most of the relevant diversification on 

the Oslo Stock Exchange is achieved with ten stocks or more in the portfolio. Also, 

long and short, thereby offsetting some of the portfolio's net weight. The Kelly strategy can

be unhinged at times with extreme position sizes, see table A3.1 in the appendix. To keep it

aggressive but to still manage downside risk, we must use such a quantity constraint.

Naturally, the size of this constraint is an important variable, as the choice of the position size

constraint will affect the weights and subsequent performance of the portfolio considerably.

Avoiding the extreme positions is also important for liquidity measures and to make it

implementable as a strategy. Having to go several thousand percent of the assets under

management long or short can make the stock availability diminish drastically. Furthermore,

it severely affects the possibility of running the Kelly strategy in a larger scale. Factoring in

the availability of leverage and short positions for such volumes, such an unrestricted

portfolio would be unrealistic to implement properly in the real world.

Liquidity Requirements and Available Securities

As the portfolio weights in the Kelly portfolio can be quite aggressive, we have chosen to

limit our sample to the ten most liquid stocks on the OBX index. An alternative would be to

include all securities on the OSE above a certain minimum liquidity requirement, however,

this would force us to make assumptions regarding the capital deployed in our strategy. For

our approach to determine the ten most liquid stocks, we use the prior l-year average of daily

NOK-volume as a proxy for future liquidity. Subsequently, we sort the stocks on the prior l-

year average NOK-volume and update this selection at the start of each year. The NOK-

volume is computed as:

NOK Volume= Daily Trading Volume· Closing Price (4.7)

Having a fixed number of securities in the portfolio over time can be desirable. When

calculating optimal portfolios, obtaining high quality covariance estimates can be difficult. By

having a low fixed number of securities in our portfolios, we find that the inverse covariance
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hence, the performance of the portfolios should be affected negatively. On the other hand,

they should be more realistic to implement, as well as more desirable from a risk management

perspective. Furthermore, Ødegaard (2021) states that most of the relevant diversification on

the Oslo Stock Exchange is achieved with ten stocks or more in the portfolio. Also,
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Bessembinder (2018) documents that a small subset of stocks generates most of the excess 

return on most exchanges.  

An unwanted consequence of our liquidity requirement and the resulting concentrated 

portfolio is that no companies go bankrupt while present in our portfolio. Hence, an element 

of survivorship bias may exist implicitly.   

Kelly Portfolio 

With the choice of having the ten stocks with the highest NOK-volume, we need to update our 

set of securities in the portfolios with a given frequency. We choose the start of each year, 

selecting the ten stocks with the highest average daily NOK-volume in the previous 12 

months as an estimate of future liquidity. We generate matrices with historical returns for 

each year in our time horizon, allowing for a lookback period of 12 months. To solve for the 

weights of the Kelly portfolio, we use VBA in Excel. The constructed VBA formula in A6.1 

in the appendix is based on Ed Thorp’s formula as in equation 2.8, with the excess return of 

the last 12 months for each security as our input range.  

Again, the initial weights calculated from this formula are ludicrously aggressive. Such a 

portfolio will not be possible to implement in real life, given the amount of borrowing and 

traded volume we have. Also, the transaction costs it would incur would be monumental. 

Furthermore, this strategy would ultimately exceed the limits when backtesting in R Studio. 

Consequently, we divide the weights by a factor of 50 to achieve more “normal” weights. 

Typically, fractional Kelly strategies use a fraction of 𝑠𝑠 = 1
2 or 𝑠𝑠 = 1

4 as per MacLean et al. 

(2010), so dividing by 50 is relatively extreme. This also introduces considerable uncertainty 

regarding the appropriate fraction for the growth optimal portfolio. To illustrate, we show the 

performance of three Kelly portfolios with identical quantity constraints and fractions 𝑠𝑠 =
1

25 , 𝑠𝑠 = 1
50 and 𝑠𝑠 = 1

75 later in the paper. Another such performance sensitive parameter is the 

quantity constraint, specifying the upper and lower bounds for permitted proportions allocated 

to each asset in the portfolio. For our quantity constraint, we set the lower bound to 25% 

short, and the upper bound to 25% long. Similarly, this variable will also be sensitized later in 

the paper.   

Once we have calculated the appropriate constrained weights in Excel, we use the Portfolio 

Analytics package in R to backtest the performance of the portfolio with the empirical returns 

gathered from Bloomberg (Peterson, 2018). 
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Markowitz Portfolio 

As we consider Kelly and Markowitz rival strategies, we want to apply the Markowitz 

portfolio in a setting as similar as possible to the Kelly portfolio. Consequently, we use the 

same set of securities, with the same quantity constraint of 25% long or short. This way, 

deviations in performance will not be explained by our choice of a limited securities sample. 

The only major difference is the portfolio weights, where the mean-variance portfolio has an 

additional full investment constraint. This is because, we find that the Portfolio Analytics 

package assumes full investment by nature when calculating the Markowitz portfolio, even 

when the full investment constraint is relaxed.  

When solving for the Markowitz weights, we solve for each subsequent year with its 

corresponding historical return matrix. As the Portfolio Analytics package in R has built in 

functions to calculate the optimal mean-variance portfolio, we use this as opposed to VBA 

(Peterson, 2018). Firstly, we design a portfolio with objectives to maximize the expected 

return and minimize the risk. Secondly, we add constraints for box size. The package then 

solves for the optimal portfolios with monthly rebalancing and a 12-month rolling estimation 

window. The optimal portfolio function runs with a search size of 5000 and 50 iterations as 

this is what our computers could handle. The resulting optimal portfolio weights for each 

corresponding year are then extracted in a complete Markowitz weights matrix, and then 

backtested with the empirical returns for the time period. 

Market Portfolio 

The select inclusion of the ten most liquid securities in our optimal portfolios is a choice made 

to ensure that the Kelly strategy is implementable, and that we can construct a comparable 

Markowitz portfolio to compare performances. This selection does not extend to the market 

portfolio as we wish to compare the performance with the simple strategy of holding the 

market portfolio as from the CAPM theory. Consequently, we use the OSEBX, the standard 

benchmark index of the Oslo Stock Exchange as our market portfolio and benchmark.  

Oppositely, we can construct a market weighted portfolio of the ten securities in our portfolio 

selection. However, this contradicts Næs, Skjeltorp and Ødegaard’s (2009) suggestion of 

using a broad market index. 
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using a broad market index.
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4. Results 

4.1 Initial Results 

Figure 4.1 illustrates the holding period returns for the growth optimal Kelly strategy, the 

mean-variance Markowitz strategy, as well as the OSEBX. The plots have been indexed at 1 

and illustrate the end wealth for the respective strategies. As expected, the graph highlights 

the outperformance of the Kelly portfolio with regards to both the Markowitz portfolio and 

the benchmark, achieving an ending wealth level of 16.39 against 8.44 and 10.84 respectively. 

The growth optimal portfolio is designed to maximize end of period wealth, so at least before 

adjusting for transaction costs the wealth obtained by the Kelly strategy is expected to be the 

highest. Furthermore, we note how Markowitz fails to generate higher holding period returns 

than our benchmark. This is in line with several studies highlighting the poor performance of 

this strategy.  

Kelly underperforms in the years leading up to the financial crisis in 2008 but is able to avoid 

the drawdowns of Markowitz and the benchmark, and rather generate positive returns this 

period. This is due to the relaxation of the full investment constraint, where the Kelly 

portfolio is allowed to go net short in periods when the market does not appear attractive.  

In light of this possibility, the Kelly portfolio still visually appears to follow the market 

portfolio relatively closely. Although, we note the strong returns and high volatility in the end 

of our period. This is due to the large bets made by the Kelly criterion. While the bets result in 

great gains, a higher risk for large drawdowns also follows.  
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Figure 4.1 illustrates the holding period returns for the growth optimal Kelly strategy, the
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the outperformance of the Kelly portfolio with regards to both the Markowitz portfolio and
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highest. Furthermore, we note how Markowitz fails to generate higher holding period returns

than our benchmark. This is in line with several studies highlighting the poor performance of
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Kelly underperforms in the years leading up to the financial crisis in 2008 but is able to avoid

the drawdowns of Markowitz and the benchmark, and rather generate positive returns this

period. This is due to the relaxation of the full investment constraint, where the Kelly

portfolio is allowed to go net short in periods when the market does not appear attractive.

In light of this possibility, the Kelly portfolio still visually appears to follow the market

portfolio relatively closely. Although, we note the strong returns and high volatility in the end

of our period. This is due to the large bets made by the Kelly criterion. While the bets result in

great gains, a higher risk for large drawdowns also follows.
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Figure 4.1: Holding Period Returns 
The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February 

2003 through December 2022. We calculate the holding period return by multiplying the monthly 

portfolio returns. By reinvesting the capital gains for each month, we achieve the compounded returns. 

The returns represent the ending wealth we obtain through the different strategies. 

Table 4.1 presents a selection of key statistics for our strategies and the market portfolio. At 

first glance, we observe the nearly identical Sharpe ratios for Kelly and our benchmark. The 

Sharpe ratio of Markowitz is lower than Kelly and the market. The annualized arithmetic 

mean of Kelly is higher than Markowitz, while the standard deviation is marginally lower, 

resulting in a lower Sharpe ratio for Markowitz. The benchmark has lower arithmetic mean 

and volatility than Kelly but has the same return per unit of risk. An important metric is the 

geometric mean of the portfolios. Here, Kelly outperforms both the market and Markowitz, 

and consequently generates the highest ending wealth for the investor. We also note that while 

the arithmetic mean of the benchmark is almost similar to our Markowitz portfolio, its 

geometric mean is higher, resulting in a higher wealth by holding the market portfolio. While 

the Sharpe ratio is the most commonly used measure for portfolio performance, it punishes a 

portfolio for volatility related to both the upside and the downside. Oppositely, the Sortino 

ratio expresses return per unit of downside risk. Kelly’s Sortino ratio is higher than 

Markowitz and the benchmark, thus indicating that a larger portion of the Kelly portfolio’s 

standard deviation stems from volatility related to its upwards movements. Ziemba (2005) 

proposes a modified Sharpe ratio closely resembling the Sortino ratio to properly analyze the 

performance of portfolios. He found that the funds in his research generating the highest 
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The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February
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Table 4.1 presents a selection of key statistics for our strategies and the market portfolio. At

first glance, we observe the nearly identical Sharpe ratios for Kelly and our benchmark. The

Sharpe ratio of Markowitz is lower than Kelly and the market. The annualized arithmetic

mean of Kelly is higher than Markowitz, while the standard deviation is marginally lower,

resulting in a lower Sharpe ratio for Markowitz. The benchmark has lower arithmetic mean

and volatility than Kelly but has the same return per unit of risk. An important metric is the

geometric mean of the portfolios. Here, Kelly outperforms both the market and Markowitz,

and consequently generates the highest ending wealth for the investor. We also note that while

the arithmetic mean of the benchmark is almost similar to our Markowitz portfolio, its

geometric mean is higher, resulting in a higher wealth by holding the market portfolio. While

the Sharpe ratio is the most commonly used measure for portfolio performance, it punishes a

portfolio for volatility related to both the upside and the downside. Oppositely, the Sortino

ratio expresses return per unit of downside risk. Kelly's Sortino ratio is higher than

Markowitz and the benchmark, thus indicating that a larger portion of the Kelly portfolio's

standard deviation stems from volatility related to its upwards movements. Ziemba (2005)

proposes a modified Sharpe ratio closely resembling the Sortino ratio to properly analyze the

performance of portfolios. He found that the funds in his research generating the highest
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wealth, such as Warren Buffett’s Berkshire Hathaway, performed rather poorly compared to 

low volatility, low growth funds when applying the Sharpe ratio. However, by using the 

modified Sharpe targeting downside risk, the higher growth funds scored relatively higher.  

Finally, the information ratio highlights how both Markowitz and Kelly generate higher 

returns than the market benchmark. IR is often used to measure a portfolio manager’s skill, 

evaluating to what extent and with what consistency the strategy employed beats the 

benchmark. Kelly’s information ratio is also in this instance higher than Markowitz, which 

only marginally beats the benchmark. 

The key financials for our portfolios are largely as expected. The Kelly portfolio seeks to 

maximize the geometric mean to achieve the highest growth rate and does just so. 

Furthermore, the Kelly portfolio is more volatile than the market portfolio. However, as a lot 

of the volatility is related to upside risk, the Sortino ratio is, as expected, high.  

Kelly’s Sharpe ratio is nearly identical to the benchmark’s, so we should under perfect market 

conditions be able to replicate the return of the Kelly portfolio by borrowing at the risk-free 

rate and investing with leverage in the market portfolio as per Tobin’s separation theorem 

(1958). This is illustrated in figure A2.1 in the appendix.  

