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1 Introduction

This paper studies policy design in coordination games. Many decision problems are funda-
mentally coordination games, and the design of policies to solve these problems is a major
economic issue. How should government stimulate the use of technologies that foster economic
development (Bandiera and Rasul, 2006; Cai et al., 2015; Beaman et al., 2021)? How should
principal set rewards to incentivize work in teams (Holmstrom, 1982; Winter, 2004; Halac
et al., 2021)? How should firms raise capital from multiple investors (Sakovics and Steiner,
2012; Halac et al., 2020)? How should a rebel leader induce citizens to participate in a
revolution (Edmond, 2013; Morris and Shadmehr, 2023)? How should incentives be set to
shift social norms (Brekke et al., 2003; Ferraro et al., 2011; Lane et al., 2023)?

Policy design is rarely simple. To begin with, it is often impossible to assess from the onset
what the payoff to a particular course of action will be. When individuals or firms choose
whether to adopt a new technology, for example, it is hard to tell precisely how beneficial
it will eventually be. Confronted with uncertainty about payoffs, a planner’s goal need not
necessarily be to make players adopt the technology no matter what. Rather, she might seek
to design a policy that induces adoption whenever the (potential) benefits are sufficiently
high. Such a change of perspective becomes especially pertinent when the players possess
relevant private information superior to the planner’s, a possibility easily imagined – industry
likely has a clearer idea about a new technology’s true potential than, say, Congress. In those
cases, the planner might want players to act according to their own knowledge. How should
the planner design a policy that induces players to use their private information in a way the
planner wants them to?

Another complicating factor, this one specific to coordination games, is the complex
interplay between policy and players’ strategic beliefs, that is, their beliefs about the choices
other players will make. In a coordination game, players have an incentive to act the way
their peers do. If a new technology exhibits network effects, for example, then the payoff
to adopting is increasing in overall adoption. Whether a policy creates the right incentives
then depends upon a player’s strategic beliefs which, in turn, are themselves affected by the
policy. A theory of policy design should unravel this two-way interaction between policies
and strategic beliefs, ideally from economic first principles. This requires an understanding
of how strategic beliefs are formed in the first place.

This paper develops a theory of policy design in coordination games that deals with these
two challenges. To illustrate our problem, consider again the example of technology adoption.
Players must choose whether to adopt a network technology. The payoff to adopting the
technology is increasing both in the number of other players that adopt it (e.g. network effects)
as well as a fundamental state, x, which is hidden. One could think about the state x as the
technology’s efficiency-enhancing potential. Not knowing the true state x, a planner publicly
announces subsidies on technology adoption. Players then receive more precise information
about the technology’s quality in the form of private but noisy signals, and choose whether to
adopt. The problem of the planner is to find a subsidy scheme that induces players to adopt
the technology whenever the state exceeds some critical threshold x̃ and not adopt otherwise.
A subsidy scheme is optimal if it solves the planner’s problem and makes coordination on
such strategies the unique Bayesian Nash equilibrium of the game.

As a preliminary result, we show that social welfare – which can be any increasing function
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of players’ payoffs – is maximal if and only if players adopt the technology whenever the state
x is sufficiently high. Although we present a mostly positive analysis, solving the planner’s
problem for any critical state x̃, this result helps motivate her problem: provided she chooses
the critical state x̃ well, an optimal subsidy scheme induces players to coordinate on strategies
that maximize expected welfare. The result also has a practical implication: full adoption is
not necessarily the efficient outcome of the game. Because efficiency depends upon a state
the planner does not observe, she may end up incentivizing adoption when, from the point
of view of social welfare, players should not adopt. In considering uncertainty about the ex
post efficient outcome of the game, our analysis deviates from the typical approach in the
literature on policy design in coordination games.1

The main result of this paper shows that there exists a unique subsidy scheme that solves
the planner’s problem. It also characterizes the optimal scheme. Subsidies pursuant to the
scheme are (i) symmetric for identical players; (ii) continuous functions of model parameters;
and (iii) do not make the targeted strategies strictly dominant for any of the players. These
findings run counter to well-known results in the literature (cf. Segal, 2003; Winter, 2004;
Bernstein and Winter, 2012; Sakovics and Steiner, 2012; Halac et al., 2020).

A distinctive feature of our analysis is that we connect the problem of policy design
to that of equilibrium selection. Coordination games frequently have more than one Nash
equilibrium. In games with multiple equilibria, “the rational decision maker [...] is uncertain
which equilibrium strategy other decision makers will use (Van Huyck et al., 1990, 1991).”
This complicates policy design as, lacking a sharp prediction on players’ strategic beliefs, the
planner is assured of her policy’s effectiveness only if it works against all strategic beliefs. We
therefore argue that an understanding of strategic belief formation is critical when designing
policy in coordination games. By selecting one out of multiple equilibria, equilibrium selection
eliminates any uncertainties about the strategies other players will use. A sharp specification
of strategic beliefs in turn permits a precise delineation of the effect policy has on equilibrium
strategies, which we exploit to characterize the optimal subsidy scheme. Given our focus
on policy design under uncertainty, we address equilibrium selection using a global games
approach (Carlsson and Van Damme, 1993).2

Because equilibrium selection allows for a sharp specification of strategic beliefs, our
analysis is the first to reveal an “unraveling effect” of subsidies in coordination games.
Consider again the example of technology adoption. We show that, for a given subsidy
scheme, there is a unique vector of player-specific threshold states such that in equilibrium a

1This type of uncertainty about efficiency, though not at the forefront of most analyses, seems historically
relevant. For example, Cowan (1990) describes the history of nuclear power generation. Nowadays, light water
nuclear reactors are the dominant technology. This situation can be traced back to Captain Hyman Rickover
of the U.S. Navy, whose preference for light water drove the early development of this technology led to its
eventual domination of the field. There now is compelling evidence that two competing technologies, both of
which were known to Captain Rickover, are economically and technologically superior to light water nuclear
reactors. Similarly, Cowan and Gunby (1996) discuss competing pest control strategies in agriculture. They
show that today’s heavy reliance on pesticides – a consequence of targeted policies in the 1930s and 1940s –
is inefficient. Evidence indicates that a competing technology that already existed at the time, Integrated
Pest Management, is technologically and economically superior to pesticides. This wasn’t known, however,
when policymakers first had to choose which type of pest control to pursue.

2Global games are incomplete information games in which players do not observe the true game they
play but receive private and noisy signals of it.
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player adopts the technology if and only if his signal exceeds his threshold state. Furthermore,
a player’s threshold state is continuously decreasing in (i) his own subsidy and (ii) the
threshold states of other players.3 Combining (i) and (ii) yields the unraveling effect: a
(raise in the) subsidy to player i makes him more likely to adopt the technology. This makes
adoption more attractive for player j, whose incentive to adopt therefore also increases.
Knowing that j is more eager to adopt, player i’s adoption incentive increases even further,
and so on. These effects keep on compounding, ever reinforcing one another, demonstrating
how even small subsidies can go a long way toward unraveling coordination problems.

Our main analysis builds upon the canonical model of contracting with externalities in
which players’ actions are contractible and the externalities they impose upon one another
are deterministic (Segal, 1999, 2003; Bernstein and Winter, 2012). Typical examples would
be group participation problems or network technology adoption. To generalize our analysis
to the broader literature, we also study several extensions.

In one extension, we study a global game of regime change in which individual actions are
contractible but externalities are binary and (partly) stochastic. The classic example is a joint
investment problem. Players choose whether to invest in a project. Upon investing, a player
incurs a certain cost; if the project succeeds, investing players earn a return that is increasing
in the project’s unobserved “quality”. The project succeeds if and only if total investments
exceed a stochastic (and unobserved) critical threshold. A planner offers investment subsidies
to induce investment whenever the project’s quality is sufficiently high. We find that an
optimal subsidy scheme subsidizes all players and makes investment a best response to a
player’s belief that the project succeeds with probability 1/2. Also, investment subsidies are
continuous in model parameters (cf. Sakovics and Steiner, 2012).

In another extension, cast in a moral-hazard-in-teams setup, we study games in which
externalities are binary and stochastic while individual actions are not contractible. Agents
can work or shirk toward a common project; working is costly and agents’ work provision is
their private knowledge. If the project succeeds, players earn a reward that consists of a fixed
“bonus” and a share of profits. Profits are uncertain, but agents receive noisy information
about it before choosing to work. Project success is stochastic; the probability of success is
increasing in total work provision. A principal wants to design bonuses that induce work
whenever (projected) profits are sufficiently high. We show that there is a unique bonus
scheme that solves the principal’s problem. In this scheme, identical agents receive identical
rewards and working is a best response to uniform beliefs about work provision by the other
agents (cf. Winter, 2004; Halac et al., 2021).

Lastly, we can relate our analysis to celebrated discrimination results on policy in coor-
dination games. Assuming complete information about payoffs, Segal (2003) and Winter
(2004) establish that a least-cost subsidy scheme is fundamentally discriminating: it rewards
even identical players asymmetrically. Using the language of technology adoption, these
authors seek to identify the least-cost subsidy scheme that makes adoption by all players
the unique Nash equilibrium of the game. Observe that the assumption of certainty about
payoffs would be equivalent, in the framing of our model, to assuming it is common knowledge

3The latter derives from players’ coordination incentives. Without going into the details of the model,
the argument goes like this: if a player’s threshold state is lower, he is more likely to adopt. This makes
adoption more attractive for other players, leading to a decrease in their threshold states.
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that the state is x̄. With this in mind, we first show that there exists an infinite number
of non-discriminating subsidy schemes that induce coordination on adoption as the unique
equilibrium outcome of the global game should nature draw state x̄. Furthermore, equilibrium
spending on subsidies in the least expensive such scheme is the same as that of the cheapest
discriminatory policy when players are symmetric. This shows that the least-cost property of
discriminatory policies disappears when the problem of policy design is connected to that
of equilibrium selection; optimality of discrimination hinges critically on the multiplicity of
equilibria in coordination games.

Related literature.—A closely related paper is Sakovics and Steiner (2012), who study
policy design in a global game of regime change. Sakovics and Steiner (2012) find that an
optimal policy fully subsidizes a subset of players, targeting those who matter most for project
success and/or have least incentive to invest. The difference between their results and ours
is a consequence of the distinct information structures considered. In Sakovics and Steiner
(2012), payoffs conditional on project success are known to the planner when she offers her
subsidies while players receive noisy signals about the critical threshold for project success.
The same distinction also set this paper apart from the broader literature on policy design in
global games of regime change, most notable among which are Goldstein and Pauzner (2005),
Angeletos et al. (2006, 2007), Edmond (2013), and Basak and Zhou (2020).

Similarly related is Halac et al. (2020), who study a game of regime change that is not a
global game. A firm seeks to raise capital from multiple investors to fund a project; the firm
offers payments contingent on project success. Halac et al. (2020) identify conditions under
which larger investors receive higher per-dollar returns on investment in an optimal policy.

In the literature on moral hazard in teams, two closely related papers are Winter (2004)
and Halac et al. (2021). In a complete information setup, Winter (2004) shows that an
optimal reward scheme is inherently discriminatory; no two agents are rewarded equally even
when agents are identical. This seminal result differs sharply from our finding that optimal
subsidies (or rewards) are symmetric for identical agents; the difference derives from our focus
on equilibrium selection. Halac et al. (2021) extend the model in Winter (2004) by allowing
contract offers to be private. Halac et al. (2021) demonstrate that, with private contract
offers, symmetric agents are offered identical rewards; this property of an optimal reward
scheme is similar to our optimal subsidies. Interestingly, the results in Halac et al. (2021)
depend upon contract offers being private; in contrast, offers have to be common knowledge
for our results.

