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Summary 

The aim of this thesis is to determine whether the prediction accuracy of a model can be 

improved by using a data-driven method to bin continuous variables and group the levels of 

categorical variables. We use data on the policyholders of one of Gjensidige's insurance 

products to perform our analysis, and specifically aim to improve Gjensidige's Poisson 

regression model for predicting claim frequency, where the predictors are binned and 

grouped manually today.  

We analyze the effect of using a regularization framework that combines the Lasso method 

and generalizations of the method that have been adapted to nominal and ordinal predictors. 

These generalizations constrain coefficients and the differences between them, effectively 

fusing and selecting predictor levels. By optimizing the resulting objective function in R 

using the newly developed smurf package (Reynkens, Devriendt & Antonio, 2018), we 

estimate a penalized Poisson regression model. 

We reestimate a Poisson regression model using the selected and fused predictor levels as 

input in order to reduce the bias of the estimates. The resulting model is compared with the 

model Gjensidige currently uses for predicting claim frequency, to determine the effect of 

using the data-driven approach. We validate the performance of the prediction models using 

MSE and AIC as performance measures and find that our reestimated model performs 

slightly better in terms of prediction accuracy, in addition to reducing the number of 

parameters used in the model. We conclude that regularization can be used as a data-driven 

method of binning and grouping predictor levels to improve prediction accuracy.  
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1. Introduction 

1.1 Motivation 

The motivation for writing this thesis is based on a request from Gjensidige, related to their 

ongoing project on improving their framework for predictive models. In initial meetings 

regarding the content of this thesis, our contact person from Gjensidige presented an 

interesting challenge concerning how they treat their variables prior to modeling. Firstly, 

Gjensidige uses nominal and ordinal variables in their prediction models, but before they are 

included as predictors in the models, the number of categories within the variable is usually 

reduced by grouping some of the categories together. Secondly, Gjensidige recodes some of 

the continuous variables to ordinal variables by dividing them into intervals. These processes 

are similar as they both concern determining which values of a predictor that bear 

resemblance to each other and can be treated together. Therefore, these processes will often 

be discussed as one throughout the thesis.  

The challenge with Gjensidige’s approach today is that these processes and the decisions 

related to them are performed manually. Analysts choose the groups and set the intervals 

using their intuition and experience. It is a time-consuming task that could reduce the 

prediction ability of the model if done poorly. As automating the processes of their 

prediction framework is an important aspect of the ongoing project, studying how to treat 

these variables in a more data-driven and automated way is a relevant project both for us and 

for Gjensidige. Based on this challenge, Gjensidige’s request was for us to find a new 

approach for choosing groups and setting intervals that can save time for the analysts and 

possibly improve the prediction accuracy of the models. Improved prediction models can 

lead to a fairer pricing for their customers, as it will better reflect the likelihood of them 

using their insurance, which is one of the reasons why this topic is of interest to us. 

Clarifications 
Categorical variables can take a limited number of different values that are commonly 

referred to as categories, groups or levels. Throughout this thesis, we will mainly refer to 

these values as levels, both for the nominal variables, ordinal variables and the continuous 

variables recoded to ordinal variables. Being the main purpose and motivation for the thesis, 
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the earlier mentioned grouping of these levels will be discussed frequently and referred to as 

grouping, combining or fusing levels.  

Why group at all? 
Many of the categorical predictors Gjensidige currently uses have many levels. Problems 

arise when some of the levels contain few observations, as this leads to estimates with high 

variance. The variables can still provide valuable information, and a possible solution is to 

fuse together some levels of the variable. Another reason to group the levels became clear to 

us when we tried to run a model where all levels were included as dummy variables and 

ended up being contacted by Gjensidige who warned us that we were taking up too much of 

their server capacity. 

A common challenge 
Reducing the number of levels of categorical variables is a common challenge, but there are 

not any well-known best practice solutions. Therefore, during the last couple of decades, 

many new approaches and methods have been suggested. This is another reason why this is 

an exciting topic to study at this point in time.  

1.2 Background 

In this section we will provide background information about Gjensidige and common 

concepts within the insurance industry. We will also explain how insurance companies use 

predictive modeling to calculate premiums based on data on their clients, in order to 

illustrate the context of the task from Gjensidige.  

 Insurance concepts 

Insurance companies form an important fundament of a functioning economy, as they secure 

the financial stability of households and firms (ECB, 2009). Every day, households and 

firms face risk and uncertainty, and insurance companies can help manage this uncertainty 

by offering products that provide financial protection against potential economic losses 

(Iowa Insurance Institute, 2017). These products and their terms are outlined in contracts, 

called insurance policies.  
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The party holding the insurance is called a policyholder. The policyholder pays a fee to the 

insurance company and is then compensated if losses incur according to the policy. 

Insurance companies thus stimulate economic activity by ensuring that the policyholders 

continue to purchase and invest despite the risks they encounter. The fee policyholders pay is 

called the premium and is usually paid monthly or yearly. If the policyholder experiences a 

loss potentially covered by the insurance policy, they may submit a claim, which is then 

examined by the insurance company. If the claim is indeed covered by the insurance policy, 

the insurance company compensates the policyholder (Iowa Insurance Institute, 2017). 

 About Gjensidige 

Gjensidige is a Nordic insurance group that offers insurance products in Norway, Sweden, 

Denmark and the Baltic countries. In Norway, the company also offers services within 

banking, pension and savings (Gjensidige, 2018a). In 2017, Gjensidige was the largest 

insurance company in Norway with a market share of 25.5% and had an operating income of 

27 billion (Gjensidige, 2018b). Gjensidige offers a range of insurance products in Norway, 

covering cars, homes, boats, travel, pets, life and health, valuables and personal property 

(Gjensidige, 2018c). 

 The importance of predictive modeling  

For insurance companies like Gjensidige to be profitable, it is vital that the premiums they 

charge are at a competitive level, but still cover the losses they have on their clients’ claims. 

Due to asymmetrical information between the insurance company and the policyholder 

regarding the risk of the client, problems with adverse selection arise (Finkelstein & Poterba, 

2000). Within the insurance industry, the problem of adverse selection is related to the 

tendency of high-risk clients to be more likely than the average client to buy insurance. To 

avoid taking losses on these clients, the insurance companies have to take their clients’ risk 

profiles into account when setting premiums. Therefore, the insurer will usually charge 

different premiums across the customer base, increasing the premium for clients that are 

considered high-risk.  

 

However, they also need to keep the premiums sufficiently low so that the low risk clients 

have incentives to buy insurance at all. This helps the insurance companies obtain a larger 

and more differentiated customer base. When insurance companies calculate the premiums 
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for different products, predictive modeling is a valuable tool for determining the risk profile 

of their clients, and thereby reducing the problem of asymmetrical information that leads to 

adverse selection. It is therefore essential that the prediction models perform well, which 

makes it a natural priority for Gjensidige to allocate resources into the research of possible 

improvements to their models. As the attributes of the policyholders are valuable indicators 

of their risk profile, it is important to find out how to handle the variables in order to take 

advantage of this information.  

 

 Calculating the premium 

The predictive model for a specific insurance product is designed to predict the amount of 

money an individual, with a specific set of attributes, will claim yearly. This is referred to as 

the expected loss for this customer. The expected loss will then form the basis for the 

premium that a customer with these attributes will have to pay to be covered by the 

insurance company.  On top of this price, insurance companies like Gjensidige may add 

administrative fees and discounts depending on which customers they want to attract and 

retain (Parodi, 2016).  

 

There are two possible approaches for predicting the expected loss of a policyholder. One 

option is to build a model that directly estimates the expected loss of the individual. Another 

option is an indirect approach where one model is built for predicting claim frequency, 

which is the number of claims in a year, and another model is built for predicting claim 

severity, the total loss per claim. If one chooses to use the indirect approach, the two models 

can be combined by multiplying the expected claim frequency by the expected claim 

severity to get the expected loss for the customer (Goldburd, Khare & Tevet, 2016).  

 

Building two models instead of one will most likely demand more resources, but there are 

several advantages to this approach that make it a common choice. For one, it often provides 

more insight than predicting the expected loss directly, as it is possible to distinguish which 

factors affect the frequency of claims and which factors affect the severity of these claims. In 

some cases, some effects may even disappear completely when predicting the expected loss 

directly, as it is possible that some attributes have a positive effect on frequency but an 

equally negative effect on severity (Goldburd et al., 2016). 
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1.3 Research question 

The purpose of this thesis is to find a method for grouping the levels of categorical variables 

in a data-driven way, rather than doing it manually. For the method to be valuable for 

Gjensidige, it must prove to be better than their current one in some way. The method can 

benefit Gjensidige through both increased prediction accuracy and reduction in time spent on 

grouping the variable levels. However, prior to a potential implementation of the method, the 

change in prediction accuracy is the only available measure and will be the focus of this 

thesis. Therefore, the research question of this thesis is: 

 

Can the prediction accuracy of Gjensidige’s claim frequency models be increased by using a 

data-driven method for the fusion of levels of categorical predictors? 

 

 Delimitation 

Originally, Gjensidige asked us to find a way to fuse the levels of the predictor representing 

vehicle brand. However, they were also interested in a method for fusing any other type of 

categorical predictor and for performing variable selection. Through our research we have 

been able to find a relevant method developed by Devriendt, Antonio, Reynkens & Verbelen 

(2018), which is able to do all of this simultaneously. In order to answer our research 

question, we will use this method on Gjensidige’s data on their policyholders and investigate 

the effect on prediction accuracy. 

 

Gjensidige’s framework for prediction models involves predicting the expected loss for 

policyholders indirectly through separate models for predicting claim frequency and claim 

severity. To limit the scope of this thesis, we focus on improving the model for predicting 

claim frequency, but our potential findings may be transferred to the other model types. We 

further limit the scope by only modeling the claim frequency for one insurance product. The 

insurance products related to motor vehicles have the second-most claims of all types of 

insurance in Norway (SSB, 2018). These products are therefore important and as Gjensidige 

has high exposure and relatively high claim frequency for most of them, they are suitable for 

our project. To perform our analysis, we use data on the policyholders of comprehensive 

motor vehicle coverage where the claims are related to windscreen coverage. Comprehensive 
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severity. To limit the scope of this thesis, we focus on improving the model for predicting 

claim frequency, but our potential findings may be transferred to the other model types. We 

further limit the scope by only modeling the claim frequency for one insurance product. The 

insurance products related to motor vehicles have the second-most claims of all types of 

insurance in Norway (SSB, 2018). These products are therefore important and as Gjensidige 

has high exposure and relatively high claim frequency for most of them, they are suitable for 

our project. To perform our analysis, we use data on the policyholders of comprehensive 

motor vehicle coverage where the claims are related to windscreen coverage. Comprehensive 
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motor vehicle coverage is an expensive insurance product that covers a range of damages 

and earns insurance companies high premiums.  

1.4 Structure 

Chapter 2 outlines the methods that will be used to answer our research question. In chapter 

3 we describe the dataset we perform our analysis on and explain how we have treated the 

variables differently than Gjensidige prior to modeling. In chapter 4 we explain how we have 

performed our analysis and present our results. Further, in chapter 5 we discuss the 

theoretical background and implications of our results, before we make our final conclusions 

in chapter 6.  
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2. Methods 

In this chapter, we describe our selected method further, where we employ some of the 

benefits that can be obtained when using regularization methods to select and fuse levels. By 

adding a penalty term which constrains the coefficients of the Poisson regression model 

Gjensidige uses today, prediction accuracy can be improved. We go through the components 

of the objective function we minimize, before explaining what algorithm we use for 

optimization. In the last section of the chapter, we will explain what type of dataset and 

which performance criteria will be used for the validation and comparison of the models. 

2.1 Selection of method to fuse and select levels 

When selecting a method to answer our research question, it was important for us to find a 

method which could be used for both nominal, ordinal and continuous predictors. In 

addition, it was important that it could possibly improve prediction accuracy; simply 

choosing a method based on being data-driven was not enough. Furthermore, Gjensidige 

uses large datasets to create their models, so the method had to work for large datasets. 

For our purpose, the use of regularization techniques to shrink coefficients is likely the 

approach where the most research has been performed (Tibshirani, 1996; Tibshirani, 

Saunders, Rosset, Zhu & Knight, 2005; Bondell & Reich, 2009; Gertheiss & Tutz, 

2010; Oelker & Tutz, 2017; Devriendt et al., 2018). Through extensions of the original 

regularization methods like Ridge regression and Lasso, they are now able to bin continuous 

variables and fuse categorical predictor levels, which means we can use the techniques for 

our purpose. The latest method developed by Devriendt et al. (2018) can be used for 

categorical variables on large datasets and has shown to improve prediction accuracy. Before 

we expand on this method, we will present some alternative approaches considered in the 

literature to fuse levels of categorical variables. 

 Alternative methods 

Traditionally, the most common approach for handling categorical predictors for regression 

purposes has been converting each level of the variable into a dummy variable (Johnson & 

Kuhn, 2013) and occasionally also reducing the number of levels by combining those with 
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few observations into an “Other” category. However, the prior is computationally 

demanding if there are many levels, while the latter does not take the levels’ effect on the 

dependent variable into account, likely reducing the prediction accuracy of the estimated 

model.  

Consequently, as we have discovered through the process of selecting a method, research has 

been conducted throughout the last two decades to find better methods for collapsing levels 

of categorical variables. It is still an emerging field of research of which few approaches 

have been tested extensively, which makes implementation challenging. An ad-hoc method 

is to use classification and regression trees (CART) (Hastie, Tibshirani & Friedman, 2009). 

The clustered categories can then be found by analyzing the tree nodes, which contain 

information on how the predictors are divided into regions depending on their effect on the 

dependent variable (Hastie, James, Tibshirani & Witten, 2017). Berger & Tutz (2014) 

systemized this approach by introducing tree-structured clustering to obtain clusters of 

categorical data, allowing other types of variables to be included in the model. The non-

categorical variables will then have a linear or additive effect on the response. 

Another suggested approach is using Tukey’s test to perform pairwise comparisons within 

predictors (Tukey, 1949; Hothorn, Bretz & Westfall, 2008) to determine which levels differ 

from each other simultaneously. Sparse Bayesian modeling of the effects of categorical 

variables within a regression framework has been considered by Pauger & Wagner (2017), 

where a spike and slab prior is placed on differences between regression coefficients. 

Unfortunately, all the aforementioned methods are problematic to implement in R. Either 

they cannot handle predictors with many levels, the corresponding packages are not 

maintained, or they are too computationally intensive. Therefore, we elect to use a 

regularization method. 

 

 

 

8 

few observations into an "Other" category. However, the pnor 1s computationally 

demanding if there are many levels, while the latter does not take the levels' effect on the 

dependent variable into account, likely reducing the prediction accuracy of the estimated 

model. 

Consequently, as we have discovered through the process of selecting a method, research has 

been conducted throughout the last two decades to find better methods for collapsing levels 

of categorical variables. It is still an emerging field of research of which few approaches 

have been tested extensively, which makes implementation challenging. An ad-hoc method 

is to use classification and regression trees (CART) (Hastie, Tibshirani & Friedman, 2009). 

The clustered categories can then be found by analyzing the tree nodes, which contain 

information on how the predictors are divided into regions depending on their effect on the 

dependent variable (Hastie, James, Tibshirani & Witten, 2017). Berger & Tutz (2014) 

systemized this approach by introducing tree-structured clustering to obtain clusters of 

categorical data, allowing other types of variables to be included in the model. The non- 

categorical variables will then have a linear or additive effect on the response. 

Another suggested approach is using Tukey' s test to perform pairwise comparisons within 

predictors (Tukey, 1949; Hathorn, Bretz & Westfall, 2008) to determine which levels differ 

from each other simultaneously. Sparse Bayesian modeling of the effects of categorical 

variables within a regression framework has been considered by Pauger & Wagner (2017), 

where a spike and slab prior is placed on differences between regression coefficients. 

Unfortunately, all the aforementioned methods are problematic to implement in R Either 

they cannot handle predictors with many levels, the corresponding packages are not 

maintained, or they are too computationally intensive. Therefore, we elect to use a 

regularization method. 



9 

2.2 Objective function of the regularized model 

To create the regularized model, we minimize the penalized objective function (Devriendt et 

al., 2018) 

𝒪(𝜷; 𝜲, 𝒚) = 𝑓(𝜷; 𝑿, 𝒚) + λ ∑ 𝑔𝑗(𝜷𝑗)
𝐽

𝑗=0

,       (2.1) 

where y is the response vector, β is the parameter vector, while X is the corresponding model 

matrix. In X, continuous and binary predictors are represented by one column since they are 

coded with one parameter, while nominal and ordinal predictors are dummy-coded, and are 

therefore represented by as many columns as they have levels. f refers to the loss function, 

measuring the distance between the observed and fitted data. It can for example be the least 

squares criterion or minus the log-likelihood (Devriendt et al., 2018). 

The second term of the objective function (2.1) is the penalty term. The vector β has been 

partitioned into a subvector βj for each predictor j and contains all the parameters used to 

code the predictor. For a continuous variable, there will only be one coefficient in subvector 

βj, while for a categorical variable with many levels, there will be one coefficient for each 

level. gj represents different types of penalties and penalty weights and is chosen depending 

on the predictor type of each predictor j that is penalized. 

In the next sections, we elaborate on the different components of the objective function. We 

begin by describing our loss function, the negative Poisson log-likelihood. Further, we 

describe what regularization methods, penalty terms and penalty weights are and how they 

can be used. 

2.3 Poisson regression 

The objective function (2.1) includes a loss function f that measures the distance between the 

observed and fitted data. Gjensidige uses a Poisson regression model to predict claim 

frequency, making the negative Poisson log-likelihood the loss function. As our aim is to 

find out if new groupings of variables improve prediction accuracy rather than changes in the 

loss function, we will use the same loss function as Gjensidige for our model. A Poisson 

regression model can be estimated using the stats package (R Core Team, 2018) in R.  
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A Poisson regression model assumes that the random component of the regression model has 

the Poisson probability distribution (Dunteman & Ho, 2006). It is the main tool used for 

estimating claim frequency in the insurance industry, because the distribution is well suited 

for a situation where there are few occurrences of the event compared to the amount of trials, 

but the event can happen in any of the trials (Goldburd et al., 2016). This description is 

usually suitable for an insurance model as the vast majority of the policyholders do not have 

any claims.  

If the random dependent variable Yi conditioned by the vector of predictors Xi is assumed to 

be Poisson distributed, the probability density function of Yi is (David & Jemna, 2015) 

𝑓(𝑦𝑖|𝑥𝑖) =
e−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
 ,         (2.2) 

where e is the base of the natural logarithm and μ is the distribution parameter.  μ represents 

the average number of events in the given time interval, for example the number of claims. 

Therefore, Equation 2.2 represents the probability that Yi will take the value yi (yi ∈ ℕ), 

dependent on the attributes of policyholders. The mean and variance of the true Poisson 

distribution are equal, so the distribution parameter μ represents both the mean and the 

variance of the dependent variable. 

For the Poisson distribution, the mean of the dependent variable is related to the linear 

predictor through the natural logarithmic function. A linear model can be used to estimate 

the relationship between the predictors and log(μ). However, we are not interested in the 

transformed μ, but the predicted μ itself, which is derived by applying the inverse link 

function g to the calculated linear predictors (Goldburd et al., 2016) 

log(𝜇) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 ⇒
𝑝

𝑗=1

𝜇𝑖 = 𝑒𝑥𝑖
𝑡𝛽.                (2.3) 

Estimation of the parameters is done by maximum likelihood estimation. To find the 

maximum likelihood of Equation 2.2, the likelihood function is defined as (David & Jemna, 

2015) 

𝐿(𝛽) = ∏
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

𝑦𝑖!
=

𝑛

𝑖=1

∏
𝑒−𝑒𝑥𝑖

𝑡𝛽
(𝑒𝑥𝑖

𝑡𝛽)
𝑦𝑖

𝑦𝑖!

𝑛

𝑖=1

 .           (2.4) 
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By using a logarithm on both sides of the equation, the log-likelihood function is found 

(David & Jemna, 2015) 

𝐿𝐿(𝛽) = ∑[𝑦𝑖 ln 𝜇𝑖 − 𝜇𝑖 − log 𝑦𝑖!]
𝑛

𝑖=1

= ∑ [𝑦𝑖𝑥𝑖
𝑡𝛽 − 𝑒𝑥𝑖

𝑡𝛽 − log 𝑦𝑖!]
𝑛

𝑖=1

.             (2.5) 

The scaled negative of the log-likelihood function will be the loss function in our objective 

function (2.1). To create the scaled negative of the log-likelihood function, we divide by the 

number of policyholders and negate the equation 

−
1
𝑛

∑ [𝑦𝑖𝑥𝑖
𝑡𝛽 − 𝑒𝑥𝑖

𝑡𝛽 − log 𝑦𝑖!]
𝑛

𝑖=1

.             (2.6) 

 

 Offset 

When predicting the number of claims for a policyholder within a certain time interval, it is 

relevant to include which proportion of this time period the individual held the insurance. To 

account for this in the model, an offset is included. An offset is defined as a predictor whose 

coefficient is constrained to be equal to 1 (Goldburd et al., 2016). By including exposure as 

an offset, the estimated coefficients of the other predictors are affected to take the exposure 

into account 

𝑙𝑜𝑔(𝜇) = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

+ log(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒),             (2.7) 

which can be re-written as 

𝑙𝑜𝑔 (
𝜇

𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒
) =  𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

.             (2.8) 

In Equation 2.8, the left-hand side of the equation is the rate of claims per unit exposure. 

Therefore, by including exposure as an offset in the objective function, the predicted number 

of claims will be equal to be the rate of claims per unit exposure. When including an offset, 

it is important that it is on the same scale as the linear predictor. Therefore, as we use a log-

link model, the offset must be logged (Goldburd et al., 2016). By including the offset in the 

objective function, we ensure that short-time policyholders are not weighted 
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disproportionately much, which would lead to us systematically underpredicting the number 

of claims. 

As we use the scaled negative of the log-likelihood function and include exposure as an 

offset, the first term of the objective function using the notation of Devriendt et al. (2018) 

becomes 

−
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!)).       (2.9)  

2.4 Regularization methods 

The second term in our objective function is a regularization term that constrains 

coefficients. Its components are the tuning parameter λ, a penalty function and penalty 

weights. Firstly, we explain what regularization methods are in general before we in later 

sections explain each component in detail. 

To explain what regularization methods are, we will show an example which includes a 

penalty term and a tuning parameter λ. One of the most well-known penalty terms is the term 

used in Ridge regression (Hoerl & Kennard, 1970) 

𝒪(𝜷; 𝜲, 𝒚) = −
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!)) + 𝝀 ∑ 𝜷𝒋
𝟐

𝒑

𝒋=𝟏

,     (2.10) 

where the penalty term is the sum of all the model’s coefficients. In the case of Ridge 

regression, an L2 penalty is used, meaning the sum of the penalty is squared. However, in 

later examples we will see that this is not the case for all regularization techniques. The size 

of the penalty term is small when the beta estimates are closer to zero, which means that the 

penalty term shrinks the estimates of βj towards zero when the expression is minimized.  

To what extent the coefficients will be constrained depends on the tuning parameter λ, which 

the penalty term is multiplied by. As the size of λ decides the relative strength of the penalty 

compared to model fit, a higher value of λ will increase the impact of the penalty term and 

the coefficient estimates will approach zero. If λ is set to 0, the method will produce the 

same estimates as the objective function without the penalty term (Hastie et al., 2017). 
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Hence, the size of λ is selected based on our preference between model fit and shrinkage of 

coefficients.  