Table 4.1: Key Statistics 

The table reports annualized performance measures for Kelly, Markowitz, and benchmark. The 

performance measures are calculated utilizing monthly figures. The Sharpe, Sortino, IR and standard 

deviation are annualized by multiplying with √12. Arithmetic and geometric mean are annualized by 

multiplying with 12.   

 Kelly Markowitz Benchmark 

Sharpe Ratio 0.58 0.43 0.58 

Sortino Ratio (MAR=rf) 0.95 0.62 0.68 

Information Ratio 0.11 0.02 - 

Arithmetic Mean 17.1% 14.3% 13.9% 

Geometric Mean 14.1% 10.8% 12.0% 

Standard Deviation 24.6% 26.4% 19.2% 

wealth, such as Warren Buffett's Berkshire Hathaway, performed rather poorly compared to

low volatility, low growth funds when applying the Sharpe ratio. However, by using the

modified Sharpe targeting downside risk, the higher growth funds scored relatively higher.

Finally, the information ratio highlights how both Markowitz and Kelly generate higher

returns than the market benchmark. IR is often used to measure a portfolio manager's skill,

evaluating to what extent and with what consistency the strategy employed beats the

benchmark. Kelly's information ratio is also in this instance higher than Markowitz, which

only marginally beats the benchmark.
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maximize the geometric mean to achieve the highest growth rate and does just so.

Furthermore, the Kelly portfolio is more volatile than the market portfolio. However, as a lot

of the volatility is related to upside risk, the Sortino ratio is, as expected, high.

Kelly's Sharpe ratio is nearly identical to the benchmark's, so we should under perfect market

conditions be able to replicate the return of the Kelly portfolio by borrowing at the risk-free

rate and investing with leverage in the market portfolio as per Tobin's separation theorem

(1958). This is illustrated in figure A2.1 in the appendix.

Table 4.1: Key Statistics

The table reports annualized performance measures for Kelly, Markowitz, and benchmark. The
performance measures are calculated utilizing monthly figures. The Sharpe, Sortino, IR and standard

deviation are annualized by multiplying with i l l . Arithmetic and geometric mean are annualized by
multiplying with 12.
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Benchmark

0.58

0.68

13.9%

12.0%

19.2%

30



 

 31 

After analyzing the return and various metrics of the Kelly strategy we wish to investigate the 

extent to which the performance can be attributed to risk factors in multifactor models. We 

analyze using linear regression in table 4.2 below:   

Table 4.2: Regression Results on Gross Returns 
The table reports the regression results for the Kelly and Markowitz portfolio before adjusting for 

transaction costs. The portfolios’ excess returns are regressed on the CAPM, FF3F and C4F model. 

The regression results are estimated utilizing monthly excess returns from February 2003 through 

December 2022.  

 Dependent variable: 

 Kelly Markowitz 
 CAPM FF3F C4F CAPM FF3F C4F 

Alpha 0.011** 0.014*** 0.014*** 0.001 0.002 -0.003 
 (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) 

Market 0.115 0.114 0.116 0.974*** 0.969*** 1.010*** 
 (0.083) (0.083) (0.084) (0.063) (0.064) (0.061) 

SMB  -0.185* -0.183*  -0.117 -0.069 
  (0.096) (0.097)  (0.073) (0.070) 

HML  -0.012 -0.011  0.023 0.033 
  (0.080) (0.080)  (0.061) (0.058) 

UMD   0.013   0.269*** 
   (0.076)   (0.055) 

Observations 239 239 239 239 239 239 

R2 0.008 0.024 0.025 0.503 0.508 0.554 

Adjusted R2 0.004 0.012 0.008 0.501 0.502 0.546 

Residual Std. Error 0.071 0.071 0.071 0.054 0.054 0.051 

Significance level *p<0.1; **p<0.05; ***p<0.01 

Kelly generates a significant positive alpha across all three factor models. This aligns with our 

expectations as the performance measures in table 4.1 demonstrate that Kelly outperforms the 

benchmark. For the CAPM, the alpha is significant on a 5% level, while for the three- and 
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Kelly generates a significant positive alpha across all three factor models. This aligns with our

expectations as the performance measures in table 4.1 demonstrate that Kelly outperforms the

benchmark. For the CAPM, the alpha is significant on a 5% level, while for the three- and
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four-factor models it is significant on a 1% level. The highest alpha of 1.4% is observed under 

the three- and four-factor models. This implies that on average, 1.4% of the portfolio’s excess 

return cannot be explained by the exposure to the included risk factors. It should be noted that 

this is a monthly alpha, which translates into a remarkably high annualized alpha of 16.8%.  

For the Markowitz portfolio, the alpha is statistically indistinguishable from zero for all 

models. This is expected as we observe that Markowitz does not outperform the benchmark as 

per the performance measures in table 4.1 and is in line with several empirical studies 

suggesting a poor performance of the Markowitz portfolio. 

Kelly exhibits a market beta that is statistically indistinguishable from zero, which implies 

that the portfolio return cannot be explained by the market exposure. Markowitz’s market beta 

on the other hand, displays a value around one for all models and is significant on a 1% level. 

This implies that the Markowitz portfolio is largely correlated with the market portfolio. The 

stark difference in betas is somewhat surprising based on the plots in figure 4.1. Also, as the 

securities in our sample represent a large proportion of the OSEBX, we would expect a higher 

beta for the Kelly portfolio. However, the Kelly portfolio has a tendency to appreciate during 

bear markets, resulting in some negative correlation with the market, lowering the estimated 

beta.   

The size factor, SMB, is significantly negative for Kelly on a 10% level. A negative exposure 

to the size factor implies that the portfolio returns are influenced by the performance of larger 

firms. This is expected as our sample is annually sorted to include firms with the highest 

NOK-volume, and we observe that these firms also tend to have high market capitalization.  

Furthermore, our regression results indicate that Kelly has a negative exposure to the HML 

factor. This is somewhat unexpected given that our stock sample mainly consists of typical 

value stocks. However, the exposure is statistically indistinguishable from zero. On the other 

hand, Markowitz has a positive but insignificant exposure to the HML. The opposing signs 

for the portfolios’ exposure are surprising as both portfolios consist of the same securities. 

The momentum factor, UMD, is significant for Markowitz on a 1% level, suggesting a tilt 

towards positive momentum stocks. For the Kelly portfolio, the momentum factor is 

statistically indistinguishable from zero.  

The models' R-squared (𝑅𝑅2) values are consistently low for the Kelly portfolio, indicating low 

explanatory power. Furthermore, the inclusion of additional risk factors does not result in a 
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return cannot be explained by the exposure to the included risk factors. It should be noted that

this is a monthly alpha, which translates into a remarkably high annualized alpha of 16.8%.

For the Markowitz portfolio, the alpha is statistically indistinguishable from zero for all

models. This is expected as we observe that Markowitz does not outperform the benchmark as

per the performance measures in table 4.1 and is in line with several empirical studies

suggesting a poor performance of the Markowitz portfolio.

Kelly exhibits a market beta that is statistically indistinguishable from zero, which implies

that the portfolio return cannot be explained by the market exposure. Markowitz's market beta

on the other hand, displays a value around one for all models and is significant on a l% level.
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to the size factor implies that the portfolio returns are influenced by the performance of larger

firms. This is expected as our sample is annually sorted to include firms with the highest

NOK-volume, and we observe that these firms also tend to have high market capitalization.

Furthermore, our regression results indicate that Kelly has a negative exposure to the HML

factor. This is somewhat unexpected given that our stock sample mainly consists of typical

value stocks. However, the exposure is statistically indistinguishable from zero. On the other

hand, Markowitz has a positive but insignificant exposure to the HML. The opposing signs

for the portfolios' exposure are surprising as both portfolios consist of the same securities.

The momentum factor, UMD, is significant for Markowitz on a l% level, suggesting a tilt

towards positive momentum stocks. For the Kelly portfolio, the momentum factor is

statistically indistinguishable from zero.

The models' R-squared (R2) values are consistently low for the Kelly portfolio, indicating low

explanatory power. Furthermore, the inclusion of additional risk factors does not result in a
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significant increase in the adjusted 𝑅𝑅2 values, suggesting the factors added have low 

explanatory power over the portfolio’s excess returns. The highest 𝑅𝑅2 is a mere 2.5% for the 

Kelly portfolio with the four-factor model, indicating that only 2.5% of the variation in excess 

returns can be explained by the risk factors in the model. This suggests that there are other 

excluded or unobservable factors that are driving the returns. As a result, our alpha values are 

too high and misleading. 

If we address the CAPM model for the Kelly portfolio, we initially note the low beta. As the 

market exposure is the only risk factor in the model, it struggles to explain the excess returns 

of the strategy. Consequently, the explanatory power is very low and the alpha as a measure 

of unexplained variation of excess returns is inflated. When including the significant SMB 

factor in FF3F, the explanatory power increases. However, as Kelly has negative exposure to 

both new factors and the beta is practically unchanged, the alpha measure increases. By 

including an additional momentum factor in Carhart, the adjusted 𝑅𝑅2 decreases, as the 

additional factor is insignificant.  

As there are excluded factors driving the returns of the Kelly portfolio, supplementing, or 

replacing factors with others may be necessary to achieve better results. Black et al. (1972) 

argue that low beta assets outperform high beta assets, known as the low-beta anomaly. The 

anomaly contradicts the CAPM, where an investor can only achieve higher returns through 

higher systematic risk. Given its low beta, the Kelly portfolio may be subject to this anomaly, 

and a subsequent factor may be necessary to better explain the portfolio returns. Fama and 

French (2015), argue that by adding a profitability factor (RMW) and an investment factor 

(CMA), the extended five-factor model captures the returns associated with a low market 

beta. However, our findings in table A4.1 in the appendix, suggest that this is not the case for 

our Kelly portfolio. As such, other relevant factors are still excluded, and our alpha measures 

are likely still inaccurate.  

Still, our Durbin-Watson and Breusch-Pagan test results in table A4.2 for our regression 

models, show no sign of autocorrelation or heteroskedasticity on a 5% level.  

4.2 Transaction Costs Adjustment 

Our results, albeit with a poor explanatory factor, indicate that Kelly generates alpha, whereas 

Markowitz fails to do so. However, both strategies have been implemented with relatively 

relaxed portfolio constraints allowing for large positions. Furthermore, we use monthly 
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including an additional momentum factor in Carhart, the adjusted R2 decreases, as the

additional factor is insignificant.

As there are excluded factors driving the returns of the Kelly portfolio, supplementing, or

replacing factors with others may be necessary to achieve better results. Black et al. (1972)

argue that low beta assets outperform high beta assets, known as the low-beta anomaly. The

anomaly contradicts the CAPM, where an investor can only achieve higher returns through

higher systematic risk. Given its low beta, the Kelly portfolio may be subject to this anomaly,

and a subsequent factor may be necessary to better explain the portfolio returns. Fama and

French (2015), argue that by adding a profitability factor (RMW) and an investment factor

(CMA), the extended five-factor model captures the returns associated with a low market

beta. However, our findings in table A4.1 in the appendix, suggest that this is not the case for

our Kelly portfolio. As such, other relevant factors are still excluded, and our alpha measures

are likely still inaccurate.

Still, our Durbin-Watson and Breusch-Pagan test results in table A4.2 for our regression

models, show no sign of autocorrelation or heteroskedasticity on a 5% level.

4.2 Transaction Costs Adjustment

Our results, albeit with a poor explanatory factor, indicate that Kelly generates alpha, whereas

Markowitz fails to do so. However, both strategies have been implemented with relatively

relaxed portfolio constraints allowing for large positions. Furthermore, we use monthly
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rebalancing, and as a result, both strategies incur quite substantial trading costs. To get more 

realistic real-world estimates of the strategies’ alpha we want to account for these trading 

costs. To test the robustness of the positive alphas through accounting for transaction costs, 

we estimate each portfolio’s turnover and the average bid-ask spreads for each stock in the 

corresponding months, in line with Corwin and Schultz (2012).  

We find the portfolio turnover by taking the absolute value of the delta for each rebalancing 

period. This will then yield the percentage size of the strategies’ capital traded for each 

security at each rebalancing period. The consequent turnover is then multiplied with half of 

the monthly average bid-ask spread for each security and the assumed brokerage fees of 

0.049%. We adjust the returns of the Kelly and Markowitz portfolios by subtracting the 

overall monthly costs incurred.   

Table 4.3: Regression Results Net of Transaction Costs 
The table reports the regression results for the Kelly and Markowitz portfolio adjusted for 

transaction costs when crossing half of the bid-ask spread. The bid-ask spreads are estimated using 

Corwin and Schultz’s (2012) estimator. The portfolios’ excess adjusted returns are regressed on 

the CAPM, FF3F and C4F model. The regression results are estimated utilizing monthly excess 

adjusted returns from February 2003 through December 2022. 