In the literature on contracting with externalities, directly related are Segal (1999, 2003)
and Bernstein and Winter (2012). Our focus on policy design under fundamental uncertainty
and in connection to equilibrium selection sets our approach apart from theirs. A notable
contribution to this literature is our result that least-cost subsidies are not necessarily
discriminatory: we construct a symmetric subsidy scheme that (i) gives the same guarantees
on outcomes (in relevant states) as the least-cost policies proposed by Segal (1999, 2003) and
Bernstein and Winter (2012) while (ii) total equilibrium costs are the same. This suggests that
the least-cost property of discrimination is an artifact of unresolved equilibrium multiplicity
in the coordination games considered.
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2 The Game

2.1 Complete Information

Consider a normal form game played by a finite set N = {1, 2, ..., N} of players, indexed
i. Each player i ∈ N chooses an action ai ∈ Ai = {0, 1}. A planner publicly announces a
subsidy scheme s = (si), i ∈ N , where si is the subsidy she offers player i for playing 1; we
will come to the planner’s choice of s shortly. The payoff πi(a | x, s) to player i depends upon
the action vector a = (ai) ∈ A1 × A2 · . . . · AN played as well as a common state x and the
subsidy si as follows:

πi(a | x, s) =

{
x+ wi

(∑
j ̸=i aj

)
+ si if ai = 1 in a,

ci if ai = 0 in a.
(1)

In (1), the common state x represents an intrinsic benefit to playing 1 whereas ci is player
i’s (opportunity) cost of playing 1. The externalities other players impose upon player i are

given by wi

(∑
j ̸=i aj

)
. We are interested in coordination problems and assume that wi(n) is

increasing in n. We say that players i, j ∈ N are symmetric if ci = cj and wi(n) = wj(n) for
all n = 0, 1, ..., N − 1. Extensions and generalizations of the game described here are given in
Section 5.

The foregoing describes a game of complete information Γ(x, s). In Γ(x, s), a player’s
incentive to choose 1 is defined as his gain from playing 1, rather than 0:

ui(a−i | x, s) = πi(1, a−i | x, s)− πi(0, a−i | x, s) = x+ wi

(∑
j ̸=i

aj

)
+ si − ci. (2)

All else equal, a player’s incentive ui to play 1 is strictly increasing in x. Denote x0
i := ci−wi(0)

and xN
i := ci − wi(N − 1). One has ui(a−i | x0

i ) = ui(a−i | xN
i ) = 0. In other words, to each

player i playing 1 is strictly dominant for all x > x0
i − si; playing 0 is strictly dominant for

x < xN
i − si. Define x

N := max{xN
i | i ∈ N }, x0 := min{x0

i | i ∈ N }, x = min{x0
i | i ∈ N },

and x = max{xN
i | i ∈ N }. We assume that [x, x] is nonempty.

Let π̄i(a | x) = πi(a | x, s)−ai · si denote a player’s payoff in (a, x) net of subsidies. Social
welfare is given by

W (π̄1(a | x), π̄2(a | x), ..., π̄N(a | x)), (3)

where W is increasing and symmetric in its arguments. Our first result shows that there
exists a unique vector of (player-specific) thresholds states x∗

i such that social welfare is
maximized if and only if player i plays 1 when the state x exceeds x∗

i , and 0 otherwise.

Proposition 1. There exists a unique x∗ = (x∗
i ) ∈ RN such that if (a∗i (x)) = argmaxa∈AW (·),

then a∗i (x) = 1 iff x ≥ x∗
i . Furthermore, if players i, j ∈ N are symmetric, then x∗

i = x∗
j .

2.2 Fundamental Uncertainty

To reflect the many uncertainties that exist in the real world, we assume that the state
x is hidden. Instead, it is common knowledge among the players that x is drawn from a
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continuous (improper) prior density g : R → R and that each player i receives a private noisy
signal xε

i of x, given by
xε
i = x+ ε · ηi. (4)

It is not necessary that x can take values on the entire line; the analysis and results also
apply to games in which g has positive support on a closed internal X = [X,X] ⊂ R.4
Some authors refer to xε

i as the player’s type. The random variable ηi is a noise term that
is distributed i.i.d. on [−1/2, 1/2] according to a continuously differentiable distribution F ,
and ε > 0 is a scaling factor.5 This information structure describes a global game Γε(s), see
Carlsson and Van Damme (1993). The game Γε(s) is common knowledge among the players.

The timing of Γε(s) is as follow. First, the planner publicly commits to her subsidies
s. Second, nature draws a state x. Third, each player i receives his private signal xε

i of x.
Fourth, all players simultaneously choose their actions. Lastly, payoffs are realized according
to the true x and the actions chosen by all players. We note that players play once and then
the game is over; see Angeletos et al. (2007) and Chassang (2010) for analyses of dynamic
global games.

2.3 Concepts & Notation

Posterior densities. Let xε = (xε
i ) denote the vector of signals received by all players, and let

xε
−i denote the vector of signals received by all players but i, i.e. xε

−i = (xε
j)j ̸=i. Note that

player i observes xε
i but neither x nor xε

−i. We write F ε
i (x, x

ε
−i | xε

i ) for player i’s posterior
distribution on (x, xε

−i) conditional on his signal xε
i .

Strategies. A strategy pi for player i in R is a function that assigns to any xε
i ∈ [X−ε,X+ε]

a probability pi(x
ε
i ) ≥ 0 with which the player chooses action ai = 1 when they observe xε

i .
Write p = (p1, p2, ..., pN) for a strategy vector for all player, and p−i = (pj)j ̸=i for the vector
of strategies for all players but i. A strategy vector p is symmetric if for every i, j ∈ N and
every signal xε one has pi(x

ε) = pj(x
ε). Conditional on the strategy vector p−i and a private

signal xε
i , the expected incentive to play 1 for player i is given by:

uε
i (p−i | xε

i ) :=

∫
ui(p−i(x

ε
−i) | x) dF ε

i (x, x
ε
−i | xε

i ).

When no confusion can arise, we refer to the expected incentive uε
i (p−i | xε

i ) simply as a
player’s incentive.

Increasing strategies. For X ∈ R, let pXi denote the particular strategy such that
pXi (x

ε
i ) = 0 for all xε

i < X and pXi (x
ε
i ) = 1 for all xε

i ≥ X. The strategy pXi is called an
increasing strategy with switching point X. Let pX = (pX1 , p

X
2 , ..., p

X
N) denote the strategy

vector of increasing strategies with switching point X, and pX−i = (pXj )j ̸=i. Generally, for a
vector of real numbers y = (yi) let p

y = (pyii ) be a (possibly asymmetric) increasing strategy
vector, and py−i = (p

yj
j )j ̸=i.

4If g has finite domain X , we must in addition assume that [x− si − ε, x+ si + ε] for all i ∈ N . Observe
that this interval depends upon s; as our main results are concerned primarily with characterizing schemes s
that satisfy certain properties, it smooths the exposition to assume g has domain R.

5The assumption that the support of ηi is [−1/2, 1/2] is without loss. If ηi were systematically biased,
rational players would simply take that into account when forming their posteriors. Moreover, we could also
allows the noise distribution to have support on the entire real line without great technical complications.
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Strict dominance. The action ai = 1 is strictly dominant at xε
i if uε

i (p−i | xε
i ) > 0 for

all p−i. Similarly, the action ai = 0 is strictly dominant (in the global game Gε) at xε
i if

uε
i (p−i | xε

i ) < 0 for all p−i. When ai = α is strictly dominant, the action ai = 1− α is said
to be strictly dominated.

Conditional dominance. Let L and R be real numbers. The action ai = 1 is said to be
dominant at xε

i conditional on R if uε
i (p−i | xε

i ) > 0 for all p−i with pj(x
ε
j) = 1 for all xε

j > R,
all j ̸= i. Similarly, the action ai = 0 is dominant at xε

i conditional on L if uε
i (p−i | xε

i ) < 0
for all p−i with pj(x

ε
j) = 1 for all xε

j > L, all j ̸= i. Note that ai = 1 is strictly dominant at
xε
i conditional on R if and only if uε

i (p
R
−i | xε

i ) > 0. Similarly, if ai = 0 is strictly dominant at
xε
i conditional on L then it must hold that uε

i (p
L
−i | xε

i ) < 0.
Iterated elimination of strictly dominated strategies. The solution concept in this paper is

iterated elimination of strictly dominated strategies (IESDS). Eliminate all pure strategies
that are strictly dominated, as rational players may be assumed never to pursue such strategies.
Next, eliminate a player’s pure strategies that are strictly dominated if all other players are
known to play only strategies that survived the prior round of elimination; and so on. The
set of strategies that survive infinite rounds of elimination are said to survive IESDS.

3 Optimal Subsidies

3.1 Unique Implementation

By Proposition 1, there exists a unique vector of thresholds x∗
i such that it is welfare-

maximizing for player i to play 1 whenever x > x∗
i and 0 otherwise. It thus makes sense

to consider implementation problems in which the planner seeks to induce coordination on

increasing strategies. In particular, if each player i plays the increasing strategy p
x∗
i

i , then as
ε → 0 ex post social welfare is maximized with probability 1. We henceforth restrict attention
to such problems. Furthermore, to reduce notation we will throughout the main analysis
assume that the planner is after subsidies that induce players to play the same increasing
strategy; in Section 5.4, we relax that restriction.

Let x̃ ∈ R be a critical state. The planner’s problem is to find the subsidy scheme s̃ such
that px̃ is the unique Bayesian Nash equilibrium of Γε(s̃). We say that s̃ implements px̃.
The focus on unique equilibrium implementation is in keeping with the broader literature
on policy design in coordination games (cf. Segal, 1999, 2003; Segal and Whinston, 2000;
Sakovics and Steiner, 2012; Bernstein and Winter, 2012; Halac et al., 2020, 2021, 2022).

The planner faces two constraints. First, she cannot condition her policy on the realization
of x or players’ signals thereof; this assumption is customary in the literature on policy design
in global games (cf. Sakovics and Steiner, 2012; Leister et al., 2022). Possible interpretations
are that the policy intervention takes place prior to the realization of any private information,
or that players have an informational advantage (e.g. expertise) relative to the planner. Note
that, with the exception of the state x, the planner knows all parameters of the game.6

Second, the planner cannot coordinate players on her preferred equilibrium in a multiple
equilibria setting but has to rely on simple subsidies (or taxes) to create the appropriate

6Interesting work by Carroll (2015) and Dai and Toikka (2022) explores contract-theoretic problems in
which the planner designing a policy only knows a subset of the actions available to each player.
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incentives. The focus on simple instruments also means that policies cannot condition directly
upon other players’ actions. These are standard assumptions in the literature (Segal, 2003;
Winter, 2004; Bernstein and Winter, 2012; Sakovics and Steiner, 2012; Halac et al., 2020).

Fix a critical state x̃ ∈ X . Given x̃, let s∗(x̃) = (s∗i (x̃)) denote the subsidy scheme such
that each s∗i (x̃) ∈ s∗(x̃) is given by

s∗i (x̃) = ci − x̃−
N−1∑
n=0

wi(n)

N
. (∗)

Let us write Br(y) for the open ball with radius r centered at y. Our main result is Theorem 1.

Theorem 1. Let x̃ ∈ R. The following holds:

(i) For all ε sufficiently small, there exists a unique s̃ = (s̃i) that implements px̃;

(ii) For all r > 0, there exists ε(r) such that s̃ is contained in Br(s
∗(x̃)) for all ε ≤ ε(r).

The optimal subsidy scheme s̃ admits a number of notable properties, some of which are
best understood with the analysis in mind. We therefore defer a discussion of the properties
of s̃ to Section 4.4.

We observe that Theorem 1 holds for all continuous densities f and g. Thus, the
informational requirements imposed upon the planner are slim. Moreover, the condition that
ε be sufficiently small is necessary to permit an analysis of Γε(s) “as if” the common prior g
were uniform. The following corollary to Theorem 1 is immediate from our proof.

