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Abstract

This research encompasses three articles that specifically tackle decentralized supply chan-
nels and propose comprehensive solution algorithms for multi-periodic bilevel equilibrium
problems. The supply channel consists of two members, an upstream member (manufac-
turer) and a downstream member (retailer), who assume the roles of leader and follower,
respectively, in a Stackelberg game. The primary objective of the channel is to effectively
manage dynamic demand, which is dependent on price history, within a multi-period time
frame. Due to the price history effect on the uncertain demand, the problem turns out to
be highly nested. The first article presents a channel facing dynamic and price-dependent
demand, where the demand information is incomplete, and the only information provided
is the mean and the standard deviation of the demand. To address this challenge, a
distributional-robust (DR) approach is proposed, which provides a lower bound on the
channel’s expected profit for the problem with known distribution. The retailer bears
the uncertainty of the demand, while the manufacturer perceives it through the retailer’s
order quantity. In the second article, we extend this framework by considering a single
contract that covers all periods, enabling simultaneous optimization of decisions for the
entire periods. The leader’s expected payoff of this type of contract, logically, is not lower
than the subgame perfect result. For the follower on the other hand, we did not observe
any counterexample to demonstrate that he may be worse off by using a single contract.
The algorithm optimally addresses concerns related to environmental corrective actions.
It incorporates pollution capacity constraints and tax, where the algorithm is constrained
to produce below a predetermined cap in the first policy, and in the second policy the
tax, as a decision variable, is obtained for each period. The third article, as an extension
of the first two, introduces a buyback price into the channel to share risks between the
players. The proposed algorithm addresses a problem within a cap-and-trade system. In
addition to proposing equilibrium-finding algorithms for various problems and introduc-
ing new methods to enhance value, the provided numerical illustration for multi-period
scenarios offers valuable insights for decision-makers.

Keywords: Multi-Periodic Stackelberg Game, Distributional-Robust Approach, Price-
History Dependent Demand, Single Contract, Buyback Contract, Capacity Constraint,
Pollution tax, Cap-and-Trade system.
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Introduction

Recent technological advancements have accelerated the pace of product development,
resulting in the rapid obsolescence of old products when new ones are introduced to the
market. These short-life products, which cannot be stored for future sales, contribute to
increased demand uncertainty (Khan & Sarkar 2021). In such cases, the order volume
is determined with the objective of minimizing the costs associated with overordering or
underordering.

The demand is typically characterized by a distribution, although it is not always
feasible or cost-effective to ascertain the exact distribution. In 1957, Scarf et al. in-
troduced a novel ordering rule for situations where only the mean and variance of the
demand are known, without any information about the demand distribution. His maxmin
distributional-robust (DR) approach was later simplified and extended by Moon and Gal-
lego. The profit obtained through the DR approach is a tight lower bound for models
with known distribution (Moon & Gallego 1994).

The scope of this essay encompasses a multi-period Stackelberg Game, where the man-
ufacturer leads the market, and the retailer follows. Both the wholesale and retail prices
are decision variables for the manufacturer and the retailer, respectively, in addition to
the order quantity which is determined based on these prices after optimization. The
demand is dynamic and influenced by price history, meaning that not only the current
price affects demand, but also past prices can shape demand pattern. This interdepen-
dency results in a nested structure in an additive multiplicative form of demand and
consequently the channel (Azad Gholami et al. 2019). Uncertainty in demand can lead
to overordering or underordering. Overordering of perishable products results in unsold
items that cannot be carried over to subsequent periods. On the other hand, underorder-
ing may harm the channel’s reputation due to shortages and dissatisfied customers. This
uncertainty can be further amplified by historical price data, where each demand is a
function of current and previous prices. This feature allows for strategic pricing. In this
essay, all parameters and variables can be time dependent. The three papers included in
this essay address these challenges as follows.

The first paper introduces the DR approach and extends it to address the multi-
period problem where demand is influenced by all previous prices. The wholesale price
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is determined by the leader (manufacturer), while the retail price and order quantity
are set by the follower (retailer) in a DR structure. The solution procedure employs
a bilevel optimization algorithm, starting from the last period and moving backward
to the first. This approach allows for obtaining optimized solutions for each period,
effectively simulating periodic contracts sequentially. The proposed algorithm showcases
dynamic problem settings and examines the impact of parameters on the channel’s value.
This paper was presented at the 19th International Symposium on Dynamic Games and
Applications.

The second paper focuses on environmental corrective actions within the supply chan-
nel. Given that human-generated pollution significantly contributes to climate change,
international treaties such as the Kyoto Protocol in Japan (1997) and the Paris Agree-
ment in New York (2017) have emphasized the urgency of addressing this issue (Bai et al.
2022). Governments and organizations have committed to adopting regulatory policies
to reduce pollution by at least 50% by 2050 (Liu et al. 2015). Additionally, growing con-
sumer awareness about the environmental impact of products necessitates the revision of
supply channel models. This paper explores two widely used pollution reduction policies:
capacity constraints and tax. Capacity constraints involve imposing a mandatory cap
(command-and-control policy) on the total pollution level in each period. On the other
hand, the tax policy represents the cost incurred by the supply channel for each unit of
pollution or production (Kannan et al. 2022). To address these issues, a single-contract
framework is introduced, enabling the players to observe the consequences of their deci-
sions and make simultaneous modifications. Comparing algorithms with long and short
memories demonstrates the algorithm’s effectiveness in addressing models with dynamic
demands and various forms of price history dependency. A single-contract framework
introduced in this paper is compared with the subgame perfect case. The single contract
allows for simultaneous decision-making wherein all periods’ decisions and their conse-
quences can be tracked and changed if necessary. Consequently, this may lead to different
strategic decisions which may increase the manufacturer’s total payoff. This paper was
presented at the 13th ISDG Workshop.

Building on the first two papers, the third paper analyzes a multi-period Stackelberg
game with a DR approach, dynamic and price-history dependent demand under a single
contract with a cap-and-trade system. Since massive carbon emissions have caused serious
global environmental damage, governments have promoted the development of low-carbon
policies to maintain sustainability and reduce the effects of this problem. The cap-and-
trade policy is among the widely adopted systems that manufacturers implement to curb
carbon dioxide emissions while optimizing their profit. This alters the supply channels’
optimal solution. With a cap-and-trade policy, the manufacturer is allocated a production
capacity allowance. It means they have a tradable quota. This quota can be sold if the
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optimal order quantity is lower than the production allowance and has to be bought if
the channel’s optimal order quantity is higher than the determined quota. According to
the prices of the selling or buying allowance, the manufacturer may gain or lose profit.

It is the downstream member who faces the uncertain and dynamic demand. To
share this risk, the upstream member may agree on a buyback price for the unsold
commodity. Therefore, a buyback contract is considered in the manufacturer’s function.
Hence, in addition to the wholesale price, a non-negative buyback price is declared by
the manufacturer for each period. The buyback agreement allows the retailer to return
the unsold items to the manufacturer (or the manufacturer pays a buyback price to the
retailer and the retailer salvages/discards the unsold items). This paper was presented
at the 20th EUROpt Workshop.
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Chapter 1

A Subgame Perfect Approach to a
Multi-Period Stackelberg Game with
Dynamic, Price-Dependent,
Distributional-Robust Demand

Mahnaz Fakhrabadi a, Leif Kristoffer Sandalb

a,bDepartment of Business and Management Science, Norwegian School of Economics

Abstract
This paper investigates a multi-periodic channel optimization facing uncertain, price-
dependent, and dynamic demand. The picture of the market uncertainty is incomplete,
and only the price and time-dependent mean and standard deviation are known and
may depend on the price history. The actual demand distribution itself is unknown as
is typically the case in real-world problems. An algorithm finding the optimized decen-
tralized channel equilibrium is developed when the downstream member optimizes her
expected profit stream by a distributional-robust approach, and the upstream member
(leader) considers it as the follower’s reaction function. The algorithm allows for strategic
decisions whereby the current demand is scaled by the previous price setting.

JEL classification: C61, C62, C63, C72, C73, D81.

Keywords Multi-Periodic Stackelberg Game, Subgame Perfect Distributional-Robust
Approach, Supply Chain Management, Dynamic Price History-Dependent Demand.
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1.1 Introduction

A supply channel is often accompanied by a time-varying and uncertain demand. The
upstream member (manufacturer) and the downstream member (retailer) are exposed to
this market uncertainty in different manners. The retailer directly faces the uncertainty,
while the manufacturer senses it through the order quantity made by the retailer. The
uncertainty in demand often leads the chain to a lost sale or unsold quantity which can
potentially be salvaged (Khan & Sarkar 2021). Therefore, anticipating the trend of the
future market and how to satisfy the stochastic demand creates a challenge for the supply
channel players.

The simplest case occurs when the demand is structured from a distribution of price-
independent quantities. However, in reality, demand varies as time goes by. As a result,
strategies like offering cheaper commodities during specific periods to stimulate future
market demand can be implemented. On the other hand, customers, being aware of
the price trends, may adjust their purchasing plans based on historical product prices
over time. In our study, market demand can be adjusted to increase (decrease) with
the influence of price history (path). Strategic pricing, hence, occurs where the demand
contains current and historical prices. Therefore, the current price remains important,
however, the prior prices can affect the demand critically. Leveraging this characteristic
strategically, we can increase future demand by lowering prices in the present. This is
a strategy for market penetration. The main challenge in a multi-period discrete-time
model with dynamic price-dependent demand lies in the interdependence among all price
values. This nestedness in the demand model comes into play through the notion of
scaling functions that capture the effects of prior prices.

To make it computationally convenient, one might consider a deterministic demand
as a function of price, however, this deviates from real-world dynamics. In our paper,
demand is modeled by a random variable in which the mean and variance of the demand,
scaled by previous prices, are time and price-dependent. For instance, to capture a greater
share of the market, one may offer products at lower prices (even below their cost) to
achieve a higher potential market in the future. Although this approach may result in
negative initial revenue, it can be a viable strategy if the demand increases sufficiently in
the future.

A channel is normally not fully equipped with comprehensive demand distribution
information, either the information is unavailable or prohibitively costly to obtain. In
such cases, a distributional-robust (DR) approach becomes necessary. Regardless of the
demand distribution, a DR approach allows for the identification of the supply channel
solution while establishing a lower bound for the retailer gain under any distribution but
with the same mean and standard deviation. In our study, the DR approach is extended
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to address a multi-periodic setting, where each period’s gain may depend explicitly on
the price history.

The present study focuses on the game between upstream and downstream parties
within a decentralized channel. The manufacturer is the leader, and the retailer follows
him. The demand of this channel is dynamic and price-dependent for a perishable com-
modity where the demand distribution is not fully known. The problem is addressed in a
multi-periodic revenue management framework. In each period (k) the leader initiates by
determining the wholesale price (wk) and the follower immediately follows up by deciding
the order quantity (qk) and retail price (rk). Both parties aim to optimize their holistic
profits over all periods. Due to the perishable nature, the commodity cannot be stored
for later use. Thus, any unsold item must be salvaged (discarded) at a reduced price
(cost) sk.

The retailer encounters the market risk through stochastic demand (Dk) and may
endure not meeting the market by missing an opportunity to sell (Dk − qk)

+ more, or
salvaging/discarding (qk − Dk)

+ leftover inventory. In each period the uncertainty is
unveiled after the decisions on wk,rk,and qk are made. The primary contribution of
this paper lies in addressing such a multi-periodic supply channel where the means and
standard deviations are the only information about the demand encompassing the effect
of antecedent price setting. This novel approach incorporates the effects on future market
demand by previous decisions (price-setting). This is implemented by setting the means
and standard deviations as functions of all previous retail prices, such that previous prices
scale the demand, but only the current retail price determines the current coefficient of
variation (CV). The potential dependence on previous prices authorizes strategic pricing,
e.g., lowering prices to enhance demand by attracting more customers. Over time, prices
can be adjusted if the customer base increases sufficiently.

The mathematical model presented in section 1.3.1 accommodates a stochastic price
history-dependent demand. Regarding the DR approach, supply channel objective func-
tions are appropriately modified. Later in section 1.3.2, the DR model is extended to
encompass multiple periods. The model structure adheres to a general form and may un-
dergo alterations from one period to another. This design enables the model’s underlying
functions to systematically adapt and evolve, reflecting the dynamics of the channel.

The price-history dependency on the demand is elaborated in section 1.3.3. It plays a
crucial role in the nestedness of the model. The presence of this ‘price memory’ is integral,
as, without it, the problem devolves into a repeated game, i.e., each period forms its own
decuple single-period game. Hence, no strategic pricing can happen when the periods
operate independently from each other.

In section 1.4, we delve into the resolution and analysis of economic decision-making
problems. This section focuses on examining the Stackelberg game between a manufac-
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turer and a retailer, where the manufacturer leads the channel. The algorithm can solve
a time-dependent parameter set and a fixed set. We implement the model to address two
specific scenarios: one involving a problem with known distribution and another under
the DR model. By applying the developed algorithm, we aim to provide insights and
solutions for the examples.

1.2 Literature Review

In 1957, Scarf et al. proposed a method to address an inventory problem characterized by
limited demand information where the only available knowledge of demand was the mean
and standard deviation and the demand distribution was uncharted (Scarf et al. 1957).
Building upon Scarf’s work, Gallego and Moon revised and extended Scarf’s method to
tackle a newsvendor problem with three specific conditions: the problem incorporated
the possibility of a second purchasing opportunity arising after demand was revealed, a
multi-item case, and a random yield case (Gallego & Moon 1993). In another study, Gal-
lego discussed a maxmin distributional-robust approach to acquire order and inventory
levels minimizing the cost of holding/shortage in a newsvendor problem (Gallego 1992).
Gallego collaborated with Moon to analyze both continuous and periodic inventory mod-
els, incorporating backorders and lost sales. They employed a price-independent demand
and a maxmin DR approach to optimize the order volume and retail price (Moon &
Gallego 1994).

