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Summary

The aim of this thesis is to determine whether the prediction accuracy of a model can be
improved by using a data-driven method to bin continuous variables and group the levels of
categorical variables. We use data on the policyholders of one of Gjensidige's insurance
products to perform our analysis, and specifically aim to improve Gjensidige's Poisson
regression model for predicting claim frequency, where the predictors are binned and

grouped manually today.

We analyze the effect of using a regularization framework that combines the Lasso method
and generalizations of the method that have been adapted to nominal and ordinal predictors.
These generalizations constrain coefficients and the differences between them, effectively
fusing and selecting predictor levels. By optimizing the resulting objective function in R
using the newly developed smurf package (Reynkens, Devriendt & Antonio, 2018), we

estimate a penalized Poisson regression model.

We reestimate a Poisson regression model using the selected and fused predictor levels as
input in order to reduce the bias of the estimates. The resulting model is compared with the
model Gjensidige currently uses for predicting claim frequency, to determine the effect of
using the data-driven approach. We validate the performance of the prediction models using
MSE and AIC as performance measures and find that our reestimated model performs
slightly better in terms of prediction accuracy, in addition to reducing the number of
parameters used in the model. We conclude that regularization can be used as a data-driven

method of binning and grouping predictor levels to improve prediction accuracy.
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1. Introduction

1.1 Motivation

The motivation for writing this thesis is based on a request from Gjensidige, related to their
ongoing project on improving their framework for predictive models. In initial meetings
regarding the content of this thesis, our contact person from Gjensidige presented an
interesting challenge concerning how they treat their variables prior to modeling. Firstly,
Gjensidige uses nominal and ordinal variables in their prediction models, but before they are
included as predictors in the models, the number of categories within the variable is usually
reduced by grouping some of the categories together. Secondly, Gjensidige recodes some of
the continuous variables to ordinal variables by dividing them into intervals. These processes
are similar as they both concern determining which values of a predictor that bear
resemblance to each other and can be treated together. Therefore, these processes will often

be discussed as one throughout the thesis.

The challenge with Gjensidige’s approach today is that these processes and the decisions
related to them are performed manually. Analysts choose the groups and set the intervals
using their intuition and experience. It is a time-consuming task that could reduce the
prediction ability of the model if done poorly. As automating the processes of their
prediction framework is an important aspect of the ongoing project, studying how to treat
these variables in a more data-driven and automated way is a relevant project both for us and
for Gjensidige. Based on this challenge, Gjensidige’s request was for us to find a new
approach for choosing groups and setting intervals that can save time for the analysts and
possibly improve the prediction accuracy of the models. Improved prediction models can
lead to a fairer pricing for their customers, as it will better reflect the likelihood of them

using their insurance, which is one of the reasons why this topic is of interest to us.

Clarifications

Categorical variables can take a limited number of different values that are commonly
referred to as categories, groups or levels. Throughout this thesis, we will mainly refer to
these values as levels, both for the nominal variables, ordinal variables and the continuous

variables recoded to ordinal variables. Being the main purpose and motivation for the thesis,



the earlier mentioned grouping of these levels will be discussed frequently and referred to as

grouping, combining or fusing levels.

Why group at all?

Many of the categorical predictors Gjensidige currently uses have many levels. Problems
arise when some of the levels contain few observations, as this leads to estimates with high
variance. The variables can still provide valuable information, and a possible solution is to
fuse together some levels of the variable. Another reason to group the levels became clear to
us when we tried to run a model where all levels were included as dummy variables and
ended up being contacted by Gjensidige who warned us that we were taking up too much of

their server capacity.

A common challenge

Reducing the number of levels of categorical variables is a common challenge, but there are
not any well-known best practice solutions. Therefore, during the last couple of decades,
many new approaches and methods have been suggested. This is another reason why this is

an exciting topic to study at this point in time.

1.2 Background

In this section we will provide background information about Gjensidige and common
concepts within the insurance industry. We will also explain how insurance companies use
predictive modeling to calculate premiums based on data on their clients, in order to

illustrate the context of the task from Gjensidige.

1.2.1 Insurance concepts

Insurance companies form an important fundament of a functioning economy, as they secure
the financial stability of households and firms (ECB, 2009). Every day, households and
firms face risk and uncertainty, and insurance companies can help manage this uncertainty
by offering products that provide financial protection against potential economic losses
(Iowa Insurance Institute, 2017). These products and their terms are outlined in contracts,

called insurance policies.



The party holding the insurance is called a policyholder. The policyholder pays a fee to the
insurance company and is then compensated if losses incur according to the policy.
Insurance companies thus stimulate economic activity by ensuring that the policyholders
continue to purchase and invest despite the risks they encounter. The fee policyholders pay is
called the premium and is usually paid monthly or yearly. If the policyholder experiences a
loss potentially covered by the insurance policy, they may submit a claim, which is then
examined by the insurance company. If the claim is indeed covered by the insurance policy,

the insurance company compensates the policyholder (Iowa Insurance Institute, 2017).

1.2.2 About Gjensidige

Gjensidige is a Nordic insurance group that offers insurance products in Norway, Sweden,
Denmark and the Baltic countries. In Norway, the company also offers services within
banking, pension and savings (Gjensidige, 2018a). In 2017, Gjensidige was the largest
insurance company in Norway with a market share of 25.5% and had an operating income of
27 billion (Gjensidige, 2018b). Gjensidige offers a range of insurance products in Norway,
covering cars, homes, boats, travel, pets, life and health, valuables and personal property

(Gjensidige, 2018c).
1.2.3 The importance of predictive modeling

For insurance companies like Gjensidige to be profitable, it is vital that the premiums they
charge are at a competitive level, but still cover the losses they have on their clients’ claims.
Due to asymmetrical information between the insurance company and the policyholder
regarding the risk of the client, problems with adverse selection arise (Finkelstein & Poterba,
2000). Within the insurance industry, the problem of adverse selection is related to the
tendency of high-risk clients to be more likely than the average client to buy insurance. To
avoid taking losses on these clients, the insurance companies have to take their clients’ risk
profiles into account when setting premiums. Therefore, the insurer will usually charge
different premiums across the customer base, increasing the premium for clients that are

considered high-risk.

However, they also need to keep the premiums sufficiently low so that the low risk clients
have incentives to buy insurance at all. This helps the insurance companies obtain a larger

and more differentiated customer base. When insurance companies calculate the premiums



for different products, predictive modeling is a valuable tool for determining the risk profile
of their clients, and thereby reducing the problem of asymmetrical information that leads to
adverse selection. It is therefore essential that the prediction models perform well, which
makes it a natural priority for Gjensidige to allocate resources into the research of possible
improvements to their models. As the attributes of the policyholders are valuable indicators
of their risk profile, it is important to find out how to handle the variables in order to take

advantage of this information.

1.2.4 Calculating the premium

The predictive model for a specific insurance product is designed to predict the amount of
money an individual, with a specific set of attributes, will claim yearly. This is referred to as
the expected loss for this customer. The expected loss will then form the basis for the
premium that a customer with these attributes will have to pay to be covered by the
insurance company. On top of this price, insurance companies like Gjensidige may add
administrative fees and discounts depending on which customers they want to attract and

retain (Parodi, 2016).

There are two possible approaches for predicting the expected loss of a policyholder. One
option is to build a model that directly estimates the expected loss of the individual. Another
option is an indirect approach where one model is built for predicting claim frequency,
which is the number of claims in a year, and another model is built for predicting claim
severity, the total loss per claim. If one chooses to use the indirect approach, the two models
can be combined by multiplying the expected claim frequency by the expected claim

severity to get the expected loss for the customer (Goldburd, Khare & Tevet, 2016).

Building two models instead of one will most likely demand more resources, but there are
several advantages to this approach that make it a common choice. For one, it often provides
more insight than predicting the expected loss directly, as it is possible to distinguish which
factors affect the frequency of claims and which factors affect the severity of these claims. In
some cases, some effects may even disappear completely when predicting the expected loss
directly, as it is possible that some attributes have a positive effect on frequency but an

equally negative effect on severity (Goldburd et al., 2016).



1.3 Research question

The purpose of this thesis is to find a method for grouping the levels of categorical variables
in a data-driven way, rather than doing it manually. For the method to be valuable for
Gjensidige, it must prove to be better than their current one in some way. The method can
benefit Gjensidige through both increased prediction accuracy and reduction in time spent on
grouping the variable levels. However, prior to a potential implementation of the method, the
change in prediction accuracy is the only available measure and will be the focus of this

thesis. Therefore, the research question of this thesis is:

Can the prediction accuracy of Gjensidige’s claim frequency models be increased by using a

data-driven method for the fusion of levels of categorical predictors?

1.3.1 Delimitation

Originally, Gjensidige asked us to find a way to fuse the levels of the predictor representing
vehicle brand. However, they were also interested in a method for fusing any other type of
categorical predictor and for performing variable selection. Through our research we have
been able to find a relevant method developed by Devriendt, Antonio, Reynkens & Verbelen
(2018), which is able to do all of this simultaneously. In order to answer our research
question, we will use this method on Gjensidige’s data on their policyholders and investigate

the effect on prediction accuracy.

Gjensidige’s framework for prediction models involves predicting the expected loss for
policyholders indirectly through separate models for predicting claim frequency and claim
severity. To limit the scope of this thesis, we focus on improving the model for predicting
claim frequency, but our potential findings may be transferred to the other model types. We
further limit the scope by only modeling the claim frequency for one insurance product. The
insurance products related to motor vehicles have the second-most claims of all types of
insurance in Norway (SSB, 2018). These products are therefore important and as Gjensidige
has high exposure and relatively high claim frequency for most of them, they are suitable for
our project. To perform our analysis, we use data on the policyholders of comprehensive

motor vehicle coverage where the claims are related to windscreen coverage. Comprehensive



motor vehicle coverage is an expensive insurance product that covers a range of damages

and earns insurance companies high premiums.

1.4 Structure

Chapter 2 outlines the methods that will be used to answer our research question. In chapter
3 we describe the dataset we perform our analysis on and explain how we have treated the
variables differently than Gjensidige prior to modeling. In chapter 4 we explain how we have
performed our analysis and present our results. Further, in chapter 5 we discuss the
theoretical background and implications of our results, before we make our final conclusions

in chapter 6.



2. Methods

In this chapter, we describe our selected method further, where we employ some of the
benefits that can be obtained when using regularization methods to select and fuse levels. By
adding a penalty term which constrains the coefficients of the Poisson regression model
Gjensidige uses today, prediction accuracy can be improved. We go through the components
of the objective function we minimize, before explaining what algorithm we use for
optimization. In the last section of the chapter, we will explain what type of dataset and

which performance criteria will be used for the validation and comparison of the models.

2.1 Selection of method to fuse and select levels

When selecting a method to answer our research question, it was important for us to find a
method which could be used for both nominal, ordinal and continuous predictors. In
addition, it was important that it could possibly improve prediction accuracy; simply
choosing a method based on being data-driven was not enough. Furthermore, Gjensidige

uses large datasets to create their models, so the method had to work for large datasets.

For our purpose, the use of regularization techniques to shrink coefficients is likely the
approach where the most research has been performed (Tibshirani, 1996; Tibshirani,
Saunders, Rosset, Zhu & Knight, 2005; Bondell & Reich, 2009; Gertheiss & Tutz,
2010; Oelker & Tutz, 2017; Devriendt et al., 2018). Through extensions of the original
regularization methods like Ridge regression and Lasso, they are now able to bin continuous
variables and fuse categorical predictor levels, which means we can use the techniques for
our purpose. The latest method developed by Devriendt et al. (2018) can be used for
categorical variables on large datasets and has shown to improve prediction accuracy. Before
we expand on this method, we will present some alternative approaches considered in the

literature to fuse levels of categorical variables.

2.1.1 Alternative methods

Traditionally, the most common approach for handling categorical predictors for regression
purposes has been converting each level of the variable into a dummy variable (Johnson &

Kuhn, 2013) and occasionally also reducing the number of levels by combining those with



few observations into an “Other” category. However, the prior is computationally
demanding if there are many levels, while the latter does not take the levels’ effect on the
dependent variable into account, likely reducing the prediction accuracy of the estimated

model.

Consequently, as we have discovered through the process of selecting a method, research has
been conducted throughout the last two decades to find better methods for collapsing levels
of categorical variables. It is still an emerging field of research of which few approaches
have been tested extensively, which makes implementation challenging. An ad-hoc method
is to use classification and regression trees (CART) (Hastie, Tibshirani & Friedman, 2009).
The clustered categories can then be found by analyzing the tree nodes, which contain
information on how the predictors are divided into regions depending on their effect on the
dependent variable (Hastie, James, Tibshirani & Witten, 2017). Berger & Tutz (2014)
systemized this approach by introducing tree-structured clustering to obtain clusters of
categorical data, allowing other types of variables to be included in the model. The non-

categorical variables will then have a linear or additive effect on the response.

Another suggested approach is using Tukey’s test to perform pairwise comparisons within
predictors (Tukey, 1949; Hothorn, Bretz & Westfall, 2008) to determine which levels differ
from each other simultaneously. Sparse Bayesian modeling of the effects of categorical
variables within a regression framework has been considered by Pauger & Wagner (2017),
where a spike and slab prior is placed on differences between regression coefficients.
Unfortunately, all the aforementioned methods are problematic to implement in R. Either
they cannot handle predictors with many levels, the corresponding packages are not
maintained, or they are too computationally intensive. Therefore, we elect to use a

regularization method.