Even though the main purpose of regularization methods is to increase interpretability by 

creating less complicated models, regularized models can sometimes improve prediction 

accuracy if the variance is reduced more than bias increases (Hastie, Tibshirani & 

Wainwright, 2015). A model with high bias is trying to explain a complicated relationship 

with a model which is too simple. For example, if trying to explain a non-linear relationship 

with a linear model, the number of parameters should be increased to create a more flexible 

model.  

A more flexible model can take on more functional forms because it can choose between 

more parameters, which makes it able to explain a more complicated relationship (Hastie et 

al., 2017). A higher variance means the estimated model would differ to a greater extent if it 

was used on different datasets, which means the number of parameters should be decreased 

to create a less flexible model. Consequently, there is a trade-off between the bias and the 

variance.  

As λ increases, coefficients are constrained, leading to a less flexible model. As the 

flexibility of the model decreases, the variance of the estimates is reduced, while the bias 

increases (Hastie et al., 2017). It is the relative change of variance and bias which decides 

whether prediction accuracy is increased. In many cases, a small increase in bias can lead to 

a larger reduction in variance, especially if the model overfits the data (Johnson & Kuhn, 

2013). 

2.5 Penalty types 

The datasets Gjensidige use to predict claim frequency include several different predictor 

types, including binary, nominal, ordinal and continuous predictors. Gertheiss & Tutz (2010) 

were the first to introduce regularized regression for multiple predictor types. In their 

method, penalties adapted to each predictor type are combined to act on the objective 

function as a sum of sub-penalties. The method can be used for datasets that include all the 

predictor types needed by Gjensidige. In this section, we will describe each of these penalty 

types and what predictor types they are suitable for.  
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was used on different datasets, which means the number of parameters should be decreased 

to create a less flexible model. Consequently, there is a trade-off between the bias and the 

vanance. 

As 'A increases, coefficients are constrained, leading to a less flexible model. As the 

flexibility of the model decreases, the variance of the estimates is reduced, while the bias 

increases (Hastie et al., 2017). It is the relative change of variance and bias which decides 

whether prediction accuracy is increased. In many cases, a small increase in bias can lead to 

a larger reduction in variance, especially if the model overfits the data (Johnson & Kuhn, 

2013). 

2.5 Penalty types 

The datasets Gjensidige use to predict claim frequency include several different predictor 

types, including binary, nominal, ordinal and continuous predictors. Gertheiss & Tutz (2010) 

were the first to introduce regularized regression for multiple predictor types. In their 

method, penalties adapted to each predictor type are combined to act on the objective 

function as a sum of sub-penalties. The method can be used for datasets that include all the 

predictor types needed by Gjensidige. In this section, we will describe each of these penalty 

types and what predictor types they are suitable for. 
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 Lasso 

The least absolute shrinkage and selection operator (Lasso), introduced by Tibshirani (1996), 

applies a penalty term similar to the one used in Ridge regression. Adopting the notation of 

Devriendt et al. (2018), the Lasso penalty can be expressed as the following 

𝑔𝐿𝑎𝑠𝑠𝑜(𝜷𝑗) = ∑ 𝑤𝑗,𝑖|𝛽𝑗,𝑖|

𝑝𝑗

𝑖=1

,              (2.11) 

where j represents predictors and i represents coefficients. Therefore, pj is the number of 

individual coefficients βj,i, while wj,i is the penalty weight for each coefficient of each 

predictor. The Lasso uses an L1 penalty and each individual coefficient is multiplied by its 

corresponding penalty weight and added to the total sum of coefficients. The L1 penalty is 

equal to the absolute value of the sum of the coefficients, differing from the L2 penalty of 

Ridge regression where the sum of the coefficients is squared (Hastie et al., 2017). Using the 

L1 penalty, the coefficient estimates are shrunk towards zero, and some may even be set to 

zero. 

The Lasso is suitable as a selection tool for binary and continuous predictors as they only 

have one coefficient. Therefore, as the Lasso is applied, only the most important predictors 

receive non-zero coefficients, while the rest are removed from the model. In the case of 

categorical predictors, if the coefficient estimate of a level is set to zero, the level is removed 

from the model. If all levels are set to zero, the predictor is removed entirely. The limitation 

of using the Lasso for categorical variables is that it does not fuse levels together, and only 

works as a selection tool. Consequently, Tibshirani et al. (2005) introduced the Fused Lasso. 

 Fused Lasso 

The Fused Lasso is designed for models containing features that can be ordered in a 

meaningful way, namely ordinal variables or continuous variables recoded as ordinal 

variables. The method applies a penalty on both the coefficients themselves and the 

differences between coefficients of subsequent levels. As a result, it can perform both 

variable selection and clustering of the categories of variables. Using the same notation as 

we did for the Lasso, the Fused Lasso applies an L1 penalty to the differences between 

subsequent coefficients 
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𝑔𝑓𝐿𝑎𝑠𝑠𝑜(𝜷𝑗) = ∑ 𝑤𝑗,𝑖−1|𝛽𝑗,𝑖 − 𝛽𝑗,𝑖−1|

𝑝𝑗

𝑖=2

,          (2.12) 

so that consecutive levels within predictors may be fused. Because the Fused Lasso only 

regularizes differences, the predictor being penalized needs to have a reference level for the 

penalty to work as a variable selection tool. The coefficient corresponding to the level which 

is fused with the reference level is then set to zero.  

For high values of λ, the differences between all subsequent coefficients of a predictor 

become zero. All the levels will then be fused with the reference level, which is equal to the 

predictor being removed from the model. The Fused Lasso can thus also be used for variable 

selection (Devriendt et al., 2018). 

 Generalized Fused Lasso 

The Fused Lasso is not suited for regularization of nominal predictors since there is no 

intrinsic ordering to their categories. Therefore, Bondell & Reich (2009) introduced a 

penalty for nominal variables that could perform factor selection and level fusion through 

analysis of variance (ANOVA). Gertheiss & Tutz (2010) later adapted the penalty to the 

regression setting. The penalty is expressed as 

𝑔𝑔𝑓𝐿𝑎𝑠𝑠𝑜(𝜷𝑗) = ∑ 𝑤𝑗,𝑖𝑙|𝛽𝑗,𝑖 − 𝛽𝑗,𝑙|
𝑖>𝑙

,                  (2.13) 

where the sum is over all coefficients i, l  ≥ 0. Not only differences 𝛽𝑗,𝑖 − 𝛽𝑗,𝑖−1 are 

considered for penalization like for the Fused Lasso, but rather all differences 𝛽𝑗,𝑖 − 𝛽𝑗,𝑙. The 

Generalized Fused Lasso thus penalizes the sum of the differences between the coefficients 

of all the levels within the predictor. Consequently, the Generalized Fused Lasso enforces 

the building of clusters of all levels that share the same effect, not just those who are in 

sequence. Similar to the Fused Lasso, a reference category is needed for the penalty to work 

as a variable selection tool (Devriendt et al., 2018). If a reference level is present, the 

Generalized Fused Lasso is suitable for both variable selection and fusion of levels. 
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2.6 Penalty weights 

As we only apply one tuning parameter λ on all the sub-penalties, incorporating individual 

penalty weights wj to each sub-penalty can improve their performance. In the datasets 

Gjensidige uses to create models to predict claim frequency, each level of a given predictor 

may have differently sized coefficients and a different amount of observations. Both 

adaptive penalty weights and standardization penalty weights have been proposed to account 

for these differences to improve performance (Devriendt et al., 2018).  

Penalty name 𝒘𝑗
(𝑎𝑑) 𝒘𝑗

(𝑠𝑡) 

Lasso 𝑤𝑗,𝑖
(𝑎𝑑) = |𝛽̂𝑗,𝑖|

−1
  𝑤𝑗,𝑖

(𝑠𝑡) = 1  

Fused Lasso 𝑤𝑗,𝑖−1
(𝑎𝑑) = |𝛽̂𝑗,𝑖 − 𝛽̂𝑗,𝑖−1|

−1
  𝑤𝑗,𝑖−1

(𝑠𝑡) =  √𝑛𝑗,𝑖+𝑛𝑗,𝑖−1

𝑛
  

Generalized Fused Lasso 𝑤𝑗,𝑖𝑙
(𝑎𝑑) = |𝛽̂𝑗,𝑖 − 𝛽̂𝑗,𝑙|

−1
  𝑤𝑗,𝑖𝑙

(𝑠𝑡) = (𝑘𝑗 + 1)−1√𝑛𝑗,𝑖+𝑛𝑗,𝑙

𝑛
  

Table 2.1 – Penalty weights 

The adaptive (ad) weights are based on initial estimates of E, obtained from running an 

initial regression. Coefficients that are initially estimated as large could be in danger of being 

too heavily regularized, but by including the adaptive weights, coefficients that are initially 

estimated as small will be regularized relatively more than large ones (Devriendt et al., 

2018). The weight for the Lasso penalty is defined as 

𝑤𝑗,𝑖
(𝑎𝑑) =  |𝛽̂𝑗,𝑖|

−𝛾,                     (2.14) 

where J >0 is a tuning parameter that both Gertheiss and Tutz (2010) and Devriendt et al. 

(2018) set equal to 1. They also adopt the adaptive weights formulated for each penalty listed 

in the table from Rinaldo (2009) and Viallon, Lambert-Lacriox, Höfling & Picard (2016). 

We have focused on how these articles contribute to the method through Devriendt et al. 

(2018), rather than understanding their theoretical background, which we consider outside 

the scope of this thesis.  
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When applying the Lasso penalty, the variables should be centered and standardized to 

account for the effect of different measuring scales of different predictors, which may lead to 

an uneven number of observations per level (Tibshirani, 1997). This is not possible for 

ordinal and nominal variables, as the levels would lose their interpretation (Devriendt et al., 

2018). Therefore, Bondell and Reich (2009) and Gertheiss & Tutz (2010) proposed the 

following standardization (st) weight for ordinal variables 

𝑤𝑗,𝑖−1
(𝑠𝑡) =  √

𝑛𝑗,𝑖 + 𝑛𝑗,𝑖−1

𝑛
 ,                (2.15) 

which takes the number of observations of each level into account. The standardization 

penalty weights thus adjust for the imbalances resulting from some levels having more 

observations than others. To extend the standardization weight to nominal predictors, the 

amount of regularized differences for a nominal predictor relative to an ordinal one needs to 

be considered. Gertheiss and Tutz (2010) adapted the weight to the Generalized Fused Lasso 

by adding the factor (𝑘𝑗 + 1)−1, where k + 1 is the number of levels of predictor j. Without 

this factor, the Generalized Fused Lasso would be artificially larger than the Fused Lasso, 

because while the Fused Lasso for a predictor of p levels only includes p-1 differences, the 

Generalized Fused Lasso includes the differences between all the different levels within the 

predictor. Therefore, nominal predictors would likely be regularized to a greater extent than 

ordinal predictors without this factor.  

As shown in Equation 2.16, by multiplying the two weights and using a combination of 

them, it is possible to apply the objectives of both weights.  

𝒘𝑗 =  𝒘𝑗
(𝑎𝑑) ∙ 𝒘𝑗

(𝑠𝑡)              (2.16) 

2.7 Resulting objective function 

In this thesis we estimate a penalized Poisson regression model to predict claim frequency 

while selecting and fusing predictor levels to increase prediction accuracy. We use the scaled 

negative log-likelihood as our loss function while including exposure as an offset. Since the 

dataset includes binary, nominal, binned continuous and ordinal predictors, we use the 

regularization framework developed by Gertheiss and Tutz (2010) to penalize different 

predictor types. 
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Our objective function’s second term therefore consists of sub-penalties adapted to each 

predictor type, stating how each predictor should be penalized. We apply the Lasso to binary 

predictors, the Fused Lasso to ordinal and binned continuous predictors and the Generalized 

Fused Lasso to nominal predictors. 

Through combining the chosen loss function, offset, penalty types and penalty weights, we 

end up with minimizing the objective function 

𝒪(𝜷; 𝑿, 𝒚) = −
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!))

+  𝜆 ( ∑ ∑ 𝑤𝑗,𝑖|𝛽𝑗,𝑖| + ∑ ∑ 𝑤𝑗,𝑖−1|𝛽𝑗,𝑖 − 𝛽𝑗,𝑖−1| + ∑ ∑ 𝑤𝑗,𝑖𝑙|𝛽𝑗,𝑖 − 𝛽𝑗,𝑙|
𝑖>𝑙𝑗𝜖𝑛𝑜𝑚

𝑝𝑗

𝑖=2𝑗𝜖𝑜𝑟𝑑

𝑝𝑗

𝑖=1𝑗𝜖𝑏𝑖𝑛

),   (2.17) 

where we use the combined penalty weights 𝒘𝑗 =  𝒘𝑗
(𝑎𝑑) ∙ 𝒘𝑗

(𝑠𝑡). The combined penalty 

weights are products of the adaptive and standardization weights and take both different 

sizes of coefficients and different amounts of observations per level into account. In the 

simulation study of Devriendt et al. (2018), the combined weights perform the best in terms 

of prediction accuracy. 

After the objective function is developed, the next stage is to identify a suitable estimation 

procedure. 

2.8 Optimization 

Traditionally, least angle regression (LARS) (Efron, Hastie, Johnstone & Tibshirani, 2004) 

has been the most common estimation procedure used for Lasso-type penalties. Starting with 

all coefficients set to zero, the algorithm works similarly to Forward Stepwise Selection and 

iteratively searches for the predictor with the highest correlation with the dependent variable, 

increasing its coefficient. The process is repeated until all predictors are included in the 

model (Tibshirani, 2003). However, even though it is well suited for estimation using only 

one predictor type and thereby one type of penalty term, it cannot be used when working 

with a dataset with several predictor types and a corresponding number of penalty terms 

(Devriendt et al., 2018).  
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Oelker & Tutz (2017) used local quadratic approximations of the penalties to be able to 

apply the Penalized Iteratively Reweighted Least Squares (PIRLS) algorithm in a 

regularization setting. The procedure can be used for datasets with different types of 

predictors with corresponding penalty terms. However, using local quadratic approximations 

of the penalties leads to non-exact collapsing and selection of levels, and as the PIRLS 

algorithm requires creating large matrix inverses, the procedure is computationally intensive 

(Devriendt et al., 2018).  

Devriendt et al. (2018) introduced the Sparse Multitype Regularized Feature (SMuRF) 

algorithm, which applies the theory of proximal operators on Lasso-type penalties, which 

was first done by Beck & Teboulle (2009) and Xin, Kawahara, Wang & Gao (2014). By 

using proximal operators, the algorithm can solve the subproblems per penalty type exactly, 

instead of using approximations. As the algorithm creates a set of smaller subproblems to be 

optimized, it can also use parallel computing. Since the SMuRF algorithm works for several 

penalty types, does not use any approximations and can be used for large datasets, we elect 

to use it for optimization. In the following sections, we will describe the SMuRF method, 

including how it tunes the λ parameter and reestimates the model. 

 The SMuRF algorithm 

The SMuRF algorithm uses a gradient descent approach to minimize the objective function 

(Devriendt et al., 2018). The gradient of a function f with several variables is a vector of the 

partial derivatives of the function with respect to all the variables (Sydsæter, Seierstad & 

Strøm, 2002). For a specific point, the gradient is the slope of the function. The gradient 

descent approach uses the gradient to find the minimum of the function (Donges, 2018).  

Figure 2.1 lists the steps taken for each iteration of the algorithm. Prior to these steps, the 

parameter vector E(0) is filled with initial random parameter estimates. Together with the 

predictors, the dependent variable, the chosen value of lambda, and a step size s, E(0) is used 

as input to the algorithm. For each of the m iterations of the algorithm, the estimates of the 

parameter vector are updated, and the new estimates are based on the step size s and the 

gradient, which together signals the length and direction of our steps. For each iteration we 

get closer to the minimum, as the gradient assigns the direction of the steepest descent 

(Donges, 2018).  
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Naïve SMuRF algorithm 
1: Input: β(0), X, y, s, lambda  

2: For k =1 ... M do:  

3: 𝛽 ←  𝛽(𝑘−1) − 𝑠∇𝑓(𝛽(𝑘−1)) Gradient update 

4:(𝛽0, 𝛽1, … , 𝛽𝐽) ←  𝛽  Partition full vector in components for each predictor 

5:𝛽𝑗
(𝑘) ← 𝑝𝑟𝑜𝑥𝑠𝜆𝑔𝑗(𝛽̃𝑗) Calculate the Proximal Operator for all predictors j in {0, ... ,J} 

6:𝛽(𝑘) ← (𝛽0
(𝑘), 𝛽1

(𝑘), … , 𝛽𝐽
(𝑘))  Recombine to full vector 

7: End for  

8: Return E(m)  

Figure 2.1 – The steps of the SMuRF algorithm in its naïve form 
 

Each time the parameter estimates are updated, the parameter vector is partitioned into 

separate components for each predictor, because the proximal operator (PO) will be 

calculated and solved separately for each predictor. Generally, POs are used for 

approximating a value, with the combined goal of approximating it accurately and 

minimizing a cost associated with the chosen value (Devriendt et al., 2018). In our case, we 

want to estimate the coefficients that minimize the differences between the observed and 

predicted values of the dependent variable, number of claims.  

However, included in the PO is also the cost associated with choosing a specific coefficient 

value, where the cost is adapted to the different predictor types through the penalty terms. 

This way, the SMuRF algorithm is able to take both prediction accuracy and the 

regularization terms into account during the estimation procedure. When the POs have been 

calculated, the coefficient estimates are again combined to a full vector, and the algorithm 

returns the coefficient estimates for the given iteration.  

The algorithm can be implemented in R using the smurf package (Reynkens, Devriendt & 

Antonio, 2018). Figure 2.1 illustrates the steps of the algorithm in its naïve form. The 

version of the algorithm included in the smurf package has been improved in terms of 

computational efficiency. When the number of iterations k approaches infinity, the algorithm 

converges to the optimal solution (Devriendt et al., 2018).  
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 Tuning and reestimation 

The objective function 
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includes a tuning parameter λ, which determines the relative strength of the penalties 

compared to model fit. In contrast to the model’s coefficient estimates, which are learned by 

the model, λ must be chosen prior to estimation. It is difficult to identify a suitable value for 

λ before estimation, but the smurf package (Reynkens et al., 2018) allows it to be selected by 

evaluating performance criteria for in-sample training, out-of-sample training on a test 

dataset or stratified K-fold cross validation. Stratified K-fold cross validation with deviance 

as criterion using the one standard error rule performs the best in Devriendt et al. (2018), and 

is therefore our chosen method for selecting λ.  

Cross-validation can be used to evaluate a range of different values for λ based on some 

performance criterion, which will indicate the optimal value for λ (Hastie et al., 2017). When 

using K-fold cross validation, the dataset is divided into K folds or groups of observations, of 

similar size. The partitioning creates stratified folds, meaning that the mean of the dependent 

variable is approximately equal in all folds.  K-1 of these folds are then used to estimate the 

model. The fold of observations that is not included is used as a validation group to calculate 

an estimate of the average deviance (Devriendt et al., 2018). The deviance is a performance 

criterion which is calculated as negative two times the maximum log-likelihood, where a 

smaller deviance indicates a better model fit. 

The procedure is completed K times, as each fold of observations is used as the validation 

fold once, giving us K estimates of the average deviance as a function of λ. As we use the 

“one standard error rule”, we select the highest λ where the average deviance is within one 

standard error of its minimum. This will result in the simplest model which is within one 

standard error of the minimum average deviance (Hastie et al., 2015). 

Compared to non-penalized models, regularization methods like SMuRF normally return 

models with decreased variance in the estimates and predictions at the expense of an increase 
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in bias. It is therefore common to reestimate the model without penalties, where the 

coefficients from the regularized model estimation are used to reduce this newly introduced 

bias (Devriendt et al., 2018). The variables of which the coefficients are estimated to zero are 

removed, and levels which were fused by the regularization procedure are collapsed. The 

reestimated model will therefore have the same non-zero and fused coefficients as the 

original model, but the results will not be biased (Devriendt et al., 2018). To perform this 

reestimation, we use the R package smurf (Reynkens et al., 2018). 

2.9 Model validation 

To compare the model we create to the reference model Gjensidige already uses, the models 

have to be validated using performance measures. Several approaches can be used to 

estimate performance, depending on the type of dataset and performance criteria used for 

measurement. For Gjensidige, the goal is to earn a profit from the insurance policies they 

offer. For this to happen, it is important that the premiums they charge are at a competitive 

level, while still covering the losses they have on their client’s claims. 

As part of calculating these premiums, Gjensidige must predict the number of claims from 

each person as accurately as possible. Consequently, for model validation we use criteria 

which can measure this prediction accuracy, as this will uncover whether our method can 

help Gjensidige earn a higher profit. In the next sections we will describe the type of dataset 

and performance criteria we will use to compare the models. 

 Validation dataset 

The prediction accuracy of a model is highly sensitive to the dataset used for validation. The 

preferred method to use for validating a model is to separate the data by creating a training 

set used for model estimation and a test set only used for validation. This test set can be 

created several different ways. When predicting future observations, an out-of-time test set is 

suitable. Creating an out-of-time test set means the dataset is divided based on the time of 

the observation, for example the day, month or year.  

An alternative method is to create the test set by sampling randomly from the full dataset 

(Johnson & Kuhn, 2013). If interested in predictions in the same population of 

policyholders, the alternative method would be most suitable. However, as the aim of the 
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model created in this thesis is to predict the number of claims registered in a year from future 

policyholders, it is important the model translates well to the future. By training the model 

using data from previous years and validating using data from a later year, we can replicate 

how the model will be used by Gjensidige. 

When splitting the data, it is also important to have enough observations to properly train 

and test the model. If the dataset used for modeling is small, the decisions regarding the split 

of the data are critical. However, when using a larger dataset, there will be enough 

observations to split the data without the results changing excessively. Therefore, there will 

not be a need to use resampling techniques to validate the model (Johnson & Kuhn, 2013).  

 MSE 

To validate the estimated models, we measure how well the predicted number of claims fit 

the observed data (Hastie et al., 2017). For regression models, the mean-squared error (MSE) 

is the most commonly-used measure 

𝑀𝑆𝐸 =
1
𝑛

∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

,                  (2.19) 

where n is the number of observations, yi is the actual value of the ith observation, and f(xi) is 

the prediction that f gives the ith observation. The MSE will be small if the predicted values 

are close to the observed data (Hastie et al., 2017). Therefore, the model with the lowest 

MSE is usually preferred.  