Godfrey and Powell optimized the newsvendor DR problem involving repeated in-
ventory management using the concave adaptive value estimation (CAVE) algorithm
(Godfrey & Powell 2001). Similarly, Mostard et al. studied the DR newsvendor problem
considering the possibility of reselling returned items before the end of the season if not
damaged and salvaging any remaining unsold items. They also accounted for the potential
harm caused by shortages, incorporating a shortage cost from the retailer’s perspective
(Mostard et al. 2005). Additionally, Pal et al. inset a DR newsvendor problem focusing
on inventory management with a non-linear holding cost, aiming to reduce the inventory
level (Pal et al. 2015). Sarkar et al. explored the DR Stackelberg newsvendor problem
under a make-to-order and consignment policy, where both parties shared a portion of
the holding cost (Sarkar et al. 2018). Khan and Sarkar presented a DR newsvendor prob-
lem, incorporating back-ordering and stochastic and price-dependent demand (Khan &
Sarkar 2021). Their proposed approach involved the retailer paying an additional price
per product to transfer risk associated with unsold items to the manufacturer. Finally,
Govindarajan et al. addressed a DR multi-location newsvendor problem to optimize the
inventory level minimizing cost (Govindarajan et al. 2021).

Our paper contributes to this research area by optimizing the multi-period supply
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chain Stackelberg game in which demand is time and price history-dependent, although
the distribution of demand is unknown. The only available information is the mean (µ)
and the standard deviation (σ) of the demand as functions of time and prices when the
price history impacts the future demand, i.e., price history dependent demand. Practi-
cally speaking, figuring out the stochastic drivers in a time-dependent demand distribu-
tion may not be available or economically viable. Hence, the distributional-robust model
is a maxmin-formulation to generate a weak lower bound on optimal expected value.
Section 1.4 works out an illustration comparing distributional-robust results with the
alternative fully informed cases exemplified by uniform distributions. As far as we are
aware, the DR model has solved a maximum 2-period independent problem with linear
demand. The contribution of this paper, hence, covers a multi-period DR game where
the demand is dynamic and price-path dependent. The solution scheme allows demand
engineering to occur through the optimal pricing strategy when the demand distribution
is unknown.

Table 1.1: A literature review on distributional-robust problem

Authors Perishable Periods Demanda PHDb

Scarf et al., 1957 ✓ 1 S ×

Gallego, 1992 × 1 S ×

Gallego & Moon, 1993 ✓ 1 S ×

Moon & Gallego, 1994 × 1 S ×

Godfrey & Powell, 2001 ✓ 2 S ×

Mostard, et al., 2005 ✓ 1 S ×

Pal, et al., 2015 ✓ 1 S ×

Sarkar, et al., 2018 ✓ 1 S ×

Khan & Sarkar, 2021 ✓ 1 S ×

Govindarajan, 2021 ✓ 1 S ×

This paper ✓ Any TPD ✓

a S represents static demand, and TPD stands for the demand that is both time and price-dependent.
b The abbreviation PHD corresponds to Price history dependent.

1.3 Model Framework

This work considers the normal flow of retail; The product is produced (supplied) by
a manufacturer (wholesaler) and sold by a retailer to the customers. Both parties are
risk-neutral and want to maximize their expected discounted total profits. The main part
of the solution effort is the computation of equilibrium prices leading to order quantities
that maximize expected profits. It leads to a subgame-perfect optimization that can be
decomposed into a sequence of connected decisions. A trivial subclass of our approach
covers the multi-period supply channel games with stochastic demands that are only de-
pendent on the current price and time. The non-negative property of demand excludes all
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distributions with compact support not limited from below, e.g. the normal distribution.
This is particularly important when the volatility is dependent on decision variables (e.g.
the price). The discrete-time structure in our model represents a timespan that is divided
into intervals called periods. Since the commodity is perishable, it is either sold in the
current period or salvaged/discarded (the unsold items).

The DR supply channel problem has received considerable attention, according to the
existing literature, although it has mostly been limited to a maximum of two periods and
has primarily focused on the newsvendor structure. In this paper, the proposed novel
DR algorithm efficiently determines the optimal equilibrium prices and quantities in the
subgame-perfect framework. Our approach addresses the problem within a multi-periodic
framework incorporating explicit time-dependent model parameters (non-autonomous).
To provide a comprehensive understanding, we begin by explaining the single-period prob-
lem in section 1.3.1, followed by the extension to a multi-period context in sections 1.3.2
and 1.3.3 To facilitate comprehension through this section, we introduce the following
notation list, where n denotes the number of periods.

Notation

β = {β1, . . . , βn} Discount factor over individual periods1

cm = {cm1 , . . . , cmn } Manufacturer cost

s = {s1, . . . , sn} Salvage price/discarding cost

w = {w1, . . . , wn} Wholesale price (decisions)

r = {r1, . . . , rn} Retail price (decisions)

q = {q1, . . . , qn} Order quantity (decisions)

k ∈ {1, . . . , n} Time or period

D = {D1, . . . , Dn} Demand

µ = {µ1, . . . , µn} Mean of demand

σ = {σ1, . . . , σn} Standard deviation of demand

ε = {ε1, . . . , εn} Stochastic and independent drivers with mean 0 and variance 1

πm = {πm
1 , . . . , π

m
n }Manufacturer profit (running value)

πr = {πr
1, . . . , π

r
n} Retailer profit (running value)

JRx The total expected value of player x, in the DR model

JDx The total expected value of player x, in the model with known distribution

1The discount factors related to the start (k = 1) are αk = β1 · β2 · . . . · βk and 0 < β. Individual
periods may be of different lengths.
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1.3.1 Single-Period Distributional-Robust Game

In this supply channel under the Stackelberg game, the channel leader, the manufacturer,
acts first and offers the price w that maximizes his profit E[πm(w, q)]. Then the follower,
the retailer, decides on the optimal volume q and optimal retail price r that maximizes
his expected profit E[πr(r, w, q)]. It addresses a single-order opportunity, and the mar-
ket cannot be replenished; Consequently, the unmet demand is considered backlogged
and is not involved in the algorithm. The unsold items, on the other hand, can be sal-
vaged/discarded at a reduced price/cost s. We have dropped the time index since this
section explains a single-period problem. The general form of demand is

D = µ(r) + σ(r)ε ≥ 0, (1.1)

where µ and σ are deterministic given functions of retail price r, and ε is a given stochas-
tic variable with a mean and standard deviation of 0 and 1 respectively. Noticing the
stochastic demand, the retailer orders q and sells min(D, q) at price r to maximize his
profit

πr(r, w, q) = rmin(D, q) + s(q −D)+ − wq. (1.2)

The leftover inventory (q − D)+ is salvaged at s(> 0) or discarded at s(< 0). To
optimize the problem, the expected value is illustrated as 2

E[πr(r, w, q)] = (r − s)E[min(D, q)]− (w − s)q

= (r − s)E(D − [D − q]+)− (w − s)q

= (r − s)µ− (w − s)q − (r − s)E[D − q]+.

(1.3)

If the demand is accompanied by a known distribution, the value of E[D − q]+ can
be simply calculated (Gholami et al. 2021). Otherwise, when the demand distribution
is unknown but the mean and standard deviation are provided, a distributional-robust
approach offers an optimal way to solve the problem. In general, the following hold

I. (D − q)+ =
1

2
{|D − q|+(D − q)}

II. E(D − q)+ =
1

2
{E[|D − q|] + E(D)− E(q)}

III. E[|D − q|] ≤
√
E[(D − q)2] =

√
(q − µ)2 + σ2 (Cauchy-Schwartz inequality)

A simple consequence of these relations is

2min(D, q) = D − (D − q)
+ and (q −D)+ = (q −D) + (D − q)

+
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E[D − q]+ ≤
√

σ2 + (q − µ)2 + µ− q

2
. (1.4)

This inequality gives a tight lower bound on expected retailer profit for any distribu-
tion with the same µ and σ. Hence,

E[πr] ≥ (r − s)µ− (w − s)q − (r − s)

(√
σ2 + (q − µ)2 + µ− q

2

)
≡ Πr. (1.5)

From now on we use the term ’profit’ for this bound. The DR approach is defined
by replacing E[πr] with Πr. It has been demonstrated that equality holds in Eq. (1.5)
for some special distributions (Gallegol & Moon, 2016) and trivially for a deterministic
demand.

The µ and σ approach zero when prices turn to large values3. The manufacturer
optimizes his problem to find the optimal price w, manipulating the retailer to order q

in the Stackelberg game, such that this pair (w, q) maximizes his profit

πm(w, q) = (w − cm)q = E[πm(w, q)]. (1.6)

To have consistent notation, E[πm] = πm = Πm.

1.3.2 Multi-Period Distributional-Robust Game

In a multi-periodic channel, players endeavor to maximize their total discounted expected
profit streams

Jx
k = αkΠ

x
k + αk+1Π

x
k+1 + αk+2Π

x
k+2 + . . .+ αnΠ

x
n for x ∈ {m, r},

where αk = β1 · β2 . . . βk,
(1.7)

and n represents the number of periods that may be of different duration, and βk is
the discount rate for period k. Jm

k and Jr
k are the present values of the streams for

the manufacturer and the retailer, respectively, from period k and onward. The players
optimize their Jx

k at each period (i.e., subgame perfect).

1.3.3 A Multi-period Distributional-robust Game with Price

history-Dependent Demand

Demand is usually sensitive to price, and this may evolve over time. The current price
and time are normally not the only factors impacting the current demand. Previous price

3Real demand is non-negative with compact support on a finite interval.
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settings may scale the market by, e.g., boosting or reducing the upcoming demands. This
impact is likely to be time-dependent. In this work, we assume that the price history
affects the size of the demand, while the present price modifies the coefficient of variation
(CVk = CVk(rk)), i.e.,

Dk (⃗rk) = Φk (⃗rk−1)dk(rk), k ∈ {1, . . . , n}

dk(rk) = µ̂k(rk) + σ̂k(rk)εk

Φ1 ≡ 1,

(1.8)

where r⃗k = {r1, . . . , rk}. The hat sign represents the scaled variable (without the price
history effect). The Φk is a scaling function, addressing a cumulative relation of previous
market price settings. As an example, if the relevance between periods’ memories is
multiplicative, the cumulative scaling at each period forms as

Φk (⃗rk−1) = gk(rk−1)Φk−1(⃗rk−2) =
k∏

i=2

gi(ri−1), (1.9)

where gi carries the effect of the previous price ri−1. Strategic pricing to boost future
demand may occur optimally in some model specifications. The case Φk ≡ 1 for all k
implies that the demand in each period only depends on the current price, i.e., Dk =

dk(rk), and no strategic pricing can occur. Hence, Eq. (1.7) can be summarized as

Jx
k =

n∑
i=k

αiΦiΠ̂
x
i , x ∈ {m, r}, (1.10)

where Π̂r
k, Π̂

m
k only depend on decision variables in period k, i.e.,

[µ̂k(rk), σ̂k(rk), q̂k] =
[µk (⃗rk), σk (⃗rk), qk]

Φk (⃗rk−1)
, (1.11)

The term αkΦk is known at the beginning of period k. Viewing the problem from an
arbitrary period (k) and onward, Eq. (1.10) implies the scaled value, jxk .

jxk = Π̂x
k + βk+1gk+1j

x
k+1, for x ∈ {m, r}

where jxk =
Jx
k

αk · Φk

, and Π̂x
k =

Πx
k

Φk

.
(1.12)

By starting at the last period (n), the sequence of leader-follower games defined by the
payoffs jmn , jrn, . . . , j

m
1 , jr1 is solved. Each of these games has objectives to be maximized

in the form jxk = Π̂x
k + βk+1gk+1j

x
k+1 = Π̂x

k(rk, wk, q̂k) + βk+1gk+1(rk)A
x
k+1, where Ax

k+1 =

[jxk+1]
∗, which is zero at the end (Ax

n+1 = [jxn+1]
∗ = 0), and is a known constant at each

period in the backward induction process where it is calculated from a higher period.
When the scaled games are solved, and the decisions r∗, w∗, and q∗ are known, the

Φ∗ are determined and then quantities and profits are rescaled to their proper values. In
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this optimal control problem, Φ represents the state variable, and prices play the control
role. We summarize the findings so far in the following propositions.

Proposition 1.3.1. In a single-period newsvendor (fixed prices) problem, a fully equipped
demand creates more expected profit for the retailer compared to the DR model, i.e.

πR∗(q∗R) ≤ πD(q∗R) ≤ πD∗(q∗D), (1.13)

where πR and πD represent the expected profit of the distributional-robust model and
the model with a known distribution, respectively, and the star addresses the optimal
value. It implies that the DR optimal profit is a lower bound for the problem with known
distribution. Furthermore, the DR model’s policy is not optimal for the model with a
known distribution, i.e., πD(q∗R) ≤ πD∗(q∗D).

In a multi-periodic price history-dependent supply channel problem, the relation

JRr∗(r∗R, w
∗
R, q

∗
R) ≤ JDr(r∗R, w

∗
R, q

∗
R) ≤ JDr∗(r∗D, w

∗
D, q

∗
D) (1.14)

holds. The JRr∗, JDr, and JDr∗ address the retailer’s expected optimal value of the
DR model, the model with known distribution before optimization, and the model with
known distribution after optimization, respectively. JR and JD follow Eq. (1.10). The
indexes R and D, used for w, r, and q, represent the distributional robust model and the
model with known distribution results, respectively. Hence, JDr(r∗R, w

∗
R, q

∗
R) determines

the result of the model with known distribution for the DR model policy.

Proposition 1.3.2. The distributionally robust profit for the retailer at each period k is

Π̂r
k(rk, wk, q̂k) = (rk − sk)µ̂k(rk)− (wk − sk)q̂k

− (rk − sk)

2

(√
σ̂2
k(rk) + (q̂k − µ̂k(rk))2 + µ̂k(rk)− q̂k

)
,

(1.15)

for any given pair (rk, wk), the retailer’s scaled return Π̂r
k is maximized by choosing the

order quantity as

q̂k = q̂k(rk, wk) = µ̂k(rk) + σ̂k(rk)Λk(rk, wk),

Λk =
ηk − 1/2√
ηk(1− ηk)

and ηk =
rk − wk

rk − sk
.

(1.16)

Proof. See Appendix A.

