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Introduction and background

1 Decision modelling under uncertainty

Decision-making under uncertainty is concerned with modelling availability of informa-
tion and how to effectively act in uncertain environments. Rarely are important decisions
in logistics, finance or operations made under complete information, either because such
information is inherently unavailable or because it is difficult or very expensive to obtain.
Dealing with such uncertainty requires a clear understanding of how to act in uncertain
environments: Should we accept uncertainty as a characteristic in itself, or is it sufficient
to plan for a best-guess deterministic estimate of the future? As it turns out, lack of
information requires different strategies than if planning for a deterministic future (Wal-
lace, 2010). Once we accept uncertainty as a relevant characteristic, we would apply
hedging strategies using options to deal with lack of information. This is best handled by
considering all possible realisations of uncertainty simultaneously, and incorporating the
flexibility to deal with all of them.

Uncertainty is decision-relevant if obtaining more information would change decisions
to some meaningful degree. When accounting for uncertainty in decision problems, there
is often an emergence of options in optimal solutions. An option (in a wide sense) here
refers to a strategy that enables other actions in the future. If options come at a cost,
they can often seem unprofitable with respect to a single realisation of uncertainty, but
optimal when accounting for multiple realisations simultaneously. Formally, this effect can
be quantified by a shadow price of information which provides a certificate of optimality
(Rockafellar & Wets, 1991).

In logistics applications, options may take the form of strategically placed buffers to
hedge the uncertainty of not knowing where it is needed. Allocating too much resources
where demand is unfulfilled is sub-optimal for a single realisation, but the lack of in-
formation about where resources are needed makes such buffers optimal. Some other
examples of options are financial options that enable buying or selling stocks in the fu-
ture, and insurances that pay off in unfortunate situations; however, both of these require
subjective risk preferences to be deemed profitable in a zero-sum game. In logistics and
operations, however, there exist situations where the costs of options are less than their
value, meaning their surplus value need only be collected.

Uncertainty can be classified into two broad categories characterised as (i) unknown
unknowns, and (ii) known but unpredictable. We primarily refer to the latter, also known
as stochastic uncertainty, where a phenomenon is unpredictable but can be described
precisely. Unknown unknowns are relevant from a risk management perspective, but are
much more difficult to model.
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1.1 Overview of decision modelling under uncertainty

Modelling is a very important aspect of developing computational decision support tools
since many real-world decision problems contain too much complexity to be formulated as
mathematical models that can also be solved within reasonable time. Modelling aims to
capture the most important aspects of the decision problem at hand, in order to provide
valuable insights and actionable recommendations. Figure 1 gives a schematic overview
of decision modelling under uncertainty.

Real-world
decision problem

Uncertain
phenomenon

Problem
statement

Distributional
model

Problem
understanding

Data

Statistical
modelling

Mathematical
modelDecision

modelling

Scenario
tree

Scenario
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Figure 1: Overview of decision modelling under uncertainty.

A real-world decision problem represents some situation where we think results can
be improved by applying decision support tools. Common applications include logistics,
finance, engineering, and generally complicated decision-making problems. An important
consideration is that models are often much better than humans at making well-balanced
trade-offs in large complicated systems. Another factor is that humans are inherently
bad at accounting for uncertainty unless specifically trained for it (and sometimes not
even that helps) (Kahneman et al., 1982). In complex environments, real-world decision
problems can be difficult to approach, and we rely on a good problem understanding to
formulate a more precise problem statement. The aspect of understanding a decision prob-
lem within its real-world environment often cannot be validated until its recommendations
are put into practice, it must instead rely on diligent reasoning.

An unpredictable uncertain phenomenon may cause some decision-relevant lack of
information. Uncertain phenomena might represent nature, our beliefs about the world,
or future states of unpredictable systems. To account for uncertainty, the uncertain
phenomenon must be described precisely using a distributional model. Prescribing a
distributional model is referred to as statistical modelling, and is often supported by data
used for estimation.

A mathematical model is formulated with respect to the problem statement, and the
aim of the mathematical model is to prescribe effective actions. Mathematical models are
here solved by optimisation, where prescribed actions are found by optimising an objective
function with respect to some decision variables. There is a correspondence between
models and prescribed actions to a problem statement, so that one maps to the other,
but not necessarily by exact representation. An important aspect of decision modelling is
to account for the technical capabilities of solving optimisation models computationally,
which might require simplification.

Distributional models are often too rich to be used directly in a mathematical model,
either because they are described by continuous distributions or because their outcome
space is too large to allow for numerical implementation. Instead, we approximate uncer-
tainty using a discrete and parsimonious scenario tree representation of the distributional
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model, and we refer to the techniques of do so as scenario generation. A fundamental
concern is whether scenario tree representations give solutions that perform well with
respect to the distributional model we originally prescribed. Validation is essential to en-
sure solutions are sufficiently precise, which can be achieved by evaluating mathematically
derived bounds on quantities of interest.