The quality of fit of a model can either be measured using the training dataset used for model 

estimation or a separate test dataset. Using the training set will produce the training MSE, as 

in Equation 2.19.  If more parameters are included in the model, increasing its flexibility and 

allowing it to search for more patterns in the data, the training MSE will decrease because 

the model can explain a greater part of the variation in the training set. However, the test 

MSE will not necessarily decrease as much as the training MSE. If this is the case, the model 

is said to be overfitted, as it seems to have been fitted to noise in the training set (Hastie et 

al., 2017). Therefore, the training error is an underestimation of the test error, and the test 

MSE is more interesting to us (Hastie et al., 2017) 

𝐴𝑣𝑒 (𝑦0 − 𝑓(𝑥0))
2

.                (2.20) 
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The observation (x0, y0) is a previously unseen test observation, and Equation 2.20 thus 

calculates the average squared prediction for the observations. When using test MSE as the 

performance criterion, the model which minimizes Equation 2.20 will be selected. To be able 

to minimize the equation, it is valuable to understand how it is composed. It can be shown 

that the expected test MSE is the sum of the variance of 𝑓(x0), the squared bias of 𝑓(x0) and 

the variance of the error term E (Hastie et al., 2017) 

𝐸 (𝑦0 − 𝑓(𝑥0))
2

= 𝑉𝑎𝑟 (𝑓(𝑥0)) + [𝐵𝑖𝑎𝑠 (𝑓(𝑥0))]
2

+ 𝑉𝑎𝑟(∈).        (2.21) 

To minimize the expected error, we therefore wish to minimize the variance and bias of the 

model simultaneously. However, since there is a trade-off between the variance and bias of 

the model, it is the relative change of the variance and bias which decides if the test MSE 

increases or decreases (Hastie et al., 2017). 

To calculate the test MSE, a designated test set has to be available. If not, other approaches 

have to be taken to estimate the test MSE, like the validation-set approach or cross-

validation (Hastie et al., 2017). A downside of using test MSE as the only performance 

criterion is that it does not consider that models have different amounts of predictors. 

Therefore, we also use AIC. 

 AIC 

When considering two models with the same test MSE, the one with the fewest predictors 

will always be preferred (Johnson & Kuhn, 2013). However, using MSE to choose between 

models with different amounts of parameters is not optimal. Adding additional predictors to 

a model will generally return a lower test MSE, but the increase in predictors may be higher 

than the relative gain of a lower test MSE (Hastie et al., 2017). The Akaike Information 

Criterion (Akaike, 1974) is a performance measurement which was created to address this 

issue. We seek to minimize 

𝐴𝐼𝐶 =  −2 log(𝐿) + 2𝐾 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 + 2𝐾,           (2.22) 

where L represents the likelihood function and K is the number of parameters used in the 

model. When the number of parameters increases, the first term decreases the AIC, while the 

second term increases the AIC. Therefore, there is a trade-off when increasing the number of 
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parameters, as the second term penalizes a more flexible model. Consequently, it is a 

suitable measure when comparing models which have a different number of parameters. 
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3. Dataset 

To find an improved way for Gjensidige to group and bin variables used in their predictive 

models, we study Gjensidige’s insurance product comprehensive motor vehicle coverage. 

The predictive models built to study our research question are therefore trained using data on 

the policyholders of this product. The same dataset was used to train Gjensidige’s current 

frequency model for this insurance product, which enables us to evaluate the effect on 

prediction accuracy of our model. In this chapter we will describe the dataset, present 

descriptive statistics of some of its variables, consider the quality of the data and present how 

we process the data prior to modeling. 

The dataset spans the time period from 2012 to 2017 and consists of 8 446 547 observations 

and 31 variables. Most of the variables provide information on the policyholders’ personal 

characteristics, information about their insurance policy or the attributes of their vehicle. A 

variable signaling each policyholder’s exposure (Ekspo_faktor) is also included in the 

dataset. Ekspo_faktor indicates the proportion of the year the policyholder was insured and, 

in that sense, exposed Gjensidige to the risk that they would make a claim. 

The R packages ggplot2 (Wickham, 2016) and graphics (R Core Team, 2018) have been 

used to create the plots we present in this chapter. 

3.1 Delimitation 

The variables that are not used in Gjensidige’s model have been excluded from our model as 

well. The same 14 variables have therefore been used as the basis to create the predictors 

included in both models, and potential variable selection is only performed among those 14 

variables. In addition, most data pre-processing performed besides fusing variables has been 

equal for both models. This includes the removal of NA’s and aggregation of the dataset, 

further described in 3.5. Using the same variables as a basis and doing the same data pre-

processing is a way of validating comparisons between the models’ performance, in addition 

to limiting the scope of the thesis.  

However, we have also performed some separate data pre-processing for the two models. To 

be able to let the SMuRF algorithm perform the binning of continuous variables in a data-

26 

3. Dataset 

To find an improved way for Gjensidige to group and bin variables used in their predictive 

models, we study Gjensidige's insurance product comprehensive motor vehicle coverage. 

The predictive models built to study our research question are therefore trained using data on 

the policyholders of this product. The same dataset was used to train Gjensidige's current 

frequency model for this insurance product, which enables us to evaluate the effect on 

prediction accuracy of our model. In this chapter we will describe the dataset, present 

descriptive statistics of some of its variables, consider the quality of the data and present how 

we process the data prior to modeling. 

The dataset spans the time period from 2012 to 2017 and consists of 8 446 547 observations 

and 31 variables. Most of the variables provide information on the policyholders' personal 

characteristics, information about their insurance policy or the attributes of their vehicle. A 

variable signaling each policyholder's exposure (Ekspo Jaktar) is also included in the 

dataset. Ekspo Jaktar indicates the proportion of the year the policyholder was insured and, 

in that sense, exposed Gjensidige to the risk that they would make a claim. 

The R packages ggplot2 (Wickham, 2016) and graphics (R Core Team, 2018) have been 

used to create the plots we present in this chapter. 

3.1 Delimitation 

The variables that are not used in Gjensidige's model have been excluded from our model as 

well. The same 14 variables have therefore been used as the basis to create the predictors 

included in both models, and potential variable selection is only performed among those 14 

variables. In addition, most data pre-processing performed besides fusing variables has been 

equal for both models. This includes the removal of NA's and aggregation of the dataset, 

further described in 3.5. Using the same variables as a basis and doing the same data pre- 

processing is a way of validating comparisons between the models' performance, in addition 

to limiting the scope of the thesis. 

However, we have also performed some separate data pre-processing for the two models. To 

be able to let the SMuRF algorithm perform the binning of continuous variables in a data- 



27 

driven way, some manual data pre-processing has been performed to prepare the variables. 

How this differentiates between the two models is further described in 3.6.  

3.2 Variables 

Table 3.1 lists the dependent variable, exposure variable and independent variables used for 

modeling in this thesis. Out of the 14 independent variables, two are ordinal, seven are 

nominal, one is binary, and four are continuous. Overall, the variables describe traits of the 

policyholder and the vehicle, the policyholder’s use of the vehicle, and geographical factors.  

Type Name Description 
Dependent Claims Observed number of claims of the policyholder: 0-5 
Exposure Ekspo_faktor Fraction of the year policy was active: 0-1 
Ordinal Kjor_lengde_kode Code for distance driven: 13 levels  
 Drivstoff_kode Code for type of fuel: 13 levels 
Nominal Merke_klasse_kode_ny Code for vehicle brands collected from the Norwegian 

Register of Motor Vehicles: 45 levels 
 Ekspo_aar The year the policy was valid: 2012-2017 
 Subcluster Gjensidige’s own code for combination of geography 

and demography: 12 levels 
 Band_AK_G 

 
Divisjon_kode 
Leasing_flagg 
 
Import_flagg 

Gjensidige’s own geographic variable:  
26 levels 
Where the policy was registered: 6 levels 
Whether the insured vehicle is leased: 
Yes/No/Unknown 
Whether the insured vehicle is imported: 
Yes/No/Unknown 

Binary Forer_23_aar_flagg Indicates whether all drivers of the vehicle are over 23 
years old: Yes/No 

Continuous Effekt_HK Vehicle horsepower: 1 – 193 000 

 MV_alder Vehicle age: 0 – 97 

 Alder_ftaker Age of policyholder: 1 – 110 

 Egenvekt Weight of vehicle measured in kilograms: 1 – 99 805 
   

Table 3.1 - Variable descriptions 
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Alder __flaker 

Egenvekt 

Vehicle horsepower: l - 193 000 

Vehicle age: 0 - 9 7  

Age of policyholder: l - 110 

Weight of vehicle measured in kilograms: l - 99 805 

Table 3.1-  Variable descriptions 
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3.3 Descriptive statistics 

 Dependent variable 

In this thesis, we model the claim frequency of comprehensive motor vehicle coverage. The 

purpose is to predict the number of claims during the insured period of a future policyholder. 

The model’s dependent variable is Claims, which is the number of claims reported by the 

policyholder throughout the year. Claims is a discrete variable, having only integer values. 

As shown in Table 3.2, most policyholders, 98.06%, do not submit a claim during their 

policy period. A few, 1.86%, submit one claim, while the remaining minority, 0.08%, submit 

between two and five claims. 

 

 

 

 

 Exposure 

Ekspo_faktor measures the proportion of the year that the observed policyholder was 

insured, ranging from 0 to 1. The mean exposure is 0.34 and the average duration of a policy 

is therefore slightly longer than four months. The average duration of a policy seems low, 

but the explanation can be found in how the dataset is structured. An observation, or a row, 

in the dataset represents an individual. As time passes, its features will change, and probably 

not simultaneously. A change in just one of these variables will generate a new row in the 

dataset with the updated information on the individual.   

In that sense, the exposure indicates how long Gjensidige was exposed to the risk of that one 

individual while its features remained the same. The distribution of Ekspo_faktor in average 

for a year with months as intervals is shown in Figure 3.1.  

Number of Claims Number of Policyholders Proportion of Policyholders 

0 8 282 630 98.06% 

1 157 292 1.86% 

2 6310 0.075% 

3 287 0.0034% 

4 25 0.0003% 

5 3 0.00004% 

Table 3.2 - Number of policyholders for each number of claims 
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Figure 3.1 – Distribution of exposure 

The mean number of claims in the dataset is approximately 0.02. The mean of Claims is 

based on the mean exposure of the dataset which is 0.35. It does not necessarily indicate that 

an average policyholder files 0.02 claims a year, but rather indicates that the average 

policyholder would file 0.02 claims during their average exposure of 4 months, equaling 

about 0.05 over a year. In this chapter, we will use the average claim number as a reference 

with the purpose to analyze how each variable, and each level within it, affects the mean. We 

have been informed by representatives from Gjensidige that the real average exposure is 

between 0.7 and 0.9 for different products. This means that policyholders on average are 

insured for periods of eight to eleven months, approximately. 

In the following section, we will present the predictors which we believe have an interesting 

relationship with claims. Plots of the rest of the predictors can be found in Appendix A1 and 

A2. 

 Independent variables 

Missing values 
There are some variable values in the dataset which are 0, -1 or -2, indicating missing values. 

Band_AK_G and Subcluster have about 13 percent missing values out of the total number of 

observations, while Divisjon_kode has about 10 percent. Besides these three variables, the 

variable with the most missing values is MV_alder with about 2 percent. How these missing 

values are handled is explained in 3.5. In addition to the mentioned missing values, some of 

the variables have values which we consider odd, for example when horsepower is 1 or 

193 000. Whether these represent missing values or not is unknown. 
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The mean number of claims in the dataset is approximately 0.02. The mean of Claims is 

based on the mean exposure of the dataset which is 0.35. It does not necessarily indicate that 

an average policyholder files 0.02 claims a year, but rather indicates that the average 

policyholder would file 0.02 claims during their average exposure of 4 months, equaling 

about 0.05 over a year. In this chapter, we will use the average claim number as a reference 

with the purpose to analyze how each variable, and each level within it, affects the mean. We 

have been informed by representatives from Gjensidige that the real average exposure is 

between 0.7 and 0.9 for different products. This means that policyholders on average are 

insured for periods of eight to eleven months, approximately. 

In the following section, we will present the predictors which we believe have an interesting 

relationship with claims. Plots of the rest of the predictors can be found in Appendix Al and 

A2. 

3.3.3 Independent variables 

Missing values 
There are some variable values in the dataset which are 0, -1 or -2, indicating missing values. 

Band_ AK_ G and Subcluster have about 13 percent missing values out of the total number of 

observations, while Divisjon k o d e  has about l 0 percent. Besides these three variables, the 

variable with the most missing values is MV_ alder with about 2 percent. How these missing 

values are handled is explained in 3.5. In addition to the mentioned missing values, some of 

the variables have values which we consider odd, for example when horsepower is l or 

193 000. Whether these represent missing values or not is unknown. 
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Kjor_lengde_kode: Mileage 
In the dataset, mileage is divided into intervals that are each given a code. As seen from the 

left-hand plot of Figure 3.2, most of the vehicles have codes between 005 and 030, with the 

most common code being 012. In Figure 3.2 we plot the mileage codes against the mean 

number of claims. It seems that the mean number of claims increases with mileage, but the 

standard errors also increase with mileage. The most common mileage codes have a mean 

number of claims close to the overall mean of the dataset (0.02), while mileage codes of 

higher value than these seem to indicate an above average number of claims. 

 

Figure 3.2 - Relative frequency and mean number of claims for mileage 
 

Drivstoff_kode: Fuel code 
The different types of fuel are also divided into different codes, and we observe that 

approximately 95 percent of the observations have fuel code 001 or 002 as seen in Figure 

3.3. We observe that the codes with the highest relative frequency of policyholders have the 

lowest standard error, while it seems that for four of the codes, there are no claims among all 

policyholders with that particular type of fuel. 
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Figure 3.2- Relative frequency and mean number of claims for mileage 

Drivstoff kode: Fuel code 

The different types of fuel are also divided into different codes, and we observe that 

approximately 95 percent of the observations have fuel code 001 or 002 as seen in Figure 

3 .3. We observe that the codes with the highest relative frequency of policyholders have the 

lowest standard error, while it seems that for four of the codes, there are no claims among all 

policyholders with that particular type of fuel. 
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Figure 3.3 - Relative frequency and mean number of claims for fuel type 
 

Merke_klasse_kode_ny: Vehicle brand 
We observe in Figure 3.4 that the number of vehicles insured within each brand differ a fair 

amount, and again we see that the categories with many observations have smaller standard 

errors. We observe that the average number of claims differ between different vehicle 

brands, indicating that the variable could be a good predictor. 

 

Figure 3.4 - Relative frequency and mean number of claims for vehicle brand 
 

Band_AK_G: Geographic variable 
In Figure 3.5, we observe that the relative frequency of Band_AK_G is quite evenly 

distributed over the different categories, and the standard errors of the calculated means are 

small. There is a close to linear trend for each category’s effect on the mean, which is 

surprising for a nominal variable. This variable was created by Gjensidige themselves, and 

so it seems they may have sorted the categories according to their effect on the dependent 

variable. 
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Merke_klasse_kode_ny: Vehicle brand 

We observe in Figure 3.4 that the number of vehicles insured within each brand differ a fair 
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brands, indicating that the variable could be a good predictor. 

Vehicle Brands Average Number of Claims for Different Vehicle Brands 
0.03 

0.15 

3 
 0.10 

I 
ru 
> 
z 

0.05 
a: 

0.00 

0.02 

0.01 

0.00 

129244g£2443394£244£88±#$# 0 % 5 8 R 8 # 4 5 9 5 5 8  
5 

Merke_klasse_kode_ny 

d 
,I I I 

g 2 2 2 g z < 2 4 2 z g % 2 $ 2 2 2 E 2 5 @  i 3 % 5 8 R 8 M R  RX 
ö 

Merke_klasse_kode_ny 

Figure 3.4 - Relative frequency and mean number of claims for vehicle brand 

Band_AK_ G: Geographic variable 

In Figure 3.5, we observe that the relative frequency of Band_AK_G is quite evenly 

distributed over the different categories, and the standard errors of the calculated means are 

small. There is a close to linear trend for each category's effect on the mean, which is 

surprising for a nominal variable. This variable was created by Gjensidige themselves, and 

so it seems they may have sorted the categories according to their effect on the dependent 

variable. 
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Figure 3.5 - Relative frequency and mean number of claims for Band_AK_G 
 

Effekt_HK: Horsepower 
Figure 3.6 shows how the average horsepower of the vehicles of the policyholders differs 

depending on how many claims they have filed. The figures show that the vehicles of 

policyholders who have submitted claims have lower horsepower on average than the 

policyholders who have not submitted claims. In 2016, the average car in Norway had 133 

horsepower (Korsvoll, 2016). From the figure we can therefore observe that the 

policyholders that have filed at least one claim on average own cars with average 

horsepower, while the policyholders who have not filed claims, own vehicles with 

horsepower above average. This indicates that horsepower could be a useful variable to 

include when predicting claims. Overall, the standard errors are small, indicating that the 

sample mean is reliable. We do however observe larger standard errors for the observations 

with no claims and the observations with a high number of claims. 

 

Figure 3.6 - Mean horsepower for each number of claims 
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MV_alder: Age of vehicle 
Figure 3.7 shows the mean and standard error of Claims for different ages of the vehicles 

that are insured by the policyholders. The line represents the mean values, while the grey 

ribbon surrounding it represents the standard errors of the mean of Claims for each age. The 

plot shows that the mean number of claims increases with age and reaches its peak for 

vehicles that are four years old. After that, the average number of claims decreases steadily 

with age. 

After 25 years the standard errors increase. This is probably due to fewer observations, as 

there are not many vehicles that are that old, and these old vehicles are probably not insured 

with the product comprehensive motor vehicle coverage, which is expensive and more 

suitable for new vehicles. There are also some very old vehicles which mostly have zero 

claims.  These kinds of vehicles are probably well maintained veteran vehicles that are 

treated carefully and seldom driven. 

The plot on the left shows why the standard error of the mean of older vehicles are higher, as 

there are relatively few policyholders who have vehicles which are older than 30 years. 

 

Figure 3.7 - Relative frequency and mean number of claims for vehicle age 

3.4 Data quality 

Gjensidige possesses a large data warehouse with information on the policyholders of all 

their insurance products. When building models for predicting claim frequency, claim 

severity, or the risk premium directly, data on the policyholders of the relevant product and 

the variables desired is retrieved from the data warehouse and imported into R. As we have 

received the data directly from Gjensidige and their data warehouse, the data quality should 
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3.4 Data quality 

Gjensidige possesses a large data warehouse with information on the policyholders of all 

their insurance products. When building models for predicting claim frequency, claim 

severity, or the risk premium directly, data on the policyholders of the relevant product and 

the variables desired is retrieved from the data warehouse and imported into R. As we have 

received the data directly from Gjensidige and their data warehouse, the data quality should 
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be high. It is in their interest to use data that reflects the attributes of their policyholders as 

closely as possible, to ensure their models are of high quality. At the same time, there is 

some potential of error in the data as much of the data is collected by Gjensidige’s 

employees and therefore prone to human mistakes.  

Even though the dataset from Gjensidige is of high quality, we perform some data pre-

processing before modeling. The pre-processing is divided between the pre-processing 

which is common for both models and the pre-processing which differs between them. The 

pre-processing which is common for both models is the aggregation of the dataset and 

recoding of NA’s, while the difference is in how continuous variables are binned and ordinal 

variables are grouped. In the next two sections we will describe how this pre-processing is 

performed. We primarily use the R package dplyr (Wickham, François, Henry & Müller, 

2018) for data manipulation. 

3.5 Common pre-processing 

To increase computational efficiency, the dataset is aggregated prior to modeling. 

Aggregating the dataset means combining observations that have the exact same values for 

the predictors into one. All values of the predictors are kept the same, while their number of 

claims and exposure are added together. The effect on the dependent variable will be exactly 

the same as if keeping the observations separate, as the combined observation will have a 

higher number of claims and exposure than the observations had separately beforehand. This 

is common practice in the insurance industry, since datasets are often quite large and 

increasing computational efficiency is a priority. After aggregating the dataset, the number 

of observations is reduced from 8 446 547 to 6 726 978. 

Concerning the odd values we have found for some variables in the dataset, we do not 

perform any pre-processing because Gjensidige does not and we wish to ensure model 

similarity. However, in addition to aggregating the dataset, we recode observations that 

include NA’s. We recode NA’s to –1, because this is Gjensidige’s current approach for 

treating missing data and we want to ensure our model is similar to the one currently used. 

The reason Gjensidige recodes missing values to –1 is to avoid deleting observations. 

Deleting observations removes information from the model, and should be avoided if 

possible (Goldburd et al., 2016). These recoded observations are combined with other 
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observations into groups at a later point, and it is therefore not important that their value is –

1.  

A better solution would perhaps be to impute values using information from the rest of the 

predictors. This is done by creating a second model using the predictor with missing values 

as the dependent variable. A subset of the data which includes the other predictors and only 

observations without missing data is then used to train the model (Goldburd et al., 2016). 

This would lessen the information lost by simply recoding the missing value field to –1. 

Nevertheless, we use the same procedure as Gjensidige to ensure model similarity. The 

consequence of this may be that observations end up in the wrong group and therefore 

increase the bias of predictions. 

The two variables Leasing_flagg and Import_flagg are originally nominal with three levels 

representing “yes”, “no” and “unknown”. For both variables, the relative frequency of 

“unknown” is very low, and we would therefore like to convert these variables into binary 

variables. We do not want to delete the observations that include this level, but rather impute 

them. For both variables, it is reasonable to believe that they would be registered as “yes” if 

they were leased or imported, while it may be forgotten if they are not, as this is the most 

common. Therefore, all observations of “unknown” are changed to “no” for both variables.   

3.6 Differentiated pre-processing 

To answer our research question, we want to find out whether going from manually grouping 

and binning variables to using regularization methods to do it can improve the prediction 

accuracy of the model. This section covers what binning is, how Gjensidige groups and bins 

their variables today, and lastly how we prepare the variables for using the regularization 

methods for fusion. Even though the purpose of regularizing the model is to let the method 

handle the variables, some pre-processing of the variables is done before using the method.  

 Binning 

As part of the data pre-processing, Gjensidige manually bins their continuous variables into 

categorical variables before using them as predictors in their frequency model. 

Consequently, a coefficient is estimated for each bin, which applies to all observations 

falling within it. Manual binning refers to the pre-categorization of data into two or more 
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bins, which simplifies the dataset and increases interpretability (Johnson & Kuhn, 2013). In 

addition, it enables the model to capture non-linear effects which would not be possible if the 

variable was kept continuous. By binning the variable, the model is freed of needing to 

constrain its assumed relationship with the dependent variable to any particular shape, 

enabling it to capture non-linear effects it otherwise would not (Goldburd et al., 2016). 

However, there are also several drawbacks to manual binning. As each interval has its own 

coefficient, the estimates will not behave in a continuous fashion, meaning some estimates 

may be inconsistent with others due to random noise. Also, variation within each bin is 

ignored, which means there is a loss of information that could have been used to fit the 

model. A possible solution is to separate the data into even more bins but doing so will 

reduce the credibility of each estimate (Goldburd et al., 2016). Lastly, dividing the bins 

manually makes it very difficult to find the optimal bins to maximize prediction accuracy. 

Many variables must be evaluated simultaneously, which is difficult to do manually 

(Johnson & Kuhn, 2013). 

 Gjensidige’s method of binning and grouping variables 

The reference model predicts claim frequency based on 13 categorical predictors. In this 

section, we describe how the 14 variables listed in table 3.1 are used to create these 13 

predictors. The dataset includes ordinal, nominal, binary and continuous variables, and the 

variable types are treated differently in preparation for model estimation. Continuous 

variables are manually binned, converting them to ordinal variables, where the bins are 

equivalent of levels of ordinal variables. The intervals of values that are used as limits for the 

bins are not necessarily of equal size, and the limits have been set manually based on 

observation of the data. For example, the continuous variable Egenvekt is divided into 17 

bins and called Egenvekt_gruppe, converting it into an ordinal predictor with 17 levels. 

