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Summary of the thesis “Models for Spatial Consequences of

Changes in Commuting Patterns”

Provided here is a brief overview of the different parts of the thesis, which consists of four
separate papers all related to modeling of journey to work.

Paper1 Land use and transportation interaction modelling frameworks

The paper reviews land-use/transport interaction models (LUTI) and their evolution over the
past six decades. The review explores the different modeling frameworks and methodologies
applied in LUTI modeling over the years. The categorization proposed by Iacono (2008) is
adopted to classify LUTI models into three categories: spatial interaction/gravity-based mod-
eling, econometric modeling, and microsimulation/other computer-based modeling. Spatial in-
teraction/gravity models referred to as ”Large-scale” models, emerged by combining the Lowry
and four-step models. These models commonly analyze spatial interactions and gravity in
transportation flows. Econometric models, the second category of LUTI models, incorporate
microeconomic theories such as bid-rent theory and random utility theory to enhance the price
mechanism in urban formation. Based on a general equilibrium framework, some of these models
expand on computable general equilibrium (CGE) models initially developed for analyzing ur-
ban space formation. In the early 1990s, the emergence of the New Economic Geography (NEG)
theory significantly impacted spatial economics. The theory emphasizes increasing returns to
scale and transportation costs as explanations for forming large agglomerations. Building upon
Krugman’s work (1991), researchers developed multiregional input-output models referred to
as Spatial Computable General Equilibrium (SCGE) models, incorporating characteristics of
the NEG theory. In the early 1990s, microsimulation models for transportation and land use
emerged, including agent-based, cell-based, and multi-agent models. In the 2000s, researchers
developed comprehensive urban microsimulation models capable of capturing population dy-
namics and the urban environment. One notable model serving as a foundation for this work
is the spatial equilibrium model formulated by McArthur (2014). This model aimed to balance
large-scale models and SCGE models by incorporating intraregional commuting and shopping
patterns typically associated with large-scale models.

Paper 2 An agent-based approach to study spatial structure effects on estimated distance de-
terrence in commuting.

The paper presents an experimental design to examine spatial structure’s impact on estimates
of the distance deterrence parameter in a doubly-constrained gravity model. The design utilizes
an agent-based simulation framework that considers both commuting and migration responses
to changes in spatial structure, considering labor and housing market factors. The agent-based
experiments generated a population similar to the demographics of Norway. Each agent is
equipped with a utility function and seeks to maximize their utility by considering their net
wage after commuting costs and the value of their house. By employing this experimental
design, we provide a consistent approach to interpreting the distance deterrence parameter in
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a spatial interaction model and assessing the stability of parameter estimates across different
controlled experiments. We investigate how estimates of the distance deterrence parameter
vary based on various spatial structure characteristics. Specifically, we analyze the impact of
the central business district’s location, clustering of local and basic sector jobs, changes in the
road transportation network, and the compactness of the towns within the geography. The
main contribution of the paper lies in demonstrating how these parameter estimates are in-
fluenced by spatial structure characteristics. The experiments presented in this paper have
demonstrated that different spatial structure characteristics should be explicitly accounted for
to obtain reliable and unbiased estimates of the distance deterrence parameter in spatial labor
market interaction. The results provide a useful guideline for evaluating results in empirical
studies, particularly in the context of interregional comparisons of commuting behavior and
procedures related to predicting induced commuting and willingness to pay for investments in
transportation infrastructure.

Paper 3 An experimental approach to study how commuting behavior reflects preferences,
labor market conditions, and housing prices.

This paper employs an agent-based approach to generate spatial interaction data resembling
the demographic characteristics of the Norwegian population. The study investigates how a
standard spatial interaction model replicates observed trip distribution patterns by conduct-
ing controlled experiments. The research explores the influence of labor and housing market
conditions on trip distribution and examines the impact on estimates of the distance deter-
rence parameter. Additionally, the paper addresses the identification of how travel demand is
affected by household preferences and budget constraints, utilizing the agent-based approach
to differentiate between preference-based and budget-related effects. The decisions regarding
travel behavior are influenced by labor and housing market conditions through budgetary con-
siderations. The experimental design focuses on capturing how the estimates of the distance
deterrence parameter in commuting reflect various aspects of the labor market, the housing
market, and underlying preferences. The findings contribute to both modifications of the stan-
dard spatial interaction model and an enhanced understanding of the interpretation of the
distance deterrence parameter. The experiments, for instance, reveal a consistent trend: when
there are substantial wage disparities but minimal variations in housing prices across towns,
the estimated distance deterrence parameter tends to be low. It is important to note that these
outcomes result from intricate interactions. Consequently, the analysis highlights the signifi-
cance of simultaneously considering shopping, moving, and commuting decisions.

Paper 4 Predicting induced commuting from a new fixed link in the transportation network.

In this paper, we study to what degree a standard spatial interaction model represents a reliable
approach to predicting induced commuting from investments in the road transportation net-
work. The analysis is derived from agent-based data generation, supplemented by observations
from a Norwegian labor market area. The results demonstrate that striving for a model specifi-
cation with the highest possible explanatory power only sometimes leads to the most accurate
predictions. Ignoring relevant information on spatial disparities in wages and housing prices
and failing to account for relocation effects introduce a potentially serious bias in predicting
commuting induced by a new fixed link. The prediction bias depends on the time perspective.
The wider local impacts may lead to substantial under-predictions of induced commuting and
the willingness to pay for a new fixed link. Spatial interaction models should, in particular, be
used with care in cases where the investments lead to substantial improvements in the labor
market accessibility of a previously rural area. In such cases, a cost-benefit assessment should
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be based on a general spatial equilibrium modeling framework to avoid that induced demand
being under-predicted, calling for expensive capacity expansions of the road network.
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Land use and transportation interaction modelling frameworks

Azam Azad Gholami

Abstract

This paper presents a review of integrated land-use/transport models (LUTI) over the
past six decades. The categorization proposed by Iacono et al. [2008] is adopted to classify
LUTI models based on their evolution over time. LUTI models fall into three main cate-
gories: spatial interaction/gravity-based modeling, econometric modeling, and microsimula-
tion/other computer-based modeling. The first category, spatial interaction/gravity-based
modeling, has adopted similar structures to its origins traced back to Lowry’s model (Lowry
[1964]). However, in the early to mid-1980s, these models began to be gradually replaced
by a new type of modeling known as econometric models. Econometric models expanded
upon the understanding of urban formation by incorporating microeconomic theories such
as bid-rent theory (Alonso [1964]) and random utility theory (McFadden [1977]) into their
frameworks. The development of microsimulation models, commonly referred to as ”mi-
crosimulation”, commenced in the early 1990s. Within the domain of microsimulation,
several types of models emerged, including agent-based models, cell-based models for land
use change, and multi-agent models for urban modeling.
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1 Introduction

Large infrastructure investment projects like transportation often generate considerable public
debate between professionals and less professional actors. The costs and benefits of a proposed
project have been almost always a controversial subject, between those in favor of the project
believing the costs are overestimated, and the benefits are underestimated, and the other way
around for those opposing the project (Flyvbjerg [2008], Zhang et al. [2020], Hansen and Ivanova
[2012]). Until the twenty-first century, transportation economics primarily relied on the con-
strictive traditional cost-benefit approach as the other computations were extremely costly. The
traditional cost-benefit appraisal of a new road project involves measuring the benefits of the
road by calculating the consumer surplus users gain from the reduction in generalized costs. It
then deducts the construction costs in market values, as well as the net increase of technological
external costs caused by both existing and induced traffic. In other words, it evaluates whether
the benefits of the road outweigh its costs in economic terms (Bröcker and Mercenier [2011]).

This approach relies on three conditions: markets must be perfectly competitive, welfare dis-
tribution is not a concern, and negative technological externalities outside the transport sector
are negligible (Bröcker and Mercenier [2011]). And we know from economic theory that when
there is a reasonable degree of perfect competition, only the benefits obtained by infrastruc-
ture users in the primary market should constitute the net benefits in a Cost-Benefit Analysis
(CBA) (Hansen and Ivanova [2012], Kanemoto and Mera [1985], Jara-Diaz [1986]). This implies
that other indirect or subsequent benefits may not be considered as they are already reflected
in the primary market benefits.

To clarify, irrespective of the market structure within the transportation sector, market im-
perfections in the transportation-using sectors (secondary markets) will introduce scale effects
into the impact analysis which are not existent in a traditional perfect competition frame-
work (Bröcker and Mercenier [2011], Hansen and Ivanova [2012]). Cost reductions result in
an expansion of production, leading producers to move down the average cost curve. This,
in turn, gives rise to effects that are referred to as wider economic effects of transport cost
reductions, as identified in the (SACTRA [1999]) report. In a perfect competition framework
without externalities, such effects are nonexistent, as the economic welfare gain resulting from
a marginal transport cost reduction is equivalent to the reduction in cost and nothing more.
However, the situation is different in economies of scale, as the marginal welfare gain tends
to exceed the marginal cost reduction (Bröcker and Mercenier [2011], Vickerman [2008]). So,
taking only the direct effects of a project into account, or in other words, using the tradi-
tional cost-benefit approach, may cause an over- or underestimation of the total project-specific
benefits (Harberger [1964], SACTRA [1999]), which in turn may result in suboptimal public
investment strategies (Hansen and Johansen [2017]).

Another type of effect often neglected in the assessment of transportation projects, which
we have focused on is relocation effects. Relocation effects represent the basic component of
what Welde and Tveter [2022] refer to as wider local impacts. Welde and Tveter [2022] define
wider local impacts as the second-order effects that transportation projects have on commu-
nities, while they discuss wider economic impacts as the third-order effects of transportation
projects.

The traditional cost-benefit analysis used for investments in transportation infrastructure
fails to consider the effects of relocation because it is built upon models that assume a fixed
location pattern of jobs and workers. While this may be reasonable in the short term, it is
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only sometimes the case in the long term. Over time, firms and workers should be expected
to respond to the changes in spatial interaction by relocating to areas that offer better oppor-
tunities for profit and residential location preferences. Hence, a response in location choices
should be expected due to a new road. Then again, in the long term, firms and workers take
advantage of the newly available combinations of jobs and residential locations. This is prob-
ably an important part of the explanation for prediction errors in calculating induced traffic
and welfare benefits in traditional cost-benefit appraisals of investments in road transportation
infrastructure. In addition, predictions of how the location pattern is affected are important for
regional policy. For example, whether the investment encourages a more decentralized location
pattern or contributes to centralization and urbanization. Also if such effects are compatible
with ambitions of sustainable development of the economy.

McArthur et al. [2020] highlights two key factors that influence the magnitude and direc-
tion of the error that might occur in case of ignoring the relocation effect: the sensitivity of
people’s migration decisions to distance and the spatial structure of the region. When workers
are sensitive to distance and the change in infrastructure is close to the CBD, the errors can
be significant. Neglecting these effects can result in incorrect predictions of travel demand and
environmental costs, potentially leading to decisions that are suboptimal in terms of equity and
economic efficiency (McArthur et al. [2020]).

Therefore, it is argued that a more comprehensive economic analysis framework may be
needed to address these limitations of the traditional cost-benefit analysis approach. A frame-
work which is integrating transport with the land use perspective. There are, however, several
such models in the literature, which we discuss later in this paper. The following are the most
common scientific methods for estimating the effects of infrastructure investments that can be
found in the literature (Oosterhaven et al. [2001], Tavasszy et al. [2002], Hansen and Ivanova
[2012]):

Micro surveys with firms
Estimation of quasi production functions
Partial equilibrium potential models
Macro and regional economic models
Land-Use Transportation Interaction (LUTI) models

Spatially detailed models like LUTI models are considered to be the tools frequently used
for simulating the effects of significant infrastructure investments (Hansen and Ivanova [2012],
Hansen and Johansen [2017]).

This literature review paper is organized as follows. Section 2 provides a brief history of the
development of LUTI models over time and the categories into which they are divided in the lit-
erature. Also, the general structure of LUTI models is discussed, focusing on UrbanSim, which
is recognized as the most widely used LUTI model. In Section 3, SCGE models are reviewed in
addition to the modeling framework of an SCGE model. Section 4 reviews a spatial equilibrium
model formulated by McArthur et al. [2014]. Finally, in section 5, the agent-based microsim-
ulation model that we developed is compared with the other models, with a particular focus
on McArthur et al. [2010, 2014]’s model, which served as the fundamental basis for our approach.
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2 Land Use Transportation Interaction Models (LUTI)

Land Use and Transportation Interaction Models (LUTI) are powerful tools for studying how
land use and transportation systems interact to shape the spatial patterns of human activ-
ity in urban and regional contexts. The basic idea behind these models is that land use and
transportation are fundamentally linked (Hansen [1959], Wegener [2004]). The interdependence
between land use and transportation has given rise to the concept of the “land-use transport
feedback cycle”. The “land-use transport feedback cycle” (Kelly [1994], Wegener and Fürst
[1999]) suggests that changes in land use can affect transportation demand, which in turn
can affect accessibility and the spatial distribution of land uses. This cyclical process can lead
to a self-reinforcing feedback loop, ultimately resulting in a complex and dynamic urban system.

Land use and transportation modeling history can be traced back to the late 1950s (Batty
[1979]), but the first operational LUTI model was built in the early 1960s. Iacono et al. [2008]
has proposed three categories to classify LUTI models based on their evolution over time (see
figure 1). The categories are: spatial interaction/gravity-based modeling, econometric modeling,
and microsimulation/other computer-based modeling. Lowry’s model (Lowry [1964] initiated
the first category of models based on theories of spatial interaction, including the gravity model
that was popular in quantitative geography at the time. Many of these models have similar
structures to Lowry’s model (Iacono et al. [2008]). A thorough review of this model and its
variations is presented in the work by Horowitz [2004]. According to Iacono et al. [2008], models
based on spatial interaction frameworks were gradually replaced by models grounded in random
utility theory and econometric methods from the early to mid-1980s.

The development of transportation and land use models known as “microsimulation” started
in the early 1990s. During this time, significant advancements in computational power facilitated
the operation of these models. The various types of microsimulation models that emerged
included agent-based models, cell-based models for land use change, and multi-agent models
for urban modeling. In the early 2000s, researchers started focusing on creating comprehensive
urban microsimulation models that captured the dynamics of population changes and the urban
environment. These models aimed to simulate the choices made by individuals within the urban
setting, considering the evolving nature of the population and the urban environment itself. In
the following, further information regarding each category will be provided.

7



Figure 1: The evolutionary progression of Land Use and Transportation Models over time
(adapted from Iacono et al. [2008])

2.1 Spatial Interaction Models

The earliest land use and transportation models are based on the spatial interaction framework.
While there were many different formulations of spatial interaction models, most of them mainly
centered their evaluation on the gravity model (Iacono et al. [2008]).

In gravity models of trip distribution problems, spatial interaction is explained by three
main factors: the distance between an origin and a destination, the generativity of origins, and
the attraction of destinations. For commuting, the generativity of origins is generally defined
in terms of the number of workers residing in the zone. At the same time, the attraction of a
destination is measured by the local number of jobs (see Sen and Smith [2012]). A standard
formulation of a doubly constrained gravity model is:

Tij = AiOiBjDj exp(−βdij)

Ai =




j

BjDj exp(−βdij)



−1

Bj =


i

AiOi exp(−βdij)

−1

where:

Tij is the estimated number of commuters from origin i to destination j, i, j = 1, ..., n

Oi is the observed number of trips originating from zone i = 1, ..., n

Dj is the observed number of trips destined for zone j = 1, ..., n
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dij is travelling time by car, from origin i to destination j; i, j = 1, ..., n

β is a distance deterrence parameter. Ai and Bj are the balancing factors that ensure the
fulfillment of the marginal total constraints for this trip distribution problem;

∑
j Tij = Oi and∑

i Tij = Dj .

The standard doubly-constrained gravity model is valuable for appraising transportation in-
vestment projects. The basis for determining the benefits in a cost-benefit analysis is traffic, and
a doubly-constrained gravity model as a pure trip distribution model can work correctly for this
purpose. However, the issue is that transportation investments have impacts beyond just traffic,
affecting the land-use decisions made by households and firms over the long term, which in turn
can impact traffic patterns. Moreover, the gravity model’s static nature assumes that existing
land-use patterns served by existing transportation will be maintained in the future, including
prices, qualities, and service levels (Lee Jr [1973]). This assumption can lead the model to be
biased in estimating the effects of infrastructure investment. Additionally, the model is valid at
the metropolitan scale but may not have explanatory power at the neighborhood level due to the
ecological fallacy of attributing individual behavior from aggregate relationships (Lee Jr [1973]).

Spatial Interaction/Gravity models were initially developed by combining the Lowry model
(Lowry [1964]) and the four-step model (Mitchell and Rapkin [1954]). The model called ITLUP
(Integrated Transportation and Land Use Package) developed by (Putman [1974]) is considered
the first LUTI package. Other models like Leeds Integrated Land Use (LILT) (Mackett [1983]),
CALUTAS (Nakamura and Hayashi [1981], Nakamura et al. [1983]), DORTMUND (Wegener
[1985]), AMERSFOORT (Floor and De Jong [1981]), MEP (Geraldes et al. [1978]), and OS-
AKA (Amano et al. [1983]) also belong to this category as they employed gravity models to
allocate land use distribution (Kii et al. [2016]).

Some models incorporated elements of econometric theory into the system to some extent.
They used concepts like utility maximization and market equilibrium techniques to evaluate
land use’s economic impact and efficiency. For instance, the Technique for the Optimal Place-
ment of Activities in Zones (TOPAZ) (Brotchie et al. [1980]) and SALOC models (Lundqvist
[1984]) employed a cost minimization framework to allocate activities to different zones. TOPAZ
also included predictive mechanisms within the system by considering accessibility in a gravity
model (Kii et al. [2016]).

The first category of LUTI models was characterized by their large and complicated nature,
which made them opaque to decision-makers. So, these Large-scale models were only applied
to a limited number of specific urban areas and did not gain widespread usage, compared to
more partial models such as the four-step transportation model (Webster et al. [1988], Kii et al.
[2016]). These models were referred to as ”Large-scale”in the literature (Lee Jr [1973], Boyce
[1988], Lee [1994]).

One drawback of these models was that they did not incorporate the explicitly priced land
or floor market into their representation (Kii et al. [2016]). While some models incorporated
pricing mechanisms, their approach to doing so was somewhat ad hoc in manner. Recogniz-
ing this limitation, Lee Jr [1973], for instance, identified several flaws in these large-scale ur-
ban models, including their hyper-comprehensiveness, grossness, hungriness, wrongheadedness,
complicatedness, mechanicalness, and expensiveness (see Lee Jr [1973]). These flaws highlight
the gap between large-scale models and their intended users, urban planners, and policymak-
ers (Te Brömmelstroet et al. [2014]). Additionally, Batty [1979] suggests that the failure of
urban models was due to their immaturity as a science, resulting from the lack of sufficient
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theoretical foundations.

The criticisms of the models prompted the emergence of theories relative to urban models. In
response, the International Study Group on Land-Use/ Transportation Interaction (ISGLUTI
1981-1991) was established to assess the performance of LUTI models using a standardized
testing procedure. The study conducted by ISGLUTI yielded two main findings. Firstly, while
there is a general alignment among models regarding the direction and magnitude of policy
impacts, the level of agreement decreases as the models’ parameters become more detailed or
disaggregated. Secondly, the study suggested that a proper pricing mechanism is preferable
over a set of rules for representing transferable locational preferences. These findings played a
significant role in guiding the development of next-generation LUTI models (Kii et al. [2016]).

2.2 Econometric Models

In keeping with the results of the ISGLUTI study, the second generation/category of LUTI mod-
els, referred to as Econometric models by Iacono et al. [2008], has further elaborated the price
mechanism in urban formation. This is achieved by incorporating microeconomic theories such
as bid-rent theory (Alonso [1964]) and random utility theory (McFadden [1977]) into the models.
Examples of such LUTI models include MUSSA (Martinez [1996]), RURBAN (Miyamoto and
Kitazume [1989]), and STASA (Haag [1990]), which combined these two theoretical frameworks
to model the location choices made by residents and enterprises in urban areas.

IRPUD was developed by (Wegener [1982]), a comprehensive land-use transport model fo-
cusing on individual households and their location choices. Unlike conventional models, the
IRPUD model challenges the notion of reaching an equilibrium in land-use simulation peri-
ods. It recognizes that equilibrium is only sometimes achieved due to a dynamic environment
and slow response times of various stakeholders such as households, businesses, developers,
and planners. The model considers the price of new dwellings and commuting distance to the
main workplace as significant constraints in determining location choices (Moeckel et al. [2018]).
The Metroscope model (Conder and Lawton [2002]) developed for Portland, Oregon, examines
the costs associated with housing, transportation, food, health, and other expenses to ensure
that household budgets are not surpassed. PECAS (Hunt and Abraham [2003]) is another
land-use model focusing on achieving an equilibrium between competing demands for devel-
opable land. It considers available floor space, prices, accessibility, and other location factors
to determine household relocations. PECAS combines the bid-rent approach into a spatial eco-
nomic model with a microscopic land development model. DELTA (Simmonds and Still [1999]),
TIGRIS XL (Zondag et al. [2015]), MEPLAN (Echenique et al. [1990], Echenique [2004]) and
TRANUS (De la Barra [1989]), PECAS (Hunt and Abraham [2005]), (CATLAS) (Anas [1982]),
METROSIM (Anas and Arnott [1994]), RELU-TRAN (Anas and Liu [2007]) are examples of
this category of LUTI models (Kii et al. [2016], Moeckel et al. [2018]). The works by Anas and
associates are built upon a general equilibrium framework, allowing for the calculation of precise
economic benefits. These models are considered an extension of computable general equilibrium
(CGE) models (Taylor and Black [1974]), initially created to analyse urban space formation.

To summarize, the econometric models successfully incorporated behavioral theory into ur-
ban modeling, which was disregarded in the first category of LUTI models. This incorporation
led to a more robust theoretical foundation for urban models, and the adaptable nature of the
theory allowed for the inclusion of diverse factors relative to urban activities (Kii et al. [2016],
Bierlaire et al. [2015]).
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2.3 Microsimulation and the other computer-based models

In the 1960s, (Orcutt [1961]) suggested the concept of microsimulation, which involves simu-
lating individuals instead of modeling the population as a whole (Moeckel et al. [2018]). The
microsimulation model usually employs an agent-based approach in which the behavior of dis-
aggregated agents, such as individuals, households, and firms, is simulated within the limits of
time and space (Kii et al. [2016]). However, it was not until the 1990s that the adoption of
activity-based models in transportation was prompted by emerging social changes, including
the development of information communication technologies (ICTs), increasing environmental
concerns, socio-demographic changes (Ben-Akivai et al. [1996], Kitamura et al. [1996]), and the
associated travel demands of individuals and households (Buliung and Kanaroglou [2007]).

Information technology (IT) advancement allowed individuals to alter their activity pat-
terns by changing the timing and resources they previously used for travel. As environmental
planning in transportation became more important, there was a need for diverse and dynamic
instruments of travel demand management. Additionally, socio-demographic changes such as
an aging population, an increasing female workforce, and changing household structures signif-
icantly affected travel demand. Activity-based models with a high spatiotemporal degree were
developed to incorporate the influence of these social changes. These models considered activity
substitution between in-home and out-of-home activities and activity scheduling that allocated
time for travel to different activities (Kii et al. [2016]).

The need for changes in transportation models also affected urban models. Wegener’s
work (Wegener [2004]) highlighted the challenge of introducing activity-based models in ur-
ban modeling. Individual and household travel decisions are influenced by spatial and temporal
constraints within a diverse urban landscape. A single global model would not adequately cap-
ture the local variations in relationships between activities, travel outcomes (such as activity
duration, frequency, and mode), and common factors related to income, mobility, and urban
form (Buliung and Kanaroglou [2007]). Therefore, efforts were made to develop microsimula-
tion models with a higher spatiotemporal degree of land-use transportation interaction in the
2000s (Moekel et al. [2003], Salvini and Miller [2005]).

Accessibility analysis also emerged as a challenge for transportation policy, as it indicates
the interaction between land use and transportation. Developing a new accessibility indicator
in activity-based models required significant efforts, as these models are based on inhabitants’
utility (Geurs and Van Wee [2004]). Dong et al. [2006] proposed activity-based accessibility
indicators that could be estimated based on individuals’ travel behavior and personal utility.
In the pursuit of more comprehensive models, an agent-based demand modeling framework for
large-scale microsimulations was presented by (Balmer et al. [2006]). This framework utilized
simple algorithms with the potential for further improvement to validate the resulting demand.
Furthermore, the advantages of activity-based models over trip-based models were discussed
by (Shiftan [2008]), particularly in understanding travelers’ responses to specific land-use policies
like bicycle path provision, local shops, safety improvements, and school quality. ILUTE (Salvini
and Miller [2005], Farooq and Miller [2012]) and ILUMASS (Moekel et al. [2003], Strauch et al.
[2004]) are examples of comprehensive microsimulation models that employ this agent-based
approach. The first successful integration of microsimulation land-use and transport models
was achieved by (Waddell et al. [2010]) in their work for San Francisco (Moeckel et al. [2018]).
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2.4 General structure of LUTI models

Most operational LUTI models consist of three primary sub-model components: land use, socio-
demographic, and transportation. The sub-models may either be tightly integrated or loosely
connected to establish input-output relationships during the execution of the model (Acheam-
pong and Silva [2015]). See Figure 2 .

Figure 2: Generalized structure of an operational LUTI model (adapted from Acheampong
and Silva [2015])

The socio-demographic sub-model includes socioeconomic variables that influence house-
holds' location selection and travel behavior. The level of detail captured in socio-demographic
factors and processes varies among model platforms. For example, DELTA-START (Simmonds
and Still [1999], Simmonds [2001]) and UrbanSim (Waddell [2000]) have detailed demographic
transition sub-models that simulate the dynamics of household formation, dissolutions, and
transformations, as well as employment transition models that simulate job creation and re-
moval. In most LUTI modeling frameworks, such as LILT (Mackett [1983, 1990, 1991]),
MUSSA–ESTRAUS (Martinez [1992, 1996]) and RAMBLAS (Veldhuisen et al. [2000]), the
demographic sub-models typically categorize households into segments consisting of socioeco-
nomic groups that share similarities. Some operational models for instance DELTA-START and
IRPUD (Wegener [1982, 1996, 2004]) also include migration processes as part of their socio-
demographic sub-models (Acheampong and Silva [2015]).

The land-use sub-model typically contains valuable information about the urban land
market, such as residential and employment space ratios, land values, dwelling and occupancy
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types, land-use mix, housing vacancy, demolition, and redevelopment. According to (Acheam-
pong and Silva [2015]) most existing models such as IMREL, KIM, MEPLAN, TRESIS, MET-
ROSIM, MUSSA, PECAS, RURBAN, TLUMIP, TRANUS, DELTA and URBANSIM has de-
tailed urban land and housing market sub-models.

The Transportation sub-model Two main types of transportation sub-models exist in
operational Land Use and Transportation Interaction (LUTI) modeling frameworks: Four-step
and Activity-based models. The traditional Four-step approach involves a sequence of four
stages - trip generation, trip distribution, mode choice, and route assignment - to model travel
demand (McNally [2000]). In trip generation, the number of trips generated by households and
businesses is estimated based on socioeconomic and land use factors. In trip distribution, the
spatial pattern of trips is estimated, often using gravity models. In mode choice, the mode of
transportation for each trip is estimated based on factors such as travel time, cost, and avail-
ability. Finally, in traffic assignment, the trips are assigned to specific routes, and volumes are
estimated (de Dios Ortúzar and Willumsen [2011]).

On the other hand, Activity-based models offer a more behaviorally-oriented approach (such
as aggregate utility-based, microsimulation, and other methods in LUTI modeling) to capture
travel behavior by modeling the underlying activities that generate trips (Acheampong and
Silva [2015]). Activity-based transportation sub-models have been developing since the 1990s,
offering potential advantages such as the ability to model behavioral responses to travel demand
management policies and avoiding weak assumptions inherent in aggregate spatial interaction
models (Wegener [2004]). However, despite these benefits, activity-based transportation sub-
models remain slow in adoption and use in practice (Rasouli and Timmermans [2014], Recker
[2001]). Instead, most existing operational LUTI models still rely on the traditional Four-step
approach as their transportation sub-model. This is likely due to the complexity of Activity-
based models, which require more data and computational resources to implement compared
to the Four-step approach. Additionally, the Four-step approach is more familiar and easier to
interpret for policymakers and practitioners (Rasouli and Timmermans [2014]).

As the Figure 2 illustrates, the land-use and transportation sub-models are connected in a
way that the transportation sub-model includes a component that assigns trips to specific routes
in the transportation network based on the land-use data. In contrast to the fixed nature of
transportation networks in most transportation sub-models, the coupling between the land-use
and transportation sub-models is dynamic, meaning that changes in land-use and transporta-
tion can influence each other (Acheampong and Silva [2015]). The transportation sub-models
used in many models hold the extent and capacity of transportation networks constant or treat
them as policy variables, which limits the ability to capture evolutionary dynamics in trans-
portation networks (Iacono et al. [2008]). However, the transportation sub-models account for
factors such as congested networks, travel times, and distance, affecting generalized transport
costs. Using the transport costs calculated by the transportation sub-models, accessibility in-
dexes can measure how easy or difficult it is to access different locations from different starting
points (Geurs et al. [2012], Hanson [2004]). These accessibility indexes are then fed back into
the land-use system, where they can influence the land-use patterns. This feedback loop allows
the two sub-models to interact and evolve over time. In the following, UrbanSim model will be
explained as one of the most frequently used LUTI models, including its structure and process-
ing.
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2.5 UrbanSim

UrbanSim (Waddell [2000, 2002], Waddell and Ulfarsson [2004], Waddell et al. [2006], Guide
[2011]) is an extensible agent-based urban simulation model developed by Paul Waddell and
his team first at the University of Washington, Seattle, later at the University of California,
Berkeley. The model was initially developed in 1996 as part of the Transportation and Land Use
Model Integration Project (TLUMIP) initiated by the Oregon Department of Transportation
(Waddell [2002]). The original UrbanSim model was designed to work in conjunction with a
traditional four-step model in Eugene-Springfield and got developed to run with an activity-
based travel model in Honolulu, Hawaii (Hunt et al. [2005]).

2.5.1 Data requirements and preparation

UrbanSim models take the base year data, access indicators from the external travel model, and
control totals derived from external macroeconomic forecast models as the input. In UrbanSim,
the base year data store contains the initial state of a scenario (Waddell [2000]). It represents
chosen attributes of persons, jobs, real estate, and locations, and the mapping among these
attributes (Waddell [2002]). The database typically contains geographies, initial household,
and job information for a given base year. The geographic layer represents administrative
boundaries. Households are represented as objects with the necessary attributes to model
location choices. Persons are associated with households and exhibit characteristics related to
travel behavior. Finally, the database includes job entries incorporating the employment sector,
representing employment (Waddell [2002]). The primary sources of the base year data are
usually surveys or censuses. The population synthesizer in OPUS (Open Platform for Urban
Simulation) can be utilized if disaggregated data is unavailable.