 Dependent variable: 
 Kelly Markowitz 
 CAPM FF3F C4F CAPM FF3F C4F 

Alpha 0.006 0.009* 0.009* -0.004 -0.002 -0.007* 
 (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) 

Market 0.115 0.115 0.117 0.982*** 0.977*** 1.018*** 
 (0.082) (0.083) (0.084) (0.063) (0.064) (0.061) 

SMB  -0.179* -0.176*  -0.117 -0.069 
  (0.095) (0.096)  (0.073) (0.070) 

HML  -0.014 -0.014  0.022 0.032 
  (0.079) (0.080)  (0.061) (0.058) 

UMD   0.014   0.272*** 
   (0.075)   (0.055) 

Observations 239 239 239 239 239 239 
R2 0.008 0.024 0.024 0.506 0.512 0.558 
Adjusted R2 0.004 0.011 0.007 0.504 0.506 0.550 

rebalancing, and as a result, both strategies incur quite substantial trading costs. To get more

realistic real-world estimates of the strategies' alpha we want to account for these trading

costs. To test the robustness of the positive alphas through accounting for transaction costs,

we estimate each portfolio's turnover and the average bid-ask spreads for each stock in the

corresponding months, in line with Corwin and Schultz (2012).

We find the portfolio turnover by taking the absolute value of the delta for each rebalancing

period. This will then yield the percentage size of the strategies' capital traded for each

security at each rebalancing period. The consequent turnover is then multiplied with half of

the monthly average bid-ask spread for each security and the assumed brokerage fees of

0.049%. We adjust the returns of the Kelly and Markowitz portfolios by subtracting the

overall monthly costs incurred.

Table 4.3: Regression Results Net of Transaction Costs

The table reports the regression results for the Kelly and Markowitz portfolio adjusted for

transaction costs when crossing half of the bid-ask spread. The bid-ask spreads are estimated using

Corwin and Schultz's (2012) estimator. The portfolios' excess adjusted returns are regressed on

the CAPM, FF3F and C4F model. The regression results are estimated utilizing monthly excess

adjusted returns from February 2003 through December 2022.

Alpha

Market

SMB

HML

Kelly
CAPM FF3F

0.006 0.009*

(0.005) (0.005)

0.115 0.115
(0.082) (0.083)

-0.179*

(0.095)

-0.014
(0.079)

UMD

Observations
R2

Adjusted R2

239
0.008
0.004

239
0.024
0.01l

Dependent variable:

Markowitz
C4F CAPM FF3F C4F

0.009* -0.004 -0.002 -0.007*

(0.005) (0.004) (0.004) (0.004)

0.117 0.982*** 0_977*** 1.018***

(0.084) (0.063) (0.064) (0.061)

-0.176* -0.117 -0.069
(0.096) (0.073) (0.070)

-0.014 0.022 0.032
(0.080) (0.061) (0.058)

0.014 0.212***

(0.075) (0.055)

239 239 239 239
0.024 0.506 0.512 0.558
0.007 0.504 0.506 0.550
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Residual Std. Error 0.070 0.070 0.070 0.054 0.054 0.051 

Significance level *p<0.1; **p<0.05; ***p<0.01 

Table 4.3 shows that after accounting for transaction costs, the alphas are only significant for  

the three- and four-factor model for Kelly on a 10% level. Regarding Markowitz, the alpha is 

now statistically negative under the four-factor model, implying that the portfolio destroys 

value given the included risk factors. Consequently, in our case, adjusting for transaction 

costs considerably affects the performance of our portfolios, as expected. However, we still 

note the extremely low 𝑅𝑅2, indicating that our models do not provide satisfactory explanatory 

power.  

To further illustrate, figure 4.2 graphically depicts the effect of transaction costs on portfolio 

performance.  

Figure 4.2: Holding Period Returns Net of Transaction Costs 
The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February 

2003 through December 2022 net of transaction costs. After subtracting the monthly transaction costs, 

the monthly portfolio returns are multiplied. By reinvesting the capital gains for each month, we 

achieve the compounded returns. The returns represent the ending wealth we obtain through the 

different strategies.  

As predicted, transaction costs significantly harm the holding period returns for both Kelly 

and Markowitz, with the Kelly portfolio now considerably underperforming the market. We 

note that costs with holding the market portfolio have been ignored, however, this is expected 
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Residual Std. Error 0.070 0.070 0.070 0.054 0.054 0.051

Significance level *p<0.1; **p<0.05; ***p<0.01

Table 4.3 shows that after accounting for transaction costs, the alphas are only significant for

the three- and four-factor model for Kelly on a 10% level. Regarding Markowitz, the alpha is

now statistically negative under the four-factor model, implying that the portfolio destroys

value given the included risk factors. Consequently, in our case, adjusting for transaction

costs considerably affects the performance of our portfolios, as expected. However, we still

note the extremely low R2, indicating that our models do not provide satisfactory explanatory

power.

To further illustrate, figure 4.2 graphically depicts the effect of transaction costs on portfolio

performance.

Figure 4.2: Holding Period Returns Net of Transaction Costs

The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February

2003 through December 2022 net of transaction costs. After subtracting the monthly transaction costs,

the monthly portfolio returns are multiplied. By reinvesting the capital gains for each month, we

achieve the compounded returns. The returns represent the ending wealth we obtain through the

different strategies.
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As predicted, transaction costs significantly harm the holding period returns for both Kelly

and Markowitz, with the Kelly portfolio now considerably underperforming the market. We

note that costs with holding the market portfolio have been ignored, however, this is expected
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to have little impact. The underperformance is also reflected in the key statistics in table 4.4, 

where both strategies underperform the benchmark on every measure. In light of the poor 

performance of the Kelly portfolio after transaction costs, our alpha measures in table 4.3 

seems high. 

Table 4.4: Key Statistics Net of Transaction Costs 

The table reports annualized performance measures for Kelly, Markowitz, and the benchmark when 

adjusting for transaction costs. The performance measures are calculated utilizing monthly figures. 

The Sharpe, Sortino, IR and standard deviation are annualized by multiplying with √12. Arithmetic 

and geometric mean are annualized by multiplying with 12.   

 Kelly Markowitz Benchmark 

Sharpe Ratio 0.36 0.23 0.58 

Sortino Ratio (MAR=rf) 0.56 0.33 0.68 

Information Ratio -0.08 -0.27 - 

Arithmetic Mean 11.5% 8.9% 13.9% 

Geometric Mean 8.5% 5.4% 12.0% 

Standard Deviation 24.3% 26.5% 19.2% 

When estimating the spreads in line with Corwin and Schultz (2012), by using high and low 

prices, we achieve an average bid-ask spread for the securities in our sample of 0.87%. 

However, when evaluating the limited selection of bid-ask spreads we were able to obtain 

from Bloomberg, we note a considerable difference for the majority of the stocks in our 

portfolios compared to our estimated spreads. The observed spreads for the most liquid stock 

usually appear in a range of [0.05%, 0.15%]. Though, as this represents more recent data, we 

note that increases in liquidity in recent years as per Næs et al. (2008) naturally should result 

in narrower spreads that may not be representable for the entirety of our time period. On the 

other hand, given the significant difference in observed and estimated spreads, we wish to test 

the sensitivity of our portfolios to this parameter. As such, we illustrate by dividing the 

estimated spread by an arbitrary factor of 8, to achieve spreads closer to our observed interval, 

while acknowledging the relative difference in spreads for the securities in our portfolios.  

to have little impact. The underperformance is also reflected in the key statistics in table 4.4,

where both strategies underperform the benchmark on every measure. In light of the poor

performance of the Kelly portfolio after transaction costs, our alpha measures in table 4.3

seems high.

Table 4.4: Key Statistics Net of Transaction Costs

The table reports annualized performance measures for Kelly, Markowitz, and the benchmark when

adjusting for transaction costs. The performance measures are calculated utilizing monthly figures.

The Sharpe, Sortino, IR and standard deviation are annualized by multiplying with m. Arithmetic

and geometric mean are annualized by multiplying with 12.

Kelly Markowitz

Sharpe Ratio 0.36 0.23

Sortino Ratio (MAR=rf) 0.56 0.33

Information Ratio -0.08 -0.27

Arithmetic Mean 11.5% 8.9%

Geometric Mean 8.5% 5.4%

Standard Deviation 24.3% 26.5%

Benchmark

0.58

0.68

13.9%

12.0%

19.2%

When estimating the spreads in line with Corwin and Schultz (2012), by using high and low

prices, we achieve an average bid-ask spread for the securities in our sample of 0.87%.

However, when evaluating the limited selection of bid-ask spreads we were able to obtain

from Bloomberg, we note a considerable difference for the majority of the stocks in our

portfolios compared to our estimated spreads. The observed spreads for the most liquid stock

usually appear in a range of [0.05%, 0.15%]. Though, as this represents more recent data, we

note that increases in liquidity in recent years as per Næs et al. (2008) naturally should result

in narrower spreads that may not be representable for the entirety of our time period. On the

other hand, given the significant difference in observed and estimated spreads, we wish to test

the sensitivity of our portfolios to this parameter. As such, we illustrate by dividing the

estimated spread by an arbitrary factor of 8, to achieve spreads closer to our observed interval,

while acknowledging the relative difference in spreads for the securities in our portfolios.
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Figure 4.3: Holding Period Returns Net of Transaction Costs, Using a Lower Spread 

Estimate 
The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February 

2003 through December 2022 net of transaction costs. Here, a lower spread estimate is utilized, 

resulting in lower transaction costs. After subtracting the monthly transaction costs, the monthly 

portfolio returns are multiplied. By reinvesting the capital gains for each month, we achieve the 

compounded returns. The returns represent the ending wealth we obtain through the different 

strategies.  

When using a lower spread estimate, the holding period returns improve drastically, as shown 

in figure 4.3. The growth optimal portfolio now generates marginally higher wealth than the 

market portfolio. The key statistics in table 4.5 also highlights the increase in performance 

associated with lower transaction costs, with our key portfolio financials now resembling 

those for our gross returns. Focusing on our regression results net of transactions costs in table 

4.6, we note that naturally, by using a lower spread estimate, our results show that transaction 

costs now have a less degrading effect on the alpha values. Nevertheless, the explanatory 

power of the models is still very low. 
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Figure 4.3: Holding Period Returns Net of Transaction Costs, Using a Lower Spread

Estimate

The figure plots the holding period returns for Kelly, Markowitz, and the benchmark from February

2003 through December 2022 net of transaction costs. Here, a lower spread estimate is utilized,

resulting in lower transaction costs. After subtracting the monthly transaction costs, the monthly

portfolio returns are multiplied. By reinvesting the capital gains for each month, we achieve the

compounded returns. The returns represent the ending wealth we obtain through the different

strategies.
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When using a lower spread estimate, the holding period returns improve drastically, as shown

in figure 4.3. The growth optimal portfolio now generates marginally higher wealth than the

market portfolio. The key statistics in table 4.5 also highlights the increase in performance

associated with lower transaction costs, with our key portfolio financials now resembling

those for our gross returns. Focusing on our regression results net of transactions costs in table

4.6, we note that naturally, by using a lower spread estimate, our results show that transaction

costs now have a less degrading effect on the alpha values. Nevertheless, the explanatory

power of the models is still very low.
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Table 4.5: Key Statistics Net of Transaction Costs, Using a Lower Spread Estimate 

The table reports annualized performance measures for Kelly, Markowitz, and the benchmark 

when adjusting for transaction costs, using a lower spread estimate. The performance measures are 

calculated utilizing monthly figures. The Sharpe, Sortino, IR and standard deviation are annualized 

by multiplying with √12. Arithmetic and geometric mean are annualized by multiplying with 12.   

 Kelly Markowitz Benchmark 

Sharpe Ratio 0.50 0.36 0.58 

Sortino Ratio (MAR=rf) 0.81 0.52 0.68 

Information Ratio 0.04 -0.08 - 

Arithmetic Mean 15.1% 12.4% 13.9% 

Geometric Mean 12.2% 8.9% 12.0% 

Standard Deviation 24.5% 26.4% 19.2% 

 

Table 4.6: Regression Results Net of Transaction Costs, Using a Lower Spread 

Estimate 
The table reports the regression results for the Kelly and Markowitz portfolio when adjusting for 

transaction costs, using a lower spread estimate. The portfolios’ excess adjusted returns are 

regressed on the CAPM, FF3F and C4F model. The regression results are estimated utilizing 

monthly excess adjusted returns from February 2003 through December 2022. 