Three of the four continuous variables, are simply binned and used as ordinal predictors in 

the model, creating four of the 13 predictors. 

Original variable Predictor Number of bins/levels 
Effekt_HK Effekt_HK_gruppe 25 
Egenvekt Egenvekt_gruppe 17 
MV_alder MV_alder_gruppe 24 

Table 3.3 - Number of levels after binning 
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manually makes it very difficult to find the optimal bins to maximize prediction accuracy. 

Many variables must be evaluated simultaneously, which is difficult to do manually 

(Johnson & Kuhn, 2013). 

3.6.2 Gjensidige's method of binning and grouping variables 

The reference model predicts claim frequency based on 13 categorical predictors. In this 

section, we describe how the 14 variables listed in table 3. l are used to create these 13 

predictors. The dataset includes ordinal, nominal, binary and continuous variables, and the 

variable types are treated differently in preparation for model estimation. Continuous 

variables are manually binned, converting them to ordinal variables, where the bins are 

equivalent of levels of ordinal variables. The intervals of values that are used as limits for the 

bins are not necessarily of equal size, and the limits have been set manually based on 

observation of the data. For example, the continuous variable Egenvekt is divided into 17 

bins and called Egenvekt_gruppe, converting it into an ordinal predictor with 17 levels. 

Three of the four continuous variables, are simply binned and used as ordinal predictors in 

the model, creating four of the 13 predictors. 

Original variable Predictor Number of bins/levels 
Ejfekt_HK 

Egenvekt 

MV alder 

Effekt_ HK _gruppe 

Egenvekt _gruppe 

MV_ alder _gruppe 

25 

17 

24 

Table 3.3 - Number of levels after binning 
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The last continuous variable, Alder_ftaker, is also binned manually first. However, it is its 

interaction with the binary variable Forer_23_aar_flagg which is used as a predictor for the 

model. In addition to the binning of the continuous variables, one ordinal 

(Kjor_lengde_kode) and two nominal variables (Drivstoff_kode and Divisjon_kode) are 

grouped as shown in Table 3.4.   

Original variable Levels  Predictor Levels 

Kjor_lengde_kode 13  Kjor_lengde_kode_gruppe 10 

Divisjon_kode 6  Divisjon_kode_gruppe 3 

Drivstoff_kode 13  Drivstoff_kode_gruppe 2 

Table 3.4 - Number of levels before and after grouping 
 

These groupings are also performed manually, and the background for why the particular 

levels are fused together is unknown, as the groupings were done many years ago. The rest 

of the variables in the dataset are not treated in any way and are included in the model in 

their original form. 

 Preparing the variables for the SMuRF algorithm 

One of the penalty types we use is the Fused Lasso, which is especially suited for ordinal 

predictors or continuous predictors that have been recoded as ordinal predictors to capture 

their non-linear effect.  Therefore, to fuse and select levels of continuous variables, they 

firstly must be recoded to ordinal variables. This recoding should bin the continuous variable 

very crudely, so that an ordinal variable with many levels is created. This allows the SMuRF 

algorithm to choose between many levels to fuse, preserving more of the information the 

continuous variable originally provides. In the extreme example of only creating two bins, 

only two levels can potentially be fused, and too much information is lost from the 

continuous predictor. The cruder the bins are, the more similar it will be to fusing the 

original continuous predictor. 

We have previously outlined the disadvantages of binning continuous variables, and with our 

chosen method we could re-evaluate Gjensidige's decision to perform binning, as it allows us 

to simply use the continuous variables instead of binning them into ordinal variables. 
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However, as our research question concerns comparing ways to group and bin variables, this 

assessment is outside the scope of this thesis. Nevertheless, the manual binning of variables 

performed for the regularized model is much cruder, as each variable is split into a larger 

number of intervals. For example, Effekt_HK is binned into 25 bins when used for 

Gjensidige’s model, while it is divided into 52 bins for the regularization model. 

We create many bins manually because we want the method to perform the binning for us 

having many bins to possible fuse. Binning the levels in a crude way gives the penalty term 

more levels to fuse, and therefore more influence on which ones should be fused together. 

Consequently, we have manually binned each of the continuous variables into ordinal 

variables crudely, before including them in the regularized model. The rest of the variables 

are left as they were in the original dataset, except that for each variable where zero has no 

meaning, any zero or negative values are gathered in a separate group, as they represent 

NAs. 
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4. Analysis 

The research question of this thesis is: “Can the prediction accuracy of Gjensidige’s claim 

frequency models be increased by using a data-driven method for the fusion of levels of 

categorical predictors?” To study this question, we analyze the data described in Dataset 

using the methods explained in Methods. In this chapter we estimate a reference model and a 

penalized model that can select and fuse predictor levels. In addition, as explained in 

Methods we reestimate a model with the new parameters to reduce the bias of the estimates, 

and then compare its results to the reference model.  

 

To isolate the effect of fusing predictor levels using regularization, we strive to keep all other 

specifications identical for the models. Consequently, we use the same training dataset for 

model estimation and the same test dataset for model validation. To replicate how Gjensidige 

uses the predictive models to predict future policyholders’ number of claims, we use an out-

of-time test set with observations from 2017, while the training set consists of observations 

from 2012 - 2016. The test set contains 1 131 099 observations, which is approximately 20% 

of the training set’s 5 595 879 observations. 

4.1 Reference model 

To evaluate the performance of the regularized model, we use Gjensidige’s current model for 

predicting claim frequency of the policyholders of comprehensive motor vehicle insurance 

as a reference model. To ensure that the reference model we estimate is equal to Gjensidige's 

current model, we replicate how they manually bin and group variables as explained in 

Gjensidige’s method of binning and grouping variables. 

The resulting objective function to be minimized is the scaled negative Poisson log-

likelihood with 13 predictors. For two of these 13 predictors, Alder_ftaker and 

Forer_23_aar_flagg, only the interaction between the two is used. In addition, the logged 

version of the variable representing exposure, Ekspo_faktor, is used as an offset in the 

model. We estimate the reference model by minimizing the objective function 

𝒪(𝜷; 𝜲, 𝒚) = −
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!)),   (4.1) 
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O(p;X,y) = - L ( Y i ( x i f 3  + log(expoi)) - e(x;f]+log(expo;)) - log(yi!) ) ,  (4.1) 
i = 1  
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where yi is the number of observed claims of a policyholder during the insured period expoi. 

In section 4.3.1, the results of the reference model estimation are presented and compared to 

the results of the regularization method. 

4.2 The regularized model 

To fuse and select the levels of the variables used for predicting the number of claims, we 

estimate a regularized model. The model is based on the objective function from the 

reference model, but there are two important differences between the models. First, the 

variables have been treated differently prior to being included in the different models, as 

explained in Differentiated pre-processing.  

Furthermore, a penalty term has been added to the objective function which creates the 

regularized model. The penalty term consists of sub-penalties adapted to each predictor type, 

stating how each predictor should be penalized. The same predictors which are used in the 

reference model are used as input for the regularized model, but as the regularization method 

performs variable selection, it may exclude some of the predictors in the process.  Estimating 

the regularized model, we minimize the objective function 

𝒪(𝜷; 𝑿, 𝒚) = −
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!))

+  𝜆 ( ∑ ∑ 𝑤𝑗,𝑖|𝛽𝑗,𝑖| + ∑ ∑ 𝑤𝑗,𝑖−1|𝛽𝑗,𝑖 − 𝛽𝑗,𝑖−1| + ∑ ∑ 𝑤𝑗,𝑖𝑙|𝛽𝑗,𝑖 − 𝛽𝑗,𝑙|
𝑖>𝑙𝑗𝜖𝑛𝑜𝑚

𝑝𝑗

𝑖=2𝑗𝜖𝑜𝑟𝑑

𝑝𝑗

𝑖=1𝑗𝜖𝑏𝑖𝑛

) . (4.2) 

Within the penalty term, we apply the penalty types that are most suitable to penalize the 

parameters of each predictor. Generally, we apply the Lasso for the binary predictors, and its 

generalizations Fused Lasso and Generalized Fused Lasso for the ordinal and nominal 

predictors respectively. The interaction between Alder_ftaker and Forer_23_aar_flagg is not 

penalized because the SMuRF method requires the predictors used for the interaction to be 

included without an interaction as well if they are to be penalized. Table 4.1 summarizes 

which penalty types are used for the different predictors.  
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(   ) •22+-22re 22.»-1« 
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Variable type Predictor name Penalty 

Binary Import_flagg 

Leasing_flagg 

Lasso 

Ordinal Kjor_lengde_kode_gruppe 

Effekt_HK_gruppe 

Egenvekt_gruppe 

MV_alder_gruppe 

Fused Lasso 

Nominal Merke_klasse_kode_ny 

Subcluster_gruppe 

Divisjon_kode_gruppe 

Band_AK_G_gruppe 

Drivstoff_kode_gruppe 

Generalized Fused Lasso 

Table 4.1 - Penalty type for each predictor 
 

To regulate the relative importance of each penalty term, we apply combined penalty 

weights to each penalty term. To select and fuse predictor levels, the SMuRF algorithm is 

used to minimize the objective function of the regularized model, estimating the coefficients 

that will display which levels are selected and fused.  

 Selection of λ 

Using the smurf package (Reynkens et al., 2018), we tune 𝜆 using 15-fold stratified cross-

validation. The value of 𝜆 is selected using cross-validation, where lowest deviance using the 

one standard error rule is used as the criterion for selection. 

Figure 4.1 was created using the smurf package (Reynkens et al., 2018) and shows how the 

deviance is changed while the logarithm of 𝜆 increases, indicating more heavily regularized 

models. The logarithm of 𝜆 is used to increase interpretability of the plot, as the relevant 

values are very small. 
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models. The logarithm of Å is used to increase interpretability of the plot, as the relevant 
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Figure 4.1 - Selection of λ 

The most prominent stapled vertical line (on the right-hand side of the plot) indicates the 

chosen 𝜆. The vertical stapled line located towards the center of the plot indicates the 𝜆 with 

the lowest deviance, while the shorter vertical lines represent the standard errors for the 

deviance of each 𝜆. Even though the chosen 𝜆 did not produce the lowest deviance, it is 

chosen because it is the highest value of λ that still produces a deviance within one standard 

error of the 𝜆 with the lowest deviance. The figure also shows how increasing 𝜆 further 

would produce significantly worse results in terms of deviance, as it increases rapidly if 𝜆 is 

increased past a certain point. However, for lower values of 𝜆, the deviance is low and stable 

as the penalization of the objective function is decreased.  

 The regularized predictors 

In this section we will present plots of the estimated coefficients for selected predictors that 

we consider suitable for illustrating how the regularization method select and fuses levels. 

Similar plots for the remaining predictors are either shown in a later section or can be found 

in Appendix A5, while complete lists of all coefficients of the models are shown in 

Appendix A3 and A4. Levels with equal coefficient estimates are fused, while levels with 

coefficient estimates set to zero are removed, as they are fused with the reference category 

and consequently the intercept of the entire model. If all parameters of a predictor are set to 

zero, the variable would be removed from the model. However, in our case, the algorithm 

did not remove any of the variables. Still, as we will observe from the plots, the method has 

fused levels accounting for a reduction in parameters from 365 to 282. 

The coefficient plots were created using the R package ggplot2 (Wickham, 2016) and show 

the estimated coefficient for each level of each predictor for the reference model and the 
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The most prominent stapled vertical line ( on the right-hand side of the plot) indicates the 

chosen Å. The vertical stapled line located towards the center of the plot indicates the Å with 

the lowest deviance, while the shorter vertical lines represent the standard errors for the 

deviance of each Å. Even though the chosen Å did not produce the lowest deviance, it is 

chosen because it is the highest value of Å that still produces a deviance within one standard 

error of the Å with the lowest deviance. The figure also shows how increasing Å further 

would produce significantly worse results in terms of deviance, as it increases rapidly if Å is 

increased past a certain point. However, for lower values of Å, the deviance is low and stable 

as the penalization of the objective function is decreased. 

4.2.2 The regularized predictors 

In this section we will present plots of the estimated coefficients for selected predictors that 

we consider suitable for illustrating how the regularization method select and fuses levels. 

Similar plots for the remaining predictors are either shown in a later section or can be found 

in Appendix AS, while complete lists of all coefficients of the models are shown in 

Appendix A3 and A4. Levels with equal coefficient estimates are fused, while levels with 

coefficient estimates set to zero are removed, as they are fused with the reference category 

and consequently the intercept of the entire model. If all parameters of a predictor are set to 

zero, the variable would be removed from the model. However, in our case, the algorithm 

did not remove any of the variables. Still, as we will observe from the plots, the method has 

fused levels accounting for a reduction in parameters from 365 to 282. 

The coefficient plots were created using the R package ggplot2 (Wickham, 2016) and show 

the estimated coefficient for each level of each predictor for the reference model and the 
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regularized model. The standard errors of the estimates from the reference model are 

included as vertical shaded lines to illustrate which estimates have high variance. The 

standard errors are included because, as we will observe, they often affect the grouping of 

levels. 

Ordinal predictors 

 

Figure 4.2 - Coefficient estimate for each level for the SMuRF model and the 
reference model for horsepower and weight 

Figure 4.2 compares the coefficient estimates of the reference model and the SMuRF model 

for two of the ordinal predictors included in the model; horsepower and weight. The two 

plots illustrate how the number of parameters is reduced through the SMuRF estimation, as 

many coefficient estimates are equal, fusing the levels, and a few are zero, fusing them with 

the reference level. However, since horsepower and weight are ordinal predictors, only 

sequential levels are fused.  

As the predictors are binned more crudely prior to the SMuRF estimation than the reference 

model, there is initially a higher number of coefficients to be estimated for the SMuRF 

model than the reference model. For example, 52 levels of horsepower were used as input 

for the SMuRF model, while 25 were used for the reference model. However, after using the 

SMuRF algorithm, the number of unique coefficients for horsepower is 28. The two models 

therefore end up with a similar number of levels, but the binning performed by the SMuRF 

model has been data-driven rather than performed manually.   
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model than the reference model. For example, 52 levels of horsepower were used as input 

for the SMuRF model, while 25 were used for the reference model. However, after using the 
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The difference in binning is especially apparent on the right half of both plots, where there is 

a large difference in the number of levels for the two different models. We also observe that 

more of the levels on the right side of the plots have been fused than on the left, which 

indicates it was a correct decision by Gjensidige to create larger bins for the higher values. 

Still, the SMuRF model includes more of these levels than the reference model, which means 

that this data contains some information deemed valuable enough by the SMuRF algorithm 

to be signaled with several coefficients. The coefficient estimates of the two models are quite 

similar between about 75 and 325 of horsepower, while they differ more for most other 

values. In contrast, the coefficient estimates for weight are considerably different for the two 

models, as the reference model estimates a higher number of claims for most levels of the 

variable. 

Nominal predictors 

 

Figure 4.3 - Coefficient estimate for each level for the SMuRF model and the 
reference model for fuel code and vehicle brand 

Figure 4.3 compares the coefficient estimates of the two models for two of the nominal 

predictors included in the model; fuel code and vehicle brand. As they are nominal, all levels 

can potentially be fused together. Since there is no logical sequence of the levels, they have 

been sorted in ascending and alphabetical order respectively. 

The two plots show that many coefficient estimates have been set to zero for the regularized 

model. For fuel code, seven of eleven levels have been set to zero and are therefore fused 
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predictors included in the model; fuel code and vehicle brand. As they are nominal, all levels 

can potentially be fused together. Since there is no logical sequence of the levels, they have 

been sorted in ascending and alphabetical order respectively. 

The two plots show that many coefficient estimates have been set to zero for the regularized 

model. For fuel code, seven of eleven levels have been set to zero and are therefore fused 
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with the reference level, 2. These seven levels are the same levels Gjensidige manually 

group before estimating the reference model, meaning the two models end up with the same 

number of unique coefficients and similar estimates. As we observed from the descriptive 

analysis, fuel code has several levels with close to zero observations, which could be why 

they are set to zero, and why Gjensidige has fused them with other categories. 

The same 44 levels of vehicle brand were used as input for both models. However, the 

SMuRF algorithm set two of its coefficients to zero and fused several others together, ending 

up with 27 unique coefficients. The coefficient estimates in the reference model with the 

highest standard errors seem to have been shrunk the most, seen mostly in the middle of the 

plot from BA to ZB. Two of these, BC and ZB, have been set to zero and are therefore fused 

with the reference level. 

Binary predictors 

 

Figure 4.4 - Coefficient estimate for each level for the SMuRF model and the 
reference model for imported vehicles and leased vehicles 

Figure 4.4 compares the coefficient estimates of the two models for the two binary predictors 

penalized in the model, imported vehicles and leased vehicles, which cannot be grouped as 

they only have one parameter. They could have been removed from the model if the one 

parameter was set to zero, but they are not removed in our model. We can see how the 

coefficient estimate has been constrained towards zero by the SMuRF for both predictors. 

The coefficient estimate for leased vehicles has been constrained more than the estimate of 

imported vehicles, which may be because its standard error is higher. 
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Figure 4. 4 - Coefficient estimate for each level for the SMuRF model and the 
reference model for imported vehicles and leased vehicles 

Figure 4.4 compares the coefficient estimates of the two models for the two binary predictors 

penalized in the model, imported vehicles and leased vehicles, which cannot be grouped as 

they only have one parameter. They could have been removed from the model if the one 

parameter was set to zero, but they are not removed in our model. We can see how the 

coefficient estimate has been constrained towards zero by the SMuRF for both predictors. 

The coefficient estimate for leased vehicles has been constrained more than the estimate of 

imported vehicles, which may be because its standard error is higher. 
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Predictors not suited for level fusion 

 

Figure 4.5 - Coefficient estimate for each level for the SMuRF model and the 
reference model for Band_AK_G and mileage 

Figure 4.5 compares the coefficient estimates for the two models for a nominal and an 

ordinal predictor for which levels have not been grouped. These two predictors are 

Band_AK_G, a predictor constructed by Gjensidige based on geographic and demographic 

factors, and Kjor_lengde_kode, a constructed predictor for mileage. 

Both predictors seem to be constructed to have an increasingly positive effect on claims, 

beginning with a negative effect and ending up with a positive effect. As shown in Dataset, 

the mean number of claims increases for each level for both predictors, and the variable has 

an approximately linear relationship with number of claims. Consequently, the two 

predictors are already constructed to have levels that share the same effect on number of 

claims and is a good example of how predictors could be grouped ideally. Therefore, it is not 

surprising the levels have not been grouped by the SMuRF algorithm.  

By including a regularization term in the objective function, some predictor levels have been 

grouped while some have been removed entirely. Regularization improves prediction 

accuracy by reducing variance, but this comes at the cost of an increase in bias. In the 

following section, we introduce a new model to address this. 
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Figure 4.5 - Coefficient estimate for each level for the SMuRF model and the 
reference model for Band_ AK_ G and mileage 

Figure 4.5 compares the coefficient estimates for the two models for a nominal and an 

ordinal predictor for which levels have not been grouped. These two predictors are 

Band_ AK_ G, a predictor constructed by Gjensidige based on geographic and demographic 

factors, and Kjar _lengde _kode, a constructed predictor for mileage. 

Both predictors seem to be constructed to have an increasingly positive effect on claims, 

beginning with a negative effect and ending up with a positive effect. As shown in Dataset, 

the mean number of claims increases for each level for both predictors, and the variable has 

an approximately linear relationship with number of claims. Consequently, the two 

predictors are already constructed to have levels that share the same effect on number of 

claims and is a good example of how predictors could be grouped ideally. Therefore, it is not 

surprising the levels have not been grouped by the SMuRF algorithm. 

By including a regularization term in the objective function, some predictor levels have been 

grouped while some have been removed entirely. Regularization improves prediction 

accuracy by reducing variance, but this comes at the cost of an increase in bias. In the 

following section, we introduce a new model to address this. 
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 Reestimated model 

To counter the increased bias introduced in the model by the regularization term, we 

reestimate the regularized model without penalties, where the coefficients estimated by the 

SMuRF algorithm are used as input to select and group levels. The predictors for which the 

coefficients were estimated to be zero are removed, while any fused coefficients are included 

in their collapsed form. The reestimation is done using the smurf package (Reynkens et al., 

2018).  

Reestimating the regularized model without the penalty term effectively means using the 

same objective function 

𝒪(𝜷; 𝑿, 𝒚) = −
1
𝑛

∑(𝑦𝑖(𝑥𝑖𝛽
𝑛

𝑖=1

+ log (𝑒𝑥𝑝𝑜𝑖)) − 𝑒(𝑥𝑖𝛽+log(𝑒𝑥𝑝𝑜𝑖)) − log (𝑦𝑖!))      (4.3) 

as the reference model, but with differently coded predictors 

4.3 Validation and comparison of models 

To find out whether selecting and fusing predictors using the SMuRF algorithm can lead to 

improved prediction accuracy compared to Gjensidige’s current method, we validate and 

compare the reference model, the first regularized model and the reestimated model using 

selected performance criteria presented in Methods. To be able to analyze why the different 

models perform as they do, we also study the coefficient estimates of the levels of some of 

the predictors. In addition, to illustrate the effect of the regularization term, we illustrate how 

the MSE, bias, variance and the reduction in degrees of freedom changes as the strength of 

the penalty changes. The test dataset including observations from 2017 and the R package 

stats (R Core Team, 2018) was used for calculating test MSE. 
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 Comparison of models 

              Model 

Criteria Reference Estimated SMuRF Reestimated SMuRF 

Reduction in DF 298 365 282 

AIC 1 240 098 1 239 809 1 239 746 

Training MSE 0.0264971 0.0264963 0.0264962 

Test MSE 0.0266903 0.0266876 0.0266879 

Table 4.2 - Performance of the different models using different criteria 

The reestimated SMuRF performs the best for AIC and training MSE, while the estimated 

SMuRF performs the best for test MSE. The two SMuRF models perform better than the 

reference model for every criterion.  

Degrees of freedom (DF) 
As the SMuRF method collapses categories, the number of degrees of freedom used is 

reduced from 365 to 282. Compared to the reference model, the reduction is from 298 to 

282. This means a simpler model has been used to increase prediction accuracy. In addition, 

the reduction in used degrees of freedom means interpretability increases, as the number of 

coefficients is reduced. 

AIC 
The calculated AIC is lower for the reestimated SMuRF than for the reference model, which 

indicates a better model. This can either be due to a lower deviance, a reduced number of 

parameters or a combination of the two. As it takes the number of parameters in the models 

into account, it favors the SMuRF method relatively higher than the MSE results do. 

MSE 
The test MSE of the SMuRF method is slightly lower than the reference model, indicating 

increased prediction accuracy as a result of using the SMuRF algorithm to treat the variables. 

However, the results are very similar. The calculated MSE for the models consists of the 

estimation error attributed to both bias and variance. As the MSE for the SMuRF models are 

lower, a reduction in variance has more than offset a potential increase in bias.  
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 Groups created with the different methods 

The performance criteria used to compare the models conclude that the SMuRF models 

perform better than the reference model in terms of prediction accuracy. As the difference 

between the models is how the predictor’s levels are grouped, we will now analyze the 

estimated coefficients of the levels of some of the predictors. Figure 4.6 shows the estimated 

coefficients for all three models for four of the predictors, horsepower, vehicle age, imported 

vehicles and Subcluster. Similar plots for the remaining predictors can be found in Appendix 

A5. 