Proposition 1.3.3. Let (r∗, w∗, q∗) be the equilibrium solution resulting in the payoffs
[Jm, Jr]∗. Then the subsequence {(r∗i , w∗

i , q
∗
i ), [J

m
i , Jr

i ]
∗, i = k : n} is the solution of the

subgame starting at period k.
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Scaling the order quantities by Φ decouples the sequence of subgames that reveals
(r∗, w∗) by utilizing jxk = Π̂x

k + βk+1gk+1j
x
k+1 = Π̂x

k(rk, wk, q̂k) + βk+1gk+1(rk)A
x
k+1, where

Ax
k+1 = [jxk+1]

∗, which is zero at the end, i.e., Ax
n+1 = [jxn+1]

∗ = 0.

1.4 Numerical Implementation

The simplest case occurs when the demand depends only on the current price. This
family of problems decouples into a series of independent single-period problems. Albeit
most markets depict some dependency on the price history affecting customers’ behavior.
In this section, we offer examples with a price history-dependent demand to show how to
implement the proposed algorithm. Our numerical illustration is given by applying the
algorithm to optimize problems with the scaled mean and standard deviation of demand
given by (see Eq.(1.8)).

µ̂k(rk) =
1000

(
1 + 1

1+k

)
r2k

and σ̂k(rk) =
µ̂k(rk)

2
√
3

. (1.17)

To assess the DR results, we assume that the uniform distribution (UD) is the true
distribution and solve the model with UD incorporating the DR policy and call it UR
model results (similar to JDr(w∗

R, r
∗
R, q

∗
R) in Eq. (1.14)).

From Eq. (1.9), the scaling factor has the general structure delineated below

Φk(r⃗k−1) =
k∏

i=2

gi(ri−1),

where gi(ri−1) = eγi(Ki−ri−1).

(1.18)

The time-dependent parameter Kk is a kind of current time preference price, and γk

represents the strength of a current deviation to the future demand. The scale factor gi

acts similarly to a discount factor, though the retailer can manipulate it by setting the
price to modify future demand.

To optimize the manufacturer-retailer problem, an n-value parameter set has been
applied for each time-dependent parameter cm, s, β,K, γ, where n represents the number
of periods (15 in this illustration).

cm = [2, 2, 2, 2.2, 2.2, 2.2, 2.5, 2.5, 2.5, 2.5, 2.8, 2.8, 2.8, 3, 3]

s = [1, 1, 1, 1, 1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3]

β = [1, 0.96, 0.96, 0.96, 0.97, 0.97, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98]

K = [5.6, 5.6, 5.4, 5.4, 5.4, 5.3, 5.3, 5.3, 5.3, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1]

γ = [0.05, 0.05, 0.05, 0.05, 0.04, 0.04, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03]

The decision variables (r∗, w∗, q∗) in the equilibrium state are depicted in Figure 1.1.
Figure 1.1(a) provides a visual presentation of the retailer’s profit in each period. The
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blue line represents the result of the model with the uniform distribution (UD), the
red line indicates the distributional-robust model (DR), and the green line depicts the
implementation of the UD model with the DR policy (UR). Furthermore, Figure 1.1(b)
showcases the manufacturer’s profits in both the DR and UD cases. The figures offer a
comparative view of the expected profitability achieved under each model.

Figure 1.1: Optimal results

The total expected profit of the retailer satisfies JRr∗(= 432) ≤ JDr(= 449) ≤
JDr∗(= 454), as stated in Eq. (1.14). The manufacturer, although not directly affected by
the incomplete information, experiences the market’s volatility as a result of the retailer’s
order volume decision. The manufacturer achieves JRm∗(= 456.1) ≤ JDm∗(= 482.1).
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The difference between JDx∗(r∗D, w
∗
D, q

∗
D) and JDx(r∗R, w

∗
R, q

∗
R) quantifies the profit de-

viation of DR from UD model. This discrepancy highlights the impact of incomplete
information. The loss incurred due to the incomplete information is referred to as the
Expected Value of Additional Information (EVAI), and in this example, it equals

EV AIr = 454− 449 = 5

EV AIm = 482.1− 456.1 = 26.

The implementation of the DR policy results in a 0.94% deviation for the retailer and
a 5.2% deviation for the manufacturer from their actual values 4. The retailer is willing
to invest up to 5 units of currency to obtain complete information. However, despite the
presence of these deviations, the DR policy proves to be a highly effective heuristic.

Examining plot (c), in the DR model, the retailer prices increase by 147%, whereas in
the UD model, they increase by 153.9% over time. The wholesale price decision improves
by 64% in DR and 62.1% in UD models (plot (d)). The price decisions led to a 96.1%

quantity decline in the DR model and 95.5% in the UD model (plot (e)) over time.
Looking at plot (f), the retail prices exceed the market price preference from period 4
leading to a downward trend in cumulative scaling.

Plot (d) displays that the wholesale price follows the same pattern as the manufac-
turer’s cost vector. However, apart from the final step, an increase in cost typically results
in a higher increase in the wholesale price. For instance, a 10% increase in the cost in
the first jump (period 3 to 4) raises the wholesale price by 11.8% and 12.8% in DR and
UD models respectively. The reason may stem from the fact that the increase in cost
implies both higher cost and salvage loss (w− s) for the retailer, leading to a lower order
quantity. Hence, the manufacturer sets a price to also partly compensate for this quantity
reduction.

1.4.1 Time Independent Model Parameters

We have set the parameter vectors as, cm = 2, β = 0.96, s = 1, K = 5.6, and γ = 0.05

for any period. Then, it is only the scaling factor that changes the results.

4If the problem with complete information (known distribution) is considered actual.
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Figure 1.2: Results with time-independent model parameters

In this experiment, the retailer obtains 769.8 from the DR model and 787.6 from the
UD model (plot (a)). Meanwhile, the manufacturer gains 939.5 from implementing the
DR model and 1000.4 from the UD model (plot (b)). The wholesale price increases by
25.5% until period 14, but by 15.8% overall (plot (d)), and the retail price increases by
99.1% (plot (c)) in the DR model. These price changes have led to a 73.2% decline in
ordering (plot (e)), while the market has been in a state of prosperity for a long time
(wherever higher than 1 in plot (f)).
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1.4.2 Impact of Key Model Parameters on Total Profit

In this section, we evaluate the effect of varying salvage value (s), manufacturer cost
(cm), and current time preference price (K) on the players’ values within the proposed
DR model. These parameters can exhibit increases, decreases, or remain unchanged. Ta-
ble 2 presents 27 different scenarios, where scenario 27 represents the reference problem
(baseline) previously solved in Section 1.4.

Table 1.2: The effect of key parameters on outputs

Scenario cm(%) S(%) K(%) JM JR ∆JM(%) ∆JR(%)

1 10 10 10 432.9 400 -5.1 -7.4

2 10 10 -10 319.5 315.4 -29.9 -27

3 10 10 0 369.95 353.4 -18.9 -18.2

4 10 -10 10 419.4 387.2 -8.1 -10.4

5 10 -10 -10 309.8 305.7 -32.1 -29.2

6 10 -10 0 358.7 342.5 -21.3 -20.7

7 10 0 10 426 393.4 -6.6 -8.9

8 10 0 -10 314.6 310.5 -31 -28.1

9 10 0 0 364.2 347.8 -20.2 -19.5

10 -10 10 10 703.8 643.8 54.3 49

11 -10 10 -10 505.4 492.4 10.8 14

12 -10 10 0 593.4 560.2 30.1 29.7

13 -10 -10 10 677.1 617.6 48.5 43

14 -10 -10 -10 468.7 473.1 6.7 9.5

15 -10 -10 0 571.1 537.6 25.21 24.5

16 -10 0 10 690 630.2 51.3 45.9

17 -10 0 -10 495.8 482.5 8.7 11.7

18 -10 0 0 581.9 548.6 27.6 27

19 0 10 10 546.8 501.6 19.9 16

20 0 10 -10 397.9 390 -12.77 -9.8

21 0 10 0 464.1 440 1.75 1.8

22 0 -10 10 528 483.6 15.8 12

23 0 -10 -10 384.9 376.3 -15.6 -13

24 0 -10 0 448.5 424.4 -1.7 -1.7

25 0 0 10 537.2 492.2 17.8 14

26 0 0 -10 391.5 382.9 -14.2 -11.4

27(Baseline) 0 0 0 456.1 432 0 0

The parameters in Table 2 are varied by ±10%, while a value of 0% indicates no
change. The last two columns of the table present the deviation percentage in value
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compared to scenario 27. The results for total expected profits are displayed in Figure
1.3, where the horizontal red and black lines indicate scenario 27 total expected profits
for the manufacturer and the retailer respectively.

Figure 1.3: Total expected profits in each scenario

Both players are represented in this plot, with blue stems standing for the manu-
facturer and magenta for the retailer in each scenario. In this example, scenarios 1-9,
20,23-24, and 26 result in a decline in channel value, while the remaining scenarios display
a beneficial effect. Scenario 14 demonstrates that a cost reduction can compensate for the
decrease in salvage value and preference price. However, an increase in salvage value and
preference price is unable to offset the impact of a cost increase, as reflected in scenario 1,
indicating a higher sensitivity to cost. Figure 1.4 pictures the order quantities generated
by different scenarios. The highest and lowest order quantities, like the total profit, are
observed in scenarios 10 and 5 respectively. Howbeit the trend of ordering almost follows
the same trend.
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Figure 1.4: Order quantities in each scenario

1.5 Concluding Remarks

We have introduced a comprehensive framework for solving multi-periodic manufacturer-
retailer games where the dynamic and stochastic demand is influenced by price his-
tory but lacks knowledge about the distribution of the stochastic drivers. Our pro-
posed algorithm effectively addresses this challenge through a price history-dependent
distributional-robust approach, providing valuable insights for decision-making. All pa-
rameters defining the (Stackelberg) game are allowed to vary with time. The algorithm
solves the distributional-robust (DR) model in a subgame-perfect manner through back-
ward induction and provides a weak lower bound on the retailer’s expected value.

In each period, the players initiate a new contract considering a price history-dependent
demand with a subgame perfect structure. However, this periodic contract structure does
not accommodate order/production capacity constraints. This limitation arises due to
the specific approach employed in solving the problem, wherein a scaled quantity is com-
puted within the algorithm and then rescaled to its actual amount. Furthermore, in
the calculation phase, the players decide for each period and proceed to the next with-
out having the opportunity to modify their policy if needed. Addressing this limitation
and addressing a more flexible decision-making process will be of key interest in future
research.

Through an illustrative example, we evaluated the model’s response to a ±10% change
in parameters, manufacturer cost (cm), salvage value (s), and current time preference
price (K). The results reveal that the manufacturer cost alone strongly affects the overall
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outcome, with a 10% increase (decrease) leading to a 19.2% (28.3%) decrease (increase)
in the channel’s total profit. Changes in preference price result in a 16.8% (12.1%)
increase (decrease) in the channel’s value while the salvage value has a relatively minor
influence, causing a 2.6% (0.9%) increase (decrease) in the channel’s value. Additionally,
the sensitivity to cost is also evident in the wholesale price, where an increase in cost leads
to a proportionately higher increase in the wholesale price. Although the manufacturer
does not directly face market stochasticity, he realizes its influence through the retailer’s
order volume. The market is improved by Φ > 1 and whenever r > K the cumulative
scaling factor begins to decrease and in Φ < 1 shrinks the market, as depicted in the
example.

Future research endeavors could explore the incorporation of optimal buyback and
quantity discount schemes to enhance the decision-making process. An interesting im-
provement would be to enable the players to consider single contracts for the entire time
horizon while embedding realistic constraints that are not easily incorporated in the
multi-periodic contract scheme with the subgame-perfect approach.

Appendix A

From the retailer’s expected profit with the DR framework,

Πr = (r − s)µ− (w − s)q − (r − s)

2

(√
σ2 + (q − µ)2 + µ− q

)
, (1.19)

then

∂Πr

∂q
= −(w − s)− r − s

2

(
q − µ√

σ2 + (q − µ)2
− 1

)
= 0, (1.20)

which yields

q = µ+ σΛ, where Λ =
η − 1

2√
η(1− η)

and η =
r − w

r − s
. (1.21)
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Abstract
The paper investigates a multi-period supply channel facing uncertain and price-

history-dependent demands and environmental regulations. The knowledge about the
demands is limited to its mean and standard deviation in each period, i.e., there is
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2.1 Introduction

With rapid global economic development, environmental challenges have been deteriorat-
ing constantly (Yang et al. 2014). The major source of this problem has been regarded as
greenhouse gas emitted by production, services, and consumption (Song & Leng 2012).
This problem has attracted more countries’ attention since the 1980s (Ma et al. 2022).
Nowadays, sustainability is a key subject for environmentalists, economists, industrial-
ists, consumers, academia, and governments (Manupati et al. 2019, Yang et al. 2014).
With the aim of environmental protection and reduction of pollution, many governments
have agreed to contribute to the goal of emissions reduction by at least 50% by 2050
as reported by the International Energy Agency (Liu et al. 2015, Song & Leng 2012).
Furthermore, because of consumer awareness development, many governments and com-
panies have implemented pollution reduction policies and displayed their attempts to
reduce their footprint by pasting a tag on their products, like Tesco and Boots. The
actions that increase consumer awareness of environmental concerns, encourage them to
opt for a product with a lower environmental footprint if its price is affordable. However,
actions with lower pollution may result in a higher cost for the channel players (Yang
et al. 2014).

Among all environmental pollution reduction policies, two types of policies, emissions
capacity constraint, and emissions tax regulation have been analyzed by many countries
or regions, such as the European Union (EU), Canada, China, and the IMO (Bai et al.
2022). Emissions capacity constraints involve setting a maximum limit, or carbon cap,
on the level of emissions allowed within the supply channel. In contrast, emissions tax
regulation imposes a cost on each unit of production or pollution, requiring the channel
to pay a tax fee for each unit of pollution generated through production or consumption.
According to Luo, et al., emissions tax is considered one of the most effective market-
based mechanisms and enjoys widespread acceptance worldwide. More than 20 countries,
including Canada, Australia, the United Kingdom, and the United States, have already
implemented emissions tax policies (Luo et al. 2022). For instance, the Dutch government
has planned to impose a CO2 emissions tax on industrial companies starting in 2021,
initially set at 30 euros per ton of CO2 emitted. This amount would increase to 125-150
euros by 2030, ensuring the sustainability of industrial firms (Blomberg1).

