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Abstract 

This paper examines some problems of matched dispatching in some different random 

settings. The context of presentation is that of a reality show with a lineup of the 

participants, and according to some probabilistic selection rule, some participants are 

pairwise matched to teams while some are excluded. We consider mainly two cases of 

induced randomness, one based on random ordering of participants, and one based on coin-

flipping, and consider both linear and circular lineups. Questions of fairness are discussed, 

and some alternative schemes are examined. 

 

JEL classification: C44, C46 

Keywords: Random order, Matching, Dispatching, Hypergeometric distribution 

 

 

1. Introduction  

Patterns in sequences of observations are studied in many contexts, ranging from coin 
tossing for demonstrating the basics of probability to medical records for uncovering 
anomalies. Elementary probability asks questions related to the number of heads (H) in 𝑛 
trials and the waiting time to the first tail (T). The distribution and its expectation are 
typically established. Stepping up the ladder, one may ask for the number of successive 
patterns of a given type, say head-tail (HT). This becomes a bit harder, and typically belongs 
to intermediate texts, like Ross (2014).1 Here follows another pattern problem with 
interesting features and challenges. Although a general problem, it is presented in a 
recreational context as follows: 

 
1 For more advanced combinatorics in probabilistic settings, the classical reference is Feller (1961).  
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In a TV reality show, celebrities are competing as recruits. At the beginning there are 14 
participants, 7 men and 7 women. After some weeks 5 of them are out, and among the 
remaining 9, there are 5 men and 4 women. They are told to line up in random order facing 
the same direction. Then an officer commands: “Men: Turn right! Women: Turn left!”. The 
result is that some recruits may face another recruit of the opposite gender, while some may 
face the back of a recruit of the same gender or no one at all. All pairs standing face to face 
are dispatched to act as mission teams, while the others are not teamed up, but ordered to 
do a dirty job, like renovating the latrine. 

Questions to be asked are: What is the probability distribution of the number of teams and 

its expectation? What is expected number of recruits available for the dirty job? What can 

we conclude in general? 

The reader may question the possibility to get people lined up in random order. To counter 

this legitimate objection, another context using playing cards may be imagined. However, for 

this presentation, we stick to the more frivolous one. 

In case of 5 men and 4 women, a possible pattern for the 9 individuals is  

M W M M W W M M W 

Here we imagine the observer standing behind the lineup, facing the same direction. Given 
the command, a team will materialize whenever an M is followed by a W. We see that this 
occurs three times in the given pattern, so that 6 participants will be dispatched to teams, 
while 3 are not, in this case the males in the third and seventh position and the female in the 
sixth position. This is just one of 126 different equally likely patterns in this case. In order to 
calculate probabilities, we have to count the number of favorable patterns to the events in 
question. For instance, there are 40 different patterns that give rise to three teams. 
Consequently, the probability of this event is 40/126, by the rule “favorable on possible”. 
The determination of the number of patterns exhibiting a given number of teams 𝑥 
apparently requires a complicated enumeration, unless we can establish a general formula. 

In general, consider 𝑛 participants, 𝑛1 men and 𝑛2 women. Then there will be 𝑚 =

(
𝑛1 + 𝑛2

𝑛1
) different patterns of men and women all equally likely. Let 𝑋 be the number of 

mission teams that materialize from the lineup after the command is given. The probability 

distribution of 𝑋 is given by 

𝑃(𝑋 = 𝑥) =
𝑁(𝑥)

𝑚
, 𝑥 = 0, 1, … , min(𝑛1, 𝑛2) 

where 𝑁(𝑥) is the number of lineups giving rise to 𝑥 teams. Consider two simple examples: 

 

Example 1: Take (𝑛1, 𝑛2) = (3, 2), for which we have 𝑚 = (
5
3

) = 10 possible patterns: 

WWMMM MWWMM WMWMM WMMWM WMMMW 

MMWWM MMMWW MWMWM MWMMW MMWMW 
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Here MW does not appear in the first pattern, appears once in the next six patterns, and 
twice in the last three patterns. Consequently, we have the table 

𝑥 0 1 2 

𝑁(𝑥)  1 6 3 

 

Example 2: Take (𝑛1, 𝑛2) = (4, 3), for which we have 𝑚 = (
7
4

) = 35 possible patterns, too 

many to list them all. The enumeration performed with programming help turned out the 
table 

𝑥 0 1 2 3 

𝑁(𝑥) 1 12 18 4 

 
The results for the two examples are seen to conform with the following general formula, to 
be proved in the subsequent section: 

𝑁(𝑥) = (
𝑛1

𝑥
) ⋅ (

𝑛2

𝑥
) , 𝑥 = 0, 1, … , min(𝑛1, 𝑛2). 

The reader may work out and confirm the case (𝑛1, 𝑛2) = (3, 3), for which the distribution is 

symmetric. 

 

Remark. We see that this expression is the same as the number of ways to select 𝑥 men and 

𝑥 women to participation in one team or another. Does this mean that we have found a 

shortcut to the solution? No! Sample of persons should not be mistaken as our sample of 

positions in the lineup!  

 

2. General theory 

2.1 Random order: Linear lineup  

Theorem 1: Given (𝑛1, 𝑛2) and random linear lineup. Then the probability distribution of the 
number of teams 𝑋 is given by 

𝑃(𝑋 = 𝑥) =
(

𝑛1

𝑥
) ∙ (

𝑛2

𝑥
)

(
𝑛1+𝑛2

𝑛1
)

 , 𝑥 = 0, 1, … , min(𝑛1,𝑛2), 

recognized as the hypergeometric distribution with parameters (𝑛1 + 𝑛2, 𝑛1, 𝑛2) with 

expectation 

𝐸(𝑋) =
𝑛1𝑛2

𝑛1 + 𝑛2
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Proof: Random lineup of the 𝑛 = 𝑛1 + 𝑛2 participants means that all 𝑛! possible lineups of 
the 𝑛 = 𝑛1 + 𝑛2 participants are equally likely. What matters here is the pattern of 

consecutive genders. In total, there are 𝑚 = (
𝑛1 + 𝑛2

𝑛1
) different possible patterns with 𝑛1 

men and 𝑛2 women, all equally likely. This accounts for the denominator. In order to find the 

number of lineups having precisely 𝑥 team, we may argue as follows: Line up the 𝑛1 men in a 
row and choose the 𝑥 positions of those to be included in one of the 𝑥 teams. This may be 

done in (
𝑛1

𝑥
) ways. For every such selection we have to fit in the 𝑛2 women so that one 

woman is immediately to the right of each of the 𝑥 men assigned to a team. So let us do 
that. We are then left with 𝑛2 − 𝑥 women to be fit in, without creating more teams. There 
are 𝑥+1 positions where these 𝑛2 − 𝑥 women may fit in, either to the left of all men or 
immediately to the right of one of the 𝑥 women already fitted in. To determine the number 
ways this can be done, we may use the following combinatorial result: Distribute 𝑎 identical 

objects into 𝑏 labelled boxes (allowing some empty boxes). This can be done in (
𝑎 + 𝑏 − 1

𝑏 − 1
) 

different ways. In our situation this corresponds to take 𝑎 = 𝑛2 − 𝑥 and 𝑏 = 𝑥 + 1, which 

inserted gives (
𝑛2

𝑥
) different ways. Taken together, this gives the number of lineups leading 

precisely to 𝑥 teams equal to 𝑁(𝑥) = (
𝑛1

𝑥
) ∙ (

𝑛2

𝑥
). With this numerator we have proved the 

theorem. 

 

Remark. The combinatorial argument used is often named “Stars and bars”, after how it is 

typically explained: If the 𝑎 objects are lined up in a row and marked with stars, the 

assignment to 𝑏 boxes is by vertical bars as separation symbols. With 𝑏 boxes we need 𝑏 − 1 

bars. Example: For 𝑎 = 4 and 𝑏 = 3 the pattern **|*|* means two objects in the first box 

and one object in each of the next two boxes, while **|**| means two objects in each of the 

first two boxes and none in the third box. All together there are 𝑎 + 𝑏 − 1 symbols, and the 

placement alternatives appear by choosing the 𝑏 − 1 bars among them. For more on this 

theme see Stars and bars (combinatorics) - Wikipedia (Theorem 1 and Theorem 2).  