2.2 Objective function of the regularized model

To create the regularized model, we minimize the penalized objective function (Devriendt et

al., 2018)

J
OB:XY) = FBXY 1) g,(8;),  @1)
j=0

where y is the response vector, f is the parameter vector, while X is the corresponding model
matrix. In X, continuous and binary predictors are represented by one column since they are
coded with one parameter, while nominal and ordinal predictors are dummy-coded, and are
therefore represented by as many columns as they have levels. f refers to the loss function,
measuring the distance between the observed and fitted data. It can for example be the least

squares criterion or minus the log-likelihood (Devriendt et al., 2018).

The second term of the objective function (2.1) is the penalty term. The vector £ has been
partitioned into a subvector f; for each predictor j and contains all the parameters used to
code the predictor. For a continuous variable, there will only be one coefficient in subvector
pi, while for a categorical variable with many levels, there will be one coefficient for each
level. g; represents different types of penalties and penalty weights and is chosen depending

on the predictor type of each predictor j that is penalized.

In the next sections, we elaborate on the different components of the objective function. We
begin by describing our loss function, the negative Poisson log-likelihood. Further, we
describe what regularization methods, penalty terms and penalty weights are and how they

can be used.

2.3 Poisson regression

The objective function (2.1) includes a loss function fthat measures the distance between the
observed and fitted data. Gjensidige uses a Poisson regression model to predict claim
frequency, making the negative Poisson log-likelihood the loss function. As our aim is to
find out if new groupings of variables improve prediction accuracy rather than changes in the
loss function, we will use the same loss function as Gjensidige for our model. A Poisson

regression model can be estimated using the stats package (R Core Team, 2018) in R.
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A Poisson regression model assumes that the random component of the regression model has
the Poisson probability distribution (Dunteman & Ho, 2006). It is the main tool used for
estimating claim frequency in the insurance industry, because the distribution is well suited
for a situation where there are few occurrences of the event compared to the amount of trials,
but the event can happen in any of the trials (Goldburd et al., 2016). This description is
usually suitable for an insurance model as the vast majority of the policyholders do not have

any claims.

If the random dependent variable Y; conditioned by the vector of predictors JX; is assumed to
be Poisson distributed, the probability density function of ¥; is (David & Jemna, 2015)
e_ﬂiﬂg/i

o) == @)

i

where e is the base of the natural logarithm and p is the distribution parameter. p represents
the average number of events in the given time interval, for example the number of claims.
Therefore, Equation 2.2 represents the probability that Y; will take the value y; (vi € N),
dependent on the attributes of policyholders. The mean and variance of the true Poisson
distribution are equal, so the distribution parameter u represents both the mean and the

variance of the dependent variable.

For the Poisson distribution, the mean of the dependent variable is related to the linear
predictor through the natural logarithmic function. A linear model can be used to estimate
the relationship between the predictors and /og(1). However, we are not interested in the
transformed u, but the predicted u itself, which is derived by applying the inverse link
function g to the calculated linear predictors (Goldburd et al., 2016)

14
t
log() = fo + ) iy mm =eXh. (23)
j=1

Estimation of the parameters is done by maximum likelihood estimation. To find the
maximum likelihood of Equation 2.2, the likelihood function is defined as (David & Jemna,

2015)
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By using a logarithm on both sides of the equation, the log-likelihood function is found

(David & Jemna, 2015)

n n
LL(B) = ) Dyilnps — s —logyill = ) [yt —e¥F —logyt].  @5)
i=1 i=1
The scaled negative of the log-likelihood function will be the loss function in our objective
function (2.1). To create the scaled negative of the log-likelihood function, we divide by the

number of policyholders and negate the equation

i yxt— et —logy!|.  (26)

i=1

Slb—‘

2.3.1 Offset

When predicting the number of claims for a policyholder within a certain time interval, it is
relevant to include which proportion of this time period the individual held the insurance. To
account for this in the model, an offset is included. An offset is defined as a predictor whose
coefficient is constrained to be equal to 1 (Goldburd et al., 2016). By including exposure as
an offset, the estimated coefficients of the other predictors are affected to take the exposure

into account

log(u) = Bo + Z Bjxij + log(exposure), (2.7)
j=1

which can be re-written as

log (exposure) Po+ Z Bixij. (28)

In Equation 2.8, the left-hand side of the equation is the rate of claims per unit exposure.
Therefore, by including exposure as an offset in the objective function, the predicted number
of claims will be equal to be the rate of claims per unit exposure. When including an offset,
it is important that it is on the same scale as the linear predictor. Therefore, as we use a log-
link model, the offset must be logged (Goldburd et al., 2016). By including the offset in the

objective function, we ensure that short-time policyholders are not weighted
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disproportionately much, which would lead to us systematically underpredicting the number

of claims.

As we use the scaled negative of the log-likelihood function and include exposure as an
offset, the first term of the objective function using the notation of Devriendt et al. (2018)

becomes

n
1
_EZ()’i(xiﬁ +log(expo,)) — eif+loB(ex@o)) —1og(y1)).  (2.9)
i=1

2.4 Regularization methods

The second term in our objective function is a regularization term that constrains
coefficients. Its components are the tuning parameter A, a penalty function and penalty
weights. Firstly, we explain what regularization methods are in general before we in later

sections explain each component in detail.

To explain what regularization methods are, we will show an example which includes a
penalty term and a tuning parameter A. One of the most well-known penalty terms is the term

used in Ridge regression (Hoerl & Kennard, 1970)

n 14
1
0B;X,y) = == (iCxif + log(expoy)) — eCib108exwo)) _log(y,) + 1) B2, (2.10)
i=1 j=1

where the penalty term is the sum of all the model’s coefficients. In the case of Ridge
regression, an L2 penalty is used, meaning the sum of the penalty is squared. However, in
later examples we will see that this is not the case for all regularization techniques. The size
of the penalty term is small when the beta estimates are closer to zero, which means that the

penalty term shrinks the estimates of 3; towards zero when the expression is minimized.

To what extent the coefficients will be constrained depends on the tuning parameter A, which
the penalty term is multiplied by. As the size of A decides the relative strength of the penalty
compared to model fit, a higher value of A will increase the impact of the penalty term and
the coefficient estimates will approach zero. If A is set to 0, the method will produce the

same estimates as the objective function without the penalty term (Hastie et al., 2017).
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Hence, the size of A is selected based on our preference between model fit and shrinkage of

coefficients.

Even though the main purpose of regularization methods is to increase interpretability by
creating less complicated models, regularized models can sometimes improve prediction
accuracy if the variance is reduced more than bias increases (Hastie, Tibshirani &
Wainwright, 2015). A model with high bias is trying to explain a complicated relationship
with a model which is too simple. For example, if trying to explain a non-linear relationship
with a linear model, the number of parameters should be increased to create a more flexible

model.

A more flexible model can take on more functional forms because it can choose between
more parameters, which makes it able to explain a more complicated relationship (Hastie et
al., 2017). A higher variance means the estimated model would differ to a greater extent if it
was used on different datasets, which means the number of parameters should be decreased
to create a less flexible model. Consequently, there is a trade-off between the bias and the

variance.

As A increases, coefficients are constrained, leading to a less flexible model. As the
flexibility of the model decreases, the variance of the estimates is reduced, while the bias
increases (Hastie et al., 2017). It is the relative change of variance and bias which decides
whether prediction accuracy is increased. In many cases, a small increase in bias can lead to
a larger reduction in variance, especially if the model overfits the data (Johnson & Kuhn,

2013).

2.5 Penalty types

The datasets Gjensidige use to predict claim frequency include several different predictor
types, including binary, nominal, ordinal and continuous predictors. Gertheiss & Tutz (2010)
were the first to introduce regularized regression for multiple predictor types. In their
method, penalties adapted to each predictor type are combined to act on the objective
function as a sum of sub-penalties. The method can be used for datasets that include all the
predictor types needed by Gjensidige. In this section, we will describe each of these penalty

types and what predictor types they are suitable for.
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2.5.1 Lasso

The least absolute shrinkage and selection operator (Lasso), introduced by Tibshirani (1996),
applies a penalty term similar to the one used in Ridge regression. Adopting the notation of

Devriendt et al. (2018), the Lasso penalty can be expressed as the following

pj
Grasso(Bj) = zwj,ilﬁj,iL (2.11)
i=1

where j represents predictors and i represents coefficients. Therefore, p; is the number of
individual coefficients f;;, while w;; is the penalty weight for each coefficient of each
predictor. The Lasso uses an L1 penalty and each individual coefficient is multiplied by its
corresponding penalty weight and added to the total sum of coefficients. The L1 penalty is
equal to the absolute value of the sum of the coefficients, differing from the L2 penalty of
Ridge regression where the sum of the coefficients is squared (Hastie et al., 2017). Using the
L1 penalty, the coefficient estimates are shrunk towards zero, and some may even be set to

Z€10.

The Lasso is suitable as a selection tool for binary and continuous predictors as they only
have one coefficient. Therefore, as the Lasso is applied, only the most important predictors
receive non-zero coefficients, while the rest are removed from the model. In the case of
categorical predictors, if the coefficient estimate of a level is set to zero, the level is removed
from the model. If all levels are set to zero, the predictor is removed entirely. The limitation
of using the Lasso for categorical variables is that it does not fuse levels together, and only

works as a selection tool. Consequently, Tibshirani et al. (2005) introduced the Fused Lasso.

2.5.2 Fused Lasso

The Fused Lasso is designed for models containing features that can be ordered in a
meaningful way, namely ordinal variables or continuous variables recoded as ordinal
variables. The method applies a penalty on both the coefficients themselves and the
differences between coefficients of subsequent levels. As a result, it can perform both
variable selection and clustering of the categories of variables. Using the same notation as
we did for the Lasso, the Fused Lasso applies an L1 penalty to the differences between

subsequent coefficients
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pj
Ifrasso(Bj) = Z wii-1|Bji — Bji-1 (2.12)
i=2

so that consecutive levels within predictors may be fused. Because the Fused Lasso only
regularizes differences, the predictor being penalized needs to have a reference level for the
penalty to work as a variable selection tool. The coefficient corresponding to the level which

1s fused with the reference level is then set to zero.

For high values of A, the differences between all subsequent coefficients of a predictor
become zero. All the levels will then be fused with the reference level, which is equal to the
predictor being removed from the model. The Fused Lasso can thus also be used for variable

selection (Devriendt et al., 2018).

2.5.3 Generalized Fused Lasso

The Fused Lasso is not suited for regularization of nominal predictors since there is no
intrinsic ordering to their categories. Therefore, Bondell & Reich (2009) introduced a
penalty for nominal variables that could perform factor selection and level fusion through
analysis of variance (ANOVA). Gertheiss & Tutz (2010) later adapted the penalty to the

regression setting. The penalty is expressed as

JgfLasso(Bj) = Z wji|Bji — Bl (2.13)
i>l
where the sum is over all coefficients i, / > 0. Not only differences g;; — f;;—1 are
considered for penalization like for the Fused Lasso, but rather all differences g;; — f;;. The
Generalized Fused Lasso thus penalizes the sum of the differences between the coefficients
of all the levels within the predictor. Consequently, the Generalized Fused Lasso enforces
the building of clusters of all levels that share the same effect, not just those who are in
sequence. Similar to the Fused Lasso, a reference category is needed for the penalty to work
as a variable selection tool (Devriendt et al., 2018). If a reference level is present, the

Generalized Fused Lasso is suitable for both variable selection and fusion of levels.
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2.6 Penalty weights

As we only apply one tuning parameter 4 on all the sub-penalties, incorporating individual
penalty weights w; to each sub-penalty can improve their performance. In the datasets
Gjensidige uses to create models to predict claim frequency, each level of a given predictor
may have differently sized coefficients and a different amount of observations. Both
adaptive penalty weights and standardization penalty weights have been proposed to account

for these differences to improve performance (Devriendt et al., 2018).

Penalty name W](ad) W](st)
Lasso o=l =1
Fused Lasso J(f‘di 1B — B 7 Wj(,?i)l _ ,nj,i+:j.i—1
Generalized Fused Lasso j(?ld) | Bii— ﬁj,l|_1 ](flf) (k; + 1) njitni

Table 2.1 — Penalty weights

The adaptive (ad) weights are based on initial estimates of f, obtained from running an
initial regression. Coefficients that are initially estimated as large could be in danger of being
too heavily regularized, but by including the adaptive weights, coefficients that are initially
estimated as small will be regularized relatively more than large ones (Devriendt et al.,

2018). The weight for the Lasso penalty is defined as
wD = |87, (2.14)

where y >0 is a tuning parameter that both Gertheiss and Tutz (2010) and Devriendt et al.
(2018) set equal to 1. They also adopt the adaptive weights formulated for each penalty listed
in the table from Rinaldo (2009) and Viallon, Lambert-Lacriox, Hofling & Picard (2016).
We have focused on how these articles contribute to the method through Devriendt et al.
(2018), rather than understanding their theoretical background, which we consider outside

the scope of this thesis.
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When applying the Lasso penalty, the variables should be centered and standardized to
account for the effect of different measuring scales of different predictors, which may lead to
an uneven number of observations per level (Tibshirani, 1997). This is not possible for
ordinal and nominal variables, as the levels would lose their interpretation (Devriendt et al.,
2018). Therefore, Bondell and Reich (2009) and Gertheiss & Tutz (2010) proposed the

following standardization (s¢) weight for ordinal variables

st _ Wit
wiD = /T (2.15)

which takes the number of observations of each level into account. The standardization
penalty weights thus adjust for the imbalances resulting from some levels having more
observations than others. To extend the standardization weight to nominal predictors, the
amount of regularized differences for a nominal predictor relative to an ordinal one needs to
be considered. Gertheiss and Tutz (2010) adapted the weight to the Generalized Fused Lasso
by adding the factor (k; + 1)71, where k + 1 is the number of levels of predictor j. Without
this factor, the Generalized Fused Lasso would be artificially larger than the Fused Lasso,
because while the Fused Lasso for a predictor of p levels only includes p-/ differences, the
Generalized Fused Lasso includes the differences between all the different levels within the
predictor. Therefore, nominal predictors would likely be regularized to a greater extent than

ordinal predictors without this factor.