Corollary 1. If the common prior g is uniform and the noise distribution f is symmetric,
then Theorem 1 holds for all ε > 0.

Uniform common priors are often assumed in the applied literature on global games
(cf. Morris and Shin, 1998; Angeletos et al., 2006, 2007; Sakovics and Steiner, 2012). In
Appendix A we show why Γε(s) behaves “as if” g were uniform when ε is small.

The analysis will reveal that Theorem 1 remains valid under a slightly more general
definition of implementation. We show that s̃ is the unique subsidy scheme such that px̃ is
the unique strategy vector that survives IESDS in Γε(s̃). Implementation as a unique strategy
vector that survives IESDS is more general than implementation as a unique Bayesian Nash
equilibrium because the former implies the latter but the reverse implication is not necessarily
true. In this sense, as in Sandholm (2002, 2005), we need not impose that players play
an equilibrium of the game but could depart from more primitive assumptions on players’
strategic sophistication by requiring that none play a strategy that is iteratively dominated.
Equilibrium play would then be obtained as a result, rather than an assumption, of the
analysis.

Lastly, observe that Theorem 1 is a positive result: given the planner’s choice of x̃,
Theorem 1 characterizes the unique subsidy scheme that implements px̃. Though Proposition 1
could motivate a focus on implementing increasing strategy equilibria, the planner in this
paper is not bound to choose those increasing strategies optimally. All we do is show how,
conditional on her choice of x̃, the planner can implement px̃.
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4 Analysis

4.1 Monotonicities

Suppose that all of player i’s opponents are known to play increasing strategies, say py−i =
(pyj )j ̸=i. Then his incentive uε

i to play 1 satisfies a two intuitive monotonicity properties.

Lemma 1. Given is a vector of real numbers y = (yi) and the associated increasing strategy
vector py = (pyii ). Then,

(i) uε
i (p

y
−i | xε

i ) is monotone increasing in xε
i ;

(ii) uε
i (p

y
−i | xε

i ) is monotone decreasing in yj, all j ∈ N \ {i}.

Part (i) of Lemma 1 says that a player’s incentive to play 1 is increasing in his type xε
i

when his opponents play increasing strategies. There are two sides to this. First, taking as
given the vector of actions a−i, a player’s expected payoff to playing 1 is linearly increasing in
xε
i ; hence, his expected incentive is increasing in his signal xε

i . Second, as x
ε
i increases player

i’s posterior distribution on the hidden state x and, therefore, the signals of his opponents
shifts to the right. If his opponents play increasing strategies, this also shifts his distribution
of the aggregate action to the right which, because externalities are increasing in the aggregate
action, further raises his incentive to play 1. Note that monotonicity of uε

i (p
y
−i | xε

i ) in xε
i

depends upon py−i being increasing; for generic p−i, u
ε
i (p−i | xε

i ) can be locally decreasing in
xε
i .
Part (ii) of Lemma 1 says that the incentive to play 1 of a player i whose opponents play

increasing strategies is decreasing in the switching point of each of these increasing strategies.
For given signal xε

i , the probability player i attaches to the event that his opponent j receives
a signal xε

j > yj and thus, in p
yj
j , plays 1 is decreasing in yj. Therefore player i’s incentive to

play 1 is decreasing in the switching yj.
The analysis relies repeatedly upon Lemma 1 for much of the heavy lifting. While a focus

on increasing strategies seems natural in Γε(s), the results in Lemma 1 are of true practical
use only once the focus on increasing strategies has been properly defended. The next section
provides such a justification; Lemma 2 pushes it to its ultimate conclusion.

4.2 Subsidies, Strategies, Selection

Recall that xN
i and x0

i demarcate strict dominance regions for player i: when x < xN
i [x > x0

i ],
playing 0 [playing 1] is strictly dominant for player i in Γ(x). A subsidy si to player i shifts
these boundaries to xN

i − si and x0
i − si, respectively. In the game of incomplete information

Γε, the boundaries for strict dominance in terms of a player’s signals instead are xN
i − si− ε/2

and x0
i − si + ε/2, respectively. That is, for all xε

i > x0
i − si + ε/2 player i knows that any

true state x consistent with his signal satisfies x > x0
i − si, in which case playing 1 is strictly

dominant. To make the following arguments work, we must assume that X ≥ x− si + ε/2
and X ≤ x − si − ε/2 for all i ∈ N , imposing a joint restriction on permissible values of
(X,X, s) given ε. This assumption is henceforth maintained.
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Per the foregoing argument, given the assumption that X ≥ x− si + ε/2, we know that
uε
i (p−i | X, si) > 0 for all p−i. In particular, therefore, one has

uε
i (p

X
−i | X, si) > 0.

Let r1i be the solution to

uε
i (p

X
−i | r1i , si) = 0.

To any player i, the action ai = 1 is strictly dominant at all xε
i > r1i conditional on X; denote

r1 := (r1i ). It is clear that r1i depends upon the subsidy si, but for brevity we leave this
dependence out of the notation for now. From Lemma 1 follows that r1i < X for all i.

Player i knows that no player j will pursue a strategy pj < p
r1j
j since such a strategy is

iteratively strictly dominated. Now define r2 = (r2i ) as the signal that solves

uε
i (p

r1

−i | r2i , si) = 0,

for all i. Because pXi is strictly dominated for every i, the any strategy pi < p
r1i
i is iteratively

strictly dominated for all i, which in turn implies that any pi < p
r2i
i is iteratively dominated.

This argument can – and should – be repeated indefinitely. We obtain a sequence X =
r0i , r

1
i , ..., all i. For any k and rki such that uε

i (p
rk−i | rki , si) > 0, there exists rk+1

i that solves
uε
i (p

rk

−i | rk+1
i , si) = 0. Induction on k, using Lemma 1, reveals that rk+1

i < rki for all k ≥ 0.
Moreover, we know that rki ≥ X for all k. It follows that the sequence (rki ) is monotone and
bounded. Such a sequence must converge; let ri(s) denote its limit and define r(s) := (ri(s)).
By construction, r(s) solves

uε
i

(
p
r(s)
−i | ri(s), si

)
= 0.

A symmetric procedure should be carried out starting from low signals, eliminating ranges
of xε

i for which playing 1 is strictly (iteratively) dominated. For every player i this yields an
increasing and bounded sequence (lki ) whose limit is li(s), and l(s) := (li(s)). The limit l(s)

solves uε
i (p

l(s)
−i | li(s), si) = 0 for all i.

It is clear from the foregoing construction that a strategy pi survives IESDS if and only
if p

ri(s)
i (xε

i ) ≤ pi(x
ε
i ) ≤ p

li(s)
i (xε

i ) for all x
ε
i . We are particularly interested in games in which

the points li(s) and ri(s) converge to a common limit x(s) := (xi(s)) that, hence, is the
(essentially) unique solution to

uε
i

(
p
x(s)
−i | xi(s), si

)
= uε

i

(
p
x(s)
−i | xi(s)

)
+ si = 0 (5)

for all i ∈ N . To work in such an environment, we must assume ε to be sufficiently small.

Lemma 2. For all δ > 0, there exists ε(δ) > 0 such that ri(s) − li(s) < δ for all ε ≤ ε(δ)
and all i ∈ N .

We note that assuming ε → 0 is sufficient but not, in general, necessary to obtain
convergence to the common limit x(s); for example, when g is uniform we have li(s) = ri(s)
for all ε > 0. We also observe that the identifying condition (5), combined with Lemma 1,
reveals that the unique threshold xi(s) is continuously decreasing in (i) player i’s own subsidy
si and (ii) the thresholds xj(s), all j ̸= i, of his opponents.
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Given a subsidy scheme s and small enough ε, there is a unique increasing strategy vector
px(s) that survives IESDS in Γε(s). We next establish that the relation between x(s) and s
is one-to-one: given any x̂, there is a unique subsidy scheme ŝ such that px̂ is the unique
strategy vector that survives IESDS in Γε(ŝ).

Lemma 3. Let x̂ = (x̂i) and ε sufficiently small. There is a unique subsidy scheme ŝ = (ŝi)
such that x(ŝ) = x̂.

Clearly, it follows from Lemma 3 that – for all ε sufficiently small – there is a unique
subsidy vector s̃ such that xi(s̃) = x̃ for all i.

4.3 Implementation and Characterization

Recall that a strategy vector p = (p1, p2, ..., pN) is a Bayesian Nash Equilibrium (BNE) of
Γε(s) if for any pi and xε

i it holds that:

pi(x
ε
i ) ∈ argmax

ai∈{0,1}
πε
i (ai, p−i | xε

i , si), (6)

where πε
i (ai, p−i | xε

i ) :=
∫
πi(ai, p−i(x

ε
−i) | x) dF ε

i (x, x
ε
−i | xε

i ). It follows immediately that
px(s) is a BNE of Γε(s). Lemma 4 strengthens this result and establishes that px(s) is the only
BNE of Γε(s).

Lemma 4. Given is s and ε sufficiently small. The essentially unique Bayesian Nash
equilibrium of Γε(s) is px(s). In particular, if p a BNE of Γε(s) then any pi ∈ p satisfies

pi(x
ε
i ) = p

xi(s)
i (xε

i ) for all xε
i ̸= xi(s) and all i.

We know that for any subsidy scheme s and small enough ε the increasing strategy vector
px(s) is the unique BNE of Γε(s). From Lemma 2, we furthermore know that there is a unique
subsidy scheme s̃ such that xi(s̃) = x̃ for all i. It follows that the subsidy scheme s̃ that
implements px̃ exists and is unique, provided we set ε sufficiently small. This proves part (i)
of Theorem 1.

Before we proceed to characterize s̃, we recall that the unique switching point xi(s)
is decreasing in both si and each xj(s), for all i, j ∈ N . Because by Lemma 4 these
monotonicities describe equilibrium effects of subsidies, we thus observe that subsidies have a
compounded “unraveling” effect in coordination games. Consider an increase in the subsidy
offered to player i. The higher subsidy raises his incentive to play 1 and lowers his equilibrium
switching point xi(s). The drop in i’s switching point in turn raises player j’s incentive to
play that action, shifting his switching point xj(s) down as well. The downward shift in
xj(s) in turn raises player i’s incentive to play 1 even more, further reducing his switching
point xi(s). And so on. Because subsidies are common knowledge, these effects keep on
compounding, ever reinforcing one another. Accounting for the total equilibrium effect of
subsidies therefore shows that even fairly small subsidies (given x̃) can unravel a coordination
game and solve the planner’s problem.7 But how small is small? To answer that question, we
must characterize s̃. We rely on the following result.

7This feature of s̃ is a key counterpoint to several well-known results in the literature on policy design in
coordination problems that stress optimality of subsidizing at least some players to strict dominance (Segal,
2003; Winter, 2004; Bernstein and Winter, 2012; Sakovics and Steiner, 2012; Halac et al., 2020).
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Lemma 5. For all δ > 0 there exists ε(δ) > 0 such that∣∣∣∣∣uε
i

(
pX−i | X, si

)
−

[
X +

N−1∑
n=0

wi(n)

N
− ci + si

]∣∣∣∣∣ < δ (7)

for ε ≤ ε(δ) and all X such that X + ε ≤ X ≤ X − ε.

If his opponents all play the same increasing strategy pXj , then upon observing the threshold
signal xε

i = X player i’s belief over the aggregate action
∑

j ̸=i aj is uniform. Convergence to
uniform strategic beliefs is a common property in global games; see Lemma 1 in Sakovics
and Steiner (2012) for a reference in the context of policy design.8

Recall that, if x(s) is the vector of switching points such that px(s) is the unique BNE
of Γε(s), then xi(s) solves (5) for all i. Imposing now that s̃ be such that xi(s̃) = x̃ for all
i ∈ N , one obtains

uε
i

(
px̃−i | x̃, s̃i

)
= 0 (8)

as the N identifying conditions for the subsidy scheme s̃ = (s̃i) that implements px̃. Using
the result in Lemma 5 when X = x̃ and solving (8) for s̃i establishes that for all r > 0 there
exists ε(r) > 0 such that

|s̃i − s∗i (x̃)| < r

for all ε ≤ ε(r) and all i ∈ N . This proves part (ii) of Theorem 1.