 Dependent variable: 
 Kelly Markowitz 
 CAPM FF3F C4F CAPM FF3F C4F 

Alpha 0.009** 0.012** 0.012** -0.001 0.001 -0.004 
 (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) 

Market 0.114 0.114 0.116 0.977*** 0.972*** 1.013*** 
 (0.083) (0.083) (0.084) (0.063) (0.064) (0.061) 

SMB  -0.183* -0.181*  -0.117 -0.069 
  (0.095) (0.096)  (0.073) (0.070) 

HML  -0.013 -0.013  0.023 0.033 

Table 4.5: Key Statistics Net of Transaction Costs, Using a Lower Spread Estimate

The table reports annualized performance measures for Kelly, Markowitz, and the benchmark

when adjusting for transaction costs, using a lower spread estimate. The performance measures are

calculated utilizing monthly figures. The Sharpe, Sortino, IR and standard deviation are annualized

by multiplying with i l l . Arithmetic and geometric mean are annualized by multiplying with 12.

Kelly Markowitz

Sharpe Ratio 0.50 0.36

Sortino Ratio (MAR=rf) 0.81 0.52

Information Ratio 0.04 -0.08

Arithmetic Mean 15.1% 12.4%

Geometric Mean 12.2% 8.9%

Standard Deviation 24.5% 26.4%

Benchmark

0.58

0.68

13.9%

12.0%

19.2%

Table 4.6: Regression Results Net of Transaction Costs, Using a Lower Spread

Estimate

The table reports the regression results for the Kelly and Markowitz portfolio when adjusting for

transaction costs, using a lower spread estimate. The portfolios' excess adjusted returns are

regressed on the CAPM, FF3F and C4F model. The regression results are estimated utilizing

monthly excess adjusted returns from February 2003 through December 2022.

Alpha

Market

SMB

HML

Dependent variable:

Kelly Markowitz

CAPM FF3F C4F CAPM FF3F C4F

0.009** 0.012** 0.012** -0.001 0.001 -0.004

(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

0.114 0.114 0.116 0_977*** 0.972*** 1.013***

(0.083) (0.083) (0.084) (0.063) (0.064) (0.061)

-0.183* -0.18 l* -0.117 -0.069

(0.095) (0.096) (0.073) (0.070)

-0.013 -0.013 0.023 0.033
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  (0.080) (0.080)  (0.061) (0.058) 

UMD   0.013   0.270*** 
   (0.076)   (0.055) 

Observations 239 239 239 239 239 239 
R2 0.008 0.024 0.024 0.504 0.510 0.555 
Adjusted R2 0.004 0.012 0.008 0.502 0.503 0.548 
Residual Std. Error 0.071 0.070 0.070 0.054 0.054 0.051 

Significance level *p<0.1; **p<0.05; ***p<0.01 
 

4.3 Robustness  

After analyzing the effect of transaction costs on portfolio performance, we wish to further 

analyze the robustness of other sensitive parameters for the Kelly portfolio. Consequently, our 

choice of fractional Kelly, as well as the quantity constraint is sensitized without transaction 

costs in the figures 4.4 and 4.5 below: 

Figure 4.4: Sensitivity of the Kelly Portfolio’s Quantity Constraint 
The figure plots the holding period returns of three Kelly portfolios from February 2003 through 

December 2022 using different quantity constraints. The initial constraint of maximum 25% of the 

capital invested in a single security is sensitized, allowing for 40% and 10%. The returns of the 

portfolios are multiplied, representing the compounded returns and the ending wealth we achieve with 

the different constraints.  

Figure 4.4 shows the sensitivity of our proposed quantity constraint for the Kelly portfolio. 
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R2 0.008 0.024 0.024 0.504 0.510 0.555
Adjusted R2 0.004 0.012 0.008 0.502 0.503 0.548
Residual Std. Error 0.071 0.070 0.070 0.054 0.054 0.051

Significance level *p<0.1; **p<0.05; ***p<0.01

4.3 Robustness

After analyzing the effect of transaction costs on portfolio performance, we wish to further

analyze the robustness of other sensitive parameters for the Kelly portfolio. Consequently, our

choice of fractional Kelly, as well as the quantity constraint is sensitized without transaction

costs in the figures 4.4 and 4.5 below:

Figure 4.4: Sensitivity of the Kelly Portfolio's Quantity Constraint

The figure plots the holding period returns of three Kelly portfolios from February 2003 through

December 2022 using different quantity constraints. The initial constraint of maximum 25% of the

capital invested in a single security is sensitized, allowing for 40% and l 0%. The returns of the

portfolios are multiplied, representing the compounded returns and the ending wealth we achieve with

the different constraints.
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Figure 4.4 shows the sensitivity of our proposed quantity constraint for the Kelly portfolio.
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With an initial constraint of 25% investments long or short in single securities, we now allow 

for 10% and 40%. The portfolio with a 40% constraint resembles our original Kelly portfolio, 

but has greater volatility and higher return. Every movement of our regular Kelly is 

exaggerated. However, the positive returns dominate, and as a result, the ending wealth 

achieved is at a significantly higher level than before, although with a higher risk of ruin. A 

natural discussion follows whether our growth optimal portfolio instead should be subject to a 

constraint of 40%, but making such a choice would subject us to hindsight bias. Furthermore, 

this strategy has larger turnover, hence it would be more difficult and unrealistic to implement 

in real life. Still, we note that the Kelly portfolio with our chosen constraints is not the optimal 

portfolio with the highest growth rate. Hence, further outperformance of the benchmark is 

certainly possible. However, the questions remain as to whether more aggressive portfolios 

are implementable, as well as how degrading the transaction costs are for performance. 

On the other hand, the more conservative portfolio with a 10% constraint behaves quite 

differently than our original Kelly, exhibiting significantly lower volatility, but also very low 

final wealth. For a particularly risk-averse investor, such a portfolio can appear more 

attractive. Ultimately, the Kelly portfolio shows great sensitivity to the position size 

constraint, with not only the return achieved seemingly very reliant on our selection, but also 

the risk level and underlying characteristics of the portfolio.  

Figure 4.5: Sensitivity of the Fractional Kelly 
The figure plots the holding period returns of three Kelly portfolios from February 2003 through 

December 2022 using different Kelly fractions. The initial fraction of 𝑠𝑠 = 1
50 is sensitized with Kelly 

fractions of 𝑠𝑠 = 1
25 and 𝑠𝑠 = 1

75. The returns of the portfolios are multiplied, representing the 

compounded returns and ending wealth we achieve with the different fractional Kelly portfolios. All 

portfolios have the same position size constraint of maximum 25%. 

With an initial constraint of 25% investments long or short in single securities, we now allow

for l 0% and 40%. The portfolio with a 40% constraint resembles our original Kelly portfolio,

but has greater volatility and higher return. Every movement of our regular Kelly is

exaggerated. However, the positive returns dominate, and as a result, the ending wealth

achieved is at a significantly higher level than before, although with a higher risk of ruin. A

natural discussion follows whether our growth optimal portfolio instead should be subject to a

constraint of 40%, but making such a choice would subject us to hindsight bias. Furthermore,

this strategy has larger turnover, hence it would be more difficult and unrealistic to implement

in real life. Still, we note that the Kelly portfolio with our chosen constraints is not the optimal

portfolio with the highest growth rate. Hence, further outperformance of the benchmark is

certainly possible. However, the questions remain as to whether more aggressive portfolios

are implementable, as well as how degrading the transaction costs are for performance.

On the other hand, the more conservative portfolio with a l 0% constraint behaves quite

differently than our original Kelly, exhibiting significantly lower volatility, but also very low

final wealth. For a particularly risk-averse investor, such a portfolio can appear more

attractive. Ultimately, the Kelly portfolio shows great sensitivity to the position size

constraint, with not only the return achieved seemingly very reliant on our selection, but also

the risk level and underlying characteristics of the portfolio.

Figure 4.5: Sensitivity of the Fractional Kelly

The figure plots the holding period returns of three Kelly portfolios from February 2003 through

December 2022 using different Kelly fractions. The initial fraction of c =
510

is sensitized with Kelly

fractions of c = .2:...and c = .2:.._The returns of the portfolios are multiplied, representing the
25 75

compounded returns and ending wealth we achieve with the different fractional Kelly portfolios. All

portfolios have the same position size constraint of maximum 25%.
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Above, figure 4.5 displays the sensitivity of our choice of fractional Kelly. Our Kelly fraction 

of 𝑠𝑠 = 50 is sensitized with 𝑠𝑠 = 25 and 𝑠𝑠 = 75. In this instance, the effects are visible but not 

as prominent as in figure 4.4. By using a lower Kelly fraction, the portfolio will have higher 

weights before being subject to the quantity constraint, making it a more aggressive strategy. 

Oppositely, when using a higher fraction, we get lower wealth but slightly lower volatility. 

The similarity of the three portfolios highlights the importance of using an appropriate 

position size constraint, as this clearly has a higher effect on our portfolios than the actual 

Kelly fraction. This is in line with expectations, as most Kelly portfolio weights will have to 

be constrained regardless, given the aggressive nature of our Kelly strategy.  

4.4 Implementability 

Our analysis of the growth optimal Kelly portfolio indicates that the transaction costs the 

strategy incurs are quite substantial. Following, this leads to a discussion of how 

implementable our strategy is in the real world. An implicit assumption made in the 

implementation of our strategy is the closing price being the obtainable price when purchasing 

or selling a security. Should a large fund run this strategy at a large scale, such an assumption 

may not hold particularly well. Larger funds are known to move prices when trading, 

consequently incurring even larger transaction costs than already accounted for. An additional 

problem arising for a larger fund is regarding available volume. Figure A2.2 shows that for 

certain periods, this might be a real problem. To account for the large trades observed in the 

Kelly strategy, we have chosen the ten stocks with the highest NOK-volume on the OBX, and 
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Above, figure 4.5 displays the sensitivity of our choice of fractional Kelly. Our Kelly fraction

of c = 50 is sensitized with c = 25 and c = 75. In this instance, the effects are visible but not

as prominent as in figure 4.4. By using a lower Kelly fraction, the portfolio will have higher

weights before being subject to the quantity constraint, making it a more aggressive strategy.

Oppositely, when using a higher fraction, we get lower wealth but slightly lower volatility.

The similarity of the three portfolios highlights the importance of using an appropriate

position size constraint, as this clearly has a higher effect on our portfolios than the actual

Kelly fraction. This is in line with expectations, as most Kelly portfolio weights will have to

be constrained regardless, given the aggressive nature of our Kelly strategy.

4.4 Implementability

Our analysis of the growth optimal Kelly portfolio indicates that the transaction costs the

strategy incurs are quite substantial. Following, this leads to a discussion of how

implementable our strategy is in the real world. An implicit assumption made in the

implementation of our strategy is the closing price being the obtainable price when purchasing

or selling a security. Should a large fund run this strategy at a large scale, such an assumption

may not hold particularly well. Larger funds are known to move prices when trading,

consequently incurring even larger transaction costs than already accounted for. An additional

problem arising for a larger fund is regarding available volume. Figure A2.2 shows that for

certain periods, this might be a real problem. To account for the large trades observed in the

Kelly strategy, we have chosen the ten stocks with the highest NOK-volume on the OBX, and
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further added a position size constraint of 25% to limit turnover. Still, Atea ASA, the security 

with the 10th highest average daily NOK-volume in 2003 had only 19M in average daily 

NOK-volume. The largest trade possible with the strategy is either from 25% short to 25% 

long or vice versa. This results in a trade of 50% of the capital deployed long or short. If all 

trading is executed in the last day of the month as assumed, the strategy could only have a 

maximum capital base of a mere 38M to avoid restrictions on portfolio weights suggested by 

the Kelly criterion. While trades of this size are not required particularly often, one does not 

want to be restricted by available volume when implementing a trading strategy.  

Moreover, another implicit assumption that becomes apparent is the possibility of capturing 

the entire daily NOK-volume of a stock, should the strategy require you to do so. An 

additional buffer would likely be required to make the execution of the trade realistic. 

However, dependent on the size of the portfolio, the trades would likely be executed in the 

span of several trading days to ensure sufficient NOK-volume. This introduces further 

uncertainty regarding obtainable prices, making our estimates less precise.  