2.5.2 Model structure and processing

UrbanSim has a modular structure with sub-models that can be estimated and run indepen-
dently and uses a dynamic disequilibrium approach, with all sub-models interacting in a period-
based temporal framework. UrbanSim does not model transport itself; it relies on interaction
with external transport models (Wegener [2004]) to update traffic conditions. UrbanSim might
be better described as an urban simulation system, consisting of six components reflecting the
decisions of households, businesses, developers, and governments (as policy inputs) as well as
their interactions in the real estate market (Waddell [2000], Bierlaire et al. [2015]). The re-
sponsible components are the Econometric and Demographic Transition Models, the Household
and Employment Mobility Models, the Household and Employment Location Models, the Real
Estate Development Model, and the Real Estate Price Model.
During the simulation, the processing sequence of six models is usually as follows (Bierlaire
et al. [2015]):

Accessibility Model links land use and transport, taking the output data provided by the
external travel model and maintaining accessibility patterns for the internal UrbanSim models.
The household and employment location models and the real estate price model use this output.

Econometric and Demographic Transition Models simulate population births and deaths and
the creation and loss of jobs. Newly created households and jobs still need to have a location.

Household and Employment Mobility Models (relocation model) replicate the relocation of
households or jobs. When a household or job decides to relocate, they are placed in a queue and
assigned a new location by their location choice models. Their current location becomes vacant.
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As a result, they change the real estate vacancy conditions used in the real estate development
and price model.

Household and Employment Location Models determine the location assignment through
a three-step process. For households, a random sample of vacant residential units is chosen
first. In the second step, the desirability of the selected units is assessed using a multinomial
logic (MNL) model based on the variables and estimated coefficients included in the household
location choice model (HLCM). Finally, households select their most desired location. The
employment location choice model (ELCM) approach is quite similar, except that the new job
location is selected randomly among a random sample of possible locations.

Real Estate Development Model (developer model) simulates developer decisions such as new
construction, innovation, and reconstruction of existing structures and the type of development.
It considers all geographical units analysis (GUA), such as grid cells, for which development
is allowed. A multinomial logit model evaluates each GUA for possible development types,
including the option of no development.

Real Estate Price Model (REPM) predicts property or GUA prices based on location char-
acteristics such as neighborhood accessibility and policy effects. The resulting land values are
used as input in the Household and Employment Location Models, as well as the Real Estate
Development Model, in the next UrbanSim iteration. The structure and processing sequence of
UrbanSim is shown in Figure 3 .

3 SCGE (Spatial Computable General Equilibrium) models

One of the fundamental principles of spatial economics is the crucial role of transport infrastruc-
ture and quality of service for regional development. There is a broad spectrum of theoretical
approaches originating from different scientific disciplines and intellectual traditions to explain
this role. Ellsworth [1933] at the pinnacle of neoclassical theory, proposed that under perfect
competition, factor mobility, and constant returns to scale, interregional flows of capital, labor,
and trade will result in equal prices of production factors and goods in all regions (Wegener
[2011]). The opposite viewpoint taken by Perroux [1955] and Myrdal and Sitohang [1957] argued
that the economies of scale and spatial impedance on mobility cause the presence of advanced
industries would result in spatial polarization between prospering and lagging regions (Wegener
[2011]).

A synthesis between the two opposing views was offered by the New Economic Geography
(NEG) (Krugman [1992], Krugman and Venables [1995], Fujita et al. [2001]). A theory of the
emergence of large agglomerations relying on increasing returns to scale and transportation
costs that “invaded”the field of spatial economics in the early 1990s. Krugman [1991] was one
of the first to recognize that the spatial pattern of production and consumption needed to be
studied within a general equilibrium framework, and that the assumption of perfect competition
and constant returns to scale needed to be abandoned in order to explain the agglomeration of
economic activity. Following Krugman, multiregional input-output models with a characteris-
tic of NEG models are today called Spatial Computable General Equilibrium (SCGE) models,
although the term CGE originally had a broader meaning (Bröcker and Mercenier [2011], We-
gener [2011]).

SCGE models are spatial extensions of numerically solvable general equilibrium models and
capture the interactions between different sectors and regions of the economy. In a general
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Figure 3: The structure and processing sequence of UrbanSim (adapted from Waddell 2002)
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equilibrium model, the trade-off problems between various economic agents are solved through
the price mechanism (Tavasszy et al. [2011], Hansen and Johansen [2017], Hansen and Ivanova
[2012]). SCGE models are comparative static equilibrium models of interregional trade and lo-
cation, primarily based on microeconomics but generally applied at a more aggregate, sectoral
level. These models use utility and production functions with input substitution, typically mod-
eled using constant elasticity of substitution (CES) equations (Tavasszy et al. [2011]). Firms in
these models often operate under economies of scale within markets characterized by monopo-
listic competition, following the Dixit-Stiglitz (Dixit and Stiglitz [1977]) type.

The current SCGE models have a sophisticated theoretical foundation and employ non-linear
mathematics (Tavasszy et al. [2011], Hansen and Johansen [2017], Hansen and Ivanova [2012]).
This allows them to incorporate features such as (dis)economies of scale, external economies
related to spatial clusters of activity, continuous substitution between capital, labor, energy,
and material inputs for firms, and substitution between different household consumption goods.

3.1 A review of SCGE model

(Debreu [1959]) and (Arrow et al. [1971]) are two classic references in theoretical general equi-
librium analysis. The model developed by Bröcker [1998] was the first CGEurope example of an
SCGE model and provided the basis for many subsequent CGEurope models such as (Broecker
et al. [2004], Sundberg [2005], Ivanova et al. [2007], Heyndrickx et al. [2009], Brandsma et al.
[2011], Heyndrickx et al. [2011]). Some other examples of SCGE models are RAEM (the latest
version being RAEM 3.0) and REMI (with the latest version being PI+ or Policy Insight).

The CGEurope model, developed at the University of Kiel, is a multiregional spatial
computable general equilibrium model that takes into account transport costs as expenditures
of firms for transport and business travel (Bröcker [1998], Broecker et al. [2004], Bröcker and
Mercenier [2011]). This model has been utilized in numerous EU projects, including IASON,
ESPON 2.1.1, and TEN-CONNECT ( Wegener, M. 2011).

The RAEM model, developed at the University of Groningen and TNO Delft, is a spatial
computable general equilibrium model that incorporates regional capital investment and stock
and flow relationships of households and firms (Oosterhaven et al. [1998], Ivanova et al. [2007],
Wegener [2011]). The latest version, RAEM 3.0, includes international trade and interregional
migration and determines the equilibrium of supply and demand and interregional trade flows
in each time period. RAEM was initially designed for the Netherlands and has been used in a
simplified version (RAEM-Light) in Hungary, Japan, and South Korea.

Hansen and Johansen [2017] formulated a RAEM model to quantify the direct user benefits
and the Wider Economic Impact (WEI) of nine planned Norwegian transport infrastructure
projects for the 2018-2029 Norwegian National Transport Plan. The model is an extension of
PINGO and part of the RAEM family of SCGE models (Ivanova et al. [2007]). (Heyndrickx
et al. [2011] described the construction and first empirical application of the TIGER (Transport
and Infrastructure General Equilibrium model for Regions) model. The model belongs to SCGE
models based on the methodology of the RAEM and ISEEM models and is constructed as a
flexible tool for policy analysis and a tool for cost-benefit analysis of infrastructure projects on
the level of the Benelux.

Oosterhaven et al. [2001] developed an SCGE (RAEM) model to estimate the indirect eco-
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nomic effects of major transport infrastructure projects on Dutch regions. The first version
of the model was applied to a base scenario for the year 2020 and used to assess the indirect
economic effects of a new railway link between Amsterdam and Groningen. The model employs
monopolistic competition for fourteen sectors as the basic market form and calibrates most of
its coefficients on recently constructed bi-regional input-output tables for the Netherlands.

The REMI model, initially a multiregional input-output model with final endogenous
demand, was developed at the University of Massachusetts (Treyz [1980], Treyz et al. [1991])
and has since undergone several revisions. Its latest version, PI+ or Policy Insight, is a new
economic geography extension of the original REMI framework (Flyvbjerg [2008]). Previous
generations of the REMI model have been widely applied for policy analyses in over a hundred
regional and state agencies in North America and Europe (Wegener [2011]).

3.2 The structure of a SCGE model

The SCGE model comprises households, firms, and governments in different regions. Each
region produces a set of goods and services that are traded with other regions. The model
assumes that firms choose their locations based on relative production costs in different regions,
leading to spatial agglomeration. The model includes transport costs and trade barriers that
affect the flow of goods and services between regions. The model’s formulation involves solving
a set of nonlinear equations representing equilibrium conditions for each household, firm, and
government in each region based on assumptions of utility and profit maximization and govern-
ment budget constraints, as well as market-clearing conditions that ensure that the supply and
demand for goods and services, labor, and capital are balanced in each region. The following
presents a brief overview of a version of the SCGE model developed by Krugman [1991]. The
model is a simple illustrative model, offering valuable insights into a fundamental question in
economic geography: why and when does manufacturing concentrate in a few regions, leaving
others relatively undeveloped? By utilizing models and techniques derived from theoretical in-
dustrial organization, this model sheds light on the factors and circumstances that contribute
to this spatial concentration phenomenon, thereby providing new perspectives on the interplay
between economic and geographic factors.

Krugman’ s model
Krugman [1991]’ s model is a ”centre–periphery”model seeks to explain how countries/regions
can internally develop into industrialized ”cores”and agricultural ”peripheries”. This model
represents a two-region geography where two kinds of production are assumed: agriculture,
which is a constant-returns sector tied to the land, and manufactures, an increasing-returns
sector that can be located in either region. It is a variant of the monopolistic competition
framework initially proposed by Dixit and Stiglitz [1977] where all individuals in the economy
are assumed to share a basic utility function:

U = Cµ
MC1−µ

A (1)

CA refers to the consumption of agricultural goods and CM represents the total consumption
of manufactured goods. The parameter µ represents the share of expenditure allocated to the
consumption of manufactures. It determines the weight or importance individuals place on
consuming manufactured goods relative to agricultural goods. This share is one of the key
parameters for determining whether a region converges or diverges. CM can be defined by:
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CM =

[
N∑
i=1

c
(σ−1)/σ
i

]σ/(σ−1)

(2)

Where N is a large number of potential products and σ > 1 is the substitution elasticity among
the products. The elasticity σ is the second parameter determining the character of equilibrium
in the model, which is assumed to be equal to σ = 1

1−p .
It is assumed that each region has two factors of production. To simplify the analysis based

on Krugman [1981]’s suggestion, each factor is assumed to be specific to one sector. Specifically,
peasants are responsible for producing agricultural goods, and for the sake of simplicity, it is
assumed that one unit of labor is required for agricultural production. The peasant population
is considered completely immobile between regions, with a given peasant supply of (1−µ)

2 in each
region. On the other hand, workers may move between regions. The worker supply in region 1
and 2 is L1 and L2 respectively, with the requirement that the total worker supply across both
regions equals the overall number of workers in the economy represented as:

µ = L1 + L2 (3)

The production of each manufactured good i consists of fixed costs and constant marginal costs,
giving rise to economies of scale;

LMi = α+ βxi (4)

Where LMi is the amount of labor used in the production of good i and xi is the total produc-
tion amount of the good.

Transportation costs
Two strong assumptions are made to ensure tractability concerning the structure of transporta-
tion costs. First, transportation costs in the agricultural regions are free of charge. This means
that the price of agricultural goods, and thus wages, are the same in both regions. Second,
transportation costs for manufactured goods are assumed to take Samuelson’s ”iceberg” form
in which transportation costs are calculated based on the fraction of the good that does not
reach the destination Samuelson [1954]. Specifically, of each unit of manufactures shipped from
one region to the other, only a fraction τ < 1 arrives. This fraction τ , which serves as an inverse
index of transportation costs, is the final parameter determining whether regions converge or
diverge.

Profit maximization
A large number of manufacturing firms are supposed, each produces its own product (monopoly).
The profit-maximizing pricing behavior of a representative firm in region i is therefore to set a
price equal to:

pi =
σ

σ − 1
βwi (5)

Where wi is the wage rate of the workers in region i. By comparing prices for representative
products in regions 1 and 2, we get:

p1
p2

=
w1

w2
(6)

If there is free entry of firms into manufacturing, profit must be driven to zero;

(pi − βwi) = αwi (7)

which further implies;
x1 = x2 = α(σ − 1) (8)
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That is the amount of output is the same in each region, regardless of wage rates, relative
demand, etc. This implies that the number of goods produced in each region is proportional to
the number of workers;

n1

n2
=

L1

L2
(9)

Market equilibrium
This model lacks any explicit dynamics, but still analyzing short-run equilibrium can provide
insights before examining the concept of full equilibrium. The analysis of short-run equilibrium
begins by looking at the demand within region 1 for products of the two regions. Let c11 and
c12 be the demand in region 1 for products from regions 1 and 2, respectively. The price of a
local product is simply its f.o.b. price p1, while the price of a product from the other region,
however, is its transport-cost-inclusive price p2

τ . Then the relative demand for the products of
the two regions is:

c11
c12

=

(
p1τ

p2

)−σ

=

(
w1τ

w2

)−σ

(10)

z11 represents the ratio of spending on local manufactures compared to spending on man-
ufactures from another region. Two points regarding z11 are: First, a one percent increase in
the relative price of goods from region 1 leads to a σ percent decrease in the quantity sold, but
the overall value decreases by only (σ − 1) percent, because of the valuation effect. Second, as
region 1 produces more goods, its share of overall expenditure will increase, regardless of the
relative prices of goods. Then we have:

z11 =
n1

n2
·
(
p1τ

p2

)
· c11
c12

=
L1

L2
·
(
w1τ

w2

)−(σ−1)

(11)

Corresponding ratio for region 2:

z12 =
L1

L2

(
w1

w2τ

)−(σ−1)

(12)

The total income earned by workers in region 1 is equivalent to the total amount spent on
products in both regions. (Transportation costs are included because they are assumed to be
incurred in the goods themselves). Let Y1 and Y2 represent the regional incomes, which include
the wages of peasants. Then the total income of region 1 workers is:

w1L1 = µ

[
z11

1 + z11
Y1 +

z12
1 + z12

Y2

]
(13)

and the total income of region 2 workers is:

w2L2 = µ

[
1

1 + z11
Y1 +

1

1 + z12
Y2

]
(14)

However, the incomes of the two regions depend on the distribution of workers and their wages.
Recalling that the wage rate of peasants is the numeraire, we have:

Y1 =
1− µ

2
+ w1L1 (15)

and

Y2 =
1− µ

2
+ w2L2 (16)

The set of equations 1-16 may be regarded as a system that determines w1 and w2, as well
as four other variables, given the distribution of labor between regions 1 and 2. If the amount of
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labor is equal in both regions (L1 = L2), then the wages will also be equal (w1 = w2). However,
if labor moves to region 1, the relative wage rate (w1

w2
) can change due to two opposing effects:

the competition effect and the demand effect (see Figure 4).

Figure 4: The virtuous cumulative development circle of the ‘new economic geography’ adopted
from Capello [2015]

long-run equilibrium
When transitioning from short-run to long-run equilibrium, an additional factor comes into play.
Workers are concerned with real wages rather than nominal wages. To quantify this, f = L1

µ is
defined as the share of the manufacturing labor force in region 1. Consequently, the true price
index for manufactured goods consumed by residents of region 1 is denoted as:

P1 =

[
fwσ−1

1 + (1− f)
(w2

τ

)−(σ−1)
]− 1

σ−1

(17)

And for consumers residing in region 2 is:

P2 =

[(
f
(w1

τ

))−σ+1
+ (1− f)w

−(σ−1)
2

]− 1
σ−1

(18)

The real wage of the workers in each region is then:

ω1 = w1P
−µ
1 (19)

and
ω2 = w2P

−µ
2 (20)

Considering equations 17 and 18, it is evident that when wage rates are initially equal, a
shift of workers from region 2 to region 1 lowers the price index in region 1 and raises it in
region 2. Consequently, the real wages in region 1 will be higher compared to region 2, adding
another factor for regional divergence.

The crucial question is how the ratio of wages (ω1
ω2
) varies with the distribution of workers

(f). When f equals 1
2 (equal numbers of workers in both regions), the two regions offer equal

real wage rates due to symmetry. However, the stability of this equilibrium depends on whether
ω1
ω2

decreases or increases with f . If ω1
ω2

decreases with f , whenever one region has a larger
workforce than the other, workers will tend to migrate out of that region. This leads to regional
convergence as the workforce balances between the regions. Conversely, if ω1

ω2
increases with f ,

workers will tend to migrate to the region that already has more workers, resulting in regional
divergence. So, there are two forces working towards divergence (the home market effect and
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the price index effect) and one force working towards convergence (degree of competition for
the local peasant’s market). The question raised is which forces dominate the outcome in terms
of convergence or divergence.

In order to determine which forces dominate, it is noted that there are only three param-
eters in this model that cannot be eliminated by choice of units: the share of expenditure
on manufactured goods, µ; the elasticity of substitution among products, σ; and the fraction
of a good shipped that arrives, τ . Figure 5 makes the point. It illustrates the relationship
between the computed values of ω1

ω2
and f in two different scenarios. Both scenarios assume

σ = 4 and µ = 0.3. In one case, τ = 0.5, representing high transportation costs, while in the
other case, τ = 0.75, representing low transportation costs. In the high transport cost scenario,
the relative real wage decreases as f increases, indicating regional convergence. This suggests
that the geographical distribution of the ”second stratum” would follow that of the first. In
contrast, in the low transport cost scenario, the slope is reversed, indicating regional divergence.

Figure 5: Computed values of ω1
ω2

as a function of f in two different cases

Convergence vs. divergence
When examining regional divergence, a valuable approach is to reverse our usual method. In-
stead of focusing on whether an equilibrium with equal distribution of workers across regions is
stable, we can consider the stability of an equilibrium where all workers are concentrated in a
single region.

So, a scenario is considered where all workers concentrate in Region 1, making it a larger
market compared to Region 2. Since a share of total income µ is spent on manufactures, and
all of this income goes to Region 1, we have:

Y2
Y1

=
1− µ

1 + µ
(21)

Let n be the total number of manufacturing firms. Each firm’s sales value, V1, is precisely
set to allow them to make zero profits.

V1 =
µ

n
(Y1 + Y2) (22)

Now the question arises: Is it possible for an individual firm to commence production profitably
in region 2? This hypothetical firm, referred to as a ”defecting firm,” determines whether
concentration of production in region 1 is an equilibrium. If it is not possible for a firm to be
profitable in region 2, then the equilibrium lies in the concentration of production in region 1.

To attract workers to the firm in region 2, the firm must offer higher wages compared to
region 1. This higher wage compensates the workers for the fact that they would need to rely
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on imported goods for their consumption needs because of the limited manufacturing industry
in region 2.

w2

w1
=

(
1

τ

)µ

(23)

Given higher wages, the firm will have a profit-maximizing price that is higher than that of the
other firms in the same proportion. So, the total value of the defecting firm’s sales will be:

V2 =
1

n

[(
w2

w1τ

)−(σ−1)

Y1 +

(
w2τ

w1

)−(σ−1)

Y2

]
(24)

Using equations 22, 23, and 24 and manipulating them, it is possible to obtain the ratio between
the sales value of the defecting firm and of the firms in region 1;

V2

V1
=

1

2
τµ(σ−1)

[
(1 + µ) τ (σ−1) + (1− µ)τ−(σ−1)

]
(25)

Due to the higher wage rate in region 2, fixed costs are also higher. So, for it to be profitable
for the firm to move to region 2, the following must be met: V2

V1
> w2

w1
= τ−µ. Therefore, a new

variable ν must be defined;

ν =
1

2
τµσ

[
(1 + µ) τ (σ−1) + (1− µ)τ−(σ−1)

]
(26)

When ν < 1, it is not profitable to establish in region 2 if all other manufacturing production
is concentrated in region 1. Thus, in this case, regional divergence is the long-term equilibrium.

Equation 26 defines a boundary that separates convergence and divergence based on critical
parameter values. To analyze this equation, one only needs to evaluate it near ν = 1 and
determine how each of the three parameters must change to counterbalance a change in any of
the other parameters.

By taking the derivative of ν with respect to µ, we find that:

∂v

∂µ
= vσ ln τ +

1

2
τσµ

(
τσ−1 − τ−(σ−1)

)
< 0 (27)

The larger the share of income spent on manufactured goods, the lower the relative sales
of the defecting firm. This occurs due to two reasons. Firstly, workers require higher wages
to move to the second region. Secondly, as the share of expenditure on manufactured goods
increases, the size of the market in region 1 grows, resulting in a stronger home market effect.

By taking the derivative of v with respect to τ , we have:

∂v

∂τ
=

µσv

τ
+

τµσ(σ − 1)

2τ

[
(1 + µ)τσ−1 − (1− µ)τ−(σ−1)

]
(28)

Figure 6 indicates v as a function of τ ; at low levels of τ (i.e., high transportation costs), v ex-
ceeds 1, indicating that it is profitable to defect or establish manufacturing in a different region.
However, at a critical value of τ , v falls below 1, indicating that concentrated manufacturing
in region 1 is an equilibrium, and the relative value of sales approaches 1 from below. The key
insight from this graph is that at the critical value of τ , which marks the boundary between
convergence and divergence, δv

δτ is negative. That is, higher transportation costs work against
regional divergence.
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Figure 6: ν as a function of τ

By taking the derivative of v with respect to σ, we have:

∂v

∂σ
= ln τ

(
µv +

1

2
τµσ

[
(1 + µ)τσ−1 − (1− µ)τ−(σ−1)

])

= ln τ
( τ
σ

)(
∂v

∂τ

) (29)

Since we have seen that δv
δτ is negative at the specific point, this implies that δv

δσ is positive.
In other words, a higher elasticity of substitution (which also indicates lower economies of scale
at equilibrium) acts as a deterrent to regional divergence.

Results
These results can be visualized through a diagram. When σ is held constant, a ”phase bound-
ary” can be depicted in the space of µ and τ . This boundary represents the parameter values
at which firms are indifferent between remaining concentrated in region 1 or defecting. If an
economy lies within this boundary, it will not experience significant industry concentrations in
either region. On the other hand, if an economy lies outside the boundary, it will exhibit such
concentrations. The slope of this boundary is:

σ is held constant;
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∂µ
= −

(
∂v
∂µ

)
(
∂v
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)

µ is held constant;

∂v

∂σ
= −

(
∂v
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)
(
∂v
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)

The figure 7 illustrates that an increase in σ results in an outward shift in the µ, τ space.
The figure provides an interesting observation about the relationship between τ, µ, σ and the
distribution of manufacturing production in an economy. In an economy characterized by high
transportation costs, a small proportion of footloose manufacturing, and/or weak economies of
scale, the distribution of manufacturing production is primarily influenced by the distribution
of the ”primary stratum” of peasants. However, as transportation costs decrease, the manufac-
turing sector’s share expands, and economies of scale become more robust, circular causation
comes into play. Consequently, manufacturing becomes concentrated in the region that initially
gains an advantage.
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Figure 7: Calculated boundaries in µ,τ space for two values of σ

3.3 Applications of SCGE models and Challenges in applying SCGE models
for transportation analysis

SCGE (Spatial Computable General Equilibrium) models are frequently used as impact estima-
tion tools in economic analysis. They provide a theoretically robust method for computing the
wider economic impacts (WEI) in cost-benefit analysis (Koopmans and Oosterhaven [2011]).
These WEI represent the welfare effects that arise due to market imperfections in sectors linked
to transportation and are not factored into conventional cost-benefit analyses that only consider
the benefits accruing to transportation users (Hansen and Johansen [2017]). The indirect effects
of transportation, which are additional to the first-order direct cost reductions, can be termed
”multiplier effects ”or ”second-order effects ”. According to literature, the magnitude of these
effects can approach almost 80% of the direct impacts (Broecker et al. [2004], Tavasszy et al.
[2011]).

Several challenges associated with employing spatial computable general equilibrium (SCGE)
models for transportation assessment have been mentioned in (Tavasszy et al. [2011, 2002]):
The transport system contributes to the spatial economy through the costs of transport services.
Typically, in transport evaluation practice transport models are applied to feed SCGE models
with cost changes in the transport sector as a result of policy measures. SCGE models focus
on spatial interactions between regions based on production and consumption. However, they
must consider the choices concerning alternative services offered within the transport system.
Entering transport to SCGE models can lead to practical challenges that have not been resolved
and cannot be addressed soon due to limitations in available data. Some of these challenges are
already familiar to Land Use-Transport Interaction (LUTI) models, which do not incorporate a
rigorous economic framework comparable to SCGE models. Furthermore, SCGE models must
account for the impact of transport costs on the production of goods and services, which can be
challenging to model accurately. The conventional, micro-level specification of product variety
in aggregate applications is another challenge. SCGE models typically use an aggregate repre-
sentation of product variety, which can obscure important details about the underlying economy.
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4 Spatial equilibrium models representing an alternative in be-
tween standard SCGE and Large-scale models

McArthur et al. [2014] formulated a new spatial equilibrium model to explore, for instance,
how changes in the transportation network and the distribution of jobs may cause rural de-
population. The authors discuss that a large-scale model is not suitable for analyzing typical
Norwegian regions due to their non-metropolitan nature. Large-scale models focus excessively
on small details, which may not be necessary for analyzing these regions effectively. Also, the
SCGE model, being too macroscopic, provides a broad overview and does not capture smaller
details, making both models inadequate for analyzing typical Norwegian regions. Thus, the
objective of McArthur et al. [2014] was to develop a model that struck a balance between the
two approaches. To achieve this, they constructed a spatial equilibrium model that deviated
from standard SCGE models by considering intraregional commuting and shopping patterns,
features that are typically associated with large-scale models.

Spatial equilibrium and migration dynamics
The central idea of the model is the concept of spatial equilibrium, which refers to a state
in which intraregional migration and commuting flows are in balance with a specific spatial
distribution of jobs and workers across different zones. Like most spatial equilibrium models,
the model incorporates the core elements of economic base modeling (Goldner [1971], Lowry
[1964]). Therefore two types of firms are defined in the model. Local-sector firms’ activity is
determined by intraregional demand, whereas production in basic-sector firms is determined by
factors unrelated to intraregional demand. The model considers three types of spatial mobility:
migration, commuting, and nonwork-related trips between zones.

The migration between different zones is modeled through an absorption effect analogous to
the basic idea in the theory of intervening opportunities (Stouffer [1940]). The idea is that the
worker moves to the first zone where the conditions are acceptable. Another central hypothesis
is that distance (converted to a generalized cost in the model) limits spatial interaction. A
symmetric matrix that considers the cost deterrence and absorption effects is normalized to
create a migration probability matrix. The system’s equilibrium solution is then determined
using this matrix.

Spatial distribution of jobs in the model: basic-sector and local-sector
The model assumes the spatial distribution of basic-sector jobs to be exogenous, and to model
the spatial distribution of local-sector activity, it utilizes the approach based on Gjestland et al.
[2006]. The idea is that the trip frequency to different locations will depend upon the local
availability of the activity in question and on the travel costs to each location at which the ac-
tivity is available (Handy [1992], Krizek [2003]). Considering economies of scale, transportation
costs, and agglomeration benefits, the local-sector density will be high in the regional center
and low in the suburbs, and it will approach the regional average as the distance (generalized
cost) from the center increases. This means that the intraregional distribution of local-sector
jobs reflects the residential location pattern. At the same, it makes sense to assume that job
opportunities within a reasonable commuting distance affect residential location decisions, so
the model considers that the spatial distribution of jobs and people is interdependent.

The relationship between the spatial distribution of jobs and people, an eco-
nomic base multiplier process
The economic base (EB) multiplier is a widely used tool in regional analysis. Its operation
is typically explained from a Keynesian perspective, as discussed by Daly [1940], Richardson
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[1985] and Tiebout [1962]. In line with this perspective, an increase in external demand leads to
expanded activity in the basic (export) sector, subsequently generating increased activity in the
nonbasic (non-traded) sector through heightened intermediate and consumption demand. The
model assumes that all industries have excess capacity and that the labor supply is infinitely
elastic due to either involuntary unemployment or interregional migration. In this framework,
supply is considered passive, resulting in the increase in demand solely affecting output (Mc-
Gregor et al. [2000]).
So, the economic base mechanism represents a more direct interdependency between the spatial
distribution of jobs and the spatial distribution of people. Consider a zone where basic-sector
activity has increased. This increases labor demand and attracts labor to the zone. So, the
demand for goods and services produced in the local sector increases too. This creates labor
demand this time for local-sector goods and initiates a positive growth cycle, known as an eco-
nomic base multiplier process.

Migration in the model
The residential location choice can be seen as a two-step process. Firstly, households must
decide whether to move from their current residence. Secondly, if they choose to move, they
must select from various alternative locations. The model accounts for the possibility that
staying in a zone is affected by both the labor-market accessibility of the zone and the local
labor-market situation of the zone. The hypothesis that the probability of remaining in a zone
is positively related to the labor-market accessibility of the zone is consistent with the find-
ings from Swedish microdata (Eliasson et al. [2003], Lundholm [2010]) and similar work in the
Netherlands (Van Ham and Hooimeijer [2009]). To represent the labor-market accessibility in
the model, they measure the generalized cost to reach all other regional zones. Each zone is
weighted by the number of jobs available, adjusted for job competition as measured by the
ratio of available jobs to local job seekers. The weights also involve a cost deterrence function
that places a relatively high weight on destinations that can be reached at a low cost from the
residential location. The measure of generalized cost is finally combined with information on
the local labor-market situation in the function that determines the probability that workers
move from a specific zone. To explain it, assume that a zone has high unemployment. If this
zone is centrally located in the region, workers most likely choose to commute rather than move.
However, if accessibility is low, migration will be a more common reaction to high unemploy-
ment.

Interdependent migration probabilities
The model explicitly considers the possibility that migration probabilities may be interdepen-
dent. The hypothesis is that if a zone’s population drops below a certain threshold, the likeli-
hood of migration from that zone may increase. Because then institutions providing essential
community services might have to close. The threshold may differ between services/businesses,
such as a school, post office, bank, or grocery store (Berry and Garrison [1958], Henderson and
Taylor [2003], Parr [1966]). This is a main idea of central place theory [see Berry and Garrison
[1958] for a discussion].

An example of applying this spatial equilibrium model is examining the potential effects of
changes in the transportation network and job distribution on rural depopulation. The model
captures complex nonlinearities and can generate counterintuitive results, which are crucial for
policymakers to understand. McArthur et al. [2014] found that in certain cases, where a pe-
ripheral zone has a low number of basic-sector jobs, a situation can arise where interdependent
migration decisions and an economic base multiplier mechanism come into play. This leads
to an equilibrium solution where the zone experiences a significant decrease in population and
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employment. Using numerical experiments allows researchers to study how the existence and
location of such a bifurcation point depend on migration, travel, and labor-market behavior.
McArthur et al. [2014] suggest that the likelihood of a rural zone being completely depopulated
increases as the willingness to migrate over long distances decreases. They also concluded that
a negative shock that increases the generalized cost of traveling between two zones could initiate
a process of rural depopulation. It is important to note that negative and positive shocks do not
necessarily have symmetric effects on the equilibrium population of a rural zone. This reflects
a case of hysteresis, which is a characteristic of nonlinear mathematical models with multiple
equilibria.

5 An agent-based microsimulation model for our study

We developed an agent-based microsimulation model to generate spatial interaction data from a
demographically similar population in Norway. The model aims to study how commuting flows,
and specifically how estimates of the distance deterrence parameter, respond to spatial structure
characteristics such as changes in the road transportation infrastructure, the compactness of
the system of towns in the geography, the clustering of local and basic sector jobs, and where
the central business district is located. We also demonstrate how the trip distribution depends
on labor or housing market conditions and how this is reflected in the estimates of the distance
deterrence parameter. Additionally, we address how household preferences and different aspects
of the budget constraint affect travel demand.