The number of participants excluded from teams becomes 𝑌 = 𝑛1 + 𝑛2 − 2𝑋 with expected 

value  

𝐸(𝑌) = 𝑛1 + 𝑛2 − 2𝐸(𝑋) =
𝑛1

2 + 𝑛2
2

𝑛1 + 𝑛2
 

In general, the distribution is symmetric for 𝑛1 = 𝑛2 , for which 𝐸(𝑋) =
𝑛

4
 and 𝐸(𝑌) =

𝑛

2
 

where 𝑛 = 𝑛1 + 𝑛2. Thus, in the symmetric case, the expected number of participants 

assigned to teams will be the same as the expected number excluded. 

 

Example 3: Take (𝑛1, 𝑛2) = (5, 4) and (5, 5), with 𝑚 = (
9
5

) = 126 and 𝑚 = (
10
5

) = 252 

possible patterns, respectively. Enumeration, performed with programming help and 
confirmed by the formula, turned out the table 

 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStars_and_bars_%2528combinatorics%2529&data=05%7C01%7CJostein.Lillestol%40nhh.no%7Cb6cf62f83e854814eb9208daeb5bb1af%7C33a15b2f849941998d56f20b5aa91af2%7C0%7C0%7C638081076293196587%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XzTPTOKTccmsiijk1V5gzUFmN0xzqrTRS7mLFXu5Ngg%3D&reserved=0
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𝑥 0 1 2 3 4 5 𝑚 

𝑁(𝑥): (5, 4) 1 20 60 40 5 − 126 

𝑁(𝑥): (5, 5) 1 25 100 100 25 1 252 

 

Expectations are: For (𝑛1, 𝑛2) = (5, 4) we get 𝐸(𝑋) =20/9 and 𝐸(𝑌) = 41/9, and for 

(𝑛1, 𝑛2) = (5, 5) we get 𝐸(𝑋) = 25/10 = 2.5 and 𝐸(𝑌) = 50/10 = 5. 

Note the asymmetry in the unbalanced case, and that the expected number of excluded 

participants 41/9 is just marginally larger than the expected number of participants assigned 

to teams 40/9. 

 

2.2 Random order: Circular lineup  

Consider the situation with a circular lineup. As an example, convert the following linear 
lineup WMMWWMMWM to a circular one, starting on the top and going clockwise. 

   

Imagine that the observer is inside the circle and the lineup is facing outward. We see that 

within the given linear lineup, there are only two instances of MW, while there are three 

instances in the circular lineup. Note that this circular pattern is identical to the one 

obtained from the linear nine-person lineup in Section 1, since the man at the left end of 

MWMMWWMMW has just moved over to the right end. This has given one less MW in the 

linear lineup, while there are still three in the circular lineup. Note also that we are sure to 

get at least one MW in a circular lineup.  

 

Example 4: Take (𝑛1, 𝑛2) = (3, 3) for which we have 𝑚 = 10 possible patterns. In fact, they 
are given by putting a W up front for the ten linear patterns of Example 1 and tying the two 
ends together. The enumeration of the number of MW’s now leads to the table 

 

𝑥 1 2 2 

𝑁(𝑥)  3 6 1 
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Theorem 2: Given (𝑛1, 𝑛2) and random circular lineup. Then the probability distribution of 
the number of teams 𝑋 is given by 

𝑃(𝑋 = 𝑥) =
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2 − 1

𝑛1 − 1
)

 , 𝑥 = 1, 2, … , min (𝑛1, 𝑛2) 

This is recognized as the hypergeometric distribution with parameters (𝑛1 + 𝑛2 − 1, 𝑛1, 𝑛2) 

with expected value 

𝐸(𝑋) =
𝑛1𝑛2

𝑛1 + 𝑛2 − 1
 

 

Proof: In a circular lineup we imagine 𝑛 marked locations around a circle with 𝑛! different 

arrangements of the participants. However, the 𝑛 arrangements obtained by rotation are 

equal from our point of view. We can therefore let one participant possess a fixed location, 

and let the others choose among the 𝑛 − 1 remaining locations randomly. This can be done 

in (𝑛 − 1)! different ways, all equally likely. Again, what matters is the pattern of males and 

females. Assume that the participant at the fixed location is a male. We then have 𝑛1 − 1 

males left to choose from 𝑛 − 1 locations, leaving the rest to the females. This can be done 

in (
𝑛 − 1
𝑛1 − 1

) different ways, all equally likely. This accounts for the denominator.  

For the enumeration of the arrangements leading to 𝑥 occurrences of MW, we may argue as 

in the proof of Theorem 1, using the combinatorial stars and bars formula. Again, we may 

first select the positions of the 𝑥 men to enter a team among a lineup of the 𝑛1 men. This 

can be done in (
𝑛1

𝑥
) ways. Then position the 𝑥 female partners next to these males. The 

remaining 𝑛2 − 𝑥 females have to be positioned so that no more MW’s will occur. The only 

possibilities are next to an already assigned female. Circularity now rules out the ahead of all 

men opportunity we had in the linear case. There is no ahead of all, and any other 

placement will be double counting as well. Using the combinatorial formula from the proof 

of Theorem 1 with 𝑎 = 𝑛2 − 𝑥 and 𝑏 = 𝑥 gives (
𝑛2 − 1
𝑥 − 1

) possibilities for the females. In 

combination, we therefore have (
𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

) possibilities in all, which proves the 

numerator of the theorem. An alternative enumeration that may provide additional insight is 

given in Section 2.5.  

The number of participants excluded from teams, 𝑌 = 𝑛1 + 𝑛2 − 2𝑋, has expected value 

𝐸(𝑌) = 𝑛1 + 𝑛2 − 2𝐸(𝑋) =
𝑛1(𝑛1 − 1) + 𝑛2(𝑛2 − 1)

𝑛1 + 𝑛2 − 1
 

In general, the distribution will be symmetric for 𝑛1 = 𝑛2 + 1 or 𝑛1 = 𝑛2 − 1. 
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Example 5: Take (𝑛1, 𝑛2) = (5, 4) and (5, 5), for which we respectively have 𝑚 = (
8
4

) = 56 

and 𝑚 = (
9
5

) = 126 possible patterns. Enumeration by the formula in Theorem 2 gave the 

table 

𝑥 1 2 3 4 5 𝑚 

𝑁(𝑥): (5, 4) 4 24 24 4 - 56 

𝑁(𝑥): (5, 5) 5 40 60 20 1 126 

  

Expectations are: For (𝑛1, 𝑛2) = (5, 4) we get 𝐸(𝑋) =
20

8
= 2.5 and 𝐸(𝑌) = 5 + 4 − 2 ∙

2.5 = 4.0, and for (𝑛1, 𝑛2) = (5, 5) we get 𝐸(𝑋) =
25

9
 and 𝐸(𝑌) = 5 + 5 − 2 ∙

25

9
=

40

9
. Not 

surprisingly, we expect a larger portion assigned to teams with the circular lineup than the 

linear one.  

 

2.3 Coin flipping: Linear lineup  

Consider 𝑛 participants not identified by gender or other means. Again, consider a linear 
lineup with participants facing in the same direction. Then the following order is given: “Each 
one of you, flip a coin. If you got head (H) turn right. If you got tail (T) turn left”. Then follows 
the same procedure as above: Two standing face to face to another will be a team, while the 
others remain unassigned to a team. We ask the same question: What is the probability 
distribution of the number of teams?  

Different approached are available to analyze this problem. Here we take the opportunity to 
utilize the results obtained for the random order setup. This is possible by conditioning. 