One of the aspects related to the strong performance of the growth optimal strategy is its 

ability to bet big both ways. However, large short positions are harder to come by than long 

positions, creating an additional availability issue. Whereas both the market and the 

Markowitz portfolio suffer significant drawdowns during the financial crisis, the Kelly 

portfolio exhibit stellar performance. This is largely due to the Kelly portfolio being net short 

this period, as shown in figure A2.3 in the appendix. In reality, obtaining large short positions 

in bear markets can be extremely difficult. Consequently, the strategy at times of considerable 

market distress may be forced to take larger positions in the riskless security as an alternative 

to the ideal scenario of going short, at times when securities simply may not be available to 

short. Furthermore, short positions impose larger transaction costs. An investor usually pays a 

borrowing fee when lending the security, as well as margin interest on the margin account 

opened. These associated short costs also vary with the market climate, where short costs 

naturally increase at times of extreme market distress. Additional costs when shorting a 

security has been disregarded in our analysis, indicating that our transaction cost estimate 

could be too low, compared to the real-life costs of implementing the growth optimal Kelly 

portfolio. 
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5. Conclusion 

In this study, we test whether the growth optimal Kelly portfolio is able to beat the benchmark 

and generate alpha in the Norwegian stock market from February 2003 through December 

2022. We find that the Kelly portfolio yields a compound average growth rate of 14.1%, 

resulting in a final wealth of 16.39 (indexed at 1). This outperforms the OSEBX, who 

achieves an ending wealth of 10.84 and an annual growth rate of 12%. The Markowitz 

portfolio underperforms both Kelly and the benchmark. We also find that Kelly and the 

benchmark achieve nearly identical Sharpe ratios of 0.58, but that Kelly achieves a higher 

Sortino ratio of 0.95. The Kelly portfolio generates an annual alpha of 16.8% in the three- and 

four-factor models of Fama French and Carhart. The alpha is significant on a 1% level. 

However, the beta of the portfolio is low, and our models struggle to explain the excess 

returns generated by the Kelly portfolio, resulting in a very low 𝑅𝑅2. This leads us to believe 

that our factor models are not sufficient in explaining the returns of our portfolio, and that the 

alpha measures are inflated.  

Moreover, we find that the risk-adjusted excess returns may not be achievable in the real 

world. When accounting for transaction costs, Kelly underperforms the benchmark with 

regards to ending wealth, and the alpha is only significant on a 10% level. However, our 

results are very sensitive to the level of transaction costs, where a lower estimate yields 

significant improvement in performance.  

Our Kelly portfolio is based on Thorp (2006) and Merton (1969). Both assume no transaction 

costs when deriving the optimal portfolio. Perhaps to be able to achieve risk-adjusted excess 

returns in the real world, the transaction costs would need to be internalized in the model 

when calculating the optimal portfolio, as opposed to accounted for afterwards. Extensions of 

Merton’s model with transaction costs are studied by, amongst others, Davis and Norman 

(1990) and Morton and Pliska (1995). However, such extensions are not analyzed in this 

study. 

Our Kelly portfolio for the stock market exhibits strong performance without transaction 

costs. However, we know the stock market lacks known probability distributions and 

outcomes that are required for an optimal performance of the Kelly criterion. Extending the 

analysis to a setting with more limited outcomes, such as exploring options strategies like the 

split strike conversion, holds promise in determining whether such a portfolio would 

outperform our approach.  
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Ultimately, although the Kelly criterion applied in our setting generates strong returns, our 

regression models have low explanatory power, making it difficult for us to draw a conclusion 

regarding the alpha. Furthermore, the alpha the strategy seems to generate, appears to 

diminish when applying the portfolio to real-world conditions. 
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Appendix 

A1 Mathematical Derivations 

A1.1: Mathematical Derivation of the Coin Toss Problem (Thorp, 2006) 

With a fixed fraction strategy, we bet 𝐵𝐵𝑖𝑖 = 𝑓𝑓𝑋𝑋𝑖𝑖−1, where 0 ≤ 𝑓𝑓 ≤ 1. We note number of 

successes and failures 𝑆𝑆 and 𝐹𝐹, our capital after 𝑛𝑛 trials is then 𝑋𝑋𝑛𝑛 = 𝑋𝑋0(1 + 𝑓𝑓)𝑆𝑆(1 − 𝑓𝑓)𝐹𝐹, 

where 𝑆𝑆 + 𝐹𝐹 = 𝑛𝑛. With 𝑓𝑓 in the interval 0 < 𝑓𝑓 < 1, 𝑃𝑃(𝑋𝑋𝑛𝑛 = 0) = 0. Hence, gambler´s ruin is 

technically avoided. 

Since: 

𝑠𝑠𝑛𝑛 log[𝑋𝑋𝑛𝑛
𝑋𝑋0

]
1
𝑛𝑛

= 𝑋𝑋𝑛𝑛
𝑋𝑋0

 (𝑀𝑀1.1) 

We have the exponential rate of increase per trial equal to: 

𝐺𝐺𝑛𝑛(𝑓𝑓) = log [𝑋𝑋𝑛𝑛
𝑋𝑋0

]
1
𝑛𝑛

= 𝑆𝑆
𝑛𝑛 log(1 + 𝑓𝑓) + 𝐹𝐹

𝑛𝑛 log(1 − 𝑓𝑓) (𝑀𝑀1.2) 

This measures the exponential rate of increase per trial. Kelly chose to maximize the expected 

value of the growth rate coefficient 𝑔𝑔(𝑓𝑓), where: 

𝑔𝑔(𝑓𝑓) = 𝐸𝐸 {[𝑋𝑋𝑛𝑛
𝑋𝑋0

]
1
𝑛𝑛

} = 𝐸𝐸 {𝑆𝑆
𝑛𝑛 log(1 + 𝑓𝑓) + 𝐹𝐹

𝑛𝑛 log(1 − 𝑓𝑓)}

= 𝑝𝑝 log(1 + 𝑓𝑓) + 𝑞𝑞 log(1 − 𝑓𝑓) 

(𝑀𝑀1.3) 

Since 𝑔𝑔(𝑓𝑓) = 1
𝑛𝑛 𝐸𝐸(log 𝑋𝑋𝑛𝑛) − 1

𝑛𝑛 log 𝑋𝑋0, for 𝑛𝑛 fixed, maximizing 𝑔𝑔(𝑓𝑓) is equivalent to 

maximizing 𝐸𝐸 log 𝑋𝑋𝑛𝑛. 

To find the optimal fraction 𝑓𝑓∗ to wager in each bet, we maximize 𝑔𝑔(𝑓𝑓) by setting 𝑔𝑔′(𝑓𝑓) = 0 

This yields: 

𝑔𝑔′(𝑓𝑓) = 𝑝𝑝
1 + 𝑓𝑓 − 𝑞𝑞

1 − 𝑓𝑓 = 𝑝𝑝 − 𝑞𝑞 − 𝑓𝑓
(1 + 𝑓𝑓)(1 − 𝑓𝑓) = 0 (𝑀𝑀1.4) 

 

A1.2: Mathematical Derivation of the Kelly Portfolio (Thorp, 2006) 

Appendix

A l Mathematical Derivations

Al . l : Mathematical Derivation of the Coin Toss Problem (Thorp, 2006)

With a fixed fraction strategy, we bet Bi = f X i - l , where 0 f l. We note number of

successes and failures Sand F, our capital after n trials is then Xn = XoCl + [ ) 5 ( 1 - f)F,

where S + F = n. With f in the interval 0 < f < 1, P(Xn = 0) = 0. Hence, gambler's ruin is

technically avoided.

Since:

1

n log[Xn]n x;e Xo =-
Xo

(Al . l )

We have the exponential rate of increase per trial equal to:

l

[Xn]n
S FGn(f) = log - = - l o g ( l + f) + - l o g ( l - f)

X0 n n
(Al.2)

This measures the exponential rate of increase per trial. Kelly chose to maximize the expected

value of the growth rate coefficient g ( f ) , where:

g ( f )=E{G:n=E t l o g ( l + f ) + : log(l - n]
= plog(l + f ) + qlog(l - f)

(Al.3)

Since g ( f ) = 2:.E(IogXn) _ 2:,IogX0, for n fixed, maximizing g ( f ) is equivalent to
n n

maximizing E IogXn.

To find the optimal fraction f* to wager in each bet, we maximize g (f) by setting g' (f) = 0

This yields:

I p q p - q - f
g ( f ) = 1 + f - 1 - f= (1 + f ) ( l - f ) = O (Al.4)

Al.2: Mathematical Derivation of the Kelly Portfolio (Thorp, 2006)
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First, when we apply the Kelly criterion to the stock market, we meet new challenges. 

Whereas in our coin tossing example, there are only a select possible outcomes, in the stock 

market there are practically an infinite number of outcomes. As a result, we use continuous 

probability distributions, instead of discrete probability distributions. We need to find the 𝑓𝑓 

that maximizes 𝑔𝑔(𝑓𝑓) = 𝐸𝐸 ln(1 + 𝑓𝑓𝑋𝑋) = ∫ ln(1 + 𝑓𝑓𝑓𝑓) 𝑇𝑇𝑃𝑃(𝑓𝑓) where 𝑃𝑃(𝑓𝑓) is a probability 

measure describing the outcomes. The problem is to find an optimum portfolio among 𝑛𝑛 

securities. Here, 𝑓𝑓 and 𝑓𝑓 are 𝑛𝑛-dimensional vectors and 𝑓𝑓𝑓𝑓 is their scalar product. We also 

have constraints for the maximization problem. We require 1 + 𝑓𝑓𝑓𝑓 > 0 so ln (⋅) is defined, 

and ∑ 𝑓𝑓𝑖𝑖 = 1 or a 𝑠𝑠 > 0 to normalize to a unit investment. Additional constraints such as no 

short selling, limited quantities invested in the 𝑖𝑖𝑡𝑡ℎ security, or leverage limits may also be 

added. The maximization problem is generally solvable as 𝑔𝑔(𝑓𝑓) is concave. However, a 

liquidity issue might arise that prohibits us from betting the full optimal 𝑓𝑓∗, forcing us to 

under bet. 

One technique to use is continuous approximation. We let 𝑋𝑋 be a random variable with 

𝑃𝑃(𝑋𝑋 = 𝑚𝑚 + 𝑠𝑠) = 𝑃𝑃(𝑋𝑋 = 𝑚𝑚 − 𝑠𝑠) = 0.5. Then 𝐸𝐸(𝑋𝑋) = 𝑚𝑚, 𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) = 𝑠𝑠2. If we have initial 

capital 𝑉𝑉0, betting fraction 𝑓𝑓, and return per unit of 𝑋𝑋, then the result is: 

𝑉𝑉(𝑓𝑓) = 𝑉𝑉0(1 + (1 − 𝑓𝑓)𝑟𝑟 + 𝑓𝑓𝑋𝑋) = 𝑉𝑉0(1 + 𝑟𝑟 + 𝑓𝑓(𝑋𝑋 − 𝑟𝑟)) (𝑀𝑀1.5) 

where 𝑟𝑟 is here the rate of return on remaining capital that we invest in the risk-free rate. 

Then: 

𝑔𝑔(𝑓𝑓) = 𝐸𝐸(𝐺𝐺(𝑓𝑓)) = 𝐸𝐸 (ln (𝑉𝑉(𝑓𝑓)
𝑉𝑉0

)) = 𝐸𝐸 ln(1 + 𝑟𝑟 + 𝑓𝑓(𝑋𝑋 − 𝑟𝑟))

= 0.5 ln(1 + 𝑟𝑟 + 𝑓𝑓(𝑚𝑚 − 𝑟𝑟 + 𝑠𝑠)) + 0.5 ln(1 + 𝑟𝑟 + 𝑓𝑓(𝑚𝑚 − 𝑟𝑟 − 𝑠𝑠)) 
(𝑀𝑀1.6) 

We now subdivide the time interval into 𝑛𝑛 equal independent steps, keeping the same drift 

and the same total variance. Accordingly, we replace 𝑚𝑚, 𝑠𝑠2 and 𝑟𝑟 with 𝑚𝑚/𝑛𝑛, 𝑠𝑠2/𝑛𝑛, and 𝑟𝑟/𝑛𝑛. 

We have 𝑛𝑛 independent 𝑋𝑋𝑖𝑖, 𝑖𝑖 = 1, … , 𝑛𝑛, with: 

𝑃𝑃 (𝑋𝑋𝑖𝑖 = 𝑚𝑚
𝑛𝑛 + 𝑠𝑠𝑛𝑛−1

2) = 𝑃𝑃 (𝑋𝑋𝑖𝑖 = 𝑚𝑚
𝑛𝑛 − 𝑠𝑠𝑛𝑛−1

2) = 0.5 (𝑀𝑀1.7) 

Then: 

First, when we apply the Kelly criterion to the stock market, we meet new challenges.

Whereas in our coin tossing example, there are only a select possible outcomes, in the stock

market there are practically an infinite number of outcomes. As a result, we use continuous

probability distributions, instead of discrete probability distributions. We need to find the f

that maximizes g ( f ) = E In(l + [ X ) = f In(l + f x ) d P ( x ) where P ( x ) is a probability

measure describing the outcomes. The problem is to find an optimum portfolio among n

securities. Here, x and f are n-dimensional vectors and f x is their scalar product. We also

have constraints for the maximization problem. We require 1 + f x > 0 so In(·) is defined,

and L f;_= 1 or a c > 0 to normalize to a unit investment. Additional constraints such as no

short selling, limited quantities invested in the i'" security, or leverage limits may also be

added. The maximization problem is generally solvable as g ( f ) is concave. However, a

liquidity issue might arise that prohibits us from betting the full optimal f*, forcing us to

under bet.

