
BY

ISSN:

DISCUSSION PAPER

Time and frequency dynamics of 
connectedness between green bonds, 
clean energy markets and carbon prices

Ingrid Emilie Flessum Ringstad and Kyriaki Tselika

Institutt for foretaksøkonomi
Department of Business and Management Science

FOR 18/2023

2387-3000

November 2023



Time and frequency dynamics of connectedness between green

bonds, clean energy markets and carbon prices

Ingrid Emilie Flessum Ringstad∗and Kyriaki Tselika∗

Abstract

In this paper, we investigate the time and frequency dynamics of connectedness
among green assets such as green bonds, clean energy markets, and carbon prices.
Using daily price data, we explore return spillovers across these green financial
markets by applying the novel framework on time and frequency dynamics proposed
by Baruník and Krehlík (2018). This allows us to identify the direction of spillovers
among our variables, and decompose the connectedness to differentiate between
short-term and long-term return spillovers. Our results indicate that green bonds
and carbon prices act as net receivers of shocks, but mainly in the short-term. We
also observe a low level of connectedness among our clean energy markets across
both low and high frequency bands, even during times of economic or political
crisis. Additionally, there are periods in which connectedness between the clean
energy assets is driven by the long-term. In periods of economic and political
stability, carbon prices may also provide an interesting diversifying tool for short-
term investors. Our results should be of interest for investors and portfolio managers
who focus on green financial markets, by strengthening the notion that green financial
markets can offer diversification opportunities, for both short-term and long-term
investors. This paper is the first to use this framework to investigate systematic
risks within green financial markets.
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1 Introduction

A key ingredient for a successful green transition is financial markets providing efficient and

climate aligned capital. By facilitating the flow of capital towards climate aligned projects, the

financial markets can aid in mitigating climate risk as we transition to a sustainable economy

(Giglio et al., 2021). Over the years, regulators have put forth policies to facilitate this transition

and discourage capital flowing towards carbon intensive investments, with the EU ETS carbon

quota trading system being one of the most well-known policy instruments. However, policy

regulation is not sufficient on its own. The world is depending both on public and private finance

to achieve a green transition. According to Reuters, an estimated $5 trillion annually is needed

until 2030 to finance a green and just transition (Thomson Reuters, 2021). A recent report from

Averchenkova et al. (2020) indicates that climate finance is on an upward trajectory, albeit not

as rapidly as necessary to facilitate a just transition. Therefore, giving priority to investments

that are in line with climate objectives is essential.

Green bonds (GB) are fixed-income securities that are specifically designed to support

environmentally friendly projects. Their main feature is their commitment to utilize the raised

funds solely for financing or refinancing climate aligned projects, assets or business activities

(ICMA, 2016). The first public issuance came in 2007, followed by the first corporate green bond

in 2013 (Flammer, 2021). The green bond market is estimated to have grown by 49% in the

five-year period prior to 2021 (WEF, 2021). Green bonds have proven especially popular as a

financing tool used by banks and asset managers for clean energy and infrastructure investments

(Odier, 2017). However, there are still significant gaps between the emissions of organizations’

portfolios and the net-zero commitments they have declared (Bellesi and Miller, 2022). Amidst

the current climate and energy crisis, it is imperative to direct capital towards projects like large

scale energy and infrastructure projects that typically depend on long-term financial support

(Wang and Zhi, 2016). These types of investments are also typically debt financed, meaning

green bonds have the potential to play an important role in financing clean energy projects and

infrastructure. This is prompting the need for thorough research in relation to the transition

towards environmentally sustainable finance, and particularly green bonds (Pham and Huynh,

2020; Tang and Zhang, 2020).

Green financial assets have gained considerable popularity as sustainable investment choices.

In our research, we focus on investigating three main green asset categories - green bonds

(GB), clean energy stocks, and carbon prices. These assets are chosen for their relevance

to environmental issues, interconnectedness, and potential financial significance. To begin
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with, these assets offer a clear environmental focus. Green bonds are designed to finance

environmentally friendly projects, while clean energy stocks represent organizations actively

engaged in producing and promoting clean energy solutions. On the other hand, carbon prices

reflect the financial implications of carbon emissions and ways to mitigate them. Moreover, these

assets are influenced by similar environmental factors. For instance, carbon prices, representing

the cost of emitting greenhouse gases, could influence the attractiveness of green bonds and

clean energy stocks. Conversely, governmental policies and the demand for renewable energy can

affect both clean energy stocks and green bonds. Finally, the increasing interest of investors in

aligning their portfolios with environmentally sustainable initiatives have spiked lately. Therefore,

exploring these three green asset categories can provide valuable insights for investors seeking

to incorporate green assets into their portfolios.

To investigate the dynamic interdependence among GB, clean energy markets and carbon

quota prices, we use a novel framework by Baruník and Krehlík (2018) (BK18). This methodology

is an extension of the Diebold and Yilmaz (2012) (DY12) approach and allows us to analyze the

connectedness1 among green financial assets in both the time and frequency domain. While the

DY12 method analyzes the connectedness in the time domain among financial assets, the BK18

model allows us to explore the return spillovers and their direction in the time and frequency

space simultaneously. Thus, with the BK18 framework we can decompose the total connectedness

found by the DY12 method into various frequencies, such as high and low frequency bands2,

and determine which frequency contributes the most to the connectedness within our green

financial system. Therefore, we can provide an analysis of total and directional return spillovers

within our green financial market to estimate net transmitters and receivers of return spillovers

among our variables3. Hence, by incorporating the frequency dimension we are able to estimate

how return spillovers transmit among all the variables of our system for both short-term and

long-term oriented financial actors.

The main reason for considering the possibility that connectedness between GB, carbon

prices and clean energy markets may differ across frequencies stems from the range of economic

agents involved in these markets. Market participants may operate with different time horizons

due to different objectives, beliefs, risk tolerance or even access to market information (Ferrer

et al., 2018). For instance, investors with short-term horizons such as hedge funds are interested
1The measure of system connectedness provides useful information on how much of future uncertainty of variable
i is due to shocks in variables k (Diebold and Yilmaz, 2009; Diebold and Yilmaz, 2012; Baruník and Krehlík,
2018).

2The high frequency band corresponds to the short-term while the low frequency band corresponds to the long-term
horizon.

3It is important to note that this paper does not aim to infer causality between the variables under examination
but rather focuses on exploring the connectedness or the relationships among them.
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in short-term performance and responses while long-term investors such as pension funds are

mainly concerned with long-term performance, and their responses are primarily manifested in

the long-run.

Consequently, we believe that incorporating the frequency domain in the dynamics of a green

financial system could assist green investors - with different preferences and goals - identify

investment opportunities in both the short and long-term. The BK18 method, which considers

the frequency domain, is preferred in this regard. By analyzing the interactions between GB,

carbon prices, and clean energy stocks over different time horizons, the BK18 method offers a

deeper understanding of how the relationships between these assets may vary over time. In this

way, the BK18 method could enable the identification of strategies to finance environmentally

friendly projects and create economic opportunities in sectors that promote the reduction of

environmental damage. This knowledge is crucial for fostering green investment practices and

driving positive change towards a sustainable future.

Overall, increasing climate-aligned capital through GB, clean energy stocks, and carbon

prices has the potential to drive positive change and promote sustainability in both the short

and long-term. By using the BK18 method, investors can make informed decisions about

incorporating green assets into their portfolios, aligning their investments with environmentally

sustainable initiatives, and contributing to a more sustainable and environmentally conscious

financial market.