 

Theorem 3: Given 𝑛 participants in a linear lineup with status Right turn or Left turn 
determined by individual coin flips. Then the probability distribution of the number of teams 
𝑋 is given by 

𝑃(𝑋 = 𝑥) = (
𝑛 + 1

2𝑥 + 1
) ∙ (

1

2
)

𝑛

 , 𝑥 = 0, 1, … , [
𝑛

2
] 

where [𝑥] is the truncated integer part of 𝑥. The expectation is 𝐸(𝑋) =
𝑛−1

4
. 

 

Proof: Let 𝑁1 be the number of heads in the 𝑛 binomial trials. Conditionally, given 𝑁1 = 𝑛1, 

we are back to the random order setup, where M is replaced by H and W by T. 

Consequently, 
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𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) =
(

𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1

𝑥
)

(
𝑛
𝑛1

)
  

𝑃(𝑁1 = 𝑛1) = (
𝑛
𝑛1

) ∙ (
1

2
)

𝑛

 

Unconditionally we obtain 

𝑃(𝑋 = 𝑥) = ∑ 𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) ∙ 𝑃(𝑁1 = 𝑛1)

𝑛

𝑛1=0

              

= ∑
(

𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1

𝑥
)

(
𝑛
𝑛1

)
∙ (

𝑛
𝑛1

) ∙ (
1

2
)

𝑛𝑛

𝑛1=0

                      

= (
1

2
)

𝑛

∑ (
𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1

𝑥
)

𝑛

𝑛1=0

= (
𝑛 + 1

2𝑥 + 1
) ∙ (

1

2
)

𝑛

 

 

The last step follows from a binomial identity, the first of three binomial identities proven in 

the appendix. The formulas are valid for 𝑥 = 0, 1, … , [𝑛/2] , under the common conventions 

for binomial coefficients, that is (
𝑛
0

) = 1 for 𝑛 ≥ 0 and (
𝑛
𝑥

) = 0 for 0 ≤ 𝑛 < 𝑥 and for 

negative 𝑥. This will handle the case of 𝑛1 = 0 and 𝑛1 = 𝑛 as well.  

The expectation may be found by conditioning as well 

𝐸(𝑋) = 𝐸(𝐸(𝑋|𝑁1)) = 𝐸 (
𝑁1(𝑛 − 𝑁1)

𝑛
) =

𝑛 − 1

4
 

The last step follows from the binomial properties 𝐸(𝑁1) =
𝑛

2
 and 𝑣𝑎𝑟(𝑁1) =

𝑛

4
. 

This proves the theorem.  

 

We may interpret the result within an outcome space of 𝑚 = 2𝑛 possible outcomes of heads 

(H) and tails (T). We see that the solution has the form  

𝑃(𝑋 = 𝑥) =
𝑁(𝑥)

𝑚
 where 𝑚 = 2𝑛  and 𝑁(𝑥) = (

𝑛 + 1
2𝑥 + 1

) 

This corresponds to the set-up for the more direct combinatorial approach. 

 

Remark. In our proof, the last sum expression is simply the number of ways we can get 𝑥 

pairs HT originating from the different partitions of the 𝑛 participants and where you have to 

select 𝑥 from the set of H’s and 𝑥 from the set of T’s (one set possibly empty). However, this 

is a consequence and cannot be used as combinatorial proof. On the other hand, given a 

valid combinatorial proof, we have implicitly a proof of the sum identity. 
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Example 6: Calculations using the formulas of Theorem 3 give for the cases 𝑛 = 9, 10 the 
table 

𝑥 0 1 2 3 4 5 𝑚 

𝑁(𝑥): 𝑛 = 9 10 120 252 120 10 − 512 

𝑁(𝑥): 𝑛 = 10 11 165 462 330 55 1 1024 

 

The expectations are 𝐸(𝑋) =
9−1

4
= 2 and 𝐸(𝑋) =

10−1

4
= 2.25, respectively. 

In general, the distribution will be symmetric for 𝑛 odd. 

 

We may also embed the situation into an infinite string of participants. We then have the 
following corollary to Theorem 3. 

 

Corollary: Let 𝑇1 be the number in line of the first person that completes a team, i.e., the 
first occurrence of HT. The probability distribution is  

𝑃(𝑇1 = 𝑛) = (𝑛 − 1) ∙ (
1

2
)

𝑛

, 𝑛 = 2, 3, … 

Proof: Let 𝑃𝑛 = 𝑃(𝑋 = 0) for 𝑛 given. From the theorem, 𝑃𝑛 = (𝑛 + 1) ∙ (
1

2
)

𝑛

. Then 

𝑃(𝑇1 = 𝑛) = 𝑃𝑛−1 − 𝑃𝑛 = 𝑛 ∙ (
1

2
)

𝑛−1

− (𝑛 + 1) ∙ (
1

2
)

𝑛

= (𝑛 − 1) ∙ (
1

2
)

𝑛

 

This result can of course be obtained by direct arguments. This, and the fact that 𝐸(𝑇1) = 4, 

is widely known. 

 

2.4 Coin flipping: Circular lineup  

Consider 𝑛 participants not identified by gender or other means. Now, consider the circular 
lineup with participants facing outward from the center. As above, the following command is 
given: “Each one of you, flip a coin. If you get head (H), turn right. If you get tail (T), turn 
left”. Then follows the same procedure as above: Two participants standing face to face to 
another will be a team, while the others remain unassigned to a team. The probability 
distribution of the number of teams 𝑋 may be derived by conditioning, using the results of 
Section 2.2. We now have 

 

Theorem 4: Given 𝑛 participants in a circular lineup receiving order to right turn or left turn 
determined by their individual coin flip. Then the probability distribution of the number of 
teams 𝑋 is given by 
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𝑃(𝑋 = 𝑥) = (
𝑛

2𝑥
) ∙ (

1

2
)

𝑛−1

, 𝑥 = 0, 1, … , [
𝑛

2
] 

with expectation 𝐸(𝑋) =
𝑛

4
 . 

 

Proof: Let 𝑁1 be the number of heads in the 𝑛 binomial trials. Conditionally, given 𝑁1 = 𝑛1, 

we are back to the random order setup, where M is replaced by H and W by T. 

Consequently, 

𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) =
(

𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1 − 1
𝑥 − 1

)

(
𝑛 − 1
𝑛1 − 1

)
  

𝑃(𝑁1 = 𝑛1) = (
𝑛

𝑛1 ) ∙ (
1

2
)

𝑛

 

Unconditionally, we obtain for 𝑥 = 1, 2, … , [𝑛/2] 

𝑃(𝑋 = 𝑥) = ∑ 𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) ∙ 𝑃(𝑁1 = 𝑛1)

𝑛

𝑛1=0

                         

= ∑
(

𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1 − 1
𝑥 − 1

)

(
𝑛 − 1
𝑛1 − 1

)
∙ (

𝑛
𝑛1 ) ∙ (

1

2
)

𝑛𝑛−1

𝑛1=1

                        

= (
1

2
)

𝑛

∑ (
𝑛1

𝑥
) ∙ (

𝑛 − 𝑛1 − 1
𝑥 − 1

) ∙
𝑛

𝑛1

𝑛−1

𝑛1=1

= (
1

2
)

𝑛

(
𝑛

2𝑥
) ∙ 2 

 

The last step follows from Binomial identity 2 in the Appendix, valid for 𝑥 > 0, under the 

common conventions on binomial coefficients restated there. The terms for 𝑛1 = 0 and 

𝑛1 = 𝑛 vanish, but reappear for 𝑥 = 0, which fits the end formula as well. 

The expectation obtained by conditioning and use of the expectation from Section 2.2 

becomes 

𝐸(𝑋) = 𝐸(𝐸(𝑋 | 𝑁1)) = 𝐸 (
𝑁1(𝑛 − 𝑁1)

𝑛 − 1
) =

𝑛

4
 

The last step follows from the binomial properties 𝐸(𝑁1) =
𝑛

2
 and 𝑣𝑎𝑟(𝑁1) =

𝑛

4
. 