One technique to use is continuous approximation. We let X be a random variable with

P(X = m + s) = P(X = m - s) = 0.5. Then E(X) = m, V a r ( X ) = s2. I fwe have initial

capital V0, betting fraction f, and return per unit of X, then the result is:

V ( f ) = V0(1 + (1 - f ) r + [ X ) = V0( 1 + r + f ( X - r ) ) (Al.5)

where r is here the rate ofreturn on remaining capital that we invest in the risk-free rate.

Then:

g (f) = E(G( f ) ) = E ( In ( V ) ) ) = E In(1 + r + f (X - r ) )

= 0.5 In(1 + r + f ( m - r+ s ) ) + 0.5 In(1 + r + f ( m - r - s ) )

(Al.6)

We now subdivide the time interval into n equal independent steps, keeping the same drift

and the same total variance. Accordingly, we replace m, s2 and r with m / n , s2 /n , and r /n .

We have n independent Xi, i = 1, ... , n, with:

P(xi = : + s n - ½ ) = P(xi = : - s n - ½ ) = 0.5 (A l .7 )

Then:
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𝑉𝑉𝑛𝑛(𝑓𝑓)
𝑉𝑉0

= ∏(1 + (1 − 𝑓𝑓)𝑟𝑟 + 𝑓𝑓𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1
) (𝑀𝑀1.8) 

By taking the 𝐸𝐸(log(⋅)) of both sides, we get 𝑔𝑔(𝑓𝑓). Expanding the result in a power series 

leads to:  

𝑔𝑔(𝑓𝑓) = 𝑟𝑟 + 𝑓𝑓(𝑚𝑚 − 𝑟𝑟) − 𝑠𝑠2𝑓𝑓2

2 + 𝑁𝑁 (𝑛𝑛−1
2) (𝑀𝑀1.9) 

where 𝑁𝑁 (𝑛𝑛−1
2) has the property 𝑛𝑛

1
2𝑁𝑁 (𝑛𝑛−1

2) is bounded as 𝑛𝑛 → ∞. Letting 𝑛𝑛 → ∞, we have: 

𝑔𝑔∞(𝑓𝑓) ≡ 𝑟𝑟 + 𝑓𝑓(𝑚𝑚 − 𝑟𝑟) − 𝑠𝑠2𝑓𝑓2

2  (𝑀𝑀1.10) 

The limit 𝑉𝑉 ≡ 𝑉𝑉∞(𝑓𝑓) of 𝑉𝑉𝑛𝑛(𝑓𝑓) as 𝑛𝑛 → ∞ corresponds to a log normal diffusion process. This 

is a well-known model for securities prices as claimed by Thorp (2006). The security has 

instantaneous drift rate 𝑚𝑚, variance 𝑠𝑠2, and cash invested in the risk-free rate earns at the 

instantaneous rate 𝑟𝑟. The 𝑔𝑔∞(𝑓𝑓) of above is then the instantaneous growth rate of capital with 

fraction 𝑓𝑓 invested. Any bounded random variable 𝑋𝑋 with mean 𝐸𝐸(𝑋𝑋) = 𝑚𝑚 and variance 

𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) = 𝑠𝑠2, will lead to the same result.  

Now 𝑓𝑓 no longer needs to be less than or equal to 1, and the problems with log(⋅) being 

undefined for negative arguments have disappeared. 𝑓𝑓 < 0, is unproblematic, and simply 

corresponds to short selling the security.  

Any investor who follows the policy 𝑓𝑓 must adjust his investments “instantaneously”. Thorp 

(2006) states that in practice this means adjusting in tiny increments whenever there is a small 

change in 𝑉𝑉. This is known from option theory and does not prevent the practical 

implementation of the theory (Black and Scholes, 1973).  However, this is generally not 

implementable in the real world. As a compromise, we will use monthly rebalancing of the 

investments in the portfolio. 

𝑔𝑔∞(𝑓𝑓) is exactly parabolic and easy to study. Lognormality of  𝑉𝑉(𝑓𝑓)
𝑉𝑉0

 means log (𝑉𝑉(𝑓𝑓)
𝑉𝑉0

) is 

𝑁𝑁(𝑀𝑀, 𝑆𝑆2) distributed with mean 𝑀𝑀 = 𝑔𝑔∞(𝑓𝑓)𝑡𝑡 and variance 𝑆𝑆2 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝐺𝐺∞(𝑓𝑓))𝑡𝑡 for any time 

𝑡𝑡. Using this, we can determine the expected capital growth. Additionally, we can determine 

the time 𝑡𝑡𝑘𝑘 required for 𝑉𝑉(𝑓𝑓) to be at least 𝑘𝑘 standard deviations above 𝑉𝑉(0). First, we can 

n
V n f ) =n(1 + (1 - f ) r + f Xi)

O i = l

(Al.B)

By taking the £(log(·)) of both sides, we get B ( f ) . Expanding the result in a power series

leads to:

52f2 ( 1)B(f) = r + f (m - r) - -2- + 0 n-z (Al.9)

where O(n-½)has the property n½0 (n-½)is bounded as n co Letting n co, we have:

s 2 f 2
Bcxlf) = r + f ( m - r ) - - 2

(Al.10)

The limit V =Vcxlf) of Vn(f) as n oocorresponds to a log normal diffusion process. This

is a well-known model for securities prices as claimed by Thorp (2006). The security has

instantaneous drift rate m, variance s2, and cash invested in the risk-free rate earns at the

instantaneous rate r. The Boo([) of above is then the instantaneous growth rate of capital with

fraction f invested. Any bounded random variable X with mean E( X ) = m and variance

V a r ( X ) = s2, will lead to the same result.

Now f no longer needs to be less than or equal to l, and the problems with log(·) being

undefined for negative arguments have disappeared. f < 0, is unproblematic, and simply

corresponds to short selling the security.

Any investor who follows the policy f must adjust his investments "instantaneously". Thorp

(2006) states that in practice this means adjusting in tiny increments whenever there is a small

change in V. This is known from option theory and does not prevent the practical

implementation of the theory (Black and Scholes, 1973). However, this is generally not

implementable in the real world. As a compromise, we will use monthly rebalancing of the

investments in the portfolio.

Boo([) is exactly parabolic and easy to study. Lognormality of v ( t ) means log ( v ( t ) ) is
Vo Vo

N ( M ,52) distributed with mean M = Boo(f)t and variance 52 =V a r ( G00(f) )t for any time

t. Using this, we can determine the expected capital growth. Additionally, we can determine

the time tk required for V ( f ) to be at least k standard deviations above V(O). First, we can
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show by our previous methods that 𝑉𝑉𝑎𝑎𝑟𝑟(𝐺𝐺∞(𝑓𝑓)) = 𝑠𝑠2𝑓𝑓2, hence 𝑆𝑆𝑇𝑇𝑠𝑠𝑣𝑣(𝐺𝐺∞) = 𝑠𝑠𝑓𝑓. Solving 

𝑡𝑡𝑘𝑘𝑔𝑔∞, from which we find 𝑡𝑡𝑘𝑘. 

A1.3: Derivation of the Corwin-Schultz Estimator 

Corwin and Schultz (2012) state that the estimator is based on two assumptions. First, they 

assume that the low price is almost always a seller-initiated trade and that the high price is 

almost always a buyer-initiated trade. Hence, the price range between the high and low prices 

reflects the variance and bid-ask spread of the stock. Secondly, they assume that variance and 

spreads remain constant over consecutive two-day periods. Consequently, the variance of the 

high-low price range is twice as large for a two-day period than for a single day, while the 

spread is unaffected. This enables us to estimate bid-ask spread as a function of the high and 

low prices over both one- and two-day periods. The Corwin and Schultz spread estimator can 

be expressed as:  

𝑆𝑆 = 2(𝑠𝑠𝛼𝛼 − 1)
1 + 𝑠𝑠𝛼𝛼  (𝑀𝑀1.11) 

Where:  

𝛼𝛼 = √2𝛽𝛽 − √𝛽𝛽
3 − 2√2

− √
𝛾𝛾

3 − 2√2
 (𝑀𝑀1.12) 

𝛽𝛽 = [ln (𝐻𝐻𝑡𝑡
𝐴𝐴

𝐻𝐻𝑡𝑡
𝐴𝐴 )]

2
+ [ln (𝐻𝐻𝑡𝑡+1

𝐴𝐴

𝐻𝐻𝑡𝑡+1
𝐴𝐴 )]

2
 (𝑀𝑀1.13) 

𝛾𝛾 = [ln (𝑀𝑀𝑀𝑀𝑋𝑋[𝐻𝐻𝑡𝑡
𝐴𝐴; 𝐻𝐻𝑡𝑡+1

𝐴𝐴 ]
𝑀𝑀𝑀𝑀𝑁𝑁[𝐻𝐻𝑡𝑡

𝐴𝐴; 𝐻𝐻𝑡𝑡+1
𝐴𝐴 ] )]

2
 (𝑀𝑀1.14) 

𝐻𝐻𝑡𝑡
𝐴𝐴 and 𝐻𝐻𝑡𝑡

𝐴𝐴 represent the high and low prices respectively, adjusted for overnight returns. 

According to Corwin and Schultz (2012), we adjust for overnight returns by checking if the 

close price on day t is outside the range of the high or low prices for day t+1. As a result, the 

high and low prices adjusted for overnight returns can be computed as: 

𝐻𝐻𝑡𝑡+1
𝐴𝐴 = 𝐻𝐻𝑡𝑡+1 + 𝑀𝑀𝑀𝑀𝑋𝑋[0; 𝐶𝐶𝑡𝑡 − 𝐻𝐻𝑡𝑡+1] − 𝑀𝑀𝑀𝑀𝑋𝑋[0; 𝐻𝐻𝑡𝑡+1 − 𝐶𝐶𝑡𝑡] (𝑀𝑀1.15) 

𝐻𝐻𝑡𝑡+1
𝐴𝐴 = 𝐻𝐻𝑡𝑡+1 + 𝑀𝑀𝑀𝑀𝑋𝑋[0; 𝐶𝐶𝑡𝑡 − 𝐻𝐻𝑡𝑡+1] − 𝑀𝑀𝑀𝑀𝑋𝑋[0; 𝐻𝐻𝑡𝑡+1 − 𝐶𝐶𝑡𝑡] (𝑀𝑀1.16) 

Where 𝐶𝐶𝑡𝑡 is the closing price, and 𝐻𝐻𝑡𝑡 and 𝐻𝐻𝑡𝑡 are the high and low prices.  

show by our previous methods that Var(G00(f)) = s2f 2 , hence Sdev(G00) =sf .So lv ing

tkg00, from which we find t k .

Al.3: Derivation of the Corwin-Schultz Estimator

Corwin and Schultz (2012) state that the estimator is based on two assumptions. First, they

assume that the low price is almost always a seller-initiated trade and that the high price is

almost always a buyer-initiated trade. Hence, the price range between the high and low prices

reflects the variance and bid-ask spread of the stock. Secondly, they assume that variance and

spreads remain constant over consecutive two-day periods. Consequently, the variance of the

high-low price range is twice as large for a two-day period than for a single day, while the

spread is unaffected. This enables us to estimate bid-ask spread as a function of the high and

low prices over both one- and two-day periods. The Corwin and Schultz spread estimator can

be expressed as:

2(ea - 1)
5 = - - - -

1 + ea
(Al.11)

Where:

f i f f -R
a= 3 - 2 . . / 2- (Al.12)

(Al.13)

= [ (MAX[Hf;Hf+1l)]2y In A A
MIN[Lt;Lt+1l

(Al.14)

Hf and Lf represent the high and low prices respectively, adjusted for overnight returns.

According to Corwin and Schultz (2012), we adjust for overnight returns by checking if the

close price on day t is outside the range of the high or low prices for day t+ l. As a result, the

high and low prices adjusted for overnight returns can be computed as:

Hf+1 = Ht+l + MAX[O;ct - Hc+d - MAX[O; Lt+l - Cc]

Lf+1 = Lt+l + MAX[O;ct - Hc+d - MAX[O; Lt+l - Cc]

(Al.15)

(Al.16)

Where Ccis the closing price, and Heand Leare the high and low prices.
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A2 Portfolio Plots 
Figure A2.1: Mean-Variance Plot  

The figure plots the Kelly portfolio, the Markowitz portfolio, and the benchmark in a mean-variance 

space. In addition, the five most frequent stocks in our selection are plotted. The benchmark has 

marginally lower return than Markowitz, but lower risk, while Kelly has both higher return and lower 

risk. As the benchmark and Kelly has similar Sharpe ratio, one should in perfect market conditions be 

able to replicate the higher return of the Kelly portfolio using leverage. This is illustrated by them both 

being on the capital allocation line.  
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Figure A2.1: Mean-Variance Plot

The figure plots the Kelly portfolio, the Markowitz portfolio, and the benchmark in a mean-variance

space. In addition, the five most frequent stocks in our selection are plotted. The benchmark has

marginally lower return than Markowitz, but lower risk, while Kelly has both higher return and lower

risk. As the benchmark and Kelly has similar Sharpe ratio, one should in perfect market conditions be

able to replicate the higher return of the Kelly portfolio using leverage. This is illustrated by them both

being on the capital allocation line.
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Figure A2.2: NOK-Volume vs Kelly Turnover 

The figure plots the total NOK-volume versus the turnover of the Kelly portfolio. The NOK-volume is 

computed as the sum of the NOK-volumes on the last trading day each month for the ten stocks in our 

sample that particular year. The turnover is calculated by taking the absolute value of the delta for 

each rebalancing period.  