As shown in Equation 2.16, by multiplying the two weights and using a combination of
them, it is possible to apply the objectives of both weights.

w; = w](ad) -w](St) (2.16)

2.7 Resulting objective function

In this thesis we estimate a penalized Poisson regression model to predict claim frequency
while selecting and fusing predictor levels to increase prediction accuracy. We use the scaled
negative log-likelihood as our loss function while including exposure as an offset. Since the
dataset includes binary, nominal, binned continuous and ordinal predictors, we use the
regularization framework developed by Gertheiss and Tutz (2010) to penalize different
predictor types.
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Our objective function’s second term therefore consists of sub-penalties adapted to each
predictor type, stating how each predictor should be penalized. We apply the Lasso to binary
predictors, the Fused Lasso to ordinal and binned continuous predictors and the Generalized

Fused Lasso to nominal predictors.

Through combining the chosen loss function, offset, penalty types and penalty weights, we

end up with minimizing the objective function

n
1
O@BiX,y) = == ) (i(x:f + log(expo,)) — e b 1080 — log(y,1))

i=1

pj pj
+ ﬂ(Z ZWj,i|ﬁj,i| + Z ZWj,i—1|ﬁj,i _.Bj,i—ll + Z ZWj,iz|ﬁj,i _ﬁj,l|>: (2.17)

jebin i=1 jeord i=2 jenom i>l

where we use the combined penalty weights w; = weD.. w]gs 9 The combined penalty

J

weights are products of the adaptive and standardization weights and take both different
sizes of coefficients and different amounts of observations per level into account. In the
simulation study of Devriendt et al. (2018), the combined weights perform the best in terms

of prediction accuracy.

After the objective function is developed, the next stage is to identify a suitable estimation

procedure.

2.8 Optimization

Traditionally, least angle regression (LARS) (Efron, Hastie, Johnstone & Tibshirani, 2004)
has been the most common estimation procedure used for Lasso-type penalties. Starting with
all coefficients set to zero, the algorithm works similarly to Forward Stepwise Selection and
iteratively searches for the predictor with the highest correlation with the dependent variable,
increasing its coefficient. The process is repeated until all predictors are included in the
model (Tibshirani, 2003). However, even though it is well suited for estimation using only
one predictor type and thereby one type of penalty term, it cannot be used when working
with a dataset with several predictor types and a corresponding number of penalty terms

(Devriendt et al., 2018).
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Oelker & Tutz (2017) used local quadratic approximations of the penalties to be able to
apply the Penalized Iteratively Reweighted Least Squares (PIRLS) algorithm in a
regularization setting. The procedure can be used for datasets with different types of
predictors with corresponding penalty terms. However, using local quadratic approximations
of the penalties leads to non-exact collapsing and selection of levels, and as the PIRLS
algorithm requires creating large matrix inverses, the procedure is computationally intensive

(Devriendt et al., 2018).

Devriendt et al. (2018) introduced the Sparse Multitype Regularized Feature (SMuRF)
algorithm, which applies the theory of proximal operators on Lasso-type penalties, which
was first done by Beck & Teboulle (2009) and Xin, Kawahara, Wang & Gao (2014). By
using proximal operators, the algorithm can solve the subproblems per penalty type exactly,
instead of using approximations. As the algorithm creates a set of smaller subproblems to be
optimized, it can also use parallel computing. Since the SMuRF algorithm works for several
penalty types, does not use any approximations and can be used for large datasets, we elect
to use it for optimization. In the following sections, we will describe the SMuRF method,

including how it tunes the 4 parameter and reestimates the model.

2.8.1 The SMuRF algorithm

The SMuRF algorithm uses a gradient descent approach to minimize the objective function
(Devriendt et al., 2018). The gradient of a function f with several variables is a vector of the
partial derivatives of the function with respect to all the variables (Sydsater, Seierstad &
Strom, 2002). For a specific point, the gradient is the slope of the function. The gradient

descent approach uses the gradient to find the minimum of the function (Donges, 2018).

Figure 2.1 lists the steps taken for each iteration of the algorithm. Prior to these steps, the
parameter vector B is filled with initial random parameter estimates. Together with the
predictors, the dependent variable, the chosen value of lambda, and a step size s, B is used
as input to the algorithm. For each of the m iterations of the algorithm, the estimates of the
parameter vector are updated, and the new estimates are based on the step size s and the
gradient, which together signals the length and direction of our steps. For each iteration we
get closer to the minimum, as the gradient assigns the direction of the steepest descent

(Donges, 2018).
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Naive SMuRF algorithm

1: Input: B, X, y, s, lambda

2: For k=1 ... M do:

3: f « KD —svf(B*-D)  Gradient update

4;(,[570, By, ﬁ]) i Partition full vector in components for each predictor

k ~ . . .o .
5 .8]( ) proxgg, ('31) Calculate the Proximal Operator for all predictors j in {0, ... ,J}

k) ok k i
6:800 (ﬁé ) 1( ). “3]( )) Recombine to full vector

7: End for

8: Return p™

Figure 2.1 — The steps of the SMuRF algorithm in its naive form

Each time the parameter estimates are updated, the parameter vector is partitioned into
separate components for each predictor, because the proximal operator (PO) will be
calculated and solved separately for each predictor. Generally, POs are used for
approximating a value, with the combined goal of approximating it accurately and
minimizing a cost associated with the chosen value (Devriendt et al., 2018). In our case, we
want to estimate the coefficients that minimize the differences between the observed and

predicted values of the dependent variable, number of claims.

However, included in the PO is also the cost associated with choosing a specific coefficient
value, where the cost is adapted to the different predictor types through the penalty terms.
This way, the SMuRF algorithm is able to take both prediction accuracy and the
regularization terms into account during the estimation procedure. When the POs have been
calculated, the coefficient estimates are again combined to a full vector, and the algorithm

returns the coefficient estimates for the given iteration.

The algorithm can be implemented in R using the smurf package (Reynkens, Devriendt &
Antonio, 2018). Figure 2.1 illustrates the steps of the algorithm in its naive form. The
version of the algorithm included in the smurf package has been improved in terms of
computational efficiency. When the number of iterations k approaches infinity, the algorithm

converges to the optimal solution (Devriendt et al., 2018).
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2.8.2 Tuning and reestimation

The objective function

AN (i +1og(expop)
OB X,y) = = > (i(xff +log(expo)) — e 0 - log(yih)

i=1

pj P
+ A(Z Z]Wj,i|ﬁj,i| + Z zj:wj,i—lmj,i _ﬁj,i—1| + Z ZWj,iz|3j,i —,Bj_l|> (2.18)

jebin i=1 jeord i=2 jenom i>l

includes a tuning parameter A, which determines the relative strength of the penalties
compared to model fit. In contrast to the model’s coefficient estimates, which are learned by
the model, 4 must be chosen prior to estimation. It is difficult to identify a suitable value for
A before estimation, but the smurf package (Reynkens et al., 2018) allows it to be selected by
evaluating performance criteria for in-sample training, out-of-sample training on a test
dataset or stratified K-fold cross validation. Stratified K-fold cross validation with deviance
as criterion using the one standard error rule performs the best in Devriendt et al. (2018), and

is therefore our chosen method for selecting 4.

Cross-validation can be used to evaluate a range of different values for A based on some
performance criterion, which will indicate the optimal value for A (Hastie et al., 2017). When
using K-fold cross validation, the dataset is divided into K folds or groups of observations, of
similar size. The partitioning creates stratified folds, meaning that the mean of the dependent
variable is approximately equal in all folds. K-/ of these folds are then used to estimate the
model. The fold of observations that is not included is used as a validation group to calculate
an estimate of the average deviance (Devriendt et al., 2018). The deviance is a performance
criterion which is calculated as negative two times the maximum log-likelithood, where a

smaller deviance indicates a better model fit.

The procedure is completed K times, as each fold of observations is used as the validation
fold once, giving us K estimates of the average deviance as a function of A. As we use the
“one standard error rule”, we select the highest A where the average deviance is within one
standard error of its minimum. This will result in the simplest model which is within one

standard error of the minimum average deviance (Hastie et al., 2015).

Compared to non-penalized models, regularization methods like SMuRF normally return

models with decreased variance in the estimates and predictions at the expense of an increase
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in bias. It is therefore common to reestimate the model without penalties, where the
coefficients from the regularized model estimation are used to reduce this newly introduced
bias (Devriendt et al., 2018). The variables of which the coefficients are estimated to zero are
removed, and levels which were fused by the regularization procedure are collapsed. The
reestimated model will therefore have the same non-zero and fused coefficients as the
original model, but the results will not be biased (Devriendt et al., 2018). To perform this
reestimation, we use the R package smurf (Reynkens et al., 2018).

2.9 Model validation

To compare the model we create to the reference model Gjensidige already uses, the models
have to be validated using performance measures. Several approaches can be used to
estimate performance, depending on the type of dataset and performance criteria used for
measurement. For Gjensidige, the goal is to earn a profit from the insurance policies they
offer. For this to happen, it is important that the premiums they charge are at a competitive

level, while still covering the losses they have on their client’s claims.

As part of calculating these premiums, Gjensidige must predict the number of claims from
each person as accurately as possible. Consequently, for model validation we use criteria
which can measure this prediction accuracy, as this will uncover whether our method can
help Gjensidige earn a higher profit. In the next sections we will describe the type of dataset

and performance criteria we will use to compare the models.

2.9.1 Validation dataset

The prediction accuracy of a model is highly sensitive to the dataset used for validation. The
preferred method to use for validating a model is to separate the data by creating a training
set used for model estimation and a test set only used for validation. This test set can be
created several different ways. When predicting future observations, an out-of-time test set is
suitable. Creating an out-of-time test set means the dataset is divided based on the time of

the observation, for example the day, month or year.

An alternative method is to create the test set by sampling randomly from the full dataset
(Johnson & Kuhn, 2013). If interested in predictions in the same population of

policyholders, the alternative method would be most suitable. However, as the aim of the



23

model created in this thesis is to predict the number of claims registered in a year from future
policyholders, it is important the model translates well to the future. By training the model
using data from previous years and validating using data from a later year, we can replicate

how the model will be used by Gjensidige.

When splitting the data, it is also important to have enough observations to properly train
and test the model. If the dataset used for modeling is small, the decisions regarding the split
of the data are critical. However, when using a larger dataset, there will be enough
observations to split the data without the results changing excessively. Therefore, there will

not be a need to use resampling techniques to validate the model (Johnson & Kuhn, 2013).

2.9.2 MSE

To validate the estimated models, we measure how well the predicted number of claims fit
the observed data (Hastie et al., 2017). For regression models, the mean-squared error (MSE)

is the most commonly-used measure

v . 2
MSE =~ (vi—f(x) (2.19)
i=1
where 7 is the number of observations, y; is the actual value of the ith observation, and f(x;) is
the prediction that f gives the ith observation. The MSE will be small if the predicted values
are close to the observed data (Hastie et al., 2017). Therefore, the model with the lowest

MSE is usually preferred.

The quality of fit of a model can either be measured using the training dataset used for model
estimation or a separate test dataset. Using the training set will produce the training MSE, as
in Equation 2.19. If more parameters are included in the model, increasing its flexibility and
allowing it to search for more patterns in the data, the training MSE will decrease because
the model can explain a greater part of the variation in the training set. However, the test
MSE will not necessarily decrease as much as the training MSE. If this is the case, the model
is said to be overfitted, as it seems to have been fitted to noise in the training set (Hastie et
al., 2017). Therefore, the training error is an underestimation of the test error, and the test
MSE is more interesting to us (Hastie et al., 2017)

2

Ave (yo — f(x0)) (2:20)
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The observation (xg, y9) is a previously unseen test observation, and Equation 2.20 thus
calculates the average squared prediction for the observations. When using test MSE as the
performance criterion, the model which minimizes Equation 2.20 will be selected. To be able
to minimize the equation, it is valuable to understand how it is composed. It can be shown
that the expected test MSE is the sum of the variance of f(xg), the squared bias of f(xo) and

the variance of the error term £ (Hastie et al., 2017)

E (yo — f(xo))2 = Var (f(xo)) + [Bias (f(xo))]z + Var(e). (2.21)

To minimize the expected error, we therefore wish to minimize the variance and bias of the
model simultaneously. However, since there is a trade-off between the variance and bias of
the model, it is the relative change of the variance and bias which decides if the test MSE

increases or decreases (Hastie et al., 2017).

To calculate the test MSE, a designated test set has to be available. If not, other approaches
have to be taken to estimate the test MSE, like the validation-set approach or cross-
validation (Hastie et al., 2017). A downside of using test MSE as the only performance
criterion is that it does not consider that models have different amounts of predictors.

Therefore, we also use AIC.

2.9.3 AIC

When considering two models with the same test MSE, the one with the fewest predictors
will always be preferred (Johnson & Kuhn, 2013). However, using MSE to choose between
models with different amounts of parameters is not optimal. Adding additional predictors to
a model will generally return a lower test MSE, but the increase in predictors may be higher
than the relative gain of a lower test MSE (Hastie et al., 2017). The Akaike Information
Criterion (Akaike, 1974) is a performance measurement which was created to address this

issue. We seek to minimize
AIC = —2log(L) + 2K = Deviance + 2K, (2.22)

where L represents the likelihood function and K is the number of parameters used in the
model. When the number of parameters increases, the first term decreases the AIC, while the

second term increases the AIC. Therefore, there is a trade-off when increasing the number of
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parameters, as the second term penalizes a more flexible model. Consequently, it is a

suitable measure when comparing models which have a different number of parameters.
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3. Dataset

To find an improved way for Gjensidige to group and bin variables used in their predictive
models, we study Gjensidige’s insurance product comprehensive motor vehicle coverage.
The predictive models built to study our research question are therefore trained using data on
the policyholders of this product. The same dataset was used to train Gjensidige’s current
frequency model for this insurance product, which enables us to evaluate the effect on
prediction accuracy of our model. In this chapter we will describe the dataset, present
descriptive statistics of some of its variables, consider the quality of the data and present how

we process the data prior to modeling.