 

Figure 4.6 - Coefficient estimate for each level for the first SMuRF model, 
reestimated SMuRF model and the reference model for horsepower, vehicle age, 
imported vehicles and Subcluster 
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The trends of the three lines representing the coefficients estimated for each model mostly 

follow each other. The differences mainly appear when the standard errors of the reference 

model estimates are higher. Comparing the coefficient plots to the descriptive analysis, this 

mostly concerns levels containing few observations. In addition, the graphs show that the 

variation in the reestimated estimates are higher than in the first estimation of the SMuRF 

algorithm. For example, in the interval from 325 to 450 of Horsepower, there are three clear 

spikes in the coefficient estimates. The estimates of the reestimated coefficients are further 

away from zero than the first SMuRF estimation for almost every level where the estimate is 

not identical. For the last plot, imported vehicles, the reestimated coefficient is also further 

away from zero. This all indicates that the variance has increased as a consequence of 

reducing the bias when reestimating the coefficients. 

In addition, the SMuRF algorithm has removed some levels with high variance from the 

model. For example, the level 1 of Subcluster seems to have a large standard error. As the 

SMuRF method has removed it from the model entirely, variance is likely reduced at the cost 

of some bias, since the model is simplified.  

However, for another example like the level 6 of subcluster, the first SMuRF estimation has 

shrunk the coefficient some to reduce variance, while the reestimation has undone the 

shrinkage and ends up with the same estimate as the reference model. This increase in 

variance is likely the reason why the reestimation performs worse for test MSE than the first 

SMuRF estimation, as the reduction in bias has not been large enough to compensate for the 

increase in variance. 

 The effect of regularization 

As we have observed that regularization can improve the test MSE compared to the 

reference model, it is interesting to analyze how different values of 𝜆 changes test MSE. 

Therefore, we create Figure 4.7 which illustrates how the test MSE and degrees of freedom 

differentiate for different values of λ. We have also included the reference model and the 

SMuRF model with λ = 0 for comparison of reduction of degrees of freedom and test MSE, 

even though the logarithm of zero is -∞. We have therefore labelled their λ to 0.00000001 

and 0.00000001 to be able to include them in the plot.  

The plot shows that the number of degrees of freedom is lower for the reference model than 

the regularized models with the lowest λ’s, because of the difference in data pre-processing. 
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As we have observed that regularization can improve the test MSE compared to the 

reference model, it is interesting to analyze how different values of Å changes test MSE. 
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Also, we observe that the MSE decreases by creating more bins in preparation for the 

SMuRF model. In addition, regularizing the model decreases the MSE steadily until a certain 

point, where the MSE begins to increase rapidly. If the value of 𝜆 is higher than at this point, 

the degrees of freedom will be reduced further but the test MSE will increase. This illustrates 

the trade-off between prediction accuracy and interpretability, as the lower values of 𝜆 give a 

more flexible model while increased λ reduces the variance at the cost of increased bias. The 

increase in test MSE especially occurs when reducing the number of parameters from 192 to 

163, which indicates that some of the variables or levels removed in that interval are 

important for prediction accuracy. 

 

Figure 4.7 - MSE for models created with different values of  𝜆 
 

Figure 4.8 shows how the variance and squared bias change with an increasing 𝜆. The results 

mostly follow what we expected, as the trend in the plot is that an increased 𝜆 leads to an 

increase in bias and a reduction in variance. Surprisingly, there is a spike in the variance for 

the model which uses 192 degrees of freedom. However, the variance can sometimes 

increase when the number of parameters in the model is reduced. 

 

Figure 4.8 - Bias and variance for different values of λ 
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Figure 4.8 shows how the variance and squared bias change with an increasing Å. The results 

mostly follow what we expected, as the trend in the plot is that an increased Å leads to an 

increase in bias and a reduction in variance. Surprisingly, there is a spike in the variance for 

the model which uses 192 degrees of freedom. However, the variance can sometimes 

increase when the number of parameters in the model is reduced. 
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5. Discussion 

The results of our analysis indicate that grouping and binning the variables used in 

Gjensidige’s claim frequency model by applying the SMuRF method, rather than doing it 

manually, results in a slightly better model in terms of both test MSE and AIC. Surprisingly, 

the first estimation of the regularized model performs better than the reestimated model, 

even though the purpose of the reestimated model is to reduce bias introduced to the model 

during regularization. Whether the improvement from the reference model to our models is 

large enough for Gjensidige to consider implementing it, and whether the results are robust 

over different datasets remains to be concluded. However, our results show that the newly 

developed method is promising. 

To gain a better understanding of our results, we discuss the mechanisms of the 

regularization method used and how the constant tradeoff between minimizing the distance 

between observed and predicted values of the dependent variable and penalizing coefficients 

has played a role. The difference in MSE, between the two models’ predictions can be 

attributed to both the differences in fusion of levels and how the binning was done 

differently prior to model estimation. 

5.1 Results 

The choice of manually binning continuous variables prior to modelling introduce bias to 

both the reference model and the models estimated with the SMuRF algorithm, as we lose 

some information on specific values of a variable by combining them. However, in the 

preparation for the SMuRF algorithm, the bins are much narrower than for the reference 

model. By allowing more parameters in the model and increasing thereby flexibility, this 

bias is reduced compared to the reference model. On the other hand, this comes at the cost of 

increased variance. As our analysis show, some of the additional parameters we introduce 

with this crude binning are not needed. Some groups of levels in the reference model seem to 

have been formed by Gjensidige for this reason. They have discovered that the levels are not 

valuable for the model, for example due to few observations or that the effect of several 

levels on number of claims is very similar. Still, the cruder binning lead to a reduced MSE, 

meaning the model was already improved before applying the SMuRF algorithm. This was 
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somewhat surprising to us, as it indicates that simply creating more bins without considering 

their limits gave better results than grouping manually while considering the data. 

However, the reduction in MSE caused by the reduction in bias from the cruder binning is 

offset by an increase in the use of degrees of freedom, as more bins means a more flexible 

model. The next step of applying the SMuRF algorithm to regularize the model counteracts 

this problem, as the main idea is to reduce excess parameters. When using a regularization 

method, the choice of λ is essential because it decides the tradeoff between a flexible model 

and a simple model by regulating the number and size of parameters in the model. As our 

analysis show, the estimated coefficients of the models are quite similar. This signals that 

while it is optimal to constrain some coefficients, the information is valuable enough for the 

method not to penalize a great amount. 

In our study, increasing λ more than the optimal value leads to a large decrease in number of 

parameters, but an increase in MSE. Up to a certain point, regularizing the coefficients leads 

to a reduction in variance that dominates the increase in bias, because initially, levels that are 

not important for the model performance are removed. However, with an increasing value of 

λ, MSE can increase as levels with high importance to the performance of the model are 

removed or fused in a way so that information is lost. As shown in Analysis, the likelihood 

of fusion and removal of levels is much higher when the standard error of the coefficient 

estimate is higher, meaning the SMuRF algorithm recognizes that the estimate introduces too 

much error to be included. 

Penalizing the coefficients reduces the flexibility of the model as the number of parameters 

is reduced, which increases the bias. The model is therefore reestimated using the selected 

and fused parameters in order to reduce the bias introduced by penalizing the coefficients. 

Consequently, the variance of the model increases, which could be observed in the 

coefficient plots in Analysis. The estimates of the reestimated model often reversed some of 

the penalization performed by the regularized model, which results in a more flexible model. 

As it is often recommended to perform this reestimation to reduce bias, it was surprising that 

the reestimated model ended up performing poorer, but it indicates that decrease in bias has 

not been large enough to overcome the increase in variance from the regularization of the 

coefficients.  
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5.2 Implications 

One of the aims of this study has been to find and employ a method that can improve 

Gjensidige’s prediction models in some way, if implemented. It was therefore important for 

us to find a method suitable for Poisson regression. The output of a model estimated using 

the smurf package (Reynkens et al., 2018) is almost identical to the output from the stats 

package (R Core Team, 2018), and this familiarity will likely simplify the implementation 

process, which is an important aspect because radical changes take time in large 

organizations.  

For Gjensidige to consider implementing the SMuRF method, there has to be a potential 

economic gain related to the method that compensates them for the effort of implementing a 

new system. In this thesis, prediction accuracy is used to evaluate whether there is an 

economic gain, as the performance of the predictive models is for Gjensidige’s overall profit. 

However, it is difficult to draw conclusions on the value that the small change in MSE 

constitutes from the MSE numbers reported in Analysis. For 2017, the improvement in the 

number of claims predicted correctly would be 8.4, out of a total of 29 217 claims. 

Therefore, the improvement in prediction accuracy is not very large, but 8.4 claims can still 

account for a large sum of money when considering claims connected to vehicles.  

If Gjensidige decides to implement the method, they can also consider to what extent they 

want to implement it. As the smurf package estimates and reestimates the model using 

speedglm, it is possible for Gjensidige to use the smurf package for model estimation in the 

same dynamic way they estimate the Poisson regression models today, using the stats 

package (R Core Team, 2018). In Gjensidige’s prediction framework the models are updated 

continuously, and by fully implementing the smurf package, they can ensure that the 

parameters they use are up-to-date when new levels, variables or observations are introduced 

to the dataset. Another option is to implement the new method in a more static way by 

continuing to estimate the prediction models using the stats package (R Core Team, 2018) 

and to group the levels of the categorical variables manually. The method can still be 

somewhat implemented by running the SMuRF algorithm using the smurf package 

(Reynkens et al., 2018) whenever the analysts consider changing the level groups. Even 

though the process of grouping the levels will be done manually, the groups will still be 

chosen in a data-driven way, and the analysts can spend less time researching the different 

categories. Another benefit of this approach is that it does not necessarily require getting the 
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entire organization on board before using it. This approach is the most relevant one if 

Gjensidige considers the increase in prediction accuracy too small to spend time and 

resources on implementing it, but still consider it beneficial to save time on grouping the 

predictor levels manually. If we trust that our results from Analysis are robust, the more 

dynamic alternative will likely provide the best prediction accuracy and be most time-

effective. However, Gjensidige must still consider whether the time required to develop and 

implement the new method is worth the small increase in prediction accuracy it can provide.  

After discussing the results with our persons of contact in Gjensidige, the main potential of 

the model seems to be related to the possibility of reducing the time analysts spend grouping 

predictor levels. The groups used today are results of many years of research and decisions 

by the analysts. In some instances, the SMuRF algorithm has chosen almost exactly the same 

groups as the analysts, as shown in the coefficient plots in Analysis. This is perhaps the most 

interesting finding from Gjensidige’s perspective, as it illustrates the potential to save time 

and resources on finding suitable groups manually. Considering the need to update the 

models frequently as new observations, variables or levels are introduced, a method which 

can do group the variable levels automatically can prove to be very valuable. 

5.3 Limitations and weaknesses 

As in any other study, there are several limitations and weaknesses to our research. First of 

all, our results are dependent on the performance measures we have chosen to use, as other 

performance measures could possibly consider the reference model superior as the margins 

are very slim. The results are also dependent on our choice of test set. Our test set only 

consists of observations from 2017, which may have been a year different from the ordinary. 

In that case, our model may have a superior ability to predict the number of claims for 2017 

compared to the reference model, but potentially not for other future years. However, our 

model also performed better on the training set which contains observations from 2012-

2016. 

Exploring different ways of improving the prediction accuracy of Gjensidige’s models has 

not been the focus of our analysis. For example, it might be of interest to attempt to estimate 

these models without binning continuous variables beforehand, but this has not been 

investigated. Our focus has rather been on fusing predictor levels differently to improve 
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prediction accuracy, without considering other ways it could be improved. Therefore, it 

might be the case that none of these models perform particularly well. 

In addition, when searching for the optimal λ using cross-validation, we were only able to 

use a subset of the observations as the cross-validation function of the smurf package 

(Reynkens et al., 2018) did not work on Gjensidige’s server. We further used the λ chosen 

based on the subset as input for the SMuRF algorithm, which was run on the entire dataset. 

This means the optimal λ for the whole dataset may not have been chosen, but through trial-

and-error we identified that the MSE of the λ we used was one of the lowest of all λ, as we 

also show in our analysis. 
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6. Conclusion 

In this thesis we have researched whether the prediction accuracy of Gjensidige’s models for 

predicting claim frequency can be increased by using a data-driven method for the fusion of 

categorical predictor levels. We therefore searched for a method that could handle all 

predictor types and was compatible with large datasets. The method we selected was the 

SMuRF method, which relies on regularization to select variables and fuse levels of 

categorical predictors. To assess its performance, we estimate a reference model identical to 

the model currently employed by Gjensidige to predict claim frequency. 

The results of our analysis show that the model estimated using the SMuRF method 

performs slightly better in terms of MSE and AIC than the reference model. It also reduces 

the number of degrees of freedom used to create the model, as only levels important to the 

model’s performance are included. The reestimated model we create using selected and 

fused levels performs better than the reference model but has a lower prediction accuracy 

than the first regularized model.  

However, the most important finding for Gjensidige was perhaps not the slightly improved 

performance of the model. It is reassuring that the models perform at a similar level, but the 

fact that the SMuRF algorithm is able to automatically group levels as well as the analysts is 

of greater interest. The new method can therefore have a positive effect on the tasks and 

resource usage of the department developing the prediction models. 
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Appendix 

A1 

Table and plots of relative frequencies of the remaining variables, excluding the numerical 

ones. 

 

 
 

 
 

 Import_flagg Leasing_flagg 

Levels Frequency Relative 

frequency 

% Frequency Relative 

frequency 

% 

Yes 1 071 152 0.12682 12.682 102 649 0.0121528 1.2153 

No 7 375 203 0.87316 87.316 8 343 852 0.9878418 98.784 

Unknown 192 0.00002 0.002 46 0.000005 0.0005 
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A2 

This section shows the mean of claims for variable levels for the remaining variables. 
 

Alder_ftaker: Age of the policyholder 
The figure below shows the mean and standard error of Claims for different ages of 

policyholders. The line represents the mean values, while the grey ribbon surrounding it 

represents the standard errors of the mean of Claims for each age. The plot includes data on 

policyholders under the age of 18, which does not make much sense as it is not possible to 

have a driver’s license in Norway before the age of 18. As there are very few observations 

for these ages, the standard errors are very high.  

The standard errors are also very high for ages above 80, as there are few people who drive 

vehicles at this age. We observe that the mean number of claims decreases with age. The 

number of claims peaks around 20 years of age, and then quite steadily declines up to the age 

of approximately 65, after which it declines with a faster rate. It not surprising that young 

drivers cause many claims. 
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Egenvekt: Weight 
The figure below shows the mean weight in kilograms for vehicles of policyholders from 

zero to five claims. It seems that the weight of the car increases slightly when the number of 

claims increase, before decreasing for observations with five claims. 

 

Leasing_flagg and Import_flagg: Leased cars and imported cars 
The figures below shows the mean number of claims for policyholders depending on 

whether their vehicle is imported or not, in addition to the mean number of claims for 

policyholders depending on whether their vehicle is leased or not. It seems that the average 

number of claims are somewhat higher for cars that are imported or leased compared with 

vehicles that are not imported or not leased. The last group for both variables refers to the 

cases where it is “unknown” whether the vehicle of the policyholder is imported or leased. It 

seems like the “unknown” vehicles have a mean number of claims between the two groups, 

which is to be expected, but we also observe that the standard errors are large because very 

few observations are “unknown”. 
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Subcluster: Combination of geography and demography 
The figure below shows the mean number of claims for policyholders for Subcluster. There 

is a quite high difference between the different levels, and the standard errors are also 

relatively small. 

 

Divisjon_kode and Forer_23_aar_flagg: Policy registration and whether 
vehicle is driven by someone below 23 years old 
The figure below shows the mean number of claims for policyholders for Divisjon_kode and 

Forer_23_aar_flagg. There is a difference between the mean number of claims for 

Divisjon_kode, but N has a large standard error. Still, it seems it can have an effect on the 

number of claims. For Forer_23_aar_flagg, the difference is very small between J and N. 
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A3 

Coefficients of the estimated and reestimated SMuRF models, where '*' indicates a zero 

coefficient and removal from the model. 

                                          Estimated  Reestimated 
Intercept                                 -2.548046 -2.467170    
BAND_AK_G_GRUPPE_AK_G_Annen"1             -0.471258 -0.475545    
BAND_AK_G_GRUPPE_AK_G_Annen"10            -0.123976 -0.124514    
BAND_AK_G_GRUPPE_AK_G_Annen"11            -0.081610 -0.084170    
BAND_AK_G_GRUPPE_AK_G_Annen"12            -0.080577 -0.080320    
BAND_AK_G_GRUPPE_AK_G_Annen"13            -0.058987 -0.058977    
BAND_AK_G_GRUPPE_AK_G_Annen"14            -0.044527 -0.042550    
BAND_AK_G_GRUPPE_AK_G_Annen"15            -0.025521 -0.023399    
BAND_AK_G_GRUPPE_AK_G_Annen"16             0.057408  0.058419    
BAND_AK_G_GRUPPE_AK_G_Annen"17             0.082107  0.086446    
BAND_AK_G_GRUPPE_AK_G_Annen"18             0.077550  0.078025    
BAND_AK_G_GRUPPE_AK_G_Annen"19             0.157571  0.158924    
BAND_AK_G_GRUPPE_AK_G_Annen"2             -0.398347 -0.404033    
BAND_AK_G_GRUPPE_AK_G_Annen"20             0.245327  0.246867    
BAND_AK_G_GRUPPE_AK_G_Annen"21             0.312045  0.315322    
BAND_AK_G_GRUPPE_AK_G_Annen"22             0.349446  0.353853    
BAND_AK_G_GRUPPE_AK_G_Annen"23             0.406719  0.409964    
BAND_AK_G_GRUPPE_AK_G_Annen"24             0.439909  0.442866    
BAND_AK_G_GRUPPE_AK_G_Annen"25             0.629796  0.630005    
BAND_AK_G_GRUPPE_AK_G_Annen"3             -0.364579 -0.364941    
BAND_AK_G_GRUPPE_AK_G_Annen"4             -0.310364 -0.312917    
BAND_AK_G_GRUPPE_AK_G_Annen"5             -0.267842 -0.267505    
BAND_AK_G_GRUPPE_AK_G_Annen"6             -0.270246 -0.271586    
BAND_AK_G_GRUPPE_AK_G_Annen"7             -0.225430 -0.225926    
BAND_AK_G_GRUPPE_AK_G_Annen"8             -0.169719 -0.171225    
BAND_AK_G_GRUPPE_AK_G_Annen"9             -0.159237 -0.159134    
DIVISJON_KODE_GRUPPEL                     -0.169660 -0.172296    
DIVISJON_KODE_GRUPPEZ                      0.096027  0.097740    
DRIVSTOFF_KODE_GRUPPE0                    -0.125689 -0.146155    
DRIVSTOFF_KODE_GRUPPE1                    -0.113906 -0.111516    
DRIVSTOFF_KODE_GRUPPE3                     *         *           
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Coefficients of the estimated and reestimated SMuRF models, where '*' indicates a zero 

coefficient and removal from the model. 

Estimated Reestimated 
Intercept -2.548046 -2.467170 
BAND AK G GRUPPE AK G Annen"1 -0.471258 -0.475545 - - - - - - 
BAND AK G GRUPPE AK G Annen"10 -0.123976 -0.124514 - - - - - - 
BAND AK G GRUPPE AK G Annen"11 -0.081610 -0.084170 - - - - - - 
BAND AK G GRUPPE AK G Annen"12 -0.080577 -0.080320 - - - - - - 
BAND AK G GRUPPE AK G Annen"13 -0.058987 -0.058977 - - - - - - 
BAND AK G GRUPPE AK G Annen"14 -0.044527 -0.042550 - - - - - - 
BAND AK G GRUPPE AK G Annen"15 -0.025521 -0.023399 - - - - - - 
BAND AK G GRUPPE AK G Annen"16 0.057408 0.058419 - - - - - - 
BAND AK G GRUPPE AK G Annen"17 0.082107 0.086446 - - - - - - 
BAND AK G GRUPPE AK G Annen"18 0.077550 0.078025 - - - - - - 
BAND AK G GRUPPE AK G Annen"19 0.157571 0.158924 - - - - - - 
BAND AK G GRUPPE AK G Annen"2 -0.398347 -0.404033 - - - - - - 
BAND AK G GRUPPE AK G Annen"20 0.245327 0.246867 - - - - - - 
BAND AK G GRUPPE AK G Annen"21 0.312045 0.315322 - -- - -- 
BAND AK G GRUPPE AK G Annen"22 0.349446 0.353853 - - - - - - 
BAND AK G GRUPPE AK G Annen"23 0.406719 0.409964 - - - - - - 
BAND AK G GRUPPE AK G Annen"24 0.439909 0.442866 - - - - - - 
BAND AK G GRUPPE AK G Annen"25 0.629796 0.630005 - - - - - - 
BAND AK G GRUPPE AK G Annen"3 -0.364579 -0.364941 - - - - - - 
BAND AK G GRUPPE AK G Annen"4 -0.310364 -0.312917 - - - - - - 
BAND AK G GRUPPE AK G Annen"5 -0.267842 -0.267505 - - - - - - 
BAND AK G GRUPPE AK G Annen"6 -0.270246 -0.271586 - - - - - - 
BAND AK G GRUPPE AK G Annen"7 -0.225430 -0.225926 - - - - - - 
BAND AK G GRUPPE AK G Annen"8 -0.169719 -0.171225 - - - - - - 
BAND AK G GRUPPE AK G Annen"9 -0.159237 -0.159134 - -- - -- 
DIVISJON KODE GRUPPEL -0.169660 -0.172296 - - 
DIVISJON KODE GRUPPEZ 0.096027 0.097740 - - 
DRIVSTOFF KODE GRUPPE0 -0.125689 -0.146155 - - 
DRIVSTOFF KODE GRUPPE1 -0.113906 -0.111516 - - 
DRIVSTOFF KODE GRUPPE3 * * - - 
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DRIVSTOFF_KODE_GRUPPE4                     *         *           
DRIVSTOFF_KODE_GRUPPE5                    -0.206291 -0.211370    
DRIVSTOFF_KODE_GRUPPE6                     *         *           
DRIVSTOFF_KODE_GRUPPE7                    -0.239376 -0.259897    
DRIVSTOFF_KODE_GRUPPE8                     *         *           
DRIVSTOFF_KODE_GRUPPE9                     *         *           
DRIVSTOFF_KODE_GRUPPE10                    *         *           
DRIVSTOFF_KODE_GRUPPE11                    *         *           
IMPORT_FLAGGN                             -0.057047 -0.059030    
IMPORT_FLAGGJ                              *         *           
LEASING_FLAGGN                            -0.230779 -0.239951    
LEASING_FLAGGJ                             *         *           
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AA -0.465145 -0.484312    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AB -0.115576 -0.126060    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AC -0.110021 -0.135362    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AD -0.251177 -0.266476    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AE -0.192167 -0.204560    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AF  0.026190  0.013063    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AG  0.070364  0.058632    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AH -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AI -0.108343 -0.115675    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AJ  0.059323  0.046946    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AK -0.191936 -0.206165    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AL -0.094761 -0.097181    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AM -0.110021 -0.135362    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AN  0.029198  0.021847    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AO -0.112461 -0.114242    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AP -0.119724 -0.131233    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AR -0.257010 -0.267892    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"AS -0.010197 -0.007216    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BA -0.110021 -0.135362    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BB -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BC  *         *           
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BD -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BE -0.022333 -0.051574    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BF -0.119768 -0.421467    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BG -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BH -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"BI -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"SA -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"SB -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZA -0.103127 -0.096900    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZB  *         *           
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZC -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZD -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZE -0.207443 -0.249617    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZF -0.033723 -0.031709    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZG -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZH -0.167135 -0.274037    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZI -0.265857 -0.363983    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZJ -0.167135 -0.274037    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZK  0.267929  0.282186    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZL -0.117391 -0.207873    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZM -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZO -0.034939 -0.055894    
MERKE_KLASSE_KODE_NY_KLASSE_KODE_Annen"ZP  0.059323  0.046946    
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DRIVSTOFF KODE GRUPPE4 - - 
DRIVSTOFF KODE GRUPPES - - 
DRIVSTOFF KODE GRUPPE6 - - 
DRIVSTOFF KODE GRUPPE7 - - 
DRIVSTOFF KODE GRUPPE8 - - 
DRIVSTOFF KODE GRUPPE9 - - 
DRIVSTOFF KODE GRUPPE10 - - 
DRIVSTOFF KODE GRUPPE11 - - 