The increasing interest in green bonds is being observed in both financial markets and

academia due to their potential to finance green projects and address climate change. A

substantial portion of the literature has focused on investigating what is the fundamental

purpose of green bonds, their related cost of capital and the effect of certification schemes for

green bonds. Significant efforts have been made to examine the existence of a premium for green

bonds paid by investors, often referred to as a “greenium” (Baker et al., 2018; Hachenberg and

Schiereck, 2018;Bachelet et al., 2019; Zerbib, 2019; Fatica et al., 2021; MacAskill et al., 2021;

Caramichael and Rapp, 2022). As there is yet to be a consensus about the greenium (Hyun et al.,

2021), issuers are focusing on transparency, often through labeling of green bonds. According

to Kapraun et al. (2021) the credibility of a green label is especially important for corporate

issuers. If a premium were to emerge, it is most likely in a situation where the green bond is

certified by a third party (Kapraun et al., 2021). One such certifier is CICERO providing their

Shades of Green assessment (CICERO, 2021) of green bonds in order to enhance transparency

and credibility in the green bond market. There have also been several discussions and research

efforts on the risk of using green bonds for greenwashing purposes. Flammer (2021) finds
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evidence that using green bonds for greenwashing purposes is too costly for firms, indicating a

low risk of greenwashing being related to green bond issuance.

The BK18 framework has been widely used in exploring the connectedness among various

financial assets. Ferrer et al. (2018) are among the first to exploit the BK18 framework to analyze

connectedness between renewable energy stocks and oil in the time and frequency domain. In

their paper, they demonstrate the recent decoupling of the alternative energy industry from

the traditional energy market across frequency bands. Tiwari et al. (2018) study the volatility

connectedness among stocks, sovereign bonds, CDS, and currencies. Their findings indicate that

there is generally low connectedness among these assets, and that the level of connectedness varies

across frequencies. Similarly, Lovcha and Perez-Laborda (2020) investigate the connectedness

between the oil and gas markets, and find that the level of connectedness between these markets

also varies across frequencies. Moreover, they demonstrated that the connectedness between

the oil and gas markets typically occur at low frequencies, and transmitted shocks between

these markets have long-lasting effects. This finding contrasts with several other studies (Ferrer

et al., 2018; Jiang and Chen, 2022; Le et al., 2021) that have found that connectedness tends to

occur at the high frequency band. However, Zhang and Hamori (2021) provide a more nuanced

perspective, suggesting that return spillovers exhibit high frequency connectedness , whereas

volatility spillovers exhibit low-frequency connectedness as showed by Lovcha and Perez-Laborda

(2020). Jiang and Chen (2022) and Kang et al. (2019) both exploit the BK18 framework to

analyze connectedness between oil and various assets linked to the green transition. Lastly,

Kang et al. (2019) explore agricultural commodities and Jiang and Chen (2022) concentrate on

new energy markets, material markets and carbon markets.

An important strand of related literature is focused on understanding and estimating the

connectedness between green assets (Liu et al., 2021) and various other variables, such as

different assets (Ferrer et al., 2018; Park et al., 2020; Reboredo, 2018; Reboredo et al., 2020;

Alkathery and Chaudhuri, 2021; Asl et al., 2021; Le et al., 2021; Tan et al., 2021; Jiang and Chen,

2022; Tiwari et al., 2022), macroeconomic events (Naeem et al., 2020), or uncertainty measures

(Pham, 2016; Haq et al., 2021; Leitao et al., 2021; Pham and Nguyen, 2022). Understanding

and estimating such connectedness can help investors and portfolio managers in various areas of

finance, including business cycle analysis, portfolio allocation and risk management (Baruník and

Krehlík, 2018). Reboredo (2018) investigates co-movement and spillover effects between green

bonds and assets such as the corporate and treasury bond market, stocks, and energy commodity

markets. They find that connectedness is mainly generated in the short-term, and that green

bonds display strong connectedness with corporate and treasury bonds, while the connectedness
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between green bonds and energy commodities is fairly weak. In 2020, Reboredo et al. (2020)

corroborate these results by using the Vector Autoregression (VAR) and wavelet-based methods.

However, they find that green bonds can offer important diversification benefits for energy

and stock market investors, as well as low-carbon market investors due to low connectedness

(Reboredo, 2018; Reboredo et al., 2020; Reboredo et al., 2022). Liu et al. (2021) focus on the

interaction among green financial assets, and exploit a CoVar model to explore the dependence

and risk spillovers between green bonds and clean energy markets. Their results indicate that

there is significant asymmetric connectedness and risk spillovers between GB and clean energy

markets, particularly in the short-term. Tiwari et al. (2022) also investigate dynamic spillover

effects between green bonds and renewable energy stocks as well as carbon markets using a

TVP-VAR approach. They emphasize the practical significance of connectedness estimates by

demonstrating that a portfolio that minimizes connectedness reaches a higher Sharp ratio than

a portfolio that minimizes correlation or variance.

Our research may have important implications for investors and governments. First, we use

a novel methodology to examine the connectedness among green assets, while considering both

time and frequency dynamics. In financial markets, there are diverse economic agents that may

have different preferences, goals, information or risk tolerance. These agents generally operate

within heterogeneous time horizons. For instance, we would expect day traders and arbitrageurs

to be concerned about short-term connectedness in a financial system. Therefore, our research

incorporates the time horizon through the frequency domain, and can provide further insights

on diversification opportunities for green investors. Second, we put emphasis on a green financial

market and the potential diversification opportunities within this kind of market, recognizing

the crucial role that green finance will play in achieving a low-carbon future. Our results can

provide support for investing in environmentally-friendly initiatives which can benefit not only

the planet, but also create new opportunities for economic growth and development. Hence, we

believe that exploring the potential diversification opportunities within green financial markets

is essential for achieving a more sustainable economy.

To the best of our knowledge, this is the first study to investigate return connectedness across

GB, clean energy stocks and carbon prices at both the time and frequency domain. Tiwari

et al. (2022) is the most closely related study to our research, and although they include similar

indices, involving carbon markets, GB and clean energy markets, our research differs in two

main aspects. Firstly, we extend the data time frame used by including the post-COVID period,

and secondly, we investigate connectedness, as recommended by Liu et al. (2021), by considering

not only time dynamics, but also frequency dynamics.
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2 Methodology

We use two different methods to investigate both time and frequency spillovers among Green

Bonds, CO2 prices and clean energy markets. First, we employ the Diebold and Yilmaz (2012)

methodology to explore the time dynamic connectedness between these green financial markets.

Subsequently, we apply the connectedness measure introduced by Baruník and Krehlík (2018)

which extends the DY12 method to the frequency domain.

Generally, financial markets can experience turbulence due to macroeconomic events that can

result in financial assets illustrating high volatility, which can spillover between different markets.

Diebold and Yilmaz (2012) argued that financial models which include a single-fixed parameter

model could ignore significant time-dependent movements in spillovers between financial markets.

Therefore, they developed a model that can examine connectedness among markets including

time dynamics. Their method measures spillovers based on the generalized vector autoregressive

(VAR) framework by computing its forecast error variance decomposition (FEVD), and can

examine connectedness among individual or multiple financial assets such as bonds, stocks, etc.

through time. More specifically, they consider a covariance stationary N -variable VAR model

of order p:

xt = ϕ(L)xt + ε (1)

where xt denotes a n× 1 vector of endogenous variables, ϕ(L) = [IN −ϕ1L− ...−ϕPL] is the

N x N matrix lag-polynomial and εt represents a white noise with covariance matrix Σ.