The dataset spans the time period from 2012 to 2017 and consists of 8 446 547 observations
and 31 variables. Most of the variables provide information on the policyholders’ personal
characteristics, information about their insurance policy or the attributes of their vehicle. A
variable signaling each policyholder’s exposure (Ekspo_faktor) is also included in the
dataset. Ekspo_faktor indicates the proportion of the year the policyholder was insured and,

in that sense, exposed Gjensidige to the risk that they would make a claim.

The R packages ggplot2 (Wickham, 2016) and graphics (R Core Team, 2018) have been

used to create the plots we present in this chapter.

3.1 Delimitation

The variables that are not used in Gjensidige’s model have been excluded from our model as
well. The same 14 variables have therefore been used as the basis to create the predictors
included in both models, and potential variable selection is only performed among those 14
variables. In addition, most data pre-processing performed besides fusing variables has been
equal for both models. This includes the removal of NA’s and aggregation of the dataset,
further described in 3.5. Using the same variables as a basis and doing the same data pre-
processing is a way of validating comparisons between the models’ performance, in addition

to limiting the scope of the thesis.

However, we have also performed some separate data pre-processing for the two models. To

be able to let the SMuRF algorithm perform the binning of continuous variables in a data-
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driven way, some manual data pre-processing has been performed to prepare the variables.

How this differentiates between the two models is further described in 3.6.

3.2 Variables

Table 3.1 lists the dependent variable, exposure variable and independent variables used for

modeling in this thesis. Out of the 14 independent variables, two are ordinal, seven are

nominal, one is binary, and four are continuous. Overall, the variables describe traits of the

policyholder and the vehicle, the policyholder’s use of the vehicle, and geographical factors.

Type Name Description
Dependent  Claims Observed number of claims of the policyholder: 0-5
Exposure Ekspo_faktor Fraction of the year policy was active: 0-1
Ordinal Kjor_lengde kode Code for distance driven: 13 levels
Drivstoff kode Code for type of fuel: 13 levels
Nominal Merke klasse kode ny Code for vehicle brands collected from the Norwegian
Register of Motor Vehicles: 45 levels
Ekspo_aar The year the policy was valid: 2012-2017
Subcluster Gjensidige’s own code for combination of geography
and demography: 12 levels
Band AK G Gjensidige’s own geographic variable:
26 levels
Divisjon_kode Where the policy was registered: 6 levels
Leasing flagg Whether  the  insured  vehicle is  leased:
Yes/No/Unknown
Import_flagg Whether the insured wvehicle is imported:
Yes/No/Unknown
Binary Forer 23 aar flagg Indicates whether all drivers of the vehicle are over 23
years old: Yes/No
Continuous Effekt HK Vehicle horsepower: 1 — 193 000
MV alder Vehicle age: 0 — 97
Alder_ftaker Age of policyholder: 1 — 110
Egenvekt Weight of vehicle measured in kilograms: 1 — 99 805

Table 3.1 - Variable descriptions



28

3.3 Descriptive statistics

3.3.1 Dependent variable

In this thesis, we model the claim frequency of comprehensive motor vehicle coverage. The
purpose is to predict the number of claims during the insured period of a future policyholder.
The model’s dependent variable is Claims, which is the number of claims reported by the
policyholder throughout the year. Claims is a discrete variable, having only integer values.
As shown in Table 3.2, most policyholders, 98.06%, do not submit a claim during their
policy period. A few, 1.86%, submit one claim, while the remaining minority, 0.08%, submit

between two and five claims.

Number of Claims | Number of Policyholders | Proportion of Policyholders
0 8282 630 98.06%

1 157292 1.86%

2 6310 0.075%

3 287 0.0034%

4 25 0.0003%

5 3 0.00004%

Table 3.2 - Number of policyholders for each number of claims

3.3.2 Exposure

Ekspo_faktor measures the proportion of the year that the observed policyholder was
insured, ranging from 0 to 1. The mean exposure is 0.34 and the average duration of a policy
is therefore slightly longer than four months. The average duration of a policy seems low,
but the explanation can be found in how the dataset is structured. An observation, or a row,
in the dataset represents an individual. As time passes, its features will change, and probably
not simultaneously. A change in just one of these variables will generate a new row in the

dataset with the updated information on the individual.

In that sense, the exposure indicates how long Gjensidige was exposed to the risk of that one
individual while its features remained the same. The distribution of Ekspo_faktor in average

for a year with months as intervals is shown in Figure 3.1.
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Figure 3.1 — Distribution of exposure

The mean number of claims in the dataset is approximately 0.02. The mean of Claims is
based on the mean exposure of the dataset which is 0.35. It does not necessarily indicate that
an average policyholder files 0.02 claims a year, but rather indicates that the average
policyholder would file 0.02 claims during their average exposure of 4 months, equaling
about 0.05 over a year. In this chapter, we will use the average claim number as a reference
with the purpose to analyze how each variable, and each level within it, affects the mean. We
have been informed by representatives from Gjensidige that the real average exposure is
between 0.7 and 0.9 for different products. This means that policyholders on average are

insured for periods of eight to eleven months, approximately.

In the following section, we will present the predictors which we believe have an interesting
relationship with claims. Plots of the rest of the predictors can be found in Appendix Al and

A2.
3.3.3 Independent variables

Missing values

There are some variable values in the dataset which are 0, -1 or -2, indicating missing values.
Band AK G and Subcluster have about 13 percent missing values out of the total number of
observations, while Divisjon_kode has about 10 percent. Besides these three variables, the
variable with the most missing values is MV _alder with about 2 percent. How these missing
values are handled is explained in 3.5. In addition to the mentioned missing values, some of
the variables have values which we consider odd, for example when horsepower is 1 or

193 000. Whether these represent missing values or not is unknown.
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Kjor _lengde_kode: Mileage

In the dataset, mileage is divided into intervals that are each given a code. As seen from the
left-hand plot of Figure 3.2, most of the vehicles have codes between 005 and 030, with the
most common code being 012. In Figure 3.2 we plot the mileage codes against the mean
number of claims. It seems that the mean number of claims increases with mileage, but the
standard errors also increase with mileage. The most common mileage codes have a mean
number of claims close to the overall mean of the dataset (0.02), while mileage codes of

higher value than these seem to indicate an above average number of claims.
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Figure 3.2 - Relative frequency and mean number of claims for mileage

Drivstoff_kode: Fuel code

The different types of fuel are also divided into different codes, and we observe that
approximately 95 percent of the observations have fuel code 001 or 002 as seen in Figure
3.3. We observe that the codes with the highest relative frequency of policyholders have the
lowest standard error, while it seems that for four of the codes, there are no claims among all

policyholders with that particular type of fuel.
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The Effect of Fuel Code on Number of Claims
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Figure 3.3 - Relative frequency and mean number of claims for fuel type

Merke_klasse kode ny: Vehicle brand

We observe in Figure 3.4 that the number of vehicles insured within each brand differ a fair
amount, and again we see that the categories with many observations have smaller standard
errors. We observe that the average number of claims differ between different vehicle

brands, indicating that the variable could be a good predictor.
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Figure 3.4 - Relative frequency and mean number of claims for vehicle brand

Band_AK _G: Geographic variable

In Figure 3.5, we observe that the relative frequency of Band AK G is quite evenly
distributed over the different categories, and the standard errors of the calculated means are
small. There is a close to linear trend for each category’s effect on the mean, which is
surprising for a nominal variable. This variable was created by Gjensidige themselves, and
so it seems they may have sorted the categories according to their effect on the dependent

variable.
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The Effect of Band_AK_G on Mean Number of Claims
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Figure 3.5 - Relative frequency and mean number of claims for Band AK G

Effekt HK: Horsepower

Figure 3.6 shows how the average horsepower of the vehicles of the policyholders differs
depending on how many claims they have filed. The figures show that the vehicles of
policyholders who have submitted claims have lower horsepower on average than the
policyholders who have not submitted claims. In 2016, the average car in Norway had 133
horsepower (Korsvoll, 2016). From the figure we can therefore observe that the
policyholders that have filed at least one claim on average own cars with average
horsepower, while the policyholders who have not filed claims, own vehicles with
horsepower above average. This indicates that horsepower could be a useful variable to
include when predicting claims. Overall, the standard errors are small, indicating that the
sample mean is reliable. We do however observe larger standard errors for the observations

with no claims and the observations with a high number of claims.
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Figure 3.6 - Mean horsepower for each number of claims
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MV _alder: Age of vehicle

Figure 3.7 shows the mean and standard error of Claims for different ages of the vehicles
that are insured by the policyholders. The line represents the mean values, while the grey
ribbon surrounding it represents the standard errors of the mean of Claims for each age. The
plot shows that the mean number of claims increases with age and reaches its peak for
vehicles that are four years old. After that, the average number of claims decreases steadily

with age.

After 25 years the standard errors increase. This is probably due to fewer observations, as
there are not many vehicles that are that old, and these old vehicles are probably not insured
with the product comprehensive motor vehicle coverage, which is expensive and more
suitable for new vehicles. There are also some very old vehicles which mostly have zero
claims. These kinds of vehicles are probably well maintained veteran vehicles that are

treated carefully and seldom driven.

The plot on the left shows why the standard error of the mean of older vehicles are higher, as

there are relatively few policyholders who have vehicles which are older than 30 years.
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Figure 3.7 - Relative frequency and mean number of claims for vehicle age

3.4 Data quality

Gjensidige possesses a large data warehouse with information on the policyholders of all
their insurance products. When building models for predicting claim frequency, claim
severity, or the risk premium directly, data on the policyholders of the relevant product and
the variables desired is retrieved from the data warehouse and imported into R. As we have

received the data directly from Gjensidige and their data warehouse, the data quality should
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be high. It is in their interest to use data that reflects the attributes of their policyholders as
closely as possible, to ensure their models are of high quality. At the same time, there is
some potential of error in the data as much of the data is collected by Gjensidige’s

employees and therefore prone to human mistakes.

Even though the dataset from Gjensidige is of high quality, we perform some data pre-
processing before modeling. The pre-processing is divided between the pre-processing
which is common for both models and the pre-processing which differs between them. The
pre-processing which is common for both models is the aggregation of the dataset and
recoding of NA’s, while the difference is in how continuous variables are binned and ordinal
variables are grouped. In the next two sections we will describe how this pre-processing is
performed. We primarily use the R package dplyr (Wickham, Francois, Henry & Miiller,
2018) for data manipulation.

3.5 Common pre-processing

To increase computational efficiency, the dataset is aggregated prior to modeling.
Aggregating the dataset means combining observations that have the exact same values for
the predictors into one. All values of the predictors are kept the same, while their number of
claims and exposure are added together. The effect on the dependent variable will be exactly
the same as if keeping the observations separate, as the combined observation will have a
higher number of claims and exposure than the observations had separately beforehand. This
1S common practice in the insurance industry, since datasets are often quite large and
increasing computational efficiency is a priority. After aggregating the dataset, the number

of observations is reduced from 8 446 547 to 6 726 978.

Concerning the odd values we have found for some variables in the dataset, we do not
perform any pre-processing because Gjensidige does not and we wish to ensure model
similarity. However, in addition to aggregating the dataset, we recode observations that
include NA’s. We recode NA’s to —1, because this is Gjensidige’s current approach for
treating missing data and we want to ensure our model is similar to the one currently used.
The reason Gjensidige recodes missing values to —1 is to avoid deleting observations.
Deleting observations removes information from the model, and should be avoided if

possible (Goldburd et al., 2016). These recoded observations are combined with other
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observations into groups at a later point, and it is therefore not important that their value is —

1.

A better solution would perhaps be to impute values using information from the rest of the
predictors. This is done by creating a second model using the predictor with missing values
as the dependent variable. A subset of the data which includes the other predictors and only
observations without missing data is then used to train the model (Goldburd et al., 2016).
This would lessen the information lost by simply recoding the missing value field to —1.
Nevertheless, we use the same procedure as Gjensidige to ensure model similarity. The
consequence of this may be that observations end up in the wrong group and therefore

increase the bias of predictions.

The two variables Leasing flagg and Import flagg are originally nominal with three levels
representing “yes”, “no” and ‘“unknown”. For both variables, the relative frequency of
“unknown” is very low, and we would therefore like to convert these variables into binary
variables. We do not want to delete the observations that include this level, but rather impute
them. For both variables, it is reasonable to believe that they would be registered as “yes” if

they were leased or imported, while it may be forgotten if they are not, as this is the most

common. Therefore, all observations of “unknown” are changed to “no” for both variables.

3.6 Differentiated pre-processing

To answer our research question, we want to find out whether going from manually grouping
and binning variables to using regularization methods to do it can improve the prediction
accuracy of the model. This section covers what binning is, how Gjensidige groups and bins
their variables today, and lastly how we prepare the variables for using the regularization
methods for fusion. Even though the purpose of regularizing the model is to let the method

handle the variables, some pre-processing of the variables is done before using the method.

3.6.1 Binning

As part of the data pre-processing, Gjensidige manually bins their continuous variables into
categorical variables before using them as predictors in their frequency model.
Consequently, a coefficient is estimated for each bin, which applies to all observations

falling within it. Manual binning refers to the pre-categorization of data into two or more



36

bins, which simplifies the dataset and increases interpretability (Johnson & Kuhn, 2013). In
addition, it enables the model to capture non-linear effects which would not be possible if the
variable was kept continuous. By binning the variable, the model is freed of needing to
constrain its assumed relationship with the dependent variable to any particular shape,

enabling it to capture non-linear effects it otherwise would not (Goldburd et al., 2016).