In general, the distribution will be symmetric for 𝑛 even. 

 

Example 7: Calculations using the formulas of Theorem 4 give for the cases 𝑛 = 9, 10 the 
table 
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𝑥 0 1 2 3 4 5 𝑚 

𝑁(𝑥): 𝑛 = 9 2 12 252 168 18 − 512 

𝑁(𝑥): 𝑛 = 10 2 90 420 420 90 2 1024 

 

The expectations are 𝐸(𝑋) =
9

4
= 2.25 and 𝐸(𝑋) =

10

4
= 2.5 respectively, that is slightly 

larger than in Example 6.  

 

2.5 Conditional distributions 

We consider again the (𝑛1, 𝑛2) random linear lineup from Section 2.1 and examine some 
conditional probabilities that give additional insight to the scheme. Specifically, we look at 
conditional probabilities given the gender of the one taking the leftmost position. Let LM 
and LW denote the events that this person is respectively a male or a female. The 
conditional distributions are given by 

𝑃(𝑋 = 𝑥 | 𝐿𝑀) =
𝑃(𝑋=𝑥 ∩ 𝐿𝑀)

𝑃(𝐿𝑀)
   and  𝑃(𝑋 = 𝑥 | 𝐿𝑊) =

𝑃(𝑋=𝑥 ∩ 𝐿𝑊)

𝑃(𝐿𝑊)
 

Here the denominators are 𝑃(𝐿𝑀) =
𝑛1

𝑛1+𝑛2
 and 𝑃(𝐿𝑊) =

𝑛2

𝑛1+𝑛2
.  

 

Theorem 5: Given (𝑛1, 𝑛2) and random linear lineup. Then the conditional probability 
distributions of the number of teams 𝑋, given the gender of the leftmost person, are given 
by 

𝑃(𝑋 = 𝑥 | 𝐿𝑊) =
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥

)

(
𝑛1+𝑛2 − 1

𝑛1
)

 , 𝑥 = 0, 1, … , min(𝑛1, 𝑛2 − 1) 

with expectation 𝐸(𝑋 | 𝐿𝑊) =
𝑛1(𝑛2−1)

𝑛1+𝑛2−1
, and 

 

𝑃(𝑋 = 𝑥 | 𝐿𝑀) =
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2 − 1

𝑛1 − 1
)

 , 𝑥 = 1, 2, … , min(𝑛1, 𝑛2) 

with expectation 𝐸(𝑋 | 𝐿𝑀) =
𝑛1𝑛2

𝑛1+𝑛2−1
. 

The first formula tells that given a leftmost woman, we are in the same situation as initially, 

but with one woman less to make it to team. This is as expected. The second formula is more 

involved, since given a leftmost man, this person may or may not be part of a team. 
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Proof: We address the conditioning on 𝐿𝑀, where it may be instructive to adopt a more 

direct enumeration. By Theorem 1, there are (
𝑛1 − 1
𝑥 − 1

) ∙ (
𝑛2 − 1
𝑥 − 1

) cases that begin with MW 

and has 𝑥 − 1 more teams following the first one. Again, by Theorem 1, there are 

 (
𝑛1 − 1

𝑥
) ∙ (

𝑛2

𝑥
) cases that begin with M and has 𝑥 occurrences of MW among remaining 

𝑛1 + 𝑛2 − 1 persons. This will cover all the cases beginning with MM and containing in all 𝑥 

teams, but also the cases beginning with MW and containing 𝑥 teams among the remaining 

𝑛1 + 𝑛2 − 2 persons. So we subtract the cases with 𝑥 + 1 teams in all. Simplifying by use of 

the Pascal triangle identity (
𝑛 − 1
𝑥 − 1

) + (
𝑛 − 1

𝑥
) = (

𝑛
𝑥

) yields 

𝑁(𝑥) = (
𝑛1 − 1
𝑥 − 1

) ∙ (
𝑛2 − 1
𝑥 − 1

) + (
𝑛1 − 1

𝑥
) ∙ (

𝑛2

𝑥
) − (

𝑛1 − 1
𝑥

) ∙ (
𝑛2 − 1

𝑥
)

= (
𝑛1 − 1
𝑥 − 1

) ∙ (
𝑛2 − 1
𝑥 − 1

) + (
𝑛1 − 1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)                                   

= (
𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)                                                                                     

 

Hence we have obtained 

𝑃(𝑋 = 𝑥 ∩ 𝐿𝑀) =
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2

𝑛1
)

 

Consequently, 

𝑃(𝑋 = 𝑥 | 𝐿𝑀) =
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2

𝑛1
)

∙
1
𝑛1

𝑛1+𝑛2

=
(

𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2 − 1

𝑛1 − 1
)

  

The formulas are valid under the common conventions on binomial coefficients restated in 

the appendix.  

 

Example 8: Consider the lineup in case of (𝑛1, 𝑛2) = (5, 5). The unconditional and 
conditional probabilities 𝑁(𝑥)/𝑚 are determined by the table 

𝑥 0 1 2 3 4 5 𝑚 

𝑁(𝑥) 1 25 100 100 25 1 252 

𝐿𝑊: 𝑁(𝑥) 1 20 60 40 5 0 126 

𝐿𝑀: 𝑁(𝑥) 0 5 40 60 20 1 126 

 

We see the distribution is shifted downwards for 𝐿𝑊 and upwards for 𝐿𝑀. The three 

expectations are 𝐸(𝑋) =
25

10
= 2.50, 𝐸(𝑋 | 𝐿𝑊) =

20

9
= 2.22 and 𝐸(𝑋 | 𝐿𝑀) =

25

9
= 2.77. 
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3 Linear lineup with fixed ends  

 

3.1 One end fixed: Random order  

It may be argued that the linear lineup in Section 2.1 is not fair since a man at the right end 
and a woman at the left end have no opportunity to be selected to team at all. This is 
remedied by adopting the circular lineup. An alternative linear lineup would be to assign a 
man at the leftmost spot and a woman at the rightmost spot and have only the between 
ones randomized. In the context of the reality show this may be presented as a favor given 
to the winners within each gender of a preliminary challenge. We name this lineup 

(1 + 𝑛1, 1 + 𝑛2). We will also consider lineups with one fixed and one open end, named 
(1 + 𝑛1, 𝑛2) and (𝑛1, 1 + 𝑛2), indicating the gender of the added participant assigned to its 
favorable position. We may imagine a context where the loosing gender of a prior challenge 
faces the risk of getting the unfavorable spot. Consider first the (1 + 𝑛1, 𝑛2)-lineup, for 
which we have 

 

Theorem 6: Given the (1 + 𝑛1, 𝑛2) linear lineup with fixed assignment of man in the 
leftmost position and randomized order of the other (𝑛1, 𝑛2). Then the probability 
distribution of the number of teams 𝑋 is given by 

𝑃(𝑋 = 𝑥) =
(

𝑛1 + 1
𝑥

) ∙ (
𝑛2 − 1
𝑥 − 1

)

(
𝑛1+𝑛2

𝑛1
)

, 𝑥 = 1, 2, … , min(𝑛1 + 1, 𝑛2) 

recognized as the hypergeometric distribution with parameters (𝑛1 + 𝑛2, 𝑛1 + 1, 𝑛2) with 

expected value  

𝐸(𝑋) =
(𝑛1 + 1) ∙ 𝑛2

𝑛1 + 𝑛2
 

Similarly, for the (𝑛1, 1 + 𝑛2) lineup we have hypergeometric distribution with parameters 
(𝑛1 + 𝑛2, 𝑛1, 𝑛2 + 1). 