The moving average representation is:

xt = Ψ(L)εt =
∞∑
i=1

Ψiεt−i + εt (2)

where Ψ(L) is a matrix of infinite lag polynomials that can be calculated recursively.

According to the generalized identification of Pesaran and Shin (1998) which produces variance

decompositions invariant to ordering, we can calculate the generalized FEVD. The variance

decompositions allow us to assess the contribution of variables into components attributable to

shocks to different variables in our green finance system for a forecast horizon H. Specifically,

we have:
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θik(H) =
σ−1kk

∑H
h=0((ΨhΣ)ik)

2∑H
h=0 (ΨhΣΨ

′
h)ii

(3)

where Ψh is a N ×N matrix of moving average coefficients at lag h, σkk is the kth diagonal

element of the Σ matrix and H is the forecast horizon. The θjk(H) denotes the contribution of

the kth variable to the variance of forecast error of the variable ith, at horizon H.

In the generalized VAR framework, the row sum of the variance decomposition matrix is not

necessarily equal to one. Therefore, each entry can be normalized by the row sum as:

θ̃ik(H) =
θik(H)∑n
k=1 θik(H)

(4)

θ̃ik(H) provides a measure of pairwise connectedness from k to i at horizon H. Using the

variance contributions, the DY12 method allows us to compute various measures which reveal

the level of connectedness among the variables in the financial system. Hence, we are able to

obtain the overall connectedness of the system, the net directional spillovers of each market as

well as the net pairwise spillovers among the markets.

Baruník and Krehlík (2018) argued that shocks in the financial sector can affect variables at

different frequencies and magnitudes. Therefore, they extended the DY12 measure to include

time and frequency dynamics simultaneously. This method allows us to measure connectedness

among financial markets at different frequency bands such as the short-term, medium-term and

long-term. The frequency dynamics can be important for financial investors that operate in

different time horizons, but also regulators that want to apply policies that can impact either

individual or multiple financial markets in the short-term or long-term.

In order to incorporate the frequency aspect, Baruník and Krehlík (2018) consider the spectral

representation of variance decompositions based on frequency responses instead of impulse

response to shocks. Thus, they recognize a frequency response function which can be obtained

as a Fourier transformation of the coefficients Ψh, with i =
√

(−1), which can be described as:

Ψ(e−iω) =

∞∑
h=0

e−iωhΨh (5)

where ω denotes the frequency.
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Subsequently, they define the power spectrum Sx(ω) which describes how the variance of the

xt is distributed over the frequency components ω. The power spectrum is given by:

Sx(ω) =
∞∑
h=0

E(xtxt−h)e
−iωh = Ψ(e−iωh)ΣΨ(eiωh) (6)

Using the spectral representation, Baruník and Krehlík (2018) extract the frequency domain

fractions of variance decomposition. The generalized forecast error variance decomposition at a

frequency ω is:

θik(ω) =
σ−1kk

∑∞
h=0(Ψ(e

−iωh)Σ)2ik∑∞
h=0(Ψ(e

−iωh)Σ(Ψ(eiωh))ii
(7)

The θik(ω) represents the fraction of the spectrum of the ith variable at a specific frequency

ω due to shocks in the kth variable. As with the DY12 method, the generalized forecast error

variance decomposition can be normalized as follows:

θ̃ik(ω) =
θik(ω)∑n
h=1 θik(ω)

(8)

The θ̃ik(ω) measures pairwise connectedness from k to i at a given frequency ω. Thus,

θ̃ik(ω) represents a within-frequency connectedness indicator while the DY12 measure, θ̃ik(H),

demonstrates pairwise connectedness at horizon H and reflects connectedness exclusively in

the time domain. Consequently, the Diebold and Yilmaz (2012) method focuses on aggregate

connectedness among frequencies and overlooks heterogeneous frequency responses to shocks.

In economic applications, market participants are usually concerned with short-medium-long-

term connectedness rather than aggregate connectedness at a single frequency. Thus, it is

important to follow the economic aspect and work with frequency bands. The incremental

connectedness at a frequency band d = (a, b): a, b ∈ (−π, π), a < b is defined as:

θ̃ik(d) =

∫ b

a
θ̃ik(ω) dω (9)

Using the above generalized variance decomposition on frequency band d we can define
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various connectedness measures on the frequency domain. The overall connectedness within the

frequency band d can be obtained as follows:

Cd =

∑n
i=1,i ̸=k θ̃ik(d)∑

ik θ̃ik(d)
= 1−

∑n
i=1 θ̃ik(d)∑
ik θ̃ik(d)

(10)

Furthermore, the BK18 method allows us to identify the direction of spillovers. For instance,

the within from connectedness, which is the part of variance of i derived from all the other

variables i ̸= k at the frequency band d, is given by:

Cd
i←· =

n∑
k=1,i ̸=k

θ̃ik(d) (11)

On the other hand, the within to connectedness, which is the contribution of i to all the other

variables k (i ̸= k) at the frequency band d is:

Cd
i→· =

n∑
k=1,i ̸=k

θ̃ki(d) (12)

By calculating the from and to connectedness we can then define the within net connectedness

which is given by:

Cd
i,net = Cd

i→· − Cd
i←· (13)

As shown by the equation the within net connectedness evaluates the difference between the

variance transmitted and received by a variable. If net connectedness for a variable (for instance,

i) is positive, the variable is called a net transmitter of information to the other variables in the

system. On the contrary, if net connectedness is negative, the variable is called a net receiver of

shocks from the rest of the variables in the system.

Except the system based connectedness measures, the BK18 method allows us to disaggregate

connectedness even further and quantify pairwise relationships in our financial system. Hence,

the net pairwise connectedness between two variables i and k can be obtained as:
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Cd
ik = θ̃ki(d)− θ̃ik(d) (14)

The pairwise measure enable us to recognize if a variable is a net receiver or transmitter

of shocks from/to another variable in the system while considering different frequencies. In

this way, we can conclude which variables are driving the spillovers in the short/long-term in

our green financial system. As Tiwari et al. (2022) highlighted, it is important to investigate

and understand the pairwise connectedness among green financial assets when constructing

optimal portfolios. In their paper, they showed how a minimum connectedness portfolio yields

a better Sharp ratio than the more typical minimum variance or minimum correlation portfolios

using similar data for a green financial market. However, Tiwari et al. (2022) do not provide

connectedness measures across frequencies. Thus, our chosen method extend their connectedness

measures to provide insights for both long-term oriented and short-term oriented investors.

The dynamic connectedness measures have been estimated using a rolling window of 200 days

and a forecast horizon (H) of 100 days. We have estimated our model with different rolling

windows to confirm the robustness of our results. These robustness checks can be found in

appendix B. For each rolling window we have chosen the optimal lag length of our eight variable

VAR system according to the Schwarz information criterion (SIC).

In our research, we utilize two frequencies, a low and high frequency which is a common

approach found in existing literature. Nevertheless, we have expanded our analysis to include

a medium frequency range of 6-20 days. The results of this extended analysis can be found

in Appendix B. Upon examining the findings, we observe that the medium frequency does not

provide any additional information, nor does it significantly impact the main results concerning

the patterns of the low and high frequencies. Hence, we can conclude that employing two

frequencies in our analysis yields robust and valid results.

3 Data

3.1 Variables

Our dataset is constructed by calculated daily returns4 for green bonds and clean energy stocks,

as well as daily returns for carbon prices5. The dataset spans eight years, from July 30th, 2014,
4Following Liu et al., 2021, we calculate GB yields and Clean Energy stocks returns as follows: [ln (pit) −
ln (pi,t−1)]× 100.