According to (Wegener [2004]), the most promising technique for activity-based land use
and transport modeling is microsimulation which makes it possible to reproduce the complex
spatial behavior of individuals on a one-to-one basis. The main advantage of microsimulation,
compared to other activity-based modeling, is its ability to capture the increasing heterogeneity
in urban lifestyles, new tendencies in mobility behavior, and the environmental impacts of land-
use and transport policies at a finer spatial resolution (Hunt et al. [2008], Wagner and Wegener
[2007], Acheampong and Silva [2015]). Additionally, the dynamic nature of micro-simulation
models makes it possible to trace model components (e.g., individuals, households, jobs, and
dwellings) over time, allowing for detailed observation of the processes of change that cannot
be achieved with other types of models (Pagliara and Wilson [2010]).

Our agent-based microsimulation model construction is based on the construction of the
model developed by McArthur et al. [2010]. McArthur et al. [2010] ’s model is an agent-based
microsimulation model that simultaneously deals with commuting and migration, involving two
towns populated by a synthetic society of agents based on Norwegian statistical data. It follows
a neoclassical style, where agents aim to maximize their utility function rather than simply
following a predefined set of behavioral rules commonly seen in standard agent-based computa-
tional approaches (ACE) (Epstein [1999], Tesfatsion [2003]). The model enables the exploration
of the relative influence of various factors in the adjustment process, as well as providing insights
into when and why persistent disparities in unemployment arise.

Our agent-based microsimulation model is a substantial extension of the model in McArthur
et al. [2010]. We have advanced the theory in that paper by including additional mechanisms to
the model. For instance, our model considers a more comprehensive range of factors, particularly
regarding geography. We have considered a spatial configuration consisting of 12 zones/towns
within the region, which offers a more realistic representation than their model, which only
included two zones. While McArthur et al. [2010]’s focus was solely on the distance between
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the two zones without considering other geographical aspects, our model incorporates various
spatial structure characteristics such as changes in the road transportation infrastructure, the
compactness of the system of towns in the geography, the clustering of local and basic sector
jobs, and where the central business district is located.

The main contribution of our model is incorporating the housing market in the spatial con-
text, where spatial interaction decisions reflect the spatial distribution of jobs and households,
as well as spatial disparities in wages and housing prices. Additionally, we have accounted for
heterogeneity in the labor market by including three different types of workers in our model.
A comprehensive understanding of the model can be found in papers 2, 3, and 4 within this
thesis, where detailed analyses are provided.

We have incorporated concepts from McArthur et al. [2014] spatial equilibrium model, which
aimed to analyze the impact of changes in transportation networks and job distribution on ru-
ral depopulation in the western region of Norway. A detailed explanation of this model can be
found in Section 4. Inspired by McArthur et al. [2014]’s work, our model incorporates a basic
sector and a local sector. Also, within our geographic context, we have defined the Central
Business District (CBD) following the insights provided by the aforementioned model.

Our agent-based microsimulation model offers some advantages. One advantage is the flex-
ibility in scenario testing by manipulating various demographic factors and observing their
impacts on the system. Additionally, our agent-based model can overcome limitations in exist-
ing data. The model can fill gaps or represent specific characteristics or behaviors of interest
by generating synthetic populations. This enables a more comprehensive analysis of complex
systems and provides insights that may not be possible with empirical data alone.

The model can explore scenarios beyond what has been observed in reality or are challenging
to observe directly. By creating alternative conditions, researchers can investigate the behavior
and interactions of agents under different circumstances. This expands the range of possible
analyses and contributes to a deeper understanding of the system dynamics.

The level of control in these models enables us to determine the causal relationship between
modifications and outcomes accurately. When a change is introduced to the model, any result-
ing changes in outcomes can be confidently attributed to that specific modification because no
external factors or variables affect the system’s functioning.

Our theoretical agent-based microsimulation model has plausible potential for future em-
pirical life studies. In principle, it is conceivable to execute the model for a specific geography,
generating agents based on real population data, thereby creating a foundation for undertaking
empirical life studies. However, this exciting prospect remains the next phase for the model’s
development. At this stage, our focus was on exploring the effects that can be achieved through
this type of agent-based stimulation. While running simulations for larger populations may
present challenges in terms of running time, leveraging parallel processing techniques makes it
feasible to handle such data-intensive scenarios.

6 Summary

Integrated land-use/transport models have a rich history spanning six decades. This review dis-
cusses the LUTI modeling frameworks and the modeling methodologies that have been applied
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over the years. To classify LUTI models, the categorization proposed by Iacono et al. [2008] is
adopted : spatial interaction/gravity-based modeling, econometric modeling, and microsimula-
tion/other computer-based modeling.

Spatial Interaction/Gravity models emerged by combining the Lowry model (Lowry [1964])
and the four-step model (Mitchell and Rapkin [1954]), and were referred to as ”Large-scale”
models in the literature. The second category of LUTI models, referred to as Econometric
models, has further enhanced the price mechanism in urban formation. This is achieved by in-
corporating microeconomic theories such as bid-rent theory (Alonso [1964]) and random utility
theory (McFadden [1977]) into the models. Some of these models, based on a general equi-
librium framework, are recognized as an expansion of computable general equilibrium (CGE)
models (Taylor and Black [1974]), which were originally developed for analyzing urban space
formation.

In the early 1990s, New Economic Geography (NEG) emerged as a theory explaining the
emergence of large agglomerations through increasing returns to scale and transportation costs,
making a significant impact on the field of spatial economics. Krugman [1991] was among
the pioneers who recognized the need to study the spatial pattern of production and consump-
tion within a general equilibrium framework. He advocated for abandoning the assumption of
perfect competition and constant returns to scale to effectively explain the agglomeration of eco-
nomic activity. Building upon Krugman’s work, multiregional input-output models exhibiting
characteristics of NEG models are now referred to as Spatial Computable General Equilibrium
(SCGE) models, although the term CGE originally had a broader meaning.

Microsimulation models, collectively known as ”microsimulation,” began to evolve in the
early 1990s. These models encompassed agent-based models, cell-based models for land use
change, and multi-agent models for urban modeling. As the 2000s began, researchers started
developing comprehensive urban microsimulation models capable of capturing population dy-
namics and the urban environment.

One notable model that serves as the foundation for our work is the spatial equilibrium
model formulated by McArthur et al. [2014]. Their objective was to strike a balance between
Large-scale models and SCGE models. To achieve this, they constructed a spatial equilibrium
model that departed from standard SCGE models by incorporating intraregional commuting
and shopping patterns, which are typically associated with large-scale models.
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An agent-based approach to study spatial structure effects on

estimated distance deterrence in commuting.

Azam Azad Gholami1, Inge Thorsen2, and Jan Ubøe3

Abstract

We provide an experimental design to study how estimates of the distance deterrence

parameter in a standard doubly-constrained gravity model respond to different patterns

of spatial structure. The design is defined for an agent-based simulation framework that

simultaneously consider the response on commuting and migration to changes in the spatial

structure, accounting for labour and housing market issues. The agents are equipped with

a bounded rationality utility function and are expected to maximize their utilities with

regard to their wage net of commuting costs, and the value of their house. We study how

the estimates of the distance deterrence parameter respond to where the central business

district is located, to the clustering of local and basic sector jobs, to changes in the road

transportation network, and to the compactness in the system of towns in the geography.

Keywords: commuting, spatial structure, distance deterrence parameter, agent-based modelling

JEL-codes: J61, R23, R41

1 Introduction

According to Tobler’s first law of geography, “everything is related to everything else, but near

things are more related than distant things”(Tobler 1970). This is reflected by the distance de-

terrence parameter in standard spatial interaction models, and estimates of this parameter are

1Norwegian School of Economics, e-mail: Azam.Gholami@nhh.no
2Western Norway University of Applied Sciences, e-mail: inge.thorsen@hvl.no
3Norwegian School of Economics, e-mail: Jan.Uboe@nhh.no
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sometimes given a behavioural explanation. There certainly is a behavioural element in explain-

ing the estimates of the parameter, but the literature provides convincing evidence that the pure

behavioural interpretation calls upon controlling for instance for spatial structure characteristics

in the model formulation. Commuting is the form of spatial interaction to be considered in this

paper, and gravity modeling is the standard device for estimation and predictions. Estimates

of the distance deterrence parameter in general differ across countries and regions. This may of

course reflect behavioural differences, but it may also reflect differences in the spatial structure.

Estimates of the distance deterrence parameter provide interesting information on spatial

interaction per se. In addition, estimates are important for predicting how spatial interaction is

affected by changes in characteristics of the spatial structure and the transportation network.

How will a new road connection affect commuting, for a given spatial pattern of jobs and

residents? This is of course a crucial question in a cost-benefit evaluation of the investments in

road infrastructure, and the answer calls for estimates of the changes in commuting times as well

as for the distance deterrence parameter. If data on commuting flows are missing for the region,

then the possibility should be considered to use estimates from some other region. This raises

the issue of transferability of such estimates over time and space (see for instance McArthur et

al., 2011). What kind of other region should be considered for estimates to be least possible

biased? Is the parameter estimate autonomous to the change in transportation network?

Our discussion provides suggestions of how to modify the standard gravity model in order to

avoid omitted variable bias and to provide more reliable predictions. Hence, the main ambition

of this paper is both to contribute to a firm understanding and interpretation of the distance

deterrence parameter following from a standard spatial interaction model, and to provide useful

input for the evaluation and formulation of spatial interaction models.

To our knowledge, there are no empirical studies that systematically examine how different

aspects of spatial structure affect the estimates of the distance deterrence parameter in commut-

ing. We do neither perform an empirical study, but rather use controlled experiments to address

the issues. To be more precise, we are using an agent-based approach, that is a microsimulation

modelling approach. This allows for experiments that can hardly be made in real world situ-

ations, like considering effects of a partial change in a covariate. Hence, we are able to avoid

complex causality issues and endogeneity problems. The agent-based approach is something in
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between pure theoretical analysis and empirical analysis. It offers the possibility of controlled

experiments, accounting for a lot more details and complexity than an analytical approach. This

paper demonstrates the potential of such an approach to study how a specific economic state

results from complex interactions between the agents in a synthetic population of households.

The number of experiments that are run has been limited by the computing time, as each

data point in the figures to be presented on average called for around 5 hours of computing

time. The coding has been done in Mathematica. Other programming languages may run the

experiments many times faster, and we are sure that more advanced programming in addition

has the potential of speeding up the computations considerably. Our ambitions for this paper

are twofold. One is to demonstrate the potential of the agent-based modelling in reaching

a better understanding of how the outcome of complex interactions can explain and predict

aggregate patterns in an economy. Due to the limitations of computer capacity, we had to run

the agent-based experiments for a relatively small geography, with respect to the number of

agents involved. With more resources available for computing and computer capacity, we are

sure that this approach has the potential of analysing urban and regional systems of any size,

within a reasonable time perspective. For our second ambition, however, the computing capacity

limitation was not a significant problem. We think that the experiments provide interesting

results related to spatial interaction modelling, as well as important and non-trivial insight into

the relationship between spatial interaction and characteristics of the spatial structure.

We make no attempts to modify the standard doubly-constrained gravity model to account

for characteristics of spatial structure. The basic model is presented in Section 2, including a

review of literature discussing the distance deterrence parameter. Section 3 gives a presentation

of the agent-based modelling framework. This involves the geography, represented by the spatial

configuration of towns, the demographics, the preferences of the agents, the spatial labour market

interaction, and the supply and demand for housing. First, a benchmark scenario is defined in

Section 4, before the results are presented in Section 5. In Section 6, we discuss issues related to

model performance and how sensitive predicted commuting flows are to the value of the distance

deterrence parameter. Finally, concluding remarks are offered in Section 7.
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2 The distance deterrence parameter in a standard gravity model

of commuting

In gravity models of trip distribution problems, spatial interaction is explained by the distance

between an origin and a destination, by the generativity of origins and by the attraction of

destinations. For commuting, the generativity of origins is in general defined in terms of the

number of workers residing in the zone, while the attraction of a destinations is measured by

the local number of jobs. A standard formulation of a doubly constrained gravity model is:

Tij = AiOiBjDj exp(−βdij) (1)

Ai =




j

BjDj exp(−βdij)



−1

(2)

Bj =


i

AiOi exp(−βdij)

−1

(3)

where:

Tij is the estimated number of commuters from origin i to destination j, i, j = 1, ..., n

Oi is the observed number of trips originating from zone i = 1, ..., n

Dj is the observed number of trips destinating in zone j = 1, ..., n

dij is travelling time by car, from origin i to destination j; i, j = 1, ..., n

β is a distance deterrence parameter. Ai and Bj are the balancing factors that ensure the

fulfillment of the marginal total constraints for this trip distribution problem;


j Tij = Oi and


i Tij = Dj . For a discussion of the theoretical foundation of this model, see for example

Erlander and Stewart (1990) or Sen and Smith (1995). The doubly constrained gravity model is

equivalent to the multinomial logit model, see for example Anas (1983, 1984) for more details on

the relationship between these two modeling traditions. This means that the gravity model can

be derived from stochastic utility theory, in addition to approaches dominated by the macro-

oriented tradition that is inspired by social physics and based on the entropy concept.
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As pointed out by for example Persyn and Torfs (2016), an unconstrained version of the model

is a bit naive in a commuting context, since it ignores the possibility that the interaction between

two zones may be influenced by characteristics of other zones. The introduction of the balancing

factors means that many relevant characteristics of the spatial structure are accounted for.

Sometimes, a hybrid model may be appropriate, where only some of the zones are constrained,

at either the origin or the destination side of the interaction (Wilson 2010).

dij can be interpreted as a generalized measure, involving both expenses and time costs.

The experiments in this paper are not specific on the value of time involved in commuting,

but time costs can be seen as forgone earnings. Our estimate of commuting costs per unit of

distance represent the generalized costs of commuting one more kilometer per day. Hence, the

estimate reflects the opportunity costs of a longer journey to work, but we assume that there is

no inconvenience costs involved, in addition to the expenses and the value of the time spent on

the journey.

The gravity model for commuting flows can be derived from an entropy maximizing proce-

dure, where one of the constraints defines an upper limit on total transportation costs. The

distance deterrence parameter can be interpreted to measure the impact on commuting flows

of a marginal release in the cost constraint. As pointed out by Wilson (2010), a reduction

in the total expenditures on travel is equivalent to an increased value of the β parameter. A

straightforward derivation of the gravity model from entropy maximization leads to a negative

exponential impedance function, exp(−βdij). However, if the cost function is formulated by the

log values of traveling costs, the resulting distance deterrence effect will be represented by a

power function, d−β
ij , see for instance Wilson (2010). Wilson (2010) indicate that a power func-

tion representation of distance may be appropriate if there are many long trips, in an interurban

geography. There is also support in the literature that the choice of a deterrence function is

essentially a pragmatic one (see for example Nijkamp and Reggiani 1992).

The interpretation of the distance deterrence parameter has been profoundly discussed in

the literature, in particular in the late 70s and in the 80s. It was demonstrated how leaving out

relevant characteristics of spatial structure may result in biased parameter estimates, that will

then not be representing unbiased behavioral estimates of how variations in distance affect spatial

interaction decisions. According to Tiefelsdorf (2003), this problem of interaction modeling did
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not receive much attention in the literature in the 90s, “despite the fact that no satisfactory

solution has been found”. It appears to us that this is still an understudied area of research.

Theoretical and empirical contributions to the debate can be found in Cliff et al. (1974),

Curry et al. (1975), Sheppard (1978, 1984), Fotheringham and Webber (1980), Fotheringham

(1981, 1983a, 1983b, 1986), Ishikawa (1987), and Desta and Pigozzi (1991). Lo (1992) points

out that this literature relied heavily on the migration context. In a commuting context, it is

well known that the balancing factors in a doubly-constrained gravity model formulation cap-

ture relevant characteristics of the spatial structure. However, as demonstrated by for example

Gitlesen and Thorsen (1998, 2000), separate measures of spatial structure characteristics con-

tribute significantly to explain commuting flows, also in doubly-constrained model formulations.

Gitlesen and Thorsen (1998, 2000), for example, successfully incorporated into the model a so

called Hansen measure of labour market accessibility, corresponding to the competing destina-

tions model formulation of spatial interaction, that was developed by Fotheringham (1983a), see

also Fotheringham (1986), and Pellegrini and Fotheringham (2002) for a review.

Some of this literature is also reviewed in Tiefelsdorf (2003), who in addition demonstrates

how a proper model specification is of paramount importance in interaction modeling. Nævdal

et al. (2002) account for spatial characteristics, such as the effect of intervening opportuni-

ties, in a network approach to explain and predict commuting flows. Accounting for relevant

characteristics is of course important for producing unbiased parameter estimates, as well as

for making reliable predictions, for instance on interregional transferability problems (see for

instance McArthur et al. (2011)).

3 The agent-based modelling framework

The agent-based modelling approach has been used to study for example the impact of de-

centralized decision-making on the observed spatial patterns (Page, 1999; Batty, 2005; Irwin,

2010). According to Wilson (2010), we have a case of agent-based modelling when “the system

of interest is populated by individual agents who are given (probabilistic) rules of behaviour”.

In this section, we explain how a population is generated, with a (random) diversity of pref-

erences, and random demographic characteristics based on regularities observed in Norwegian

statistical data. The microsimulations account for both the decision-making of the agents, and
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the functioning of the labour market and the housing market in the geography.

3.1 The geography

Figure 1: The spatial configuration of towns in the geography.

We consider a spatial configuration of 12 nodes, or towns, as illustrated in Figure 1. The

towns A, B, C and D are located at one side of a topographical barrier, while the other towns

are located at the same side as zone E, which hosts the central business district of the geography.

The distances between the towns in the geography are given by the following matrix:




0 15 30 15 75 75 65 85 100 90 100 100

15 0 15 15 60 70 80 70 85 95 95 85

30 15 0 15 45 55 65 55 70 80 80 70

15 15 15 0 60 70 80 70 85 95 95 85

75 60 45 60 0 10 20 10 25 35 35 25

75 70 55 70 10 0 10 20 35 35 45 35

65 80 65 80 20 10 0 30 35 25 35 45

85 70 55 70 10 20 30 0 15 25 25 15

100 85 70 85 25 35 35 15 0 10 10 10

90 95 80 95 35 35 25 25 10 0 10 20

100 95 80 95 35 45 35 25 10 10 0 10

100 85 70 85 25 35 45 15 10 20 10 0




3.2 Demographics

Similar to McArthur et al. (2010, 2012), the initialization of the system is based on a number

of fifteen years old utility maximizing agents, with given probabilities of being born in a specific

town. They then interact for 300 years according to rules based on Norwegian statistical data,

after which all the traces of the initial population are wiped out, and a population is made up

that is representative for the Norwegian population. During one time-step (one month), agents

can be born, marry, divorce, have children, apply for work, be retired, or die. We know the

state of each agent at any time, represented by information like gender, age, marital status,
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spouse, father, mother, children, house(s), address, work location, income, wealth and utility

parameters.

The rules in the model are basically the same as for the simple two-node system that was

considered in McArthur et al. (2010, 2012). Any adult woman in the model can give birth

with the probability of doing so being conditional on age and marital status. The sex of a child

is determined randomly. If the woman is not married, the father is drawn randomly from the

population of single men. Children are converted to adults when they reach the age of 15, and

people retire at the age of 70. Adults can marry, divorce, have children and apply for work.

Mortality rates are based on standard life insurance tables, using Gompertz-Makeham’s law i.e.

that the death intensity of a man of age x is given by the function:

µ = a+ bcx where a = 0.9, b = 4.4 · 10−5 and c = 1.10154

Death rates of women are adjusted by a 3 year age correction. Single agents can get married

with the probability being conditional on age, sex and previous marital status. Spouses are

drawn from the population of single people, but there is a distance deterrence in marrying; the

chances of marrying a person in another town is assumed to decline exponentially with distance:

Max
[
e−σ·d, 0.01

]

Here, d is the distance between the towns and σ is a parameter controlling how quickly the

probability declines with distance. When a couple marries, they move in together along with

any children they already have. Divorce rates are conditional on age and sex.

3.3 Preferences

The life-time earnings is the relevant variable representing the consumption opportunities. In

addition, the consumption opportunities depend on housing market transactions. Let Vi denote

the life-time earnings of individual i, plus the current value of the house, minus the price of the

house at the point in time when it was acquired. Hence, Vi is a measure of the income that

is disposable for consumption in a life-time perspective. In addition, individuals are assumed

to derive utility from housing consumption, represented by the size of the house, and no other
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attributes. Let Hi be the house size of household i, represented by the number of squared

meters. This defines a utility function like the one underlying the Alonso-Muth model of land

use and housing markets (Alonso, 1964 and Muth, 1969), and it is given by:

Ui(V,H) = V αi
i H1−αi

i 0 < αi < 1 (4)

where αi is the elasticity of the utility with respect to changes in life-time disposable income.

The housing market conditions do of course influence the development in the different towns.

Assume for instance that a worker accepts a job offer from an employer in another town. Com-

muting and migration represent two alternative responses in terms of spatial interaction. The

migration option involves finding a new house in another town, which means that housing prices

and mechanisms in the housing market affect the decisions to migrate or not, and vice versa.

3.4 Employment, and spatial labour market interaction

The workers are assumed to be homogenous in terms of labour market qualifications. They apply

for vacant jobs in the region if this contributes to a net gain in utility for the household. Job

applicants are randomly selected for the vacant job positions, and those who are employed may

stay in the job until they retire. If a worker accepts a job offer in another town, one option is to

move to that town. For a married worker, this requires that the sum of utilities of the spouses is

increased, accounting for changes in housing and other consumption. Alternatively, the worker

will have to commute to the new job location. Unemployed agents receive an insurance payment.

There are two types of firms. The local sector firms firms are serving the local population,

while the basic sector firms are serving demand in other regions and countries. Basic sector

production is assumed to be exogenously given. In export-base theory, local sector employment

is often assumed to be proportional to the local number of inhabitants. However, as argued and

demonstrated in Gjestland et al. (2006), the density of local sector activities tends to be higher

in the central business district (cbd) of a region. It is in particular customers in nearby towns

who make their shopping in the cbd, as a result of comparing traveling cost to benefits in terms

of lower prices and economies of scope in shopping. For towns located further from the cbd, the

dominant part of the shopping takes place within the town. Hence, the local sector activities

tend to be high in the cbd, low in suburban kind of towns, and close to the regional average
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in towns in a long distance from the cbd. Our agent-based modeling framework incorporates

the model presented in Gjestland et al (2006) along this line of arguing. The model has been

parameterized and applied in McArthur et al. (2014, 2020).

The wage rate is set higher in the cbd than in the other towns initially, due the hypothesis

of agglomeration economies in the labour market. For the years to follow, wages are determined

through a local Phillips curve style mechanism, opening for wage disparities across the towns, see

McArthur et al. (2010). The wages are assumed to be the only source of income for employees,

and there is an income tax, in addition to a fixed amount of money spent on for example taxes

related to power, water supply etc, and other expenses that are considered to be necessary for

a normally comfortable life.

3.5 The housing market

The housing market is one of the determinants of the migration/commuting tradeoff. Large

spatial disparities in housing prices are, for instance, expected to contribute to reduce the

probability of moving from an area with low housing prices to an area with high housing prices,

pulling in the direction of commuting-based solutions in this direction. The local housing prices

are endogenously determined in the model, responding to the balance between demand and

supply in the local housing market.

3.5.1 Housing demand

The housing demand is represented by a bidding procedure. The bidding procedure uses first-

price sealed bid auctions, in which all bidders submit their bids simultaneously, and the highest

bid wins the auction. According to auction theory, see e.g. Krishna (2002), a Bayesian Nash

equilibrium is obtained when bidder i has a valuation vi and bids

N − 1

N
vi,

where N is the number of bidders in the auction. The factor N−1
N leads to significantly lower

bids when N is small, and this effect appears to be crucial to get a reasonable price development

in the housing market.

The factor is not meaningful if N = 1, and in our model we have instead used the factor
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max[N−1
N , 12 ] to take that into account. Anticipating that in real world auctions the number of

bidders is not always very clear, we have used an adjustment

0.2 + 0.8max

[
N − 1

N
,
1

2

]
,

taking into account that that bidders may sometimes fear that slightly more people might be

interested in bidding, and are hence placing a slightly higher bid. This reduces the strength of

the factor to 80% of its original strength.

Who are the bidders in the auction? At each time-step the agents make a random check

to see if they might be interested to join a pool of potential bidders, and join the pool if the

check is successful. Which houses are for sale? Our model has a pool of houses for sale. At

each time-step new houses might be added. The government builds new houses when there is

sufficient demand, and house-owners makes a random check and if successful his or hers house

is added to the pool. When a sale is successfully executed, the house is removed from the pool.

How do the agents value a house? All agents in the pool of potential bidders scan the pool

of houses for sale in search of the house that provides them with the maximal utility. In their

utility valuations they assume that houses can be bought for the quoted price, using the price

per area unit in the previous period as a benchmark. They compare this utility to their current

state of affairs, and joins a sub-pool of bidders for this particular property if they find that the

new house would improve their position.

How is the auction carried out? For each house in the pool of houses for sale, the pro-

gram constructs a subpool of bidders. If this sub-pool is non-empty, the program puts N =

number of bidders in the sub-pool. Each bidder draws a random number from a log-normal dis-

tribution with parameters µ and σ. To avoid wild outliers, σ must be rather small and in our

computations we have used σ = 0.1. For a log-normal distribution we have

E[X] = eµ+
1
2
σ2

Hence if we put µ = −1
2σ

2, we get E[X] = 1. If an agent would improve his or hers position

considerably by winning the auction, he or she should be inclined to place a higher bid. To take
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this into account in our model, we have used

µ = ln


0.7 + 0.3(1− utility of current state

utility of new state
)


− 1

2
σ2

The bidder then places a bid

bid = X ·

0.2 + 0.8max


N − 1

N
,
1

2


· quoted price.

The bidder with the highest bid wins the auction. Since the last two factors are the same for

all agents, only the value of X determines the winner. The two other factors are, however,

important in the comparison of reservation prices and in the updating of housing prices in the

towns. When is a sale completed? The seller inspects the winning bid, and if this bids exceeds

his or hers reservation price, the sale is carried out. If not, the house remains in the pool of

houses for sale. The reservation price is computed from formulas similar to the formulas we used

in the utility considerations above.

As a technical note, degenerate cases sometimes occur in the formulas above, and the program

takes such cases into account. Moreover we have capped bids when they are 7.5% lower/higher

than the quoted prices. Capping the bids in this way, we avoid wild behavior occurring when

quoted prices are based on a small number of transactions, in extreme cases only one.

3.5.2 Housing supply

The initial supply of housing is determined by a regional government planning entity, and new

houses are in general built according to a minimum frequency of 5% yearly in each town. In

addition, if a town experiences a high demand and a correspondingly high increase in housing

prices in the previous year, then this is allowed to be reflected in a high building frequencies of

new houses, provided by either public or private agents.

HSt
j =




HSt−1
j · 1.05 ·


P t−1
hj

P t−2
hj

γ

if
P t−1
hj

P t−2
hj

> 1.05

1.05 otherwise

where HSt
j is the housing supply in town j in year t, and P t

hj is the housing price per squared

meter in town j in year t. γ is the elasticity of housing supply with respect to the price increase
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observed in the previous year.

4 Defining the initial state and a benchmark for experiments

The agent-based modelling framework is used to generate commuting matrices, corresponding

to different specifications of the spatial structure. We are monitoring how different scenarios

and numerical experiments affect the estimates of the distance deterrence parameter from the

standard doubly-constrained gravity model. This is analogous to comparative static approaches

in a pure analytical framework, focusing on the impact of partial changes in an exogenous variable

on a set of endogenous variables. However, our modeling framework is dynamic. Agents make

decisions based on life cycle considerations, and the state of the system changes continuously

as a response to numerous independent individual decisions. The analysis is based on a set of

simplifying assumptions, we have for instance abstracted from worker and job heterogeneity.

Still, the curves in the figures to follow reflect the outcome of very complex mechanisms, like

the competition for jobs and houses, for households which tend to have more than one worker.

As a first step, we start with a population of 15000 17-year old. Initially, the individuals are

evenly distributed across the towns in our geography, with the exception of the cbd (zone E),

which is allocated 5 times more people than the other towns. The same applies to the initial

number of 4000 houses. Through rules defined by Norwegian average rates of marrying, births,

deaths, etc., the members of this population then interact over 300 years, which is by a good

margin sufficient to generate a population very similar to the Norwegian in a demographic sense.

After these 300 years of initialization, housing and labour market characteristics are introduced,

as important input for location decisions of households and firms.

The system was then run for another 50 initializing years, where agents account for relevant

characteristics of the housing and labour market, like housing prices, traveling costs, and wages.

This dynamic system, with a continuously changing population, does not reach a steady state

equilibrium. Still, we have done experiments on the level of migration and commuting costs, the

balance between jobs and workers, and a set of parameters, to reach a state after 50 years with

reasonable values of endogenous variables, like housing prices, unemployment rates and wages.

The mechanisms and parameter values of our benchmark scenario are as follows:

Preferences. The weight attached to general consumption, αi in Equation 4, is allowed to vary
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randomly, uniformly distributed across individuals, within the interval (0.3-0.7).

Housing supply. The housing supply elasticity γ = 1, see Section 3.5.2. The initial price

of building a house is 5000 per square meter, and the housing price construction price

increases by 1% per year. It takes 1 year to construct a house.

The spatial distribution of local and basic sector jobs. The local sector employment in

the region is assumed to be 20% of total population in the region, distributed between

towns according to the same parameterization as in McArthur et al. (2014, 2020). In

addition, we do consider a case where the relevant spatial distribution of local sector

employment is substituted by an assumption of equal local sector density in all the towns,

equal to 20% of the local population. The spatial distribution of basic sector employment

is presented in Table 1. No attempts have been made to explain the distribution by spatial

differences in innovativeness, creativity, knowledge, entrepreneurship, etc.

Wages The wage in year 0 is NOK 100000 in all the zones except the cbd, zone E, where the

yearly wage rate initially is assumed to be NOK 115000. The unemployment insurance is

set to be NOK 60000 in all the zones in year 0. Both wages and the unemployment insur-

ance are assumed to increase by 2.5% yearly. The parameter representing the sensitivity

of wages to changes in the local level of unemployment is given by λ = 0.1. In addition,

there is a 28% income tax, while mortgages and life-time incomes are calculated by the

use of a discount rate of 2.5%.

Commuting costs The generalized round-trip commuting costs are assumed to be NOK 0.6

per kilometer in year 0, incurred over 200 working days per year. The commuting costs

are increasing by 2.5% per year.

The chosen size of the initial population and jobs reflect a trade-off between computing time

and the call for for unveiling robust relationships between different variables. Let BASEt
j be

the number of basic sector jobs in town j in year t, POP t
j is the population in town j in year

t, while TOT t
j is the total number jobs in town j in year t. Table 1 offers information of how

the population and the jobs are distributed across the towns after 50 years, given the initial

distribution of basic sector jobs. The table in addition offers information on the unemployment

rates (Uj), the housing prices (Phj , and the wages (wj) in the 12 towns in year 50. Notice in
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particular that the cbd, town E, has many times higher housing prices than the other towns.

This corresponds to a high concentration of jobs, covered by a substantial in-commuting from

the other towns in the system. Notice also that the high demand for labour in the cbd has

caused an increased nominal wage disparity between the cbd and the other towns, while the

relative difference has remained at the approximately same level over time.