* * 
-0.206291 -0.211370 

* * 
-0.239376 -0.259897 
* 
* 
* 
* 

* 
* 
* 
* 

IMPORT FLAGGN 
IMPORT FLAGGJ 
LEASING FLAGGN 
LEASING FLAGGJ 

-0.057047 -0.059030 
* * 
-0.230779 -0.239951 
* * 

MERKE KLASSE KODE NY KLASSE KODE Annen"AA -0.465145 -0.484312 - - - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AB -0.115576 -0.126060 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AC -0.110021 -0.135362 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AD -0.251177 -0.266476 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AE -0.192167 -0.204560 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AF 0.026190 0.013063 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AG 0.070364 0.058632 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AH -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AI -0.108343 -0.115675 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AJ 0.059323 0.046946 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AK -0.191936 -0.206165 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AL -0.094761 -0.097181 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AM -0.110021 -0.135362 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AN 0.029198 0.021847 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AO -0.112461 -0.114242 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AP -0.119724 -0.131233 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AR -0.257010 -0.267892 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"AS -0.010197 -0.007216 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BA -0.110021 -0.135362 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BB -0.117391 -0.207873 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BC * * - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BD -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BE -0.022333 -0.051574 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BF -0.119768 -0.421467 - - - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BG -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BH -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"BI -0.117391 -0.207873 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"SA -0.117391 -0.207873 - - - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"SB -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZA -0.103127 -0.096900 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZB * * - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZC -0.117391 -0.207873 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZD -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZE -0.207443 -0.249617 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZF -0.033723 -0.031709 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZG -0.117391 -0.207873 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZH -0.167135 -0.274037 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZI -0.265857 -0.363983 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZJ -0.167135 -0.274037 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZK 0.267929 0.282186 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZL -0.117391 -0.207873 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZM -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"ZO -0.034939 -0.055894 - - - - 
MERKE KLASSE KODE NY KLASSE KODE Annen"7P 0.059323 0.046946 - - - - 
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SUBCLUSTER_GRUPPE1                         *         *           
SUBCLUSTER_GRUPPE10                       -0.001890  0.004906    
SUBCLUSTER_GRUPPE11                        0.019969  0.022225    
SUBCLUSTER_GRUPPE12                        0.159429  0.159846    
SUBCLUSTER_GRUPPE2                        -0.064786 -0.066908    
SUBCLUSTER_GRUPPE3                        -0.154768 -0.154773    
SUBCLUSTER_GRUPPE4                        -0.141647 -0.153514    
SUBCLUSTER_GRUPPE5                         0.019969  0.022225    
SUBCLUSTER_GRUPPE6                        -0.028744 -0.055242    
SUBCLUSTER_GRUPPE8                         *         *           
SUBCLUSTER_GRUPPE9                        -0.006282 -0.020608    
EFFEKT_HK_GRUPPE0                         -0.658565 -1.754997    
EFFEKT_HK_GRUPPE1                         -0.658565 -1.754997    
EFFEKT_HK_GRUPPE2                         -0.657857 -1.210773    
EFFEKT_HK_GRUPPE3                         -0.248731 -0.230512    
EFFEKT_HK_GRUPPE4                         -0.248731 -0.230512    
EFFEKT_HK_GRUPPE5                         -0.248731 -0.230512    
EFFEKT_HK_GRUPPE6                         -0.064490 -0.093134    
EFFEKT_HK_GRUPPE7                          0.012725  0.002717    
EFFEKT_HK_GRUPPE8                          0.017814  0.029897    
EFFEKT_HK_GRUPPE9                         -0.043023 -0.045318    
EFFEKT_HK_GRUPPE10                        -0.029219 -0.023949    
EFFEKT_HK_GRUPPE12                         0.013187  0.020775    
EFFEKT_HK_GRUPPE13                         0.065891  0.069394    
EFFEKT_HK_GRUPPE14                         0.065891  0.069394    
EFFEKT_HK_GRUPPE15                         0.068651  0.080292    
EFFEKT_HK_GRUPPE16                         0.189300  0.202445    
EFFEKT_HK_GRUPPE17                         0.111134  0.115120    
EFFEKT_HK_GRUPPE18                         0.167182  0.172065    
EFFEKT_HK_GRUPPE19                         0.167182  0.172065    
EFFEKT_HK_GRUPPE20                         0.167182  0.172065    
EFFEKT_HK_GRUPPE21                         0.289124  0.295559    
EFFEKT_HK_GRUPPE22                         0.289124  0.295559    
EFFEKT_HK_GRUPPE23                         0.289124  0.295559    
EFFEKT_HK_GRUPPE24                         0.332981  0.342290    
EFFEKT_HK_GRUPPE25                         0.346922  0.336804    
EFFEKT_HK_GRUPPE26                         0.349266  0.389487    
EFFEKT_HK_GRUPPE27                         0.241474  0.239626    
EFFEKT_HK_GRUPPE28                         0.241474  0.239626    
EFFEKT_HK_GRUPPE29                         0.241474  0.239626    
EFFEKT_HK_GRUPPE30                         0.247771  0.262910    
EFFEKT_HK_GRUPPE31                         0.247771  0.262910    
EFFEKT_HK_GRUPPE32                         0.247771  0.262910    
EFFEKT_HK_GRUPPE33                         0.247771  0.262910    
EFFEKT_HK_GRUPPE34                         0.247771  0.262910    
EFFEKT_HK_GRUPPE35                         0.440519  0.497546    
EFFEKT_HK_GRUPPE36                         0.206845  0.195553    
EFFEKT_HK_GRUPPE37                         0.206845  0.195553    
EFFEKT_HK_GRUPPE38                         0.206845  0.195553    
EFFEKT_HK_GRUPPE39                         0.206845  0.195553    
EFFEKT_HK_GRUPPE40                         0.206845  0.195553    
EFFEKT_HK_GRUPPE41                         0.419297  0.698508    
EFFEKT_HK_GRUPPE42                         0.309308  0.199257    
EFFEKT_HK_GRUPPE43                         0.309308  0.199257    
EFFEKT_HK_GRUPPE44                         0.309308  0.199257    
EFFEKT_HK_GRUPPE45                         0.309308  0.199257    
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SUBCLUSTER GRUPPE1 * * 
SUBCLUSTER GRUPPE10 -0.001890 0.004906 
SUBCLUSTER GRUPPE11 0.019969 0.022225 
SUBCLUSTER GRUPPE12 0.159429 0.159846 
SUBCLUSTER GRUPPE2 -0.064786 -0.066908 
SUBCLUSTER GRUPPE3 -0.154768 -0.154773 
SUBCLUSTER GRUPPE4 -0.141647 -0.153514 
SUBCLUSTER GRUPPES 0.019969 0.022225 
SUBCLUSTER GRUPPE6 -0.028744 -0.055242 
SUBCLUSTER GRUPPE8 * * 
SUBCLUSTER GRUPPE9 -0.006282 -0.020608 
EFFEKT HK GRUPPE0 -0.658565 -1.754997 
EFFEKT HK GRUPPE1 -0.658565 -1.754997 
EFFEKT HK GRUPPE2 -0.657857 -1.210773 
EFFEKT HK GRUPPE3 -0.248731 -0.230512 
EFFEKT HK GRUPPE4 -0.248731 -0.230512 
EFFEKT HK GRUPPES -0.248731 -0.230512 
EFFEKT HK GRUPPE6 -0.064490 -0.093134 
EFFEKT HK GRUPPE7 0.012725 0.002717 
EFFEKT HK GRUPPE8 0.017814 0.029897 
EFFEKT HK GRUPPE9 -0.043023 -0.045318 
EFFEKT HK GRUPPE10 -0.029219 -0.023949 
EFFEKT HK GRUPPE12 0.013187 0.020775 
EFFEKT HK GRUPPE13 0.065891 0.069394 
EFFEKT HK GRUPPE14 0.065891 0.069394 
EFFEKT HK GRUPPE15 0.068651 0.080292 
EFFEKT HK GRUPPE16 0.189300 0.202445 
EFFEKT HK GRUPPE17 0.111134 0.115120 
EFFEKT HK GRUPPE18 0.167182 0.172065 
EFFEKT HK GRUPPE19 0.167182 0.172065 
EFFEKT HK GRUPPE20 0.167182 0.172065 
EFFEKT HK GRUPPE21 0.289124 0.295559 
EFFEKT HK GRUPPE22 0.289124 0.295559 
EFFEKT HK GRUPPE23 0.289124 0.295559 
EFFEKT HK GRUPPE24 0.332981 0.342290 
EFFEKT HK GRUPPE25 0.346922 0.336804 
EFFEKT HK GRUPPE26 0.349266 0.389487 
EFFEKT HK GRUPPE27 0.241474 0.239626 
EFFEKT HK GRUPPE28 0.241474 0.239626 
EFFEKT HK GRUPPE29 0.241474 0.239626 
EFFEKT HK GRUPPE30 0.247771 0.262910 
EFFEKT HK GRUPPE31 0.247771 0.262910 
EFFEKT HK GRUPPE32 0.247771 0.262910 
EFFEKT HK GRUPPE33 0.247771 0.262910 
EFFEKT HK GRUPPE34 0.247771 0.262910 
EFFEKT HK GRUPPE35 0.440519 0.497546 
EFFEKT HK GRUPPE36 0.206845 0.195553 
EFFEKT HK GRUPPE37 0.206845 0.195553 
EFFEKT HK GRUPPE38 0.206845 0.195553 
EFFEKT HK GRUPPE39 0.206845 0.195553 
EFFEKT HK GRUPPE40 0.206845 0.195553 
EFFEKT HK GRUPPE41 0.419297 0.698508 
EFFEKT HK GRUPPE42 0.309308 0.199257 
EFFEKT HK GRUPPE43 0.309308 0.199257 
EFFEKT HK GRUPPE44 0.309308 0.199257 
EFFEKT HK GRUPPE45 0.309308 0.199257 
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EFFEKT_HK_GRUPPE46                         0.752780  0.937438    
EFFEKT_HK_GRUPPE47                         0.487874  0.471029    
EFFEKT_HK_GRUPPE48                         0.487874  0.471029    
EFFEKT_HK_GRUPPE49                         0.487874  0.471029    
EFFEKT_HK_GRUPPE50                         0.487874  0.471029    
EFFEKT_HK_GRUPPE51                         0.470396  0.504333    
EGENVEKT_GRUPPE0                          -0.198391 -0.139170    
EGENVEKT_GRUPPE0.5                        -0.436435 -0.470030    
EGENVEKT_GRUPPE1                          -0.436435 -0.470030    
EGENVEKT_GRUPPE2                          -0.436435 -0.470030    
EGENVEKT_GRUPPE3                          -0.260489 -0.240131    
EGENVEKT_GRUPPE4                          -0.260489 -0.240131    
EGENVEKT_GRUPPE5                          -0.260489 -0.240131    
EGENVEKT_GRUPPE6                          -0.287824 -0.295166    
EGENVEKT_GRUPPE7                          -0.166171 -0.163682    
EGENVEKT_GRUPPE8                          -0.166171 -0.163682    
EGENVEKT_GRUPPE9                          -0.107896 -0.099092    
EGENVEKT_GRUPPE10                         -0.137988 -0.148789    
EGENVEKT_GRUPPE11                         -0.100351 -0.101600    
EGENVEKT_GRUPPE12                         -0.100351 -0.101600    
EGENVEKT_GRUPPE13                         -0.066981 -0.063508    
EGENVEKT_GRUPPE14                         -0.066981 -0.063508    
EGENVEKT_GRUPPE15                          *         *           
EGENVEKT_GRUPPE16                          *         *           
EGENVEKT_GRUPPE18                          0.048111  0.049953    
EGENVEKT_GRUPPE19                          0.048111  0.049953    
EGENVEKT_GRUPPE20                          0.048111  0.049953    
EGENVEKT_GRUPPE21                         -0.013300 -0.015942    
EGENVEKT_GRUPPE22                          0.067622  0.077657    
EGENVEKT_GRUPPE23                          0.067622  0.077657    
EGENVEKT_GRUPPE24                          0.045788  0.046997    
EGENVEKT_GRUPPE25                          0.034618  0.017683    
EGENVEKT_GRUPPE26                          0.037172  0.053741    
EGENVEKT_GRUPPE27                          0.156071  0.173508    
EGENVEKT_GRUPPE28                          0.097226  0.084427    
EGENVEKT_GRUPPE29                          0.102430  0.111835    
EGENVEKT_GRUPPE30                          0.102430  0.111835    
EGENVEKT_GRUPPE31                          0.102430  0.111835    
EGENVEKT_GRUPPE32                          0.270583  0.294438    
EGENVEKT_GRUPPE33                          0.023052  0.038198    
EGENVEKT_GRUPPE34                         -0.012323 -0.102010    
EGENVEKT_GRUPPE35                          0.132421  0.154441    
EGENVEKT_GRUPPE36                          0.202970  0.288565    
EGENVEKT_GRUPPE37                          0.194000  0.219570    
EGENVEKT_GRUPPE38                          0.194000  0.219570    
EGENVEKT_GRUPPE39                          0.194000  0.219570    
EGENVEKT_GRUPPE40                          0.078895  0.087301    
EGENVEKT_GRUPPE41                          0.078895  0.087301    
EGENVEKT_GRUPPE42                          0.078895  0.087301    
EGENVEKT_GRUPPE43                          0.078895  0.087301    
EGENVEKT_GRUPPE44                          0.078895  0.087301    
EGENVEKT_GRUPPE45                          0.078895  0.087301    
EGENVEKT_GRUPPE46                          0.280227  0.455678    
KJOR_LENGDE_KODE_GRUPPE1                   *         *           
KJOR_LENGDE_KODE_GRUPPE5                  -0.254146 -0.254660    
KJOR_LENGDE_KODE_GRUPPE8                  -0.169096 -0.167840    
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EFFEKT HK GRUPPE46 0.752780 0.937438 
EFFEKT HK GRUPPE47 0.487874 0.471029 
EFFEKT HK GRUPPE48 0.487874 0.471029 
EFFEKT HK GRUPPE49 0.487874 0.471029 
EFFEKT HK GRUPPE50 0.487874 0.471029 
EFFEKT HK GRUPPE51 0.470396 0.504333 
EGENVEKT GRUPPE0 -0.198391 -0.139170 
EGENVEKT GRUPPE0.5 -0.436435 -0.470030 
EGENVEKT GRUPPE1 -0.436435 -0.470030 
EGENVEKT GRUPPE2 -0.436435 -0.470030 
EGENVEKT GRUPPE3 -0.260489 -0.240131 
EGENVEKT GRUPPE4 -0.260489 -0.240131 
EGENVEKT GRUPPES -0.260489 -0.240131 
EGENVEKT GRUPPE6 -0.287824 -0.295166 
EGENVEKT GRUPPE7 -0.166171 -0.163682 
EGENVEKT GRUPPE8 -0.166171 -0.163682 
EGENVEKT GRUPPE9 -0.107896 -0.099092 
EGENVEKT GRUPPE10 -0.137988 -0.148789 
EGENVEKT GRUPPE11 -0.100351 -0.101600 
EGENVEKT GRUPPE12 -0.100351 -0.101600 
EGENVEKT GRUPPE13 -0.066981 -0.063508 
EGENVEKT GRUPPE14 -0.066981 -0.063508 
EGENVEKT GRUPPE15 * * 
EGENVEKT GRUPPE16 * * 
EGENVEKT GRUPPE18 0.048111 0.049953 
EGENVEKT GRUPPE19 0.048111 0.049953 
EGENVEKT GRUPPE20 0.048111 0.049953 
EGENVEKT GRUPPE21 -0.013300 -0.015942 
EGENVEKT GRUPPE22 0.067622 0.077657 
EGENVEKT GRUPPE23 0.067622 0.077657 
EGENVEKT GRUPPE24 0.045788 0.046997 
EGENVEKT GRUPPE25 0.034618 0.017683 
EGENVEKT GRUPPE26 0. 037172 0.053741 
EGENVEKT GRUPPE27 0.156071 0.173508 
EGENVEKT GRUPPE28 0.097226 0.084427 
EGENVEKT GRUPPE29 0.102430 0.111835 
EGENVEKT GRUPPE30 0.102430 0.111835 
EGENVEKT GRUPPE31 0.102430 0.111835 
EGENVEKT GRUPPE32 0.270583 0.294438 
EGENVEKT GRUPPE33 0.023052 0.038198 
EGENVEKT GRUPPE34 -0.012323 -0.102010 
EGENVEKT GRUPPE35 0.132421 0.154441 
EGENVEKT GRUPPE36 0.202970 0.288565 
EGENVEKT GRUPPE37 0.194000 0.219570 
EGENVEKT GRUPPE38 0.194000 0.219570 
EGENVEKT GRUPPE39 0.194000 0.219570 
EGENVEKT GRUPPE40 0.078895 0.087301 
EGENVEKT GRUPPE41 0.078895 0.087301 
EGENVEKT GRUPPE42 0.078895 0.087301 
EGENVEKT GRUPPE43 0.078895 0.087301 
EGENVEKT GRUPPE44 0.078895 0.087301 
EGENVEKT GRUPPE45 0.078895 0.087301 
EGENVEKT GRUPPE46 0.280227 0.455678 
KJOR LENGDE KODE GRUPPE1 * * - - - 
KJOR LENGDE KODE GRUPPES -0.254146 -0.254660 - - - 
KJOR LENGDE KODE GRUPPE8 -0.169096 -0.167840 - - - 
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KJOR_LENGDE_KODE_GRUPPE16                  0.187419  0.186480    
KJOR_LENGDE_KODE_GRUPPE20                  0.394051  0.392997    
KJOR_LENGDE_KODE_GRUPPE25                  0.577148  0.576531    
KJOR_LENGDE_KODE_GRUPPE30                  0.781146  0.779745    
KJOR_LENGDE_KODE_GRUPPE40                  0.973634  0.975742    
KJOR_LENGDE_KODE_GRUPPE50                  1.135958  1.133393    
KJOR_LENGDE_KODE_GRUPPE80                  1.164295  1.084264    
KJOR_LENGDE_KODE_GRUPPE110                 1.380942  1.381617    
KJOR_LENGDE_KODE_GRUPPE999                 1.400398  1.450097    
MV_ALDER_GRUPPE0                          -0.376189 -0.381391    
MV_ALDER_GRUPPE1                          -0.243635 -0.242718    
MV_ALDER_GRUPPE2                          -0.129841 -0.128869    
MV_ALDER_GRUPPE3                          -0.000168  0.003416    
MV_ALDER_GRUPPE4                          -0.095245 -0.096965    
MV_ALDER_GRUPPE5                          -0.013514 -0.008849    
MV_ALDER_GRUPPE6                          -0.066124 -0.068585    
MV_ALDER_GRUPPE7                           0.004291  0.008554    
MV_ALDER_GRUPPE8                          -0.062780 -0.065323    
MV_ALDER_GRUPPE9                          -0.004568  0.000123    
MV_ALDER_GRUPPE10                         -0.074153 -0.075772    
MV_ALDER_GRUPPE12                         -0.074153 -0.075772    
MV_ALDER_GRUPPE13                         -0.032363 -0.025140    
MV_ALDER_GRUPPE14                         -0.084460 -0.083419    
MV_ALDER_GRUPPE15                         -0.084460 -0.083419    
MV_ALDER_GRUPPE16                         -0.179677 -0.172866    
MV_ALDER_GRUPPE17                         -0.179677 -0.172866    
MV_ALDER_GRUPPE18                         -0.202709 -0.207128    
MV_ALDER_GRUPPE19                         -0.202709 -0.207128    
MV_ALDER_GRUPPE20                         -0.202709 -0.207128    
MV_ALDER_GRUPPE21                         -0.294810 -0.328313    
MV_ALDER_GRUPPE22                         -0.284352 -0.236883    
MV_ALDER_GRUPPE23                         -0.432580 -0.384985    
MV_ALDER_GRUPPE24                         -0.432580 -0.384985    
MV_ALDER_GRUPPE25                         -0.432580 -0.384985    
MV_ALDER_GRUPPE26                         -0.565371 -0.616900    
MV_ALDER_GRUPPE27                         -0.565371 -0.616900    
MV_ALDER_GRUPPE28                         -0.565371 -0.616900    
MV_ALDER_GRUPPE29                         -0.618002 -0.835072    
MV_ALDER_GRUPPE30                         -1.166946 -1.169100    
MV_ALDER_GRUPPE31                         -0.517436 -0.501153    
ALDER_FORER_Interaction19.J               -0.047756 -0.118618    
ALDER_FORER_Interaction20.J                0.308490  0.201202    
ALDER_FORER_Interaction21.J                0.452943  0.367004    
ALDER_FORER_Interaction22.J                0.487536  0.417482    
ALDER_FORER_Interaction23.J                0.473268  0.405131    
ALDER_FORER_Interaction24.J                0.382637  0.314753    
ALDER_FORER_Interaction25.J                0.345222  0.277250    
ALDER_FORER_Interaction26.J                0.306408  0.238734    
ALDER_FORER_Interaction27.J                0.293594  0.226154    
ALDER_FORER_Interaction28.J                0.251223  0.183773    
ALDER_FORER_Interaction29.J                0.254270  0.186930    
ALDER_FORER_Interaction30.J                0.227439  0.160191    
ALDER_FORER_Interaction31.J                0.195221  0.127829    
ALDER_FORER_Interaction32.J                0.193660  0.126225    
ALDER_FORER_Interaction33.J                0.193844  0.126302    
ALDER_FORER_Interaction34.J                0.159565  0.092118    
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KJOR LENGDE KODE GRUPPE16 0.187419 0.186480 - - - 
KJOR LENGDE KODE GRUPPE20 0.394051 0.392997 - - - 
KJOR LENGDE KODE GRUPPE25 0. 577148 0.576531 - - - 
KJOR LENGDE KODE GRUPPE30 0.781146 0.779745 - - - 
KJOR LENGDE KODE GRUPPE40 0.973634 0.975742 - - - 
KJOR LENGDE KODE GRUPPE50 1.135958 1.133393 - - - 
KJOR LENGDE KODE GRUPPE80 1.164295 1.084264 - - - 
KJOR LENGDE KODE GRUPPE110 1.380942 1.381617 - - - 
KJOR LENGDE KODE GRUPPE999 1.400398 1.450097 - - - 
MV ALDER GRUPPE0 -0.376189 -0.381391 - - 
MV ALDER GRUPPE1 -0.243635 -0.242718 - - 
MV ALDER GRUPPE2 -0.129841 -0.128869 - - 
MV ALDER GRUPPE3 -0.000168 0.003416 - - 
MV ALDER GRUPPE4 -0.095245 -0.096965 - - 
MV ALDER GRUPPES -0.013514 -0.008849 - - 
MV ALDER GRUPPE6 -0.066124 -0.068585 - - 
MV ALDER GRUPPE7 0.004291 0.008554 - - 
MV ALDER GRUPPE8 -0.062780 -0.065323 - - 
MV ALDER GRUPPE9 -0.004568 0.000123 - - 
MV ALDER GRUPPE10 -0.074153 -0.075772 - - 
MV ALDER GRUPPE12 -0.074153 -0.075772 - - 
MV ALDER GRUPPE13 -0.032363 -0.025140 - - 
MV ALDER GRUPPE14 -0.084460 -0.083419 - - 
MV ALDER GRUPPE15 -0.084460 -0.083419 - - 
MV ALDER GRUPPE16 -0.179677 -0.172866 - - 
MV ALDER GRUPPE17 -0.179677 -0.172866 - - 
MV ALDER GRUPPE18 -0.202709 -0.207128 - - 
MV ALDER GRUPPE19 -0.202709 -0.207128 - - 
MV ALDER GRUPPE20 -0.202709 -0.207128 - - 
MV ALDER GRUPPE21 -0.294810 -0.328313 - - 
MV ALDER GRUPPE22 -0.284352 -0.236883 - - 
MV ALDER GRUPPE23 -0.432580 -0.384985 - - 
MV ALDER GRUPPE24 -0.432580 -0.384985 - - 
MV ALDER GRUPPE25 -0.432580 -0.384985 - - 
MV ALDER GRUPPE26 -0.565371 -0.616900 - - 
MV ALDER GRUPPE27 -0.565371 -0.616900 - - 
MV ALDER GRUPPE28 -0.565371 -0.616900 - - 
MV ALDER GRUPPE29 -0.618002 -0.835072 - - 
MV ALDER GRUPPE30 -1.166946 -1.169100 - - 
MV ALDER GRUPPE31 -0.517436 -0.501153 - - 
ALDER FORER Interaction19.J -0.047756 -0.118618 - - 
ALDER FORER Interaction20.J 0.308490 0.201202 - - 
ALDER FORER Interaction21.J 0.452943 0.367004 - - 
ALDER FORER Interaction22.J 0.487536 0.417482 - - 
ALDER FORER Interaction23.J 0.473268 0.405131 - - 
ALDER FORER Interaction24.J 0.382637 0.314753 - - 
ALDER FORER Interaction25.J 0.345222 0.277250 - - 
ALDER FORER Interaction26.J 0.306408 0.238734 - - 
ALDER FORER Interaction27.J 0.293594 0.226154 - - 
ALDER FORER Interaction28.J 0.251223 0.183773 - - 
ALDER FORER Interaction29.J 0.254270 0.186930 - - 
ALDER FORER Interaction30.J 0.227439 0.160191 - - 
ALDER FORER Interaction31.J 0.195221 0.127829 - - 
ALDER FORER Interaction32.J 0.193660 0.126225 - - 
ALDER FORER Interaction33.J 0.193844 0.126302 - - 
ALDER FORER Interaction34.J 0.159565 0.092118 - - 
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ALDER_FORER_Interaction35.J                0.163903  0.096416    
ALDER_FORER_Interaction36.J                0.153896  0.086429    
ALDER_FORER_Interaction37.J                0.153136  0.085607    
ALDER_FORER_Interaction38.J                0.130409  0.062782    
ALDER_FORER_Interaction39.J                0.137439  0.069748    
ALDER_FORER_Interaction40.J                0.107298  0.039643    
ALDER_FORER_Interaction41.J                0.150036  0.082398    
ALDER_FORER_Interaction42.J                0.098644  0.031032    
ALDER_FORER_Interaction43.J                0.155167  0.087573    
ALDER_FORER_Interaction44.J                0.115577  0.047770    
ALDER_FORER_Interaction45.J                0.074612  0.007051    
ALDER_FORER_Interaction46.J                0.085328  0.017808    
ALDER_FORER_Interaction47.J                0.076738  0.009249    
ALDER_FORER_Interaction48.J                0.095353  0.027885    
ALDER_FORER_Interaction49.J                0.078747  0.011327    
ALDER_FORER_Interaction50.J                0.045224 -0.022058    
ALDER_FORER_Interaction51.J                0.031316 -0.035880    
ALDER_FORER_Interaction52.J                0.062813 -0.004359    
ALDER_FORER_Interaction53.J                0.005233 -0.061937    
ALDER_FORER_Interaction54.J               -0.005895 -0.073034    
ALDER_FORER_Interaction55.J               -0.030500 -0.097529    
ALDER_FORER_Interaction56.J               -0.101417 -0.168520    
ALDER_FORER_Interaction57.J               -0.059915 -0.127067    
ALDER_FORER_Interaction58.J               -0.070922 -0.138118    
ALDER_FORER_Interaction59.J               -0.040201 -0.107649    
ALDER_FORER_Interaction60.J               -0.033637 -0.101034    
ALDER_FORER_Interaction61.J               -0.070815 -0.138081    
ALDER_FORER_Interaction62.J               -0.109369 -0.176498    
ALDER_FORER_Interaction63.J               -0.093953 -0.161265    
ALDER_FORER_Interaction64.J               -0.071868 -0.139237    
ALDER_FORER_Interaction65.J               -0.121797 -0.189256    
ALDER_FORER_Interaction66.J               -0.202681 -0.270094    
ALDER_FORER_Interaction67.J               -0.205555 -0.273182    
ALDER_FORER_Interaction68.J               -0.216225 -0.283499    
ALDER_FORER_Interaction69.J               -0.283108 -0.350765    
ALDER_FORER_Interaction70.J               -0.268698 -0.335490    
ALDER_FORER_Interaction71.J               -0.330460 -0.398193    
ALDER_FORER_Interaction72.J               -0.465766 -0.532755    
ALDER_FORER_Interaction73.J               -0.356500 -0.423556    
ALDER_FORER_Interaction74.J               -0.408203 -0.474152    
ALDER_FORER_Interaction75.J               -0.532282 -0.600553    
ALDER_FORER_Interaction76.J               -0.619720 -0.687148    
ALDER_FORER_Interaction77.J               -0.510273 -0.577386    
ALDER_FORER_Interaction78.J               -0.561314 -0.625154    
ALDER_FORER_Interaction79.J               -0.561182 -0.630354    
ALDER_FORER_Interaction80.J               -0.654844 -0.722765    
ALDER_FORER_Interaction85.J               -0.738321 -0.805188    
ALDER_FORER_Interaction90.J               -0.741514 -0.793752    
ALDER_FORER_Interaction18.N                0.586950  0.514485    
ALDER_FORER_Interaction19.N                0.610906  0.539619    
ALDER_FORER_Interaction20.N                0.604745  0.536879    
ALDER_FORER_Interaction21.N                0.576861  0.509078    
ALDER_FORER_Interaction22.N                0.465628  0.397001    
ALDER_FORER_Interaction23.N                0.304277  0.233272    
ALDER_FORER_Interaction24.N                0.331953  0.267438    
ALDER_FORER_Interaction25.N                0.336585  0.264335    
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ALDER FORER Interaction35.J 0.163903 0.096416 - - 
ALDER FORER Interaction36.J 0.153896 0.086429 - - 
ALDER FORER Interaction37.J 0.153136 0.085607 - - 
ALDER FORER Interaction38.J 0.130409 0.062782 - - 
ALDER FORER Interaction39.J 0.137439 0.069748 - - 
ALDER FORER Interaction40.J 0.107298 0.039643 - - 
ALDER FORER Interaction41.J 0.150036 0.082398 - - 
ALDER FORER Interaction42.J 0.098644 0.031032 - - 
ALDER FORER Interaction43.J 0.155167 0.087573 - - 
ALDER FORER Interaction44.J 0.115577 0.047770 - - 
ALDER FORER Interaction45.J 0.074612 0.007051 - - 
ALDER FORER Interaction46.J 0.085328 0.017808 - - 
ALDER FORER Interaction47.J 0.076738 0.009249 - - 
ALDER FORER Interaction48.J 0.095353 0.027885 - - 
ALDER FORER Interaction49.J 0.078747 0. 011327 - - 
ALDER FORER Interaction50.J 0.045224 -0.022058 - - 
ALDER FORER Interaction51.J 0.031316 -0.035880 - - 
ALDER FORER Interaction52.J 0.062813 -0.004359 - - 
ALDER FORER Interaction53.J 0.005233 -0.061937 - - 
ALDER FORER Interaction54.J -0.005895 -0.073034 - - 
ALDER FORER Interaction55.J -0.030500 -0.097529 - - 
ALDER FORER Interaction56.J -0.101417 -0.168520 - - 
ALDER FORER Interaction57.J -0.059915 -0.127067 - - 
ALDER FORER Interaction58.J -0.070922 -0.138118 - - 
ALDER FORER Interaction59.J -0.040201 -0.107649 - - 
ALDER FORER Interaction60.J -0.033637 -0.101034 - - 
ALDER FORER Interaction61.J -0.070815 -0.138081 - - 
ALDER FORER Interaction62.J -0.109369 -0.176498 - - 
ALDER FORER Interaction63.J -0.093953 -0.161265 - - 
ALDER FORER Interaction64.J -0.071868 -0.139237 - - 
ALDER FORER Interaction65.J -0.121797 -0.189256 - - 
ALDER FORER Interaction66.J -0.202681 -0.270094 - - 
ALDER FORER Interaction67.J -0.205555 -0.273182 - - 
ALDER FORER Interaction68.J -0.216225 -0.283499 - - 
ALDER FORER Interaction69.J -0.283108 -0.350765 - - 
ALDER FORER Interaction70.J -0.268698 -0.335490 - - 
ALDER FORER Interaction71.J -0.330460 -0.398193 - - 
ALDER FORER Interaction72.J -0.465766 -0.532755 - - 
ALDER FORER Interaction73.J -0.356500 -0.423556 - - 
ALDER FORER Interaction74.J -0.408203 -0.474152 - - 
ALDER FORER Interaction75.J -0.532282 -0.600553 - - 
ALDER FORER Interaction76.J -0.619720 -0.687148 - - 
ALDER FORER Interaction77.J -0.510273 -0.577386 - - 
ALDER FORER Interaction78.J -0.561314 -0.625154 - - 
ALDER FORER Interaction79.J -0.561182 -0.630354 - - 
ALDER FORER Interaction80.J -0.654844 -0.722765 - - 
ALDER FORER Interaction85.J -0.738321 -0.805188 - - 
ALDER FORER Interaction90.J -0.741514 -0.793752 - - 
ALDER FORER Interaction18.N 0.586950 0.514485 - - 
ALDER FORER Interaction19.N 0.610906 0.539619 - - 
ALDER FORER Interaction20.N 0.604745 0.536879 - - 
ALDER FORER Interaction21.N 0.576861 0.509078 - - 
ALDER FORER Interaction22.N 0.465628 0.397001 - - 
ALDER FORER Interaction23.N 0.304277 0.233272 - - 
ALDER FORER Interaction24.N 0.331953 0.267438 - - 
ALDER FORER Interaction25.N 0.336585 0.264335 - - 
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ALDER_FORER_Interaction26.N                0.283006  0.215501    
ALDER_FORER_Interaction27.N                0.138076  0.070681    
ALDER_FORER_Interaction28.N                0.304113  0.238653    
ALDER_FORER_Interaction29.N                0.055802 -0.012764    
ALDER_FORER_Interaction30.N                0.164084  0.092422    
ALDER_FORER_Interaction31.N                0.151002  0.083867    
ALDER_FORER_Interaction32.N                0.211487  0.146252    
ALDER_FORER_Interaction33.N                0.092693  0.028244    
ALDER_FORER_Interaction34.N                0.236888  0.179456    
ALDER_FORER_Interaction35.N               -0.097074 -0.173361    
ALDER_FORER_Interaction36.N                0.170948  0.108616    
ALDER_FORER_Interaction37.N                0.222321  0.153078    
ALDER_FORER_Interaction38.N                0.055404 -0.011685    
ALDER_FORER_Interaction39.N                0.335572  0.270413    
ALDER_FORER_Interaction40.N                0.139655  0.073232    
ALDER_FORER_Interaction41.N                0.272206  0.199990    
ALDER_FORER_Interaction42.N                0.214804  0.148543    
ALDER_FORER_Interaction43.N                0.332027  0.260453    
ALDER_FORER_Interaction44.N                0.165865  0.095906    
ALDER_FORER_Interaction45.N                0.232906  0.164914    
ALDER_FORER_Interaction46.N                0.187873  0.119680    
ALDER_FORER_Interaction47.N                0.152082  0.084672    
ALDER_FORER_Interaction48.N                0.143962  0.076767    
ALDER_FORER_Interaction49.N                0.140262  0.072849    
ALDER_FORER_Interaction50.N                0.055971 -0.011609    
ALDER_FORER_Interaction51.N                0.061410 -0.006088    
ALDER_FORER_Interaction52.N                0.020156 -0.047450    
ALDER_FORER_Interaction53.N                0.048668 -0.018919    
ALDER_FORER_Interaction54.N                0.063660 -0.004051    
ALDER_FORER_Interaction55.N                0.042993 -0.024864    
ALDER_FORER_Interaction56.N                0.009302 -0.059034    
ALDER_FORER_Interaction57.N               -0.049806 -0.118419    
ALDER_FORER_Interaction58.N                0.023577 -0.045375    
ALDER_FORER_Interaction59.N               -0.047938 -0.116237    
ALDER_FORER_Interaction60.N               -0.025602 -0.092639    
ALDER_FORER_Interaction61.N               -0.061467 -0.127544    
ALDER_FORER_Interaction62.N               -0.068710 -0.137859    
ALDER_FORER_Interaction63.N               -0.122440 -0.194265    
ALDER_FORER_Interaction64.N                0.048269 -0.019601    
ALDER_FORER_Interaction65.N                0.064299 -0.004023    
ALDER_FORER_Interaction66.N               -0.042985 -0.110284    
ALDER_FORER_Interaction67.N               -0.270217 -0.330576    
ALDER_FORER_Interaction68.N               -0.074215 -0.138723    
ALDER_FORER_Interaction69.N               -0.046585 -0.112058    
ALDER_FORER_Interaction70.N               -0.348595 -0.439165    
ALDER_FORER_Interaction71.N               -0.054032 -0.124289    
ALDER_FORER_Interaction72.N               -0.304944 -0.386964    
ALDER_FORER_Interaction73.N               -0.187172 -0.264283    
ALDER_FORER_Interaction74.N               -0.404225 -0.461397    
ALDER_FORER_Interaction75.N               -0.263390 -0.327191    
ALDER_FORER_Interaction76.N               -0.406314 -0.445597    
ALDER_FORER_Interaction77.N               -0.181213 -0.242607    
ALDER_FORER_Interaction78.N               -1.130259 -1.101445    
ALDER_FORER_Interaction79.N               -0.230937 -0.281295    
ALDER_FORER_Interaction80.N               -0.702745 -0.784770    
ALDER_FORER_Interaction85.N               -0.623503 -0.713142    
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ALDER FORER Interaction26.N 0.283006 0.215501 - - 
ALDER FORER Interaction27.N 0.138076 0.070681 - - 
ALDER FORER Interaction28.N 0.304113 0.238653 - - 
ALDER FORER Interaction29.N 0.055802 -0.012764 - - 
ALDER FORER Interaction30.N 0.164084 0.092422 - - 
ALDER FORER Interaction31.N 0.151002 0.083867 - - 
ALDER FORER Interaction32.N 0.211487 0.146252 - - 
ALDER FORER Interaction33.N 0.092693 0.028244 - - 
ALDER FORER Interaction34.N 0.236888 0.179456 - - 
ALDER FORER Interaction35.N -0.097074 -0.173361 - - 
ALDER FORER Interaction36.N 0.170948 0.108616 - - 
ALDER FORER Interaction37.N 0.222321 0.153078 - - 
ALDER FORER Interaction38.N 0.055404 -0.011685 - - 
ALDER FORER Interaction39.N 0.335572 0.270413 - - 
ALDER FORER Interaction40.N 0.139655 0.073232 - - 
ALDER FORER Interaction41.N 0.272206 0.199990 - - 
ALDER FORER Interaction42.N 0.214804 0.148543 - - 
ALDER FORER Interaction43.N 0.332027 0.260453 - - 
ALDER FORER Interaction44.N 0.165865 0.095906 - - 
ALDER FORER Interaction45.N 0.232906 0.164914 - - 
ALDER FORER Interaction46.N 0.187873 0.119680 - - 
ALDER FORER Interaction47.N 0.152082 0.084672 - - 
ALDER FORER Interaction48.N 0.143962 0.076767 - - 
ALDER FORER Interaction49.N 0.140262 0.072849 - - 
ALDER FORER Interaction50.N 0.055971 -0.011609 - - 
ALDER FORER Interaction51.N 0.061410 -0.006088 - - 
ALDER FORER Interaction52.N 0.020156 -0.047450 - - 
ALDER FORER Interaction53.N 0.048668 -0.018919 - - 
ALDER FORER Interaction54.N 0.063660 -0.004051 - - 
ALDER FORER Interaction55.N 0.042993 -0.024864 - - 
ALDER FORER Interaction56.N 0.009302 -0.059034 - - 
ALDER FORER Interaction57.N -0.049806 -0.118419 - - 
ALDER FORER Interaction58.N 0.023577 -0.045375 - - 
ALDER FORER Interaction59.N -0.047938 -0.116237 - - 
ALDER FORER Interaction60.N -0.025602 -0.092639 - - 
ALDER FORER Interaction61.N -0.061467 -0.127544 - - 
ALDER FORER Interaction62.N -0.068710 -0.137859 - - 
ALDER FORER Interaction63.N -0.122440 -0.194265 - - 
ALDER FORER Interaction64.N 0.048269 -0.019601 - - 
ALDER FORER Interaction65.N 0.064299 -0.004023 - - 
ALDER FORER Interaction66.N -0.042985 -0.110284 - - 
ALDER FORER Interaction67.N -0.270217 -0.330576 - - 
ALDER FORER Interaction68.N -0.074215 -0.138723 - - 
ALDER FORER Interaction69.N -0.046585 -0.112058 - - 
ALDER FORER Interaction70.N -0.348595 -0.439165 - - 
ALDER FORER Interaction71.N -0.054032 -0.124289 - - 
ALDER FORER Interaction72.N -0.304944 -0.386964 - - 
ALDER FORER Interaction73.N -0.187172 -0.264283 - - 
ALDER FORER Interaction74.N -0.404225 -0.461397 - - 
ALDER FORER Interaction75.N -0.263390 -0.327191 - - 
ALDER FORER Interaction76.N -0.406314 -0.445597 - - 
ALDER FORER Interaction77.N -0.181213 -0.242607 - - 
ALDER FORER Interaction78.N -1.130259 -1.101445 - - 
ALDER FORER Interaction79.N -0.230937 -0.281295 - - 
ALDER FORER Interaction80.N -0.702745 -0.784770 - - 
ALDER FORER Interaction85.N -0.623503 -0.713142 - - 
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ALDER_FORER_Interaction90.N               -0.329895 -0.362217    
 