 

Figure A2.3: Net Kelly Portfolio Weights vs OSEBX 

The figure plots the net weights of the Kelly portfolio as a bar plot in reference to the left y-axis, and a 

line graph of the OSEBX in reference to the right y-axis. The net weights of the Kelly portfolio is 

calculated by summing up the long and short positions for the portfolio for each month after 

rebalancing. 
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Figure A2.2: NOK-Volume vs Kelly Turnover

The figure plots the total NOK-volume versus the turnover of the Kelly portfolio. The NOK-volume is

computed as the sum of the NOK-volumes on the last trading day each month for the ten stocks in our

sample that particular year. The turnover is calculated by taking the absolute value of the delta for

each rebalancing period.
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The figure plots the net weights of the Kelly portfolio as a bar plot in reference to the left y-axis, and a

line graph of the OSEBX in reference to the right y-axis. The net weights of the Kelly portfolio is

calculated by summing up the long and short positions for the portfolio for each month after

rebalancing.
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A3 Portfolio Statistics  

Table A3.1: Unconstrained Kelly Portfolio Weights 

The table illustrates the unconstrained portfolio weights of 2003 as suggested by the Kelly criterion. 

Dates NHY DNB ORK STB EQNR TAA TOM TEL OPC GNO 

2003-01 5673% 1653% -8885% 2274% 2625% 2086% -182% -3011% -625% -11890% 

2003-02 5567% 1421% -10155% 2770% 3752% 2067% 65% -2946% -650% -14096% 

2003-03 2583% 1759% -3579% 316% -2118% 363% -329% 665% -774% -2751% 

2003-04 -13050% 3611% 621% 1593% -152% -2226% -2785% 8803% -1464% -2062% 

2003-05 -9368% 5562% 2701% 181% -3247% -2342% -2765% 9860% -1696% -3180% 

2003-06 -5457% 7862% 2884% -638% -6356% -3068% -1991% 9673% -1659% -5782% 

2003-07 4672% 4062% 2286% -1573% -7531% -1971% -840% 5404% -758% -4503% 

2003-08 853% -1575% -889% 579% -1224% 33% -600% 1457% -394% 1298% 

2003-09 951% -1106% -707% 1277% -1839% 161% -1108% 1327% -859% 796% 

2003-10 -4981% 16213% 10637% 7135% 15961% -1073% -6359% -5846% 2189% -17335% 

2003-11 -18232% 69382% 64207% -4554% 42274% -3208% -11763% -25631% 3624% -65074% 

2003-12 -10593% 31487% 27221% 4158% 26811% -1268% -8788% -12656% 2893% -30624% 

 

 

Table A3.2: Constrained Kelly Portfolio Weights 

The table illustrates the constrained portfolio weights of 2003 for the Kelly portfolio. The 

unconstrained weights as suggested by the Kelly criterion are subject to a Kelly fraction of 𝒄𝒄 = 𝟏𝟏
𝟓𝟓𝟓𝟓 

and a 25% position size constraint.  

Dates NHY DNB ORK STB EQNR TAA TOM TEL OPC GNO 

2003-01 25.0% 25.0% -25.0% 25.0% 25.0% 25.0% -3.6% -25.0% -12.5% -25.0% 

2003-02 25.0% 25.0% -25.0% 25.0% 25.0% 25.0% 1.3% -25.0% -13.0% -25.0% 

2003-03 25.0% 25.0% -25.0% 6.3% -25.0% 7.3% -6.6% 13.3% -15.5% -25.0% 

2003-04 -25.0% 25.0% 12.4% 25.0% -3.1% -25.0% -25.0% 25.0% -25.0% -25.0% 

A3 Portfolio Statistics

Table A3.1: Unconstrained Kelly Portfolio Weights

The table illustrates the unconstrained portfolio weights of 2003 as suggested by the Kelly criterion.

Dates NHY DNB ORK STB EQNR TAA TOM TEL OPC GNO

2003-01 5673% 1653% -8885% 2274% 2625% 2086% -182% -3011% -625% -11890%

2003-02 5567% 1421% -10155% 2770% 3752% 2067% 65% -2946% -650% -14096%

2003-03 2583% 1759% -3579% 316% -2118% 363% -329% 665% -774% -2751%

2003-04 -13050% 3611% 621% 1593% -152% -2226% -2785% 8803% -1464% -2062%

2003-05 -9368% 5562% 2701% 181% -3247% -2342% -2765% 9860% -1696% -3180%

2003-06 -5457% 7862% 2884% -638% -6356% -3068% -1991% 9673% -1659% -5782%

2003-07 4672% 4062% 2286% -1573% -7531% -1971% -840% 5404% -758% -4503%

2003-08 853% -1575% -889% 579% -1224% 33% -600% 1457% -394% 1298%

2003-09 951% -1106% -707% 1277% -1839% 161% -1108% 1327% -859% 796%

2003-10 -4981% 16213% 10637% 7135% 15961% -1073% -6359% -5846% 2189% -17335%

2003-11 -18232% 69382% 64207% -4554% 42274% -3208% -11763% -25631% 3624% -65074%

2003-12 -10593% 31487% 27221% 4158% 26811% -1268% -8788% -12656% 2893% -30624%

Table A3.2: Constrained Kelly Portfolio Weights

The table illustrates the constrained portfolio weights of 2003 for the Kelly portfolio. The

unconstrained weights as suggested by the Kelly criterion are subject to a Kelly fraction of c =
510

and a 25% position size constraint.

Dates NHY DNB ORK STB EQNR TAA TOM TEL OPC GNO

2003-01 25.0% 25.0% -25.0% 25.0% 25.0% 25.0% -3.6% -25.0% -12.5% -25.0%

2003-02 25.0% 25.0% -25.0% 25.0% 25.0% 25.0% 1.3% -25.0% -13.0% -25.0%

2003-03 25.0% 25.0% -25.0% 6.3% -25.0% 7.3% -6.6% 13.3% -15.5% -25.0%

2003-04 -25.0% 25.0% 12.4% 25.0% -3.1% -25.0% -25.0% 25.0% -25.0% -25.0%
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Dates NHY DNB ORK STB EQNR TAA TOM TEL OPC GNO 

2003-05 -25.0% 25.0% 25.0% 3.6% -25.0% -25.0% -25.0% 25.0% -25.0% -25.0% 

2003-06 -25.0% 25.0% 25.0% -12.8% -25.0% -25.0% -25.0% 25.0% -25.0% -25.0% 

2003-07 25.0% 25.0% 25.0% -25.0% -25.0% -25.0% -16.8% 25.0% -15.2% -25.0% 

2003-08 17.1% -25.0% -17.8% 11.6% -24.5% 0.7% -12.0% 25.0% -7.9% 25.0% 

2003-09 19.0% -22.1% -14.1% 25.0% -25.0% 3.2% -22.2% 25.0% -17.2% 15.9% 

2003-10 -25.0% 25.0% 25.0% 25.0% 25.0% -21.5% -25.0% -25.0% 25.0% -25.0% 

2003-11 -25.0% 25.0% 25.0% -25.0% 25.0% -25.0% -25.0% -25.0% 25.0% -25.0% 

2003-12 -25.0% 25.0% 25.0% 25.0% 25.0% -25.0% -25.0% -25.0% 25.0% -25.0% 

 

Table A3.3: Holding Period Returns 

The table presents the annual holding period returns for the Benchmark, Kelly, and Markowitz from 

2003 to 2023.  

Holding Period Benchmark Kelly Markowitz 

2003 55.8% -17.5% 31.1% 

2004 38.4% 21.2% 24.0% 

2005 40.5% 81.9% 56.2% 

2006 32.4% 7.1% 19.4% 

2007 11.5% 58.6% 51.8% 

2008 -54.1% 14.3% -55.0% 

2009 64.8% -13.4% 50.4% 

2010 18.3% 28.5% 30.1% 

2011 -12.5% 16.4% -4.7% 

2012 15.4% -9.6% 40.2% 

2013 23.6% 26.1% 10.8% 
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2003 to 2023.
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2004 38.4% 21.2% 24.0%

2005 40.5% 81.9% 56.2%
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Holding Period Benchmark Kelly Markowitz 

2014 5.0% 26.3% 43.3% 

2015 5.9% 14.9% 7.2% 

2016 12.1% -10.6% -10.7% 

2017 19.1% 37.9% 44.1% 

2018 -1.8% 33.0% -28.5% 

2019 16.5% -10.6% -1.3% 

2020 4.6% 29.2% 21.5% 

2021 23.4% -1.1% 5.3% 

2022 -1.0% 15.7% -21.1% 

 

A4 Regression Results and Tests 

Table A4.1: Regression Results Using the Fama French Five-Factor Model 

The table presents the regression results for the Kelly portfolio before adjusting for transaction costs. 

The portfolios’ excess returns are regressed on the Fama and French (2015) five-factor model using 

European pricing factors retrieved from Kenneth French’s (2023) website. The regression results are 

estimated utilizing monthly excess returns from February 2003 through December 2022.  
 

 Dependent variable:   
 Kelly  
 FF5F  

 
Alpha 0.013***  

 (0.005)  
   

Market 0.218**  
 (0.107)  
   

SMB -0.452*  
 (0.263)  
   

HML -0.527  
 (0.327)  
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2014 5.0% 26.3% 43.3%

2015 5.9% 14.9% 7.2%

2016 12.1% -10.6% -10.7%
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2019 16.5% -10.6% -1.3%
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2022 -1.0% 15.7% -21.1%
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Table A4.1: Regression Results Using the Fama French Five-Factor Model

The table presents the regression results for the Kelly portfolio before adjusting for transaction costs.

The portfolios' excess returns are regressed on the Fama and French (2015) five-factor model using

European pricing factors retrieved from Kenneth French's (2023) website. The regression results are

estimated utilizing monthly excess returns from February 2003 through December 2022.

Dependent variable:

Kelly
FF5F

Alpha 0.013***
(0.005)

Market 0.218**
(0.107)

SMB -0.452*
(0.263)

HML -0.527
(0.327)
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RMW -0.109  

 (0.472)  
   

CMA 0.567  
 (0.428)  
   

 
Observations 239  
R2 0.035  
Adjusted R2 0.014  
Residual Std. Error 0.070   
Significance level *p<0.01; **p<0.05; ***p<0.01 

 

Table A4.2: Breusch-Pagan and Durbin-Watson Test 

The table presents the results of the Breusch-Pagan (BP) and Durbin-Watson (DW) test on the 

regressions of the factor models for the Kelly and Markowitz portfolio. We use BP to test for 

heteroscedasticity, where a BP statistic close to zero indicates no presence of heteroscedasticity. We 

use DW to test for autocorrelation in the residuals. The DW statistic ranges from 0 to 4, where a 

value of 2 indicates no autocorrelation. The p-values are above 5% for both BP and DW, hence we 

cannot reject the null hypotheses on a 5% significance level, indicating that there are no signs of 

autocorrelation or heteroscedasticity in the regression models.  

 Breusch-Pagan test Durbin-Watson test 

 BP statistic p-value DW statistic p-value 

Kelly CAPM 0.199 0.656 2.172 0.162 

Kelly FF3F 5.356 0.148 2.186 0.154 

Kelly C4F 5.419 0.247 2.186 0.152 

Markowitz CAPM 2.868 0.090 2.026 0.842 

Markowitz FF3F 6.802 0.078 2.013 0.918 

Markowitz C4F 8.225 0.084 2.009 0.990 

 

RMW -0.109
(0.472)

CMA 0.567
(0.428)

Observations
R2

Adjusted R2
Residual Std. Error

239
0.035
0.014
0.070

Significance level *p<0.01; **p<0.05; ***p<0.01

Table A4.2: Breusch-Pagan and Durbin-Watson Test

The table presents the results of the Breusch-Pagan (BP) and Durbin-Watson (DW) test on the

regressions of the factor models for the Kelly and Markowitz portfolio. We use BP to test for

heteroscedasticity, where a BP statistic close to zero indicates no presence ofheteroscedasticity. We

use DW to test for autocorrelation in the residuals. The DW statistic ranges from Oto 4, where a

value of 2 indicates no autocorrelation. The p-values are above 5% for both BP and DW, hence we

cannot reject the null hypotheses on a 5% significance level, indicating that there are no signs of

autocorrelation or heteroscedasticity in the regression models.