Proof: The number of favorable patterns for 𝑋 = 𝑥 may be determined as follows: There are 
two ways to get 𝑥 men assigned to a team, either by (i) leftmost MW and then a selection of 
position of 𝑥 − 1 men among the 𝑛1 men distributed randomly, or by (ii) leftmost MM and 
then a selection of 𝑥 men among the 𝑛1 men distributed randomly. For (i) we have the 

situation of Theorem 1 with (𝑛1, 𝑛2 − 1) and 𝑥 − 1 replacing 𝑥, giving (
𝑛1

𝑥 − 1
) ∙ (

𝑛2 − 1
𝑥 − 1

) 

possibilities. For (ii) we may argue similarly to the proof of Theorem 1, now with a fixed M at 
the left end position. Let the 𝑛1 other men be lined up to the right and select the 𝑥 men to 

be assigned to teams. This can be done in (
𝑛1

𝑥
) different ways. For each of these we position 

𝑥 accompanying women immediately to the right of the 𝑥 men, creating a MW pattern, and 
then position the remaining 𝑛2 − 𝑥 women so that no more MW patterns materialize. In this 
case, the only possibility is immediately to the right of any of the 𝑥 already assigned women. 
Referring to the proof of Theorem 1, this corresponds to take 𝑎 = 𝑛2 − 𝑥 and 𝑏 = 𝑥 in the 
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combinatorial formula (
𝑎 + 𝑏 − 1

𝑏 − 1
), which gives (

𝑛2 − 1
𝑥 − 1

) possibilities. The number of ways 

according to (ii) is therefore (
𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

). Taken together this gives  

𝑁(𝑥) = (
𝑛1

𝑥 − 1
) ∙ (

𝑛2 − 1
𝑥 − 1

) + (
𝑛1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)

= ((
𝑛1

𝑥 − 1
) + (

𝑛1

𝑥
)) ∙ (

𝑛2 − 1
𝑥 − 1

)                

= (
𝑛1 + 1

𝑥
) ∙ (

𝑛2 − 1
𝑥 − 1

)                                 

 

where the last step follows by the Pascal triangle identity. 

 

Example 9: Consider the (1 + 𝑛1, 𝑛2) lineup with fixed assignment at one end in the cases of 
(𝑛1, 𝑛2) = (4, 4), (4, 5), and (5, 5). We then get the table 

𝑥 1 2 3 4 5 𝑚 

𝑁(𝑥): (4, 4) 5 30 30 5 − 70 

𝑁(𝑥): (4, 5) 5 40 60 20 1 126 

𝑁(𝑥): (5, 5) 6 60 120 60 6 252 

 

Note that this distribution matches the conditional distribution, given a leftmost male, as 
derived in Section 2.5. The difference is only conceptual: Happened by chance versus fixed 
by choice. For comparisons:  𝑛1 of Theorem 5 corresponds to 1 + 𝑛1 in Theorem 6, following 
the convention that (𝑛1, 𝑛2) represent the randomized participants. The case of (𝑛1, 𝑛2) =
(4, 5) here is therefore identical to (𝑛1, 𝑛2) = (5, 5) of Example 8. 

 

3.2 Both ends fixed: Random order  

Consider the case of fixed assignment at both ends, avoiding both possibly unfavorable 
assignments. We then have        

 

Theorem 7: Given a (1 + 𝑛1, 1 + 𝑛2) linear lineup with fixed assignments at both ends and 
randomized order of (𝑛1, 𝑛2). Then the probability distribution of the number of teams 𝑋 is 
given by 

𝑃(𝑋 = 𝑥) =
(

𝑛1

𝑥 − 1
) ∙ (

𝑛2

𝑥 − 1
)

(
𝑛1+𝑛2

𝑛1
)

, 𝑥 = 1, 2, … , min(𝑛1 + 1, 𝑛2 + 1) 

recognized as a shifted hypergeometric distribution with parameters (𝑛1 + 𝑛2, 𝑛1, 𝑛2), 

having expected value  
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𝐸(𝑋) = 1 +
𝑛1 ∙ 𝑛2

𝑛1 + 𝑛2
 

Proof: The number of favorable patterns for 𝑋 = 𝑥 may be determined using counting 
principles as above. This time we have four cases according to whether we get none, one or 
two teams due to the fixe assignments at the ends of the lineup. This leads to 

𝑁(𝑥) = (
𝑛1 − 1
𝑥 − 2

) ∙ (
𝑛2 − 1
𝑥 − 2

) + (
𝑛1 − 1
𝑥 − 1

) ∙ (
𝑛2 − 1
𝑥 − 2

) + (
𝑛1 − 1
𝑥 − 2

) ∙ (
𝑛2 − 1
𝑥 − 1

) + (
𝑛1 − 1
𝑥 − 1

) ∙ (
𝑛2 − 1
𝑥 − 1

)

= ((
𝑛1 − 1
𝑥 − 1

) + (
𝑛1 − 1
𝑥 − 2

)) ∙ ((
𝑛2 − 1
𝑥 − 1

) + (
𝑛2 − 1
𝑥 − 2

))                                                                        

= (
𝑛1

𝑥 − 1
) ∙ (

𝑛2

𝑥 − 1
)                                                                                                                                   

 

where the simplification again comes from the Pascal triangle identity.  

 

Example 10: Consider (1 + 𝑛1, 1 + 𝑛2) lineup in case of (𝑛1, 𝑛2) = (4, 4), (4, 5) and (5, 5). 
We get the table 

𝑥 1 2 3 4 5 6 𝑚 

𝑁(𝑥): (4, 4) 1 16 36 16 1 − 70 

𝑁(𝑥): (4, 5)  1 20 60 40 5 − 126 

𝑁(𝑥): (5, 5)  1 25 100 100 25 1 252 

 

 

3.3 One end fixed: Coin flipping  

Consider the linear lineup with the left end fixed as described in Section 3.1, but with the 
action determined by coin flipping as in Section 2.3. That is, participants are not identified by 
gender or other means and the command given is: “Each one of you, flip a coin. If you got 
head (H) turn right. If you got tail (T) turn left”. A special rule is added, forcing the person in 
fixed left position to take a right turn. Then, after the flipping, we face the result equivalent 
to a (1 + 𝑛1, 𝑛2) scheme with 𝑛 = 𝑛1 + 𝑛2, as described in Section 3.1. We now have 

 

Theorem 8: Given 𝑛 participants in a linear lineup with status Right turn or Left turn 
determined by individual coin flips with an additional participant at left forced to turn right. 
Then the probability distribution of the number of teams 𝑋 is given by 

𝑃(𝑋 = 𝑥) = (
𝑛 + 1

2𝑥
) ∙ (

1

2
)

𝑛

, 𝑥 = 0, 1, … , [
𝑛 + 1

2
] 

with expectation 𝐸(𝑋) =
𝑛+1

4
. 
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Proof: Let 𝑁1 be the number of heads in the 𝑛 binomial trials. Conditionally, given 𝑁1 = 𝑛1, 

we are back to the random order setup, where M is replaced by H and W by T. 

Consequently, 

𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) =
(

𝑛1 + 1
𝑥

) ∙ (
𝑛 − 𝑛1 − 1

𝑥 − 1
)

(
𝑛
𝑛1

)
  

𝑃(𝑁1 = 𝑛1) = (
𝑛
𝑛1

) ∙ (
1

2
)

𝑛

 

Unconditionally, we obtain 

𝑃(𝑋 = 𝑥) = ∑ 𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) ∙ 𝑃(𝑁1 = 𝑛1)

𝑛

𝑛1=0

                           

= ∑
(

𝑛1 + 1
𝑥

) ∙ (
𝑛 − 𝑛1 − 1

𝑥 − 1
)

(
𝑛
𝑛1

)
∙ (

𝑛
𝑛1

) ∙ (
1

2
)

𝑛𝑛

𝑛1=0

                   

= (
1

2
)

𝑛

∑ (
𝑛1 + 1

𝑥
) ∙ (

𝑛 − 𝑛1 − 1
𝑥 − 1

)

𝑛

𝑛1=0

= (
𝑛 + 1

2𝑥
) ∙ (

1

2
)

𝑛

 

 

Here we have used Binomial identity 3 in the Appendix. Again, the validity for 𝑥 = 0, 1, … , 𝑛 

is under the common conventions for binomial coefficients given in the Appendix.  