 
 

A4 

Coefficients of the reference model.  
    
   Reference 
Intercept -2.9676086250 
BAND_AK_G_Grouping1Z 0.0844519409 
BAND_AK_G_Grouping19 -0.0752009127 
BAND_AK_G_Grouping12 -0.3193137431 
BAND_AK_G_Grouping118 0.1625651981 
BAND_AK_G_Grouping13 -0.2811221975 
BAND_AK_G_Grouping122 0.4408350498 
BAND_AK_G_Grouping17 -0.1414771713 
BAND_AK_G_Grouping121 0.4016074879 
BAND_AK_G_Grouping16 -0.1867964887 
BAND_AK_G_Grouping123 0.4964815824 
BAND_AK_G_Grouping113 0.0247466902 
BAND_AK_G_Grouping112 0.0036810828 
BAND_AK_G_Grouping15 -0.1847284054 
BAND_AK_G_Grouping119 0.2443255539 
BAND_AK_G_Grouping125 0.7153991287 
BAND_AK_G_Grouping18 -0.0867514737 
BAND_AK_G_Grouping117 0.1703833318 
BAND_AK_G_Grouping124 0.5286775109 
BAND_AK_G_Grouping114 0.0415004758 
BAND_AK_G_Grouping116 0.1421402881 
BAND_AK_G_Grouping14 -0.2284501524 
BAND_AK_G_Grouping115 0.0605512248 
BAND_AK_G_Grouping120 0.3335742429 
BAND_AK_G_Grouping110 -0.0404221034 
BAND_AK_G_Grouping11 -0.3923106690 
DIVISJON_KODE_Grouping1Z 0.0980167596 
DIVISJON_KODE_Grouping1L -0.1721597172 
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G01 -0.1561331656 
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G02 -0.1082853799 
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G03 -0.1877912701 
DRIVSTOFF_KODE_Grouping8DRIVSTOFF_KODE_G04 -0.2582087311 
IMPORT_FLAGG_Grouping1J 0.0579595944 
LEASING_FLAGG_Grouping1J 0.2400657536 
MERKE_KLASSE_KODE_NY_Grouping1AA -0.4817853359 
MERKE_KLASSE_KODE_NY_Grouping1AB -0.1185160198 
MERKE_KLASSE_KODE_NY_Grouping1AC -0.1346975146 
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ALDER FORER Interaction90.N - - -0.329895 -0.362217 

A4 

Coefficients of the reference model. 