Table 1: Zonal values of basic variables in the benchmark scenario
zone BASE0

j POP 50
j TOT 50

j U50
j P 50

hj w50
j

A 430 2 049 830 8.1% 23 863 329 940
B 270 1 750 603 7.9% 24 354 318 676
C 220 1 604 507 8.8% 24 332 321 420
D 60 1 894 420 9.7% 22 985 309 731
E 2 200 3 139 4 491 9.3% 101 361 369 140
F 350 1 545 472 10,0% 24 817 314 013
G 310 1 857 575 10,8% 25 048 310 418
H 460 1 703 594 10.4% 24 853 314 425
I 100 1 288 284 10.1% 24 743 302 884
J 330 1 623 598 10.8% 23 467 305 140
K 350 1 683 628 9.3% 23 480 307 777
L 60 1 431 264 10.3% 23 811 320 838
Region 5 140 21 566 9 679

5 Results of changing the spatial structure

Fotheringham (1981) and Lo (1991) define spatial structure as “the size and configuration of

origins and destinations”of a regional system, while Tiefelsdorf (2003) emphasizes “the mutual

distances among representative points of the region”. Based on such definitions, any changes in

the road transportation infrastructure that are altering the positions of the different towns are

considered as changes in spatial structure, as are changes in the spatial distribution of jobs.

Our approach is to introduce specific changes, like the location of the regional center, the

distribution of basic sector jobs throughout the zones, the road transportation network and the

compactness of the system, represented by the distances between the zones. We do controlled

experiments, by considering one exogenous change at a time. For each change, we run our

agent-based model. This model simultaneously predicts how the change affects

the housing market in terms of housing prices and the provision of new houses

the labour market in terms of wages and the spatial distribution of local sector jobs
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The new spatial equilibrium location pattern results from how changes in spatial structure and

accessibility patterns affect the local housing demand and shopping location decisions. Shopping

is represented by the local sector density function explained in Section 3.4, while the effects on

local housing demand is explained by the core element of the bid rent theory. The effects of

changes in the residential location pattern and in shopping destinations are expanded by eco-

nomic base mechanisms, inducing a new spatial distribution of jobs and people. The agent-based

modeling framework is integrating land use and transportation. Hence, the predicted change

in the location pattern is mirrored by corresponding changes in the activity-based commuting

flows. This means that the agent-based model generates a new “observation”of a commuting

matrix, evolving from any exogenous shock that is introduced. All the “observed”changes in

the location pattern and the commuting flows are next imputed into the doubly-constrained

gravity model, as a framework for estimating new values of the distance deterrence parameter

β in Equation 1. Since the underlying preferences are kept constant, any change in parameter

estimates reflects the specific characteristics of the spatial structure. The cases that will be

studied differ from our benchmark scenario as follows:

Case CBD The cbd of the region is town B rather than town E. As compared to our benchmark

situation, all zone-specific information is swapped between these two zones. This applies

for instance to the number of basic sector jobs.

Case EVEN The distribution of basic sector jobs are more evenly spread throughout the zones

than in our benchmark scenario, Hence, this test defines a less centralized system.

Case BRIDGE We introduce a major change in the road transportation network, in that a

bridge/tunnel is connecting the towns B and E.

Case LSD The local sector density is 0.2 in all towns, rather than the spatial distribution of

local sector densities as suggested by Gjestland et al. (2006), see Section 3.4.

Case DISPERSION For a system of towns that is more compact than the benchmark sce-

nario, we let all the distances in the system be reduced by a factor of 0.5, while all the

distances are increased by a factor of 1.5 in a more dispersed configuration of towns.

It is reasonable to think of the cases EVEN and BRIDGE to materialize at a specific point in

time. The position of a town as the regional centre on the other hand, can be argued to develop
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as a result of a more slow-moving process. Rather than introducing a change of cbd in year 50,

we therefore compare our benchmark scenario to an alternative where the cbd is assumed to be

town B from the start. Similarly, it also makes more sense to discuss both the cases LSD and

DISPERSION in developing from year 0, rather than appearing at a specific point in time.

5.1 An altenative location of the cbd; case CBD

The result of case CBD on β̂ is illustrated in Figure 2. The initializing period reflects location

responses to the job and residential opportunities. Eventually, the location pattern approaches

a state where the spatial distribution of jobs and households is relatively stable across the

12 towns. Still, in this dynamic system, with births, deaths, marriages, relocations, etc., the

location pattern and the estimated distance deterrence parameter do not converge in the sense

that a specific value is reached. The system rather approaches a state where the corresponding

estimates of the distance deterrence parameter is centering around a specific level.

It further follows from Figure 2 that the values of the distance deterrence parameter is

systematically lower in the case where town B is the regional centre. Before explaining this

difference in observed commuting response to distance, notice that the change of cbd has a

considerable impact on variables that are related to commuting. It is of course intuitively

reasonable that the change of cbd-location benefits the least populous area, which in year 50

has 42,9% of the jobs and 42,2% of the population in the region. In the benchmark scenario,

the corresponding figures were 24,2% and 35%, respectively.

The position as the cbd reflects a high concentration of local sector jobs, which comes in

addition to the higher concentration of basic sector jobs that is allocated to the cbd. In the case

where the cbd is located at the least populous area, this concentration of jobs attracts more

long-distance commuting. Consequently, the observed commuting matrix has more commuting

between distant O-D combinations, as an explanation of the markedly lower value of the distance

deterrence parameter that is illustrated in Figure 2. As a general conclusion, this suggests that

if many people live in a long distance from the cbd, then there will be a tendency that the

observed commuting flow data results in a low estimated distance deterrence.
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Figure 2: Estimates of the distance deterrence parameter over the first 50 years, for two alter-
native locations of the cbd in the region.

5.2 A spatially more even distribution of basic sector jobs; case EVEN

Figure 3 gives an illustration of β̂ in the cases EVEN and BRIDGE. The figure is defined up

to year 65, to account for possible systematic trends that may be present even after 50 years of

initialization and adaption to the initial specification of exogenous variables and parameters.

In case EVEN, 1100 basic sector jobs are redistributed from the cbd, and each of the 11

other towns are allocated 100 new basic sector jobs. It follows from Figure 3 that this results in

a commuting pattern corresponding to a higher β̂ than in our benchmark scenario. Notice also

from Figure 3, the tendency that the difference (β̂EVEN − β̂benchmark) is increasing over time,

peaking around year 61.

It takes quite a long time after the job redistribution shock, before a commuting pattern

emerges that is corresponding to a relatively stable value of β. This value is higher than in the

benchmark case, reflecting a commuting pattern where distance appears to be more of a barrier.

The commuting towards the cbd is, naturally, substantially reduced when jobs are decentralized.

In case EVEN, around 24% of the workers living outside the cbd commute towards the cbd in

year 65, while this applies for around 36% of the workers in the benchmark case. With reduced

prospects of receiving job offers in the cbd, workers will to a larger degree settle down with

solutions involving low commuting expenses. A household may for instance be content with a
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Figure 3: Estimates of the distance deterrence parameter in cases with a more even spatial
distribution of basic sector jobs, and a bridge connecting town E (the cbd) and town B.

solution where both spouses work in the town where they live.

In this dynamic system, such a search for solutions involving low commuting expenses may

progress over long time before it converges towards a dynamic equilibrium level. Consider

the proportion of workers who work in the same town where they live. For case EVEN, this

proportion was around 24% in year 65, for workers living outside the cbd, while the corresponding

proportion was around 18% in the benchmark scenario. This contributes to explain the higher β̂

in case EVEN, with workers who are seemingly more reluctant towards long-distant commuting.

5.3 A new bridge between towns B and E; case BRIGDE

A bridge between the towns B and E also defines a new spatial configuration of towns. As

illustrated in Figure 3, the new bridge is causing a marked and persistence increase in the

yearly estimates of the distance deterrence parameter. This impact on β̂ comes as an immediate

response to the bridge. At this point in time, the commuting pattern represents an adaptation

to the situation without a bridge. Hence, many O-D combinations in a relatively short distance

to each other, on either side of the barrier, have very few commuters. Workers then appear to

be quite reluctant to commute over such distances, evaluated by the new distance matrix.

The adaptation to the new situation goes on over a long period, with workers searching

for O-D combinations making them well off, in terms of wage, housing price, and commuting
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expenses. In year 65, the commuting between the two areas on either side of the topographical

barrier (bridge) has increased by around 11% compared to the situation in year 50. This increase

is entirely explained by the commuting from the smallest area towards the cbd-area. As a result

of the bridge, high-wage jobs in the cbd have become more appealing for workers living across

the former barrier. Over time, there is a tendency that they replace the workers from the most

distant towns of the cbd-area from working in the cbd. The system then works in the direction

of a new dynamic equilibrium with less long-distant commuting than prior to the changed road

network. This contributes to explain the persistently higher estimate of the distance deterrence

parameter than in the benchmark scenario, with workers seemingly more reluctant towards

long-distance commuting than prior to the investments in road transportation infrastructure.

5.4 A less clustered distribution of local sector jobs; case LSD

In case LSD, local sector employment in the cbd is considerably downsized, and less commuting

is attracted towards the regional centre. This case ignores the possibility of economies of scale

and scope in shopping, that is ignoring the basic mechanisms underlying Reilly’s law (Reilly

1931). The corresponding shopping behaviour deviates substantially from the more centralized

pattern in the benchmark scenario. The effect on β̂ is illustrated in Figure 4.

Figure 4: Estimates of the distance deterrence parameter in the case where local sector densities
are proportional to the size of the population.

Case LSD is based on the assumption that alternative shopping behaviour has been un-
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changed since the beginning of the period under consideration, rather than as a sudden change

at a specific point in time. It appears from Figure 4 that β̂s continue to increase even after the

initializing period needed for the benchmark scenario to reach a state with relatively stable β̂s.

Despite the different time perspectives in the experiments, the development in case LSD is

more similar to case EVEN, where the period of increasing β̂s lasts considerably longer than

for the two other cases in Figure 3. Both case EVEN and case LSD correspond to a more

even spatial distribution of jobs across the towns in the geography. Hence, there will be less

commuting towards the cbd, and the prospects of getting better paid jobs are reduced. Still,

workers continue to search for solutions involving low commuting expenses, high wages and

low housing prices for the household. This is a slow process in this dynamic system, and it

can be useful to study for instance what happens to the relative number of workers taking the

advantage of working and living in the same town. The development of the percentage number

of non-commuters is illustrated in Figure 5.

Figure 5: The percentage number of workers living and working in the same town, in the
benchmark scenario and in case LSD.

Notice that the pattern of the two lines in Figure 5 has some resemblance with the lines in

Figure 4. It makes sense that a high number of non-commuters corresponds to a high value of

β̂. It also makes sense that the number of non-commuters eventually falls in our benchmark

scenario, but remains stable in case LSD. In the benchmark scenario, more workers succeed

in taking advantage of a high-wage employment in the cbd. Figure 5 reflects a pattern in the
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benchmark scenario where many workers first go for a solution with work and residence in

the cbd. Over time, however, workers living in other zones tend to search for the high-wage

jobs in the cbd, choosing a situation with commuting rather than moving into the cbd, where

housing prices are higher than elsewhere in the geography. This leads to a situation where

in-commuters occupy jobs in the cbd, contributing to explain the tendency of a falling number

of non-commuters. This is to a smaller degree the case when local sector jobs are more evenly

spread throughout the geography, reducing the prospects of getting highly paid jobs in the cbd.

Hence, the explanation of the relatively high β̂s in case LSD is the same as for case EVEN.

In cases with a less centralized pattern of jobs, the relevant parameter estimates tend to be

higher, no matter if it is caused by a decentralization of local or basic sector jobs.

5.5 Different degrees of spatial dispersion between towns; case DISPERSION

The estimates of β represented by the curve denoted “Compact”in Figure 6 refer to a case where

all distances are reduced by half, while the curve “Dispersed”is based on an experiment where

all distances between the towns are increased by a factor of 1.5.

The most compact system of towns results in substantially higher β̂s. A highly paid job in

the cbd is attractive, even if it calls for commuting from the towns which are most distant to the

cbd in this compact system. This pulls in the direction of a low value of β. Aside from working

for a high wage in the cbd, it is still attractive, even in this compact system, to work and live

in the same town, saving the household for commuting expenses. With many non-commuters

in a system with short distances, workers appear to be highly distant-deterrent in commuting.

The preference towards non-commuting pulls the β̂s in the opposite direction of the centripetal

forces originating from the high wage in the cbd. According to the “Compact”curve in Figure

6, this second force is more dominating in a compact system than in the benchmark scenario.

The situation is the reverse for the more dispersed spatial configuration of towns. Even in this

case, with long distances between the towns, some workers choose to commute and benefit from

the high wage in the cbd, and the observed pattern corresponds to a hypothesis that workers

are not strongly deterred by distance in their choice of an O-D combination.

The curves in Figure 6 were interpreted to result from balancing the worker’s wish for a high

wage and the benefit of avoiding commuting expenses. As a reasonable presumption, commuting
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Figure 6: Estimates of the distance deterrence parameter in cases with different degrees of spatial
dispersion in the pattern of towns in the geography.

will be higher in the compact system than in a system where the towns are more spread-out

in the geography. This a priori expectation is supported in Figure 7a. A considerably higher

number of workers are commuting towards the cbd in the compact system. In a case where

the other towns are closer to the cbd, it follows from the LSD function in our model that their

households will do more of their shopping in the cbd. Due to economies of scale and scope in

shopping, local sector jobs will then be more clustered in the cbd. This additional centripetal

force contributes to explain the high number of in-commuters to the cbd in this system.

The clustering of local sector activities promotes commuting. However, as is evident from

Figure 6, this does not result in low β̂s. The increased commuting towards the cbd is more than

counteracted by the tendency to live and work in the same town. The compact system has a very

polarized commuting pattern, with a strong tendency that the workers either commute towards

the cbd, or do not commute at all. There are not much commuting between O-D combinations

which are not involving the cbd. This is more common in the more dispersed system, where a

substantially higher number of local sector jobs are located outside the cbd. As illustrated in

Figure 7b, the compact system has a substantially higher proportion of non-commuters than the

more dispersed spatial pattern of towns. This reflects a tendency that the relatively few local

sector jobs that are left outside the cbd tends to be occupied by local workers. Despite their high

commuting into the cbd, the workers in the compact system then apparently are more deterred
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by distance in their spatial labour market interaction. The percentage increase in commuting is

lower than the 50% reduction in distances.

a) In-commuters to the cbd b) Non-commuters

Figure 7: The proportion of workers who are working but not living in the cbd, and the pro-
portion of workers who are living and working in the same town. A compact system of towns is
compared to a more dispersed system, with longer distances between the towns.

The relocation of local sector jobs causes a more imbalanced spatial system of jobs and

housing. The variation in the job/housing ratio in an area iinfluences commuting, and this

ratio is in general emphasized in the literature (see for example Sultana (2002), Schwanen et al.

(2004), Lin et al. (2015), Kim and Choi (2019), Guo et al. (2019), and Moos et al. (2018)). This

kind of imbalance explains the tendency of increased commuting into the cbd that is illustrated

in Figure 7a. In this case, however, the imbalance is due to a relocation of jobs to a centrally

located town in a compact system. This does not induce a lot of long-distance commuting,

which would pull in the direction of a low β̂.

6 Model performance and parameter sensitivity of making pre-

dictions.

In this section, we provide information on model performance, and discuss how sensitive the

predicted commuting flows are to the value of β̂ in the standard doubly-constrained gravity

model. Figure 8 offers information on the predicted number of workers commuting specific

distances, for different values of β. In part a) of the figure, the values of β are deviating

substantially from the entropy-maximizing value of β̂ ≈ 0.016. In part b) of the figure, the

values are in a lot closer range to β̂ ≈ 0.016. Notice that the scaling for the vertical axis is
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different in the two parts of the figure. Taking this into account, it is obvious from the figure

that the values of β in the range close to 0.016 give a substantially better fit to the observations

than the more extreme values in part a) of the figure.

a) Extreme values of β b) β’s close to the entropy-maximizing value

Figure 8: Commuting flows from our benchmark agent-based scenario are compared to pre-
dicted commuting flows for different values of the distance deterrence parameter in the doubly-
constrained gravity model.

The prediction errors in Figure 8a) are according to an expected pattern. Very high values of

β, correspond to a situation where the workers resist to commuting over long distances. Hence,

it makes sense that the gravity model is overpredicting the number of non-commuters, and is

underpredicting the commuting over long distances in the case where β = 0.1. This tendency is

less pronounced for β = 0.05, while a value of β = 0 reflects a situation where the workers tend

to be happy to be employed anywhere, without considering distance as a barrier.

Part b of Figure 8 illustrates that the predicted commuting flows are not very sensitive

to small deviations from the entropy-maximizing value of β, but that there is still room for

significant predictions errors. The prediction errors are in particular discernible for intraurban

commuting, indicating that the standard doubly-constrained gravity model does not adequately

account for the propensity that workers live and work in the same town.

Table 2 offers more accurate information on the model performance, for different values

of β. For this purpose, we use the standardized root mean square errors (SRMSE), that was

recommended by Knudsen and Fotheringham (1986) as an accurate measure for the performance

of a model to replicate a data set of a spatial system. The predicted commuting patterns are

compared to the commuting pattern that is following form running the benchmark scenario for

65 years. It follows from Table 2 that the values of the SRMSE are apparently not very sensitive
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to deviations from the entropy-maximizing value of β. Still, we know from Figure 8 that β = 0.05

gives a considerably poorer fit than values of β close to 0.016. Hence, an increase in SRMSE

from 0.42 to 0.46 represents a substantially poorer fit to data, and a value of SRMSE close

to 1, or even around 0.6, corresponds to a predicted commuting pattern that is fundamentally

different from the observed pattern.

Table 2: The SRMSE of the standard doubly constrained gravity model for different values of
β. The observed O-D matrix is given by the benchmark scenario, year 65.

zone β = 0 β = 0.01 β = 0.016 β = 0.02 β = 0.05 β = 0.1

SRMSE 0.624 0.454 0.417 0.426 0.463 1.062

The gravity model can for example be used to predict the impact on commuting flows

if basic sector jobs are more evenly distributed across the geography, or if a new bridge is

connecting different areas. As demonstrated above, however, one major problem is that the

distance deterrence parameter is not autonomous to such changes. If we use the value of β that

was estimated from the ex ante situation, then this will lead to a severely wrong prediction of the

impact on commuting flows. An appropriate model for making predictions should account for

relevant characteristics of for example the spatial structure. However, entering into a discussion

of model extensions is beyond the scope of this paper.

As pointed out in for example Wilson (2010), a reduction in total commuting expenditures is

equivalent to an increased value of the β parameter. This is reflected in Figure 8. High values of

β correspond to a high number of non-commuters, and not much commuting over long distances,

while low values of β results in higher aggregate commuting expenditures.

The value of β is related to the concept of commuting tolerance, that is frequently used and

discussed in the literature (see for example Clark et al. (2013), who indicate a tolerance level

in between 30 and 45 minutes). It is not straightforward to identify such a tolerance level for

the system treated above. The system has a relatively low number of agents, with an irregular

distribution of possible commuting distances. This irregularity partly reflects the topographical

barrier, that separates the geography into two areas. An unbalanced jobs/housing ratio between

the two areas contributes to explain the demand for some long-distance commuting, over for

example 75 km. Hence, a smoothly falling curve cannot be expected. Still, Figure 8 at least

demonstrates that such a tolerance level will be negatively related to the value of β.
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The experiments that are run in this paper all tend to report lower values of β̂ than are usually

reported in empirical studies of commuting flows. Based on commuting data from Norwegian

regions, and an exponential representation of distance in the model, Gitlesen and Thorsen (1998,

2000), and McArthur et al. (2011, 2013), estimate values of β around 0.07. The experiments

have demonstrated that there are many possible explanations for the divergence between the

benchmark agent-based commuting pattern, and real world observations. If the real world has

� a more compact spatial structure, with short distance between the central places

� no barriers in the transportation network

� a less centralized distribution of basic and local sector jobs,

we have seen that all these factors will pull in the direction of a commuting pattern corresponding

to a higher value of the distance deterrence parameter.

7 Concluding remarks

The agent-based experiments generated a population that in a demographic sense is very similar

to the Norwegian. We primarily used this experimental design as a consistent approach to discuss

the interpretation of the distance deterrence parameter in a spatial interaction model, and the

stability of parameter estimates over different controlled experiments. The main contribution is

to demonstrate how these parameter estimates reflect spatial structure characteristics.

Table 3 summarizes some aspects of the results. The estimates of β refer to the last year of

the respective experiments. Some of the experiments have been running for 50 years after the

initialization, while others have been running for 15 years after a shock was introduced in year

50. There is of course a risk that in particular the values of β taken from the latter experiments

are still trending towards a new dynamic equilibrium level. It still follows from Table 3 that the

parameter estimates vary considerably across the different experiments. The estimated effect of

variations in distance is in particular sensitive to the compactness of the configuration of central

places, but they also respond significantly to changes in the transportation infrastructure and

the centralization of local and basic sector jobs. To summarize, commuting is estimated to be a

lot more deterred by distance in a compact system, with short distances between central places,

with no barriers in the transportation network, and a decentralized distribution of jobs.
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Table 3: Parameter estimates, model performance, and the coefficient of variation (CV) of the
jobs/housing (J/H) balance between the towns in different experiments.

β̂ SRMSE J/H balance,
CV

Benchmark 0.0162 0.4250 0.3270
Case CBD 0.0102 0.5434 0.3896
Case EVEN 0.0232 0.4829 0.2709
Case BRIDGE 0.0319 0.3263 0.3199
Case LSD 0.0231 0.4570 0.2620
Case COMPACT 0.0532 0.9557 0.5983
Case DISPERSED 0.0133 0.4810 0.3186

Hence, our experiments demonstrate that β̂ from a standard gravity model vary substan-

tially with respect to the data-generating design. This raises an interpretational concern; β̂

from the standard gravity model is not an unbiased estimate of how variations in distance affect

commuting. Another concern is related to the predictability. Assume that the transportation

network is changed, by building a new bridge connecting the two areas that are separated by

a topographical barrier. What parameter value should be used in predicting the induced com-

muting from a standard gravity model? As pointed out in Section 6, one problem is that the

parameter is not autonomous to the change in the transportation network. Basically, however,

the problem is that the standard doubly-constrained gravity model is not an adequate represen-

tation of the geography. Our experiments have demonstrated that the model specification should

explicitly account for spatial structure characteristics. By integrating such variables adequately,

the resulting modeling device will potentially be more suitable in making reliable predictions.

Table 3 also provides information of the model performance (SRMSE). The standard doubly-

constrained gravity model in particular fails to replicate commuting flows in a compact system,

with short distances between the towns. Keep in mind, however, that this experiment has

relatively large spatial wage disparities, with around 15% higher wages in the cbd. This is

maybe not a likely scenario in such a compact system, but it nevertheless sorts out a possible

scenario where the standard gravity model does not at all perform well to explain commuting

flows. In such a case, the model strongly underpredicts the commuting flows into the cbd.

Finally, Table 3 offers information on spatial disparities in the Job/Housing (J/H) balance.

A high value of the coefficient of variation (CV) reflects an unbalanced J/H distribution across

the towns. It is well known in the literature that the commuting pattern depends on the local
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balance of employment and housing, and that this leaves a potential for spatial planning policies

to move the local economy into a more sustainable direction (see for example Schwanen et al.

(2004), Lin et al. (2015), Kim and Choi (2019), Guo et al. (2019), and Moos et al. (2018)).

This discussion is beyond the scope of this paper, but notice at least from Table 3 that the case

where town B is the cbd results in unbalanced systems, while case EVEN and case LSD are

more balanced systems. In comparing these cases, the hypothesis is supported that unbalanced

systems results in a lot of commuting and lower values of β̂ than more balanced systems.

The evidence in Table 3 is not unambiguous, however. The compact system results in a very

high clustering of local sector jobs towards the cbd. Hence, the system is strongly unbalanced

in terms of J/H. The system has a high level of commuting, but the dominating part of this

commuting involves the cbd, which is centrally located. Hence, the gravity model estimates a

high β̂, serving as an example that an unbalanced system does not necessarily lead to a low β̂.

Summarized, we think that the experiments presented in this paper have demonstrated that

different characteristics of the spatial structure should be explicitly accounted for to obtain reli-

able, unbiased, estimates of β in spatial labour market interaction. The results provide a useful

guideline for evaluating results in empirical studies. This applies for instance for interregional

comparisons of commuting behaviour, and for procedures related to the prediction of induced

commuting and willingness-to-pay for investments in transportation infrastructure.
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An experimental approach to study how commuting behaviour

reflects preferences, labour market conditions and housing prices.

Azam Azad Gholami1, Inge Thorsen2, and Jan Ubøe3

Abstract

In this paper, an agent-based approach is used to generate spatial interaction data from a

population that in a demographic sense is very similar the Norwegian. This approach allows

us to perform controlled experiments on how a standard spatial interaction model replicates

an observed trip distribution pattern. We demonstrate how the trip distribution depends on

labour or housing market conditions, and how this is reflected in the estimates of the distance

deterrence parameter. We also address the identification of how travel demand is affected by

the preferences and different aspects of the budget constraint of the households. The results

contribute both to ideas for modifications of the standard spatial interaction model, and

to a reasonable interpretation of the distance deterrence parameter. The experiments for

example demonstrate a tendency that the estimated distance deterrence parameter will be

low if there are large wage disparities but low disparities in housing prices across the towns.

Still, these are net effect of complex interactions, and the analysis demonstrates the demand

for considering shopping, moving and commuting decisions simultaneously.

1 Introduction

As claimed by Fotheringham (1981), “the concept of distance-decay is an extremely important

one in urban and economic geography”. Most spatial interaction models incorporate a distance

deterrence parameter, reflecting to what degree traffic flows are deterred by distance. In this

paper we study the journeys-to-work, in a dynamic framework where moving is also an option

1Norwegian School of Economics, e-mail: Azam.Gholami@nhh.no
2Western Norway University of Applied Sciences, e-mail: inge.thorsen@hvl.no
3Norwegian School of Economics, e-mail: Jan.Uboe@nhh.no
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for workers who want to improve their position. Still, the distance deterrence in commuting

is estimated from a standard doubly-constrained gravity model, using information on origin-

destination combinations from each specific year.

It is well known from the literature that standard spatial interaction models in general fail

to account adequately for spatial structure characteristics. This leads to biased estimates of the

distance deterrence parameter, and the interpretation of the parameter estimates will be due

to a confusing mixture of the underlying traveling preferences and “the size and configuration

of origins and destinations”of a geography (Fotheringham 1981, Lo 1991). The traditional

interpretation of the parameter in terms of interaction behaviour was challenged in the 70s and

the 80s. Important contributions to the debate can be found in Sheppard (1978, 1984) and in

Fotheringham (1981, 1983a, 1983b, 1986). Tiefelsdorf (2003) claims that this problem did not

receive much attention in the 90s “despite the fact that no satisfactory solution has been found”.

The major bulk of the literature addressing this issue was depending upon a migration con-

text. Commuting is in general studied in a doubly-constrained modelling framework, that is

for a given spatial distribution of jobs and workers in a trip distribution perspective. It can

be argued that the complex balancing factors involved in such a framework adequately cap-

ture relevant aspects of the spatial structure. However, it was demonstrated in Gitlesen and

Thorsen (1998, 2000) that separate measures of spatial structure are relevant also in explaining

the journeys-to-work. As an example, they successfully incorporated a measure of labour market

accessibility, corresponding to the competing destinations model formulation of spatial interac-

tion, that was introduced by Fotheringham (1983a). In agent-based experiments, Gholami et

al. (2021) provided useful suggestions for modifications of a standard spatial interaction model,

in how to explicitly incorporate relevant aspects of the geography.

In urban and regional economics, commuting is explained to result from a trade-off between

traveling costs and housing prices. As in the Alonso-Muth model (Alonso, 1964 and Muth,

1969), this can be explained in a utility-maximizing framework. Assuming a monocentric ge-

ography with all jobs located in the cbd, the workers derive utility from housing and other

consumption. Their optimal residential location then follows from maximizing utility, subject

to budget restrictions.

The standard doubly-constrained gravity model is firmly founded in random utility maxi-
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mization theory (Anas 1983, 1984), and it can also be derived from entropy maximization. In

the latter context, the distance deterrence parameter can be interpreted to measure the impact

on commuting flows of a marginal release in the cost constraint, see for example Wilson (2010).

A sound theoretical foundation does of course not necessarily mean that all aspects of the lo-

cal housing and labour markets are adequately represented in the standard model formulation.

This paper employs an experimental design to demonstrate that there are some challenges in

the model formulation as well as in the interpretation of parameter estimates. We also address

problems related to the identification of how different aspects of the preferences, the housing

market and the labour market affect spatial interaction behaviour. Are observed changes in

interaction behaviour a response to preferences or incidents related to the budget?

Problems involving identification and endogeneity issues are potentially demanding in a

pure empirical setting. The controlled experimental agent-based approach gets around such

problems, since the microsimulations systematically introduce one exogenous change at a time,

leaving no uncertainty concerning the direction of causation. The microsimulations generate

new origin-destination matrices, and the standard gravity model is then used to estimate the

distance deterrence parameter corresponding to the generated commuting pattern. This provides

us with a useful tool for assessing the model and for interpreting parameter estimates. The

procedure will be used to study how preferences, labour market conditions and housing prices

affect the commuting pattern, and how this is reflected in the estimates of the distance deterrence

parameter. We are equipped with utility functions, enabling us to distinguish between effects

stemming from preferences and budget considerations. The results contribute to

� ideas for modifications of the standard spatial interaction model, into a model formula-

tion that performs better in explaining the journeys-to-work in a region, and improves

predictions related to specific shocks in labour market conditions, housing prices, or the

transportation network.

� a reasonable interpretation of the distance deterrence parameter, in terms of how travel

demand reflects preferences and budget constraints.

The experiments presented in this paper address issues related to the stability of parameter

estimates both over time and across space. Stability over time is of course important if the

model is used for predicting effects of for instance future changes in the transportation network.
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If local O-D data are not sufficient for estimation, an option may be to use parameters estimates

from other regions. However, as demonstrated in this paper, and in Gholami et al. (2021),

parameter values should be expected to depend on the context in which they are estimated.

The context is represented by spatial structure characteristics (Gholami et al. 2021), as well as

labour market and housing market conditions. Hence, the results in this paper, and in Gholami

et al. (2021), are useful both in evaluating the predicability and in making attempts to modify

parameter values with respect to differences in spatial structure, housing and labour market

conditions. This is an important motivation of our experiments.

In Section 2 we explain how the agent-based modeling framework is used to generate a

synthetic population, involving both the geography, the demographics of the population, the

spatial labour market interaction, the wage setting, and the supply and demand for housing.

The standard doubly-constrained gravity model is briefly presented in Section 3. The benchmark

scenario is defined in Section 4, while the results from the simulations and the estimation are

presented in Section 5. We first study the impact on the distance deterrence pattern of variation

in residential preferences, in Section 5.1, before we focus on labour market issues in Section 5.2,

represented by spatial wage disparities, the level of the unemployment insurance benefit. The

effect of variations in the costs of commuting is studied in Section 5.3. In Section 5.4, we discuss

how the housing market pricing regime affects the spatial labour market interaction. Finally,

concluding remarks are offered in Section 6.

2 The agent-based modelling framework

Agent-based modelling has been used in a wide number of applications, including physical,

biological, social, and management sciences. In many cases, explaining complex patterns calls for

explicit considerations of agent diversity (Kirman, 1992), rather than approximated by statistical

averages (Page, 2011). According to Wilson (2010), we have a case of agent-based modelling

when “the system of interest is populated by individual agents who are given (probabilistic) rules

of behaviour”. In this section, we explain the generation of a synthetic population of individuals,

with randomly allocated preferences, a demography determined by Norwegian statistical data,

and a set of rules concerning the functioning of the local labour and housing market.