4.4 Discussion

Our results characterize the subsidy scheme s̃ a planner must commit to when seeking to
implement px̃ among rational players. Let us discuss several properties of this policy.

First, optimal subsidies are modest relative to the planner’s goal: s̃i does not make px̃i
strictly dominant for any player i. Subsidization up to strict dominance is unnecessary due
to the sharp specification of players’ strategic beliefs that our analysis reveals. In the unique
equilibrium px̃, a player i whose signal exceeds the critical state x̃ cannot believe that all of
his opponents will play 0 with probability 1; it is the impossibility of ruling out such extreme
beliefs in games with multiple equilibria that requires subsidization of at least one player
to strict dominance. Specifically, we note that the scheme s̃ is pinned down by the player’s
strategic beliefs in the critical state (xε

i = x̃) only. Furthermore, we also establish that these
beliefs converge to a uniform distribution on the aggregate action for all continuous priors g
and noise distributions f , making the optimal subsidy scheme s̃ independent of the precise
prior and noise distributions assumed.

Second, symmetric players are offered identical subsidies. This symmetry deviates from a
number of other notable proposals including a divide-and-conquer policy (cf. Segal, 2003;

8Note that Sakovics and Steiner (2012) assume a uniform prior. On the one hand, this makes our result
more general. On the other hand, Sakovics and Steiner (2012) establish uniformity of strategic beliefs for all
ε > 0. We observe that, in line with Sakovics and Steiner (2012), Lemma 5 applies for all ε > 0 when g is
uniform.
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Bernstein and Winter, 2012) and the incentive schemes studied in Winter (2004) and Halac
et al. (2020).9

Third, subsidies target all players and are globally continuous in model parameters. While
conditional on policy treatment the optimal subsidies in Sakovics and Steiner (2012) are
continuous in the relevant model parameters as well, changes in one player’s parameters could
affect whether or not said player is targeted, causing a discrete jump in subsidies received.
Similarly, subsidies are continuous conditional on a player’s position in the policy ranking
in a divide and conquer mechanism (Segal, 2003; Bernstein and Winter, 2012); however, a
player’s position in the optimal ranking may be affected by a change in its parameters, which
can lead to discrete jumps in subsidy entitlement.

Fourth, the subsidy scheme s̃ is unique. In the complete information environments
considered by Segal (2003), Winter (2004), and Bernstein and Winter (2012) the optimal
policy is not unique when (some) players are symmetric. In the incomplete information
environments considered by Sakovics and Steiner (2012) and Halac et al. (2021), the optimal
policy is unique. Note, however, that the results in Sakovics and Steiner (2012) and Halac et al.
(2021) establish uniqueness of the policy that minimizes the expected cost of implementing
a given equilibrium; in their models, there still exist other, more expensive policies that
implement the same equilibrium. In contrast, Theorem 1 establishes that only one policy can
implement a given equilibrium of the game studied here.

Sixth, subsidies are decreasing in x̃, the threshold for coordination on 1 targeted by the
planner. All else equal, a player’s incentive to play 1 is increasing in his signal xε

i . Hence, for
higher signals a player needs less subsidy to induce him to play 1. One can interpret x̃ as an
inverse measure of the planner’s ambition: the higher is x̃, the lower is the prior probability
that coordination on 1 will be achieved. In this interpretation, being ambitious is costly:
assuming coordination on 1 is indeed achieved, total spending on subsidies is increasing in
the planner’s ambition (decreasing in x̃). The same is true in Sakovics and Steiner (2012).

Seventh, subsidies are decreasing in spillovers, i.e. ∂s̃i/∂wi(n) < 0. When observing
the threshold signal x̃, a player i’s belief over the aggregate action

∑
j ̸=i aj is uniform; in

particular, therefore, he assigns strictly positive probability to the event that
∑

j ̸=i aj = n for
all n = 0, 1, ..., N − 1. If wi(n) increases, the expected spillover a player expects to enjoy upon
playing 1 is hence greater. This raises his incentive to play 1 and, for given x̃, the subsidy
required to make him willing to do so is smaller. Given a ranking of players, subsides for
each player (except the first-ranked) are also decreasing in spillovers in a divide-and-conquer
policy (Segal, 2003; Bernstein and Winter, 2012). The optimal subsidies in Sakovics and
Steiner (2012) are not generally decreasing in spillovers, except insofar as players who benefit
less from project success are more likely to be targeted.

5 Extensions

Throughout this section, we continue to assume that x is an unobserved random variable
about which players receive private signals xε

i in the way described in Section 2. To simplify

9Onuchic and Ray (2023) also show that “identical agents” may be compensated asymmetrically in
equilibrium; however, though identical in the payoff-relevant sense their players may still vary in payoff-
irrelevant “identifies”.
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statements of result, we assume that ε → 0. When for z ∈ R we write s̃i → z this is to be
read as |s̃i − z| < r for all r > 0.

5.1 Regime Change

Consider a global game of regime change in which the externality wi is partly stochastic
(Morris and Shin, 1998; Angeletos et al., 2006, 2007; Goldstein and Pauzner, 2005; Sakovics
and Steiner, 2012).10 There is a project in which N investors can invest (play ai = 1). The
cost of investment to investor i is ci > 0. If the project succeeds, i who invested earns benefit
x+ bi, where bi > ci. Our assumption that the benefit of project success is partly unknown
seems plausible and reflects any kind of (fundamental) uncertainty pertaining to the cost
or benefit of investment (Abel, 1983; Pindyck, 1993); note, however, that the literature on
games of regime change typically assumes common knowledge of payoffs given project success
and normalizes x to 0.11 The project succeeds only if aggregate investments reach or exceed a
critical mass; specifically, there exists I ∈ {1, ..., N} such that the project succeeds if and only
if
∑

i∈N ai ≥ I. Investors do not observe I but it is common knowledge that I is distributed
uniformly on {1, ..., N}.12 We normalize the payoff to not investing to 0. A planner offers
each investor i an investment subsidy si. We are interested in the subsidy scheme s̃ = (s̃i)
that implements px̃ for some x̃ ∈ R. To compare our results with those in the literature, the
policy that implements p0 (i.e. x̃ = 0) is of particular interest.13

Proposition 2. Consider a global game of regime change. The subsidy scheme s̃ = (s̃i) that
implements px̃ is given by

s̃i → ci −
bi + x̃

2
(9)

for every i ∈ N .

In the subsidy scheme s̃, all investors are subsidized and subsidies are a fraction of their
investment costs. The latter is explained through the contagious effect of policies: if investor
i receives an investment subsidy, he is more likely to invest. Anticipating the increased
likelihood that i invests, project success becomes more likely and this attracts investment
by investor j. The greater likelihood that j invests in turn makes investment even more
interesting for i, and so on.

While our investment problem bears close resemblance to the model considered in the
applied global games literature, Sakovics and Steiner (2012) in particular, it differs in two

10The model in Halac et al. (2020) is also a game of regime change, but not a global game.
11If x = 0, the assumption that bi > ci for all i instantly implies that coordinated investment is the efficient

outcome of a (global) game of regime change. This fundamentally distinguishes our model, in which the ex
post efficient outcome is not known with certainty, from the literature.

12The assumption of a uniform prior on the critical mass I is standard in the applied global games literature
and here maintained for reasons of comparability (cf. Morris and Shin, 1998; Angeletos et al., 2006, 2007;
Goldstein and Pauzner, 2005; Sakovics and Steiner, 2012).

13More precisely, we are interested in x̃ ↗ 0. Recall that, conditional on project success or failure, the
literature assumes complete information about payoffs and normalizes the state to x = 0. To make our results
comparable to those in the literature, we must hence consider those policies that offer the same kinds of
guarantees about outcomes as those considered by other authors. When ε → 0, as assumed, all x̃ < 0 offer
such guarantees for x = 0.
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fundamental ways. First, Sakovics and Steiner (2012) do not model prior uncertainty about
the efficient outcome of the game; coordinated investment is always the efficient equilibrium
of their game. Instead, fundamental uncertainty in their model pertains exclusively to the
critical investment threshold I, and it is about I that players receive their noisy signals.
Second, conditional on the regime in place, there is certainty about payoffs in Sakovics and
Steiner (2012); we instead work with uncertain payoffs even conditional on the regime.14

It is interesting that adding an additional layer of uncertainty to the game leads to vastly
different policy implications. The main result in Sakovics and Steiner (2012) is that an
optimal policy fully subsidizes (i.e. si = ci) a subset of players and does not subsidize the
others. In contrast, we find that an optimal policy subsidizes all players partially; choosing a
critical state x̃ = 0 (as Sakovics and Steiner (2012) implicitly assume x = 0) dictates offering
each player a subsidy less than half his investment cost.

5.2 Incentives in Teams

Consider the problem of a principal offering rewards to incentive work by agents in teams
(Holmstrom, 1982; Winter, 2004; Fischer and Huddart, 2008; Halac et al., 2021, 2022; Dai
and Toikka, 2022). There is an organizational project that involves N tasks each performed
by one agent i ∈ N . Each agent i decides whether to work (ai = 1) towards completing
his task or shirk (ai = 0). The cost of working to agent i is given by ci > 0. Success
of the project depends upon the decisions of all agents through a production technology
q : {0, 1, ..., N} → [0, 1], where q(n) is the probability of success given that n agents work.
Following Winter (2004) and Halac et al. (2021), we assume that q is strictly increasing
and strictly supermodular, i.e. q(n + 1) > q(n) (n = 0, 1, ..., N − 1) and q(k + 1) − q(k) is
increasing in k. If the project succeeds, each agent gets a (common) direct payoff x, which
one may interpret as a kind of profit-sharing arrangement; uncertainty about x then reflects
uncertainty about profits, which seems realistic.15 The payoff to shirking is normalized to 0.

A principal offers contracts that specify rewards s = (si) to agents contingent on project
success; if the project fails, all agents receive zero. We assume that agents’ work effort ai is
their private knowledge – any rewards the principal offers can condition only upon project
success. The principal seeks the reward scheme s̃ that implements px̃.

Proposition 3. There exists a unique reward scheme (s̃i) that implements px̃ in the principal
agent problem. For each i ∈ N , the reward s̃i is given by

s̃i →
ci
q̄
− x̃, (10)

where q̄ :=
∑N−1

n=0
q(n+1)−q(n)

N
.

14This distinction applies more generally to the literature on global games of regime change, see Morris
and Shin (1998), Angeletos et al. (2007), Goldstein and Pauzner (2005), Basak and Zhou (2020), and Edmond
(2013). Similarly, Kets et al. (2022) (in section 3.3.1, and their Theorem 3.4) also assume that joint investment
is the efficient outcome of their game.

15More generally, x can be any kind of uncertain fundamental that determines agents’ payoffs, see also
Halac et al. (2022) for a model of contracting under fundamental uncertainty.
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For x = 0, the payoffs in our model exactly replicate those of the canonical problem
studied by Winter (2004). A direct comparison between results is nevertheless not meaningful.
Observe that our question is fundamentally different from Winter’s: whereas we characterize
the unique reward scheme that implements a particular equilibrium, Winter characterizes the
least-cost reward scheme that induces work by all agents in his game of complete information.
To make comparisons between results in such different frameworks, additional work is needed;
we take up this task in Section 5.5.