5As measured by the daily returns data for EU ETS quota prices.
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until July 27th, 2022 and all data is based on indices, where the indices for green bonds and

clean energy markets are sourced from Bloomberg while carbon quota prices are obtained from

Refinitiv. To get a thorough coverage of the renewable energy sector, we include three general

indices for renewable energy and two industry specific indices for wind and solar energy. In order

to consider technological developments in the green transition, we include an index tracing the

clean technology market. The wind and solar indices are used specifically since they represent

the two renewable energy markets that attract the largest share of renewable energy investments

on a global scale.

We use the S&P Green Bond index (GB) to represent the global green bond market (Reboredo,

2018; Liu et al., 2021). Bonds included in this index must be certified as "green" by The Climate

Bonds Initiative (CIB, 2022). Consequently, all bonds in this index are directed at green and

climate-aligned projects and investments. Further we use the S&P Global Clean Energy Index

(SP_CLEAN), the Wilder Hill Clean Energy Index (ECO), and Renewable Energy Industrial

Index (RENIXX) as proxies for the overall global clean energy market 6. The S&P Clean Energy

Index includes 100 companies from both developed and developing markets whose business

related to clean energy. Wilder Hill Clean Energy Index is known to be the first index to track

the development of the US renewable energy sector. The Renewable Energy Industrial Index

reflects the 30 firms with the largest market capitalization related to the renewable energy

industry, and it is the first index tracking the renewable energy sector in a global perspective.

In addition our three sectoral indices are; ISE Global Wind Energy Index (ISE_WIND), MAC

Global Solar Energy Stock Index (MAC_SOLAR), and finally S&P Renewable Energy and

Clean Technology Index (TSX), which is similar to Liu et al. (2021). The global wind index

includes active companies providing both products and services tied to the wind energy industry,

while our global solar index includes companies whose core business is related to solar energy

technologies and their entire value chain (raw materials and manufacturing, installation and

operation, as well as financing). Our final index on renewable and clean technology tracks the

performance of companies whose core business is anchored in green technologies and sustainable

infrastructure projects. This range of indices has been selected to represent the clean energy,

carbon, and green bond markets. Although prior studies, including those conducted by Liu

et al. (2021) and Tiwari et al. (2022), have used similar data, we expand upon their research by

taking into account frequency dynamics.

One potential data limitation in our study is the overlap of companies among certain indices.

For example, a company operating in renewable energy infrastructure might be included in two
6S&P Clean Energy Index is used by Liu et al., 2021 and Tiwari et al., 2022, and Wilder Hill Clean Energy Index
is also used by Liu et al. (2021) .
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indices. However, it is worth noting that similar indices have been used in previous published

research as demonstrated by Liu et al. (2021) and Tiwari et al. (2022). Furthermore, our

chosen methodology, the BK18, can partially account for these kind of artificial spillovers by

incorporating the optimal lag order into our models. This approach considers time-varying effects

and can capture evolving interdependencies among those variables. Upon closer examination

of the overlap between our indices and their constituents, we identified the highest overlap

between RENIXX-SP_CLEAN (11.54%) and MAC_SOLAR-SP_CLEAN (14.58%). However,

the remaining indices exhibit less than 10% overlap, and each index has unique weightings for the

included companies and sectors. To further assess the robustness of our results, we conducted

additional analyses, first excluding RENIXX, and then also excluding MAC_SOLAR. The

results, available in Appendix D, confirm that even after excluding these indices, our findings

and interpretations remain consistent. It is important to note that while we argue that this

should not be a significant issue, we conducted these robustness analyses to further strengthen

the validity of our findings.

3.2 Descriptive statistics

As a preliminary analysis, we investigate all our index return data, using GB as the main

comparative return index. Each graph is scaled to show GB in relation to the other indices.

Figure 1 shows all the plots with GB measured on the left-hand y-axis and the other indices

measured on the right-hand axis. The graphs indicate that the clean renewable market has seen

a rapid and steep increase since 2020 after the initial shock of the COVID-19 pandemic. In

addition, all the market indices exhibit similar patterns with increased variability after reaching

a peak in around 2021. One slight outlier is the carbon prices, which demonstrate a delayed

peak and shows signs of lower variability than the rest of the renewable and clean market indices.

Focusing on GB, we can observe that GB display a differing pattern compared to the other

indices. Around 2016, GB experienced a peak with subsequent minor variability, followed by

a substation increase from 2018 and a stabilization at a higher level. An interesting find is

that even though GB were slightly affected during the early days of the pandemic, the return

levels remained at a high level from mid-2020 until recently. We also notice that GB display a

substantial drop since the end of 2021. This drop is likely in conjunction with rising interest

rates from central banks, especially in the US and European Economic Area (EEA), after a long

period with unprecedented low interest rates.
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Figure 1. Scaled returns of all data series in relation to green bonds.

Further analysis of the descriptive statistics of our variables (see Appendix A) show that

all the series are significantly left skewed and the kurtosis is above 3, suggesting a leptokurtic

distribution. We also use the Jarque-Bera test as well as the ADF and KPSS tests to check

the normality and stationarity of our data, respectively. The results indicate non-normality and

stationarity for all indices. The results are available in Table A1 in Appendix A. Additionally,

GB is shown to have the lowest mean and standard deviation compared to the other indices.

This verifies the smoother trend we found for GB in figure 1. It also indicates that GB display

13



lower volatility than carbon prices and CE stocks. By contrast, carbon prices are shown to have

the highest mean and standard deviation from all the other indices. Investigating the correlation

between all variables, we find that the lowest correlation is found between GB, CO2 and Clean

Energy stocks. This finding motivates further detailed investigation of the relationship among

green bonds, carbon prices and clean energy stocks.

In conclusion, the finding that GB exhibits a distinct pattern when compared to our other

indices prompts additional investigation into the relationships and connectedness within our

green financial system.

4 Empirical results

The main objective of this paper is to analyze the time and frequency dynamics of connectedness

among green bonds, six clean energy markets and the EU carbon market. Thus, we put emphasis

on the dynamic version of the connectedness method by Barunik and Krehlik (2018). After

testing several frequency bands, we have found it most useful to discuss the connectedness

measures for two frequency bands. We employ the high frequency (short-term) band for

movements up to five days (one working week), while the low frequency (long-term) band

comprises movements from 6 to 200 days. Hence, the first frequency band represents short-

term connectedness, while the second frequency band represents long-term connectedness. As

a robustness check, we also estimate the connectedness, including a medium frequency. The

detailed results can be found in Appendix B. For the purpose of comparison, we have included

a static estimation of net pairwise directional returns for both the DY12 and BK18 methods7.

Additionally, we have incorporated some findings from the Diebold and Yilmaz (2012) pure

time-domain framework.

4.1 Total return connectedness

Figure 2 shows the overall system connectedness measured by the DY12 and BK18 methods.