The presentation of the agent-based modelling framework in this section is just a slightly
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abbreviated version of the presentation given in Gholami et al. (2021). Readers who are familiar

with Gholami et al. (2021), or similar presentations of such an approach, may skip this sec-

tion, and continue on to the sections defining a benchmark scenario and discussing the results.

The motivation for including this section is that the paper then can be read and understood

separately.

2.1 The geography

We consider a region with 12 towns. The distances between the towns can be varied continu-

ously to investigate the impact of distance on the result of different experiments. The spatial

configuration of towns is illustrated in Figure 1. The towns are separated into two groups, by

the presence of a topographical barrier, like a lake, a fjord, or a mountain area. The towns A, B,

C and D are located at on side of the barrier, while the other towns are located at the same side

as zone E, which is the central business district of the geography. The long distance between

towns A and G and between towns C and E are due to the topographical barrier.

Figure 1: The spatial configuration of towns in the geography.

The distances between the towns in the geography are given by the following matrix:




0 15 30 15 75 75 65 85 100 90 100 100

15 0 15 15 60 70 80 70 85 95 95 85

30 15 0 15 45 55 65 55 70 80 80 70

15 15 15 0 60 70 80 70 85 95 95 85

75 60 45 60 0 10 20 10 25 35 35 25

75 70 55 70 10 0 10 20 35 35 45 35

65 80 65 80 20 10 0 30 35 25 35 45

85 70 55 70 10 20 30 0 15 25 25 15

100 85 70 85 25 35 35 15 0 10 10 10

90 95 80 95 35 35 25 25 10 0 10 20

100 95 80 95 35 45 35 25 10 10 0 10

100 85 70 85 25 35 45 15 10 20 10 0



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2.2 Demographics

As for the two-node system used in McArthur et al (2010), the region gets populated by artificial

heterogeneous, utility maximizing agents who are initially 15 years old and single. Each town

has an initial probability to have people born in, and the system is allowed to evolve the initial

population for 300 years. A set of statistical rules rules are introduced, which over 300 years

are making up a population that is representative of the Norwegian population, wiping out all

the traces of the initial population. The state of each agent contains information like gender,

age, marital status, spouse, father, mother, children, house(s), address, work location, income,

wealth and utility parameters which may change during a time-step. During one time-step (one

month) agents can be born, marry, divorce, have children, apply for work, be retired, or die.

The rules in the model are as basically the same as in McArthur et al. (2010). Any adult

woman can give birth with a probability conditional on age and marital status, and the sex of a

child is determined randomly. If the woman is not married, the father is drawn randomly from

the population of single men. Children are converted to adults when they reach the age of 15.

At the age of 70, people are retired. Adults can marry, divorce, have children and apply for

work. Mortality rates are based on standard life insurance tables, using Gompertz-Makeham’s

law i.e. that the death intensity of a man of age x is given by the function:

µ = a+ bcx where a = 0.9, b = 4.4 · 10−5 and c = 1.10154

Death rates of women are adjusted by a 3 year age correction. Single agents can get married

with the probability being conditional on age, sex and previous marital status. Spouses are

drawn from the population of single people. It is reasonable to assume that the chance of two

arbitrary people meeting is a declining function of the distance between the towns in which they

live. The marriage probabilities are assumed to decline exponentially with distance:

Max
[
e−σ·d, 0.01

]

Here, d is the distance between the towns and σ is a parameter representing the distance de-

terrence in marrying. The probability falls with distance, but never reaches zero, reflecting the

fact that it is possible for two people to meet by chance irrespective of the distance between the
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towns in which they live. When a couple marries, they move in together along with any children

they already have. Divorce rates are conditional on age and sex.

2.3 Preferences

Agents in the model act to maximize their utility. One obvious component of the indirect utility

function is the wage. Workers consume their earnings and derive utility from this consumption.

In a dynamic perspective, the life-time earnings is the relevant variable representing the con-

sumption opportunities. In addition, the consumption opportunities depend on housing market

transactions. Consumption and utility are derived from the life-time earnings, adjusted by the

net real estate asset value. Let Vi denote the life-time earnings of individual i, plus the current

value of the house, minus the price of the house at the point in time when it was acquired. Hence,

Vi is a measure of the income that is disposable for consumption in a life-time perspective.

In addition to consumption in general, individuals are assumed to derive utility from housing

consumption. In the version of the model used in this paper, the size of the house, Hi, is the

only attribute accounted for. Housing prices vary across the geography, but within each town

the housing price reflects only the number of squared meters of the house.

Like in the Alonso-Muth model of land use in urban economics (Alonso, 1964, and Muth,

1969), the utility function of individual i is then given by:

Ui(V,H) = V αi
i H1−αi

i 0 < αi < 1 (1)

where αi is the elasticity of the utility with respect to changes in life-time disposable income.

In the experiments to be presented, we account for the possibility of individual variations in the

preferences concerning the trade-off between consumption in general and housing consumption.

The housing market represents an important element in the development of a region, and

it affects both decisions concerning spatial interaction, and the residential location pattern in

the region. In the case of changes in the spatial distribution of jobs, commuting and migration

represent two alternative responses of spatial interaction, with fundamentally different conse-

quences for the population development of a specific town. Spatial disparities in housing prices

affect the decisions to move or not, and the simultaneity between moving decisions and housing

prices is accounted for in our agent-based approach.
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2.4 Employment, and spatial labour market interaction

The agents in our model are assumed to be homogenous in terms of labour market qualifications.

They apply for vacant jobs if this contributes to a net gain in utility for the household. Job

applicants are randomly selected for the vacant job positions, and these who are employed may

stay in the job until they retire. Unemployed agents receive an insurance payment.

If an agent accepts a job offer in an other town than, one form of spatial interaction is to

move to the other town. If the agent is married, this requires that the sum of utilities of the

spouses is increased by migration, accounting for changes in housing and other consumption.

Alternatively, the agent will have to commute to the new job location, involving costs which are

reducing the income disposable for housing and other consumption.

The production and employment in local sector firms is determined by demand originating

within the region, these firms are serving the local population. The basic sector firms, on the

other hand, are serving demand in other regions and countries. Basic sector production is

assumed to be exogenously given, while local sector production is related to population size.

In economic base theory, local sector employment in different towns is often assumed to be

proportional to the local number of inhabitants. However, as argued and demonstrated in

Gjestland et al. (2006), the density of local sector activities tends to be higher in the central

business district (cbd), due to agglomeration economies. It is in particular customers in nearby

towns who make their shopping in the cbd. This follows as an outcome of decisions based on

comparing traveling cost to benefits in terms of lower prices and economies of scope in shopping.

For towns located further from the cbd, the dominant part of the shopping takes place within

the town. Hence, the local sector activities tend to be high in the cbd, low in suburban kind

of towns, and close to the regional average in towns in a long distance from the cbd. Gjestland

et al. (2006) developed a model explaining the local sector densities along this line of arguing.

This model is integrated into our agent-based modeling framework, and parameterized as in

McArthur et al. (2014, 2020).

The wage rate is set higher in the cbd than in the other towns initially. Wages tend to be

higher in large and diverse job concentrations, reflecting “processes of learning, sharing, and

matching”(Duranton and Puga 2004). For some of our experiments, wages are assumed to be

exogenously given, with a given percentage increase all over the geography. In other experiments,
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we have introduced a Phillips curve style mechanism, like McArthur et al. (2010). Wages are

adjusted by the local labour market situation:

wt
j = 1.025 · wt−1

j

(
1 +

U t
j − U t−1

j

U t
j

)−λ

λ > 0, j = 1, ..., 12 (2)

where wt
j is the wage level in town j in year t, and U t

j is the unemployment rate in town j in

year t. λ represents the sensitivity of wages to changes in the level of unemployment.

2.5 The housing market

The main contribution of this paper is to integrate the housing market and the labour market

in a spatial context, where spatial interaction decisions reflect the spatial distribution of jobs

and households, as well as spatial disparities in wages and housing prices.

The probability that moving is the utility-maximizing outcome is an increasing function of

the commuting costs, and vice versa. Housing prices are affecting the moving decisions, as are

employment and wage prospects. Commuting is a way to overcome the constraints from the hous-

ing market. Hence, the housing market is one of the determinants of the migration/commuting

tradeoff. Many workers will for instance be unwilling to move from a town with low to a town

with high housing prices, and prefer commuting as a response to attractive job offers from towns

with high housing prices.

The housing prices are determined by the balance between demand and supply in the local

housing market. This section offers a presentation of how housing demand and housing supply

is integrated into the modeling framework.

2.5.1 Housing demand

The bidding procedure uses first-price sealed bid autions, in which all bidders submit their bids

simultaneously, and the highest bid wins the auction. According to auction theory, see e.g.

Krishna (2002), a Bayesian Nash equilbrium is obtained when bidder i has a valuation vi and

bids

N − 1

N
vi,
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where N is the number of bidders in the auction. The factor N−1
N leads to significantly lower

bids when N is small, and this effect appears to be crucial to get a reasonable price development

in the housing market.

The factor is not meaningful if N = 1, and in our model we have instead used the factor

max[N−1
N , 12 ] to take that into account. Anticipation that in real world auctions, the number of

bidders is not always very clear, we have used an adjustment

0.2 + 0.8max

[
N − 1

N
,
1

2

]
,

taking into account that that bidders may sometimes fear that slightly more people might be

interested in bidding, and are hence placing a slightly higher bid. This reduces the strength of

the factor to 80% of its original strength.

At each time-step the agents make random checks to evaluate their position. If this check is

successful, the agent enters the housing market and places a bid on the most favorable option.

The winning bid is inspected by the seller and a sale is carried out if the winning bid exceeds

his or hers reservation price. The details are technical and we refer to Gholami et. al (2021) for

more information on the bidding procedure.

2.5.2 Housing supply

The willingness to pay for housing at different locations is reflecting the individual preferences,

and the spatial distribution of wages and job opportunities. However, regional and local housing

prices are of course not solely determined by such demand factors. The regional and local housing

supply also has to be accounted for. Our experiments starts with an initial supply of housing,

that is distributed across the zones according to rules defined by the “system administrator”,

that is a regional government planning entity.

As a general rule, new houses are built according to a frequency of 5% yearly. This frequency

is a minimum for the different towns in the region. Still, the frequency is allowed to vary

systematically across the zones. If a zone experienced a high demand and a correspondingly

high increase in housing prices in the previous year, then this is allowed to be reflected in a high

building frequencies of new houses, provided by either public or private agents.
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HSt
j =





HSt−1
j · 1.05 ·


P t−1
hj

P t−2
hj

γ

if
P t−1
hj

P t−2
hj

> 1.05

1.05 otherwise

where HSt
j and P t

hj are the housing supply and the housing price per m2 in town j in year t. γ

is the elasticity of housing supply w.r.t. the price increase observed in the previous year. The

model is not explicit w.r.t. whether new houses are provided by public or private agents.

3 The distance deterrence parameter in a standard doubly-constrained

gravity model of commuting

The agent-based modelling approach is used to generate origin-destination matrices, which are

next used for the estimation of the distance deterrence parameter from a standard doubly-

constrained gravity model. A standard formulation of a doubly-constrained gravity model is:

Tij = AiOiBjDj exp(−βdij) (3)

Ai =




j

BjDj exp(−βdij)



−1

(4)

Bj =


i

AiOi exp(−βdij)

−1

(5)

where:

Tij is the estimated number of travellers from origin i to destination j, i, j = 1, ..., n

Oi is the observed number of trips originating from zone i = 1, ..., n

Dj is the observed number of trips destinating in zone j = 1, ..., n

dij is travelling time by car, from origin i to destination j; i, j = 1, ..., n

β is a distance deterrence parameter. Ai and Bj are the balancing factors that ensure the

fulfillment of the marginal total constraints;


j Tij = Oi and


i Tij = Dj . Consequently, this

doubly-constrained model specification is constructed for a pure trip distribution problem. For

a discussion of the theoretical foundation of this model, see for example Sen and Smith (1995).
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As mentioned in the introduction, this standard doubly-constrained gravity model fails to

account adequately for spatial structure characteristics, leading to biased estimates of the dis-

tance deterrence parameter. Some of this literature is also reviewed in Tiefelsdorf (2003), who

in addition demonstrate how a proper model specification is of paramount importance in inter-

action modeling. Accounting for relevant characteristics is of course important for producing

unbiased parameter estimates, as well as for making reliable predictions, for instance on inter-

regional transferability problems (see for instance McArthur et al. (2011)). There is evidence in

the empirical literature that many characteristics of the spatial structure are not captured by

the balancing factors, see for example Gitlesen and Thorsen (1998, 2000).

It was also mentioned in the introduction that the standard doubly-constrained gravity

model does not capture all relevant aspects of the local housing and labour markets, which are

influencing the budget constraint in the utility maximizing problem. This paper focuses on how

such aspects affect the estimates of the distance deterrence parameter, and also on how the

parameter reflects both the underlying preferences and the budget constraint of the workers

4 Defining a benchmark scenario

A benchmark scenario is defined as a starting point for introducing different kinds of exogenous

shocks to the system. One exogenous shock is considered at a time, to evaluate the effect of such

shocks on the parameter reflecting the distance deterrence in spatial labour market interaction.

The complexity of the problems to be discussed rules out pure analytical, comparative static,

approaches, but the controlled experiments to be discussed are as close you can get to such

approaches.

In our benchmark scenario, the cbd (zone E) is allocated 5 times more of the initial popu-

lation than the other towns, as are the initial houses. As defined by Norwegian average rates

of marrying, births, deaths, etc., the members of this population then interact over 300 years,

generating a population that mirrors the Norwegian in terms of demography. After this initial-

ization, the labour and housing markets are introduced, which are then influencing how jobs

and households are distributed across the towns in the simulation experiments. Our benchmark

scenario is defined by running the model for another 50 initializing years, for given values of all

exogenous variables and parameters. However, this scenario is no steady-state equilibrium. The
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population is continuously changing, as some inhabitants die, new are born, etc. Still, in our

benchmark scenario, the system has reached a kind of a dynamic equilibrium, where none of the

endogenous variables seem to be in a significant trend.

Based on this benchmark scenario, we introduce a number of experiments by changing for

example some labour market conditions, and then run the system for another 15 years. However,

for some cases it makes limited sense to introduce changes at a specific point in time. This applies

for example for different scenarios of the underlying preferences. For such fundamentally sluggish

changes, it can be argued to make more sense to study differences in response by repeating the

50 years of initialization. Our benchmark scenario is defined by a set of values of the parameters

characterizing individual preferences, the housing market, the labour market, and the terms of

intraregional commuting. The mechanisms and parameter values are as follows:

Preferences. αi ∈ (0.3, 0.7), defines the interval in which the individual weight put on general

consumption is allowed to vary; randomly and uniformly distributed;

Housing market. Housing demand is derived from utility-maximizing behaviour of individual

households weighing housing consumption against consumption in general, adjusted for

commuting costs. After the initialization, new houses in the different towns are provided

according the mechanism described in Section 2.5.2, with a housing supply elasticity γ = 1.

The initial price of building a house is 5000 per square meter, and the housing price

construction price increases by 1% per year. It takes 1 year to construct a house.

The spatial distribution of local and basic sector jobs. The local sector employment is

assumed to be 20% of total population in the region, distributed across the towns according

to the model that was presented in Gjestland et al. (2006), see Section 2.4, using the same

parameterization as in McArthur et al. (2014, 2020). The spatial distribution of basic

sector jobs is presented in Table 1. No attempts have been made to account explicitly for

spatial differences in entrepreneurship and different kind of agglomeration economies, etc.

Wages The yearly wage in year 0 is assumed to be NOK 100000 in all the zones except the

cbd, zone E, where it is assumed to be NOK 115000. This reflects higher efficiency in

thick labour markets, as explained in Section 2.4. The unemployment insurance is set to

be NOK 60000 in all the zones in year 0. Both wages and the unemployment insurance
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are assumed to increase by 2.5% yearly, but as explained in Section 2.4, local wages are

adjusted by a Phillips curve style mechanism, with λ = 0.1. In addition, the income

disposable for consumption on housing and other goods are reduced by a 28% income tax,

while mortgages and life-time incomes are calculated by the use of a discount rate of 2.5%.

Commuting costs The generalized round-trip commuting costs are assumed to be NOK 0.6

per kilometer in year 0, incurred over 200 working days per year. The commuting costs

are increasing by 2.5% per year.

The chosen size of the system is a compromise between commuting time and the call for

robust relationships between the variables. In Table 1, BASEt
j , POP t

j , and TOT t
j are, respec-

tively, the number of basic sector jobs, the population, and the total number jobs in town j in

year t. Table 1 offers information on where the given initial distribution of basic sector jobs takes

the system after 50 years of interaction. The most striking development has been in the housing

prices of the cbd, town E. This is explained by the fact that the cbd has a high concentration

of jobs in the geography, and higher wages than the other towns, which results in a very high

demand for housing in the cbd. In nominal terms, the wage disparities between the cbd and the

other towns have increased over time, but the relative difference has remained at approximately

the same level.

Table 1: Zonal values of basic variables in the benchmark scenario
zone BASE0

j POP 50
j TOT 50

j U50
j P 50

hj w50
j

A 430 2 049 830 8.1% 23 863 329 940
B 270 1 750 603 7.9% 24 354 318 676
C 220 1 604 507 8.8% 24 332 321 420
D 60 1 894 420 9.7% 22 985 309 731
E 2 200 3 139 4 491 9.3% 101 361 369 140
F 350 1 545 472 10,0% 24 817 314 013
G 310 1 857 575 10,8% 25 048 310 418
H 460 1 703 594 10.4% 24 853 314 425
I 100 1 288 284 10.1% 24 743 302 884
J 330 1 623 598 10.8% 23 467 305 140
K 350 1 683 628 9.3% 23 480 307 777
L 60 1 431 264 10.3% 23 811 320 838
Region 5 140 21 566 9 679
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5 Results of experiments with preferences, housing prices, wages,

and commuting costs

We are monitoring how preferences and the housing and labour market conditions affect spatial

interaction. Our agent-based procedure is analogous to comparative static approaches in a pure

analytical framework, focusing on the impact of partial changes in an exogenous variable on a

set of endogenous variables. However, our modeling framework is dynamic rather than static.

Agents make decisions based on life cycle considerations, and the system changes continuously

as a response to numerous independent individual decisions.

In interpreting the results, keep in mind that the analysis is based on a set of simplifying

assumptions. One is that we have abstracted from worker and job heterogeneity. Still, the

curves in most of the figures to follow reflect the outcome of very complex mechanisms, like the

competition for jobs and houses, for households which tend to have more than one worker.

5.1 Varying preferences

As mentioned in Section 2.3 the choice between housing consumption and other consumption is

determined from preferences and disposable income. The disposable income is the discounted

present value of all current and future incomes, with a deduction of taxes and commuting

costs. The preferences are represented by the parameter αi in Equation 1, that is reflecting the

individual weight put on housing consumption and other consumption.

The estimates of the distance deterrence parameter in commuting depends on value attached

to αi in the utility function of the households. In our benchmark scenario, the parameter value

attached to the two attributes in the utility function is allowed to vary randomly within the

interval (0.3-0.7). This is corresponding to a neutral situation. In the case where we consider a

substantially higher value of the weight attached to other consumption in the utility function,

values are allowed to vary randomly in αi ∈ (0.8, 0.9). This corresponds to preferences where less

weight is put on housing, and more on other consumption. A low α takes values of αi ∈ (0.1, 0.2).

Intuitively, it may seem to be a reasonable hypothesis that a higher value of α will lead to

a labour market solution with less commuting and smaller houses, making room for more other

consumption. A lower degree of spatial labour market interaction corresponds to the hypothesis

that the estimated distance deterrence parameter will be higher than in the situation with more
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neutral preferences in favour of other consumption, ceteris paribus. Correspondingly, it seems

like a reasonable hypothesis that a situation with preferences more directed towards housing

and less towards other consumption, results in more commuting and a lower estimated value of

the distance deterrence parameter than in the benchmark scenario.

These hypotheses are not supported by our experiments. Figure 2 provides an illustration of

estimated values of the distance deterrence parameter for different interval levels of the parameter

αi in the utility function. The values of β̂ are lowest in the case where individual αi-values are

randomly drawn from an interval consistent with strong preferences for funds available for other

consumption. Hence, the demand for low commuting expenses does not seem to be a dominating

factor for workers’ choice of a residential-workplace combination.

Figure 2: Estimates of the distance deterrence parameter in cases with high (αi ∈ (0.8, 0.9))
and low (αi ∈ (0.1, 0.2)) values attached to other consumption, Vi, in the utility function. In
the benchmark scenario, αi ∈ (0.3, 0.7).

The hypotheses introduced above do not account for the effect of spatial variation in wages.

First, there are some relatively minor spatial wage disparities resulting from the Phillips curve

style mechanism. However, the main source of spatial wage disparities is the high wage in the

cbd, which is reflecting agglomeration economies. With a high αi in the utility function, workers

are more attracted to high-wage jobs. This means that workers to a larger degree apply for jobs

in the cbd. Even if their residences are in a relatively long distance from the cbd, the wage

increase more than compensate the counteracting increased commuting expenses following from
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working in the cbd rather than locally. As illustrated in Figure 3, higher values of αi’s contribute

to attract more commuters to the cbd, and to the tendency that workers are less inclined to

accept job offers in the town where they live. Hence, spatial labour market interaction is more

responsive to spatial wage disparities, and this is dominating the increased demand for low

commuting expenses that is resulting when other consumption is given a strong weight in the

utility function. Part b) of Figure 3 demonstrates that high values of α pull in the direction of

labour market solutions with no commuting.

a) In-commuters to the cbd b) Non-commuters

Figure 3: The proportion of workers who are living in other towns, while working in the cbd, and
the proportion of workers who are living and working in the same town. Cases with high and
low values of the αi parameter in the utility function are compared to the benchmark scenario.

5.2 Labour market issues

As a first experiment related to the labour market, we ignore the likely presence of different

kinds of agglomeration economies, which means that we ignore the the possibility that wages

are higher in the large, thick, local labour market in the cbd. Hence, this experiment start by

assuming that wages are equal all over the geography in year 0, rather than being 15% higher

in the cbd. In both cases, however, we allow for Phillips curve style adjustments to account for

changes in balance between local demand and supply over the 50 year long period to follow.

As illustrated in Figure 4, the distance deterrence effect in commuting is estimated to be

considerably higher in the case with no spatial wage disparities initially. The discussion above

has demonstrated that the wish for low commuting expenses are often traded off against the

possibility of high wages in other towns. With no spatial wage disparities, the wish for low

commuting expenses becomes the dominating force in the spatial labour market behaviour of
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Figure 4: Estimates of the distance deterrence parameter in the benchmark scenario and a
situation where wages are equal all over the geography in year 0.

workers. This is reflected in Figure 5b, where workers in the early initializing years search for

combinations of job and residence which are not involving commuting. This corresponds to the

tendency of increasing estimates of β̂ in this period, as illustrated in Figure 4.

Eventually, the development towards less commuting is culminating in this dynamic system.

Workers are retiring from the labour market, being replaced by new workers, and the fact that

most households have two workers causes some friction in commuting pattern. The cbd is still a

centrally located residential location, with a high concentration of jobs attracting many workers.

However, this contributes to higher housing prices in the cbd than elsewhere in the geography.

As a result, there will be an increasing tendency that workers prefer commuting rather than

moving into the cbd. In addition, wages are adjusted in favour of towns with low unemployment

and a high demand for jobs. In year 50 of this case, the wage in the cbd is 4.4% higher than

the average wage level in the region.

Both the response in housing prices and wages contribute to explain the tendency of increased

in-commuting to the cbd that is illustrated in Figure 5a. At the same time, such mechanisms

contribute to explain the falling number of non-commuters (Figure 5b) and the tendency that

the estimates of the distance deterrence parameter is reduced over time, as illustrated in Figure

4. Still, the experiment demonstrates that small spatial wage disparities cause low commuting

to the cbd, a high number of non-commuters, and commuting flows resulting in high estimates
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a) In-commuters to the cbd b) Non-commuters

Figure 5: The proportion of workers who are living in other towns, while working in the cbd,
and the proportion of workers who are living and working in the same town. The benchmark
scenario is compared to a case where wages are equal in all towns in year 0.

of the distance deterrence parameter.

As another aspect of the labour market, we have also run an experiment with a substantially

higher unemployment benefit than in our benchmark scenario. In all the other experiments, the

unemployment benefit is around 60% of the wages. In our agent-based approach, workers are in

some sense relatively homogeneuous, for instance in their working attitude. They make rational

decisions, based on their utility functions, where the prospects of housing and other consumption

is determining their choices. Working is not causing any inconvenience, for instance in terms of

lost time for leisure activities. This means that even if unemployment benefit is considerably

increased, for instance to 80% of the wages, this will not affect the individual choices, unless

the difference between the wages and the unemployment benefit is exceeded by the commuting

expenses for a worker. Since commuting expenses are in general not of this size, the economy is

predicted to be only marginally affected by an increased unemployment benefit.

In the real world, workers may be heterogenous in their work ethic, and how they consider

work in itself. Some may find work inconvenient, as a negative element in the utility function.

Rather than introducing a modified utility function, assume that this inconvenience cost is added

to the increased unemployment benefit, to represent an increased opportunity cost of choosing

to work. To test the effect of increased unemployment benefit, we take it into the extreme, by

letting the sum of the unemployment benefit and the inconvenience cost equal the wage level in

the town with the second lowest wage level in year 50 of the benchmark scenario.

The effect of this experiment on the estimates of the distance parameter is illustrated in
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Figure 6: Estimates of the distance deterrence parameter in the benchmark scenario and after a
substantial increase in the unemployment benefit (including an inconvenient costs of working).

Figure 6. The intuitively reasonable conclusion is that a higher unemployment benefit pulls in

the direction of a higher estimate of the distance deterrence parameter. At the end of the 15

years period after this shock was introduced, the level of unemployment has risen to around

30%. As a result of the Phillips curve mechanism, the increased level of unemployment was

accompanied by an unfortunate wage development. In fact, the unemployment benefit was

higher than the wage level in all towns except the cbd in year 65.

This may seem a bit unrealistic. In the real world, the unemployment insurance benefit

hardly would be allowed to be continuously increased by 2,5% annually in such a scenario.

In addition, workers should in general be expected to respond more instantaneously to the

increased unemployment benefit. In our agent-based modeling approach, the workers do not

reconsider their job and residential location continuously. According to the procedures which

are specified in the program, it takes around 10 years before all the workers have considered their

current situation up against other alternatives, like choosing not to work. This is introduced

as a natural kind of friction, corresponding to an idea that most people are content with their

current situation, without considering changes. Still, this can be argued to change as a result

of the shock, redefining the rules of the game. It is of course possible to increase substantially

the proportion of the population that is checking for better alternatives at a specific point in

time. This would speed up the process towards a new dynamic kind of equilibrium state, at the
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expense of increased computing time.

Despite these objections, Figure 6 provides a reasonable prediction to which direction in-

creased unemployment benefits affects the estimates of the distance deterrence parameter. As

times go by after the shock, only the cbd has job opportunities which offer a reasonable com-

pensation for commuting expenses and work inconvenience. Over the 15 year long period that

is considered in Figure 6, there is a marked increase both in the number of non-commuters, the

number of unemployed, and in the commuting into the cbd. At the same time, in particular

long-distance commuting between the other towns has become less attractive, and considerably

reduced. This is reflected in the higher estimates of the distance deterrence parameter. As dis-

cussed above, the scenario underlying Figure 6 is in some sense extreme. The same effects could

be illustrated in a more realistic scenario, by including more heterogeneity between agents, for

instance in terms of inconvenience costs related to working.

5.3 Commuting costs

An increased commuting cost affects the disposable income which is available for housing con-

sumption and other consumption. If commuting costs are high, then households are expected to

be more concerned with living close to their workplace, opening for attractive combinations of

housing consumption and other consumption. At the same time, this has an impact on housing

prices, both in towns with an abundant supply of jobs, and in towns with a shortage of jobs for

the local workers. This may in effect push some households towards residential locations with a

high risk of inflicting longer commuting for a household member.

Figure 7 demonstrates the effect on the estimated distance deterrence parameter of changes

in the commuting expenses occurring in year 50. The benchmark scenario is compared both to

a situation with 50% higher and a situation with 50% lower commuting costs.

Gholami et al. (2021) study the effects of a proportional change in all distances. By compar-

ison, the results of changing the distances by for example 50% are substantially different from

changing the commuting costs correspondingly. One obvious question is why the results of these

seemingly equivalent experiments are not the same. First, in comparing the two scenarios, they

do not cover the same time periods. It makes more sense to introduce changes in commuting

expenses at a specific point in time than it does for changes in physical distances. Hence, the
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Figure 7: Estimates of the distance deterrence parameter in the benchmark scenario and in
situations where the commuting costs increased and decreased by 50% in year 50.

changes in commuting expenses are introduced in year 50, while Gholami et al. (2021) illustrate

scenarios where distances differ from the beginning, in year 0.

This difference in time perspective does not obscure that a reduction in commuting expenses

has an impact on β̂ that differs substantially from the estimates following from a situation with

corresponding reductions in the distances between the towns. As demonstrated in Gholami et

al. (2021), a compact system, with short distances between the towns, results in higher β̂’s than

the benchmark scenario, while it follows from Figure 7 that a reduction in commuting expenses

pulls in the direction of lower β̂.

This latter result is more according to a priori expectation than the results following from a

more compact system, with short distances between the towns. Intuitively, it makes good sense

that a reduction in commuting expenses leads to more commuting between the towns, and a

reduced estimate of the distance deterrence parameter. Recall from Section 2.4, however, that

reduced distances lead to a substantial relocation of local sector jobs, in favour of the cbd. With

lower distance, households in other towns do more of their shopping in the cbd, benefitting from

different kinds of agglomeration economies in shopping.

In this agent-based modelling framework, the LSD-function is related to euclidean distances

rather than to commuting expenses. This is the basic reason for the differences in the β̂’s

between the two scenarios. The euclidean distances between towns is a characteristic of the
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spatial structure, while commuting expenses merely represents the terms of traveling. It can of

course be argued that the terms of traveling are equally relevant for shopping. To the degree that

the spatial distribution of local sector activities are explained by shopping behaviour, reduced

traveling expenses should have the same kind of effect on the LSD that lower euclidean distances.

However, it may be reasonable to distinguish between commuting and other forms of spatial

interaction with respect to traveling expenses. The reduction in commuting expenses may be

due to the introduction of an arrangement where such expenses are tax deductible, like in the

Norwegian tax system. The experiment with an increase in commuting expenses can be justified

by the introduction of congestion pricing during peak hours.

Hence, it is possible to make sense of a case where the spatial distribution of local sector

activities responds to differences in euclidean distances, but not to changes in commuting ex-

penses. Gholami et al. (2021) demonstrated that the effect of a change in euclidean distances

can be separated into an effect of different commuting expenses and an effect of the resulting dif-

ferences in the spatial distribution of job opportunities. The experiment underlying the results

illustrated in Figure 7, can be motivated to uncover the two effects. By comparing Figure 7 to

the results presented in Gholami et al. (2021), it follows that variations in commuting expenses

have a relatively modest impact on β̂.