However, there are also several drawbacks to manual binning. As each interval has its own
coefficient, the estimates will not behave in a continuous fashion, meaning some estimates
may be inconsistent with others due to random noise. Also, variation within each bin is
ignored, which means there is a loss of information that could have been used to fit the
model. A possible solution is to separate the data into even more bins but doing so will
reduce the credibility of each estimate (Goldburd et al., 2016). Lastly, dividing the bins
manually makes it very difficult to find the optimal bins to maximize prediction accuracy.
Many variables must be evaluated simultaneously, which is difficult to do manually

(Johnson & Kuhn, 2013).

3.6.2 Gjensidige’s method of binning and grouping variables

The reference model predicts claim frequency based on 13 categorical predictors. In this
section, we describe how the 14 variables listed in table 3.1 are used to create these 13
predictors. The dataset includes ordinal, nominal, binary and continuous variables, and the
variable types are treated differently in preparation for model estimation. Continuous
variables are manually binned, converting them to ordinal variables, where the bins are
equivalent of levels of ordinal variables. The intervals of values that are used as limits for the
bins are not necessarily of equal size, and the limits have been set manually based on
observation of the data. For example, the continuous variable Egenvekt is divided into 17
bins and called Egenvekt gruppe, converting it into an ordinal predictor with 17 levels.
Three of the four continuous variables, are simply binned and used as ordinal predictors in

the model, creating four of the 13 predictors.

Original variable Predictor Number of bins/levels
Effekt HK Effekt HK gruppe 25
Egenvekt Egenvekt gruppe 17
MV _alder MV alder gruppe 24

Table 3.3 - Number of levels after binning
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The last continuous variable, Alder fiaker, is also binned manually first. However, it is its
interaction with the binary variable Forer 23 aar flagg which is used as a predictor for the
model. In addition to the binning of the continuous variables, one ordinal
(Kjor_lengde kode) and two nominal variables (Drivstoff kode and Divisjon_kode) are

grouped as shown in Table 3.4.

Original variable Levels Predictor Levels
Kjor lengde kode 13 Kjor lengde kode gruppe 10
Divisjon_kode 6 Divisjon_kode gruppe 3
Drivstoff kode 13 Drivstoff kode gruppe 2

Table 3.4 - Number of levels before and after grouping

These groupings are also performed manually, and the background for why the particular
levels are fused together is unknown, as the groupings were done many years ago. The rest
of the variables in the dataset are not treated in any way and are included in the model in

their original form.

3.6.3 Preparing the variables for the SMuRF algorithm

One of the penalty types we use is the Fused Lasso, which is especially suited for ordinal
predictors or continuous predictors that have been recoded as ordinal predictors to capture
their non-linear effect. Therefore, to fuse and select levels of continuous variables, they
firstly must be recoded to ordinal variables. This recoding should bin the continuous variable
very crudely, so that an ordinal variable with many levels is created. This allows the SMuRF
algorithm to choose between many levels to fuse, preserving more of the information the
continuous variable originally provides. In the extreme example of only creating two bins,
only two levels can potentially be fused, and too much information is lost from the
continuous predictor. The cruder the bins are, the more similar it will be to fusing the

original continuous predictor.

We have previously outlined the disadvantages of binning continuous variables, and with our
chosen method we could re-evaluate Gjensidige's decision to perform binning, as it allows us

to simply use the continuous variables instead of binning them into ordinal variables.
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However, as our research question concerns comparing ways to group and bin variables, this
assessment is outside the scope of this thesis. Nevertheless, the manual binning of variables
performed for the regularized model is much cruder, as each variable is split into a larger
number of intervals. For example, Effekt HK is binned into 25 bins when used for

Gjensidige’s model, while it is divided into 52 bins for the regularization model.

We create many bins manually because we want the method to perform the binning for us
having many bins to possible fuse. Binning the levels in a crude way gives the penalty term
more levels to fuse, and therefore more influence on which ones should be fused together.
Consequently, we have manually binned each of the continuous variables into ordinal
variables crudely, before including them in the regularized model. The rest of the variables
are left as they were in the original dataset, except that for each variable where zero has no
meaning, any zero or negative values are gathered in a separate group, as they represent

NAs.
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4. Analysis

The research question of this thesis is: “Can the prediction accuracy of Gjensidige’s claim
frequency models be increased by using a data-driven method for the fusion of levels of
categorical predictors?” To study this question, we analyze the data described in Dataset
using the methods explained in Methods. In this chapter we estimate a reference model and a
penalized model that can select and fuse predictor levels. In addition, as explained in
Methods we reestimate a model with the new parameters to reduce the bias of the estimates,

and then compare its results to the reference model.

To isolate the effect of fusing predictor levels using regularization, we strive to keep all other
specifications identical for the models. Consequently, we use the same training dataset for
model estimation and the same test dataset for model validation. To replicate how Gjensidige
uses the predictive models to predict future policyholders’ number of claims, we use an out-
of-time test set with observations from 2017, while the training set consists of observations
from 2012 - 2016. The test set contains 1 131 099 observations, which is approximately 20%
of the training set’s 5 595 879 observations.

4.1 Reference model

To evaluate the performance of the regularized model, we use Gjensidige’s current model for
predicting claim frequency of the policyholders of comprehensive motor vehicle insurance
as a reference model. To ensure that the reference model we estimate is equal to Gjensidige's
current model, we replicate how they manually bin and group variables as explained in

Gjensidige’s method of binning and grouping variables.

The resulting objective function to be minimized is the scaled negative Poisson log-
likelihood with 13 predictors. For two of these 13 predictors, Alder ftaker and
Forer 23 aar flagg, only the interaction between the two is used. In addition, the logged
version of the variable representing exposure, Ekspo faktor, is used as an offset in the

model. We estimate the reference model by minimizing the objective function

1 N (x;B+log(expo;))
O(B;X,y)=—; E (yi(x;B + log(expo;)) — e *iPTIo8lEXPoY) —log(y;l)), (4.1)
i=1
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where y; is the number of observed claims of a policyholder during the insured period expo..
In section 4.3.1, the results of the reference model estimation are presented and compared to

the results of the regularization method.

4.2 The regularized model

To fuse and select the levels of the variables used for predicting the number of claims, we
estimate a regularized model. The model is based on the objective function from the
reference model, but there are two important differences between the models. First, the
variables have been treated differently prior to being included in the different models, as

explained in Differentiated pre-processing.

Furthermore, a penalty term has been added to the objective function which creates the
regularized model. The penalty term consists of sub-penalties adapted to each predictor type,
stating how each predictor should be penalized. The same predictors which are used in the
reference model are used as input for the regularized model, but as the regularization method
performs variable selection, it may exclude some of the predictors in the process. Estimating

the regularized model, we minimize the objective function

n
1
O(B;X,¥) = == > (iCxif + log(expoy) — e Fif HoB@o0) — log(y,1))

i=1
Pj pj
+ A Z Z Wj,i|ﬁj,i| + Z Z Wj,i—1|ﬁj,i - /3]',1'—1| + z Z Wj,u|.3j,i - Bj,ll .(4.2)
jebin i=1 jeord i=2 jenom i>l

Within the penalty term, we apply the penalty types that are most suitable to penalize the
parameters of each predictor. Generally, we apply the Lasso for the binary predictors, and its
generalizations Fused Lasso and Generalized Fused Lasso for the ordinal and nominal
predictors respectively. The interaction between Alder fiaker and Forer 23 aar flagg is not
penalized because the SMuRF method requires the predictors used for the interaction to be
included without an interaction as well if they are to be penalized. Table 4.1 summarizes

which penalty types are used for the different predictors.
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Variable type Predictor name Penalty

Binary Import flagg Lasso
Leasing flagg

Ordinal Kjor lengde kode gruppe Fused Lasso
Effekt HK gruppe
Egenvekt gruppe
MV _alder gruppe

Nominal Merke_klasse kode ny Generalized Fused Lasso
Subcluster gruppe
Divisjon_kode gruppe
Band AK G gruppe
Drivstoff kode gruppe

Table 4.1 - Penalty type for each predictor

To regulate the relative importance of each penalty term, we apply combined penalty
weights to each penalty term. To select and fuse predictor levels, the SMuRF algorithm is
used to minimize the objective function of the regularized model, estimating the coefficients

that will display which levels are selected and fused.

4.2.1 Selection of A

Using the smurf package (Reynkens et al., 2018), we tune A using 15-fold stratified cross-
validation. The value of 4 is selected using cross-validation, where lowest deviance using the

one standard error rule is used as the criterion for selection.

Figure 4.1 was created using the smurf package (Reynkens et al., 2018) and shows how the
deviance is changed while the logarithm of A increases, indicating more heavily regularized
models. The logarithm of A is used to increase interpretability of the plot, as the relevant

values are very small.
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Figure 4.1 - Selection of A

The most prominent stapled vertical line (on the right-hand side of the plot) indicates the
chosen A. The vertical stapled line located towards the center of the plot indicates the A with
the lowest deviance, while the shorter vertical lines represent the standard errors for the
deviance of each A. Even though the chosen A did not produce the lowest deviance, it is
chosen because it is the highest value of A that still produces a deviance within one standard
error of the 4 with the lowest deviance. The figure also shows how increasing A further
would produce significantly worse results in terms of deviance, as it increases rapidly if 4 is
increased past a certain point. However, for lower values of A, the deviance is low and stable

as the penalization of the objective function is decreased.

4.2.2 The regularized predictors

In this section we will present plots of the estimated coefficients for selected predictors that
we consider suitable for illustrating how the regularization method select and fuses levels.
Similar plots for the remaining predictors are either shown in a later section or can be found
in Appendix AS, while complete lists of all coefficients of the models are shown in
Appendix A3 and A4. Levels with equal coefficient estimates are fused, while levels with
coefficient estimates set to zero are removed, as they are fused with the reference category
and consequently the intercept of the entire model. If all parameters of a predictor are set to
zero, the variable would be removed from the model. However, in our case, the algorithm
did not remove any of the variables. Still, as we will observe from the plots, the method has

fused levels accounting for a reduction in parameters from 365 to 282.

The coefficient plots were created using the R package ggplot2 (Wickham, 2016) and show

the estimated coefficient for each level of each predictor for the reference model and the
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regularized model. The standard errors of the estimates from the reference model are
included as vertical shaded lines to illustrate which estimates have high variance. The

standard errors are included because, as we will observe, they often affect the grouping of

levels.
Ordinal predictors
Coefficient estimates of Horsepower Coefficient estimates of Weight
0.8~
00~
0.4~
w w
2 2
] ]
E E
? ? 05-
5 oo- 5
8 5
k5 5
o o
o O -1.0-
0.4+
1.5~
6 5‘0 160 15“0 2(‘)0 250 3(.)0 35.\0 460 45“0 560 6 960 11‘50 14.00 1?‘00 19‘50 22lOO 24‘50 2?‘00 29‘50
Effekt HK Egenvekt

colour =#= Reference =#= SMuRF

Figure 4.2 - Coefficient estimate for each level for the SMuRF model and the
reference model for horsepower and weight

Figure 4.2 compares the coefficient estimates of the reference model and the SMuRF model
for two of the ordinal predictors included in the model; horsepower and weight. The two
plots illustrate how the number of parameters is reduced through the SMuRF estimation, as
many coefficient estimates are equal, fusing the levels, and a few are zero, fusing them with
the reference level. However, since horsepower and weight are ordinal predictors, only

sequential levels are fused.

As the predictors are binned more crudely prior to the SMuRF estimation than the reference
model, there is initially a higher number of coefficients to be estimated for the SMuRF
model than the reference model. For example, 52 levels of horsepower were used as input
for the SMuRF model, while 25 were used for the reference model. However, after using the
SMuRF algorithm, the number of unique coefficients for horsepower is 28. The two models
therefore end up with a similar number of levels, but the binning performed by the SMuRF

model has been data-driven rather than performed manually.
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The difference in binning is especially apparent on the right half of both plots, where there is
a large difference in the number of levels for the two different models. We also observe that
more of the levels on the right side of the plots have been fused than on the left, which
indicates it was a correct decision by Gjensidige to create larger bins for the higher values.
Still, the SMuRF model includes more of these levels than the reference model, which means
that this data contains some information deemed valuable enough by the SMuRF algorithm
to be signaled with several coefficients. The coefficient estimates of the two models are quite
similar between about 75 and 325 of horsepower, while they differ more for most other
values. In contrast, the coefficient estimates for weight are considerably different for the two

models, as the reference model estimates a higher number of claims for most levels of the

variable.
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Figure 4.3 - Coefficient estimate for each level for the SMuRF model and the
reference model for fuel code and vehicle brand

Figure 4.3 compares the coefficient estimates of the two models for two of the nominal
predictors included in the model; fuel code and vehicle brand. As they are nominal, all levels
can potentially be fused together. Since there is no logical sequence of the levels, they have

been sorted in ascending and alphabetical order respectively.

The two plots show that many coefficient estimates have been set to zero for the regularized

model. For fuel code, seven of eleven levels have been set to zero and are therefore fused
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with the reference level, 2. These seven levels are the same levels Gjensidige manually
group before estimating the reference model, meaning the two models end up with the same
number of unique coefficients and similar estimates. As we observed from the descriptive
analysis, fuel code has several levels with close to zero observations, which could be why

they are set to zero, and why Gjensidige has fused them with other categories.