As economic globalization has deepened, the world economy has evolved into a com-
plex and interconnected system. However, a significant challenge remains in establishing
crucial pollution reduction targets within such a complex economic framework (Jiang
2022) and encouraging industries to collaborate. This underscores the importance of
developing an algorithm capable of identifying optimal solutions while considering envi-

1https://www.bloomberg.com/news/articles/2019-06-28/dutch-government-plans-co2-emissions-
levy-for-industrial-firms
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ronmental pollution reduction constraints. Supply channels have increasingly prioritized
ecological sustainability in alignment with the United Nations’ Sustainable Development
goals (Kannan et al. 2022). Therefore, it is vital to examine the impact of pollution
reduction activities on economic players (Yang et al. 2014).

Kannan et al. analyzed the barriers to implementing pollution reduction policies in
India. They employed the Best Worst method to determine the relative importance of
the barriers, focusing on regulatory policies. They establish interrelationships among the
barriers of pollution reduction policies, using the Decision-Making Trial and Evaluation
Laboratory. Regarding their categories, the economic category was found to carry the
highest weight, followed by the organizational and environmental categories. Their finding
highlights several key observations, including the lack of initial funding, hidden costs,
uncertain carbon market price, lack of research and development, lack of support from
the authorities, lack of alternative energy sources, unaccountability of production waste,
fear to shift to a new system, lack of in-house reverse logistics, irrational current taxes,
unaccountability of supply chain actors and lack of social demand (Kannan et al. 2022).

Wu et al. review the progress made in carbon neutrality efforts. They note that 120
countries worldwide have proposed carbon-neutral goals, such as China, accompanied
by national development, different cities and industries have actively included carbon
neutrality in their development plans (Wu et al. 2022). In a study by Xu et al., the
performance of emissions tax policy in a supply chain composed of one supplier and two
financially asymmetric manufacturers was investigated under Cournot competition. The
researchers argue that emissions tax plays a crucial role in restricting carbon emissions
and improving environmental performance for climate change mitigation (Xu et al. 2022).

Luo et al. developed the Stackelberg game to evaluate the impact of the emissions tax
on (re)manufacturing decisions within a closed-looped supply chain. They examined both
scenarios with no investment in pollution reduction technology, as well as with invest-
ment in centralized and decentralized closed-loop supply chains. Their finding suggests
that emissions tax encourages manufacturers to invest in pollution reduction technology
or engage in remanufacturing. Moreover, when the tax is low, the pollution level in
the centralized closed-loop supply chain exceeds that of the decentralized model (Luo
et al. 2022). Choi and Cai discuss the environmental challenges arising from shorter lead
times in the production process, which can result in inadequate control of chemical and
material processing operations. To address this issue, they propose the imposition of
an environmental tax on suppliers to incentivize investment in green technologies (Choi
& Cai 2020). Zhang et al. explore a single-period Stackelberg model considering three
regulatory approaches, tax, subsidy, and tax-subsidy policies. Their study aims to assess
the effects of each method on channel profit and environmental pollution (Zhang et al.
2020).
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Hong et al. explore the integration of tax regulations and green product design strate-
gies, where the decision variables are the degree of product greenness and retail price being
made by the manufacturer and the retailer respectively (Hong et al. 2019). Manupati et
al. investigate different production-distribution and inventory problems in a multi-echelon
supply chain, considering three pollution reduction policies viz tax, strict capacity cap-
ing, and a cap-and-trade system. They also incorporate lead-time considerations using a
non-linear mixed integer programming model (Manupati et al. 2019). In a study by Song
et al., a stochastic production capacity problem is expanded to incorporate cap-and-trade
and pollution tax regulations. The researchers found that firms increase their capacity
when capacity investment is low enough, leading to higher unit profit (Song et al. 2017).
The manufacturer in Chen et al.’s model employs two different techniques, standard and
green technology using cap-and-trade and capacity constraints to reduce pollution. They
demonstrate that emissions trade yields higher profits compared to capacity constraints
(Chen et al. 2016). Choi incorporates pollution tax policy into a fashion apparel problem
and examines the implementation of a quick response system through reduced lead time,
faster delivery mode, and local sourcing instead of offshore sourcing (Choi 2013). Zhang
and Xu study a newsvendor multi-item production plan with stochastic, but constant
demand2, considering both cap-and-trade and pollution tax regulations (Zhang & Xu
2013).

In our model, a Stackelberg game composed of a manufacturer and a retailer is consid-
ered, wherein the manufacturer leads the channel in a multi-period setting. The retailer
faces a demand that is time and price history-dependent, i.e., the current and prior prices
determine the demand in each period. Moreover, the incomplete information on demand
distribution leads to opting for a distributional-robust (DR) approach. The proposed
algorithm operates under a single contract, wherein the players consider their decisions
and the resulting consequences across all periods simultaneously. The primary objective
is to ensure the attainment of the highest possible value. In the following, we study two
environmental pollution reduction policies: pollution tax and capacity constraint and
propose optimal algorithms satisfying the environmental policies. The decision variables
are the prices. However, in the pollution tax model, the tax fee is also a decision made by
the regulator. He addresses the chain problem by endogenizing the pollution externalities.
The contributions of this paper are hence

• to solve multi-period Stackelberg distributional-robust game,

• with a dynamic and price history-dependent demand,

• under a single contract, compared to periodic contracts, which makes significantly
2A stochastic constant demand can be formed as D = µ + σε, where µ and σ are constant values

representing the mean and standard deviation of the demand and ε is a distribution with mean zero and
variance 1.
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different results by utilizing more information and freedom to decide,

• propose an algorithm with environmental constraints, viz capacity constraints and
pollution tax,

• acquiring the corrective tax that the regulator puts on the leader to fully compensate
for the pollution produced.

2.2 Model Framework

In our model, demand is dynamic and price history-dependent for a perishable commodity
produced by the manufacturer and sold by the retailer. The manufacturer leads and the
retailer follows him, while both aim at maximizing their expected values by making
pricing policies, leading to order quantity decisions under a single contract. With a single
contract, the players can improve their expected value by regulating their decisions when
they can observe the connected decisions’ reactions. The players have a certain number
of periods and decide on all their variables simultaneously. Unlike periodic contracts, a
single contract is not subgame perfect, but if the players cling to the contract, both may
obtain higher values. This can be exploited in DR settings as well as in more unrealistic
situations with complete demand information.

The channel produces an externality in the form of pollution such that the order
quantity may be obliged to follow environmental protection policies to reduce the envi-
ronmental footprint. We employ two policies: capacity constraints and environmental
taxes. In the capacity constraint system, the pollution produced in period k by man-
ufacturing the ordered quantity qk is ekqk which cannot exceed a certain cap Mk, i.e.,
0 ≤ ekqk ≤ Mk. The tax can be split into two subcases: Any given tax on a unit of
production or order quantity (environmental or not) and a corrective tax that exactly
endogenizes the cost of eliminating pollution flow in the chain. The latter tends to de-
pend on quantity or production volume. It depends on the damage function or the flow
of externality costs. We consider a corrective tax where either the manufacturer or the
retailer incorporates this decision in their formulation and pays the tax. All taxes and
pollution or production caps are allowed to be dynamic.

The next subsection deals with the price history-dependent demand structure. The
DR model under a single contract is introduced in subsection 2.2.2. It is formed for the DR
model, but the algorithm is applicable in the case with complete information by replacing
the profits and quantity functions corresponding to the actual demand distribution. In
the following, subsections 2.2.3 and 2.2.4 organize the single contract model for capacity
constraints and corrective taxes. Each proposed model is provided with a non-trivial
example in section 2.3.
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2.2.1 Demand Structure

The demand in period k ∈ {1, . . . , n} as a dynamic function of prices is modeled as

Dk (⃗rk) = µk (⃗rk) + σk (⃗rk)εk, r⃗k = (r1, . . . , rk) (2.1)

where µk and σk are deterministic functions of time and retail prices and represent the
mean and standard deviation of demand at period k. The epsilons are uncorrelated
random variables independent of prices with mean and standard deviation equal to 0 and
1 respectively. Incomplete information in the present setting means that the distributions
for the εk are unknown. This is typically the situation in most real-world cases, either
the complete information is not accessible, or it is too costly to obtain it. Hence, it is
worthwhile to implement an approach that does not rely on the specificities of the εk-
distributions, i.e., a distributional-robust (DR) approach is the way forward. It implies
replacing the retailer’s expected value/profit with a tight lower bound, i.e., at least one set
of distributions results in an expected value equal to this bound and no other distribution
implies a lower expected value. That is, no fully informed situation will have a lower
expected profit for the same set of means and variances.

2.2.2 Model Formulation

The retailer orders qk from the manufacturer with the wholesale price wk considering the
demand Dk and sells the amount of min(Dk, qk) to the customers at the price rk in period
k. The time scope is divided into n discrete intervals referred to as periods. If qk exceeds
the demand, (qk−Dk)

+ can be salvaged (discarded) at a price (cost) of sk. The retailer’s
profit function in period k is3

πr
k (⃗rk, wk, qk) = rk min(Dk, qk) + sk(qk −Dk)

+ − wkqk +Br
k(qk), (2.2)

where the first term represents the revenue of sold items, the second indicates the revenue
(or cost) of the leftovers, the third term is the cost of purchase, and the last term addresses
any other gains or costs by acquiring qk. The function Br

k may be non-linear. An example
of this non-linear part can be a damage function. The retailer’s objective function is then
the expected values of profits,

E[πr
k] = rk

(
µk − E(Dk − qk)

+
)
+ sk

(
qk − µk + E(Dk − qk)

+
)
− wkqk +Br

k(qk)

= (rk − sk)µk − (wk − sk)qk − (rk − sk)E[Dk − qk]
+ +Br

k(qk).
(2.3)

The demand distribution, if known, provides a solution for the term E[Dk − qk]
+.

3See list of notations in Appendix A.
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However, Cauchy- Schwartz inequality (Fakhrabadi & Sandal 2023)4 assists with

E[Dk − qk]
+ ≤ 1

2

(√
σ2
k + (qk − µk)2 − qk + µk

)
. (2.4)

By replacing E[Dk − qk]
+ in Eq. (2.3) by the right-hand side of Eq. (2.4), the

expected DR approach for the retailer is obtained as a lower bound for the model with
known distribution as follows

Πr
k (⃗rk, wk) ≡ E[πr

k]DR

= (rk − sk)µk − (wk − sk)qk−
rk − sk

2

(√
σ2
k + (qk − µk)2 − qk + µk

)
+Br

k(qk) ≤ E[πr
k]D,

(2.5)

where E[πr
k]D represents the profit of the same model with known distribution. From

now on we use the term ’profit’ for this bound (Πr
k).

The manufacturer’s expected profit is calculated as

Πm
k (qk, wk) = E[πm

k ] = (wk − cmk )qk +Bm
k (qk), (2.6)

where the first term represents the manufacturer revenue, and the second term addresses
any other linear or non-linear gains or losses associated with qk. In the Stackelberg game,
the manufacturer declares his price first, conditioned on the retailer’s optimal reaction
(rk, qk). In the multi-period problem, both the retailer and manufacturer aim to optimize
their values given by

Jx
1 = α1Π

x
1 + α2Π

x
2 + α3Π

x
3 + . . .+ αnΠ

x
n for x ∈ {m, r}, (2.7)

where n is the number of periods and m, r indicates the manufacturer (m) and the retailer
(r). The parameter α represents

αk = β1 · β2 · . . . · βk, (2.8)

where βk is discounting factor for period k, and α1 = β1 = 1. In a single contract, w∗ =

[w∗
1, . . . , w

∗
n] is revealed and then r∗ = [r∗1, . . . , r

∗
n] and q∗ = [q∗1, . . . , q

∗
n] are declared. The

players can observe the consequences of their decisions simultaneously and change their
decisions, if necessary, before finalizing the optimization process and signing a contract.
The price history-dependent demand may allow for strategic decisions by manipulating
future demand to improve optimal return. The manufacturer knows exactly his profit
when the single contract is written. The retailer has all the risk by knowing a lower
bound on his expected total return. The key findings are summarized in the following

4See Appendix B.
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propositions.

Proposition 2.2.1 (Optimal Order Quantity). The optimal order quantity qk for any
pair (wk, rk) is given by

(wk − sk)−
1

2
(rk − sk)

[
qk − µk√

σ2
k + (qk − µk)2

− 1

]
+

∂Br
k(qk)

∂qk
= 0. (2.9)

The special case Br
k(qk) ≡ 0 yields

qk (⃗rk, wk) = µk (⃗rk) +
σk (⃗rk)

2

2ηk − 1√
ηk(1− ηk)

and ηk =
rk − wk

rk − sk
. (2.10)

Proposition 2.2.2 (Single Contract Key Feature). The manufacturer gains at least a
payoff equal to the subgame perfect total payoff.

Proof. A single-contract model benefits from taking into consideration all decisions simul-
taneously. The subgame perfectness restricts the choice of decisions. Hence, the decision
space for a single contract covers the subgame perfect choices.

A single contract may create significantly different results by utilizing this freedom to
allow for strategic pricing when all periods are considered simultaneously, i.e., optimizing
without a fixed term structure. This leads to the manufacturer’s benefits Jm

SC ≥ Jm
PC,

where SC and PC represent the single and periodic contracts respectively.

2.2.3 The Model Formulation Under Capacity Constraints

If the regulator’s strategy to reduce pollution generated by the manufacturer is defined
as a capacity constraint, ekqk ≤ Mk must hold, where ek represents the pollution from
producing one unit of product, and Mk is the maximum pollution permitted in period
k. Hence, the manufacturer has to constrain his optimization by qk ≤ qck = Mk

ek
. Hence

utilizing Eqs.(2.5) and (2.6) as the players’ profits and Eq.(2.7) as their payoffs, the game
is

max
w∈W

Jm
1 s.t. (r, q) = arg max

(r,q)∈R
Jr
1 , (2.11)

where W and R represent the feasible spaces for the wholesale and retail prices and order
quantities compatible with all constraining conditions, e.g., qk ≤ qck.