It is interesting to compare Proposition 3 to a result in Halac et al. (2021, Theorem 2 and
Corollary 1 in particular). These authors consider the problem of a planner who offers agents
rewards in a ranking scheme. In a ranking scheme, agents first are ranked; conditional on his
ranking, agent i is then offered a reward that makes him indifferent between working and
shirking provided all agents who are ranked below [above] him work [shirk]. Moreover, contract
offers a private so that agents face uncertainty about their ranking. For the case of symmetric
agents, Halac et al. (2021) establish that an optimal ranking scheme induces uniform beliefs
about each agent’s ranking. One can interpret Proposition 3 along similar lines: if an agent
is ranked n-th and believes that all agents ranked below [above] him work [shirk], the reward
that is necessary to make him work for all xε

i > x̃ is si(n) = (ci − x̃)/(q(n + 1) − q(n)).
Thus, if an agent has uniform beliefs about his own ranking the necessary reward becomes∑N−1

n=0 si(n)/N , which is exactly the optimal reward s̃i given in Proposition 3. Note that, in
our analysis, the uniform belief over n also applies when agents are asymmetric.

Some readers suggested an alternative specification in which the cost of effort is uncertain,
i.e. working costs agent i ci − x. For example, the cost of work may be higher for more
“complicated” tasks, but it is not always possible to assess the level of complication before
embarking on a project. In this specification, the principal chooses a critical state x̂ such that
agent i works whenever the cost of work is at most ci − x̂. For this case, too, there exists a
unique reward scheme ŝ = (ŝi) that solves the principal’s problem. The scheme ŝ is given by
ŝi → (ci − x̂)/q̄ for each i ∈ N .

5.3 Heterogeneous Externalities

Externalities are rarely symmetrical. In practice, externalities are hardly so symmetrical.
Large stores attract more customers to shopping malls than smaller shops (Bernstein and
Winter, 2012). “Team players” consistently cause their co-workers to over-perform (Weidmann
and Deming, 2021). An inventor’s premature death causes a large and long-lasting decline
in their co-inventor’s earnings and citation-weighted patents (Jaravel et al., 2018). Workers
respond more to the presence of coworkers with whom they frequently interact (Mas and
Moretti, 2009). At academic conferences, sessions featuring Nobel laureates attract bigger
audiences (private observation).

In this section, we allow that the externality wi(a−i) depends upon the specific vector
a−i rather than only the number

∑
j ̸=i aj. We maintain a focus on games with strategic

complementarities and assume that if a′−i ≥ a−i, then wi(a
′
−i) ≥ wi(a−i). This externality

structure encompasses the games in Bernstein and Winter (2012) and Halac et al. (2021),
where externalities are allowed to depend upon the subset M ⊆ N of players who play 1. It
also nests the approach in Sakovics and Steiner (2012), where externalities depend upon the
weighed aggregate action, and that in Galeotti et al. (2020); Leister et al. (2022), who study
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coordination games on (directed) graphs.
Let us write An

−i for the set of all (unique) action vectors a−i in which precisely n players

j play aj = 1, i.e. An
−i := {a−i |

∑
aj∈a−i

aj = n}. Observe that An
−i contains exactly

(
N−1
n

)
elements. For all i, define

wn
i :=

∑
a−i∈An

−i
wi (a−i)(

N−1
n

) .

In words, wn
i is the expected externality imposed upon player i who expects that n opponents

play 1 and believes that any such outcome is equally likely.

Proposition 4. Let x̃ ∈ R. There exists a unique subsidy scheme s̃ = (s̃i) that implements
px̃ in the game Γε(s) with heterogeneous externalities. The subsidy s̃i pursuant to the scheme
is given by

s̃i → ci − x̃−
N−1∑
n=0

wn
i

N
(11)

for all i ∈ N .

We observe that Proposition 4 doubles down on the uniform strategic beliefs of the
game with homogeneous externalities. In a game with heterogeneous externalities, players
have uniform beliefs about the total number of opponents n ∈ {0, 1, ..., N − 1} that play 1.
Moreover, conditional on the number n of opponents that play 1 a threshold type player
also has uniform beliefs about the identity of the n opponents who play 1. Note that in
the game with heterogeneous externalities, too, optimal subsidies are unique, symmetric
for identical players, continuous functions of model parameters, and do not make playing 1
strictly dominant for any player (cf. Bernstein and Winter, 2012).

5.4 Asymmetric Targets

Let x̃M = (x̃1, x̃1, ..., x̃M) ∈ RM , M ≤ N , be a vector of critical states such that x̃1 < x̃1 <
... < x̃M . Partition the player set N into M subsets Nm, m = 1, 2, ...,M , which we refer
to as “groups”. We write nm for the the number of players in Nm, i.e. nm = |Nm|, and
Nm =

∑m−1
k=1 nk (define N1 = 0). Let p̃ denote the vector of increasing strategies in which

player i ∈ Nm plays px̃m
i . The planner wants to implement p̃; that is, she wants to find the

subsidy scheme s̃ such that p̃ is the unique BNE of Γε(s̃).

Proposition 5. Let x̃M ∈ RM . There exists a unique subsidy scheme s̃ = (s̃i) that implements
p̃. For each m = 1, 2, ...,M and all i ∈ Nm, the subsidy s̃i is given by

s̃i →

{
ci − x̃m −

∑nm−1
n=0

wi(Nm+n)
nm

if nm ≥ 2,

ci − x̃m − wi(Nm) if nm = 1.
(12)

Proposition 5 emphasizes the importance of strategic beliefs for policy design in coordina-
tion games. When ε is small, a player i ∈ Nm faces strategic uncertainty only with respect
to opponents in his own group. In particular, he knows that players in groups N1 up to and
including Nm−1 must all have observed signals that exceed there respective critical states
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and will, in equilibrium, play 1. Similarly, all players in groups Nm+1 up to and including
NM must have received a signal below their critical state; these players will play 0. Hence,
the only remaining strategic uncertainty pertains to opponents j ∈ Nm \ {i}; in equilibrium,
player i’s strategic beliefs over their aggregate action converges to a uniform distribution.

Recall from Proposition 1 that there exists a unique (x∗
i ) ∈ RN such that an action vector

a(x) = (ai(x)) strictly maximizes social welfare W (· | x) if and only if, for each i ∈ N ,

ai(x) = 1 for all x > x∗
i and ai(x) = 0 for all x < x∗

i . Let p∗ = (p
x∗
i

i ) denote the vector of
increasing strategies in which each player i has switching point x∗

i .

Corollary 2. There is a unique subsidy scheme s∗ = (s∗i ) that implements p∗. The scheme
s∗ maximizes social welfare with probability 1. Specifically, in the unique equilibrium of Γε(s∗)
players’ actions maximize W (· | x) for almost all x.

The term almost all is used in its measure theoretic interpretation: the set of states x for
which s∗ does not implement the first best has Lebesgue measure zero (as we assumed that
ε → 0). Furthermore, in those states there is no other policy that improves upon s∗ as any
inefficiencies derive exclusively from the noise in players’ signals. Thus, a welfare-maximizing
planner could credibly commit to the scheme s∗.

5.5 Ranking Policies

Consider the game of complete information Γ(x̄, s) in which a planner offers subsidy scheme
s with the aim of making (1, 1, ..., 1) the unique Nash equilibrium of Γ(x̄, s). Seminal results
due to Segal (2003) and Winter (2004) establish that the least-cost policy that solves the
planner’s problem in Γ(x̄, s) is a ranking policy (see also Bernstein and Winter, 2012; Halac
et al., 2021). A ranking policy is a tuple ⟨σ, sR⟩ that consists of a ranking σ and an associated
subsidy scheme sR. A ranking, which is a permutation σ(N ) = {i1, i2, ..., iN} of the player
set N , assigns a rank to each player. Given σ(N ), let sin denote the subsidy offered to
player in that makes him indifferent between playing 0 and 1 in the belief that all players
who precede him in the ranking play 1 while all others play 0. Observe that, if all subsidies
sin are raised to sin + δ, for any δ > 0, then playing 1 is strictly dominant for the first-ranked
player and iteratively strictly dominant for all others, thus yielding the desired equilibrium.
The ranking-policy scheme sR is given by (sin + δ) upon letting δ → 0. Importantly, note
that a ranking policy is fundamentally discriminating: symmetric players receive asymmetric
subsidies (Segal, 2003; Winter, 2004; Bernstein and Winter, 2012).

The question arises how costly a policy s must be to offer similar guarantees on outcomes
in Γε(s). Specifically, suppose a scheme s is such that the unique BNE outcome of Γε(s) is
(1, 1, ..., 1) if nature happens to draw state x̄ as ε → 0. What is the equilibrium cost of s
in x̄? There is no unique answer to this question as there exist infinitely many s such that
the unique BNE outcome of Γε(s) is (1, 1, ..., 1) in state x̄, one example being sR. We now
construct a non-discriminatory scheme, s̄, that induces (1, 1, ..., 1) in state x̄ as ε → 0. Write
s̄′ = (s̄′i) for the subsidy scheme that implements px̄, i.e. px̄ is the unique BNE of Γε(s̄′). For
δ > 0, we define s̄′ + δ = (s̄′i + δ) as the subsidy scheme obtained by adding δ to the subsidies
in s̄′. We write s̄ for s̄′ + δ upon letting δ → 0.
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To compare costs across policies (and games), let us write K(s | x̄) for total equilibrium
spending on subsidies inΓ(x̄, sR):

K(s | x̄) =
N∑

n=1

si. (13)

Similarly, let Kε(s | x̄) denote (expected) equilibrium spending on subsidies in Γε(s) if nature
draws state x̄:

Kε(s | x̄) =
∫ [∑

i∈n

si · pxi(s)
i (xε

i )

]
dF (xε | x̄). (14)

Theorem 2. Let x̄ ∈ R. If players are symmetric, then

(i) Kε(s̄ | x̄) → K(sR | x̄) as ε → 0;

(ii) s̄i = s̄j for all i, j ∈ N .

For the case of symmetric players, Proposition 2 says that the cost of inducing coordination
on (1, 1, ..., 1) in the global game through scheme s̄ should the state be x̄ is equal to the
total cost of inducing that outcome under common knowledge that the state is x̄ through sR.
Notably, however, the scheme s̄ is non-discriminatory: all players receive exactly the same
subsidy in s̄.

A notable insight from Proposition 2 is that the least-cost property of discriminatory
policies in coordination games is fundamentally an artifact of equilibrium multiplicity under
complete information. Upon connecting the problems of policy design to that of equilibrium
selection, we are able to construct a non-discriminatory policy that achieves the same outcome
as an optimal ranking scheme and costs the same. This finding illustrates the importance of
equilibrium selection for the study of policy design in coordination games.

5.6 Continuous Actions

Assume that ai ∈ [0, 1] for all i.16 Given a vector of actions a ∈ [0, 1]N , a state x, and a
subsidy scheme s, let the payoff to player i be denoted π̂i, given by

π̂i(a | x, s) = ai · πi(1, a−i | x, s) + (1− ai) · πi(0, a−i | x, s)

= ai ·

[
x+ wi

(∑
j ̸=i

aj

)
+ si

]
+ (1− ai) · ci.

(15)

In the context of an investment problem, one might interpret the action ai as the proportion
of investor i’s budget invested in a project. The per-dollar return on investment in the project
(counting subsidies) is x + wi(a−i) + si (as in Halac et al. (2020), subsidies are per dollar
invested). The investor’s outside option yields a (certain) per-dollar return of ci. Given
(15), a player’s marginal incentive to increase his action is defined as ûi(a−i | x, s) := ∂π̂i(a |

16It is straightforward to extend the analysis to games in which, similar to Halac et al. (2020), players have
heterogeneous budgets Ii so that ai ∈ [0, Ii] for each i ∈ N . We discuss Ii = 1 for all i to reduce notation.
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x, s)/∂ai = x + wi(a−i) + si − ci, which is (2). We write Γ̂(x, s) for the continuous-action
game of complete information; Γ̂ε(s) denotes the global game obtained by embedding Γ̂(x, s)
in the information structure described in Section 2.