Intercept 

BAND_ AK_ G_ Grouping l Z 

BAND_ AK_ G_ Grouping 19 

BAND_ AK_ G_ Grouping 12 

BAND_ AK_ G_ Grouping 118 

BAND_ AK_ G_ Grouping 13 

BAND_ AK_ G_ Grouping 122 

BAND_ AK_ G_ Grouping 17 

BAND_ AK_ G_ Grouping 121 

BAND_ AK_ G_ Grouping 16 

BAND_ AK_ G_ Grouping 123 

BAND_ AK_ G_ Grouping 113 

BAND_ AK_ G_ Grouping 112 

BAND_ AK_ G_ Grouping 15 

BAND_ AK_ G_ Grouping 119 

BAND_ AK_ G_ Grouping 125 

BAND_ AK_ G_ Grouping 18 

BAND_ AK_ G_ Grouping 117 

BAND_ AK_ G_ Grouping 124 

BAND_ AK_ G_ Grouping 114 

BAND_ AK_ G_ Grouping 116 

BAND_ AK_ G_ Grouping 14 

BAND_ AK_ G_ Grouping 115 

BAND_ AK_ G_ Grouping 120 

BAND_ AK_ G_ Grouping 110 

BAND_ AK_ G_ Grouping 11 

DIVISJON_ KODE_ Grouping lZ 

DIVISJON_ KODE_ Grouping IL 

DRIVSTOFF _KODE_Grouping8DRIVSTOFF _KODE_G0l 

DRIVSTOFF _KODE_Grouping8DRIVSTOFF _KODE_G02 

DRIVSTOFF _KODE_Grouping8DRIVSTOFF _KODE_G03 

DRIVSTOFF _KODE_Grouping8DRIVSTOFF _KODE_G04 

IMP OR T _FLAGG_ Grouping l J 

LEASING _FLAGG_ Grouping l J 

MERKE_ KLASSE_ KODE_ NY_ Grouping l AA 

MERKE_ KLASSE_ KODE_ NY_ Grouping l AB 

MERKE_ KLASSE_ KODE_ NY_ Grouping l AC 

Reference 
-2.9676086250 

0.0844519409 

-0.0752009127 

-0.3193137431 

0.1625651981 

-0.2811221975 

0.4408350498 

-0.1414771713 

0.4016074879 

-0.1867964887 

0.4964815824 

0.0247466902 

0. 0036810828 

-0.1847284054 

0.2443255539 

0.7153991287 

-0.0867514737 

0.1703833318 

0.5286775109 

0.0415004758 

0.1421402881 

-0.2284501524 

0.0605512248 

0.3335742429 

-0.0404221034 

-0.3923106690 

0.0980167596 

-0.1721597172 

-0.1561331656 

-0.1082853799 

-0.1877912701 

-0.2582087311 

0.0579595944 

0.2400657536 

-0.4817853359 

-0.1185160198 

-0.1346975146 
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MERKE_KLASSE_KODE_NY_Grouping1AD -0.2734796042 
MERKE_KLASSE_KODE_NY_Grouping1AE -0.2109871528 
MERKE_KLASSE_KODE_NY_Grouping1AF 0.0158292890 
MERKE_KLASSE_KODE_NY_Grouping1AG 0.0547557452 
MERKE_KLASSE_KODE_NY_Grouping1AH -0.0517705448 
MERKE_KLASSE_KODE_NY_Grouping1AI -0.1179918071 
MERKE_KLASSE_KODE_NY_Grouping1AJ 0.0438746782 
MERKE_KLASSE_KODE_NY_Grouping1AK -0.2087193566 
MERKE_KLASSE_KODE_NY_Grouping1AL -0.0955918581 
MERKE_KLASSE_KODE_NY_Grouping1AM -0.1388757111 
MERKE_KLASSE_KODE_NY_Grouping1AN 0.0237822574 
MERKE_KLASSE_KODE_NY_Grouping1AO -0.1127384457 
MERKE_KLASSE_KODE_NY_Grouping1AP -0.1287337756 
MERKE_KLASSE_KODE_NY_Grouping1AR -0.2715051484 
MERKE_KLASSE_KODE_NY_Grouping1AS -0.0062452968 
MERKE_KLASSE_KODE_NY_Grouping1BA -0.5023721652 
MERKE_KLASSE_KODE_NY_Grouping1BB -0.2577364256 
MERKE_KLASSE_KODE_NY_Grouping1BC -0.0844411045 
MERKE_KLASSE_KODE_NY_Grouping1BD -0.2444026808 
MERKE_KLASSE_KODE_NY_Grouping1BE -0.0282357282 
MERKE_KLASSE_KODE_NY_Grouping1BF -0.3295652120 
MERKE_KLASSE_KODE_NY_Grouping1BG -0.7327637062 
MERKE_KLASSE_KODE_NY_Grouping1BH -0.0672665516 
MERKE_KLASSE_KODE_NY_Grouping1BI -0.3059777091 
MERKE_KLASSE_KODE_NY_Grouping1SA -0.2248378915 
MERKE_KLASSE_KODE_NY_Grouping1SB -0.9901560679 
MERKE_KLASSE_KODE_NY_Grouping1ZA -0.0976040734 
MERKE_KLASSE_KODE_NY_Grouping1ZB 0.3133385624 
MERKE_KLASSE_KODE_NY_Grouping1ZC -0.1135169024 
MERKE_KLASSE_KODE_NY_Grouping1ZD -0.0448643643 
MERKE_KLASSE_KODE_NY_Grouping1ZE -0.2524021275 
MERKE_KLASSE_KODE_NY_Grouping1ZF -0.0365767977 
MERKE_KLASSE_KODE_NY_Grouping1ZG -0.1708782646 
MERKE_KLASSE_KODE_NY_Grouping1ZH -0.2469513478 
MERKE_KLASSE_KODE_NY_Grouping1ZI -0.3653278637 
MERKE_KLASSE_KODE_NY_Grouping1ZJ -0.3733106579 
MERKE_KLASSE_KODE_NY_Grouping1ZK 0.2898278079 
MERKE_KLASSE_KODE_NY_Grouping1ZL -0.3189539660 
MERKE_KLASSE_KODE_NY_Grouping1ZM -0.0927670166 
MERKE_KLASSE_KODE_NY_Grouping1ZO -0.1494628319 
MERKE_KLASSE_KODE_NY_Grouping1ZP 0.1791593400 
SUBCLUSTER_Grouping112 0.1612286111 
SUBCLUSTER_Grouping12 -0.0656034321 
SUBCLUSTER_Grouping13 -0.1529261742 
SUBCLUSTER_Grouping19 -0.0218009691 
SUBCLUSTER_Grouping11 0.0640302164 
SUBCLUSTER_Grouping111 0.0055672732 
SUBCLUSTER_Grouping18 0.0009105251 
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MERKE_KLASSE_KODE_NY_GroupinglAD 

MERKE_KLASSE_KODE_NY_GroupinglAE 

MERKE_KLASSE_KODE_NY_GroupinglAF 

MERKE_KLASSE_KODE_NY_GroupinglAG 

MERKE_KLASSE_KODE_NY_GroupinglAH 

MERKE_ KLASSE_ KODE_ NY_ Grouping l AI 

MERKE_KLASSE_KODE_NY_GroupinglAJ 

MERKE_KLASSE_KODE_NY_GroupinglAK 

MERKE_KLASSE_KODE_NY_GroupinglAL 

MERKE_KLASSE_KODE_NY_GroupinglAM 

MERKE_KLASSE_KODE_NY_GroupinglAN 

MERKE_KLASSE_KODE_NY_GroupinglAO 

MERKE_KLASSE_KODE_NY_GroupinglAP 

MERKE_KLASSE_KODE_NY_GroupinglAR 

MERKE_KLASSE_KODE_NY_GroupinglAS 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBA 

MERKE_ KLASSE_ KODE_ NY_ Grouping1BB 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBC 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBD 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBE 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBF 

MERKE_ KLASSE_ KODE_ NY_ Grouping1BG 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBH 

MERKE_ KLASSE_ KODE_ NY_ Grouping IBI 

MERKE_ KLASSE_ KODE_ NY_ Grouping l SA 

MERKE_ KLASSE_ KODE_ NY_ Grouping l SB 

MERKE_KLASSE_KODE_NY_GroupinglZA 

MERKE_KLASSE_KODE_NY_GroupinglZB 

MERKE_KLASSE_KODE_NY_GroupinglZC 

MERKE_KLASSE_KODE_NY_GroupinglZD 

MERKE_KLASSE_KODE_NY_GroupinglZE 

MERKE_KLASSE_KODE_NY_GroupinglZF 

MERKE_ KLASSE_ KODE_ NY_ Grouping 17G 

MERKE_KLASSE_KODE_NY_GroupinglZH 

MERKE_KLASSE_KODE_NY_GroupinglZI 

MERKE_KLASSE_KODE_NY_GroupinglZJ 

MERKE_KLASSE_KODE_NY_GroupinglZK 

MERKE_ KLASSE_ KODE_ NY_ Grouping lZL 

MERKE_KLASSE_KODE_NY_GroupinglZM 

MERKE_KLASSE_KODE_NY_GroupinglZO 

MERKE_KLASSE_KODE_NY_GroupinglZP 

SUBCLUSTER_Groupingl 12 

SUBCLUSTER_Groupingl2 

SUBCLUSTER_Groupingl3 

SUBCLUSTER_Groupingl9 

SUBCLUSTER_Groupingl l 

SUBCLUSTER_Groupingl 11 

SUBCLUSTER_Groupingl8 

-0.2734796042 

-0.2109871528 

0.0158292890 

0.0547557452 

-0.0517705448 

-0.1179918071 

0.04387 46782 

-0. 2087193 566 

-0.0955918581 

-0.1388757111 

0.023782257 4 

-0.1127384457 

-0.1287337756 

-0.2715051484 

-0.0062452968 

-0.5023721652 

-0.2577364256 

-0.0844411045 

-0. 2444026808 

-0.0282357282 

-0.3295652120 

-0. 7327637062 

-0.0672665516 

-0.3059777091 

-0.2248378915 

-0.9901560679 

-0.0976040734 

0.3133385624 

-0.1135169024 

-0.0448643643 

-0.2524021275 

-0.0365767977 

-0.1708782646 

-0.2469513478 

-0.3653278637 

-0.3733106579 

0.2898278079 

-0.3189539660 

-0.0927670166 

-0.1494628319 

0.1791593400 

0.1612286111 

-0.0656034321 

-0.1529261742 

-0.0218009691 

0.0640302164 

0.0055672732 

0.0009105251 
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SUBCLUSTER_Grouping110 0.0042430586 
SUBCLUSTER_Grouping15 0.0256452344 
SUBCLUSTER_Grouping14 -0.1522708111 
SUBCLUSTER_Grouping16 -0.0540593534 
EFFEKT_HK_Grouping1EFFEKT_HK_G01 -0.2409274646 
EFFEKT_HK_Grouping1EFFEKT_HK_G02 -0.0994246779 
EFFEKT_HK_Grouping1EFFEKT_HK_G03 -0.0109132382 
EFFEKT_HK_Grouping1EFFEKT_HK_G04 0.0104021789 
EFFEKT_HK_Grouping1EFFEKT_HK_G05 -0.0657068107 
EFFEKT_HK_Grouping1EFFEKT_HK_G06 -0.0456724959 
EFFEKT_HK_Grouping1EFFEKT_HK_G07 -0.0235560260 
EFFEKT_HK_Grouping1EFFEKT_HK_G08 0.0344946323 
EFFEKT_HK_Grouping1EFFEKT_HK_G09 0.0590623399 
EFFEKT_HK_Grouping1EFFEKT_HK_G10 0.0601125458 
EFFEKT_HK_Grouping1EFFEKT_HK_G11 0.1797179479 
EFFEKT_HK_Grouping1EFFEKT_HK_G12 0.0936014584 
EFFEKT_HK_Grouping1EFFEKT_HK_G13 0.1629708124 
EFFEKT_HK_Grouping1EFFEKT_HK_G14 0.1368303256 
EFFEKT_HK_Grouping1EFFEKT_HK_G15 0.1677638944 
EFFEKT_HK_Grouping1EFFEKT_HK_G16 0.2712279159 
EFFEKT_HK_Grouping1EFFEKT_HK_G17 0.2722784506 
EFFEKT_HK_Grouping1EFFEKT_HK_G18 0.2670458075 
EFFEKT_HK_Grouping1EFFEKT_HK_G19 0.3032943403 
EFFEKT_HK_Grouping1EFFEKT_HK_G20 0.2943361826 
EFFEKT_HK_Grouping1EFFEKT_HK_G21 0.2839250434 
EFFEKT_HK_Grouping1EFFEKT_HK_G22 0.2294898432 
EFFEKT_HK_Grouping1EFFEKT_HK_G23 0.3938214473 
EFFEKT_HK_Grouping1EFFEKT_HK_G24 0.4497735931 
EGENVEKT_Grouping1EGENVEKT_G01 -0.9940052903 
EGENVEKT_Grouping1EGENVEKT_G02 -0.4373411729 
EGENVEKT_Grouping1EGENVEKT_G03 -0.1300383047 
EGENVEKT_Grouping1EGENVEKT_G04 -0.1467152207 
EGENVEKT_Grouping1EGENVEKT_G05 -0.0518729194 
EGENVEKT_Grouping1EGENVEKT_G06 0.0190214043 
EGENVEKT_Grouping1EGENVEKT_G07 0.0677554681 
EGENVEKT_Grouping1EGENVEKT_G08 0.1178102137 
EGENVEKT_Grouping1EGENVEKT_G09 0.1513739853 
EGENVEKT_Grouping1EGENVEKT_G10 0.1704854166 
EGENVEKT_Grouping1EGENVEKT_G11 0.1405956199 
EGENVEKT_Grouping1EGENVEKT_G12 0.2065242142 
EGENVEKT_Grouping1EGENVEKT_G13 0.1707134416 
EGENVEKT_Grouping1EGENVEKT_G14 0.2580567519 
EGENVEKT_Grouping1EGENVEKT_G15 0.2817406761 
EGENVEKT_Grouping1EGENVEKT_G16 -0.1293204124 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G01 -7.5053961221 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G02 -0.2549354525 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G03 -0.1679325095 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G04 0.1864156465 

75 

SUBCLUSTER_Groupingl 10 

SUB CL US TER_ Grouping 15 

SUBCLUSTER_Groupingl4 

SUB CL US TER_ Grouping 16 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ GO l 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G02 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G03 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G04 

EFFEKT_ HK_ Grouping lEFFEK T_ HK_ GOS 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G06 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G07 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ GOS 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G09 

EFFEKT_ HK_ Grouping l EFFEKT_ HK_ G l 0 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 11 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 12 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 13 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 14 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 15 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 16 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 17 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 18 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 19 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 20 

EFFEKT_ HK_ Grouping l EFFEKT_ HK_ G 21 

EFFEKT_ HK_ GroupinglEFFEKT_HK_G22 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 23 

EFFEKT_ HK_ Grouping !EFFEKT_ HK_ G 24 

EGENVEKT_GroupinglEGENVEKT_G0l 

EGENVEKT_ Grouping !EGENVEKT_ G02 

EGENVEKT_ Grouping !EGENVEKT_ G03 

EGENVEKT_ Grouping !EGENVEKT_ G04 

EGENVEKT_ Grouping !EGENVEKT_ GOS 

EGENVEKT_ Grouping lEGENVEKT_G06 

EGENVEKT_ Grouping !EGENVEKT_ G07 

EGENVEKT_Grouping IEGENVEKT_G08 

EGENVEKT_ Grouping lEGENVEKT_G09 

EGENVEKT_ Grouping lEGENVEKT_G l 0 

EGENVEKT_ Grouping lEGENVEKT_G 11 

EGENVEKT_GroupinglEGENVEKT_Gl2 

EGENVEKT_ Grouping lEGENVEKT_G 13 

EGENVEKT_ Grouping lEGENVEKT_G 14 

EGENVEKT_ Grouping lEGENVEKT_G 15 

EGENVEKT_GroupinglEGENVEKT_Gl6 

KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G01 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G02 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G03 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G04 

0.0042430586 

0.0256452344 

-0.1522708111 

-0.0540593534 

-0.2409274646 

-0.0994246779 

-0.0109132382 

0.0104021789 

-0.0657068107 

-0.0456724959 

-0.0235560260 

0.0344946323 

0.0590623399 

0.0601125458 

0.1797179479 

0.0936014584 

0.1629708124 

0.1368303256 

0.1677638944 

0.2712279159 

0.2722784506 

0.2670458075 

0.3032943403 

0.2943361826 

0.2839250434 

0.2294898432 

0.3938214473 

0.4497735931 

-0.9940052903 

-0.4373411729 

-0.1300383047 

-0.1467152207 

-0.0518729194 

0.0190214043 

0.0677554681 

0.1178102137 

0.1513739853 

0.1704854166 

0.1405956199 

0.2065242142 

0.1707134416 

0.2580567519 

0.2817406761 

-0.1293204124 

-7.5053961221 

-0.2549354525 

-0.1679325095 

0.1864156465 
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KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G05 0.3924743799 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G06 0.5761008250 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G07 0.7791373328 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G08 0.9757461831 
KJOR_LENGDE_KODE_Grouping2KJOR_LENGDE_KODE_G09 1.1416531225 
MV_ALDER_Grouping10 -0.3836161367 
MV_ALDER_Grouping11 -0.2423227689 
MV_ALDER_Grouping110 -0.0717086408 
MV_ALDER_Grouping112 -0.0805578889 
MV_ALDER_Grouping113 -0.0240763748 
MV_ALDER_Grouping114 -0.0891989710 
MV_ALDER_Grouping115 -0.0726886562 
MV_ALDER_Grouping116 -0.1655244053 
MV_ALDER_Grouping117 -0.1769695626 
MV_ALDER_Grouping118 -0.2134672360 
MV_ALDER_Grouping119 -0.1963917017 
MV_ALDER_Grouping12 -0.1277186575 
MV_ALDER_Grouping13 0.0041021660 
MV_ALDER_Grouping14 -0.0960722423 
MV_ALDER_Grouping15 -0.0076292131 
MV_ALDER_Grouping16 -0.0674647295 
MV_ALDER_Grouping17 0.0096461265 
MV_ALDER_Grouping18 -0.0644954431 
MV_ALDER_Grouping19 0.0003951305 
MV_ALDER_Grouping1MV_ALDER_G01 -0.5034236592 
MV_ALDER_Grouping1MV_ALDER_G02 -0.2773883876 
MV_ALDER_Grouping1MV_ALDER_G03 -0.5660267602 
MV_ALDER_Grouping1MV_ALDER_G04 -1.1429010938 
ALDER_FORER_Interaction19.N 0.5512270280 
ALDER_FORER_Interaction20.N 0.5476926021 
ALDER_FORER_Interaction21.N 0.5201113981 
ALDER_FORER_Interaction22.N 0.4079626926 
ALDER_FORER_Interaction23.N 0.2447602470 
ALDER_FORER_Interaction24.N 0.2785020135 
ALDER_FORER_Interaction25.N 0.2765059649 
ALDER_FORER_Interaction26.N 0.2259044414 
ALDER_FORER_Interaction27.N 0.0815283651 
ALDER_FORER_Interaction28.N 0.2494172408 
ALDER_FORER_Interaction29.N -0.0007962183 
ALDER_FORER_Interaction30.N 0.1048624314 
ALDER_FORER_Interaction31.N 0.0959737373 
ALDER_FORER_Interaction32.N 0.1561961856 
ALDER_FORER_Interaction33.N 0.0373751860 
ALDER_FORER_Interaction34.N 0.1912016352 
ALDER_FORER_Interaction35.N -0.1609059075 
ALDER_FORER_Interaction36.N 0.1223096324 
ALDER_FORER_Interaction37.N 0.1641404634 
ALDER_FORER_Interaction38.N 0.0006367598 
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KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ GOS 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G06 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G07 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ GOS 

KJOR _LENGDE_ KODE_ Grouping2KJOR _LENGDE_ KODE_ G09 

MV_ ALDER_ Grouping l 0 

MV_ ALDER_ Grouping 11 

MV_ ALDER_ Grouping 110 

MV_ ALDER_ Grouping 112 

MV_ ALDER_ Grouping 113 

MV_ ALDER_ Grouping 114 

MV_ ALDER_ Grouping 115 

MV_ ALDER_ Grouping 116 

MV_ ALDER_ Grouping 117 

MV_ ALDER_ Grouping 118 

MV_ ALDER_ Grouping 119 

MV_ ALDER_ Grouping 12 

MV_ ALDER_ Grouping 13 

MV_ ALDER_ Grouping 14 

MV_ ALDER_ Grouping 15 

MV_ ALDER_ Grouping 16 

MV_ ALDER_ Grouping 17 

MV_ ALDER_ Grouping 18 

MV_ ALDER_ Grouping 19 

MV_ALDER_GroupinglMV_ALDER_G0l 

MV_ ALDER_ Grouping l MV_ ALDER_ G02 

MV_ ALDER_ Grouping l MV_ ALDER_ G03 

MV_ ALDER_ Grouping l MV_ ALDER_ G04 

ALDER FORER Interactionl9.N - - 

ALDER FORER Interaction20.N - - 

ALDER FORER Interaction21.N - - 

ALDER FORER Interaction22.N - - 

ALDER FORER Interaction23.N - - 

ALDER FORER Interaction24.N - - 

ALDER FORER Interaction25.N - - 

ALDER FORER Interaction26.N - - 

ALDER FORER Interaction27.N - - 

ALDER FORER Interaction28.N - - 

ALDER FORER Interaction29.N - - 

ALDER FORER Interaction30.N - - 

ALDER FORER Interaction3 l .N - - 

ALDER FORER Interaction32.N - - 

ALDER FORER Interaction33.N - - 

ALDER FORER Interaction34.N - - 

ALDER FORER Interaction35.N - - 

ALDER FORER Interaction36.N - - 

ALDER FORER Interaction37.N - - 

ALDER FORER Interaction38.N - - 

0.3924743799 

0.5761008250 

0.7791373328 

0.9757461831 

1.1416531225 

-0.3836161367 

-0.2423227689 

-0.0717086408 

-0.0805578889 

-0.0240763748 

-0.0891989710 

-0. 0726886562 

-0.1655244053 

-0.1769695626 

-0.2134672360 

-0.1963917017 

-0.1277186575 

0.0041021660 

-0.0960722423 

-0. 007 6292131 

-0.0674647295 

0.0096461265 

-0.0644954431 

0.0003951305 

-0.5034236592 

-0.2773883876 

-0.5660267602 

-1.1429010938 

0.5512270280 

0.5476926021 

0.5201113981 

0.4079626926 

0.2447602470 

0.2785020135 

0.2765059649 

0.2259044414 

0.0815283651 

0.2494172408 

-0.0007962183 

0.1048624314 

0.0959737373 

0.1561961856 

0.0373751860 

0.1912016352 

-0.1609059075 

0.1223096324 

0.1641404634 

0.0006367598 
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ALDER_FORER_Interaction39.N 0.2802015163 
ALDER_FORER_Interaction4.N -7.9166630986 
ALDER_FORER_Interaction40.N 0.0836642006 
ALDER_FORER_Interaction41.N 0.2105510646 
ALDER_FORER_Interaction42.N 0.1590702734 
ALDER_FORER_Interaction43.N 0.2715080471 
ALDER_FORER_Interaction44.N 0.1069423336 
ALDER_FORER_Interaction45.N 0.1762531660 
ALDER_FORER_Interaction46.N 0.1310537966 
ALDER_FORER_Interaction47.N 0.0956154296 
ALDER_FORER_Interaction48.N 0.0881181041 
ALDER_FORER_Interaction49.N 0.0844668593 
ALDER_FORER_Interaction5.N -6.1380647744 
ALDER_FORER_Interaction51.N 0.0056635331 
ALDER_FORER_Interaction52.N -0.0356932825 
ALDER_FORER_Interaction53.N -0.0069448439 
ALDER_FORER_Interaction54.N 0.0077419365 
ALDER_FORER_Interaction55.N -0.0137628862 
ALDER_FORER_Interaction56.N -0.0477238296 
ALDER_FORER_Interaction57.N -0.1064556023 
ALDER_FORER_Interaction58.N -0.0336747073 
ALDER_FORER_Interaction59.N -0.1052388119 
ALDER_FORER_Interaction6.N -6.1649902175 
ALDER_FORER_Interaction60.N -0.0804836191 
ALDER_FORER_Interaction61.N -0.1154042416 
ALDER_FORER_Interaction62.N -0.1256229361 
ALDER_FORER_Interaction63.N -0.1814343619 
ALDER_FORER_Interaction64.N -0.0080437745 
ALDER_FORER_Interaction65.N 0.0078079844 
ALDER_FORER_Interaction66.N -0.0982840596 
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Plots of coefficient estimates for all three models of remaining variables. 
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