5.4 The housing market

It is well known that a reverse causality can be expected for the relationship between migration

flows and housing prices. This also means that housing prices can be expected to influence com-

muting flows. All the results that are presented above, are potentially influenced by variations

in the housing prices. This means that the estimates of β potentially reflect the housing market

mechanism. To examine this hypothesis, we turned off this mechanism, in effect not allowing

for spatial variation in house prices. House prices are increased by the inflation rate in all the

towns, which means that the house prices are persistently equal all over the geography, rather

than being locally set by the market. We then re-estimated β. This experiment is run for a case

with alternative locations of the cbd, that is in comparing the situation where town E is the cbd

to a situation where town B is the cbd. Other aspects of this case was discussed in Gholami et

al. (2021). The results of the housing market experiment are presented in Figure 8.
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Figure 8: Estimates of the distance deterrence parameter for alternative locations of the cbd
and alternative regimes of house pricing.

As demonstrated and discussed in Gholami et al. (2021), the estimated value of β is lower if

the cbd is located in the least populous area, that is if town B, rather than town E, is the cbd.

According to Figure 8, this will also be the case if the house price mechanism is turned off.

It appears from Figure 8 that the housing price mechanism has no significant impact on the

estimated β. As a first inclination, this may come as a surprise. It is in the very heart of the

standard bid-rent theory, that was introduced by Alonso in the 60s, that residential location

decisions are represented by the trade-off between housing prices and commuting costs to the

regional centre, which is hosting attractive job opportunities. This theory to a large degree

explains the population growth in suburban areas, and in the more peripheral areas of a labour

market region. The residential suburbanization coincides with increased commuting into the

cbd, and this should be expected to contribute to a low β̂.

If the housing prices mechanism is turned off, with no spatial variation in housing prices, then

residing in the cbd should be expected to be more attractive. High wages and low commuting

costs then contribute to high consumption and a high level of utility for the households residing

in the regional center. Hence, the hypothesis is that more people live and work in the cbd

if housing prices are not allowed to vary over the geography. This hypothesis is supported in

Figure 9a. The absence of a housing price mechanism contributes to prevent the decreasing

tendency to live and work in the cbd that would evolve if relative housing prices were allowed
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to increase in the cbd as time passes by.

Why does not this tendency to work and live in the cbd coincide with higher estimates of

β, reflecting a reduced tendency of commuting? The fact that more people are living in the

cbd has an impact on the clustering of local sector jobs. As explained in Section 2.4, our agent-

based approach accounts for agglomeration economies in shopping. This is explaining why high

concentrations of residents living in, and close, to the cbd, attracts local sector firms to the cbd.

Consider first the two standard cases in Figure 9b, where housing prices are allowed to increase

more in the cbd than elsewhere in the geography. It follows from the figure that the proportion

of local sector jobs which is located in the cbd is decreasing as people are moving out from the

cbd when housing prices are increasing. This decrease in the number of local sector jobs in the

cbd is prevented in cases where the relative housing prices are constant across the geography.

This means that ruling out spatial adjustments of housing prices has two opposing effects

on commuting flows:

a) more people work and live in the cbd

b) there will be more commuters into local sector jobs in the cbd

The result that estimates of β are only marginally influenced by the housing price mechanism

does not mean that commuting flows are not affected. One effect of ignoring spatial variations

in housing prices is that more people choose to work and live in the cbd, rather than commuting.

This pulls in the direction of a high value of β. Another effect is that a high concentration of

people living in the cbd is attracting a high number of local sector firms, and therefore a high

number of in-commuters to the cbd. This pulls in the direction of a low value of β. Figure

8 indicates that these two effects are approximately cancelling each other out, resulting in a

relatively insignificant total effect on the parameter estimate.

6 Concluding remarks

In this paper, an agent-based approach is used to generate spatial interaction data from a

population that in a demographic sense is very similar the Norwegian. This approach allows

us to perform controlled experiments on how a standard spatial interaction model replicates an

observed trip distribution pattern. This further enables us to discuss potential sources of biased
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a) Live and work in the cbd b) Local sector jobs in the cbd

Figure 9: The proportion of the workers in the region who live and work in the cbd, and the
proportion of local sector jobs in the region which is located in the cbd, for alternative locations
of the cbd. Two regimes of house pricing: on with equal prices in all towns, another where house
prices are set by the market and allowed to vary across the towns.

parameter estimates, causing errors in predicting how for example commuting flows respond to

specific exogenous changes in the terms of traveling.

The main ambition of the paper is to find how the housing and labour market conditions

may influence the performance of a spatial interaction model. Travel demand in general reflects

the outcome of a utility-maximizing problem, involving both the preferences and the budget

constraint of the agents. The agent-based approach allows for distinguishing between effects

originating from preferences and from budget considerations. Labour and housing market con-

ditions influence the decisions through the budget, and we used the experimental design to focus

on how in particular the estimates of the distance deterrence parameter in commuting reflect

features of the labour market, the housing market and the underlying preferences.

Table 2 summarizes some of the results. For each experiment, the table reports the estimates

of the distance deterrence parameter, a measure of model performance, and the coefficient of

variation of the jobs/housing balance (J/H) in the 12 towns of the geography. Model perfor-

mance is measured by the standardized root mean square errors (SRMSE), which is a frequently

used measure for replicating a data set of a spatial system. It is a reasonable hypothesis that

substantial variation in J/H between the towns corresponds to a system with considerable com-

muting, which may be reflected in low estimates of the distance deterrence parameter.

According to Table 2, the estimates of the distance deterrence parameter from a standard

gravity model vary substantially with respect to the underlying individual preferences for housing

consumption and other consumption, and to the labor and housing market conditions. This is

a demonstration that both the spatial variation in wages and housing prices, the unemployment
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Table 2: Parameter estimates, model performance, and the coefficient of variation (CV) of the
jobs/housing (J/H) balance between the towns in different experiments. All values are calculated
for the last year of each experiment

β̂ SRMSE J/H balance,
CV

Benchmark 0.0162 0.4250 0.3270
αi ∈ (0.1, 0.2) 0.0322 0.6311 0.2969
αi ∈ (0.8, 0.9) 0.0125 0.4124 0.4292
Equal wages initially 0.0382 0.3025 0.3790
High unemployment benefit 0.0252 0.7744 0.5257
High commuting cost 0,0184 0.4594 0.3101
Low commuting cost 0.0163 0.4093 0.3140
Equal housing prices, CBD E 0.0143 0.4241 0.8862
Equal housing prices, CBD B 0.0076 0.4921 0.6747

insurance benefit, and the level of commuting costs, affect the travel demand, which is reflected

in the estimates of the distance deterrence parameter. It follows from Table 2 that β̂ can be

expected to be high in a geography where:

� the inhabitants care much about housing consumption, and less about other consumption

� there are not large spatial wage disparities

� there are large spatial housing price disparities

� the commuting costs are high

� there is a high unemployment insurance benefit

However, the results reported in Table 2 represent the net effect of several forces, in some cases

pulling in different directions. As was clear from the discussion in Section 5, commuting decisions

should be considered simultaneously to decisions on shopping and moving in an interpretation

of how exogenous changes affect the commuting pattern in the geography. A partial perspective

in interpreting spatial interaction data is often inadequate. The discussion and the results

also suggest that measures of disparities in wages and housing prices should be considered

explicitly incorporated in a model explaining commuting flows. Introducing the generalized costs

of commuting, incorporating cost elements, rather than the euclidean distances also contributes

to a better explanation of commuting. Such modifications potentially improve the model for

predicting the effects of exogenous changes in housing and/or labour market conditions, and for

making the transferability of parameter estimates more reliable, in time and space.
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According to Table 2, the standard gravity model performs best in cases with only minor

spatial wage disparities, while it is not very reliable in the case with a very high unemploy-

ment insurance benefit, and in the case where workers primarily are concerned about living in

large houses. The results in Table 2 also indicate a tendency that cases with an unbalanced

jobs/housing distribution across the towns generate a lot of commuting, and correspondingly

lead to low values of β̂. However, a more detailed discussion of the J/H balance is beyond the

scope of this paper, and left for future research.
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Predicting induced commuting from a new fixed link in the

transportation network.
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Abstract

In this paper, we study to what degree a standard spatial interaction model represents a

reliable approach to predicting induced commuting from investments in the road transporta-

tion network. The analysis is derived from agent-based data generation, supplemented by

observations from a Norwegian labor market area. The results demonstrate that striving for

a model specification with the highest possible explanatory power only sometimes leads to

the most accurate predictions. Ignoring relevant information on spatial disparities in wages

and housing prices and failing to account for relocation effects introduce a potentially serious

bias in predicting commuting induced by a new fixed link. The prediction bias depends on

the time perspective. The wider local impacts may lead to substantial under-predictions of

induced commuting and the willingness-to-pay for a new fixed link. Spatial interaction mod-

els should be used with care in particualr in cases where the investments lead to substantial

improvements in the labor market accessibility of a previously rural area. In such cases, a

cost-benefit assessment should be based on a general spatial equilibrium modeling frame-

work to avoid that induced demand is being under-predicted, calling for expensive capacity

expansions of the road network.
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There is empirical evidence that a standard doubly-constrained gravity model of commuting 

fails to capture the effect of several characteristics of spatial structure (Thorsen and Gitlesen, 

1998). In addition, Gholami et al. (2023b) have demonstrated that local labor and housing 

market conditions are relevant in explaining the commuting pattern. Hence, spatial interaction 

models can be extended in different directions to improve the explanation of commuting in a 

region. This paper will discuss such model extensions in an experimental modeling approach. 

However, our main ambition is to test to what degree a more advanced model specification 

contributes to more accurate predictions following an exogenous shock. The exogenous shock 

to be considered in this paper is related to investments to establish a new fixed link between 

specific towns in a geography, that is, investments generating a new road or rail connection 

across a topographical barrier. The predictions can be made for the matrix of commuting flows 

in general and for the induced commuting on specific road links of the transportation network. 

Using a doubly-constrained spatial interaction model specification with omitted relevant 

information is just one source of a potential prediction error. In addition, it is a potentially 

severe shortcoming of such a model that both the spatial residential pattern and the location 

of jobs are assumed to be given, unaffected by, for example, changes in the road transportation 

network. This can, in particular, be argued to represent a severe shortcoming if the predictions 

are made for a long-term time perspective. Changes in the road transportation network open 

new opportunities in the location choices of both firms and households and may, as such, result 

in relocations that affect the trip distribution pattern. To some degree, moving and commuting
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is, for example, substitutes in the spatial behavior of households. For example, a new road

connection may lead households to move into a more peripheral residential area, contributing

to increased urban sprawl, which may cause a longer commuting distance and induce more

traffic on the new road connection. In this paper, we will discuss how ignoring relocation effects

potentially result in biased predictions of induced traffic and, accordingly, biased predictions of

the benefits emerging from investments in road infrastructure.

It seems like a reasonable hypothesis that the relocation effects of changes in the road in-

frastructure are sluggish. The prediction bias based on a standard spatial interaction model will

be more severe in the long term than in the short-run time perspective. In a dynamic system,

the location pattern of jobs and households can change continuously. This can be argued to

undermine the functioning of a doubly-constrained spatial interaction model as a framework for

making reliable predictions on induced travel demand and the benefits of the investments. It

further provides arguments in favor of employing a combined transport and land use modeling

framework in predicting the effects of substantial changes in the road network.

In this paper, we employ a general spatial equilibrium model to generate data for our ex-

periments. However, this modeling framework is constructed to make a synthetic population in

a fictive geography rather than based on real-world data. This approach enables us to study

prediction biases resulting from a parsimonious model formulation and from ignoring relocation

effects.

Ideally, predicting the induced demand and the benefits of investments in road infrastructure

should be based on data on all relevant aspects. However, such a complete data set is, in general,

not available. According to Nicolaisen and Driscoll (2014), the lack of data availability for com-

prehensive ex-post appraisals of demand forecasts accuracy for transport infrastructure projects

is the main reason why such studies are rare. Using synthetic data can often be an interesting

and acceptable replacement. Microsimulations also represent an appealing alternative to purely

analytical approaches. There are limited opportunities for this complex, multidimensional prob-

lem to reach a wide range of interesting results based on analytical approaches. Hence, the lack

of adequate real-world data and the limitations of analytical approaches are the main reasons

we generate data from an agent-based general spatial equilibrium modeling approach. This ap-

proach has a vast potential to clarify, explain and predict complex interdependencies between
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spatial interaction, land use, and labor market issues. Such an experimental design also repre-

sents a convenient way to deal with issues related to endogeneity and causality, which are often

serious and complex problems to overcome in empirical analysis.

Both the experiments to be run and the discussion to follow is made in terms of a new

fixed link introduced into a region’s road transportation network. This is, for instance, often

discussed in a Norwegian context, where transportation investments are used to overcome the

effect of topographical barriers by building bridges or tunnels in areas with fjords and mountains.

Still, the effects of new fixed links and transportation investments, in general, are relevant in

most geographies. Such investments are customarily assessed by predicting construction costs,

increased traffic, and user benefits. According to Nicolaisen and Driscoll (2014), empirical

studies of cost estimates are in ample supply, generally indicating a dominating tendency of cost

overruns (Siemiatycki, 2009). As mentioned, predicting user benefits in a dynamic perspective is

complicated by the likely impact on the location decisions of firms and households and possible

policy aspirations related to the impact on local development in rural areas. It has been claimed

(Tveter et al., 2017) that Norwegian planners ignore the effects of relocation decisions on the

estimated user benefits of the projects.

This paper’s primary motivation is to demonstrate how ignoring relocation effects may lead

to a severe bias in estimating the user benefits of road investments. Nicolaisen and Driscoll

(2014) found a general tendency to underestimate travel demand for road projects in a literature

review. They also found a tendency that the bias is more severe for studies of individual

road segments than for studies including screening analysis. This indicates that the problem is

related to predicting the network distribution rather than the travel demand. In their literature

review, Nicolaisen and Driscoll (2014) found that information on the model specification used

in travel demand studies is nearly impossible to acquire. They also refer to studies finding that

improvements in modeling tools have not led to an improvement in forecast accuracy over time.

This indicates that improving the model specification does not represent the main potential

for improving the forecast accuracy. Nicolaisen and Driscoll (2014) claim that more detailed

access to project data is necessary to analyze causal mechanisms and sources of demand forecast

inaccuracy. Our ambition in this paper is to demonstrate that agent-based data generation

represents another promising approach to conducting a detailed analysis of such matters.
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Section 2 explains relevant concepts and theory and offers a review of relevant literature.

The agent-based generation of synthetic data is described in Section 3, while Section 4 discusses

alternative model specifications in explaining commuting trips in a region. Section 5 addresses

alternative approaches to how a spatial interaction model can predict induced commuting on

a new road. The possibility of relocation effects of improvements on the road transportation

network is discussed in Section 6, before Section 7 provides estimated results and predictions

from employing different specifications of a spatial interaction model to data generated by the

agent-based approach. We study another realization of the data-generating procedure in Section

8, and then in Section 9 provide data on real-life experiences of wider local impacts in some cases

where new fixed links are introduced in a Norwegian labour market area. Concluding remarks

are offered in Section 10.

2 Relocation effects, local growth, and wider economic impacts

It is well known that a cost-benefit appraisal of a new road generally calls for a prediction of

induced traffic. Hence, the standard approach to estimating the benefits of changes in the road

transportation network is to start by predicting the induced demand for transport. For linear,

or close to linear, demand curves, the next step may be to measure transport user benefits by

applying the rule of a half; see, for instance, Small and Verhoef, 2007, p. 183. This rule may

also work well for small changes in quantity for non-linear demand curves.

In this paper, we are focusing on commuting, representing a trip purpose that is particularly

interesting from an urban and regional planning perspective. Commuting is a dominating trip

purpose in rush hours, challenging the road capacity and the local traffic flow. We are con-

cerned with the first step, which is estimating the demand curve and the induced demand for

commuting. As an alternative approach, Gjestland et al. (2014) demonstrate that the estima-

tion and measurement of the change in the consumer surplus of commuters can be based on

the capitalization of the housing market. However, based on a spatial interaction approach, the

doubly constrained-gravity model is the benchmark in estimating how changes in the road trans-

portation network affect the commuting pattern and the induced commuting across a specific

new road. Our main motivation is to discuss to what degree this doubly-constrained modeling

framework needs to provide reliable predictions of induced commuting. One critical issue is that
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the doubly-constrained framework assumes a fixed location pattern of jobs and workers. This

assumption can be argued to be unreasonable, particularly when a new fixed link is introduced

into the road transportation network.

2.1 Relocation effects

The theory supports the hypothesis that a new fixed link will influence the location decisions of

households and firms. The new road opens for a potentially attractive job and residential location

combinations for households. Housing prices, in general, are expected to be lower in rural areas

than in more densely populated urban areas. With a considerably reduced commuting distance

between the two areas, some urban citizens may move to a lower-priced house in the peripheral

region and commute to their job in the urban area. The possibility that a reduced housing price

is traded off against higher commuting costs is in line with the primary mechanism in bid-rent

theory for the housing market, as discussed in any textbook on urban and regional economics,

like Brueckner (2011), McCann (2013) and Capello (2016). Thorsen and Ubøe (2002) discuss

residential location choices in areas with topographical barriers. In a purely rural context, they

ignore the effect of housing prices and, in a theoretical probability approach, demonstrate how a

new road link may affect the utility-maximizing residential location and the net migration from

the peripheral area.

Innovations in the transportation infrastructure, like a new fixed link, may also affect the

location decisions of firms. As claimed in Weberian location theory, the optimal location of a firm

often reflects a trade-off between labor costs and transportation costs. Labor costs reflect a wage

gradient falling from the center of geography. On the other hand, transportation costs are more

likely an increasing function of the distance from the center, reflecting the access to the sources

of inputs and the market for the output. This represents a kind of effect following changes in the

transportation infrastructure that has, for instance, been addressed in the literature on spatial

general equilibrium models; see Venables (1996) for an early and seminal contribution.

Hence, a new fixed link potentially affects both the utility-maximizing residential location

and the cost-minimizing location of firms. In addition, changes in the location pattern of firms

and households reflect the interaction between these two groups of agents. This interaction is

represented by the economic base multiplier mechanism, where an increased local population
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attracts local sector firms, offering job opportunities that attract more households, and so on.

For a discussion of the interaction between the location decisions of households and local sector

firms, see, for instance, Gjestland et al. (2006).

In general, it is important to account for the possibility that purely distributive effects may

be involved, which means that positive effects in one region are counteracted by similar negative

effects in other regions. However, the relocation of firms and households to be considered in

this paper, are intraregional. The new road opens for new options, which potentially involve

increased utility for some households, and increased profit for some firms. The basic idea in

cost-benefit analysis is that such benefits are measured by the increased willingness to pay for

travelling. Our main ambition is to study the suitability of a doubly-constrained modelling

framework to predict the induced commuting and the increased willingness to pay resulting

from a new road between two towns, in an intraregional perspective.

Figure 1 provides an illustration of the potential prediction bias that follows from ignoring

intraregional relocations following from a substantial reduction in travelling costs at a specific

link in the road network. The figure is reprinted from McArthur et al. (2020). The general cost

of travel across the link is represented at the vertical axis, while the horizontal axis represents

the number of trips. The demand curve estimated by the observed trip distribution is given by

‘Ex’ in the figure. Initially, the generalized cost of travel is P0. According to the demand curve,

this means that the demand for trips will then be T0, corresponding to a consumer surplus of

ABP0.

Assume next that the investments in the road transportation network lead to a reduction in

the generalized cost of travel from P0 to P1, inducing an increased number of trips from T0 to T1.

This leads to an increased consumer surplus given by the area P0BDP1 for the users who made

the T0 trips and BCD for the new, induced, users. However, the demand curve ‘Ex’ is based on

the assumption that the location of jobs and workers is fixed. Hence, this does not account for

the possibility that a new road adds more flexibility both to residential location choices and to

the location of firms. The outcome of increased flexibility of course reflect individual preferences.

Still, considerations based on bid-rent theory can be used as arguments in favour of relocations

involving more traveling in a case with reduced generalized cost of travel. This is reflected by the

demand curve ‘En’ in Figure 1. Ignoring relocation effects then means that the induced traffic is
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Figure 7: Demand for trips across a link as a function of the generalised cost of
travel.

factors assumed to remain fixed is the location of workers and firms. However

firms and workers will often relocate in response to a change in the transporta-

tion network, as has been demonstrated. In such a case, changes in the gen-

eralised cost of travel will result in a shift in demand rather than a movement

along the same demand curve. Whether the shift will be outward or inward will

depend on the preferences of the agents populating the geography as well as the

geography itself.

Consider again a price of P0, where the demand for trips is T0. If the

generalised cost is lowered to P1, we would expect the demand for trips to rise

to T1 if the locations of firms and workers are fixed. If, however, the locations are

allowed to vary, movement along the demand curve labelled ‘En’ is observed.

Demand would therefore increase from T0 to T2 in response to the reduction

of the generalised cost of travel. Failure to account for relocation e↵ects, will

result in an underestimation of the change in welfare by the area BCE. The

24

Figure 1: The demand for trips across a specific link, with and without accounting for relocation
effects.

underpredicted by (T2 − T1), while the induced consumer surplus is underestimated by the area

BCE. This is an illustration that it is potentially important to account for the possibility that

the agents may take advantage of changes in the road transport network by relocating. Tveter

et al. (2017) claim that Norwegian road planners neglect the possible indirect effect of changes

in settlement patterns on traffic flows and estimated benefits of a project. One ambition of this

paper is to use data from a synthetic population to discuss the magnitude of prediction errors

resulting from a model based on the assumption of a fixed location pattern.

2.2 Local growth

From the discussion above it follows that a new fixed link can be expected to influence the local

growth of different towns in a region, and this should ideally be accounted for in predictions of

induced commuting. The relocation effects represent the basic component of what Welde and

Tveter (2022) denotes to be the wider local impacts. Policy ambitions related to wider local

impacts contribute to explain and defend why the assessment and ranking of potential transport

investments are not necessarily according to a standard cost benefit appraisal of user effects

(Gühneman et al., 2012, Eliasson et al., 2015). A dominating concern in policy-making may for
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instance be to reduce spatial disparities between central and peripheral areas in a region.

Based on data from ten Norwegian road projects, Welde and Tveter (2022) study wider local

impacts in terms of four different indicators; commuting, population, new firms, and employ-

ment. In this paper, we focus on the likely possibility that there are interactions between these

indicators, and that such interactions ideally should be explicitly accounted for in an appraisal

of the projects. Welde and Tveter (2022) in general report mixed results of the impact on local

development of transport infrastructure investments, and claim that this is in line with most

studies. Based on their findings, they further claim that road investments is a potent instrument

in providing local growth only in cases where a relatively weak area gets a significantly improved

connection to larger labour markets.

In a standard cost-benefit appraisal of a new fixed link, the benefits of individual agents

are represented by their aggregate willingness to pay for transport involving the link. In addi-

tion, a policy ambition can be attached to the impact of transport investments on the spatial

distribution of people and jobs. It can be argued that a more centralized pattern of jobs and

people generates less transport in a more sustainable spatial development of a region. However,

it can also be argued to benefit the society that the rural settlement pattern is preserved in a

more balanced development of central and peripheral areas of the region. Hence, for any specific

policy ambition, the impact of a new fixed link on local growth can be attached to a separate

value beyond the aggregate of individually measured benefits.

According to, for example, Deng (2013), Crescenzi et al. (2016), Elburz et al. (2017), and

Wang et al. (2020), there is a controversy concerning both the direction and magnitude of

the growth effects of investments in transport infrastructure. Deng (2013) analyses why the

evidence of the growth-enhancing effects is mixed and identifies ten essential factors for the wide

range of elasticity estimates in the literature. The general belief seems to be that investments

in transport infrastructure represent a crucial facilitator of economic growth (Donaldson, 2018;

Saidi et al., 2018), but there are also many studies suggesting that the impact of such investments

is insignificant or even negative (Locatelli et al., 2017; Maparu & Mazunder, 2017).

The possibility of a negative impact on local growth is also addressed by Welde and Tveter

(2022). They point to the possibility that a new fixed link that improves the accessibility

between two areas benefits the prosperous and most vigorous region in terms of growth. In
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this respect, Welde and Tveter (2022) also address goal conflicts. The ambition to increase or

preserve the population in peripheral areas may come at the expense of agglomeration economies

and costs related to CO2 emissions of long-distance commuting and urban sprawl. This conflict

is referred to as the two-way road effect. Welde and Tveter (2022) point out that better roads

can reinforce existing trends and patterns, exacerbating spatial disparities. Tveter et al. (2017)

refer to the two-way road effect as the possibility that road investments lead to centralizing

economic activities.

2.3 Wider economic impacts

The wider local impacts may reflect the outcome of a zero-sum game in the sense that they are

distributional. Still, they are relevant in assessing different projects since distributional effects

matter in an overall evaluation, with the policy ambition of reducing unfortunate disparities

between different areas. Laird and Venables (2017) do not explicitly distinguish between the

wider local and economic impacts. However, distributional effects should be more generally

addressed in discussing the wider economic impacts, which reflect the productivity effects of an

improved transportation network.

The location decisions of firms result from a trade-off between benefits and costs. Marshal-

lian agglomeration economies contribute to pulling the optimal location towards clusters of other

firms, generating benefits from learning, sharing, and matching (Duranton and Puga (2004) and

from risk-sharing in pooled labor markets (Ellison et al., 2007). Agglomeration economies rep-

resent positive externalities contributing to increased productivity and local growth. Wangsness

et al. (2017) provide a review and a discussion of the possibility that the observed relationship

between productivity and agglomeration may come from statistical sorting and selection effects.

Graham and Gibson (2019) have estimated how bringing firms and labor markets closer to each

other contributes to increasing productivity and welfare in the economy in general. This pro-

ductivity gain of a spatially more densely concentrated economic activity has as its counterpart

an urban wage premium that is well documented in the literature (Melo et al., 2009).

This discussion is related to the wider economic impacts (WEIs) of investments in road

infrastructure. Agglomeration economies represent an essential source of indirect effects which

are not adequately accounted for in the standard cost-benefit analysis, see for instance, Graham
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(2007), Venables (2007), and Henschel et al. (2012), and see Oosterhaven and Knapp (2003) for

a distinction between direct and indirect effects of changes in the road network. Wangsness et

al. (2017) also provide a discussion of other effects leading to WEIs of transport infrastructure

investments. They distinguish between five different labor market effects and discuss impacts

in imperfect competition markets. Such effects include the possibility that firms are getting

reduced monopsonistic power over workers and the welfare increase caused by the effect of

increased competition on product differentiation.

Agglomeration economies are, of course, not the only factor influencing the location decisions

of firms. At the same time, firms may prefer to take advantage of lower-priced land and labor,

which tend to pull towards more peripheral locations; a new road link may connect a rural area

close enough to a regional center to gain from agglomeration economies while at the same time

benefit from lower prices of land and labor. A relevant discussion of such trade-offs can be found

in the New Economic Geography literature, for instance, Venables (1996).

There is extensive literature on the contribution of transportation infrastructure to pro-

ductivity and economic growth in general, see Deng (2013) for a review, and Chatman and

Noland (2011) for a review focusing on the effect of agglomeration in particular, that is “ex-

ternal economies of scale in density and diversity of firms”. Kasraian et al. (2016) studied the

long-term impacts of transport infrastructure networks on land use. The long-term perspective

makes it more likely to capture the slow land-use development arising from changes in the road

transportation network. It makes it possible to study various stages in history. Tveter and

Laird (2018) also claim that wider impacts may take a long time to materialize and that they

may be spread over a wide geographical area. Kasraian et al. (2016) refer to studies indicat-

ing that highways attract commercial or industrial developments while suppressing residential

development. Tveter (2020) evaluated several attempts from the Norwegian Public Roads Ad-

ministration to estimate the potential wider impacts of planned road projects. The estimates

were found to variate substantially, from close to 0 to more than 200 percent of user benefits.

Tveter (2020) found that the results are susceptible to the chosen model specification.

Some ambiguity can be found in the literature on the practical relevance and importance of

wider economic impacts in evaluations of investments in transportation infrastructure. Based

on a survey of meta-analyses, Melia (2018) finds that reports on wider economic impacts tend to
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reflect personal judgments rather than empirically based evidence. On the other hand, Gibbons

et al. (2019) provide empirically-based evidence that even exposure to relatively incremental

transport improvements results in substantial positive effects on the number of establishments

and employment in an area. Using a dataset of 31 UK road construction schemes carried out

between 1998 and 2007, they approached the problem by measuring how transport improvements

lead to changes in accessibility within targeted areas. Welde and Tveter (2022) claim that wider

economic impacts may be unobservable at the local level and that local results may interest

policymakers the most.

3 Generation of synthetic data; an agent-based approach

In this section, we provide a very brief presentation of the process of generating data for the

experiments to be presented in subsequent sections. Data are generated by an agent-based

modeling approach, which corresponds to the case where “the system of interest is populated by

individual agents who are given (probabilistic) rules of behaviour”(Wilson, 2010). A technically

more detailed explanation of how the population and the regional economy are generated can

be found in Gholami et al. (2023). In Gholami et al. (2023), the analysis was based directly

on experiments from the agent-based modeling framework, while we in the current paper uses

this approach just to generate trip distribution data for model experiments based on spatial

interaction models. Hence, a detailed presentation of the agent-based model is more dispensable,

and we restrict it to the essential elements of the data-generating process:

The geography is defined by the 12 towns illustrated in Figure 2. A main point of interest

in this paper is that a new road connection is being constructed between towns B and

E. Town E hosts the central business district of the geography. The distance between

these two towns is 60 km prior to the investment of the new bridge, or tunnel, across the

topographical barrier, which may be in the form of a fjord, a lake, or a mountain. In the

situation after the new road, the distance is 15 km. All the distances in the system are

proportional to the length of their respective links in Figure 2.

The demographics. After an initialization where 15000 17-year-old utility maximizing agents

are randomly born in specific towns, the population in a base year follows from a 300-year-
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long interaction process, where the agents are born, get married, divorced, have children,

apply for work, are retired, and die, according to rules based on Norwegian statistical data.

After this long interaction period, all the initial population traces are wiped out, and we

know the state of each agent in terms of gender, age, spouse, parents, children, house,

work location, income, wealth, etc. Mortality rates are based on life insurance tables;

the chances of marrying a person in another town are assumed to decline exponentially

with distance, and birth rates and divorce rates are based on data from the Norwegian

population.

The preferences. The individuals are equipped with a utility function based on the assumption

that they derive utility from the disposable income for consumption in a lifetime perspec-

tive and from housing consumption, represented by the size of the house, measured by the

number of squared meters. A parameter is introduced into the utility function, reflecting

the elasticity of the utility concerning lifetime disposable income and the size of the house.

Employment. We distinguish between local sector firms and basic sector firms. The first

serves the local population, while the latter serves demand in other regions and countries.

The basic sector employment in a town is considered exogenous, while the local sector

employment depends on the local demand. There are assumed to be three groups of

workers and three categories of jobs within the local and basic sectors. Within each group,

the workers are assumed to be homogenous regarding labor market qualifications. Each

individual is born to belong to a specific occupational group, with probabilities depending

on gender and reflecting a specific distribution of the population into different groups.

Each of the six industrial sectors is specified to demand given the proportions of the three

groups of workers.

Wages and unemployment. For each group of workers, the wage rate is set higher in town

E, the CBD, than in the other towns, initially to account for high local productivity due to

agglomeration economies. For the following years, wages are determined through a local

Phillips curve style mechanism. If unemployment is non-existing and the local demand is

high for a category of workers, this will result in high local wages for this group of workers.