The same 44 levels of vehicle brand were used as input for both models. However, the
SMuRF algorithm set two of its coefficients to zero and fused several others together, ending
up with 27 unique coefficients. The coefficient estimates in the reference model with the
highest standard errors seem to have been shrunk the most, seen mostly in the middle of the
plot from BA to ZB. Two of these, BC and ZB, have been set to zero and are therefore fused

with the reference level.
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Figure 4.4 - Coefficient estimate for each level for the SMuRF model and the
reference model for imported vehicles and leased vehicles

Figure 4.4 compares the coefficient estimates of the two models for the two binary predictors
penalized in the model, imported vehicles and leased vehicles, which cannot be grouped as
they only have one parameter. They could have been removed from the model if the one
parameter was set to zero, but they are not removed in our model. We can see how the
coefficient estimate has been constrained towards zero by the SMuRF for both predictors.
The coefficient estimate for leased vehicles has been constrained more than the estimate of

imported vehicles, which may be because its standard error is higher.
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Predictors not suited for level fusion
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Figure 4.5 - Coefficient estimate for each level for the SMuRF model and the
reference model for Band AK G and mileage

Figure 4.5 compares the coefficient estimates for the two models for a nominal and an
ordinal predictor for which levels have not been grouped. These two predictors are
Band AK G, a predictor constructed by Gjensidige based on geographic and demographic

factors, and Kjor lengde kode, a constructed predictor for mileage.

Both predictors seem to be constructed to have an increasingly positive effect on claims,
beginning with a negative effect and ending up with a positive effect. As shown in Dataset,
the mean number of claims increases for each level for both predictors, and the variable has
an approximately linear relationship with number of claims. Consequently, the two
predictors are already constructed to have levels that share the same effect on number of
claims and is a good example of how predictors could be grouped ideally. Therefore, it is not

surprising the levels have not been grouped by the SMuRF algorithm.

By including a regularization term in the objective function, some predictor levels have been
grouped while some have been removed entirely. Regularization improves prediction
accuracy by reducing variance, but this comes at the cost of an increase in bias. In the

following section, we introduce a new model to address this.
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4.2.3 Reestimated model

To counter the increased bias introduced in the model by the regularization term, we
reestimate the regularized model without penalties, where the coefficients estimated by the
SMuRF algorithm are used as input to select and group levels. The predictors for which the
coefficients were estimated to be zero are removed, while any fused coefficients are included
in their collapsed form. The reestimation is done using the smurf package (Reynkens et al.,

2018).

Reestimating the regularized model without the penalty term effectively means using the

same objective function

n
1
0B;X,y) = _EZ(Yi (x;B + log(expo;)) — eFifH108(expod) _Jog(y, 1)) (4.3)
i=1

as the reference model, but with differently coded predictors

4.3 Validation and comparison of models

To find out whether selecting and fusing predictors using the SMuRF algorithm can lead to
improved prediction accuracy compared to Gjensidige’s current method, we validate and
compare the reference model, the first regularized model and the reestimated model using
selected performance criteria presented in Methods. To be able to analyze why the different
models perform as they do, we also study the coefficient estimates of the levels of some of
the predictors. In addition, to illustrate the effect of the regularization term, we illustrate how
the MSE, bias, variance and the reduction in degrees of freedom changes as the strength of
the penalty changes. The test dataset including observations from 2017 and the R package
stats (R Core Team, 2018) was used for calculating test MSE.
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4.3.1 Comparison of models

Model
Criteria Reference Estimated SMuRF Reestimated SMuRF
Reduction in DF 298 365 282
AlC 1240 098 1239 809 1239 746
Training MSE 0.0264971 0.0264963 0.0264962
Test MSE 0.0266903 0.0266876 0.0266879

Table 4.2 - Performance of the different models using different criteria

The reestimated SMuRF performs the best for AIC and training MSE, while the estimated
SMuRF performs the best for test MSE. The two SMuRF models perform better than the

reference model for every criterion.

Degrees of freedom (DF)

As the SMuRF method collapses categories, the number of degrees of freedom used is
reduced from 365 to 282. Compared to the reference model, the reduction is from 298 to
282. This means a simpler model has been used to increase prediction accuracy. In addition,
the reduction in used degrees of freedom means interpretability increases, as the number of

coefficients is reduced.

AlC

The calculated AIC is lower for the reestimated SMuRF than for the reference model, which
indicates a better model. This can either be due to a lower deviance, a reduced number of
parameters or a combination of the two. As it takes the number of parameters in the models

into account, it favors the SMuRF method relatively higher than the MSE results do.

MSE

The test MSE of the SMuRF method is slightly lower than the reference model, indicating
increased prediction accuracy as a result of using the SMuRF algorithm to treat the variables.
However, the results are very similar. The calculated MSE for the models consists of the
estimation error attributed to both bias and variance. As the MSE for the SMuRF models are

lower, a reduction in variance has more than offset a potential increase in bias.
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4.3.2 Groups created with the different methods

The performance criteria used to compare the models conclude that the SMuRF models
perform better than the reference model in terms of prediction accuracy. As the difference
between the models is how the predictor’s levels are grouped, we will now analyze the
estimated coefficients of the levels of some of the predictors. Figure 4.6 shows the estimated
coefficients for all three models for four of the predictors, horsepower, vehicle age, imported
vehicles and Subcluster. Similar plots for the remaining predictors can be found in Appendix

AS.
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Figure 4.6 - Coefficient estimate for each level for the first SMuRF model,
reestimated SMuRF model and the reference model for horsepower, vehicle age,
imported vehicles and Subcluster
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The trends of the three lines representing the coefficients estimated for each model mostly
follow each other. The differences mainly appear when the standard errors of the reference
model estimates are higher. Comparing the coefficient plots to the descriptive analysis, this
mostly concerns levels containing few observations. In addition, the graphs show that the
variation in the reestimated estimates are higher than in the first estimation of the SMuRF
algorithm. For example, in the interval from 325 to 450 of Horsepower, there are three clear
spikes in the coefficient estimates. The estimates of the reestimated coefficients are further
away from zero than the first SMuRF estimation for almost every level where the estimate is
not identical. For the last plot, imported vehicles, the reestimated coefficient is also further
away from zero. This all indicates that the variance has increased as a consequence of

reducing the bias when reestimating the coefficients.

In addition, the SMuRF algorithm has removed some levels with high variance from the
model. For example, the level / of Subcluster seems to have a large standard error. As the
SMuRF method has removed it from the model entirely, variance is likely reduced at the cost

of some bias, since the model is simplified.

However, for another example like the level 6 of subcluster, the first SMuRF estimation has
shrunk the coefficient some to reduce variance, while the reestimation has undone the
shrinkage and ends up with the same estimate as the reference model. This increase in
variance is likely the reason why the reestimation performs worse for test MSE than the first
SMuRF estimation, as the reduction in bias has not been large enough to compensate for the

increase in variance.

4.3.3 The effect of regularization

As we have observed that regularization can improve the test MSE compared to the
reference model, it is interesting to analyze how different values of A changes test MSE.
Therefore, we create Figure 4.7 which illustrates how the test MSE and degrees of freedom
differentiate for different values of A. We have also included the reference model and the
SMuRF model with A = 0 for comparison of reduction of degrees of freedom and test MSE,
even though the logarithm of zero is -co. We have therefore labelled their A to 0.00000001
and 0.00000001 to be able to include them in the plot.

The plot shows that the number of degrees of freedom is lower for the reference model than

the regularized models with the lowest A’s, because of the difference in data pre-processing.
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Also, we observe that the MSE decreases by creating more bins in preparation for the
SMuRF model. In addition, regularizing the model decreases the MSE steadily until a certain
point, where the MSE begins to increase rapidly. If the value of A is higher than at this point,
the degrees of freedom will be reduced further but the test MSE will increase. This illustrates
the trade-off between prediction accuracy and interpretability, as the lower values of A give a
more flexible model while increased A reduces the variance at the cost of increased bias. The
increase in test MSE especially occurs when reducing the number of parameters from 192 to
163, which indicates that some of the variables or levels removed in that interval are

important for prediction accuracy.

Test MSE and degrees of freedom for different values of A

Degrees of freedom
301 365 352 338 326 297 282 214 192 183

0.026710 -
0.026705 -

0.026700 -

Test MSE

0.026695 -

Referance Model

0.026690 -
Nﬁjﬂ odel_0

-20 -16 -1z -8
logiA)

Figure 4.7 - MSE for models created with different values of A

Figure 4.8 shows how the variance and squared bias change with an increasing A. The results
mostly follow what we expected, as the trend in the plot is that an increased A leads to an
increase in bias and a reduction in variance. Surprisingly, there is a spike in the variance for
the model which uses 192 degrees of freedom. However, the variance can sometimes

increase when the number of parameters in the model is reduced.
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Figure 4.8 - Bias and variance for different values of
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5. Discussion

The results of our analysis indicate that grouping and binning the variables used in
Gjensidige’s claim frequency model by applying the SMuRF method, rather than doing it
manually, results in a slightly better model in terms of both test MSE and AIC. Surprisingly,
the first estimation of the regularized model performs better than the reestimated model,
even though the purpose of the reestimated model is to reduce bias introduced to the model
during regularization. Whether the improvement from the reference model to our models is
large enough for Gjensidige to consider implementing it, and whether the results are robust
over different datasets remains to be concluded. However, our results show that the newly

developed method is promising.

To gain a better understanding of our results, we discuss the mechanisms of the
regularization method used and how the constant tradeoff between minimizing the distance
between observed and predicted values of the dependent variable and penalizing coefficients
has played a role. The difference in MSE, between the two models’ predictions can be
attributed to both the differences in fusion of levels and how the binning was done

differently prior to model estimation.

5.1 Results

The choice of manually binning continuous variables prior to modelling introduce bias to
both the reference model and the models estimated with the SMuRF algorithm, as we lose
some information on specific values of a variable by combining them. However, in the
preparation for the SMuRF algorithm, the bins are much narrower than for the reference
model. By allowing more parameters in the model and increasing thereby flexibility, this
bias is reduced compared to the reference model. On the other hand, this comes at the cost of
increased variance. As our analysis show, some of the additional parameters we introduce
with this crude binning are not needed. Some groups of levels in the reference model seem to
have been formed by Gjensidige for this reason. They have discovered that the levels are not
valuable for the model, for example due to few observations or that the effect of several
levels on number of claims is very similar. Still, the cruder binning lead to a reduced MSE,

meaning the model was already improved before applying the SMuRF algorithm. This was
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somewhat surprising to us, as it indicates that simply creating more bins without considering

their limits gave better results than grouping manually while considering the data.

However, the reduction in MSE caused by the reduction in bias from the cruder binning is
offset by an increase in the use of degrees of freedom, as more bins means a more flexible
model. The next step of applying the SMuRF algorithm to regularize the model counteracts
this problem, as the main idea is to reduce excess parameters. When using a regularization
method, the choice of A is essential because it decides the tradeoff between a flexible model
and a simple model by regulating the number and size of parameters in the model. As our
analysis show, the estimated coefficients of the models are quite similar. This signals that
while it is optimal to constrain some coefficients, the information is valuable enough for the

method not to penalize a great amount.

In our study, increasing A more than the optimal value leads to a large decrease in number of
parameters, but an increase in MSE. Up to a certain point, regularizing the coefficients leads
to a reduction in variance that dominates the increase in bias, because initially, levels that are
not important for the model performance are removed. However, with an increasing value of
A, MSE can increase as levels with high importance to the performance of the model are
removed or fused in a way so that information is lost. As shown in Analysis, the likelihood
of fusion and removal of levels is much higher when the standard error of the coefficient
estimate is higher, meaning the SMuRF algorithm recognizes that the estimate introduces too

much error to be included.

Penalizing the coefficients reduces the flexibility of the model as the number of parameters
is reduced, which increases the bias. The model is therefore reestimated using the selected
and fused parameters in order to reduce the bias introduced by penalizing the coefficients.
Consequently, the variance of the model increases, which could be observed in the
coefficient plots in Analysis. The estimates of the reestimated model often reversed some of
the penalization performed by the regularized model, which results in a more flexible model.
As it is often recommended to perform this reestimation to reduce bias, it was surprising that
the reestimated model ended up performing poorer, but it indicates that decrease in bias has
not been large enough to overcome the increase in variance from the regularization of the

coefficients.
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5.2 Implications

One of the aims of this study has been to find and employ a method that can improve
Gjensidige’s prediction models in some way, if implemented. It was therefore important for
us to find a method suitable for Poisson regression. The output of a model estimated using
the smurf package (Reynkens et al., 2018) is almost identical to the output from the stats
package (R Core Team, 2018), and this familiarity will likely simplify the implementation
process, which is an important aspect because radical changes take time in large

organizations.

For Gjensidige to consider implementing the SMuRF method, there has to be a potential
economic gain related to the method that compensates them for the effort of implementing a
new system. In this thesis, prediction accuracy is used to evaluate whether there is an
economic gain, as the performance of the predictive models is for Gjensidige’s overall profit.
However, it is difficult to draw conclusions on the value that the small change in MSE
constitutes from the MSE numbers reported in Analysis. For 2017, the improvement in the
number of claims predicted correctly would be 8.4, out of a total of 29 217 claims.
Therefore, the improvement in prediction accuracy is not very large, but 8.4 claims can still

account for a large sum of money when considering claims connected to vehicles.