The DY12 results show that overall connectedness varies between approximately 40% and 80%

during the investigated period. Furthermore, we notice that the two largest connectedness peaks

are found around 2015-2016 and 2020. We attribute the 2020 peak to the COVID-19 outbreak,

which created unprecedented challenges for society and caused significant turbulence in financial

markets. During 2015-2016 both Europe and the US experienced several events leading to higher

uncertainty, which is also emphasized in the Economic Policy Uncertainty index by Baker et al.
7This is to clearly illustrate the direction and magnitude of directional connectedness among our green assets,
and can be seen in figure 5.
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(2016). A major event that took place in 2015 was the Greek referendum rejecting bailout terms

set forth by the EU to aid the Greek debt-crisis. In addition, towards the end of 2015 leaders

from around the world gathered for the COP 21 in Paris, where tough negotiations lead to the

signing of the now world-famous Paris Agreement on climate change. Subsequently, several firms

and organizations have used the Paris Agreement to align their climate change mitigation and

adaptation efforts. Following this event, there was the ramp up of the Brexit referendum that

culminated in the UK voting to leave the EU in June 2016. Additionally, the US was experiencing

a highly polarized presidential race, which resulted in the election of Donald Trump as president.

Other studies have similarly observed higher connectedness between financial markets during

periods of economic and political turbulence (Tiwari et al., 2018; Naeem et al., 2020; Zhang

and Hamori, 2021). This indicates that financial markets experienced a peak in connectedness

during the financial crisis, as uncertainty transmission was high. Additionally, it is important to

point out that our green financial market is significantly exposed to US and European markets,

as well as the Chinese market, due to the geographical composition in our indices.

We proceed with the decomposed total connectedness by the BK18 framework which enables

us to explore the short-term and long-term connectedness in our system. Our results displayed

in figure 2 suggest that periods of high connectedness are mostly driven by the high frequency

band (short-term). This finding is in line with previous literature investigating different systems

(Diebold and Yilmaz, 2012; Ferrer et al., 2018; Tiwari et al., 2022; Kang et al., 2019; Le et al.,

2021; Zhang and Hamori, 2021; Jiang and Chen, 2022). Thus, return spillovers among the GB,

CO2 and clean energy markets occur mainly in the short-term, specifically within a week. As a

result, during such periods, investors in green markets may encounter difficulties in diversifying

their portfolios. Albulescu et al. (2019) have shown that identifying good diversification

opportunities can be challenging for investors during periods of high connectedness.

In contrast, the low frequency band (long-term) connectedness in the system only varies

between 10% and 20% (see figure 2). For long-term investors interested in green finance

these results indicate interesting diversification opportunities in this green financial system.

The relatively low connectedness at the low frequency band (long-term) indicates that return

spillovers are not substantially transmitted among the variables in the long-term, thus it will be

easier for long-term investors to construct green portfolios with minimum connectedness among

the assets. On the other hand, it can be difficult for short-term investors such as day traders

and hedge funds to find solid diversification opportunities, as there are higher return spillovers

among the variables in the short-term (high frequency band). However, it also shows that most

return spillovers within the green financial system is processed quite quickly. Thus, if short-term
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investors have solid liquidity and strong market knowledge, there could be some diversification

opportunities during less volatile periods as connectedness seems to be lower in these periods.

These insights can also be useful for policy makers focusing on designing optimal and efficient

climate policies for both adaptation and mitigation efforts. Policy makers, just like investors,

can make decisions on different frequency bands. Climate policy makers would likely focus on

adaptation policies to deal with short-term challenges but emphasize more mitigation policies to

find long-term solutions to the climate crisis. Thus, understanding market spillovers at both the

high frequency (short-term) and low frequency (long-term) band could be valuable for policy

makers.

Figure 2. Total connectedness measured by DY12 framework and BK18 framework.

A noteworthy finding is that periods of severe economic events tend to be followed by periods

where the connectedness in our system is driven by low frequency (long-term) transmission of

shocks. In 2017 and 2021, we can observe in figure 2 a clear increase in long-term connectedness

and a drop in short-term connectedness. Additionally, in the period around 2019 we can also

notice that the overall connectedness is driven by the long-term rather than the short-term. In

general, one could ask whether the severe economic shocks witnessed in 2015-2016 and 2020

cause investors to fear the consequences, resulting in extended periods of shock spillovers. In

other words, after a severe negative shock, market participants expect that shocks in the market

could have long-term impacts inducing uncertainty about the long-term stability of the market

system.

Figure 2 reveals another intriguing observation - the total connectedness is not simultaneously

driven by both frequencies at any particular time during the investigated period. This indicates

that investors display heterogeneous responses to return shocks throughout the entire investigated
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period. The results clearly emphasize the importance of decomposing the system connectedness

in different frequencies. In this way, we can gain a thorough understanding of the systematic

risk between green financial markets, taking into account both the short-term and long-term

perspectives. Therefore, we can conclude that utilizing both the DY12 and BK18 frameworks

provides a more comprehensive view of the connectedness in our green financial system.

4.2 Net directional return connectedness

Figures 3 and 4 demonstrate the net directional spillovers of each variable in our system. First,

figure 3 shows the DY12 results, while figure 4 shows the results from the BK18 framework.

The net directional return connectedness allows us to identify net transmitters and receivers

of spillovers in our green financial system. Figure 4 displays the breakdown of net return

connectedness into short-term and long-term. The pink shade corresponds to the short-term

component (high-frequency band), while the blue shade refers to the long-term component (low

frequency band).

Figure 4 shows that the majority of the connectedness for our individual variables is driven

by short-term connectedness. This finding corroborates the results in figure 2. Focusing on GB,

we notice from figure 3 and figure 4 that based on both the DY12 and BK18 framework, GB

is a net receiver of return spillovers from the other variables in the system. Additionally, the

BK18 results reveal that GB is a net receiver of shocks in both the short-term and long-term,

meaning across both frequencies. We also notice that the short-term component (high frequency)

dominates the long-term (low frequency) component. Therefore, we could conclude that the

short-term component drives the net directional spillover for GB. We detect a minor exception

from this result in 2018, when GB acted as net transmitter of shocks in the long-term (low

frequency). Some events that could be linked to this is the launch of the European Commission’s

sustainable finance action plan, the release of the IFC Guidance for Green Sovereign Issuers, and

the issuing of the World Bank guide for public sector issuers on green bond proceeds (Richardson

and Reichelt, 2018).
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Figure 3. Net directional connectedness DY12.

In terms of market related events, it is noteworthy that in 2018 the cumulative green bond

issuance reached $500bn (Richardson and Reichelt, 2018). The findings also indicate that GB

is receiving fewer shocks after the COVID-19 pandemic compared to pre-pandemic. Given

the increased attention towards green bonds within academia and financial markets, we could

speculate whether it is possible that GB’s role may shift from being a net receiver to a net

transmitter of shocks in the years to come. More importantly the results show that GB exhibit

relatively lower connectedness in more recent periods, indicating that GB could serve as an

effective diversification instrument for investors who operate in both the short-term and long-

18



term green financial markets.

In figures 3 and 4, we can see similar patterns for CO2 quotas as we do for GB in both the

DY12 and BK18 frameworks. CO2 emerges as a net receiver of shocks across frequencies for the

majority of our investigated period. Additionally, the net connectedness is mainly driven by the

short-term, which is the same case as for GB. CO2 diverges from the GB pattern during times

of significant political and economic uncertainty, such as Brexit and the COVID-19 pandemic.

In these periods, the net directional connectedness of CO2 to the rest of the system increases

to a much greater extent compared to GB. On the other hand, during times of relative political

and economic stability (2017-2019), CO2 shows only minimal connectedness with the rest of

our green financial system. This finding may be of interest for both short-term and long-term

oriented investors, as well as for policy makers working on carbon markets like the EU ETS.

Overall, it can be observed that GB and CO2 are the primary net receivers of return spillovers

in both the DY12 and BK18 frameworks, which is consistent with previous literature (Le et al.,

2021).