2.2.4 The Model Formulation Under the Pollution Tax Policy

If the government decides to implement a corrective tax policy, the channel is required
to pay tax for each unit of pollution or spend a cost to clean the pollution it has caused.
Since our channel consists of a manufacturer and a retailer, we address the problem of
each player when facing the pollution tax.
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2.2.4.1 Manufacturer as Tax Collector

The regulator, cognizant of the problem formulations faced by the players, imposes a
Pigouvian tax (Corrective tax). Notice that a damage function can be internalized by
the manufacturer, by issuing the quantity-dependent tax τk = τk(qk)

Πm
k (wk, qk) = (wk − cmk − τk)qk = (wk − cmk )qk +Bm

k (qk), (2.12)

and the retailer’s problem stays unchanged. Here Bm
k (qk) are the damage functions

implied by the tax issued. The Corrective tax is

τk(qk) = −Bm
k (qk)

qk
. (2.13)

Hence, this tax is issued as a non-fixed tax that depends on the actual production. It
automatically generates a cost that exactly pays for the damage and the manufacturer
considers it when he makes his decisions. Therefore, the manufacturer internalizes the
pollution damage (Bm

k ) and his optimization gives the optimal quantity (q∗k) and thereby
the tax τ ∗k (q

∗
k) that is imposed on the manufacturer to mitigate their environmental foot-

print or the cost they would incur to remove the pollution.

2.2.4.2 Retailer as Tax Collector

According to the retailer profit function in Eq. (2.5), any given periodic tax (τk) can be
accommodated by setting Br

k(qk) = −τkqk, resulting in

Πr
k (⃗rk, wk, qk) = (rk − sk)µk − (wk + τk − sk)qk−

(rk − sk)

2

(√
σ2
k + (qk − µk)2 − qk + µk

)
. (2.14)

This is equal to the case without Br
k, but with wk replaced by wk+ τk. The best order

quantity qk for any given set of parameters (rk, sk, τk, wk), is then given by Eq. (2.10)
where wk is replaced by wk+τk. If the tax is only on sold items, it is equivalent to Br

k = 0

and rk replaced with rk − τk in Eq. (2.10).
A Pigouvian tax will endogenize a damage cost function Br

k(qk), and Eq. (2.10)
determines the best order quantities for any given set of (rk, sk, wk). The damage function
is revealed by the quantity-dependent tax τk(qk) issued by the regulator as

Br
k(qk) = −qkτk(qk). (2.15)

In this case, there are no shortcuts to determine the best order quantities. The full
version of Eq. (2.9) must be applied.
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Both sections 2.2.3 and 2.2.4 are solved under a single contract. The periodic backward
induction algorithm, which is commonly utilized to solve such problems, cannot solve the
price history-dependent problems under the ordering/production constraints.

2.3 Numerical Implementation

We begin the numerical illustration by comparing an unconstraint single contract with a
periodic contract. Later, in section 2.3.2 we move on to the unconstraint single contract
model with a short memory and its extension to the models with capacity constraint and
tax policies. As mentioned before, the demand may be affected by previous periods’ price
decisions. Indeed, an increase in the price today may bring about a decrease (increase) in
the customer base tomorrow. Hence, price settings in one period may change the future
customer base, and therefore change the future demand and modify the supply channel’s
values. Although, the effect of each period’s price might fade out over time. This effect
can be labeled as memory and denoted by Φk (⃗rk−1), where Φ1 = 1 and r⃗ = (r1, . . . , rk)

and k ∈ {2, . . . , n}.
In the rest of this paper, we deal with a demand scaled by the price history such that

the coefficient of variation only depends on the current price, i.e.,

Dk (⃗rk) = Φk (⃗rk−1)dk(rk)

where dk(rk) = µ̃k(rk) + σ̃k(rk)εk.
(2.16)

So, from Eq. (2.1)
µk (⃗rk) = Φk (⃗rk−1)µ̃k(rk)

σk (⃗rk) = Φk (⃗rk−1)σ̃k(rk).
(2.17)

For the numerical examples, we apply the following scaled demand terms

µ̃k(rk) =
100(10 + 1

(1+k)
)

r2k
, σ̃k(rk) =

µ̃k(rk)

2
√
3

(2.18)

The parameters are set to constant over time by cmk = 2, sk = 1, βk = 0.96

for all k ∈ {1, . . . , 12} in all examples. We utilize two different kinds of scaling fac-
tors representing long-term (section 2.3.1) and short-term (the rest of the examples)
memory. We have limited the scaling factor to perform in the range [0.7, 2], meaning
Φk = max(min(2,Φk), 0.7) at each arbitrary period k.

2.3.1 Case 1, Single Contract vs. Periodic Contract

We have structured this paper on a single contract in section 2.2.2, but it is worth
comparing the same problem set with a periodic contract where the algorithm commences
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from the last period and steps back to the first. We exemplify these cases by the scaling
factor

Φk (⃗rk−1) =
k∏

i=2

gi(ri−1) and gk = eγk(Kk−rk−1). (2.19)

Kk is the market price preference and γk represents the strength of a current deviation
on the future demand (marginal log scale). The parameters are set to Kk = 6,γk = 0.04.
For a DR periodic problem, the players’ total value,

jxk = πx
k + βk+1 · gk+1 · jxk+1 for x ∈ {m, r} (2.20)

is optimized in each period k, i.e., the players optimize their current situation in the
game, ensuring a subgame-perfect solution by starting at the end (Fakhrabadi & Sandal
2023, Gholami et al. 2021). In Eq. (2.20), Jm and Jr address the manufacturer and
retailer values respectively. Utilizing Eq. (2.7) for the single contract and Eq. (2.20) for
the periodic contract, Figure 2.1. illustrates players’ profits.

Figure 2.1: Optimal profits, single contract (SC) vs. periodic contract (PC)

SC and PC are the models with single and periodic contracts respectively. The players’
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total value was revealed as

Jm
SC = 555 > Jm

PC = 433,

Jr
SC = 670 > Jr

PC = 408

This is equivalent to a relative increase of 28% and 64% in the total returns of the
manufacturer and the retailer by utilizing a single contract instead of periodic ones. It
is observed that this single contract is beneficial for both the manufacturer and retailer
which is compatible with the statement in section 2.2.4.

Embedding the optimal SC wholesale prices (w∗) into the periodic contract algorithm
and solving the problem for retail price yields Jm = 471 and Jr = 491. This outcome
highlights a significant finding: the periodic framework fails to recognize the superior
values identified by the SC, even when the optimal wholesale prices w∗ are provided.

The optimal prices are plotted in Figure 2.2. The lower prices obtained by the single
contract (SC) are accompanied by higher quantities leading to a larger market (Figure
2.3) and higher returns. The leader collects more profit in the beginning and the follower
in the end in the SC case.

Figure 2.2: Optimal prices, single contract (SC) vs. periodic contract (PC)
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Figure 2.3 mirrors the effectiveness of each contract form in stimulating market
growth. The results reveal that the single contract model consistently bolsters the mar-
ket, while the periodic contract deviates from this trend from the third period and begins
to contract the market at k = 6. The red line represents the threshold that separates the
market stimulation and market contraction phases based on the price history effects.

Figure 2.3: Scaling factor, single contract (SC) vs. periodic contract (PC)

2.3.2 Case 2,Unconstrained Single Contract and Short Memory

In this example, we only implement a single contract with scaling factors

Φk = eγk(rk−2−rk−1). (2.21)

The explicit memory effect of each price only lasts for two periods. Therefore,

Φ = {1, eγ2(R−r1), eγ3(r1−r2), eγ4(r2−r3), . . .}. (2.22)

Φ is the effective scaling factor and R is a given reference price (model parameter) for
the second period. The parameters are set to γk = 0.04 and R = 10 for k ∈ {1, . . . , 12}.
Figure 2.4 illustrates the optimal profits for the manufacturer and retailer.
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Figure 2.4: Optimal profits

The total values, denoted as Jm = 246 and Jr = 475, are obtained from the analysis.
The observed pattern reflects the scaling factor structure. The players strategically make
decisions as a volatile set to maximize their profits. It is worth mentioning that this
strategy capitalizes on the fact that any price changes are forgotten after a span of two
periods (Figure 2.5).

Figure 2.5: Optimal prices

The retail price decisions result in the scaling factor that is illustrated in Figure 2.6.
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Figure 2.6: Scaling factor for a short memory

The red line separates the region where the retail prices are boosting /shrinking the
market. The volume ordered at each period is mirrored in Figure 2.7.

Figure 2.7: Optimal order quantity

2.3.3 Case 3, Single Contract and Capacity Constraints

The pollution capacity constraint, determined by the regulator and denoted as qc (as-
sociated with the emissions amount), represents the maximum allowance of production,
serving an upper bound for the maximum pollution that might be generated by the man-
ufacturer. It is crucial to adhere to this constraint and ensure that it is not violated. By
utilizing Eq. (2.22), Figure 2.8 illustrates the profits and volume associated with three
distinct capacity constraints (a, b, c).
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Figure 2.8: Optimal quantity and profits under capacity constraint policy (red curve)

In the order quantity plot, red crosses represent the unconstrained results, the capacity
constraint is depicted by the black line, and the blue circles indicate the optimal solution
under capacity constraint. The subscripts a, b, and c correspond to different cases with
different capacity constraints. An intriguing finding emerges when comparing the volumes
in the constrained and unconstrained models: there are periods when the unconstrained
solution operates below the capacity limit, with no requirement to order reduction, but
the constrained algorithm intentionally chooses a lower volume, such as period 3 in the
plot (a). The total values in each model are

Jm
a = 246, Jm

b = 246, Jm
c = 245,

Jr
a = 462, Jr

b = 463, Jr
c = 457,

where the unconstrained problem’s results (base model, example 2, section 2.3.2) are
Jm = 246 and Jr = 475. The findings indicate that in total, these cases reduce the emis-
sions by 5.9, 5.2, and 7.9% in a, b, and c cases respectively. Hence, regarding the priorities
which can be either pollution reduction or economic growth, case c is the greenest, while
case b brings the highest economic return. Figure 2.9 pictures the price decisions.
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Figure 2.9: Optimal prices under capacity constraint policy

2.3.4 Case 4, Corrective Tax

According to the discussion in section 2.2.4, we present an illustrative example where
either the manufacturer or the retailer collects a tax following Eq. (2.12) or Eq. (2.14).
In this example, a player x applies Bx

k (qk) = −akq
2
k in their problem where the damage-

intensity factor, ak, is chosen to be 0.04. Consequently, the tax derived from Eq. (2.13)
or Eq. (2.15) takes the form of τ ∗k = akq

∗
k, representing the amount paid per unit in

period k to mitigate the pollution associated with that unit. Figure 2.10 illustrates
corresponding profits and quantities in both cases where either the manufacturer or the
retailer integrates the tax inside their objective functions.
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Figure 2.10: Optimal results

As depicted in Figure 2.10, the calculated values for this example are

Jm Jr

The manufacturer is the tax collector 209 345
The retailer is the tax collector 187 368

Notably, this example showcases the effectiveness of the proposed method in reducing
pollution. In comparison to the base model (example 2, section 2.3.2), the application of
tax policy results in a significant 48% and 47% reduction in pollution overall, when the
manufacturer and retailer are tax collectors respectively.

The analysis of two tax models within the supply channel, where the responsibility
for collecting the pollution tax lies with either the manufacturer or the retailer, reveals
that each player achieves higher profits when individually responsible for managing the
pollution tax.

The results demonstrate that when the manufacturer takes charge of tax collection,
the channel’s earnings amount to 554 units of currency, while if the retailer assumes this
responsibility, the channel’s earnings increase to 555 units, where the model free of tax
makes 739 units.
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2.4 Concluding Remarks

We introduce a comprehensive single-contract framework aimed at optimizing a multi-
period Stackelberg game with a dynamic, price history-dependent, and DR demand. Our
results demonstrate the superiority of the single-contract model over the periodic-contract
model, although, the single-contract is not sub-game perfect. This can be attributed
to the freedom and awareness embedded within the single contract model. Unlike the
periodic contracts model, where players make decisions in each period, the single-contract
model identifies an optimal decision at least as good as a periodic-contract framework.
The single contract allows for better utilization of the strategic potential in the market.

We illustrate the effectiveness of the single-contract model using two different types
of price history dependency in our examples and observe how this effect is reflected in
the output. The algorithm leverages the price history effect to achieve optimal order
quantities and maximize values.

Furthermore, we extend the model to address environmental constraints, specifically
the pollution capacity constraint and tax. These policies have been widely implemented
in many countries. Both systems impose limitations on the channel that may require a
reduction in the quantity.

An intriguing finding from the model incorporating a capacity constraint is that there
are cases, where the algorithm subject to constraints leads to a lower order quantity
compared to the unconstrained solution, even though the specified cap permits a higher
volume. In other words, there are periods when the unconstrained solution operates below
the capacity limit, with no requirement to order reduction, but the constrained algorithm
intentionally chooses a lower volume. This behavior highlights a strategic decision-making
capability inherent in a single-contract approach that may not be evident in a periodic
approach. Furthermore, it underscores the interconnectedness of decisions across different
periods, where changes in one period can impact decisions in preceding and subsequent
periods.

With the emissions tax policy, the channel faces a cost to mitigate the pollution it
has generated, as dictated by the imposed damage function. It is important to note
that the constraint framework cannot be effectively implemented in a periodic contract
form, highlighting the advantages of the single-contract model in handling environmental
constraints.

In conclusion, our proposed single-contract framework outperforms the periodic-contract
model in terms of optimization and value maximization but also provides a means to ad-
dress environmental constraints through policies such as (pollution) capacity constraints
and corrective tax inclusion. Our dynamic distributional robust settings are closer to real-
world situations and adapted to fully utilizing strategic potentials in the markets with
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memory. By incorporating these factors, our model offers valuable insights and strategies
for decision-making in complex dynamic supply channel scenarios. Future research could
explore other environmental policies and different types where the players are sharing
exposure to the market risk.