If Gjensidige decides to implement the method, they can also consider to what extent they
want to implement it. As the smurf package estimates and reestimates the model using
speedglm, it is possible for Gjensidige to use the smurf package for model estimation in the
same dynamic way they estimate the Poisson regression models today, using the stats
package (R Core Team, 2018). In Gjensidige’s prediction framework the models are updated
continuously, and by fully implementing the smurf package, they can ensure that the
parameters they use are up-to-date when new levels, variables or observations are introduced
to the dataset. Another option is to implement the new method in a more static way by
continuing to estimate the prediction models using the stats package (R Core Team, 2018)
and to group the levels of the categorical variables manually. The method can still be
somewhat implemented by running the SMuRF algorithm using the smurf package
(Reynkens et al., 2018) whenever the analysts consider changing the level groups. Even
though the process of grouping the levels will be done manually, the groups will still be
chosen in a data-driven way, and the analysts can spend less time researching the different

categories. Another benefit of this approach is that it does not necessarily require getting the
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entire organization on board before using it. This approach is the most relevant one if
Gjensidige considers the increase in prediction accuracy too small to spend time and
resources on implementing it, but still consider it beneficial to save time on grouping the
predictor levels manually. If we trust that our results from Analysis are robust, the more
dynamic alternative will likely provide the best prediction accuracy and be most time-
effective. However, Gjensidige must still consider whether the time required to develop and

implement the new method is worth the small increase in prediction accuracy it can provide.

After discussing the results with our persons of contact in Gjensidige, the main potential of
the model seems to be related to the possibility of reducing the time analysts spend grouping
predictor levels. The groups used today are results of many years of research and decisions
by the analysts. In some instances, the SMuRF algorithm has chosen almost exactly the same
groups as the analysts, as shown in the coefficient plots in Analysis. This is perhaps the most
interesting finding from Gjensidige’s perspective, as it illustrates the potential to save time
and resources on finding suitable groups manually. Considering the need to update the
models frequently as new observations, variables or levels are introduced, a method which

can do group the variable levels automatically can prove to be very valuable.

5.3 Limitations and weaknesses

As in any other study, there are several limitations and weaknesses to our research. First of
all, our results are dependent on the performance measures we have chosen to use, as other
performance measures could possibly consider the reference model superior as the margins
are very slim. The results are also dependent on our choice of test set. Our test set only
consists of observations from 2017, which may have been a year different from the ordinary.
In that case, our model may have a superior ability to predict the number of claims for 2017
compared to the reference model, but potentially not for other future years. However, our
model also performed better on the training set which contains observations from 2012-

2016.

Exploring different ways of improving the prediction accuracy of Gjensidige’s models has
not been the focus of our analysis. For example, it might be of interest to attempt to estimate
these models without binning continuous variables beforehand, but this has not been

investigated. Our focus has rather been on fusing predictor levels differently to improve
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prediction accuracy, without considering other ways it could be improved. Therefore, it

might be the case that none of these models perform particularly well.

In addition, when searching for the optimal A using cross-validation, we were only able to
use a subset of the observations as the cross-validation function of the smurf package
(Reynkens et al., 2018) did not work on Gjensidige’s server. We further used the A chosen
based on the subset as input for the SMuRF algorithm, which was run on the entire dataset.
This means the optimal A for the whole dataset may not have been chosen, but through trial-
and-error we identified that the MSE of the A we used was one of the lowest of all A, as we

also show in our analysis.
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6. Conclusion

In this thesis we have researched whether the prediction accuracy of Gjensidige’s models for
predicting claim frequency can be increased by using a data-driven method for the fusion of
categorical predictor levels. We therefore searched for a method that could handle all
predictor types and was compatible with large datasets. The method we selected was the
SMuRF method, which relies on regularization to select variables and fuse levels of
categorical predictors. To assess its performance, we estimate a reference model identical to

the model currently employed by Gjensidige to predict claim frequency.

The results of our analysis show that the model estimated using the SMuRF method
performs slightly better in terms of MSE and AIC than the reference model. It also reduces
the number of degrees of freedom used to create the model, as only levels important to the
model’s performance are included. The reestimated model we create using selected and
fused levels performs better than the reference model but has a lower prediction accuracy

than the first regularized model.

However, the most important finding for Gjensidige was perhaps not the slightly improved
performance of the model. It is reassuring that the models perform at a similar level, but the
fact that the SMuRF algorithm is able to automatically group levels as well as the analysts is
of greater interest. The new method can therefore have a positive effect on the tasks and

resource usage of the department developing the prediction models.
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Appendix

A1

Table and plots of relative frequencies of the remaining variables, excluding the numerical

ones.
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A2

This section shows the mean of claims for variable levels for the remaining variables.

Alder_ftaker: Age of the policyholder

The figure below shows the mean and standard error of Claims for different ages of
policyholders. The line represents the mean values, while the grey ribbon surrounding it
represents the standard errors of the mean of Claims for each age. The plot includes data on
policyholders under the age of 18, which does not make much sense as it is not possible to
have a driver’s license in Norway before the age of 18. As there are very few observations

for these ages, the standard errors are very high.

The standard errors are also very high for ages above 80, as there are few people who drive
vehicles at this age. We observe that the mean number of claims decreases with age. The
number of claims peaks around 20 years of age, and then quite steadily declines up to the age
of approximately 65, after which it declines with a faster rate. It not surprising that young

drivers cause many claims.

0.064

0.024

o 30 60 20
Age of policyholder
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Egenvekt: Weight
The figure below shows the mean weight in kilograms for vehicles of policyholders from
zero to five claims. It seems that the weight of the car increases slightly when the number of

claims increase, before decreasing for observations with five claims.

1000

500

Claims

Leasing flagg and Import_flagg: Leased cars and imported cars

The figures below shows the mean number of claims for policyholders depending on
whether their vehicle is imported or not, in addition to the mean number of claims for
policyholders depending on whether their vehicle is leased or not. It seems that the average
number of claims are somewhat higher for cars that are imported or leased compared with
vehicles that are not imported or not leased. The last group for both variables refers to the
cases where it is “unknown” whether the vehicle of the policyholder is imported or leased. It
seems like the “unknown” vehicles have a mean number of claims between the two groups,
which is to be expected, but we also observe that the standard errors are large because very

few observations are “unknown”.

Mean Number of Glaims for Leased and Non-Leased Vehicles

—T

002

Leasing_flagg
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Mean Number of Claims for Imported and Non-Imported Vehicles

002

J [
Import_flagg

Subcluster: Combination of geography and demography
The figure below shows the mean number of claims for policyholders for Subcluster. There

is a quite high difference between the different levels, and the standard errors are also

relatively small.

Claims

1 10 1 2 3 4 5
Subcluster

Divisjon_kode and Forer_23 aar flagg: Policy registration and whether
vehicle is driven by someone below 23 years old

The figure below shows the mean number of claims for policyholders for Divisjon kode and
Forer 23 aar flagg. There is a difference between the mean number of claims for
Divisjon_kode, but N has a large standard error. Still, it seems it can have an effect on the

number of claims. For Forer 23 aar flagg, the difference is very small between J and N.
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Claims

0014

0.0104

Claims

0.000 4

L N
Divisjon_kode

A3

J

Forer_23_aar_flagg

Coefficients of the estimated and reestimated SMuRF models, where '*' indicates a zero

coefficient and removal from the model.
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ALDER_FORER_Interaction26.
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ALDER_FORER_Interaction32.
ALDER_FORER_Interaction33.
ALDER_FORER_Interaction34.
ALDER_FORER_Interaction35.
ALDER_FORER_Interaction36.
ALDER_FORER_Interaction37.
ALDER_FORER_Interaction38.
ALDER_FORER_Interaction39.
ALDER_FORER_Interaction4e.
ALDER_FORER_Interaction4l.
ALDER_FORER_Interaction42.
ALDER_FORER_Interaction43.
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ALDER_FORER_Interaction6l.
ALDER_FORER_Interaction62.
ALDER_FORER_Interaction63.
ALDER_FORER_Interaction64.
ALDER_FORER_Interaction65.
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ALDER_FORER_Interaction68.
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ALDER_FORER_Interaction90.N -0.329895 -0.362217

A4

Coefficients of the reference model.

Reference
Intercept -2.9676086250
BAND AK G GroupinglZ 0.0844519409
BAND AK G Groupingl9 -0.0752009127
BAND AK G Groupingl2 -0.3193137431
BAND AK G Groupingl18 0.1625651981
BAND AK G Groupingl3 -0.2811221975
BAND AK G Groupingl22 0.4408350498
BAND AK G Groupingl7 -0.1414771713
BAND AK G Groupingl21 0.4016074879
BAND AK G Groupingl6 -0.1867964887
BAND AK G Groupingl23 0.4964815824
BAND AK G Groupingl13 0.0247466902
BAND AK G Groupingl12 0.0036810828
BAND AK G Groupingl5 -0.1847284054
BAND AK G _Groupingl19 0.2443255539
BAND_ AK G_Groupingl25 0.7153991287
BAND_ AK G _Groupingl8 -0.0867514737
BAND AK G _Groupingl17 0.1703833318
BAND AK G Groupingl24 0.5286775109
BAND_AK G_Groupingl 14 0.0415004758
BAND_AK G_Groupingl16 0.1421402881
BAND_AK G_Groupingl4 -0.2284501524
BAND_AK G_Groupingl 15 0.0605512248
BAND_AK G_Groupingl120 0.3335742429
BAND_AK G_Groupingl10 -0.0404221034
BAND_AK G_Groupingl1 -0.3923106690
DIVISJON _KODE GroupinglZ 0.0980167596

DIVISJON _KODE GroupinglL
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_GO01
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G02
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G03
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G04
IMPORT_FLAGG_GroupinglJ

LEASING FLAGG_GroupinglJ
MERKE_KLASSE_KODE NY_Groupingl AA
MERKE_KLASSE _KODE NY_Groupingl AB

MERKE KLASSE KODE NY Groupingl AC

-0.1721597172
-0.1561331656
-0.1082853799
-0.1877912701
-0.2582087311
0.0579595944

0.2400657536

-0.4817853359
-0.1185160198
-0.1346975146
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MERKE KLASSE KODE NY_ Groupingl AD
MERKE KLASSE KODE NY Groupingl AE
MERKE KLASSE KODE NY Groupingl AF
MERKE KLASSE KODE NY Groupingl AG
MERKE KLASSE KODE NY Groupingl AH
MERKE KLASSE KODE NY Groupingl Al
MERKE KLASSE KODE NY GroupinglAJ
MERKE KLASSE KODE NY Groupingl AK
MERKE KLASSE KODE NY Groupingl AL
MERKE KLASSE KODE NY Groupingl AM
MERKE KLASSE KODE NY Groupingl AN
MERKE KLASSE KODE NY Groupingl AO
MERKE KLASSE KODE NY Groupingl AP
MERKE KLASSE KODE NY Groupingl AR
MERKE KLASSE KODE NY Groupingl AS
MERKE KLASSE KODE NY Groupingl BA
MERKE KLASSE KODE NY Groupingl BB
MERKE KLASSE KODE NY Groupingl BC
MERKE KLASSE KODE NY Groupingl BD
MERKE KLASSE KODE NY Groupingl BE
MERKE KLASSE KODE NY GroupinglBF
MERKE KLASSE KODE NY GroupinglBG
MERKE KLASSE KODE NY GroupinglBH
MERKE KLASSE KODE NY GroupinglBI
MERKE KLASSE KODE NY GroupinglSA
MERKE KLASSE KODE NY GroupinglSB
MERKE KLASSE KODE NY_ GroupinglZA
MERKE KLASSE KODE NY GroupinglZB
MERKE KLASSE KODE NY GroupinglZC
MERKE KLASSE KODE NY_GroupinglZD
MERKE KLASSE KODE NY_GroupinglZE
MERKE KLASSE KODE NY_GroupinglZF
MERKE KLASSE KODE NY_GroupinglZG
MERKE KLASSE KODE NY_GroupinglZH
MERKE KLASSE KODE NY_GroupinglZI
MERKE KLASSE KODE NY_ GroupinglZJ
MERKE KLASSE KODE NY_GroupinglZK
MERKE KLASSE KODE NY_ GroupinglZL
MERKE KLASSE KODE NY_GroupinglZM
MERKE KLASSE KODE NY_ GroupinglZO
MERKE KLASSE KODE NY_ GroupinglZP
SUBCLUSTER_Groupingl12
SUBCLUSTER_Grouping12
SUBCLUSTER_Groupingl3
SUBCLUSTER_Grouping19
SUBCLUSTER_Groupingl1
SUBCLUSTER_Groupingl11
SUBCLUSTER_Groupingl8

-0.2734796042
-0.2109871528
0.0158292890

0.0547557452

-0.0517705448
-0.1179918071
0.0438746782

-0.2087193566
-0.0955918581
-0.1388757111
0.0237822574

-0.1127384457
-0.1287337756
-0.2715051484
-0.0062452968
-0.5023721652
-0.2577364256
-0.0844411045
-0.2444026808
-0.0282357282
-0.3295652120
-0.7327637062
-0.0672665516
-0.3059777091
-0.2248378915
-0.9901560679
-0.0976040734
0.3133385624

-0.1135169024
-0.0448643643
-0.2524021275
-0.0365767977
-0.1708782646
-0.2469513478
-0.3653278637
-0.3733106579
0.2898278079

-0.3189539660
-0.0927670166
-0.1494628319
0.1791593400

0.1612286111

-0.0656034321
-0.1529261742
-0.0218009691
0.0640302164

0.0055672732

0.0009105251
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SUBCLUSTER_Grouping110
SUBCLUSTER_Groupingl5