Breusch-Pagan test Durbin-Watson test

BP statistic p-value DW statistic p-value

KellyCAPM 0.199 0.656 2.172 0.162

Kelly FF3F 5.356 0.148 2.186 0.154

Kelly C4F 5.419 0.247 2.186 0.152

Markowitz CAPM 2.868 0.090 2.026 0.842

Markowitz FF3F 6.802 0.078 2.013 0.918

Markowitz C4F 8.225 0.084 2.009 0.990
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A5 Stock Sample 

Table A5.1: Frequency of Firms in Sample  

The table highlights the companies that are present in our sample between 2003 and 2023, when 

OBX is sorted annually based on NOK-volume. The “frequency” column indicates the number of 

years each firm is present in the sample. A star (“*”) denotes that the company was delisted during 

the sample period.  

Ticker Company Name Frequency 

DNB DNB Bank ASA 20 

EQNR Equinor ASA 20 

NHY Norsk Hydro ASA 20 

TEL Telenor ASA 20 

YAR Yara International ASA 17 

ORK Orkla ASA 16 

MOWI Mowi ASA 14 

PGS PGS ASA 11 

AKA Akastor ASA 8 

STB Storebrand ASA 8 

RECSI Rec Silicon ASA 7 

TAA* Tandberg AS 6 

NAS Norwegian Air Shuttle ASA 5 

DNO DNO ASA 4 

TGS TGS ASA 4 

TOM Tomra Systems A/S 4 

AKERBP Aker BP ASA 3 

NEL NEL ASA 3 

ATEA Atea ASA 1 

FAST Fast Search and Transfer AS 1 

A5 Stock Sample

Table AS.l: Frequency of Firms in Sample

The table highlights the companies that are present in our sample between 2003 and 2023, when

OBX is sorted annually based on NOK-volume. The "frequency" column indicates the number of

years each firm is present in the sample. A star ("*") denotes that the company was delisted during

the sample period.

Ticker Company Name Frequency

DNB DNB Bank ASA 20

EQNR Equinor ASA 20

NHY Norsk Hydro ASA 20

TEL Telenor ASA 20

YAR Yara International ASA 17

ORK Orkla ASA 16

MOWI MowiASA 14

PGS PGSASA 11

AKA Akastor ASA 8

STB Storebrand ASA 8

RECSI Rec Silicon ASA 7

TAA* Tandberg AS 6

NAS Norwegian Air Shuttle ASA 5

DNO DNO ASA 4

TGS TGSASA 4

TOM Tomra Systems A/S 4

AKERBP Aker BP ASA 3

NEL NEL ASA 3

ATEA AteaASA l

FAST Fast Search and Transfer AS l
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Ticker Company Name Frequency 

GNO Gjensidige NOR ASA 1 

KAHOT Kahoot ASA 1 

NOD Nordic Semiconductor 1 

OPC Opticom ASA 1 

SALM Salmar ASA 1 

SCATC Scatec ASA 1 

SCHA Schibsted ASA Ser A 1 

TAT Tandberg Television ASA 1 

 

Table A5.2: Key Statistics for the Ten Most Frequent Firms 

The table presents annualized performance measures for the ten most frequent firms in our sample. 

The performance measures are calculated utilizing monthly figures. The Sharpe ratio (SR) and 

standard deviation (SD) are annualized by multiplying with √12. The arithmetic mean (AM) is 

annualized by multiplying with 12.   

 DNB EQNR NHY TEL YAR ORK MOWI PGS AKA STB 

AM 13.2% 11.6% 12.9% 9.6% 17.2% 8.5% 14.7% 15.0% 14.2% 14.3% 

SD 28.1% 23.1% 33.2% 25.2% 33.5% 24.4% 63.5% 63.5% 45.0% 37.4% 

SR 0.37 0.38 0.31 0.27 0.43 0.23 0.19 0.19 0.25 0.31 

 

 

Table A5.3: List of Firms in the Kelly and Markowitz Portfolios (2003 through 2012) 
The table presents the companies that are present in our sample from 2003 through 2012, when OBX 

is sorted annually based on NOK-volume. The firms are listed alphabetically.  

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

DNB ATEA DNB DNB AKA AKA AKA AKA AKA AKA 

EQNR DNB EQNR DNO DNB DNB DNB DNB DNB DNB 

Ticker Company Name Frequency

GNO Gjensidige NOR ASA l

KAHOT KahootASA l

NOD Nordic Semiconductor l

OPC OpticomASA l

SALM Salmar ASA l

SCATC Scatec ASA l

SCHA Schibsted ASA Ser A l

TAT Tandberg Television ASA l

Table AS.2: Key Statistics for the Ten Most Frequent Firms

The table presents annualized performance measures for the ten most frequent firms in our sample.

The performance measures are calculated utilizing monthly figures. The Sharpe ratio (SR) and

standard deviation (SD) are annualized by multiplying with i l l . The arithmetic mean (AM) is

annualized by multiplying with 12.

DNB EQNR NHY TEL YAR ORK MOWI PGS AKA STB

AM 13.2% 11.6% 12.9% 9.6% 17.2% 8.5% 14.7% 15.0% 14.2% 14.3%

SD 28.1% 23.1% 33.2% 25.2% 33.5% 24.4% 63.5% 63.5% 45.0% 37.4%

SR 0.37 0.38 0.31 0.27 0.43 0.23 0.19 0.19 0.25 0.31

Table AS.3: List of Firms in the Kelly and Markowitz Portfolios (2003 through 2012)

The table presents the companies that are present in our sample from 2003 through 2012, when OBX

is sorted annually based on NOK-volume. The firms are listed alphabetically.

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

DNB ATEA DNB DNB AKA AKA AKA AKA AKA AKA

EQNR DNB EQNR DNO DNB DNB DNB DNB DNB DNB
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2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

GNO EQNR FAST EQNR DNO EQNR EQNR EQNR EQNR EQNR 

NHY NHY NHY NHY EQNR MOWI NHY NHY MOWI MOWI 

OPC ORK ORK ORK MOWI NHY ORK ORK NHY NHY 

ORK STB PGS PGS NHY ORK PGS PGS ORK ORK 

STB TAT STB STB ORK PGS RECSI RECSI PGS PGS 

TEL TEL TEL TEL PGS RECSI TEL TEL RECSI RECSI 

TOM TOM TOM TAA TEL TEL TAA TAA TEL TEL 

TAA TAA TAA YAR YAR YAR YAR YAR YAR YAR 

 

Table A5.4: List of Firms in the Kelly and Markowitz Portfolios (2013 through 2022) 

The table presents the companies that are present in our sample from 2013 through 2023, when OBX 

is sorted annually based on NOK-volume. The firms are listed alphabetically.  

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

AKA AKA DNB DNB DNB DNB AKERBP AKERBP AKERBP DNB 

DNB DNB DNO EQNR EQNR DNO DNB DNB DNB EQNR 

EQNR EQNR EQNR MOWI MOWI EQNR EQNR EQNR EQNR KAHOT 

MOWI MOWI MOWI NAS NAS MOWI MOWI MOWI MOWI MOWI 

NHY NAS NHY NHY NHY NAS NAS NEL NEL NEL 

PGS NHY PGS ORK ORK NHY NHY NHY NHY NHY 

STB PGS RECSI SCHA STB ORK ORK ORK ORK NOD 

TEL RECSI TEL TEL TEL STB STB SALM TEL SCATC 

TGS TEL TGS TGS TGS TEL TEL TEL TOM TEL 

YAR YAR YAR YAR YAR YAR YAR YAR YAR YAR 

 

 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

GNO EQNR FAST EQNR DNO EQNR EQNR EQNR EQNR EQNR

NHY NHY NHY NHY EQNR MOWI NHY NHY MOWI MOWI

OPC ORK ORK ORK MOWI NHY ORK ORK NHY NHY

ORK STB PGS PGS NHY ORK PGS PGS ORK ORK

STB TAT STB STB ORK PGS RECSI RECSI PGS PGS

TEL TEL TEL TEL PGS RECSI TEL TEL RECSI RECSI

TOM TOM TOM TAA TEL TEL TAA TAA TEL TEL

TAA TAA TAA YAR YAR YAR YAR YAR YAR YAR

Table AS.4: List of Firms in the Kelly and Markowitz Portfolios (2013 through 2022)

The table presents the companies that are present in our sample from 2013 through 2023, when OBX

is sorted annually based on NOK-volume. The firms are listed alphabetically.

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

AKA AKA DNB DNB DNB DNB AKERBP AKERBP AKERBP DNB

DNB DNB DNO EQNR EQNR DNO DNB DNB DNB EQNR

EQNR EQNR EQNR MOWI MOWI EQNR EQNR EQNR EQNR KAHOT

MOWI MOWI MOWI NAS NAS MOWI MOWI MOWI MOWI MOWI

NHY NAS NHY NHY NHY NAS NAS NEL NEL NEL

PGS NHY PGS ORK ORK NHY NHY NHY NHY NHY

STB PGS RECSI SCHA STB ORK ORK ORK ORK NOD

TEL RECSI TEL TEL TEL STB STB SALM TEL SCATC

TGS TEL TGS TGS TGS TEL TEL TEL TOM TEL

YAR YAR YAR YAR YAR YAR YAR YAR YAR YAR
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A6 VBA Code 

A6.1: VBA Code for the Kelly Portfolio Weights 

Function GeneratePortfolioWeights(dataRange As Range) As Variant 
    Dim returns() As Variant 
    Dim numReturns As Integer 
    Dim numAssets As Integer 
    Dim covMatrix() As Variant 
    Dim invCovMatrix() As Variant 
    Dim avgReturns() As Variant 
    Dim weights() As Variant 
    Dim i As Integer, j As Integer 
     
    ' Get the returns data from the input range 
    returns = dataRange.Value 
    numReturns = UBound(returns, 1) 
    numAssets = UBound(returns, 2) 
     
    ' Calculate the covariance matrix 
    ReDim covMatrix(1 To numAssets, 1 To numAssets) 
    For i = 1 To numAssets 
        For j = 1 To numAssets 
            covMatrix(i, j) = 
WorksheetFunction.Covariance_P(Application.Transpose(Application.Index(returns, 0, i)), 
Application.Transpose(Application.Index(returns, 0, j))) 
        Next j 
    Next i 
     
    ' Calculate the inverse of the covariance matrix 
    invCovMatrix = WorksheetFunction.MInverse(covMatrix) 
     
    ' Calculate the average returns vector 
    ReDim avgReturns(1 To numAssets) 
    For i = 1 To numAssets 
        avgReturns(i) = WorksheetFunction.Average(Application.Index(returns, 0, i)) 
    Next i 
     
    ' Calculate the portfolio weights using matrix multiplication 
    weights = WorksheetFunction.MMult(invCovMatrix, Application.Transpose(avgReturns)) 
     
    ' Transpose the weights vector before returning it 
    GeneratePortfolioWeights = Application.Transpose(weights) 
End Function 
 

A6 VBA Code

A6.1: VBA Code for the Kelly Portfolio Weights

Function GeneratePortfolioWeights(dataRange As Range) As Variant
Dim returns() As Variant
Dim numReturns As Integer
Dim numAssets As Integer
Dim covMatrix() As Variant
Dim invCovMatrix() As Variant
Dim avgReturns() As Variant
Dim weights() As Variant
Dim i As Integer, j As Integer

' Get the returns data from the input range
returns = dataRange.Value
numReturns = UBound(returns, l)
numAssets = UBound(returns, 2)

' Calculate the covariance matrix
ReDim covMatrix(l To numAssets, l To numAssets)
For i = l To numAssets

For j = l To numAssets
covMatrix(i, j ) =

WorksheetFunction.Covariance_P(Application.Transpose(Application.Index(returns, 0, i)),
Application.Transpose(Application.Index(returns, 0, j)))

Nextj
Next i

' Calculate the inverse of the covariance matrix
invCovMatrix = WorksheetFunction.Minverse(covMatrix)

' Calculate the average returns vector
ReDim avgReturns(l To numAssets)
For i = l To numAssets

avgReturns(i) = WorksheetFunction.Average(Application.Index(returns, 0, i))
Next i

' Calculate the portfolio weights using matrix multiplication
weights = WorksheetFunction.MMult(invCovMatrix, Application.Transpose(avgReturns))

' Transpose the weights vector before returning it
GeneratePortfolioWeights = Application.Transpose(weights)

End Function
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