Appendix A: Notation List

β = {β1, . . . , βn} Discount factor over individual periods5

cm = {cm1 , . . . , cmn } Manufacturer cost

s = {s1, . . . , sn} Salvage price/discarding cost

w = {w1, . . . , wn} Wholesale price (decision variable)

r = {r1, . . . , rn} Retail price (decision variable)

q = {q1, . . . , qn} Order quantity (decision variable)

k ∈ {1, . . . , n} Time or period

D = {D1, . . . , Dn} Demand. Dk = µk(r) + σk(r)εk is demand in period k

µ = {µ1, . . . , µn} Mean of demand

σ = {σ1, . . . , σn} Standard deviation of demand

ε = {ε1, . . . , εn} Stochastic and independent drivers with mean 0 and variance 1

πm = {πm
1 , . . . , π

m
n }Manufacturer profit (present value)

πr = {πr
1, . . . , π

r
n} Retailer profit (present value)

τk = {τ1, . . . , τn} Emission tax

Appendix B: Cauchy- Schwartz Inequality

The Cauchy-Schwartz inequality reads |E(xy)|2≤ E(x2)·E(y2). If we choose x = |q−D|=
|(q − µ)− σε| and y = 1, and utilize that E(ε) = 0 and E(ε2) = 1, we obtain

|E(|q −D|)|2≤ E(|q −D|2) = E[(q − µ)2 − 2(q − µ)σε+ σ2ε2] = (q − µ)2 + σ2 (2.23)

and thereby E(|q −D|) ≤
√
σ2 + (q − µ)2. Applying the equality

(D − q)+ =
1

2
{|D − q|+(D − q)}, (2.24)

5The discount factors related to the start (t = 0) are αk = β1 · β2 · . . . · βk. Individual periods may
be of different length.
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we obtain directly

E(D − q)+ ≤ 1

2

(√
σ2 + (q − µ)2 − q + µ

)
(2.25)

The equality holds for the deterministic case and certain two valued distributions.
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Chapter 3

A Distributional Robust Analysis of
Buyback and Cap-and-Trade Policies
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Abstract
This study delves into a dynamic Stackelberg game comprised of a manufacturer and a
retailer, operating in an environment with fluctuating demand and price-dependent con-
sumer behavior. The multi-period optimization challenges the manufacturer to strategi-
cally set wholesale and buyback prices, while the retailer determines the retail price and
order quantities within a single contract. In this dynamic framework, the players operate
under the constraints of a cap-and-trade policy, with limited knowledge of demand dis-
tributions, characterized only by mean and standard deviation parameters. To address
this inherent uncertainty, we employ a distributionally robust approach. Additionally, we
explore the enduring effects of historical decisions on present-day demand, reflecting a
memory-like market behavior. Through numerical examples, we illuminate the influence
of buyback contracts and cap-and-trade policies on decision-making processes within this
setting.

JEL classification: C61, C62, C63, C72, C73, D81, Q52.

Keywords : Cap-and-Trade Policy, Multi-Period Stackelberg Game, Price History-
Dependent Demand, Distributional-Robust Demand, Single Contract, Buyback Contract,
Sustainability.
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3.1 Introduction

3.1.1 Cap-and-Trad Policy

Rapid industrialization and urbanization have accelerated environmental pollution and
incurred purification costs in many countries. Indeed, economic growth has come at the
expense of increased environmental pollution. China, one of the largest polluters, has
performed an assessment that reveals the damaging effects on various sectors such as
agriculture, global temperature, and life expectancy (Du et al. 2016). The primary cause
of global warming has been carbon dioxide and this prompts governments to consider the
urgent need to reduce this pollution. In recent years, authorities have concentrated on
measuring pollution levels and investigating potential mechanisms for carbon emissions
reduction and addressing associated risks (Wang et al. 2021, Taleizadeh et al. 2021, Cao
et al. 2017, Xu et al. 2017, Du et al. 2015,0).

While efforts to combat global climate change have been initiated worldwide, envi-
ronmental policies and sustainability initiatives have become a competitive advantage
for manufacturers. Furthermore, customers are increasingly aware of the importance of
low-carbon products and are willing to pay more for products that have a minimal en-
vironmental impact (Wang et al. 2021, Tong et al. 2019). This growing awareness has
led supply chain stakeholders to incorporate sustainable development and low-carbon en-
vironmental policies into their operations and decision-making processes to align with
market changes (Wang et al. 2021). Companies such as HP, Dell, and Acer are actively
working to reduce e-waste, energy consumption, and carbon emissions, while others like
Ford and Volkswagen are exploring the production of vehicles powered by alternative
energy sources. For example, Siemens adopted cleaner technologies in 2016, leading to
a reduction of 521 million tons of carbon emissions, which accounted for over 60% of
Germany’s annual (Tong et al. 2019). Retailers such as Walmart and Tesco have also
engaged in green activities and implemented carbon footprint labeling for their products
(Mondal & Giri 2022b).

The first international agreement addressing greenhouse gas emissions and the re-
duction of carbon emissions footprint was the UNFCCC1. It aimed to establish official
obligations and support measures to reduce emissions impact on the environment (Du
et al. 2015,0). In the UK, fiscal policies such as the Climate Change Agreement (CCA),
Climate Change Tax (CCT), and Carbon Price Support (CPS) have been implemented to
control greenhouse gas emissions (Xu et al. 2018). Also, the European Union’s Emissions
Trading System (EU ETS) lowered the emissions cap by 15% in 2015 since its inception
in 2005 (Mondal & Giri 2022b).

1United Nations Framework Convention on Climate Change
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The Kyoto Protocol was introduced to guide decision-makers in regulating compa-
nies’ activities related to carbon pollution. The cap-and-trade (C&T ) policy is the main
framework mechanism of this protocol and is considered one of the most effective policies
(Mondal & Giri 2022a, Du et al. 2016). Although, among all carbon reduction policies,
the common carbon policies have usually been introduced as C&T and carbon tax (Feng
et al. 2021), the carbon tax does not limit the emissions by an emissions cap. Under
the C&T regulation, manufacturers are allocated a maximum allowance of free emission
credits. If this allowance capacity is insufficient to achieve optimal results, manufacturers
can purchase emission credits or implement greener production methods to reduce their
carbon emissions. They can also sell the surplus quotas to generate profit (Taleizadeh
et al. 2021, Li et al. 2021). Accordingly, companies that actively reduce their emissions
are rewarded economically and environmentally (Mondal & Giri 2022b). According to a
report by the European Commission in 2013, the EU Emissions Trading Scheme covered
31 countries and limited nearly 50% of carbon emissions. In this system, the government
establishes the necessary policies for emission trading quotas, while companies are re-
sponsible for regulating their allocated quotas (Cao et al. 2017, Xu et al. 2017, Du et al.
2015). For example, in 2013, Foxconn invested less than 50 million RMB in energy-saving
retrofits but made a profit of 10 million RMB (60 million RMB in revenue) by selling
surplus carbon credits (Tong et al. 2019).

It is argued that the C&T policy offers more profit potential compared to other
environmental policies and it has been widely adopted in recent years in countries such as
Norway, Netherlands, Sweden, Denmark, and China (Chen et al. 2020). A well-designed
C&T system can improve the efficiency of emissions reduction goals when the regulator
sets appropriate emissions cap and trading price (Du et al. 2015, Chen et al. 2020).

To evaluate the effectiveness of the C&T policy, Mondal and Giri examined a supply
channel with green activities and price-dependent deterministic demand. They stud-
ied four models: centralized, decentralized, bargaining revenue sharing, and retailer-led
revenue sharing under the C&T policy. Their findings indicate that a higher carbon emis-
sions allowance price motivates manufacturers to improve their green operations, leading
to a reduction in carbon dioxide emissions (Mondal & Giri 2022a). Feng et al. inves-
tigated cooperation in a supply chain using a joint replenishment game, where two or
more dependent or independent firms cooperate horizontally under the C&T system to
identify the optimal joint ordering strategy. They found that the retailer with the highest
altruistic parameter value benefits from the surplus of carbon emissions allowance (Feng
et al. 2021).

Zhao et al. propounded a remanufacturing problem under the C&T policy and pro-
posed three production decision models: single-product remanufacturing with fixed car-
bon emissions, extended single-product remanufacturing with variable carbon emissions,
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and multi-product remanufacturing models (Zhao et al. 2021). Wang et al. combined the
C&T policy with the customers’ low-carbon preferences with a differential game model,
considering three different scenarios: non-cooperation (coop) scenario where the manu-
facturer is the leader of the two-echelon supply chain, the supplier’s emissions reduction
efforts are supported by the manufacturer and a two-way coop contract when both chan-
nel members support each other’s emissions reduction efforts (Wang et al. 2021).

Taleizadeh et al. examined a supply chain problem involving a retailer and a man-
ufacturer, under C&T , where they could either compete or cooperate in pricing and
production decisions. Their model suggests that cooperation yields greater benefits, con-
sidering environmental concerns (Taleizadeh et al. 2021). Li et al. investigated two types
of subsidy policies based on fixed green technology investment cost (FC subsidy) and the
amount of emissions reduction (ER subsidy) under the C&T mechanism, using Stackel-
berg game models. The results indicated that government subsidy policies alone cannot
guarantee green technology investment and total carbon emissions reduction (Li et al.
2021).

Chen et al. compared the effects of carbon emissions tax policy with a C&T system
using a static optimal model. They found that the C&T system is more efficient for
emission reduction than the carbon tax. However, the impact of the C&T system on a
manufacturer’s profit is uncertain and dependent on the carbon cap. Therefore, selecting
an appropriate emissions cap and carbon trading price is crucial for ensuring the efficiency
of this policy (Chen et al. 2020). Even though former research by Wittneben implies the
opposite argument stating that a carbon emissions tax might be a faster and economically
more beneficial approach to reducing greenhouse gas emissions. They believe that a
carbon emissions tax can generate more income for the government to invest in green
projects, while income from C&T policy is more uncertain. Additionally, implementing
a new tax is less complex than the process required for implementing a C&T system
(Wittneben 2009).

Wang and Han proposed a dual mechanism of C&T and subsidies/penalties for a
(re)manufacturing problem with stochastic return and random yield rates, considering
four different distribution functions (Wang & Han 2020). Similarly, Mondal and Giri
studied competition and cooperation among retailers and a manufacturer under govern-
ment invention and the C&T policy. They developed a centralized policy and three
manufacturer-led decentralized policies viz. Collusion, Cournot (Nash), and Stackelberg
(Mondal & Giri 2022b). Aghaie et al. concentrated on the application of the C&T policy
in groundwater extraction management with four different monitoring scenarios. They
simulated this model using agent-based modeling addressing interactions between social,
institutional, economic, and groundwater systems (Aghaie et al. 2020).

Kushwaha, et al. proposed a mixed-integer linear programming model for a reman-
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ufacturing system. They determined the optimal combination of channels for collecting
used products from different regions in a finite multi-period setting under C&T regulation
(Kushwaha et al. 2020). Tong, et al. employed the evolutionary game and the C&T pol-
icy considering customer preference for low-carbon products, to examine the behavior of
a powerful retailer in a retailer-led supply chain. They used system dynamics to simulate
and analyze dynamic and transient behaviors. Their results indicate that the emissions
cap, market price of carbon credits, and consumers’ preferences for low-carbon products
are key factors affecting retailer and manufacturer behaviors (Tong et al. 2019).

Li et al. applied a Stackelberg game between the government and the manufacturer.
They indicated that the manufacturer is more incentivized to upgrade its purification
technology in a high-carbon preference market compared to a low-carbon preference
market (Li et al. 2018). Turki et al. investigated a (re)manufacturing plan consider-
ing the differences between new and remanufactured items, random machine failures, the
C&T policy, and distinct random customer demands for both types of products. Their
results revealed that a lower carbon cap and/or a high price of carbon trading, impel
the producer to collect and remanufacture used items and limit carbon emissions (Turki
et al. 2018). Xia et al. incorporated reciprocal preferences and consumers’ low-carbon
awareness (CLA) into a dynamic supply chain where the manufacturer plays a Stackel-
berg game with a retailer. Their results demonstrate that the optimal wholesale price
increases with CLA, while the optimal emissions level decreases with CLA (Xia et al.
2018). Xu et al. studied the decision-making and coordination of a centralized and
decentralized supply chain under C&T regulation and the Stackelberg game. They inves-
tigated pricing and carbon emissions abatement decisions, considering the preferences for
low-carbon products (Xu et al. 2018). Cao et al. investigated the impacts of the C&T

policy and low-carbon subsidy policy on the production and level of carbon emissions
reduction of a manufacturer under the Stackelberg game. Their findings indicated that
the level of carbon emissions reduction is positively related to the carbon trading price.
They also discussed that a low-carbon subsidy policy is more beneficial for society when
the environmental damage coefficient is below a certain threshold; otherwise, the C&T

policy is preferred (Cao et al. 2017).
Ji et al. studied three decision models: one without C&T regulation, one based on

grandfathering mechanism and C&T regulation, and one with C&T regulation based
on benchmarking mechanism. They concluded that the benchmark model, compared
to grandfathering, can more effectively incentivize manufacturers to produce low-carbon
products and motivate retailers to promote low-carbon products (Ji et al. 2017).

Xu et al. addressed the coordination problem of a make-to-order (MTO) supply
chain, which includes a manufacturer and a retailer, with wholesale price and cost-sharing
contracts under C&T policy. Their findings indicated that the manufacturer and retailer
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optimal profits decrease (increase) by buying (selling) prices of emissions allowance (Xu
et al. 2017). Du, et al. assessed the trade-off between reducing and incrementing carbon
emissions while considering economic considerations in a single period. They studied the
factors that could impact the optimal production strategy and profit where customers
prefer low-carbon products. Their analysis assumed equal buy and sell prices in an
oligopoly market (Du et al. 2016).