SUBCLUSTER Grouping14
SUBCLUSTER_Grouping16

EFFEKT HK Groupingl EFFEKT HK GO1
EFFEKT HK Groupingl EFFEKT HK GO02
EFFEKT HK GroupinglEFFEKT HK GO03
EFFEKT HK Groupingl EFFEKT HK GO04
EFFEKT HK GroupinglEFFEKT HK GO05
EFFEKT HK Groupingl EFFEKT HK GO06
EFFEKT HK Groupingl EFFEKT HK GO07
EFFEKT HK Groupingl EFFEKT HK GOS8
EFFEKT HK Groupingl EFFEKT HK GO09
EFFEKT HK Groupingl EFFEKT HK G10
EFFEKT HK Groupingl EFFEKT HK Gl1
EFFEKT HK Groupingl EFFEKT HK G12
EFFEKT HK Groupingl EFFEKT HK G13
EFFEKT HK Groupingl EFFEKT HK Gl14
EFFEKT HK Groupingl EFFEKT HK G15
EFFEKT HK GroupinglEFFEKT HK G16
EFFEKT HK GroupinglEFFEKT HK G17
EFFEKT HK Groupingl EFFEKT HK G18
EFFEKT HK GroupinglEFFEKT HK GI19
EFFEKT HK GroupinglEFFEKT HK G20
EFFEKT HK GroupinglEFFEKT HK G21
EFFEKT HK Groupingl EFFEKT HK G22
EFFEKT HK Groupingl EFFEKT HK G23
EFFEKT HK GroupinglEFFEKT HK G24
EGENVEKT GroupinglEGENVEKT GO1
EGENVEKT GroupinglEGENVEKT G02
EGENVEKT GroupinglEGENVEKT GO03
EGENVEKT GroupinglEGENVEKT G04
EGENVEKT Groupingl EGENVEKT GO05
EGENVEKT GroupinglEGENVEKT G06
EGENVEKT GroupinglEGENVEKT GO07
EGENVEKT GroupinglEGENVEKT_ GO08
EGENVEKT Groupingl EGENVEKT G09
EGENVEKT GroupinglEGENVEKT G10
EGENVEKT GroupinglEGENVEKT Gl11
EGENVEKT GroupinglEGENVEKT G12
EGENVEKT GroupinglEGENVEKT G13
EGENVEKT GroupinglEGENVEKT G14
EGENVEKT GroupinglEGENVEKT G15
EGENVEKT GroupinglEGENVEKT G16

KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G01
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G02
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G03
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G04

0.0042430586
0.0256452344
-0.1522708111
-0.0540593534
-0.2409274646
-0.0994246779
-0.0109132382
0.0104021789
-0.0657068107
-0.0456724959
-0.0235560260
0.0344946323
0.0590623399
0.0601125458
0.1797179479
0.0936014584
0.1629708124
0.1368303256
0.1677638944
0.2712279159
0.2722784506
0.2670458075
0.3032943403
0.2943361826
0.2839250434
0.2294898432
0.3938214473
0.4497735931
-0.9940052903
-0.4373411729
-0.1300383047
-0.1467152207
-0.0518729194
0.0190214043
0.0677554681
0.1178102137
0.1513739853
0.1704854166
0.1405956199
0.2065242142
0.1707134416
0.2580567519
0.2817406761
-0.1293204124
-7.5053961221
-0.2549354525
-0.1679325095
0.1864156465
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KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G05
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G06
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G07
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G08
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G09
MV_ALDER Groupingl0

MV_ALDER Groupingl1

MV_ALDER Groupingl10

MV_ALDER Groupingl12

MV_ALDER Groupingl13

MV_ALDER Groupingl 14

MV_ALDER Groupingl15

MV_ALDER Groupingl16

MV_ALDER Groupingl17

MV_ALDER Groupingl18

MV_ALDER Groupingl19

MV_ALDER Groupingl?2

MV_ALDER Groupingl3

MV_ALDER_Groupingl4

MV_ALDER_Groupingl5

MV_ALDER_Groupingl6

MV_ALDER_Groupingl7

MV_ALDER_Groupingl8

MV_ALDER_Groupingl9

MV_ALDER GroupinglMV_ALDER GO1

MV_ALDER GroupinglMV_ALDER G02

MV_ALDER GroupinglMV_ALDER GO03

MV_ALDER GroupinglMV_ALDER G04
ALDER FORER Interaction19.N

ALDER_FORER Interaction20.N

ALDER_FORER Interaction21.N

ALDER _FORER _Interaction22.N

ALDER _FORER Interaction23.N

ALDER_FORER Interaction24.N

ALDER _FORER Interaction25.N

ALDER _FORER Interaction26.N

ALDER_FORER Interaction27.N

ALDER_FORER Interaction28.N

ALDER_FORER Interaction29.N

ALDER FORER Interaction30.N

ALDER_FORER Interaction31.N

ALDER _FORER Interaction32.N

ALDER FORER Interaction33.N

ALDER FORER Interaction34.N

ALDER _FORER Interaction35.N

ALDER FORER Interaction36.N

ALDER FORER Interaction37.N

ALDER FORER Interaction38.N

0.3924743799
0.5761008250
0.7791373328
0.9757461831
1.1416531225
-0.3836161367
-0.2423227689
-0.0717086408
-0.0805578889
-0.0240763748
-0.0891989710
-0.0726886562
-0.1655244053
-0.1769695626
-0.2134672360
-0.1963917017
-0.1277186575
0.0041021660
-0.0960722423
-0.0076292131
-0.0674647295
0.0096461265
-0.0644954431
0.0003951305
-0.5034236592
-0.2773883876
-0.5660267602
-1.1429010938
0.5512270280
0.5476926021
0.5201113981
0.4079626926
0.2447602470
0.2785020135
0.2765059649
0.2259044414
0.0815283651
0.2494172408
-0.0007962183
0.1048624314
0.0959737373
0.1561961856
0.0373751860
0.1912016352
-0.1609059075
0.1223096324
0.1641404634
0.0006367598
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ALDER FORER Interaction39.N
ALDER FORER Interaction4.N

ALDER FORER Interaction40.N
ALDER FORER Interaction41.N
ALDER FORER Interaction42.N
ALDER FORER Interaction43.N
ALDER FORER Interaction44.N
ALDER FORER Interaction45.N
ALDER FORER Interaction46.N
ALDER FORER Interaction47.N
ALDER FORER Interaction48.N
ALDER FORER Interaction49.N
ALDER FORER Interaction5.N

ALDER FORER Interaction51.N
ALDER FORER Interaction52.N
ALDER FORER Interaction53.N
ALDER FORER Interaction54.N
ALDER FORER Interaction55.N
ALDER _FORER Interaction56.N
ALDER_FORER Interaction57.N
ALDER _FORER Interaction58.N
ALDER FORER Interaction59.N
ALDER _FORER Interaction6.N

ALDER FORER Interaction60.N
ALDER FORER Interaction61.N
ALDER_FORER Interaction62.N
ALDER FORER Interaction63.N
ALDER FORER Interaction64.N
ALDER FORER Interaction65.N
ALDER FORER Interaction66.N
ALDER FORER Interaction67.N
ALDER FORER Interaction68.N
ALDER FORER Interaction69.N
ALDER _FORER Interaction7.N

ALDER FORER Interaction70.N
ALDER FORER Interaction71.N
ALDER FORER Interaction72.N
ALDER FORER Interaction73.N
ALDER FORER Interaction74.N
ALDER FORER Interaction75.N
ALDER FORER Interaction76.N
ALDER FORER Interaction77.N
ALDER FORER Interaction78.N
ALDER FORER Interaction79.N
ALDER _FORER Interaction8.N

ALDER FORER InteractionALDER FTAKER GO1.N
ALDER FORER InteractionALDER FTAKER GO02.N
ALDER FORER InteractionALDER FTAKER GO03.N

0.2802015163
-7.9166630986
0.0836642006
0.2105510646
0.1590702734
0.2715080471
0.1069423336
0.1762531660
0.1310537966
0.0956154296
0.0881181041
0.0844668593
-6.1380647744
0.0056635331
-0.0356932825
-0.0069448439
0.0077419365
-0.0137628862
-0.0477238296
-0.1064556023
-0.0336747073
-0.1052388119
-6.1649902175
-0.0804836191
-0.1154042416
-0.1256229361
-0.1814343619
-0.0080437745
0.0078079844
-0.0982840596
-0.3188132206
-0.1258196084
-0.0994992150
-6.5594002478
-0.4265145066
-0.1138060357
-0.3752468144
-0.2537065807
-0.4492363650
-0.3158276268
-0.4352614019
-0.2333732388
-1.0897875572
-0.2709617806
-7.2515899398
0.5308909543
-0.7745870128
-0.7004405530
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ALDER FORER InteractionALDER FTAKER GO04.N

ALDER FORER Interaction50.J
ALDER FORER Interaction19.J
ALDER FORER Interaction2.J

ALDER FORER Interaction20.J
ALDER FORER Interaction21.J
ALDER FORER Interaction22.J
ALDER FORER Interaction23.J
ALDER FORER Interaction24.J
ALDER FORER Interaction25.J
ALDER FORER Interaction26.J
ALDER FORER Interaction27.J
ALDER FORER Interaction28.J
ALDER FORER Interaction29.J
ALDER FORER Interaction3.J

ALDER FORER Interaction30.J
ALDER FORER Interaction31.J
ALDER FORER Interaction32.J
ALDER_FORER Interaction33.J
ALDER_FORER Interaction34.J
ALDER_FORER Interaction35.J
ALDER_FORER Interaction36.J
ALDER_FORER Interaction37.J
ALDER_FORER Interaction38.J
ALDER_FORER Interaction39.J
ALDER _FORER Interaction4.J

ALDER_FORER Interaction40.J
ALDER _FORER Interaction41.J
ALDER _FORER Interaction42.J
ALDER_FORER Interaction43.J
ALDER_FORER Interaction44.J
ALDER FORER Interaction45.J
ALDER FORER Interaction46.J
ALDER_FORER Interaction47.J
ALDER_FORER Interaction48.J
ALDER FORER Interaction49.J
ALDER _FORER Interaction5.J

ALDER_FORER Interaction51.J
ALDER_FORER Interaction52.J
ALDER_FORER Interaction53.J
ALDER _FORER Interaction54.J
ALDER FORER Interaction55.J
ALDER _FORER Interaction56.J
ALDER FORER Interaction57.J
ALDER FORER Interaction58.J
ALDER FORER Interaction59.J
ALDER FORER Interaction6.J

ALDER FORER Interaction60.J

-0.4088095171
-0.0110232381
-0.1075474734
1.0747518868
0.2054193793
0.3739767152
0.4283439286
0.4161701972
0.3256360849
0.2883979261
0.2501422207
0.2374356958
0.1949091821
0.1979893515
1.4123335733
0.1711448022
0.1387997813
0.1374674501
0.1375252940
0.1029643419
0.1071369936
0.0969251484
0.0961849293
0.0727741050
0.0799005354
1.8048501102
0.0497049459
0.0926555183
0.0410382686
0.0977203411
0.0581012438
0.0176736554
0.0284301736
0.0202138966
0.0389873408
0.0223311207
-7.2183397797
-0.0247876321
0.0067589263
-0.0506516669
-0.0616035158
-0.0862359165
-0.1566520525
-0.1151298847
-0.1264621407
-0.0954639821
1.4806219567
-0.0889089510
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ALDER FORER Interaction61.J
ALDER FORER Interaction62.J
ALDER FORER Interaction63.J

ALDER FORER Interaction64.J

ALDER FORER Interaction65.J

ALDER FORER Interaction66.J

ALDER FORER Interaction67.J

ALDER FORER Interaction68.J
ALDER FORER Interaction69.J
ALDER FORER Interaction7.J
ALDER FORER Interaction70.J

ALDER FORER Interaction71.J
ALDER FORER Interaction72.J
ALDER FORER Interaction73.J
ALDER FORER Interaction74.J
ALDER FORER Interaction75.J
ALDER FORER Interaction76.J
ALDER FORER Interaction77.J

ALDER_FORER Interaction78.J

ALDER_FORER Interaction79.J

ALDER _FORER Interaction8.J

ALDER FORER InteractionALDER FTAKER GO1.J
ALDER FORER InteractionALDER FTAKER G02.J
ALDER FORER InteractionALDER FTAKER GO03.J
ALDER FORER InteractionALDER FTAKER G04.J

AS

-0.1262064881
-0.1647287699
-0.1494483174
-0.1273154778
-0.1773746203
-0.2581408052
-0.2607849148
-0.2712930697
-0.3386968640
-7.0208919639
-0.3236806095
-0.3863763406
-0.5210396152
-0.4119993955
-0.4628636045
-0.5891204540
-0.6756901470
-0.5660134477
-0.6133837234
-0.6194511007
0.4904805544

-0.1609776843
-0.7109276587
-0.7938495021
-0.7753851540

Plots of coefficient estimates for all three models of remaining variables.
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Coefficient estimates

Coefficient estimates

Goefficient estimates

Coefficient estimates of Car Brand

0- colour
== Estimation Smurf
—#— Reestimation Smurf

=% Reference

-
O T A N S SU R L S S SO SU RS R RCRN SN R RCAY)
B L e e e L L LS e TS e T S
Merke_klasse_kode_ny
Coefficient estimates of Car Weight
05-
00-
colour
0.5~ == Estimation Smurf
== Reestimation Smurf
== Reference
-10-
1.5+
v | ) v | ] v ' ] v
0 200 1150 1400 1700 1950 2200 2450 2700 2950
Egenvekt
Coefficient estimates of Mileage
15-
10-
colour
=#= Estimation Smurf
05- =#= Reestimation Smurf
== Reference
00-

' '
1 5 8 16 20 25 30 40 50 80 110 999
Kjor_lengde _kode



81

Coefficient estimate

Coefficient estimates

Coefficient estimates

Coefficient estimate of Leasing

0.35-
0.30 -
colour
@ Estimation Smurf
0.25-
: @ Reestimation Smurf
@ Reference
0.20~-
0.15-
Yes

Leasing_flagg

Coefficient estimates of Fuel Code

00~
-0.1 -
colour
—#- Estimation Smurf
—#- Reestimation Smurf
0.2~ —#— Reference
0.3~

1 3 4 5 6 7 8 g 10 1
Drivstoff kode

Coefficient estimates of Divisjon_kode

0.1-

001 colour
- Estimation Smurf
—#- Reestimation Smurf
—#- Reference

01 -

-0.2-

—-

Otl;e r
Divisjon_kode