The expectation may be found by conditioning as well, 

𝐸(𝑋) = 𝐸(𝐸(𝑋|𝑁1)) = 𝐸 (
(𝑁1 + 1)(𝑛 − 𝑁1)

𝑛
) =

𝑛 + 1

4
 

The last step follows from the binomial properties 𝐸(𝑁1) =
𝑛

2
 and 𝑣𝑎𝑟(𝑁1) =

𝑛

4
. 

This proves the theorem.  

 

Example 11: Calculations using the formulas of Theorem 7 give for the cases 𝑛 = 9, 10 the 
table 

𝑥 0 1 2 3 4 5 6 𝑚 

𝑁(𝑥): 𝑛 = 9 1 45 210 210 45 1 − 512 

𝑁(𝑥): 𝑛 = 10 1 55 330 462 165 11 1 1024 
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3.4 Both ends fixed: Coin flipping  

Consider the linear lineup with coin flipping as described in the preceding section, but with 
both ends fixed. Again, a special rule is adopted, forcing the persons in the fixed outside 
positions to take inward turns. Then, after the flipping, we face a situation equivalent to a 
(1 + 𝑛1, 1 + 𝑛2) scheme with 𝑛 = 𝑛1 + 𝑛2, as described in Section 3.2. We now have 

 

Theorem 9: Given 𝑛 participants in a linear lineup with status Right turn or Left turn 
determined by individual coin flips with additional end participants forced to turn inwards. 
Then the probability distribution of the number of teams 𝑋 is given by 

𝑃(𝑋 = 𝑥) = (
𝑛 + 1

2𝑥 − 1
) ∙ (

1

2
)

𝑛

, 𝑥 =  1, 2, … , [
𝑛 + 1

2
] 

with expectation 𝐸(𝑋) = 1 +
𝑛−1.

4
. 

 

Proof: Let 𝑁1 be the number of heads in the 𝑛 binomial trials. Conditionally, given 𝑁1 = 𝑛1, 

we are back to the random order setup, where M is replaced by H and W by T. 

Consequently, 

𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) =
(

𝑛1

𝑥 − 1
) ∙ (

𝑛 − 𝑛1

𝑥 − 1
)

(
𝑛
𝑛1

)
  

𝑃(𝑁1 = 𝑛1) = (
𝑛
𝑛1

) ∙ (
1

2
)

𝑛

 

Unconditionally, we obtain 

𝑃(𝑋 = 𝑥) = ∑ 𝑃(𝑋 = 𝑥 | 𝑁1 = 𝑛1) ∙ 𝑃(𝑁1 = 𝑛1)

𝑛

𝑛1=0

                   

= ∑
(

𝑛1

𝑥 − 1
) ∙ (

𝑛 − 𝑛1

𝑥 − 1
)

(
𝑛
𝑛1

)
∙ (

𝑛
𝑛1

) ∙ (
1

2
)

𝑛𝑛

𝑛1=0

                     

= (
1

2
)

𝑛

∑ (
𝑛1

𝑥 − 1
) ∙ (

𝑛 − 𝑛1

𝑥 − 1
)

𝑛

𝑛1=0

= (
𝑛 + 1

2𝑥 − 1
) ∙ (

1

2
)

𝑛

 

 

Here we have used Binomial identity 1 in the Appendix with 𝑥 replaced by 𝑥 − 1. Again, the 

validity is dependent on the common conventions for binomial coefficients.  

The expectation may be found by conditioning  

𝐸(𝑋) = 𝐸(𝐸(𝑋|𝑁1)) = 𝐸 (1 +
𝑁1 ∙ (𝑛 − 𝑁1)

𝑛
) = 1 +

𝑛 − 1

4
 

Alternatively, just note the distribution shift and expectation in Theorem 3. 
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This proves the theorem.  

 

Example 12: Calculations using the formulas of Theorem 8 give for the cases 𝑛 = 9, 10 the 
table 

𝑥 0 1 2 3 4 5 6 𝑚 

𝑁(𝑥): 𝑛 = 9 − 10 120 252 120 10 − 512 

𝑁(𝑥): 𝑛 = 10 − 11 165 462 330 55 1 1024 

 

 

4 Some aspects of fairness 

Above we have argued that the linear lineup in Section 2.1 may be felt unfair and have 

presented modifications in Section 3, pretending to fix the problem and, at the same time, 

opening up for favoring. We will now discuss aspects of fairness in relation to these 

schemes. In particular, we examine the individual probabilities of being assigned to a team.  

The common interpretation of fairness would be that all participants have the same 

probability of being assigned to a team. In case one or more participants are given a special 

treatment at the outset, the regular ones should face the same probability. In this case, it 

may be interesting to determine the given advantage in probability terms.  

 

4.1 Dispatch probabilities: Free ends 

Consider the linear (𝑛1, 𝑛2)-lineup with free ends, and define the events 

𝑀𝑗 ∶ man no. 𝑗 is assigned to team, 𝑗 = 1, 2, … , 𝑛1       

𝑊 ∶ woman no. 𝑗 is assigned to team, 𝑗 = 1, 2, … , 𝑛2 

For a random order linear (𝑛1, 𝑛2)-scheme with 𝑛 = 𝑛1 + 𝑛2 we have 

𝑃(𝑀𝑗) =
(𝑛 − 1) ∙ 𝑛2 ∙ (𝑛 − 2)!

𝑛!
=

𝑛2

𝑛
, 𝑗 = 1, 2, … , 𝑛1 

𝑃(𝑊𝑗) =
(𝑛 − 1) ∙ 𝑛1 ∙ (𝑛 − 1)!

𝑛!
=

𝑛1

𝑛
, 𝑗 = 1, 2, … , 𝑛2 

The argument: All 𝑛! orderings are equally likely. Hence the denominator is 𝑚 = 𝑛!. A given 

male may be assigned to team in one of 𝑛 − 1 positions having one of 𝑛2 females to his right 

and the other 𝑛 − 2 participants in a random order, in total (𝑛 − 2)! different ones. The 

argument for the women is similar with 𝑛1 replacing 𝑛2 in the formulas. 

This demonstrates that for the scheme to be fair to all participants, we must have 𝑛1 = 𝑛2. 

Otherwise, the gender with fewest participants is favored.  
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In case of 𝑛1 = 𝑛2, the linear scheme will be fair, in the sense that no one is favored. They all 

face the same probability of being assigned to team. In particular, they run the same risk of 

taking the unfavorable end position. As the scheme unfolds, such a participant may 

nevertheless feel cheated. In this respect, the circular lineup is preferable, as it avoids this 

kind of perceived unfairness. However, the gender unfairness for circular schemes will 

remain whenever 𝑛1 ≠ 𝑛2.  

Assume, after random ordering, that we observe who is at the left end position. Without loss 

of generality, we label this person 1 and let LM denote a man and LW a woman.  

Conditional probabilities are given by 

𝑃(𝑀𝑗  | 𝐿𝑀) =
𝑃(𝑀𝑗  ∩  𝐿𝑀)

𝑃(𝐿𝑀)
=

(𝑛 − 2) ∙ 𝑛2 ∙ (𝑛 − 3)!/𝑛!

1/𝑛
=

𝑛2

𝑛 − 1
, 𝑗 = 1, 2, … , 𝑛1 

𝑃(𝑊𝑗  | 𝐿𝑀) =
𝑃(𝑊𝑗  ∩  𝐿𝑀)

𝑃(𝐿𝑀)
=

(𝑛 − 2) ∙ 𝑛1 ∙ (𝑛 − 3)!/𝑛!