Focusing on the clean energy markets, we observe some fluctuations in the net receiving

and transmitting behavior for ISE_WIND, MAC_SOLAR, TSX and RENIXX in the DY12

framework. On the contrary, ECO displays less variability than the other indices, while SP_-

CLEAN differs from the other variables by being a net transmitter rather than receiver of shocks.

To better understand whether it is the short-term component or long-term component that drives

the net directional spillovers for our clean energy assets we exploit the BK18 framework. Going

into more detail regarding the clean energy variables, we can notice from figure 4 that MAC_-

SOLAR, SP_CLEAN, and ECO generally act as net transmitters across both frequencies during

the periods around the Greek debt crisis, the signing of Paris Agreement, Brexit and COVID-19

pandemic. Thus, we can deduce that during periods of political and economic uncertainty, the

net return spillovers in the green financial system are driven by the general clean energy markets

as well as the solar energy industry. At the same time, we notice that the connectedness for

MAC_SOLAR, and ECO is estimated to be relatively low for the whole time period. Most

of the return spillover transmission is driven by SP_CLEAN, and mostly driven by the high

frequency band (short-term).
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Figure 4. Net directional connectedness BK18.

A particularly interesting finding from the decomposed frequencies is that even though both

SP_CLEAN and ECO emerge as net transmitters in the system, their connectedness to the

system is driven by different frequencies and their connectedness displays different magnitudes.

The net directional connectedness for SP_CLEAN is influenced by the high frequency band

(short-term), whereas the connectedness for ECO seems to be mainly driven by the low frequency

band (long-term). However, since the outbreak of the war in Ukraine and significant monetary

policy tightening, especially from the Federal reserve system (FED), it seems that it is the

short-term net spillovers that drive the net directional spillovers from ECO to our green finance

system. This finding becomes clear when investigating both figures 3 and 4. From figure 3 ECO

emerges as a net receiver of spillovers after mid-2021, and in figure 4 it is clear that it is the
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short-term (high frequency) spillover that dominates the long-term (low frequency) spillover.

In figure 4, we also observe that the net directional connectedness for ISE_WIND and

RENIXX is not dominated by one frequency but is equally affected by both frequencies in

different time periods. For the case of ISE_WIND, which represents the wind energy market,

the results demonstrate that the return transmission during the macroeconomic events of 2016

and during COVID-19 was mainly driven by the high frequency band, indicating that shocks

are transmitted rapidly through the system. However, both during the time of the signing

of the Paris Agreement and post-COVID-19 ISE_WIND seems to act as a net receiver of

return spillover in our green financial system. On the other hand, RENIXX follows a different

pattern than ISE_WIND, being a net transmitter of spillovers driven by the short-term in the

post-COVID period while it appears to be a net receiver during the macroeconomic events of

2015-2016 switching between short-term and long-term connectedness. Lastly, TSX emerges as

the most volatile variable switching multiple times between being a net transmitter and receiver

of return spillovers at different frequencies.

Overall, our results suggest that GB, CO2, and clean energy markets react differently to

market events and that return connectedeness varies depending on the frequency, especially

among clean energy markets. Moreover, we observe that the connectedness of most clean energy

markets remains considerably low throughout the entire analyzed period, as opposed to the high

connectedness exhibited by SP_CLEAN and GB, as well as CO2 during times of economic and

political instability. Consequently, our analysis suggests that SP_CLEAN is the primary net

spillover transmitter within our green financial system, while GB serves as the primary receiver

of return spillovers. Overall, the results provide interesting insights for investors that are seeking

opportunities to explore green financial markets and identify potential diversification strategies

for their portfolios.

4.3 Pairwise directional return connectedness

In this section, we shift our focus to the pairwise directional return spillovers to shed some light

on the key transmitters and receivers of shocks in a bi-variate setting. First, we will provide an

overview of the net receivers and transmitters between the variables in the system by presenting

the static pairwise results from both the DY12 and BK18 frameworks. The results are shown

in the network graph in figure 5. For comparison purposes, we have also included the DY12

results. Additionally, we have focused on the pairwise connectedness between GB and CO2 since

we are particularly interested in the relationship of these two markets with the clean energy

market. Nevertheless, we have provided a brief commentary of the results for the clean energy
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variables. The dynamic DY12 pairwise results and the clean energy pairwise results can be

found in Appendix C.

Figure 5. Net pairwise directional connectedness measured using both the DY12 and BK18
framework. Note: The size of the nodes is proportional to the magnitude of each variable as
transmitter/receiver of return connectedness to/from each one of the remaining variables in our
green financial system. Additionally, the color of the node indicates whether a variable is a net
transmitter/receiver of connectedness to/from all the other variables. In this figure net transmitters
are colored red and net receivers are colored green. Finally, the thickness of the line arrows reflects
the strength of the connectedness between a pair of variables, which means that thicker edges
represent stronger net pairwise connectedness.

From figure 5 we see that GB emerges as the largest net receiver of return shocks in our

green financial system, followed by CO2. The only pairwise relationship where GB is a net

transmitter of return spillovers is between GB and CO2, but the net transmission is marginal,

which is made clear by the significantly weak line going between GB and CO2. Furthermore,

from part (b) in figure 5, we observe that the magnitude of shocks received by GB is primarily
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in the high frequency band, corresponding to 1-5 days. Three variables stand out as the

strongest transmitters of return spillovers to GB, namely SP_CLEAN, TSX and ISE_WIND,

with SP_CLEAN having the most significant effect. Again, we observe that this relationship

is predominantly driven by the high frequency band, suggesting that the return spillovers are

rapidly processed, within a single work week. There is some evidence of long-term (low-frequency)

connectedness that arises during periods of turbulence, such as the Greek debt crisis, Brexit

and COVID-19.

The analysis of CO2 reveals that it is the second largest net receiver, both in the high and

low frequency bands. However, the magnitude of the connectedness is rather weak and almost

negligible in the long-term, as indicated by part (c) in figure 5 and figure 7 (also figure C.2

in Appendix C). In figure 7, we observe that this generated marginal connectedness is mostly

driven by the short-term (high frequency), especially during the Brexit and COVID-19 pandemic.

In addition, except for a few exceptions, there is barely any long-term connectedness during

the investigated period. Generally, during times of political and economic instability, CO2

tends to be more strongly connected with the clean energy markets and GB market at the high

frequency band. Overall, it appears that CO2 is quite decoupled from the other variables in our

green financial system. Furthermore, some may argue that certain investors regard CO2 as a

commodity that can be used as a financial speculative instrument, much like the financialization

of crude oil (Ferrer et al., 2018). Thus, certain investors may own "brown" stocks associated

with polluting industries such as steel companies, while simultaneously purchasing carbon quotas

to offset the perceived adverse impact of owning these stocks. The use of carbon quotas as

a speculative instrument could be the reason for the lack of connectedness between CO2 and

clean energy markets, similar to what has been observed for conventional and renewable energy

markets (Ferrer et al., 2018; Asl et al., 2021).

When investigating the pairwise directional connectedness of our clean energy market variables

we come across several interesting findings. First, in our static model in figure 5, SP_CLEAN

displays relatively strong transmission of return spillovers to GB, ISE_WIND, RENIXX and

TSX. However, we notice a relatively weaker connectedness between SP_CLEAN and MAC_-

SOLAR, as well as SP_CLEAN and ECO. Focusing on the dynamic model, results indicate

that SP_CLEAN is the main driver of return spillovers in our green financial system, both in

the DY12 framework and the BK18 framework. Moreover, most of the pairwise connectedness

between SP_CLEAN and the rest of the variables in the system is generated in the short-term

(high frequency band). This finding also corroborates the net directional results in figure 4,

where SP_CLEAN is showed to generate most connectedness at the short-term (high frequency

23



band).