We restrict attention to the problem of a planner who wants players to coordinate on
playing ai = 1 for all x > x̃ and ai = 0 for all x < x̃. As before, we write px̃ = (px̃i ) for
the vector of strategies such that each player i plays 1 [plays 0] for all xε

i > x̃ [xε
i < x̃].17

Proposition 6 establishes that our main result, Theorem 1, applies as given to the continuous
action global game Γ̂ε(s).

Proposition 6. Let x̃ ∈ X and consider the game Γ̂ε(s). There exists a unique subsidy
scheme ˜̂s = (˜̂si) that implements px̃, and ˜̂si → s∗(x̃). Here, s∗i (x̃) is given by (∗).

An analysis of continuous action games where payoffs are non-linear in own actions lies
beyond the scope of this paper.

6 Concluding Remarks

This paper presents a number of results on policy design in coordination games. Strategic
uncertainty complicates policy design in coordination games. To deal with this complication,
the planner in this paper connects the problem of policy design to that of equilibrium selection
using a global games approach. Our main result characterizes the subsidy scheme that induces
coordination on a given equilibrium of the game as its unique equilibrium. We show that
optimal subsidies are unique and admit a number of properties that run counter to well-known
results on policy design in coordination games. In particular, we show that optimal subsidies
are symmetric for identical players, continuous functions of model parameters, and do not
make the targeted strategies strictly dominant for any single player.

Two core features of the game considered here help explain the differences between our
optimal policy and the policies previously proposed in the literature. First, as stated above,
the planner in this paper connects the problem of policy design to that of equilibrium selection.
Equilibrium selection allows the planner to make very precise inferences about player’s actual,
rather than hypothetical, strategic beliefs and to design her policy in response to those.
Second, the planner must commit to her policy before knowing which strategy vector will be
the ex post efficient outcome of the game. This kind of fundamental uncertainty leads to a
degree of policy restraint as overly aggressive intervention may itself become a source of ex
post coordination failure.

17In this continuous action game, an alternative problem would be that of a planner who seeks to induce
actions ai /∈ {0, 1} for all or some x’s. This would be similar to the problem studied in Halac et al. (2020).
We observe that, given the assumed linearity of payoffs in ai, implementation of any ai ̸∈ {0, 1} requires
the planner to offer a non-constant return schedule (ri, ai), specifying a per-dollar return [subsidy] ri(ai)
for any feasible choice of action ai ∈ [0, 1]. Proposition 3 and Corollary 2 in Halac et al. (2020) identify
intuitive conditions under which a subset of agents is targeted to invest their entire endowment (play ai = 1)
whereas the remaining agents are targeted not to invest at all (play ai = 0). Thus, in their model, the focus
on implementation of equilibria in which players do not play actions ai /∈ {0, 1} follows endogenously from
the planner’s (or firm’s) optimization problem under well-specified conditions. A focus on implementation of
equilibria other than px̃ lies beyond the scope of our paper.
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The analysis also highlights an unraveling effect of policy in coordination games. A
subsidy raises a player i’s incentive to play the subsidized action. The raised incentive of
player i also indirectly increases player j’s incentive to play that action. This, in turn, makes
the subsidized action even more attractive for player i, and so on. Under common knowledge
of the policy, this positive feedback loop compounds indefinitely and allows seemingly modest
policies to unravel coordination problems.
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A Properties of Γε When ε Is Small

As stated when introducing Corollary 1, the proofs in this Appendix rely upon our ability to
analyze the problem “as if” the common prior g were uniform when ε is sufficiently small.
Here, we make this claim more precise.

Let us write ϕε for the density of ε · ηi. Although in general ϕε(z) can, for any z, become
arbitrarily large if we pick ε very small, it remains true that ϕε(xε

i − x)
∏

j ̸=i ϕ
ε(xε

j − x)dx is
(proportional to) a density and, consequently, that for any continuous function h : X → R the
quantity

∫
h(x)ϕε(xε

i − x)
∏

j ̸=i ϕ
ε(xε

j − x)dx is bounded. In particular, therefore, we know

that
∫
g(x)ϕε(xε

i − x)
∏

j ̸=i ϕ
ε(xε

j − x)dx is bounded.
Conditional on his signal xε

i the density of player i on the vector of signals xε
−i received

by his opponents is

f ε
i (x

ε
−i | xε

i ) =

∫
g(x)ϕε(xε

i − x)
∏

j ̸=i ϕ
ε(xε

j − x)dx∫∫
g(x)ϕε(xε

i − x)
∏

j ̸=i ϕ
ε(xε

j − x)dxε
−idx

(16)

for all xε
i ∈ [X − ε/2, X + ε/2] and all xε

j ∈ [xε
i − ε, xε

i + ε] while f ε
i (x

ε
−i | xε

i ) = 0 otherwise.

Under a uniform prior g the density f ε
i (x

ε
−i | xε

i ) simplifies to f ε
i (x

ε
−i | xε

i ) :=
∫
ϕε(xε

i −
x)
∏

j ̸=i ϕ
ε(xε

j − x)dx.

Proposition 7. For all δ > 0, there exists ε(δ) > 0 such that |f ε
i (x

ε
−i | xε

i )− f ε
i (x

ε
−i | xε

i )|< δ
for all ε ≤ ε(δ) and all (xε

i , x
ε
−i) ∈ RN .

An immediate implication of Proposition 7 is that the cumulative distribution function
F (z−i | xε

i ) :=
∫ z−i f ε

i (x
ε
−i | xε

i )dx
ε
−i can also, for sufficiently small ε, be approximated

arbitrarily closely by the distribution F ε
i obtained under a uniform prior g. Moreover, the

probability distribution F ε
i admits a highly useful property: its shape is independent of xε

i .
To be more precise, and abusing notation, let us write ∆ for both a real number ∆ ∈ R and
the vector of real numbers (∆,∆, ...,∆) ∈ RN−1 such that z−i +∆ = (zj +∆)j ̸=i.

Proposition 8. For all ∆ and all (zi, z−i) ∈ RN , we have F ε
i (z−i+∆ | zi+∆) = F ε

i (z−i | zi).

B Proofs

Let hε denote a function that is (implicitly) parametrized by ε, and let H be defined on the
same domain as hε. Throughout this Appendix, when we write hε(z) → H(z) we mean that
for all δ > 0 there exists ε(δ) > 0 such that |hε(z)−H(z)|< δ for all ε ≤ ε(δ) and all z in
the domain of hε and H. Thus, hε(z) → H(z) should be read as saying that hε(z) can be
brought arbitrarily close to H(z) provided we choose ε sufficiently small. Whenever such a
claim is made without further explanation, it is implied that this follows Proposition 7. We
emphasize that the symbol “→” should not be read as a limit as ε goes to zero; since ε > 0
by assumption, that limit is not defined.

B.1 Proofs of Results in Appendix A

PROOF OF PROPOSITION 7
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Proof. Given xε
i , for all x ∈ [xε

i − ε/2, xε
i + ε/2], let us define gε−(x

ε
i ) = minx g(x) and

gε+(x
ε
i ) = maxx g(x). Clearly, g

ε
−(x

ε
i ) ≤ g(x) ≤ gε+(x

ε
i ) in the relevant domain. Therefore∫

gε−(x
ε
i )ϕ

ε(xε
i − x)

∏
j ̸=i ϕ

ε(xε
j − x)dx∫∫

gε+(x
ε
i )ϕ

ε(xε
i − x)

∏
j ̸=i ϕ

ε(xε
j − x)dxε

−idx
≤ f ε

i (x
ε
−i | xε

i )

≤
∫
gε+(x

ε
i )ϕ

ε(xε
i − x)

∏
j ̸=i ϕ

ε(xε
j − x)dx∫∫

gε−(x
ε
i )ϕ

ε(xε
i − x)

∏
j ̸=i ϕ

ε(xε
j − x)dxε

−idx

for all (xε
i , x

ε
−i) ∈ RN and all ε > 0. Because gε−(x

ε
i ) and gε+(x

ε
i ) are constants relative to

the variable of integration, we can factor them out of the integral. Noting that
∫∫

ϕε(xε
i −

x)
∏

j ̸=i ϕ
ε(xε

j − x)dxε
−idx = 1, the above then becomes

gε−(x
ε
i )

gε+(x
ε
i )

∫
ϕε(xε

i − x)
∏
j ̸=i

ϕε(xε
j − x)dx ≤ f ε

i (x
ε
−i | xε

i ) ≤
gε+(x

ε
i )

gε−(x
ε
i )

∫
ϕε(xε

i − x)
∏
j ̸=i

ϕε(xε
j − x)dx,

or

gε−(x
ε
i )

gε+(x
ε
i )

f ε
i (x

ε
−i | xε

i ) ≤ f ε
i (x

ε
−i | xε

i ) ≤
gε+(x

ε
i )

gε−(x
ε
i )

f ε
i (x

ε
−i | xε

i ).

From the uniform continuity of g (i.e. g is continuous on a compact set, which by the
Heine-Cantor theorem implies g is uniformly continuous) follows that for any k > 0 there
exists ε(k) > 0 such that gε+(x

ε
i ) − gε−(x

ε
i ) < k for all ε ≤ ε(k) and all xε

i . It follows
immediately (by the squeeze theorem) that for all δ > 0 there exists ε(δ) > 0 such that
|f ε

i (x
ε
−i | xε

i )− < f ε
i (x

ε
−i | xε

i )|< δ for all ε ≤ ε(δ) and all (xε
i , x

ε
−i) ∈ RN .

PROOF OF PROPOSITION 8

Proof. Fix (zi, z−i) ∈ RN and ∆. We have

F ε
i (z−i | zi) =

z−i∫
zi−ε

f ε
i (x

ε
−i | zi)dxε

−i

=

z−i∫
zi−ε

 zi+ε/2∫
zi−ε/2

ϕε(zi − x)
∏
j ̸=i

ϕε(xε
j − x)dx

 dxε
−i

=

z−i∫
zi−ε

 zi+ε/2∫
zi−ε/2

ϕε(zi +∆− (x+∆))
∏
j ̸=i

ϕε(xε
j +∆− (x+∆))dx

 dxε
−i

=

z−i∫
zi−ε

 zi+∆+ε/2∫
zi+∆−ε/2

ϕε(zi +∆− x′)
∏
j ̸=i

ϕε(xε
j +∆− x′)dx′

 dxε
−i

=

z−i∫
zi−ε

f ε
i (x

ε
−i +∆ | zi +∆)dxε

−i
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=

z−i+∆∫
zi+∆−ε

f ε
i (x

ε
−i | zi +∆)dxε

−i

= F ε
i (z−i +∆ | zi +∆),

as claimed.

B.2 Proofs of Results in Section 4

PROOF Of PROPOSITION 1

Proof. First we relabel the players so that x∗
i1

≤ x∗
i2

≤ . . . ≤ x∗
iN
. For each i ∈ N

there exists a unique xi such that xi + wi(0) = cj. From the definition of xi follows that
W ((1,0−i) | x) > W ((0,0−i) | x) iff x > xi. Set x

∗
i1
= min{xi | i ∈ N } and label as i1 that

player i for whom xi = x∗
i1
. From the construction of x∗

i1
follows that to maximize welfare

player i1 must play 1 for all x ≥ x∗
i1
(and play 0 otherwise).

Suppose now the result is true for players i1, i2, ..., in, i.e. assume there are x∗
i1
≤ x∗

i2
≤

... ≤ x∗
in such that it is welfare-maximizing for player i ∈ {i1, i2, ..., in} to play 1 iff x > x∗

i .
Given this hypothesis, we observe that for each j ∈ N \ {i1, ..., in} there exists a unique
xj(n) such that

xj(n) + wj(n) +
n∑

m=1

[wim(n+ 1)− wim(n)] = cj.