1/𝑛
=

𝑛1

𝑛 − 1
, 𝑗 = 1, 2, … , 𝑛2 

Note that all 𝑃(𝑀𝑗  | 𝐿𝑀) are equal, also for male participant no. 1 in the presumed favorable 

position. Note that the probabilities of being dispatched as team have increased for both 

males and females to the same degree. Both genders benefitted from a favorable left 

positioning that happened by chance. Similarly, we have 

𝑃(𝑀𝑗  | 𝐿𝑊) =
𝑃(𝑀𝑗  ∩  𝐿𝑊)

𝑃(𝐿𝑀)
                                                                                               

                 =
(𝑛 − 2) ∙ (𝑛2 − 1) ∙ (𝑛 − 3)!/𝑛!

1/𝑛
=

𝑛2 − 1

𝑛 − 1
, 𝑗 = 1, 2, … , 𝑛1 

𝑃(𝑊𝑗  | 𝐿𝑊) =
𝑃(𝑊𝑗  ∩  𝐿𝑊)

𝑃(𝐿𝑀)
                                                                                                

                 =
(𝑛 − 2) ∙ (𝑛1 − 1) ∙ (𝑛 − 3)!/𝑛!

1/𝑛
=

𝑛1 − 1

𝑛 − 1
, 𝑗 = 1, 2, … , 𝑛2 

As expected, these dispatch probabilities are all reduced, due to the blocking of a favorable 

opportunity. Similar results follow by conditioning on the right end. 

We may expect the same effect if we deliberate force this positioning at the outset. Before 

looking into this, we take the opportunity to show an alternative way of deriving the 

expected number of established teams: Let 𝐼𝑗 be the indicator of the event 𝑀𝑗, that is 𝐼𝑗 = 1 

if 𝑀𝑗 is true and 𝐼𝑗 = 0 otherwise, for 𝑗 = 1, 2, … , 𝑛1. Then 𝑋 = 𝐼1 + 𝐼2 + … + 𝐼𝑛1
 and we 

have a sum of terms with the same expectation 𝐸(𝐼𝑗) = 𝑃(𝐼𝑗 = 1) =
𝑛2

𝑛
. We therefore get 

𝐸(𝑋) = 𝐸(𝐼1 + 𝐼2 + … + 𝐼𝑛1
) = 𝐸(𝐼1) + 𝐸(𝐼2) + … + 𝐸(𝐼𝑛1

) = 𝑛1 ∙
𝑛2

𝑛
. 

Alternatively, we may use indicators 𝐽𝑖  for the female events 𝑊𝑖 for 𝑖 = 1, 2, … , 𝑛2 and write 

 𝑋 = 𝐽1 + 𝐽2 + … + 𝐽𝑛2
, so that we get 𝐸(𝑋) = 𝑛2 ∙

𝑛1

𝑛
. Derivation of the variance along this 

line is also possible, but has to take into account that indicators are correlated. 



20 
 

 

4.2 Dispatch probabilities: Fixed ends 

Consider a (1 + 𝑛1, 𝑛2)-lineup with a man labelled 0 fixed at the left end, that is in total 
𝑛 = 1 + 𝑛1 + 𝑛2 participants. Otherwise, the notation is as above. For a random ordering of 
the other 𝑛1 + 𝑛2 participants we have by arguing similarly to the above 

𝑃(𝑀𝑗) =
𝑛2

𝑛 − 1
, 𝑗 = 0, 1, … , 𝑛1 

𝑃(𝑊𝑗) =
𝑛1 + 1

𝑛 − 1
, 𝑗 = 1, 2, … , 𝑛2 

Although the added participant 0 is freed from the risk of ending in the, for him, unfavorable 

rightmost position, he has no advantage in probability terms of being assigned to a team. 

We see that the scheme is fair within gender, and wholly fair only for 𝑛2 = 𝑛1 + 1, that is 

when the number of men and women in the lineup is equal. Otherwise, the less frequent 

gender is favorized. The number of teams may again be expressed by a sum of indicators, 

and its expectation confirmed as the one given in Section 3.1. 

Then, consider a (1 + 𝑛1, 1 + 𝑛2)-lineup with a man labelled 0 fixed at the left end and a 
woman 0 at the right end, that is in total 𝑛 = 2 + 𝑛1 + 𝑛2 participants. Otherwise, the 
notation is as above. For a random ordering of the other 𝑛1 + 𝑛2 participants we have by 
arguing similarly to the above 

𝑃(𝑀0) =
𝑛2

𝑛 − 2
, 𝑃(𝑊0) =

𝑛1

𝑛 − 2
 

𝑃(𝑀𝑗) =
𝑛2 + 1

𝑛 − 2
, 𝑗 = 1, 2, … , 𝑛1 

𝑃(𝑊𝑗) =
𝑛1 + 1

𝑛 − 2
, 𝑗 = 1, 2, … , 𝑛2 

Now it turns out, possibly as a surprise, that the fixed end positions are disfavored compared 

to the free participants of the same gender. The number of teams may again be expressed 

by a sum of indicators, and its expectation confirmed as the one given in Section 3.1. 

𝐸(𝑋) = 𝐸(𝐼0) + 𝐸(𝐼1) + … + 𝐸(𝐼𝑛1
) =

𝑛2

𝑛 − 2
+ 𝑛1 ∙

𝑛2 + 1

𝑛 − 2
= 1 +

𝑛1 ∙ 𝑛2

𝑛 − 2
 

For comparison with the open-end situation, note again that 𝑛1 and 𝑛2 here should be 

reduced by 1.  

 

4.3 Randomness 

We must assume that none of the participants have knowledge about the command to 

follow. If there is knowledge, they may plan to line up according to their own preference. To 

safeguard, the commander may randomize the command, that is flip a coin to decide which 

gender to turn right and the other left.  
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With the knowledge later obtained they may regret that they did not line up alternately 

man/woman, and next to their favorite as well. This will of course be completely contrary to 

the assumed random order. Anyway, it may seem impossible in practice to arrange a 

random order based on individual behavior. Friends may stick together, and so on. An 

imposed randomization mechanism may be required here as well.   

An alternative context where this problem does not arise is using playing cards, by letting 

the card color black and red represent each gender. We may then pick 𝑛1 black cards to 

represent the men and 𝑛2 red cards to represent the women. The pile of 𝑛 = 𝑛1 + 𝑛2 cards 

is then shuffled, and cards are laid out from the top. We then look for the pattern BR. 

 

5 Extensions 

We have developed a theory for linear and circular lineups with a specific matching rule. 

Various extensions may be imagined in different directions, mainly 

a. Different lineups 

b. Different matching rules 

c. More than two object categories  

These extensions will, to varying degree, require more challenging mathematics.  

For linear and circular lineups, we may imagine matching rules involving more than the two-

letter pattern MW. We may also imagine situations where a disruptive person enters the 

lineup at a random position, and possibly spoils a match.  

Next, we may imagine situations with more than two categories, and a matching rule 

adapted to this. In order to stay within the gender context, we may consider the following: 

Among the 𝑛 participants there are 𝑛0 who do not define themselves into the male/female 

dichotomy, so that 𝑛 = 𝑛0 + 𝑛1 + 𝑛2. If we want to keep the dichotomic matching rule, we 

have three ways of matching participants of the added gender group: Let them match with 

both common genders, or match with none of the common genders, or make matches 

according to a rule based on coin flips. More challenging will be to treat the situation as a 

genuine three-category problem, possibly with three-letter matching rules. The command 

given must of course be modified to account for the added group context. 

Finally, we may imagine two-dimensional lineups, where participants are positioned 

randomly in a rectangular pattern. Different commands leading to matchings may be 

imagined, involving just one direction or more. A simple example is a 2 × 𝑛 lineup, where 

participants are queuing up two by two ready to march forwards, like we did in primary 

school. Suppose that the command is given as above, then affecting just neighboring pairs. It 

turns out that this problem may be solved using trinomial coefficients of a certain kind, see 

Andrews (1990).   
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Appendix: Three binomial identities  

Identities for the sum of products of binomial coefficients with summation over the upper 

index are not commonplace, and we provide here three required formulas with proofs. 