Figure 6. Net directional pairwise connectedness between green bonds and the
green financial system measured at high and low frequency.

A noteworthy finding is that although the ISE_WIND seems to be a net receiver of return

spillovers in the dynamic DY12 framework, in the BK18 frequency framework it emerges as a net

transmitter in the short-term, and switches to a net receiver in the long-term. These insights into

the wind energy market in the context of our green financial market may also be of interest for

various investors and policy makers, as wind energy is a popular investment option for investors

interested in renewable energy. Overall, the wind industry exhibits rather low connectedness
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to the other green financial markets, rendering it an attractive diversification opportunity. Yet,

it may be beneficial for short-term green investors to be aware of the potential spillover from

the general clean energy market represented by SP_CLEAN, and the potential spillovers from

ISE_WIND to GB, and from ISE_WIND to CO2 especially during highly turbulent times.

Figure 7. Net directional pairwise connectedness between carbon market returns
and the clean energy markets at high and low frequency.

Another interesting result associated with the clean energy markets is that ECO, which

is identified as a net receiver at both frequency bands is mainly influenced by the long-term

component. Additionally, as depicted in figure 5, ECO is the only variable that increases in

magnitude at the long-term (6-200 days). A potential answer to this result may be that ECO

could be constructed from stocks that tend to be more have investors who scrutinize information

more thoroughly after a shock, resulting in a larger spillover magnitude in the long-term (low

frequency band). We notice that the pairwise directional spillover between ECO and GB,

and ECO and CO2 is rather low and mostly driven by the short-term in figures 6 and figure

7, indicating that most of the low frequency (long-term) return spillover transmission occurs
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between ECO and other clean energy markets. This can also be seen in figure 5 part (c), where

the return spillover from ECO at the low frequency band is transmitted mainly to RENIXX,

ISE_WIND and TSX.

5 Discussion

Our results show that connectedness in the green financial system is both time and frequency

dependent. In line with previous studies (Diebold and Yilmaz, 2009; Albulescu et al., 2019;

Naeem et al., 2020), we find that periods of political and economic uncertainty tend to increase

connectedness between the assets under examination.

An interesting finding is that periods of severe economic events tend to be followed by periods

where the connectedness in our system is driven by long-term (low frequency) transmission of

shocks. This prompt us to question whether investors fear the aftermath and the uncertainty

surrounding the resolution of these severe economic shocks. Thus, new information is examined

with greater scrutiny, which translates into shock spillovers being transmitted over longer periods.

Following a serious shock, market participants anticipate that disruptions in the market may

have lasting impacts, including uncertainty about the long-term stability of the market. Such a

finding can be of great interest for both investors and policy makers in planning and portfolio

management.

Following the COVID-19 pandemic, from early 2020 until today, the total return connectedness

has continued to remain at higher levels than those observed before the pandemic. This

connectedness is likely linked to the energy crisis in Europe, the war in Ukraine and tightening

monetary policies across Europe and the US. Nevertheless, the relatively low connectedness

between our green assets indicates prospects for diversification in the long-run, as well as among

specific assets in the short-term. Numerous financial market leaders suggest investing in climate-

aligned assets, which as demonstrated, can be advantageous for investors. Among the most

famous is BlackRock CEO Larry Fink, emphasizing the importance of aligning the financial

markets and climate efforts in his letters to CEOs in 2021 and 2022. Moreover, the World

Bank has faced increasing pressure to tackle climate change8, and to quickly ramp up efforts to

allocate more money to finance climate initiatives.

Overall, our results show that the system connectedness is mainly created at the high frequency

band. Consequently, most of the return spillovers between our green assets are transmitted

through the system within a week. Thus, investors in climate finance can find it easier to

construct a diversified green portfolio in the long-run than in the short-run. One may assume
8Article from Financial Times (2023).
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that this finding might stimulate or attract a long-term perspective towards green investments

rather than prompting short-term speculation. This is particularly crucial for a successful green

transition and can motivate policy makers to design policies that encourage investors with

long-term investment preferences to invest in the green financial market. Simultaneously, the

world is lagging in terms of financing the green transition. Therefore, we can argue that it is also

essential to motivate short-term investors to secure a rapid influx of capital. Policy makers can

enhance the attractiveness of the green financial market for short-term investors by designing

policies that target reducing the short-term connectedness.

GB and CO2 are estimated as net receivers of shocks, with most of the return spillovers

occurring at the high frequency (short-term) band. Furthermore, since 2021, there has been

a significant decrease in net connectedness across the different frequency bands for GB. The

fact that GB and CO2 are net receivers implies that they are not key determinants of the

performance of clean energy and clean technology stocks. Consequently, we can assume that

GB, CO2 prices and clean energy stocks can be utilized by investors for portfolio diversification.

Importantly, both GB and CO2 exhibit relatively low connectedness at the low frequency band.

Thus, these assets could provide an interesting avenue for long-term investors who focus on

green financial markets. Our findings can encourage long-term investors such as pension funds

and sovereign funds to consider creating fully climate-aligned portfolios.

Our findings indicate a low level of connectedness of CO2 prices with the other green assets in

our system during periods of stability. The level of connectedness, however, increases significantly

during highly turbulent periods, specifically in 2016 and 2020. CO2 quotas can be perceived as

a commodity used as a speculative instrument by certain investors, such as short-term traders

and hedge funds, similar to the financialization of crude oil discussed by Ferrer et al. (2018).

For instance, some investors may purchase carbon quotas as a potential hedge against climate

risk in their portfolios when owning "brown" stocks. This may affect the lack of connectedness

between CO2 and the clean energy market, similar to the documented decoupling of traditional

and new renewable energy markets (Ferrer et al., 2018; Asl et al., 2021). Consequently, CO2

has the potential to act as an interesting diversification tool for portfolios that include clean

energy stocks and/or green bonds.

Our findings also suggest that SP_CLEAN is a main driver of the high frequency return

spillovers, while the connectedness associated with the other clean energy markets is relatively

low across both frequencies. There are prolonged periods where the net connectedness of the

clean energy assets is primarily driven by the low frequency (the long-term). Upon analyzing

the pairwise connectedness results, it becomes apparent that the primary contributor to long-
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term connectedness is the transmission of spillovers among the various clean energy indices,

rather than the relationship between GB-CO2 and clean energy markets9 Therefore, the clean

energy assets could be used as diversification tools for short-term portfolios. This finding could

be valuable for short-term investors, including day traders and hedge funds, who are seeking

diversification opportunities within the green financial markets.

6 Conclusion

In recent years, the world has witnessed a significant surge in the awareness and need for finance

that aligns with climate goals. This trend can be attributed to the need for green transition

investment in response to the pressing challenge of climate change. Green bonds and carbon

markets along with clean energy markets can be seen as the most important financial building

blocks for a successful green transition in line with the Paris Agreement, the EU Green Deal

and other global and regional climate initiatives.