Choose x∗
in+1

= min{xj(n) | j ∈ N \ {i1, i2, ..., in}}. Clearly, aj = 1 is welfare-maximizing for
all x > xj(n) when players i1, ..., in play 1 (and the others play 0). Furthermore, our inductive
hypothesis implies that xj(n) ≥ x∗

in (otherwise j ∈ {i1, i2, ..., in}, but j ∈ N \ {i1, ..., in}
by assumption). As we proved our inductive hypothesis for n = 1, the result follows from
induction on n.

PROOF OF LEMMA 1

Proof. First, observe that

uε
i (p−i | xε

i ) =

∫
ui

(
p−i

(
xε
−i

)
| x
)
dF ε

i (x, x
ε
−i | xε

i )

=

∫
wi

(
p−i

(
xε
−i

))
+ x dF ε

i (x, x
ε
−i | xε

i )− ci

→
∫

wi

(
p−i

(
xε
−i

))
dF ε

i (x
ε
−i | xε

i ) + xε
i − ci,

for any strategy vector p−i.
To prove part (i), it suffices to show that

∫
wi

(
py−i

(
xε
−i

))
dF ε

i (x
ε
−i | xε

i ) is increasing in
xε
i . First we introduce a random variable vi(x−i) = wi(p

y
−i(x

ε
−i)) and observe that, since

wi(p
y
−i(x

ε
−i)) is increasing in py−i(x

ε
−i) and py−i(x

ε
−i) is increasing in xε

−i, vi is increasing in

xε
−i. Next, we note that the distribution F ε

i (x
ε
−i | xε

i ) is first-order stochastic dominant
over the distribution F ε

i (x
ε
−i | x̂ε

i ) iff xε
i > x̂ε

i ; this follows from Bayes’ theorem upon
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application of the two facts that (a) each εj (and indeed εi) is drawn independently of x,
and (b) player i’s conditional distribution on x given xε

i first-order stochastic dominates his
conditional distribution on x given x̂ε

i iff xε
i > x̂ε

i . Hence, because vi is increasing we have∫
vi(x

ε
−i)dF

ε
i (x

ε
−i | xε

i ) >
∫
vi(x

ε
−i)dF

ε
i (x

ε
−i | x̂ε

i ) and the result follows.
To prove part (ii), we reiterate the observation from the proof of part (i) that the

distribution F ε
i (x

ε
−i | xε

i ) is first-order stochastic dominant over the distribution F ε
i (x

ε
−i | x̂ε

i )
iff xε

i > x̂ε
i . Next, we note that py−i(x

ε
−i) is (weakly) decreasing in yj ∈ y, all j ̸= i (and,

therefore, the random variable vi(x
ε
−i) we introduced in the proof of part (i) is also decreasing

in yj). Therefore
∫
wi

(
py−i

(
xε
−i

))
dF ε

i (x
ε
−i | xε

i ) is decreasing in yj and the result follows.

PROOF OF LEMMA 2

Proof. We omit the argument s to reduce notation. By construction, li ≤ ri. Define
∆i := ri − li, so ∆i ≥ 0. We first establish a useful claim.

Claim 1. If ∆i = ∆ for all i ∈ N , then ∆ = 0.

Proof of the claim. If ∆i = ∆ for all i ∈ N , we have

uε
i (p

r−i

−i | ri, si) → ri +

∫
wi(p

r−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | ri) + si − ci

= li +∆+ wi(p
l−i+∆
−i (xε

−i))dF
ε
i (x

ε
−i | li +∆) + si − ci

= li +∆+

∫
wi(p

l−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | li) + si − ci

→ ∆+ uε
i (p

l−i

−i | li, si).

By construction, uε
i (p

r−i

−i | ri, si) = uε
i (p

l−i

−i | li, si), and it follows that ∆ = 0.

Now let ∆i ̸= ∆j for at least one pair of players i, j ∈ N and suppose (without loss) that
player i is such that ∆i = max{∆j | j ∈ N }. Because ∆i ≥ ∆j for all j ̸= i with a strict
inequality for at least one j, we have

uε
i (p

r−i

−i | ri, si)− uε
i (p

l−i

−i | li, si)

→ ri − li +

∫
wi(p

r−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | ri)−

∫
wi(p

l−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | li)

= ∆i +

∫
wi(p

r−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | ri)−

∫
wi(p

l−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | li)

>

∫
wi(p

r−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | ri)−

∫
wi(p

l−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | li)

>

∫
wi(p

l−i+∆i

−i (xε
−i))dF

ε
i (x

ε
−i | li +∆i)−

∫
wi(p

l−i

−i (x
ε
−i))dF

ε
i (x

ε
−i | li)

= 0,

where the first inequality follows from ∆i > 0 and the final equality is a consequence of
Proposition 8. Hence, for player i we have uε

i (p
r−i

−i | ri, si) > uε
i (p

l−i

−i | li, si), contradicting that

uε
i (p

r−i

−i | ri, si) = uε
i (p

l−i

−i | li, si) by construction. Hence, there cannot be a player i such that
∆i ≥ ∆j for all j ̸= i with a strict inequality for at least one j. Therefore ∆i = ∆ for all
i ∈ N . By the claim at the start of the this proof, this implies ∆ = 0.
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PROOF OF LEMMA 3

Proof. Suppose, in contrast, that there are two distinct vectors of subsidies ŝ1 = (ŝ1i) and
ŝ2 = (ŝ2i) that both implement px̂ such that ŝ1 ̸= ŝ2. Per Lemmas 2 and 4, ŝ1 and ŝ2 must
solve x(ŝ1) = x(ŝ2) = x̂. By (5), this means that ŝ1i and ŝ2i are both solutions to

uε
i

(
px̂−i | x̂i, ŝ1i

)
= uε

i

(
px̂−i | x̂i, ŝ2i

)
= 0, (17)

for each i ∈ N . We thus have

uε
i

(
px̂−i | x̂i

)
+ s1i = uε

i

(
px̂−i | x̂i

)
+ s2i, (18)

which implies
ŝ1i = ŝ2i (19)

for all i ∈ N . This contradicts our assumption that ŝ1 ̸= ŝ2.

PROOF OF LEMMA 4

Proof. Let p = (pi) be a BNE of Γε(s). For any player i, define

x
i
= inf{xε

i | pi(xε
i ) > 0}, (20)

and
xi = sup{xε

i | pi(xε
i ) < 1}. (21)

Observe that x
i
≤ xi. Now define

x = min{x
i
}, (22)

and
x = max{xi}. (23)

By construction, x ≥ xi ≥ x
i
≥ x. Observe that p is a BNE of Γε(s) only if, for each i, it

holds that uε
i (p−i(x

ε
−i) | xi

) ≥ 0. Consider then the expected incentive uε
i (p

x

−i(x
ε
−i) | xi

). It
follows from the definition of x that px(xε) ≥ p(xε) for all xε. The implication is that, for

each i, uε
i (p

x

−i(xi−iε) | x
i
) ≥ uε

i (p−i(x
ε
−i) | x

i
) ≥ 0. From Proposition 5 then follows that

x ≥ x.
Similarly, if p is a BNE of Γε(s) then, for each i, it must hold that uε

i (p−i(x
ε
−i) | xi) ≤ 0.

Consider the expected incentive uε
i (p

x
−i(x

ε
−i) | xi). It follows from the definition of x that

px(xε) ≤ p(xε) for all xε. For each i it therefore holds that uε
i (p

x
−i(x

ε
−i) | xi) ≤ uε

i (p−i(xi−iε) |
xi) ≤ 0. Hence x ≤ x.

Since x ≤ x while also x ≥ x and x ≤ x it must hold that x = x = x. Moreover, since

px ≥ p while also px ≤ p, given x = x = x, it follows that pi(s
ε
i ) = pxi (x

ε
i ) for all x

ε
i ̸= x and

all i (recall that for each player i one has uε
i (p

x
−i | x) = 0, explaining the singleton exeption

at xε
i = x). Thus, if p = (pi) is a BNE of Γε(s) then it must hold that pi(x

ε
i ) = pxi (x

ε
i ) for all

xε
i ̸= x and all i, as we needed to prove.

PROOF OF LEMMA 5
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Proof. Let Ωε(n | X, xε
i ) denote the probability that a player i who observes signal xε

i attaches
to the event that n other players j receive a signal xε

j ≥ X:

Ωε(n | X, xε
i ) =

∫
g(x)fϕε (xε

i − x)
(
N−1
n

)
[Φ (X − x)]N−n−1 [1− Φ (X − x)]n dx∫

g(x)ϕε (xε
i − x) dx

, (24)

where Φε(z) :=
∫ z

ε/2
ϕε(λ)dλ is the c.d.f. of ϕε. When g is uniform, this simplifies to:

Ωε(n | X, xε
i ) =

(
N − 1

n

)∫
ϕε (xε

i − x) [Φε (X − x)]N−n−1 [1− Φε (X − x)]n dx (25)

Clearly, if player i’s opponents play pX−i then Ωε(n | X, xε
i ) is also i’s conditional distribution

on
∑

j ̸=i aj = n. Therefore

uε
i (p

X
−i | xε

i , si) =

∫
xϕε(xε

i − x)dx+
N−1∑
n=0

wi(n)Ω
ε(n | X, xε

i )− ci + si

→ xε
i +

N−1∑
n=0

wi(n)Ωε(n | X, xε
i )− ci + si

as ε → 0. To prove the Lemma, we need only evaluate Ωε(n | X, xε
i ) at xε

i = X. Define
y := X − x, so we may write

∫
ϕε (y) [Φε (y)]N−n−1 [1− Φε (y)]n dy.18 Repeatedly carrying

out the integration by parts, we obtain

1(
N−1
n

) · Ωε(n | X,X) =

∫
ϕε(y) [Φε(y)]N−n−1 [1− Φε(y)]n dy

=
n

N − n

∫
ϕε(y) [Φε(y)]N−n [1− Φε(y)]n−1 dy =

=
n · (n− 1)

(N − n) · (N − n+ 1)

∫
ϕε(y) [Φε(y)]N−n+1 [1− Φε(y)]n−2 dy

...

=
n · (n− 1) · (n− 2) · · · 1

(N − n) · (N − n+ 1) · · · (N − 1)

∫
ϕε(y)[Φε(y)]N−1dy

=
n! (N − n− 1)!

(N − 1)!

1

N
[Φε(y)]∞−∞

=
1

N

1(
N−1
n

) ,
18To evaluate this integral, recall that for two functions u and v of y intergration by parts gives∫ b

a

u(y)v′(y)dy = [u(y)v(y)]ba −
∫ b

a

u′(y)v(y)dy.

A convenient choice of u and v will prove to be v′(y) := ϕε(y)[Φε(y)]N−n−1 and u(y) := [1− Φε(y)]n. We
thus have u′(y) = −n[1− Φε(y)]n−1ϕε(y) and v(y) = 1

N−n [Φ
ε(y)]N−n.
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which shows that Ωε(n | X,X) = 1/N for all n = 0, 1, ..., N − 1. Therefore

uε
i (p

X
−i | X, si) → X +

N−1∑
n=0

wi(n)Ωε(n | X,X)− ci + si = X +
N−1∑
n=0

wi(n)

N
− ci + si,

as given.

B.3 Proofs of Results in Section 5

PROOF OF PROPOSITION 2

Proof. Let uε
i (p

x̃
−i | x̃, s̃, I) denote player i’s expected incentive to invest given that his

opponents play px̃−i, his investment subsidy is s̃i, and the critical threshold for investment is
known to be I. Assuming i knows I (and that ε is sufficiently small), we have

uε
i (p

x̃
−i | x̃, s̃, I) = s̃i +

N − I

N
(x̃+ bi)− ci,

which follows from Lemma 5 which establishes that a player’s strategic belief over aggregate
investments (given px̃−i and xε

i = x̃) is uniform.
We assumed, however, that players do not know I, only that it is is uniformly distributed

on {1, 2, ..., N}. Therefore player i’s expected investment incentive in (px̃−i, x̃, s̃i) is given by

uε
i (p

x̃
−i | x̃, s̃) =

1

N

N∑
I=1

uε
i (p

x̃
−i | x̃, s̃, I) = s̃i − ci +

1

N

N∑
I=1

N − I

N
(x̃+ bi).