There are no other sources of income than the wage, but there is an income tax, and
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unemployed agents receive an insurance payment.

Housing demand. Each year, the agents make a random check to see if they will bid for

houses on sale, and house owners decide whether their house joins the pool of houses for

sale. All the potential bidders scan the pool of houses for sale in search of the house,

providing them with the maximal utility. They join a pool of bidders if the specific house

contributes to improving their position. The bidding procedure representing the housing

demand uses first-price sealed bid auctions. All bidders submit their bids simultaneously,

and the highest bid wins the auction. The seller then considers the winning bid and the

sale is carried out if this bid exceeds the seller’s reservation price. A house is removed

from the pool if a sale is executed.

Housing supply. The regional government planning entity is responsible for the initial supply

of housing and also for supplying proportional yearly increases in the housing supply in each

town. In addition, the local building frequencies reflect a high local demand, represented

by a given elasticity of housing supply with respect to the local price increase observed in

the previous year.

Figure 2: The spatial configuration of zones in the geography.

The agent-based model used for providing trip distribution data for this paper differs from

that used by Gholami et al. (2023). The labor market heterogeneity in different categories

of jobs and workers represents an extension of the modeling framework. This heterogeneity

introduces an additional source of friction into the system that can contribute to explaining
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some of the commuting between the towns in the system. At the same time, this opens both

spatial wage disparities and disparities in unemployment rates for different groups of workers.

Other applications of the agent-based approach can be found in for example McArthur et al.

(2010, 2012). Compared to the approach used in this paper, the analyses in McArthur et al.

(2010, 2012) were, however, based on a set of more restrictive assumptions on the both the

geography and the economic mechanisms. The geography was for instance restricted to just two

towns, and no housing market was involved.

In this paper, both disparities originating from the labor market and spatial disparities

in housing prices affect the migration/commuting trade-off of the households. Assume that a

worker is applying for vacant positions and accepts a job offer with higher wages in another

town than the current residential location. If the housing prices are higher in the town hosting

the new employer, this pulls in the direction of commuting from the current residence rather

than migrating to the new job location. If the worker is married, the utility of the spouse is,

of course, also relevant in making such a decision. In general, both housing price and wage

disparities should be expected to influence the commuting matrix underpinning the spatial

interaction analysis in this paper.

After 300 initializing years, a population is designed that, in a demographic sense, represents

the Norwegian population. As a next step, the labor and housing markets are integrated into

the model, which is then run for another 50 initializing years. The chosen size of the initial

population and the housing stock reflects a trade-off between computing time and the demand

for achieving robust results for the housing market, the labor market, and the spatial interaction

between the 12 towns.

The state reached after 350 years of initialization results from experimenting with values

of parameters and exogenous variables. The experiments aimed to create a state with reason-

able values of endogenous variables like unemployment rates, housing prices, and wages. They

could be observations from a typical Norwegian region. The values of these variables are dis-

cussed in Gholami et al. (2023) and are not an issue in this paper. The same applies to the

parameterization of the different components of the model that is briefly described above. The

parameterization is also described and discussed in Gholami et al. (2023), except that they

had no heterogeneity of jobs and workers, as pointed out in the sections about employment and
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wages above. Concerning the three groups of workers, 20% of the population is assumed to be-

long to group 1, out of which 80% are women and 20% are men. For group 2, the corresponding

figures are 40 % (50%, 50%). At the same time, 40% are also born to belong to group 3, with

a distribution of men and women according to an equation ensuring that the system balances

gender. Similarly, the distribution of local and basic sector jobs for the overall system is given

by 20%, 40%, and 40% for the three categories, respectively. The three sectors can, for instance,

be retailing, manufacturing, and the service sector.

It is essential to notice that, just as in real life, the agent-based modeling approach does not

reach a steady state equilibrium. It is a complex, dynamic modeling framework where life-cycle

considerations and independent individual decisions contribute to continuously changing the

system’s state. We use the commuting matrix of the first year after 350 years of initialization to

estimate spatial interaction models, which are next used for predicting changes in commuting

flows. Even with no exogenous changes, the pattern of commuting flows will change, but the

system should be expected to be relatively sluggish, with only minor yearly changes. However,

this situation changes once the system is exposed to a substantial shock through a new road

between towns B and E. We will discuss to what degree a static spatial interaction model can

predict the changes in commuting following this kind of exogenous shock.

In a real-world scenario, geography does not only represent a complex, dynamic system; it

is also more or less continuously exposed to exogenous shocks. It is a substantial challenge to

distinguish the impact of a new fixed link from other exogenous changes in an empirical anal-

ysis. In empirical analyses, endogeneity issues related to the interaction between, for example,

traffic and the road network or between location decisions and traffic represent a challenge in

interpreting the results from a causal point of view. In other words, it is not straightforward

to identify what would be local and regional development in an empirical setting if the relevant

fixed link was not realized. Both Tveter et al. (2017) and Welde and Tveter (2022) approach

this problem by using “the synthetic control method”, where the basic idea is to find synthetic

control units to imitate the counterfactual development, that is, the development in a case with

no new fixed link. For a formal discussion of this approach, see Abadie et al. (2010). In dealing

with Norwegian road projects, Tveter et al. (2017) and Welde and Tveter (2022) find control

groups of similar municipalities in each case. The similarities are defined, for instance, from
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the development prior to the new fixed link. It is also a criterion that the municipalities in

the control group had no significant changes in infrastructure or other aspects in the period

under consideration. The method further makes up composite (synthetic) control municipalities

based on data from several similar municipalities. Such an approach is nevertheless subject to

an element of uncertainty; as pointed out by Tveter et al. (2017, pp 68), the method “does not

provide a definitive test of any causal mechanism”. This problem is avoided in our agent-based

approach. By employing our experimental design, issues of endogeneity and causality can be

easily overcome, and we know exactly what would be the outcome in a scenario without the

relevant fixed link.

4 Estimating spatial interaction models

In this section, we will discuss how different specifications of spatial interaction models succeed

in explaining the commuting patterns of the synthetic population of workers generated by the

agent-based modeling framework. We will see how the results compare to real-life experience

with such model specifications, keeping in mind that the results may be sensitive to, for example,

spatial structure characteristics, as demonstrated in Gholami et al. (2020). In evaluating the

performance of different model specifications, we will use the Standardized Root Mean Square

Error (SRMSE):

SRMSE =

√∑
ij(Tij−T̂ij)2

I·J∑
ij Tij

I·J

Here, Tij is the number of workers living in town i and working in town j, while I and J denote,

respectively, the number of rows (origins) and columns (destinations) in the trip distribution

matrix. In the synthetic geography to be considered, I = J = 12. The SRMSE was recom-

mended by Knudsen and Fotheringham (1986) as the most accurate measure for comparing

model specifications in different spatial systems. In Section 4.1, alternative model specifications

are presented before the results based on our synthetic data are presented in Section 4.2

4.1 Alternative specifications of a doubly-constrained spatial interaction model

The standard doubly-constrained gravity model is a well-known and commonly used model for

trip distribution problems. In terms of commuting, the basic idea is that the number of trips
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� originating from town i relates to the number of workers living here

� destination in a town j is related to the number of jobs located here

� between an origin i and a destination j is negatively related to the distance between the

two towns

At the same time, any spatial interaction model should account for the marginal total constraints

corresponding to a fixed number of workers and jobs in each town. Let Oi be the number of

workers living in town i, while Dj is the number of jobs in town j. The marginal total constraints

are then given by


j Tij = Oi and


i Tij = Dj , ∀i, j. The standard doubly constrained gravity

model can be formulated as follows:

Tij = AiOiBjDj exp(−βdij) (1)

Ai =




j

BjDj exp(−βdij)



−1

(2)

Bj =


i

AiOi exp(−βdij)

−1

(3)

Here, dij is the traveling time by car from origin i to destination j, and β is a distance deterrence

parameter. At the same time, Ai and Bj are the balancing factors that ensure the fulfillment

of the marginal total constraints. This model is rooted in stochastic utility theory (Anas, 1983)

and entropy-maximizing and cost-efficiency theoretical approaches (Erlander & Stewart, 1990;

Sen & Smith, 1995).

Intuitively, this model seems parsimonious, with relevant characteristics of spatial structure

omitted. However, the balancing factors account for the effect of many characteristics relating

an origin i to a specific destination j. Attempts to incorporate such variables into the model may

affect the estimated values of the balancing factors. In contrast, the estimates of the structural

parameters and the goodness of fit will be unaffected. Still, the literature offers evidence that

some variables representing the spatial characteristics affect the parameter estimates and the

model performance. Below is a list of model extensions to be tested by our synthetic data.

The presentation focuses on the changes made in the structural equation. Remember that the
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balancing factors, of course, must be revised correspondingly.

The competing destinations model adds a measure of labor market accessibility to the

model. This approach was originally suggested by Fotheringham (1983, 1986), primarily

for other forms of spatial interaction than commuting. However, the accessibility measure

has been proven to contribute significantly to explaining commuting flows in a competing

destinations model formulation; see for instance, Thorsen and Gitlesen (1998) and Gitlesen

and Thorsen (2000) for both results and interpretations. With such a model formulation,

the structural part is formulated by

Tij = AiOiBjDjS
ρ
ije

−βdij (4)

If the agglomeration kind of force is dominant, the sign of ρ will be positive, while the

parameter takes on a negative value if the competition kind of force dominates. The

accessibility of destination j relative to all the other destinations, Sij as perceived from i

is defined by:

Sij =
w

k=1
k ̸=i,k ̸=j

Dke
−βdjk (5)

where w is the number of potential destinations.

Benefits of residing and working in the same zone can be accounted for by a parameter

attached to the Kronecker delta. For instance, the potential benefits are discussed by

Thorsen and Gitlesen (1998), who also introduce measurement errors related to intrazonal

commuting as a rationale for this model formulation. They conclude that accounting

explicitly for the diagonal elements of the commuting matrix adds significantly to the

explanatory power:

Tij = AiOiBjDje
(−βdij+µδij) (6)

Here, δij is the Kronecker delta,

δij




0 if i ̸= j

1 if i = j

while µ is a start-up cost to be incurred if work and residence are not in the same zone.
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Local labor market information can be represented by the demand for labor originating

from the firms in a zone relative to the supply of labor originating from the local households.

This reflects the prospects of receiving job offers locally and may account, for instance, for

different benefits of residing and working in the same zone, as well as the tendency that

local firms that possess monopsonistic labor market power in employing local workers see

Thorsen and Gitlesen (1998). The local labor market situation can be accounted for as

follows:

Tij = AiOiBjDj

((
Oi

Dj

)α1
)δij

e(−βdij+µδij) (7)

The hypothesis is that a high value of Oi relative to Di results in a high Tii, with local

workers occupying local jobs. The hypothesis corresponds to parameter values of α1 > 0,

which is supported by Thorsen and Gitlesen (1998) results.

The local levels of wage and housing prices. This model modification is motivated by the

results of Gholami et al. (2023b), where the estimated distance deterrence parameter was

demonstrated to depend on disparities in wages and housing prices across the towns in

the geography. The following model formulation accounts for the local variations of wages

and housing prices:

Tij = AiOiBjDj

((
Wi

Hj

)α2
)δij

e(−βdij+µδij) (8)

A high local wage attracts job applicants from other towns. Hence, many local jobs

can be expected to be occupied by workers from other towns. This causes high in and

out-commuting to and from the town. A low local level of housing prices contributes

to attracting households to reside here. For a given spatial distribution of jobs, this

contributes to an increase in the number of out-commuters from the town. All in all, this

corresponds to a hypothesis of α2 > 0.

The experiments reported by Gholami et al. (2023) demonstrated that several system-wide

characteristics affect the level of labor market interaction between the towns and, thereby, the

distance deterrence parameter estimates. This applies, for instance, to the system’s compactness,

centralization, clustering of jobs, unemployment insurance, commuting costs, etc. Such sources
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influencing the total commuting are not straightforward to account for in a model using a single

cross-sectional data set, with no variation in the relevant variables. The balancing factors in

a standard doubly-constrained gravity model will also capture many relevant aspects of the

spatial structure. Utilizing the time-series data from our agent-based experiments opens for

many interesting analyses in this direction, for instance, by studying how changes in wages,

housing prices, or some of the variables mentioned above affect commuting decisions and the

estimates of the distance deterrence parameter. However, this is beyond the scope of this paper

and will not be elaborated further here.

4.2 Results based on different model specifications

It is well known in econometrics that omitting relevant explanatory variables from a model

specification potentially causes biased parameter estimates and poor goodness of fit. In this

section, we will discuss how much can be gained from including spatial structure characteristics

and variables representing the housing and labor market situation. We will, in particular, see

how the model performance benefits from using local data on wages and housing prices, which

are not, in general, readily available in real-life scenarios. The model’s specifications to be

considered are:

M1 The standard doubly-constrained gravity model; Equations (1).

M2 The competing destinations model; Equation (4).

M3 A model accounting for benefits of residing and working in the same town; Equation (6).

M4 A model accounting for the local demand relative to the local supply for labour; Equation

(7).

M5 A model accounting for local wages relative to housing prices; Equation (8).

M6 A synthesis of M3, M4 and M5.

The estimation results from these spatial labor market interaction specifications are given in

Table 1. The standard deviations are estimated by bootstrapping.

As mentioned above, Thorsen and Gitlesen (1998) found that the competing destinations

hypothesis, represented by model specification M2 above, is also relevant for journeys-to-work.
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Table 1: Results on different model specifications.
M1 M2 M3 M4 M5 M6

β 0.049273 0.048088 0.0360717 0.037168 0.0361169 0.0360352
(0.0011) (0.0013) (0.00086) (0.00087) (0.00073) (0.00073 )

ρ 0.062
(0.0412)

µ 0.372418 0.40526 -0.74482 -0.83104
(0.0259) (0.0228) (0.0204) (0.0229)

α1 0.463625 -0.0370424
(0.0630) (0.0623)

α2 0.655498 0.704493
(0.0115) (0.0123)

SRMSE 0.248529 0.247613 0.202552 0.162352 0.158972 0.158954

Note: standard deviations in parentheses.

Based on data from western Norway, they found that competition forces dominate. This contra-

dicts the hypothesis that the increased opportunity to combine the journey-to-work with other

activities dominates choosing a preferred job location. Competition effects may reflect conges-

tion for commuting trips into an area with a concentrated cluster of job options. The model

specifications M3 and M4 both relate to within-zone conditions. According to Thorsen and

Gitlesen (1998), the hypotheses that µ > 0, α1 > 0, and α2 > 0 can be explained, for example,

by the advantages of running a two-worker household and a local labor market situation giving

rise to monopsonistic wage setting. Data from western Norway supported these hypotheses; see

Thorsen and Gitlesen (1998).

The rationale for the hypotheses underlying M2, M3, and M4 sounds reasonable in a real-life

scenario. However, our agent-based scenario needs to account for the potential advantages of

multipurpose trips. There are neither traffic congestion issues, advantages of running a two-

worker household, nor the possible influence of market power in the local labor market. Hence,

none of these reasonable hypotheses contribute to explaining the estimated results in Table 1.

This opens alternative explanations based on the mechanisms incorporated in our agent-based

approach.

One reasonable explanation is related to the ambition of minimizing commuting costs for

the household, ceteris paribus. Since many households have two workers, this may pull both in

the direction of living and working close to a cluster of alternative job opportunities with high

labor market accessibility and in favor of accepting job offers from firms in their hometown.

Hence, the hypotheses representing M2, M3, and M4 can be given a probabilistic interpretation

related to the likelihood that specific residence and job locations involve low commuting costs for
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the household. In addition, measurement errors are potentially relevant, for instance, because

intrazonal distances are ignored (Thorsen & Gitlesen, 1998).

The results in Table 1 demonstrate that model performance improves considerably, particu-

larly when labor and housing market conditions are incorporated in the model specification. The

volume of commuting trips is positively related to the level of local wages relative to housing

prices. These results are reasonable. The agents in our data-generating process are utility-

maximizing, preferring high wages and low housing prices. In interpreting the results based

on the model specification M6, however, the diagonal elements of the trip distribution matrix

are represented by several elements. In this case, the individual parameter estimates should

be interpreted with care, since they should be expected to reflect covariation of the variables

defined for the diagonal elements.

The most prominent result reported in Table 1 is that the different modifications improve

model performance compared to the standard doubly-constrained gravity model, an SRMSE of

0.16 represents a considerably better fit than a value of 0.25. One interesting question is to

what degree this contributes to more reliable predictions of induced commuting, for example, as

a response to a new bridge between towns B and E.

5 Different approaches in providing predictions of induced com-

muting.

The chosen approach for providing predictions of induced commuting, of course, depends on the

resources and the time available. Still, different approaches exist to using a spatial interaction

model in predicting induced commuting. For a large-scale project, a spatial general equilibrium

approach may be chosen, for instance, to capture the interdependency between location, land use,

and transport of changes in the transport network. A smaller, less resource-intensive approach

uses a spatial interaction model without a separate module to account for possible changes in

the location pattern of jobs and households. In this paper, we do not consider the wider impacts

and changes in the land use of investments in road infrastructure.
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5.1 The naive approach

In a linear regression model, predictions are typically made by inserting new values of the inde-

pendent, exogenous variables into the fitted regression model. Consider the model specification

M1, where β is the only structural parameter being involved. In fitting this standard doubly-

constrained gravity model to data, an estimate of β is reached. Assume next that the matrix

of distances was [d0]ij before the investments in the road infrastructure and [d1]ij after the in-

vestments. In predicting commuting, a straightforward analogy to the linear regression model

approach would be to insert the estimated β̂ and the given values of Oi andDj into the structural

equation (1), ignoring the values of the balancing factors Ai and Bj ;

T predicted,naive
ij = ÔiD̂j exp(−β̂d1ij)

This approach is denoted “naive”since it ignores the balancing constraints. It would be a pure

coincidence if the matrix [T predicted,naive]ij is in correspondence with the balancing constraints

∑
j Tij = Ôi and

∑
i Tij = D̂j . Despite being naive, this approach may come into use, for

example, if data is not available on the trip distribution matrix required to estimate the model’s

parameters. In contrast, the marginal sums of the matrix are known. Predictions can then

be made by us using Ôi and D̂j , combined with new distances and estimates of the distance

deterrence parameter from a previous point in time or from other regions.

5.2 The balanced approach

The investments in road infrastructure provide a substantially shorter distance between the

towns B and E in Figure 2. Assume that someone asks for a prediction of induced commuting

between these two towns, for instance, due to congestion concerns. The naive approach may

impulsively appear reasonable for such an ambition. However, a cost-benefit analysis focuses

on induced traffic for the geography in general. In such a perspective, it becomes more appar-

ent why the approach is naive and should not be recommended for any predictions. Still, we

keep presenting the naive predictions since they contribute useful insight into the effect of the

balancing factors.

The investments in the road transportation network do not affect the distance between all
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combinations of towns in the system. The distances are not changed for any combination of

towns within the clusters of towns that are separated by the topographical barrier; the distances

are, for instance, unaffected for any combination of the towns A, B, C, and D. It follows from

the equation of T predicted, naive
ij that the naive approach predicts no changes in commuting for

combinations of towns where distances are unaffected by the new road. Notice also that the new

road is not predicted to lead to fewer commuters between any of the towns in the geography.

The situation is very different for the balanced approach.

The balanced approach does not ignore the balancing factors:

T predicted, balanced
ij = A1

i ÔiB
1
j D̂j exp(−β̂d1ij)

This prediction is based on a recalculation of the balancing factors. A1
i and B1

j are introduced

to ensure the fulfillment of the marginal total constraints
∑

j Tij = Oi and
∑

i Tij = Dj in the

case where distances are given by [d1]ij , that is after the investments in the road network.

This means that the predictions are made in an optimization context for a given location

pattern of jobs and households and a given estimate of the distance deterrence parameter, β̂. In

such an approach, the commuting flows are, in principle, affected for any combination of towns

as a result of the new road between towns B and E. Assume that the new road induces a massive

increase in the commuting between towns B and E. Through the impact on the re-estimated

balancing constraints, this contributes to reduce the labor market interaction between these two

towns and the remaining towns in the geography. The increased commuting between towns B

and E reflects the new labor market opportunities due to the new road, explained, for example,

by disparities in wages and housing prices. This corresponds to a competition effect in the labor

market, for example, making commuting from town B to towns A, C, and D relatively less

attractive. It is, of course, a relevant question to what degree the balanced approach accounts

for these complex competition effects.
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6 Relocation effects of improvements in the road transportation

network.

The new road between towns B and E may impact the location decisions of households and

firms. As mentioned in Section 2, bid-rent theory suggests that some urban households may

reconsider their residential location choice. With a considerably reduced commuting distance

between the two towns, some town E citizens may move to a lower-priced house in town B or

other towns in the peripheral area on the other side of the topographical barrier and commute

to their job in town E.

In addition to production costs and the prospects of agglomeration economies, the location

decisions of firms, of course, also reflect their potential sales at alternative locations. For local

sector firms, sales depend on the residential location pattern, reflecting that distance affects

local customers’ shopping decisions. In addition, care should be taken to the possibility of

economies of scale and scope in shopping. This explains why retail sales are typically very high

in a regional center, calculated per inhabitant. At locations very close to the regional center,

the density of local sector firms can be expected to be very low since the local customers tend

to benefit from lower prices and multipurpose trips by shopping in the CBD. As the distance

increases from the regional center, more households tend to shop locally, as the costs of traveling

to the CBD increase. Eventually, the local sector density approaches the regional average for

increasing distances to the CBD. Gjestland et al. (2006) provide a theoretical and empirical

demonstration of the relationship between the local sector density and the distance from the

CBD. Such a relationship is incorporated in the agent-based modeling approach that provides

data for this paper as an alternative to the more naive approach that local sector density is

proportional to the local population.

The spatial competition, like in the famous Hotelling model, has an additional impact on

firms’ location choices. The spatial competition for market shares pulls firms towards the market

center. However, to soften price competition, firms may want to differentiate or locate at some

distance from the market center. This, of course, influences the shopping decisions of households

and contributes to modifying the local sector density pattern suggested by Gjestland et al.

(2006), but the basic idea remains.

The plausible hypotheses that clusters of households attract firms while a short distance
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attracts workers to employers bring about an interdependency between these agents. This

corresponds to the principle idea in Hoyt’s model, making room for the economic base multiplier

mechanism in an explanation of local development.

Apart from the spatial competition aspect, the mechanisms mentioned in this section are

incorporated in the agent-based modeling approach briefly explained in Section 3. Based on

the new road between the towns B and E, bid-rent theory suggests that some households may

choose to move out of the CBD to benefit from lower housing prices in the region on the other

side of the topographical barrier, at the cost of higher commuting cost to their employment

in the CBD. A reduced population may further induce local sector firms to move out, in a

process predicting reduced population and employment in the regional center, town E. However,

the reduced demand stemming from a reduced local population may be counteracted by the

possibility that the households living in towns A, B, C, and D do more shopping in the CBD due

to the new bridge. The net outcome of these forces is an empirical question. Figure 3 illustrates

the changes in the development of the regional proportions of employment and population in

the CBD over 15 years after the new fixed link was constructed between town B and town E in

Year 0.

Figure 3: The proportions of the regional population living in the CBD, and the proportion the
workers with a job in the CBD, that is town E, in the years after the new link was established
between the towns B abd E.
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At first sight, the curves in Figure 3 do not represent dramatic changes following from the

new fixed link between the two regions at either side of the topographical barrier. Changes in

location decisions of firms and households may be relatively sluggish, and the spatial distribution

of basic sector jobs is a stabilizing element, as it is assumed to be unaffected by the changes

in road infrastructure. However, a closer look at the figure shows that the location effects are

substantial according to a priori reasonable hypotheses. The most immediate effect of the new

fixed link is to increase the number of local sector jobs in the CBD. This reflects the tendency

that more people in, for example, town B will now do their shopping in the CBD rather than

locally. This effect dominates the effect of the tendency that people to move from the CBD

to benefit from lower housing prices elsewhere in the geography. However, the local sector

employment in the CBD will eventually be reduced as the population, and the number of local

customers is reduced. The regional proportion of people living in the CBD falls from 0,203 in

Year 0 to 0,174 in Year 15. The figures of our agent-based experiments show that this represents

a 17,5% reduced population over 15 years. Hence, the location effects following a large-scale

change in the road transportation network are substantial in the case we consider.

As mentioned above, the net outcome of different forces affecting the location decisions

of firms and households is an empirical question. In studying ten Norwegian road projects,

Welde and Tveter (2022) found that some projects resulted in both new firms and increased

employment in existing firms, while there is a tendency for negative impacts for other projects.

The population growth is not significant for projects in rural areas. However, Welde and Tveter

(2022) report substantial effects, particularly for smaller municipalities linked to a city or a

regional center, reflecting a process of urban sprawl. They also report a tendency for location

effects of firms to build up slowly and may appear many years after the project’s opening.

Tveter et al. (2017) report considerable lags in the effects on population growth. In general,

they find considerable variation in the effect of new fixed links on settlement patterns for the

eleven projects they consider. The effects are estimated to be between 10 and 30 percent of

population growth for some municipalities and insignificant, or even negative, for others.

129



7 Predicting commuting flows for a synthetic population

An important application of a spatial interaction model is to make out-of-sample predictions, for

example, of how traffic responds to changes in the road transportation network. The predictions

are sensitive to, for example, the value of the distance deterrence parameter, which depends on

the model specification. In addition, the choice of variables for the model specification can, of

course, be expected to affect the predictions, as is the choice of accounting for the balancing

constraints or not. In this section, we present results related to prediction issues:

� We first offer predictions for the situation in the benchmark scenario, in year 0, comparing

the observed commuting matrix to predictions made by both the naive and the balanced

approach.

� As a next step, we present predictions for the situation immediately after a new road is

constructed, connecting two clusters of towns located at separate sides of a topographical

barrier. The predictions are made for different model specifications and different prediction

approaches, comparing both the commuting pattern in general and the induced commuting

on the new fixed link.

� Finally, the time perspective is introduced. Predictions are provided for 15 years after a

new fixed link is constructed across the topographical barrier. We first discuss how the

predictability depends on how the balancing constraints are accounted for, that is, by

comparing the naive and the balanced approach that was discussed in Section 5. We also

discuss the performance of different model specifications by comparing predicted commut-

ing matrices in general and predicted induced commuting across the new fixed link.

7.1 Predicting commuting flows in the benchmark situation; year 0

First, we will demonstrate how a spatial interaction model predicts commuting flows for the

final year in the initializing 350-year-long period, which is also the benchmark, year 0, for exper-

iments in the agent-based modeling framework. Consider first the standard doubly-constrained

gravity model, M1. The observed commuting matrix of year 0 is given by T observed
ij below, while

M1 predicts commuting flows corresponding to the matrix T predicted
ij . There is a clear visual
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resemblance between the two matrices. This is represented by an SRMSE of 0.2485, which

corresponds to a reasonably good fit.

Still, there are some discrepancies and room for improvement. It follows from Figure 2 that

the geography has two clusters of towns, separated by the topographical barrier. The towns A,

B, C, and D are located on one side of the barrier, while the cbd E and the towns F, G, H, I,

J, K, and L are on the other. As an example of discrepancies between T observed
ij and T predicted

ij ,

M1 considerably under-predicts the number of commuters between the two clusters of towns,

located at either side of the topographical barrier. M1 predicts there will be 1415 commuters

between the two clusters, while the actual number is 2031. It follows from Table 2 that model

extensions accounting for the potential effect of within-zone conditions contribute to predicting

more accurately the number of commuters between the two clusters of towns.

T observed
ij =




A B C D E F G H I J K L

A 476 177 105 104 180 17 44 18 11 19 9 10

B 198 406 117 95 270 40 27 35 17 17 12 17

C 98 149 370 51 346 38 35 27 23 18 18 14

D 178 137 132 277 219 20 27 19 18 15 18 5

E 45 23 50 39 2112 182 130 175 84 88 72 78

F 17 11 17 13 737 261 83 48 23 25 22 20

G 18 5 13 13 456 74 369 25 22 59 34 16

H 10 9 15 11 611 47 42 262 32 43 57 41

I 9 2 7 6 292 32 34 79 164 104 96 48

J 13 4 5 16 244 33 42 73 73 303 111 43

K 8 0 8 8 227 26 34 60 61 114 340 84

L 10 3 9 11 336 23 21 80 65 62 96 186




T predicted
ij =




A B C D E F G H I J K L

A 527 200 100 142 113 14 38 11 4 10 6 4

B 232 387 193 131 218 21 17 22 7 7 7 7

C 90 149 328 106 369 36 22 37 12 12 12 12

D 208 165 173 246 195 19 15 20 6 6 6 7

E 6 10 23 7 2179 212 131 219 72 72 72 73

F 3 4 8 3 757 198 122 76 25 32 25 25

G 7 3 5 2 439 115 310 44 30 81 50 19

H 2 3 7 2 654 64 39 176 58 58 58 59

I 1 1 3 1 299 29 38 80 116 115 117 72

J 2 1 2 1 236 29 80 64 92 245 151 57

K 1 1 3 1 239 23 49 64 93 151 250 95

L 1 2 3 1 331 32 26 89 78 78 129 131




With no changes in the road transportation network, there is no reason to distinguish between

the naive and the balanced approach to making predictions. The distances are the same over

time, the number of jobs and workers (Oi and Dj) are assumed to be constant, and the estimates

of parameters are, of course, independent of the choice of prediction approach. The balancing

factors will also be estimated to be equal, and the number of commuters across the two clusters
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will be constant and equal for the two prediction approaches. The values of SRMSE will also be

equal for the two approaches, but they will not be constant over time. The reason for this is, of

course, that the actual commuting matrix changes over time. The accuracy of the predictions

deteriorates over time. Table 2 shows that the SRMSE is 0.2485 for M1. Fifteen years later,

the value of SRMSE is 0.6500 for the predictions based on this model. The development of the

values of the SRMSE is similar for the other model specifications.

While the predicted commuting matrix remains constant, the commuting matrix following

the data-generating process changes continuously. The agent-based modeling framework rep-

resents a complex, dynamic system, with relocations causing changes in the marginal totals of

the commuting matrix. In this case, the labor market heterogeneities are causing increasing

challenges in the matching mechanisms. As a result, long-distance commuting is increasing over

time. In year 15, there is an aggregate commuting of 2486 workers across the topographical

barrier, while it was 2031 in year 0. This may be a part of a trend around year 0 and is not

captured by the spatial interaction models evaluated in this paper. Such trends also represent

a potential challenge in real-world scenarios, contributing to poorer fit over time if the model

needs to be adjusted to account for new information.

Table 2: The observed and predicted number of commuters across the topographical barrier, in
year 0.

M1 M2 M3 M4 M5 M6

Observed 2031 2031 2031 2031 2031 2031
Predicted 1415 1461 1771 1707 1752 1755

7.2 The standard doubly-constrained gravity model as a tool to predict in-

stant effects of road investments

Consider the case where a new bridge or tunnel connects zones B and E. In a cost-benefit

analysis of such an investment in transportation infrastructure, one key element is to estimate

the willingness to pay for the new road connection. The estimate of the willingness to pay for

the investments reflects the predictions of induced traffic, which further relies on the chosen

spatial interaction model specification and the corresponding parameter estimates. As reported

in Table 2, the standard doubly-constrained gravity model predicts 1415 commuters between
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the two clusters of towns, while the actual number was 2031 in the situation before a new

road was connecting the towns B and E. From our agent-based data-generating approach, we

further know that there will be 2279 commuters across the new road in year 1. Hence, the new

road immediately induces 248 commuters across the topographical barrier. How accurate is this

induced commuting predicted by the alternative prediction approaches and model specifications?