This paper investigates the time and frequency dynamics of connectedness among green

bonds, carbon prices, and clean energy markets, using the novel connectedness framework by

Baruník and Krehlík (2018), regarded as an extension to the spillover index approach by Diebold

and Yilmaz (2012). The BK18 framework allows us to explore the connectedness between our

chosen green assets in both the time and frequency domain simultaneously. Therefore, we can

decompose the total and directional connectedness, found by the DY12 framework, to different

frequencies and discover short and long-term connectedness between our chosen assets. The

BK18 connectedness results can facilitate portfolio diversification for investors operating in

different time horizons, eventually increasing funding for environmentally friendly projects. This

can cultivate positive change towards a sustainable future and assist into achieving the global

sustainability goals. We selected two frequency bands that represent the short-term and long-

term horizon. The high frequency band comprising 1-5 days (equivalent to a working week)

represents a short-term horizon, while the low frequency band of 6-200 days refers to a long-term

horizon10.

Our empirical results provide insights into the green financial market, where SP_CLEAN

generally transmits return spillovers, while GB and carbon prices act as net receivers, and the

other clean energy markets display a rather low net connectedness. We find that generally,

high frequency band (short-term) return spillovers dominate low frequency band (long-term)
9In the preceding paragraph, we noted that connectedness is mainly driven by the short-term spillovers among
GB-CO2, and clean energy markets.

10While we have also used three frequency bands (see Appendix B), the medium-term horizon has not yielded
significant insights. Furthermore, aligning our frequency bands with those used in previous studies has made it
easier to compare our results with the existing literature.
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spillovers in magnitude. This means that, as per today, the green financial market benefits the

long-term investors who operate at the low frequency band, even more in turbulent periods, as

most return spillover connectedness is found in the short-term. Thus, it appears that generally

the green financial market is quite efficient in rapidly processing information, resulting in shock

transmissions mainly occurring within one working week. Moreover, discovering rather low

connectedness in the long-term implies that these markets appear to be primarily driven by

their own fundamentals and the overall economic standing. Our analysis also reveals that several

of our clean energy indices exhibit low connectedness, even at at the high frequency band (short-

term). This finding may interest short-term investors and incentivize increased capital in these

markets.

Our results regarding CO2 quota prices reveal low connectedness with the rest of the system

during periods of stability, with a notable increase only during highly uncertain political and

economic periods. CO2 prices display an increased connectedness during the Brexit crisis

and the COVID-19 pandemic, while for the remainder of the time period, CO2 appears to be

weakly connected both with green bonds and clean energy markets. This finding may present

opportunities for short-term investors who wish to diversify their green portfolio by including

CO2 as a potential option. However, short-term investors should be aware of considerable return

spillovers during extremely turbulent periods, which can make portfolio diversification more

difficult, or less reliable. Overall, our results provide evidence of diversification prospects in

green financial markets. This underscores the potential for investors to take advantage of these

prospects and further promote the green financial transition.

Concerning policy makers, we would suggest that they pursue policy mixes that encourage

greater investments from long-term investors, while also providing incentives for short-term

investors to facilitate essential short-term climate capital. Policies can also enhance the attracti-

veness of the green financial market for short-term investors by designing policies that target

reducing the short-term connectedness, especially aimed at GB. Moreover, providing insights into

the connectedness between various clean energy markets in both the short-term and long-term

could aid in designing and revising policies for an efficient and fair green transition.

An interesting next step for researchers and investors would be to compare minimum connect-

edness portfolios created at different frequencies to investigate short-term and long-term hedging

opportunities in line with Tiwari et al. (2022). Lastly, it would be interesting to explore the

possibilities of estimating which return spillovers are positive or negative in nature. These are

important future research agendas, not accomplished using the DY12 and BK18 frameworks.
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A Appendix

Table A1. Summary Statistics and Tests.

GB CO2 ISE WIND MAC SOLAR TSX RENIXX SP CLEAN ECO

Mean 0.006 0.088 0.024 0.032 0.026 0.048 0.036 0.027

Std. Dev. 0.269 2.413 0.954 1.805 1.235 1.538 1.31 1.882

Min -2.403 -19.453 -11.708 -14.854 -14.617 -16.343 -12.507 -16.952

Max 1.447 16.191 9.835 11.264 10.834 17.246 10.979 13.338

Skewness -0.441 -0.433 -0.88 -0.534 -1.266 -0.174 -0.586 -0.498

Kurtosis 6.399 7.855 18.192 7.78 22.414 15.751 13.398 8.867

Jarque-Bera 5075.7*** 7597.7*** 40642*** 7502.9*** 61902*** 30198*** 22007*** 9686.7***

ADF -13.621*** -14.309*** -13.72*** -13.188*** -12.969*** -13.323*** -12.525*** -12.974***

KPSS 0.074 0.06 0.032 0.06 0.043 0.068 0.047 0.088

Observations 2920 2920 2920 2920 2920 2920 2920 2920

Notes: i) *, ** and ***, respectively denote rejection of the null hypothesis at 1%, 5% and 10% significance

levels. ii) ADF: Augmented Dickey-Fuller, KPSS: Kwiatkowski-Phillips-Schmidt-Shin
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B Appendix

Figure B.1. Robustness check using different rolling window sizes (150, 200 and 250 days). Notes: i)
The rolling window of 200 days represents our main results in the paper, ii) This figure displays the overall
time-varying connectedness of DY12 and the time-frequency connectedness of BK18 for two frequency
bands (low and high).
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Figure B.2. Robustness check using different rolling window sizes (150, 200 and 250 days). Notes: i)
The rolling window of 200 days represents our main results in the paper, ii) This figure displays the net
time-frequency connectedness of BK18 for two frequency bands (low and high). For simplicity, we split
the indices in two graphs.
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Figure B.3. Robustness check using different rolling window sizes (150, 200 and 250 days). Notes: i)
The rolling window of 200 days represents our main results in the paper, ii) This figure displays the net
time-frequency connectedness of BK18 for two frequency bands (low and high). For simplicity, we split
the indices in two graphs.
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Figure B.4. Robustness check using three frequency bands. Note: i) This figure displays the total
connectedness of our system, but also the net connectedness for each index in three frequencies.
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C Appendix

Figure C.1. Net directional pairwise connectedness between green bonds and the
green financial measured by the DY12.
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Figure C.2. Net directional pairwise connectedness between CO2 and the green
financial measured by the DY12.
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Figure C.3. Net directional pairwise connectedness between ISE_WIND and other clean energy markets
using the BK18 framework.
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Figure C.4. Net directional pairwise connectedness between MAC_SOLAR and other clean energy
markets using the BK18 framework.

Figure C.5. Net directional pairwise connectedness between TSX and other clean energy markets using
the BK18 framework.
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Figure C.6. Net directional pairwise connectedness between RENIXX and other clean energy markets
using the BK18 framework.

Figure C.7. Net directional pairwise connectedness between ECO and RENIXX using the BK18
framework.

D Appendix

Figure D.1. Total connectedness measured by DY12 framework and BK18
framework without RENIXX.
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Figure D.2. Net directional connectedness DY12 without RENIXX.
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Figure D.3. Net directional connectedness BK18 without RENIXX.
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Figure D.4. Net directional pairwise connectedness between green bonds and the
green financial system without RENIXX.
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Figure D.5. Net directional pairwise connectedness between carbon market returns
and the green financial system without RENIXX.

Figure D.6. Total connectedness measured by DY12 framework and BK18
framework without RENIXX and MAC_SOLAR.
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Figure D.7. Net directional connectedness DY12 without RENIXX and MAC_-
SOLAR.
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Figure D.8. Net directional connectedness BK18 without RENIXX and MAC_-
SOLAR.
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Figure D.9. Net directional pairwise connectedness between green bonds and the
green financial system without RENIXX and MAC_SOLAR.
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Figure D.10. Net directional pairwise connectedness between carbon market
returns and the green financial system without RENIXX and MAC_SOLAR.
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