The following common conventions on binomial coefficients are used: (
𝑛
0

) = 1 for 𝑛 ≥ 0 

and (
𝑛
𝑥

) = 0 for 0 ≤ 𝑛 < 𝑥 and for 𝑥 < 0. Moreover, we take (
𝑛
𝑥

) = 0 for 𝑛 < 𝑥 < 0, while 

(
𝑛
𝑛

) = 1 for 𝑛 < 0. Binomial coefficients for negative top indices are not that common, but 

can be defined consistently, so that basic relationships remain true, including the Pascal 

triangle identity, see Kronenburg (2015). This offers the opportunity to have summations 

going from 0 to n, and to extend validity of formulas.  

 

Binomial identity 1: 

∑ (
𝑘
𝑥

) ∙ (
𝑛 − 𝑘

𝑥
)

𝑛

𝑘=0

= (
𝑛 + 1

2𝑥 + 1
) , 𝑥 = 0, 1, 2, … , [

𝑛

2
] 

 

Proof: Let {𝑐𝑛; 𝑛 = 0, 1, 2, … . } be the sequence of sums, with generating function 

 𝐶(𝑧) = ∑ 𝑐𝑛 ∙ 𝑧𝑛∞
𝑛=0 . This sum is recognized as the convolution {𝑐𝑛} = {𝑎𝑛} ∗ {𝑎𝑛} of the 

sequence 𝑎𝑛 = (
𝑛
𝑥

), with generating function  

𝐴(𝑧) = ∑ 𝑎𝑛 ∙ 𝑧𝑛 =

∞

𝑛=0

∑ (
𝑛
𝑥

) ∙ 𝑧𝑛 =
𝑧𝑥

(1 − 𝑧)𝑥+1

∞

𝑛=0

 

Consequently, the generating function of {𝑐𝑛} becomes 

𝐶(𝑧) = 𝐴(𝑧) ∙ 𝐴(𝑧) =
𝑧𝑥

(1 − 𝑧)𝑥+1
∙

𝑧𝑥

(1 − 𝑧)𝑥+1

=
𝑧2𝑥

(1 − 𝑧)2𝑥+2
=

1

𝑧
∙

𝑧2𝑥+1

(1 − 𝑧)2𝑥+1+1
           

 

Here the second factor is the generating function of {𝑎𝑛} with 𝑥 replaced by 2𝑥 + 1. 

Consequently, 

𝐶(𝑧) =
1

𝑧
∑ (

𝑛
2𝑥 + 1

) ∙ 𝑧𝑛 = ∑ (
𝑛 + 1

2𝑥 + 1
) ∙ 𝑧𝑛

∞

𝑛=0

∞

𝑛=1

 

From this we read the desired result 𝑐𝑛 = (
𝑛 + 1

2𝑥 + 1
). 
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Binomial identity 2: 

∑ (
𝑘
𝑥

) ∙ (
𝑛 − 𝑘 − 1

𝑥 − 1
) ∙

𝑛

𝑘

𝑛−1

𝑘=1

= (
𝑛

2𝑥
) ∙ 2, 𝑥 = 1, 2, … , [

𝑛

2
] 

 

Proof: Write the sum as 𝑛 ∙ 𝑐𝑛 where 𝑐𝑛 = ∑
1

𝑘
(

𝑘
𝑥

) ∙ (
𝑛 − 1 − 𝑘

𝑥 − 1
)𝑛

𝑘=1  is recognized as the 

convolution {𝑐𝑛} = {𝑎𝑛} ∗ {𝑏𝑛} of the sequences 𝑎𝑛 =
1

𝑛
(

𝑛
𝑥

) and 𝑏𝑛 = (
𝑛 − 1

𝑥
). Their 

generating functions are, respectively  

𝐴(𝑧) = ∑ 𝑎𝑛 ∙ 𝑧𝑛 =

∞

𝑛=1

∑
1

𝑛
∙ (

𝑛
𝑥

) ∙ 𝑧𝑛 =
1

𝑥
∙

𝑧𝑥

(1 − 𝑧)𝑥+1

∞

𝑛=1

 

𝐵(𝑧) = ∑ 𝑏𝑛 ∙ 𝑧𝑛 =

∞

𝑛=1

∑ (
𝑛 − 1

𝑥
) ∙ 𝑧𝑛 =

𝑧𝑥

(1 − 𝑧)𝑥

∞

𝑛=1

 

The generating function of {𝑐𝑛} is therefore 

𝐶(𝑧) = 𝐴(𝑧) ∙ 𝐵(𝑧) =
1

𝑥
∙

𝑧𝑥

(1 − 𝑧)𝑥+1
∙

𝑧𝑥

(1 − 𝑧)𝑥

=
1

𝑥
∙

𝑧2𝑥

(1 − 𝑧)2𝑥+1
= 2 ∙

1

2𝑥
∙

𝑧2𝑥

(1 − 𝑧)2𝑥+1
 

 

Except the factor 2, this is similar to 𝐴(𝑧) with 𝑥 replaced by 2𝑥. We therefore have 𝑐𝑛 =
2

𝑛
(

𝑛
2𝑥

) and consequently 𝑛 ∙ 𝑐𝑛 = 2 ∙ (
𝑛

2𝑥
) , which proves the identity. 

 

Binomial identity 3: 

∑ (
𝑘 + 1

𝑥
) ∙ (

𝑛 − 𝑘 − 1
𝑥 − 1

)

𝑛

𝑘=0

= (
𝑛 + 1

2𝑥
) , 𝑥 = 1, 2, … , [

𝑛

2
] 

 

Proof: The sequence of sum {𝑐𝑛} is recognized as a convolution {𝑎𝑛} ∗ {𝑏𝑛} of the sequences 

𝑎𝑛 = (
𝑛 + 1

𝑥
) and 𝑏𝑛 = (

𝑛 − 1
𝑥 − 1

). Their generating functions are, respectively  

𝐴(𝑧) = ∑ 𝑎𝑛 ∙ 𝑧𝑛 =

∞

𝑛=0

∑ (
𝑛 + 1

𝑥
) ∙ 𝑧𝑛 =

𝑧𝑥−1

(1 − 𝑧)𝑥+1

∞

𝑛=0

 

𝐵(𝑧) = ∑ 𝑏𝑛 ∙ 𝑧𝑛 =

∞

𝑛=0

∑ (
𝑛 − 1
𝑥 − 1

) ∙ 𝑧𝑛 =
𝑧𝑥

(1 − 𝑧)𝑥

∞

𝑛=0

 

The generating function of {𝑐𝑛} is therefore 
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𝐶(𝑧) = 𝐴(𝑧) ∙ 𝐵(𝑧)                                              

=
𝑧𝑥−1

(1 − 𝑧)𝑥+1
∙

𝑧𝑥

(1 − 𝑧)𝑥
=

𝑧2𝑥−1

(1 − 𝑧)2𝑥+1

 

This is similar to 𝐴(𝑧) with 𝑥 replaced by 2𝑥. We therefore have 𝑐𝑛 = (
𝑛 + 1

2𝑥
) , which 

proves the identity. 

Note: Attention is required to see that the case of 𝑘 = 𝑛 with 𝑥 = 0 fits in, using the 

conventions of binomial coefficients with negative arguments stated above. 

It is worthwhile to note that the identities will appear as convolutions for diagonal 

sequences in Pascal’s triangle. A more general formula of this kind, in terms of two variables, 

may be found in Feller (1961). To be specific, it is formula 12.16, given as theoretical 

problem in Section 12 of Chapter II. The formula may also be found as formula 3.2 of Gould 

(1972), again with no proof. A version of the formula with proof is given as formula (11) in 

§ 9 of Netto (1901), possibly its origin.  It turns out, by clever substitutions and 

rearrangements of terms, that our three formulas may be brought into the common 

framework of these formulas.   
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