The new fixed link, of course, leads to a change in the distances, but there will not be any

other exogenous changes in the doubly-constrained spatial interaction models considered in this

paper. Both Oi and Dj , the parameter estimates and the balancing factors are kept constant

in a naive prediction approach. However, in a balanced approach, the balancing factors are

adjusted to ensure the fulfillment of the marginal total constraints. Hence, the predictions

based on these two approaches differ, albeit separately constant, over the 15-year-long period

under consideration.

Consider first the standard doubly-constrained gravity model, M1. Based on this model

specification, the commuting matrices T predicted, year 1, naive
ij and T predicted, year 1, balanced

ij demon-

strate that the two approaches predict substantially different commuting matrices. They both

predict the situation immediately after constructing the new road between towns B and E. By

comparing to the predicted matrix for year 0, T predicted
ij , notice that the naive approach predicts

changes in the number of commuters only for combinations of towns where the distances are

directly affected by the new road, and that this approach does not predict a reduced number of

commuters between any of the towns in the geography. However, the naive approach predicts

an extensively increased number of commuters between the two clusters of towns on either side

of the new road. This explains an inferior fit between the predicted matrix of commuters and

the observed matrix for year 1, with an SRMSE of approximately 1.58.

The balanced approach performs considerably better in predicting the commuting matrix af-

ter constructing the new road. Compared to the observed commuting matrix, T predicted, year 1, balanced
ij

has an SRMSE of approximately 0.42. This involves marked discrepancies with the observed

commuting pattern and poorer fit than in Year 0, in Section 7.1. Still, the balanced approach,

at least to some degree, avoids the extensive over-prediction of commuting between the two

clusters of towns following the naive approach. Based on M1, the naive approach predicts that

there will be 7042 commuters across the new road immediately after the road’s opening, while
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the correspondent prediction from the balanced approach is 3182 commuters. Based on the

prediction that there will be 1415 commuters in year 0, the naive approach predicts that the

new road will induce an increase of 5627 commuters, while the balanced approach predicts 1767

new commuters across the topographical barrier. As mentioned above, it follows from our agent-

based, data-generating procedure that the instant effect of the new road is just an increase of

248 commuters between the two clusters of towns. Before we elaborate on possible reasons for

the poor predictions, we will consider the time perspective of induced commuting and include

predictions based on the other model specifications than M1.

T predicted, year 1, naive
ij =




A B C D E F G H I J K L

A 527 200 100 142 1036 101 62 104 34 34 34 35

B 232 387 193 131 2003 195 121 201 66 66 66 67

C 90 149 328 106 774 75 47 78 26 25 26 26

D 208 165 173 246 854 83 51 86 28 28 28 29

E 58 96 48 33 2179 212 131 219 72 72 72 73

F 20 33 17 11 757 198 122 76 25 32 25 25

G 12 19 10 7 439 115 310 44 30 81 50 19

H 17 29 14 10 654 64 39 176 58 58 58 59

I 8 13 7 4 299 29 38 80 116 115 117 72

J 6 10 5 4 236 29 80 64 92 245 151 57

K 6 11 5 4 239 23 49 64 93 151 250 95

L 9 15 7 5 331 32 26 89 78 78 129 131




T predicted, year 1, balanced
ij =




A B C D E F G H I J K L

A 396 122 69 104 338 34 23 35 12 12 12 12

B 139 189 107 77 522 53 35 54 19 19 19 19

C 97 132 328 112 365 37 25 38 13 13 13 13

D 175 113 134 201 312 32 21 33 11 11 11 11

E 114 155 88 63 1877 190 126 195 67 68 68 68

F 40 54 31 22 661 179 119 69 23 30 24 24

G 24 32 18 13 389 105 308 41 29 79 48 18

H 35 47 27 19 574 58 39 160 55 55 56 56

I 16 22 12 9 267 27 38 74 111 113 114 69

J 13 18 10 7 213 27 80 59 89 241 148 55

K 13 18 10 7 215 22 50 60 90 149 245 91

L 18 24 14 10 295 30 25 82 75 76 126 125




7.3 The time perspective in predicting induced commuting from different

spatial interaction models.

In a scenario where the distances have changed due to investments in the road transport network,

we have seen that predictions of instantly induced commuting depend heavily on whether a

naive or a balanced approach is employed. Based on M1, the naive approach predicts that the
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induced commuting will be more than double the increase predicted by the balanced approach

in a short time perspective. This vast difference is crucial in a cost-benefit analysis. However,

it is, of course, a legitimate question to ask to what degree this difference depends on the time

perspective of the analysis, as well as on the possibility that the spatial interaction model is

extended to account for aspects of the spatial structure and spatial disparities in the labor and

housing market conditions.

7.3.1 Predicting the regional commuting pattern

Before we return to the number of commuters across the former barrier in the road transportation

network, we will consider the predictability of different model specifications for the commuting

pattern in general. The agent-based data-generating modeling framework equips us with the

“observed”commuting matrix for the 15 years after the opening of the new road. Hence, the

predictions following different model specifications and prediction approaches can be evaluated

against the observed commuting pattern for each year, measured by the SRMSE.

Figure 4: The goodness-of-fit of predicted relative to observed commuting for the 15 years after
the opening of the new fixed link. Different model specifications and prediction approaches.

Figure 4 illustrates the prediction accuracy for only two of the model specifications. Pre-

dictions based on the competing destinations model, M2, are only marginally more accurate
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than predictions based on the standard gravity approach, M1. The labor market accessibility

measure does not add significantly to the predictability. For a naive prediction approach, the

model specification M3, which accounts for some unspecified benefits of residing and working

in the same town, performs significantly better than M1 and M2. However, this superiority

does not apply to the balanced prediction approach. The model specifications M4, M5, and M6

provide very similar predictions, significantly more accurate than the other model specifications.

The benefits of incorporating information on the local housing and labor market conditions are

particularly striking for the naive predictions approach. To avoid confusion due to an informa-

tion overload, only results based on the model specifications M1 and M5 are included in Figure

4, as representatives for their respective groups of similar model specifications, that is, M1, M2,

and M3 versus M4, M5, and M6.

There are several points to make from Figure 4:

1. Measured by the SRMSE, the balanced approach persistently provide more accurate predic-

tions of the commuting matrix than the naive approach.

2. The spatial interaction models accounting for within-zone labor and housing market condi-

tions make more accurate predictions of the commuting matrix than the standard doubly-

constrained gravity model. This applies to both the naive and the balanced modeling

approaches. However, the benefits of extending the model in this direction are, in partic-

ular, substantial if a naive prediction approach is employed.

3. In particular, for the balanced prediction approach, there is a clear tendency that the accuracy

of the predictions is poorer at the start and at the end of the period under consideration.

It is reasonable to interpret point 3 to reflect the sluggishness in adapting to a new road

connection. The new fixed link means that the optimal combination of a residential and a

working zone may change for some households. However, it may take a long time before this is

turned into action. Selling and buying houses may be time-consuming, and considering new job

offers may be a part of the adaption. From an even longer time perspective, the adaption may

also be affected by, for example, matching issues in marrying since there is a distance deterrence

effect in the choice of partners. This may further cause changes both in the residential location

pattern and in the commuting pattern. In general, there are several sources of friction and

136



delayed actions in response to changes in the transportation network. Many of these are inherent

in our agent-based data-generating process but not in a doubly-constrained spatial interaction

approach. Hence, this is a plausible explanation for why the predictions are inaccurate at the

start of the period under consideration. At the same time, the failure to account for the location

effects of the exogenous shock contributes to explaining why a doubly-constrained modeling

framework engenders inaccurate predictions, particularly after many years of adaption.

7.3.2 Predicting the commuting across the new fixed link

In many applications of spatial interaction models, the primary interest is on the traffic induced

for a specific link of the road transportation network rather than on the commuting pattern in

general. In principle, an over-prediction of the induced commuting between two towns involving

the link may be counteracted by an under-prediction between other towns involving the same

link. Hence, errors may cancel each other out, resulting in a reasonably accurate prediction of

induced traffic. The opposite is, of course, also possible, that errors reinforce each other into a

very biased prediction.

In Figure 5, we consider predictions for aggregate commuting between the two clusters

of towns on either side of the former barrier in the road transportation network. In other

words, the figure provides predictions for commuting across the new road. Once again, only two

model specifications are considered to keep the figure clear and intelligible. The naive approach

to making predictions generally performs very poorly, resulting in massive over-predictions of

commuting across the new road. This is mainly the case for the model specification M1, which

predicts that there will be 7042 commuters using the new road, while the naive application of M5

predicts that the number of commuters for this new stretch of road will be 5681. In this respect,

the model specification M2 provides similar results to M1, while the predictions resulting from

M3, M4, and M6 do not deviate significantly from the M5-predictions.

Hence, Figure 5 ignores the naive approaches to make predictions and focuses on the bal-

anced versions of the model specifications M1 and M5. Remember from Figure 4 that the model

specification M5 provides a significantly more accurate prediction of the commuting pattern

than M1, measured by the SRMSE. Hence, it is a surprise that M1 performs better than M5

in predicting the induced commuting across the new road, though the difference is not substan-
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Figure 5: The observed and predicted number of commuters over the 15 years after the opening
of the new fixed link.

tial. All the balanced model specifications produced similar predictions of induced commuting.

However, the simplest model specification, M1, resulted in a slightly more accurate prediction

than all the other model specifications for the 15-year-long period under consideration. This

may reflect a case where different errors cancel each other out, providing an accurate aggre-

gate prediction. However, this result also supports a hypothesis that predictions are not very

sensitive to the specific choice of a doubly-constrained, gravity-based model specification. The

results indicate that the balancing procedure is dominating, working to wipe out differences in

predictability resulting from alternative formulations of the structural equation of the model.

Figure 5 shows that both model specifications over-predict induced commuting in a 15-

year long time perspective. This pulls in the direction that the benefits of the investments

in road transportation infrastructure are over-predicted. Also, notice from the figure that the

observed commuting exceeds the predicted commuting only towards the end of the period we

are considering. Accounting for the fact that future benefits are discounted at the discount

rate in a cost-benefit analysis, this reduces the likelihood of a positive present value of the

investments. According to this result, using the gravity-based prediction approach may lead to

over-investments in road transportation infrastructure.
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The induced commuting in the case of a new road by far exceeds the underlying trend

between the two clusters of towns, which was mentioned in Section 7.1. However, remember that

this represents just one observation from one specific geography. Also, for this geography, the

relocation effects eventually lead to a situation where observed commuting exceeds the predicted

commuting. This is, of course, not captured by a doubly-constrained spatial interaction model.

In many cases, the relocation effects may be stronger and faster than for the geography used

in this analysis, potentially leading to reverse the conclusion of rejecting the investments. Our

analysis nevertheless demonstrated that the relocation effects become an increasingly important

source of prediction error between the observed and the predicted commuting pattern as time

passes.

Welde et al. (2019) studied the capability of planners to predict the traffic induced by new

fixed links in Norway. They use data from tunnels and bridges built between 1970 and 2013.

Their main finding was that the effects were substantially underestimated in the long term,

even in cases where the short-term differences between the predicted and the actual traffic were

small. In general, they also report high inaccuracy in the forecasts. They claim that “traffic

forecasts in all Norwegian road projects are developed using standardized transport models”,

under the responsibility of the Norwegian Public Roads Administration. Despite improvements

in standard transport models, Welde et al. (2019) find a tendency that forecast accuracy is not

improving over time, at least in the period 1989-2013.

Welde et al. (2019) mention the Great Belt fixed link in Denmark, where the traffic was more

than 70% higher than planned one year after the opening. This increase has been explained to

reflect increased economic activity resulting from the new bridge. The Øresund bridge between

Sweden and Denmark had 20% lower traffic than expected just after the opening, but after three

years, the traffic was higher than the ex-ante prediction. These results are in line with results

presented by Odeck and Welde (2017), who also found that the level of underprediction is higher

in the long than in the short-term time perspective. Based on 12 studies from other countries,

Nicolaisen and Driscoll (2014), on the other hand, found that induced traffic was consistently

overpredicted.
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8 Predicting commuting flows for another agent-based dataset

The agent-based approach provides a dataset resulting from complex labor and housing market

interactions between the agents. The estimation results and the predictions discussed in Section

4 and Section 7, respectively, represent just one realization of the simulation experiment, that

is, one observation of the 12-node geography. In principle, it is possible to generate numerous

simulation experiments, providing datasets representing observations from different geography

specifications. This allows studying systematically how spatial structure characteristics affect

the ability of a spatial interaction model to make accurate predictions of, for example, induced

commuting resulting from a new fixed link. Does it, for instance, matter to what degree the

new fixed link connects a rural area to a dominating regional center? In practice, the number

of cases to study is limited by the running time of generating data sets. For the reasonably

large system considered above, with many complex decisions to be made by many agents, it

is relatively time-consuming to generate data for a specific scenario. This paper considers the

results from one case in addition to the case discussed in Sections 4 and 7. This at least gives

an idea of how sensitive the predictability is to the specification of the transportation network

and the housing and labor market conditions.

This section studies a slightly more unbalanced system than the previous sections, primarily

because more jobs are concentrated in the regional center. We made the following adjustments:

� a 33% increase in transportation costs per unit of distance

� a more centralized spatial distribution of basic sector jobs, with 600 more jobs in the CBD,

that is, town E and a corresponding reduction in the towns A, B, and D in the peripheral

part of the region

� the parameters of the function determining the spatial distribution of local sector activities

are changed in a direction where consumers in neighboring towns do more of their shopping

in the regional center, reflecting stronger economies of scale and scope in shopping

� initial wages are reduced by 10% in all the four towns in the peripheral part of the region,

and the unemployment insurance is reduced by 25%

� the initial housing stock is considerably increased in the regional center
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� the distances from the peripheral part of the region to the nearest town in the rest of the

system is assumed to be 60 km, rather than 45 km from town C to town E and 75 km

from town A to town G

Remember from Section 7.1 that M5 also did better than M1 in predicting the total commut-

ing between the two clusters of towns, which are separated by the topographical barrier. This

improvement in predicting the base year commuting is even more substantial for the new sce-

nario. The agent-based data generation gives an observed number of 3709 commuters between

the two clusters of towns. The standard doubly constrained gravity model predicts the number

of interarea commuters is just 2075, while the model formulation M5 predicts 3368 commuters

between the two areas. Hence, accounting for spatial disparities in wages and housing prices

contributes to a more accurate prediction of the observed commuting flows in year 0.

As a next step, the two model formulations are used to predict the number of interarea

commuters where a new fixed link leads to a substantially shortened road connection between the

towns at either side of the topographical barrier. Consider first the instant effect on commuting

that is, the interarea commuting in year 1. First, this unbalanced system has more interarea

commuting than in the benchmark scenario discussed in Section 7. In this new case, the observed

number of commuters between the two towns at either side of the barrier was 3709 prior to the

investments in the new fixed link and 4045 in year 1, that is, in the first year after the new fixed

link is established. Remember that the corresponding numbers were 2031 and 2279 in the case

we studied in Section 7.

Consider once again the predicted increase in commuting provided by the modeling alterna-

tives M1 and M5. Based on a naive approach, the standard doubly-constrained gravity model

(M1) severely over-predicts the increased commuting by predicting 11920 commuters across the

new fixed link in year 1. The prediction is substantially lower when the balanced version of

M1 is being used, with just 3081 commuters predicted to commute across the new fixed link.

The predictions based on the model formulation M5 align with the observed number of 4045

commuters in year 1. The balanced version of M5 predicts that there will be 3898 interarea

commuters in year 1, while the naive approach predicts 4696 commuters using the new link.

There are many useful insights gained from these results. First, accounting for spatial dis-

parities in housing prices and wages provides significantly more accurate predictions from the
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spatial interaction model. This applies both for

� the overall commuting pattern in the base year

� the commuting between the two clusters of towns, in the base year

� the overall commuting pattern in the first year after the new fixed link is established

between the towns B and E

� the instant increase in commuting induced across the new fixed link

In addition, the results demonstrate that the naive approach is, in particular, naive in the case

of a standard doubly-constrained model formulation. To a large degree, accounting for spatial

variation in wages and housing prices substitutes the effect of the balancing factors in the

spatial interaction model. Still, the balanced version of model formulation M5 is superior to the

naive version. The local wage, measured relative to the local housing price, W
H , is estimated to

significantly and strongly affect the spatial labor market interaction. This reflects the tendency

for workers to be attracted to an OD combination of towns where the housing prices are low

at the residential site and the wages are high at the job location. Accounting for this effect

contributes to a better understanding and more accurate predictions of commuting patterns.

Also, for this more unbalanced geography, we consider a time perspective beyond the instant

effect of the new fixed link. For our new experiments, the evaluation of the predictability of

the overall commuting pattern is very similar to the discussion in Section 7.3.1. We do not

enter further details on this discussion and move directly to the predictability of the induced

commuting across the new fixed link. Figure 6 demonstrates that the balanced M1 and M5

predict less than the observed commuting across the new fixed link for the 15-year-long period

under consideration.

The model formulation M5 is substantially more accurate than the standard doubly-constrained

gravity model, also in the long run time perspective illustrated in Figure 6. This again demon-

strates the need to account for spatial wage disparities and housing prices in modeling spatial

labor market interaction. As illustrated in Figure 6, the model formulation M5 provides an

accurate prediction of the induced commuting, particularly in the first year after the opening

of the new fixed link. This indicates that the model captures the effect of the more unbalanced

spatial distribution of jobs and houses underlying the data-generating simulation experiment.
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Figure 6: The observed and predicted number of commuters over the 15 years after the opening
of the new fixed link. A case with a more unbalanced spatial distribution of jobs than in the
case studied in Section 7.

Our results also demonstrate that spatial disparities in wages and housing prices, accompanied

by asymmetries in the distribution of jobs and houses, are, in general, not adequately captured

by the balancing factors in a spatial interaction model.

Figure 6 further illustrates that the tendency of under-predicting induced commuting in-

creases as years go by after the opening of the new fixed link. This reflects the effects of the

relocation decisions of the agents, that is, the effects of the wider local impacts. From a dynamic

perspective, utility-maximizing workers continuously search for better jobs and residential loca-

tion combinations. The new fixed link represents an opportunity to live in an area with lower

housing prices while commuting to job locations offering high wages. In line with bid rent theory,

this suggests a process of urban sprawl and growth in rural areas. This effect is not very strong

in any of the simulation experiments considered in this paper. However, it is more apparent

in the scenario illustrated in Figure 5 than in the case illustrated in Figure 6. Nevertheless, it

reinforces the tendency that using a spatial interaction model under-predicts the willingness to

pay for a new fixed link in the unbalanced geography considered in Figure 6. Relocation effects

are, of course, not captured by the family of simple spatial interaction models.
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9 Observed local population growth in a region where several

fixed links have been established

As mentioned in Section 2, the literature provides a very mixed picture of how investments in

transport infrastructure affect the local growth in employment and population. Still, there is

a consensus that new fixed links trigger population growth, particularly in cases where a rural

area is getting substantially better linked to a dominating, larger labor market area; see, for

instance, Welde and Tveter (2022). In this section, we consider the population growth of some

municipalities in a region where investments in several fixed links over the last 50 years have

resulted in an extended and better-integrated labor market area.

The agent-based simulation experiments considered in the sections 7 and 8 were run for a

relatively sparsely populated region. The investments in the fixed link did not connect the most

peripheral area to a dominating urban area. Nevertheless, the new link connects the peripheral

area to the regional center, and the data generated demonstrated that the number of commuters

tends to increase as time passes after the link’s opening. This reflects that agents are taking

advantage of new labor market opportunities, explaining wider local impacts regarding increased

local population growth.

Figure 7 provides a map of some of the municipalities in the Bergen labor market area for

the situation prior to a recent merging of a few municipalities. As an early significant change in

the transport network in this area, the Sotra bridge connected the municipality of Fjell to the

mainland in 1971. This bridge substantially reduced the traveling time to Bergen, the second-

largest city in Norway. In the 80s and 90s, Øygarden was also connected to the Sotra bridge

and the mainland by constructing a series of bridges and tunnels.

Figure 8 illustrates the explosive population growth in the municipality of Fjell after 1970.

Figure 9 illustrates the percentage population growth after 1964, compared to the percentage

population growth in Norway and in addition for the two neighboring municipalities Sund and

Øygarden. These two municipalities have also been connected to the mainland, but at a longer

distance from Bergen than what is the case for Fjell.

The municipalities north of Bergen benefitted from the Nordhordland Bridge, which was

opened in 1994, connecting the Nordhordland region to Bergen. This new fixed link was a bridge

from the northern part of the municipality of Bergen and the southern part of Meland; see the
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Figure 7: Some of the municipalities in the Bergen region in 2018.

map in Figure 7. Figure 10 illustrates the percentage population growth of some municipalities

in Nordhordland in the years after 1964, compared to the national population growth in this

period.

Notice that there has been a massively increased population growth in some of the munici-

palities after the new fixed links opened. This, in particular, applies to Fjell and Meland, the

two municipalities located closest to the fixed link represented by the Sotra Bridge and the Nord-

hordland Bridge, respectively. The municipalities of Sund and Lind̊as have also experienced a

population growth considerably higher than the national population growth.

This descriptive approach does not prove anything but provides a rationale for some rea-

sonable hypotheses on the general effect of investments in fixed links and on the use of spatial

interaction models to predict induced commuting. It is unlikely to be due to a mere coinci-

dence that the size of the population growth of the different municipalities in Nordhordland

seems to be systematically negatively related to the distance from the Nordhordland Bridge,

and similarly for the municipalities benefitting from the Sotra Bridge. The observations further

support a hypothesis that a new fixed link induces substantial population growth in rural areas

getting considerably better connected to a large and dynamic urban area. Hence, the observa-
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Figure 8: The population development in the municipality of Fjell from 1951 to 2019, when Fjell
was merged with two other municipalities. In 1971, Fjell was connected to the mainland by a
bridge.

Figure 9: The population development in the municipalities of Fjell, Sund and Øygarden from
1964 to 2019, compared to the national population growth. 1964=100.
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tions provide a rationale to question the value of a spatial interaction model as a framework for

estimating the willingness to pay for road investments in such a scenario.

Figure 10: The population development in different municipalities in Nordhordland from 1964
to 2019, compared to the national population growth. 1964=100.

For the geography and the transport network considered in Section 7, the relocation effects

following the new fixed link were slow. It took a long time before the relocation effects were

dominating. Hence, for the 15-year-long period under consideration, the induced commuting

was over-predicted, contributing to an over-evaluation of the benefits of the investments in

road transport infrastructure. It is possible to find scenarios, both in an agent-based synthetic

modeling framework and in the real world, where the relocation effects are faster and much

stronger than for the two cases under consideration in this paper. In some cases, sparsely

populated areas have been connected to urban areas by a new bridge or tunnel, providing job

opportunities within a reasonable commuting distance. The Bergen labor market area examples

indicate that such investments may induce a very rapid local population growth. In such cases, a

doubly-constrained spatial interaction modeling framework may severely under-predict induced

commuting, potentially leading to a false conclusion that the benefits of the investments are

considerably lower than the costs. Hence, this may lead to unfortunate investment decisions,

for instance, in the form of an undersized road network. A new Sotra Bridge is being planned

due to capacity limits and congestion problems in the current situation. In general, accurate

predictions are important in a long-term planning perspective.
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10 Concluding remarks

The analysis in this paper has demonstrated the effects of significant challenges and modeling

issues in predicting induced commuting from spatial interaction models. One specific and ex-

pected result is that it is crucial to explicitly account for the balancing constraints in explaining

and predicting the commuting pattern. Another lesson from the experiments is that incorpo-

rating relevant information on labor and housing market conditions significantly explains the

commuting pattern.

The balancing constraints’ effect dominates, particularly in predicting induced commuting

for a specific stretch of road. In this paper, we have been considering two realizations of a

12-node geography. Both cases are realistic, but our benchmark scenario represents a more

balanced situation regarding how jobs are distributed across the 12 towns. This benchmark

case provides an example of how the simple, standard doubly-constrained gravity model predicts

induced commuting more accurately than more advanced and theoretically more satisfying model

specifications. Hence, from a pragmatic point of view, striving for model specifications with the

highest possible explanatory power only pays off if the primary ambition of the analysis is to

make accurate predictions of induced commuting. According to Nicolaisen and Driscoll (2014),

this is in line with other literature on travel demand, but it is not supported by the other case

considered in this paper.

The standard doubly-constrained gravity model performs reasonably well in explaining the

observed commuting pattern at the point in time when data were collected. Still, accounting for

spatial structure as well as labor and housing market conditions contributes to more accurate

predictions of commuting between the two clusters of towns on either side of the topographical

barrier. However, a challenge is that the accuracy of the predictions deteriorates over time due to

continuous changes in the location system of an inherently dynamic system, like the agent-based

modeling framework, and, of course, like in a real-life scenario.

The main issues in this paper are related to out-of-sample predictions, represented by the

effects of investments in road infrastructure on the commuting pattern in general and the num-

ber of commuters on the new fixed link. Concerning the immediate effects of road investments,

our experiments demonstrate the importance of considering balancing constraints in providing

predictions both for the commuting pattern in general and for the induced commuting on the
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new fixed link in particular. The poor performance of an approach that ignores the effects of

the balancing constraints is also valid in making predictions of commuting in a longer run-time

perspective. Still, the predictions become more accurate if local labor and housing market con-

ditions are accounted for. However, a balanced approach to making predictions is still superior

to a naive approach that ignores the balancing constraints. As for the balanced approach, the

accuracy of predicting a commuting pattern tends to be poorer at the start and the end of the

period under consideration. This reflects a failure to capture the sluggishness in adapting to

a new road connection and disregarding the exogenous shock’s location effects. The location

effects are particularly expected to be evident in a relatively long-term perspective.

As mentioned above, our experiments provide an example where the standard doubly-

constrained gravity model performs better than more advanced model specifications in predicting

induced commuting on a new road connection. This is even though extended model specifica-

tions perform significantly better in predicting the commuting pattern in general. Hence, the

model specification that performs best to explain commuting is not necessarily superior in mak-

ing predictions of induced commuting. It is a reasonable hypothesis that this emerges from the

failure of any doubly-constrained spatial interaction model to capture relocation effects.

Our simulation results indicate that there are, in particular, two severe sources of bias in

predicting induced commuting on a new fixed link. One is related to the spatial distribution of

jobs. The predictability of the spatial interaction models is demonstrated to differ between the

benchmark scenario and a more unbalanced, centralized case, where a higher proportion of the

jobs is located in the regional center. In the unbalanced case, the standard doubly constrained

gravity model performs poorly in predicting induced commuting on the new fixed link. In this

case, the predictability benefits considerably from accounting for spatial disparities in wages and

housing prices. The unbalanced system is reflected in wages and housing prices and further in

the spatial interaction behavior of workers. This is not necessarily captured by the balancing

factors of a standard spatial interaction model. However, our results indicate that a careful

formulation of the spatial interaction model has the potential to deal with problems stemming

from an unbalanced system. Still, adjusting for spatial disparities in housing prices and wages is

a rare practice in the empirical spatial interaction literature. Our experiments demonstrate that

this failure may cause significant prediction errors. In the unbalanced case studied in Figure 6,
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failing to account for housing prices and wages proved to reinforce the under-predictions of the

willingness to pay for a new fixed link.

It is, in general, more difficult to account for the other primary source of prediction bias by

using a spatial interaction model, which is related to the wider local impacts of the investments in

transport infrastructure. In the two agent-based scenarios we discussed, the relocation effects of

the new fixed link were limited. Still, such relocation effects explain a substantial increase

in interarea commuting over time, as workers take advantage of new options in combining

residential and job locations, and local sector firms adopt to changes in the residential location

pattern. This is, of course, not captured by a doubly-constrained spatial interaction model,

and our agent-based experiments demonstrate that this is a severe source of prediction bias.

We also address empirical observations from a Norwegian labor market area where innovations

in the transport network have led to substantial reductions in commuting time from previously

isolated rural areas to the dominating urban center. These observations indicate the potential for

road investments to induce commuting resulting from relocation effects, which may completely

dominate the instant effect of a new fixed link on spatial labor market interaction. In such

cases, new areas appear as attractive combinations of housing prices and commuting costs,

explaining a process of urban sprawl and wider local impacts. These effects leave predictions

based on traditional spatial interaction models inadequate, representing approaches resulting

in massive under-predictions of induced commuting and the willingness to pay for a new fixed

link. Hence, such methods should be used with care, particularly in cost-benefit appraisals of

projects that substantially improve the labor market accessibility of a previously rural area. In

assessing 38 fixed links in Norway, Welde and Tveter (2022) found that the labor market is, as

a rule, relatively static, especially in the short run, and that only a few cases achieve significant

commuting effects.

Mass media often focus on errors in estimating the costs of building new roads. In many cases,

this focus must be balanced against the risk of failing to make reliable predictions of the induced

traffic and the benefits of the investments. Estimating demand and induced traffic may be more

complex than cost calculations, often involving more uncertainty. In many cases, relocation

effects will not be significant (Welde & Tveter, 2022)), but they sometimes seriously complicate

traffic predictions and benefits. Such effects are not captured by a doubly-constrained spatial
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interaction model. Hence, in evaluating the benefits of investments in transport infrastructure, it

is strongly recommended that reliable general spatial equilibrium models be developed and used

more regularly. This can be along the lines suggested by McArthur et al. (2014), who provide

a modeling framework designed for a rural context, like a typical Norwegian region. This paper

has demonstrated that the pay-off of reaching more accurate predictions of relocation effects

may substantially exceed the pay-off of formulating more advanced spatial interaction models.

Nicolaisen and Driscoll (2014) pointed out that a tendency to underestimate demand for road

projects means that capacity limits may be met earlier than predicted, calling for expensive

capacity expansions.

As a closing statement in their literature review, Nicolaisen and Driscoll (2014) find it rele-

vant to inquire whether demand forecast accuracy can be significantly be improved, recognizing

that inaccuracy has been a problem for several decades, despite continuous improvements in

forecasting techniques. They further refer to Hartgen (2013), who outlines a humility approach

for planning research and practice, which focuses on quantifying the uncertainty, recognizing

the inaccuracy, and recommending that forecasts have a reduced impact on decision-making.

In discussing alternative approaches, remember that the agent-based modeling framework for

a synthetic population can be designed and applied to provide instrumental analyses and pre-

dictions of how road investments affect the location pattern and traffic. This paper uses the

agent-based approach to generate data for evaluating spatial interaction models. However, it is,

at the same time, a spatial general equilibrium model, that is a Land Use/Transport Interaction

model (LUTI). As such, it represents a relevant approach to making travel demand predictions

that account for the effects of relocations and changes in land use. Through a meticulous for-

mulation of the geography and the population, and simulation experiments aimed at the most

ambiguous elements, such an approach is well suited to address uncertainty and forecasting in-

accuracies. An agent-based approach has the potential to contribute with reasonable forecasts

on traffic increase and benefits resulting from constructing new fixed links in the transportation

network.
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[21] Gibbons, S, T Lyytikäinen, H G Overman, R Sanchis-Guarner, 2019, “New road infras-

tructure: The effects on firms”, Journal og Urban Economics, 110, 35-50.

[22] Graham, D J, 2007, “Agglomeration, productivity and transport investment”, Journal of

Transport Economics and Policy, 41, 317-343.

153



[23] Graham, D J and S Gibbons, 2019, “Quantifying wider economic impacts of agglomeration

for transport appraisal: existing evidence and future directions.”Economics of Transporta-

tion, 19, 100121.
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