Du, et al. conducted studies in 2013 and 2015 to investigate the impact of C&T emis-
sions regulation on a single-period supply chain problem. In their models, the channel fol-
lows a Stackelberg game between an emission permit supplier and an emission-dependent
manufacturer. The supplier and manufacturer made decisions regarding permit pricing
and production quantity, respectively (Du et al. 2013,0). Du, et al. considered a supplier
and a manufacturer in a Stackelberg game framework, where the emission cap is allocated
to the manufacturer by the government. Their findings revealed that optimal production
and the manufacturer’s profit had a positive relationship with the emissions cap incre-
ment, while the supplier’s profit had a negative relation to the emission cap increment
(Du et al. 2013). Du, et al., On the other hand, illustrated that the supplier began
the first step considering the high permit price inspired the manufacturer to reduce the
production quantity to satisfy the imposed emissions cap which resulted in the supplier’s
profit deduction (Du et al. 2015).

This paper investigates the impact of C&T on players’ decisions and profits. The
channel consists of a manufacturer and a retailer in a Stackelberg game, and the manu-
facturer is the leader. In our market, the demand for a perishable commodity is stochastic
and dynamic and a function of historical retail prices. The demand function has a dis-
tribution that may change over time. However, it is often improbable to have complete
information about the distribution either because comprehensive information is not avail-
able, or it is too costly to obtain. A distributional-robust (DR) approach assists in coping
with this kind of incomplete information. The expected profit for the retailer is replaced
by a lower (weak) bound relative to the obtainable value with complete knowledge of
the distribution. In our proposed framework, future demands are influenced by historical
price choices. This effect operates as a kind of market memory, and it adds a property
to dynamic demand models reflecting a fundamental aspect of many real-world markets.
Consequently, there are opportunities for strategic pricing aimed at shaping demand in
subsequent periods.

The players sign a single contract covering all associated decisions for all periods.
Compared to multi-periodic contracts, a single contract optimization requires monitor-
ing all decision variables and their effect on each period simultaneously. The difference
between the value of single and periodic contracts provokes the players to select a single
contract over periodic ones (Fakhrabadi & Sandal 2023a).
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If the retailer faces over-ordering, the leftovers might be salvaged or discarded. It
means the retailer carries the demand stochasticity and the manufacturer only feels it
through the quantity ordered. Even though, after supplying this order, the manufacturer
does not observe any risk. Hence, to split the risk of overordering, the manufacturer offers
a non-negative buyback value at each period for unsold items. This transfers part of the
risk to the manufacturer. Hence, the manufacturer decides the wholesale and buyback
prices, and the retailer decides the retail price and the order quantities. In short, the
contributions of this paper include:

• Addressing the multi-period DR Supply Chain with a single contract under C&T

regulation.

• Determining wholesale and buyback prices by the manufacturer, and retail prices
and order quantities by the retailer for all periods.

• Employing price-dependent and dynamic demands where current demand depends
on the price history as well as the current price.

• Obtaining optimal buyback values and risk sharing in the presence of strategic
pricing opportunities.

3.1.2 Buyback Contracts

Buyback contract is prevalent in many commodities such as fashion apparel, books, and
CDs. The mechanism operates such that the channel members deal in a single contract
wherein the manufacturer provides all wholesale and buy-back prices. Contingent upon
this information, the retailer decides on all retailer/market prices and order quantities.
This may encourage the retailer to order more while sharing the demand uncertainty with
the manufacturer (Qin et al. 2021, Xue et al. 2019). Otherwise, with no buyback contract,
only the retailer is directly facing the uncertainty of demand, while the manufacturer
only senses it through the order quantity (Azad Gholami et al. 2019). The buyback
contract shares the risk of demand stochasticity between the upstream (manufacturer)
and downstream (retailer) of the channel and improves the efficiency of the channel (Qin
et al. 2021).

For a perishable good, at the end of each period, the unsold items are to be salvaged
at a lower price, bought back by the manufacturer, or sent to the destruction center at
manufacturer cost (at buyback price). When the manufacturer offers a buyback price, the
retailer is incentivized to order more, and this may increase the manufacturer’s profit.
Inversely, without a buyback contract, the retailer may order less. Finding optimal
buyback prices for a multi-periodic problem can be a challenge due to the nestedness
caused by the price history-dependent demand (Azad Gholami et al. 2019).
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Hou et al. studied coordination between one manufacturer and two suppliers in the
presence of demand uncertainty and supply risks. They study a firm with two sources of
the same product, a main and a backup, where the former is cheaper but is accompanied
by disruption risks. They argued that the buyer benefits from a backup supplier through
a buyback policy to deal with the risks (Hou et al. 2010). Wu examined the effect of the
buyback contract (as a parameter) on retail price, order quantity, and wholesale price
in a vertical integration case (chain optimizing) and a Stackelberg game. Their single-
period formulation revealed that buyback contracts can yield a higher profit in both
approaches (Wu 2013). Wei and Tang analyzed the buyback contract as a risk-sharing
tool in a single-period Stackelberg game and compared it with the chain maximizing
output and found that supply chain profit enhanced while using the buy-back strategy
(Wei & Tang 2013). One manufacturer and two competing retailers in the Xu et al. study
illustrated the value of buyback contracts. They created three scenarios as a buyback
contract is offered to neither one, one, or both retailers with a price-dependent static
demand. They indicated that offering a buyback contract to both retailers benefits all
channel members even in high-level competition (Xue et al. 2019). In another attempt to
optimize the supply channels with buyback contracts, Azad Gholami et al. considered a
multi-periodic channel with delayed information. Their Stackelberg game compromised
a manufacturer and a retailer in a multi-periodic setting. They found that too generous
a buyback price can decrease the expected profit for the retailer and create a sub-optimal
profit for the manufacturer as well (Azad Gholami et al. 2019).

Qin et al. built a supply chain with buyback contracts and fairness concerns un-
der stochastic demand and employed the Bayesian theorem. Their findings indicated
that both the retailer’s first order quantity and total order quantity decreased with the
wholesale price and increased with the buyback price (Qin et al. 2021). Momeni et al.
Investigated a buyback coordination mechanism to encourage the channel to participate
in operations regeneration to reuse the expired products in other productions. Their
results illustrated that the optimal solution could happen only if the revenue of a reused
product in addition to the saving on its disposing cost, was greater than its reproducing
cost (Momeni et al. 2022). Gong et al. analyzed inventory management where the de-
mand arrives continuously with a drifted Brownian motion and buyback contract. They
found that the supplier usually does not benefit from a low buyback price because the
optimal policy is conservative when the buyback price is low. It leads to a lower chance
of the products to be expired and hence the rate of profit is not affected by the buyback
price (Gong et al. 2022). We embed the buyback contract as a decision variable into the
manufacturer optimization problem to share the demand risks and increase fairness. The
manufacturer’s decision variables then are wholesale and buyback prices and those of the
retailer are the retail price and order volume.
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3.1.3 Demand Structure

Our demand is structured as a dynamic function in a multi-periodic setting. It can be of
different forms in each period. The time horizon consists of n discrete intervals (referred
to as periods). Considering an arbitrary period k when k ∈ {1, . . . , n}, the general form
of demand is given as

Dk (⃗rk) = µk (⃗rk) + σk (⃗rk)εk

where r⃗k = (ri, . . . , rn), ∀i ∈ {1, . . . , n}.
(3.1)

The mean µk and standard deviation σk are known functions of retail price history.
The stochastic part of the demand εk is normalized to have a mean and standard deviation
of 0 and 1 and they are independent of each other (between periods). This problem can
be solved when the distribution of demand is known (Fakhrabadi & Sandal 2023b). This
paper investigates situations with incomplete demand information because it is either
impossible to obtain all the information or it is too costly. The distributional-robust
(DR) approach for a multi-periodic price history-dependent problem is introduced in a
seminal paper by Fakhrabadi and Sandal, 2023 (Fakhrabadi & Sandal 2023b). We provide
more information regarding DR approach formulation in section 3.2.

3.2 Model Formulation

Notation

w = {w1, . . . , wn} Wholesale price (decision variable)
b = {b1, . . . , bn} Buyback price (decision variable)
r = {r1, . . . , rn} Retail price (decision variable)
q = {q1, . . . , qn} Order quantity (decision variable)
cm = {cm1 , . . . , cmn } Manufacturer cost
cr = {cr1, . . . , crn} Retailer cost
β = {β1, . . . , βn} Discount factor over individual periods
D = {D1, . . . , Dn} Demand Dk = µk(r) + σk(r)εk

µ = {µ1, . . . , µn} Mean of demand
σ = {σ1, . . . , σn} Standard deviation of demand
ε = {ε1, . . . , εn} Stochastic and independent drivers of the demand
s = {s1, . . . , sn} Salvage price/discarding cost
k ∈ {1, . . . , n} Time or period
qc = {qc1, . . . , qcn} Maximum allowance for production
u = {u1, . . . , un} The unit cost of buying allowances for producing extra
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v = {v1, . . . , vn} The unit price selling unused allowances
πm = {πm

1 , . . . , π
m
n } Manufacturer’s profit (present value)

πr = {πr
1, . . . , π

r
n} Retailer’s profit (present value)

We have adopted the short notation in this paper: For any vectors A and B, we define
AB = BA = {AiBi}ni=1.

To address our proposed model, the algorithm is built for a perishable product in
a multi-period Stackelberg game. In this game, the upstream (manufacturer) is the
leader and the downstream (retailer) follows him. The manufacturer, first, declares the
wholesale and buyback prices, and then the retailer decides on the retail prices and order
quantities. The unsold items cannot be restored at the end of each period and sold at the
next period. Therefore, for the retailer, any unsold item is discarded at cost s, salvaged
at price s, bought back by the manufacturer at price b, or the manufacturer pays cost
b to the retailer to discard the unsold items at price s. All variables and parameters
remain constant within each period but may vary between periods. The players agree on
a single contract where they can observe their decisions and the consequences across all
periods simultaneously and improve their decisions. The nucleus’s objective is to ensure
the attainment of the highest possible value, and a single contract creates a higher value
for the channel compared to a periodic contract (Fakhrabadi & Sandal 2023a).

The C&T policy structures this channel where the manufacturer is constrained with
a maximum allowance of pollution generating, but he is permitted to buy the extra
allowance required or sell the surplus allowance he has not consumed. This trade can be
categorized either as an income (when selling surplus allowance) or as an additional cost
(when buying extra allowance) which may increase or decrease the channel’s profit. The
prices of buying and selling the allowance can be unequal.

For simplicity in exposition, we drop the time index k whenever an equation is held
by just adding subscript k to all quantities involved. Since the channel consists of a man-
ufacturer and a retailer, the bilevel optimization algorithm maximizes the manufacturer’s
value subject to the retailer’s value maximization. The algorithm allows only non-negative
values and variables; however, the profit may be negative for a period. The parameters
and functions can vary at each period. The manufacturer’s operation is constrained to
a maximum production allowance, qc, where he can trade it. The manufacturer’s profit
function is

πm = (w − cm)q − b(q −D)+ − u(q − qc)+ + v(qc − q)+, (3.2)

where u is the purchase price and v the selling price of the production allowance. The
manufacturer purchases production allowance when (q∗− qc)+ is non-zero and sells when
(qc − q∗)+ is non-zero (q∗ denotes the optimal order quantity). In the first case, u is a
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unit cost and in the second case, v is a unit income. The manufacturer then expects to
make a profit of

E[πm] = (w − cm − b)q + bµ− bE(D − q)+ − u(q − qc)+ + v(qc − q)+. (3.3)

When the distribution of the demand is known, Eq. (3.3) can be simplified by E(D−
q)+ =

∫
Ω
(x− q)f(x) dx, where f(x) is the probability density function of demand D with

compact support on Ω.
With a buyback contract, the demand stochasticity permeates the manufacturer’s

profit in addition to the retailer’s profit. The manufacturer decides on wholesale price
and buyback values. Even though a high buyback price may encourage the retailer to
order more, a too-generous buyback price is detrimental to the manufacturer’s expected
profit.

The inner level optimization occurs with the retailer’s profit function as,

πr = rmin(D, q) + (b+ s)(q −D)+ − wq − crq. (3.4)

The terms in Eq. (3.4) depict the revenue, unsold items income, the purchase cost
of the order, and the retailer’s other costs for units ordered, respectively. The retailer’s
expected profit is

E[πr] = (r − s− b)µ− (w + cr − b− s)q − (r − s− b)E(D − q)+, (3.5)

where r > b + s due to economic feasibility. The key conclusions are summarized in the
following propositions.

Proposition 3.2.1. The bi-level optimization in general is (from Eqs. (3.3) and (3.5))

max
(w,b)∈W

JDm s.t. (r, q) = arg max
(r,q)∈R

JDr,

where JDx = α1E[πx
1 ] + α2E[πx

2 ] + . . .+ αnE[πx
n] for x ∈ {m, r},

and αk = β1 · β2 · . . . · βk.

(3.6)

βk represents the discounting factor for the period k, and m and r correspond to the
manufacturer and retailer, respectively. W and R are constraints on the manufacturer
and retailer.

The distributionally robust (DR) bi-level optimization is

max
(w,b)∈W

Jm s.t. (r, q) = arg max
(r,q)∈R

Jr,

where Jx = α1Π
x
1 + α2Π

x
2 + . . .+ αnΠ

x
n for x ∈ {m, r},

(3.7)

and Πm and Πr, where r > b+ s, are players’ expected profits’ tight lower bounds for the
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case with full information;

E (πm(q, w, b)) ≥ (w − cm − b)q + bµ− b

2

(√
σ2 + (q − µ)2 − q + µ

)
−

u(q − qc)+ + v(qc − q)+ ≡ Πm

(3.8)

E (πr(q, w, b, r⃗)) ≥ (r − s− b)µ− (w + cr − b− s)q−
(r − b− s)

2

(√
σ2 + (q − µ)2 − q + µ

)
≡ Πr.

(3.9)

Hence, Jx ≤ JDx, i.e., both DR players payoffs are a tight lower bound for the case
with full information.

Proof. See Appendix A.

Proposition 3.2.2. The following holds in a DR framework:
For any feasible decision set (wk, r⃗k, bk) at period k, the optimal order quantity is

qk(wk, r⃗k, bk) = µk (⃗rk) + σk (⃗rk)Λk(wk, rk, bk),

Λk =
2ηk − 1

2
√

ηk(1− ηk)
, ηk =

rk − wk − crk
rk − sk − bk

.
(3.10)

Proof. See Appendix B.