Noting that
∑N

I=1 I/N = N/2, we have

1

N

N∑
I=1

N − I

N
=

1

N

N2

N
− 1

N

N

2
=

1

2
,

so

uε
i (p

x̃
−i | x̃, s̃) = s̃i +

x̃+ bi
2

− ci. (26)

Finally, since s̃i is pinned down by the indifference condition uε
i (p

x̃
−i | x̃, s̃, Ī) = 0, solving for

s̃i yields the result.

PROOF OF PROPOSITION 3

Proof. Given a−i and the reward scheme v, the payoff to agent i is given by:

πi(ai, a−i | x, vi) =


x+ vi − ci if the project succeeds and ai = 1

x+ vi if the project succeeds and ai = 0

−ci if the project does not succeed and ai = 1

0 if the project does not succeed and ai = 0

(27)
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Because project success is stochastic through the technology q, we define

πi(ai, a−i | x, vi, q) =

q
(∑

j ̸=i aj + 1
)
· (vi + x)− ci if ai = 1,

q
(∑

j ̸=i aj

)
· (vi + x) if ai = 0,

(28)

and an agent’s incentive to work is:

ui(a−i | x, vi, q) =

(
q

(∑
j ̸=i

aj + 1

)
− q

(∑
j ̸=i

aj

))
· (vi + x)− ci. (29)

Define

uε
i (p−i | xε

i , vi, q) =

∫ (
q

(∑
j ̸=i

pj(x
ε
j) + 1

)
− q

(∑
j ̸=i

pj(x
ε
j)

))
· (vi + x)− ci dF

ε
i (x, x

ε
−i | xε

i )

(30)

Note that if p−i is an increasing strategy vector, then by Lemma 1 the expected incentive
uε
i (p−i | xε

i , vi, q) is increasing in xε
i since the technology q is increasing and supermodular.

From the proof of Theorem 1 then follows that for any reward scheme v there exists a unique
x(v) = (xi(v)) such that px(v) is the unique Bayesian Nash equilibrium of the game (provided
ε is sufficiently small). Furthermore, it also follows that for any x̃, there is a unique reward
scheme ṽ = (ṽi) such that xi(ṽ) = x̃ for all i ∈ N . We now proceed to characterizing ṽ.

Next, recall that the reward scheme ṽ implements px̃ iff for all i the indifference condition

uε
i (p

x̃
−i | x̃, ṽi) =

∫
(ṽi + x)

[
q

(∑
j ̸=i

px̃j
(
xε
j

)
+ 1

)
− q

(∑
j ̸=i

px̃j
(
xε
j

))]
dF ε

i (x
ε
−i | x̃)− ci = 0

(31)
is met. Using (as was assumed throughout this section) that ε → 0, we have∫

(ṽi + x)

[
q

(∑
j ̸=i

px̃j
(
xε
j

)
+ 1

)
− q

(∑
j ̸=i

px̃j
(
xε
j

))]
dF ε

i (x
ε
−i | x̃)

→(ṽi + x̃)

∫ [
q

(∑
j ̸=i

px̃j
(
xε
j

)
+ 1

)
− q

(∑
j ̸=i

px̃j
(
xε
j

))]
dF ε

i (x
ε
−i | x̃).

To see this, note first that the convergence F ε
i → F ε

i follows from Proposition 7. Furthermore,

writing Q(x̃) := q
(∑

j ̸=i p
x̃
j

(
xε
j

)
+ 1
)
− q

(∑
j ̸=i p

x̃
j

(
xε
j

))
, we have∫

(ṽi+x̃−ε)Q(x̃) dF ε
i (x, x

ε
−i | x̃) ≤

∫
(ṽi+x)Q(x̃) dF ε

i (x, x
ε
−i | x̃) ≤

∫
(ṽi+x̃+ε)Q(x̃) dF ε

i (x, x
ε
−i | x̃),

which, noting that x̃, ε and ṽi are constants relative to the variables of integration, gives

(ṽi+x̃−ε)

∫
Q(x̃) dF ε

i (x, x
ε
−i | x̃) ≤

∫
(ṽi+x)Q(x̃) dF ε

i (x, x
ε
−i | x̃) ≤ (ṽi+x̃+ε)

∫
Q(x̃) dF ε

i (x, x
ε
−i | x̃).
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When ε → 0, the upper and lower bounds given above both converge to the same level
(ṽi + x̃)

∫
Q(x̃) dF ε

i (x, x
ε
−i | x̃) (since obviously x̃+ ε− (x̃− ε) = 2ε → 0 as ε → 0), and so it

follows that ∫
(ṽi + x)Q(x̃) dF ε

i (x, x
ε
−i | x̃) → (ṽi + x̃)

∫
Q(x̃) dF ε

i (x, x
ε
−i | x̃).

Invoking Lemma 5, we have∫
Q(x̃) dF ε

i (x, x
ε
−i | x̃) =

∫
q

(∑
j ̸=i

px̃j
(
xε
j

)
+ 1

)
− q

(∑
j ̸=i

px̃j
(
xε
j

))
dF ε

i (x, x
ε
−i | x̃) (32)

=
N−1∑
n=0

q(n+ 1)− q(n)

N
:= q. (33)

Therefore, ṽi solves
q · (ṽi + x̃)− ci = 0,

as given.

PROOF OF PROPOSITION 4

Proof. Recall from the proof of Lemma 5 that Ωε(n | X, xε
i ) denotes the probability that

n players j receive a signal xε
j ≥ X while N − n − 1 receive a signal xε

j < X. Moreover,
given that n players j receive a signal xε

j, the probability that any given subset of players
{j1, j2, ..., jn} ⊆ N \{i} receive signals above X is the same (e.g. uniform) across such subsets;
as there are exactly

(
N−1
n

)
(unique) subsets {j1, j2, ..., jn} ⊆ N \ {i}, this (conditional)

probability is simply 1/
(
N−1
n

)
. Given the strategy vector pX−i played, and conditional on

exactly n players j receiving a signal xε
j > X, the expected spillover on player i is hence∑

a−i∈An
−i
wi(a−i)/

(
N−1
n

)
, where we recall that An

−i := {a−i |
∑

aj∈a−i
aj = n}. Putting all this

together, we get

uε
i (p

X
−i | xε

i , si) =

∫
xg(x)ϕε(xε

i − x)dx∫
g(x)ϕε(xε

i − x)dx
+

N−1∑
n=0

∑
a−i∈An

−i
wi(a−i)(

N−1
n

) Ωε(n | X, xε
i )− ci + si

=

∫
xg(x)ϕε(xε

i − x)dx∫
g(x)ϕε(xε

i − x)dx
+

N−1∑
n=0

wn
i Ω

ε(n | X, xε
i )− ci + si

→ xε
i +

N−1∑
n=0

wn
i Ω

ε(n | X, xε
i )− ci + si.

Furthermore, we need only concern ourselves with the event that xε
i = X, in which case we

have

uε
i (p

X
−i | X, si) → X +

N−1∑
n=0

wn
i

N
− ci + si,

where we use the result that Ωε(n | X,X) = 1/N for all n = 0, 1, ..., N − 1 established in the
proof of Lemma 5. Finally, solving uε

i (p
x̃
−i | x̃, s̃i) = 0 for s̃i yields the result.
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PROOF OF PROPOSITION 5

Proof. For each m, let Ωε
m(n | x̃m, x

ε
i ) denote the probability that n players j ̸= i in Nm

receive a signal xε
j ≥ x̃m. Now recall that x̃1 < x̃2 < . . . < x̃M , all inequalities strict. Assume

that ε is small enough so that x̃m+1− x̃m > 2ε for all m (recall that ε → 0, so this assumption
will be satisfied). Conditional on his signal xε

i , player i knows that x
ε
j ∈ [xε

i −ε, xε
i +ε] for each

j ̸= i. Hence, for each k ∈ {1, 2, ...,M} we have Ωε
k(nk | x̃k, x̃m) = 1 for all k = 1, 2, ...,m− 1

and Ωε
k(nk | x̃k, x̃m) = 0 for all k = m + 1,m + 2, ...,M . Moreover, for player i ∈ Nm we

know that, following the same procedure used to prove Lemma 2,

Ωε
m(n | x̃m, x̃m) =

1

nm

,

for n = 1, 2, ..., nm − 1. Let p∗ denote the vector of strategies such that each player i is
assigned strategy px̃m

i if i ∈ Nm. Then, for each player i ∈ Nm and all m ∈ {1, 2, ...,M}, we
have

uε
i (p

∗
−i | x̃m, si) =

∫
xg(x)ϕε(x̃m − x)dx∫
g(x)ϕε(x̃m − x)dx

+ wi (Nm + n) Ωε
m(n | x̃m, x̃m)− ci + si,

which, choosing ε sufficiently small, tends to:

uε
i (p

∗
−i | x̃m, si) → x̃m +

nm−1∑
n=0

wi(Nm + n)

nk

− ci + si.

Solving uε
i (p

∗
−i | x̃m, s̃i) = 0 for si yields the result.

PROOF OF THEOREM 2

Proof. (i) Given common knowledge of x̄, the optimal ranking policy sR offers subsidy
sRin = c− x̄−w(n− 1) to the n-th ranked player (see Segal (2003) and Winter (2004)). Hence,

K(sR | x̄) =
N∑

n=1

sRin = N · (c− x̄) +
N−1∑
m=0

w(m).

Next, we note that

Kε(s̄ | x̄) =
∑
i∈N

s̄i

as ε since xi(s̄) < x̄ for all i; hence, as ε → 0 we have x̄− ε > xi(s̄) for all i ∈ N and the
unique equilibrium outcome of Γε(s̄) is (1, 1, ..., 1). Furthermore, we know from Theorem 1
that s̄i → s∗(x̄) as ε → 0. Using (∗), we thus have

Kε(s̄ | x̄) =
∑
i∈N

s̄i →
∑
i∈N

{
c− x̄−

N−1∑
n=0

w(n)

N

}
= N · (c− x̄)−

N−1∑
n=0

w(n) = K(sR | x̄)

as ε → 0.
(ii) By Theorem 1, each s̄i → s∗i (x̄) for all i ∈ N . Furthermore, we can see from the

definition of s∗i in (∗) that s∗i = s∗j for any two symmetric players i, j ∈ N . Hence, because
players assumed to be symmetric, we have s̄i = s̄j for all i, j ∈ N .
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PROOF OF PROPOSITION 6

Proof. Recall that ûi(a−i | x, s) := ∂π̂i(a | x, s)/∂ai = x + wi(a−i) + si − ci. We observe
that ûi(a−i | x, s), a player’s incentive to increase/decrease his action ai, is independent of
his own action and either strictly positive or strictly negative. The same clearly applies to
ûε
i (p−i | xε

i , s), which we define as

ûε
i (p−i | xε

i , s) :=

∫
ûi(p−i(x

ε
−i) | x, s) dF ε

i (x, x
ε
−i | xε

i )

→
∫

ûi(p−i(x
ε
−i) | x, s) dF ε

i (x, x
ε
−i | xε

i ).

Hence, a player maximizes his (expected) payoff by playing ai = 1 whenever ûε
i (p−i | xε

i , s) > 0
and playing ai = 0 when ûε

i (p−i | xε
i , s) < 0. This means the exact same reasoning upon

which the proof of Theorem 1 is based can be applied.
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