Proposition 3.2.3. The optimal order quantity is increasing in buyback price.

Proof. Following from Eq. (3.10),

∂q

∂b
=

ση

4(r − s− b)(η(1− η))
3
2

. (3.11)

3.3 Numerical Implementation

In this section, we offer illustrative instances of the solution algorithm expounded in
Section 3.2 From Eq. (3.1), Dk (⃗rk) = µk (⃗rk) + σk (⃗rk)εk we exemplify a price history-
dependent demand where the retail price of period k influences periods k, k + 1, and
k+2, i.e., Dk = Dk(rk−2, rk−1, rk). In our numerical illustrations, we choose the following
form of the demand.

Dk(rk−2, rk−1, rk) = Φk(rk−2, rk−1)µ̃k(rk) + Φk(rk−2, rk−1)σ̃k(rk)εk,

Φ1 ≡ 1, Φ2 = eγ2(R−r1), Φk = eγk(rk−2−rk−1) for k ∈ {3, . . . , n},

µ̃k(rk) = 100− 2rk, and σ̃k(rk) = 0.2µ̃k(rk).

(3.12)
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The parameters γ and R represent the strength of a current deviation to the future
demand and reference retail price respectively. This choice aims to streamline complexity
while enabling a comprehensive exploration of the independent role also the interplay
between buyback, C&T , and the effective price history.

A multi-period model sans the price history effect examines a recurring game scenario;
To this extent, all periods adhere to the same optimal policy, leaving no opportunity for
strategic pricing maneuvers. In contrast, the model incorporating the influence of the
historical prices not only steers the channel towards outcomes that mirror reality but
also exhibits the potential to enhance the channels’ value. This elevation is facilitated by
its ability to stimulate future demand through the strategic reduction of current prices.

The parameters set of cmk = 10, crk = 2, βk = 0.97, R = 40, γk = 0.02, sk = 0, k ∈
{1, . . . , n} and n = 12 is used in upcoming cases. More information about the parameters
and other functions, employed in examples, are provided in the next sections.

3.3.1 The Effect of Buyback Contracts

We initiate our numerical exploration by introducing unconstrained models that encom-
pass both scenarios with and without a buyback contract (the model with buyback is
named the base model later in this paper). In this context, we operate under the as-
sumption of an absence of environmental constraints while the participating entities re-
main engaged in a buyback contract (and non-buyback) that accounts for historical price
influences. As outlined in section 3.2, our approach encompasses dependent bilevel opti-
mization, including manufacturer optimization at the outer level and retailer optimization
at the inner level. For this example, the player’s expected profits with a buyback contract
from the expressions in Eqs. (3.8) and (3.9) are

Πm
k (wk, bk, r⃗k) = (wk − cmk )qk(wk, bk, r⃗k)−

bk
2

(√
σ2
k (⃗rk) + (qk(wk, bk, r⃗k)− µk (⃗rk))

2 + qk(wk, bk, r⃗k)− µk (⃗rk)

)
.

(3.13)

Πr
k(wk, bk, r⃗k) = (rk − sk − bk)µk (⃗rk)− (wk + crk − sk − bk)qk(wk, bk, r⃗k)−

(rk − sk − bk)

2

(√
σ2
k (⃗rk) + (qk(wk, bk, r⃗k)− µk (⃗rk))

2−

qk(wk, bk, r⃗k) + µk (⃗rk)

)
.

(3.14)

The non-buyback results are derived from,

Πm
k (wk, r⃗k) = (wk − cmk )qk(wk, r⃗k) (3.15)
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Πr
k(wk, r⃗k) = (rk − sk)µk (⃗rk)− (wk + crk − sk)qk(wk, r⃗k)−

(rk − sk)

2

(√
σ2
k(r⃗k) + (qk(wk, r⃗k)− µk (⃗rk))2 − qk(wk, r⃗k) + µk (⃗rk)

)
.

(3.16)

Using Eqs. (3.13) and (3.14) for the model with buyback contract and Eqs. (3.15)
and (3.16) for the non-buyback model, and parameter set {cmk , crk, βk, R, γk, sk, n}, the
players’ profits are illustrated in Figure 3.1.

Figure 3.1: Optimal profits, the models with and without buyback contracts

In this example, while the manufacturer obtains a higher value through a buyback
contract, the retailer pays the cost of carrying lower risk;

Jm
Buyback = 3105, Jr

Buyback = 1611,

Jm
Non−buyback = 2988, Jr

Non−buyback = 1666.

The manufacturer observes a 4% gain, while the retailer experiences a 3.3% loss.
This outcome becomes evident upon examining the decisions illustrated in Figure 3.2,
denoted as (r∗, w∗, b∗). The manufacturer strategically introduces a non-zero buyback
price, which is paired with a higher wholesale price. This approach compensates for
the additional incurred risk due to the buyback arrangement promoting the retailer to
respond by raising the retail price and the order quantity (Figure 3.3). This dynamic
reveals that the buyback pricing in this scenario stimulates the retailer to ramp up their
order volume.
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Figure 3.2: Optimal prices, the models with and without buyback contracts

In a model with the buyback contract, the wholesale prices operate within the range
of [26.3, 28.2] while the corresponding buyback prices fall within the span of [16.3, 18.2].
Initially, this buyback price- equivalent to 64− 65% of the wholesale price- might appear
overly generous or surprising. However, when considering the progression of wholesale
price increments compared to the model lacking the buyback contract, it becomes evident
that the cost associated with the buyback is offset by an average wholesale price increase
of ≃ 7%.

Figure 3.3: Optimal order quantity, the models with and without buyback contracts
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3.3.2 Buyback and Cap-and-Trade Policy versus only Buyback

Within the framework of the C&T policy, the cost of procuring a production allowance
commonly surpasses its sales price. We have assumed that any excess production al-
lowance cannot be rolled over or utilized in subsequent periods. Hence, when the manu-
facturer encounters an excess allowance situation and determines that the optimal solu-
tion falls below the allowed capacity, the prudent course of action is to sell the surplus.
Failing to do so would result in the forfeiture of potential revenue.

To illustrate this example, Eqs. (3.8) and (3.9) are considered. The parameter con-
figuration {cmk , crk, sk, βk, R, γk, n} is the same as in the previous section (the base model,
only with buyback). The selling and buying prices used for this case are uk = 1.5, vk = 1.
The insights drown from this example are embodied in Figure 3.4, which elucidates the
profit trajectories of two distinct models: the model subject to the constraints of the
C&T policy and buyback contract and the model only with buyback contract.

Figure 3.4: Optimal profits, buyback with C&T policy model (CT) vs. buyback only
(BB)

Within this scenario, the application of the C&T policy results in a reduction of the
players’ values leading to Jm

CT = 3096, Jr
CT = 1481. In contrast, without the influence of

the C&T policy, the values are different, with Jm
no−CT = 3105, Jr

no−CT = 1611.
Interestingly, despite the overall diminishment in value, the manufacturer secured

higher profits during period 4 under the C&T policy. However, the shift in strategy
translates to a marginal 0.29% decrease in the manufacturer’s overall value, while the
retailer experiences a more substantial decline of 8.1%. These values are rooted in the
price dynamics and order quantity delineated in Figures 3.5, 3.6,
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Figure 3.5: Optimal prices with and without C&T constraint

where the imposition of the capacity constraint is met with heightened prices for both
players. The manufacturer price spectrum which initially ranged from [26.3, 28.3] in the
model only with a buyback contract, undergoes a shift to [27.4, 29] in the presence of
the C&T policy’s constraints in addition to the buyback contract. Similarly, the retailer
price span, initially [39.8, 41] in the model only with buyback, adjusted to [40.2, 41.1]

under the influence of the C&T policy plus buyback contract.

Figure 3.6: Optimal volumes with and without C&T constrained

Observing the combined insights offered by both plots in Figure 3.6, the optimal chan-
nel behavior becomes evident. This optimal configuration emerges when the manufacturer
chooses to sell the surplus proportion of their production allowance during periods 1, 3,
and 5-7 while opting to buy during the remaining periods. The dynamic is depicted in
the right plot of Figure 3.6, where positive values correspond to the selling volume and
negative numbers denote the buying volume.
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3.3.3 Price Sensitivity of the Cap-and-Trade Policy

The pricing structure within the C&T policy wields a substantial influence over the strate-
gic choices undertaken by players in the channel. One significant implication emerges
when the selling price surpasses w − cm − b. In this scenario, if production is not man-
dated, the manufacturer may opt to sell production allowance more than engaging in
production activities. Conversely, the impact of a low marginal purchase price lies in
its potential to stimulate heightened production levels within the channel provided this
aligns with optimality. Employing the base parameters set {cmk , crk, sk, βk, R, γk, n}, profits
are illustrated in Figure 3.7.

Figure 3.7: Optimal profits

The scenarios mentioned yield values

a: v = 1, u = 1.5 3095.7 1481
b: v = 2, u = 2 3096.4 1412
c: v = 1, u = 8 3094 1444
d: v = 10, u = 12 3318 763
Base model: v = 0, u = 0 3105 1611

Within this context, our base model serves as the reference point, characterized by
Jm = 3105 and Jr = 1611.

Scenario ‘d’ emerges as advantageous for the manufacturer, although it conversely
diminishes the retailer’s value to the lowest point (compared to the other scenarios). In
contrast, scenario ‘a’ presents the manufacturer with the lowest value while elevating the
retailer’s position within other scenarios. To provide a visual understanding, we refer to
Figures 3.8, 3.9, where the optimal order quantities and prices are depicted.
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Figure 3.8: Optimal Volumes

The maximum allowance is depicted by a black line in the optimal order quantity
figure (left). Following the pattern of ordering, the right figure showcases the trading
type.

Notably, in scenario ‘d’ the allowance trading prices act as an incentive for the manu-
facturer to adopt a higher pricing strategy throughout each period. This strategic move
effectively curtails the retailer’s order volume, thereby aligning with the intent to limit ca-
pacity allowance consumption. Consequently, the new optimal decisions (r∗, w∗, q∗) along
with the selling profit of production allowance make a higher profit for the manufacturer
(in all scenarios and baseline model). Elevating the trading prices inevitably leads to a
corresponding increase in the manufacturer’s payoff while concurrently diminishing the
retailer’s payoff.

Figure 3.9: Optimal prices
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3.4 Concluding Remarks

Our study delves into a multi-period Stackelberg game imbued with distributional-robust
price-history dependent demand, unraveling intricate dynamics within the context of our
proposed model. This innovative framework encapsulates a unified contract strategy (sin-
gle contract) that effectively addresses all periods’ decisions simultaneously. Additionally,
the introduction of a buyback contract represents a strategic risk-sharing mechanism,
where the manufacturer also undertakes the uncertainty inherent in demand fluctua-
tions. To further enhance its environmental impact, our model embraces a Cap-and-Trade
(C&T ) policy, serving to regulate pollution.

The exploration unfolds through numerical examples that illuminate the profound
impact of a buyback contract on channel results. Moreover, we delve into the intricate
interplay of trading prices within the C&T policy on channel behavior.

For instance, the model elucidates that the viability of a generous buyback price can
hinge on the probability of leftover inventory—referring to the scenario where the retailer
orders less than the demand mean. In this context, a seemingly high buyback price, which
comes initially along with an elevated wholesale price and order volume, can ultimately
generate heightened profits for the manufacturer.

Importantly, the interplay between the players through a buyback contract doesn’t
universally induce increased order volume from the retailer. because a lower risk for the
retailer is fulfilled by a higher wholesale price. Thus, optimizing the buyback price is a
crucial strategic consideration.

The model also illuminates that the production capacity constraints enforced by the
C&T policy do not uniformly impose restrictions. Instead, their impact shifts based on
the prevailing prices of production allowances. When the selling price remains below the
manufacturer’s profit from production, the allowance trade-off fails to yield higher profits
for the players compared to the baseline model. However, as the selling price of the
production allowance aligns with and exceeds the manufacturer’s profit from production,
the manufacturer reaps amplified profits from production allowance trading, while the
retailer consistently faces a disadvantageous position.

Appendix A

To compute the expected value of the retailer and manufacturer profits, from Eqs. (3.3)
and (3.5), the value of E(D − q)+ is required. Referring to the paper of Fakhrabadi and
Sandal (Fakhrabadi & Sandal 2023b),

(D − q)+ =
1

2
{|D − q|+(D − q)} , (3.17)
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E(D − q)+ =
1

2
{E[|D − q|] + E(D − q)} . (3.18)

From Cauchy-Schwartz inequality

E [|D − q|] ≤
√

E
[
(D − q)2

]
=

√
σ2 + (q − µ)2. (3.19)

Therefore

E(D − q)+ ≤

(√
σ2 + (q − µ)2 − q + µ

)
2

. (3.20)

The inequality in Eq. (3.20) introduces a tight lower bound on expected retailer profit
for any distribution with the same µ and σ. Hence Eqs. (3.3) and (3.5) are recast as

E[πm] ≥ (w−cm−b)q+bµ− b

2

(√
σ2 + (q − µ)2 − q + µ

)
−u(q−qc)++v(qc−q)+ ≡ Πm,

(3.21)

E[πr] ≥ (r − b− s)µ− (w + cr − b− s)q − (r − b− s)

2

(√
σ2 + (q − µ)2 − q + µ

)
≡ Πr.

(3.22)
There is at least one distribution (namely the worst distribution) that Eqs. (3.21)

and (3.22) hold with equality.

Appendix B

Notice that for the economic feasibility (r > b + s), Πr
k is strictly concave in qk. For

any feasible set of (wk, r⃗k, bk), the unique nonnegative solution of ∂Πr
k

∂qk
= 0 is the global

maximum given by

qk = µk (⃗rk) + σk (⃗rk)Λk, Λk =
2ηk − 1

2
√

ηk(1− ηk)
, ηk =

rk − wk − crk
rk − sk − bk

. (3.23)

Since max
q

(α1Π
r
1 + α2Π

r
2 + · · ·+ αnΠ

r
n) ≤ max

q1
(α1Π

r
1) + · · ·+max

qn
(αnΠ

r
n) holds with

equality by Eq. (3.23), the result is guaranteed to yield the maximum.
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