Paper I proposes a scenario generation method that exploits characteristics of the
mathematical model to find more parsimonious representations of uncertainty with very
weak assumptions about the specific model. Paper II describes approaches of evaluating
and comparing results from a mathematical model directly with respect to a distributional
model, even when scenario generation is required to actually find solutions. The last two
papers address harvest planning under uncertainty where the entire modelling process
must be considered. Paper III proposes a distributional forecasting model used to assess
biological risk (developing in space and time), while Paper IV proposes a mathematical
model for harvest planning to account for biological, operational and market risk, within
a portfolio of heterogeneous sites.

1.2 Stochastic programming
Stochastic programming was first introduced by Dantzig (1955) as an extension to lin-
ear programming to account for unknown demand in logistics. Today, one of the main
advantages of stochastic programming is its close ties to mathematical programming and
its ability to effectively deal with constraints and combinatorial considerations through
integer variables. The technology to solve large-scale mathematical programs is also well
developed. There are still many aspects that are specific to stochastic programming (Birge
& Louveaux, 2011; Kall & Wallace, 1994; King & Wallace, 2012; Shapiro et al., 2014).
As opposed to other approaches to decision-making under uncertainty, and perhaps the
most important aspect of stochastic programming, is that it finds new hedging strategies
instead of simply evaluating the value of a predetermined strategy (Wallace, 2010).

Stochastic programs address different stages of decision-making, where earlier stages
lack information about what will happen in later stages. Typically, this is stated as an
optimisation problem

min
x∈X
{E [F (x, ξ)]} (1)

where F (x, ξ) represents a recourse function1 to describe the effects of a decision x across
uncertain realisations of the parameters ξ. Typically, the recourse function is a (reas-
onably well behaved) optimisation problem to reflect that corrective actions are applied
once new information arrives. In this sense, the aim of choosing an appropriate decision
x is to enable enough flexibility to deal with a variety of future outcomes when current
decisions constrain future actions. Naturally, evaluation of the expectation

E [F (x, ξ)] , (2)

is challenging since it consists of solving an integral over an optimisation problem. To
reduce computational effort, we must limit the number of evaluation points, and instead
approximate (2) using a scenario representation.

Two-stage programs are often posed to reflect interactions between different scopes
of planning. For example, the initial decision could be to determine production capa-
cities while the second decision is to determine production plans within these capacities
for a given realisation of demand. The performance of production plans then guide how

1The recourse function here represents either a second-stage or a multistage program.
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capacities are allocated. Multistage programs, on the other hand, typically represent op-
erational problems of a dynamic nature where timing might be important. For two-stage
programs, uncertainty is described by a random variable while for multistage programs,
uncertainty is described by a stochastic process. A major difference between these is that
approximations of stochastic processes also require representations of information struc-
ture (i.e., how information develops over time). Ultimately, these formulations aim to
reflect the effect of decisions made today, subject to uncertain realisations of the future.

1.3 Scenario generation

Scenario generation is effectively about approximating integrals, and extra care is required
when these are embedded into optimisation problems. We use a scenario set to represent
a random variable (two-stage), while a scenario tree is used to represent a stochastic
process (multistage) where branching reflects development of information. Scenario rep-
resentations should also be as small as possible since their size is directly proportional
to the size of the resulting optimisation problem. Compared to other integral approxim-
ation techniques (like Quasi-Monte Carlo sampling and quadrature rules) special care is
required since we optimise with respect to an approximation (also known as the optim-
iser’s curse; Smith & Winkler, 2006) and the size of scenario approximations are typically
much smaller.

Scenario generation can be particularly challenging since, by the nature of common
applications of stochastic programming (Wallace & Ziemba, 2005), the number of random
parameters is typically very high while special distributional forms (like heavy tails and
mixtures) can be challenging to approximate. Paper I describes this issue further.

We distinguish between two main approaches to scenario generation: (i) distribution-
based, and (ii) problem-based. The distribution-based approaches mainly looks to the un-
certain phenomenon to approximate some of its important characteristics. On the other
hand, problem-based scenario generation aims to incorporate insights about the math-
ematical model into its representation of uncertainty. Fundamentally, the problem-based
approach accepts that, in the context of decision-making, some realisations of uncertainty
are more relevant to consider than others.

2 Problem-based representations of uncertainty

The aim of our problem-based scenario generation approach is to incorporate information
about a specific problem without making strong assumptions about it. We refer to this
as being problem agnostic. A problem-based scenario generation method that is agnostic
to the problem could be applied to any new problem without extensive knowledge, while
still making effective scenario generation more easily available.

Decision-making under uncertainty considers how current decisions affect future res-
ults, across different realisations of uncertainty. When making problem-based representa-
tions of uncertainty, our approach considers which modes of change decisions can cause in
the distribution of results. We identify the primary modes of change and prioritise these
to ensure the representation reflects the most important characteristics of the problem.
Furthermore, there is a correspondence between the number of important modes of change
and the required size of the representation, which reflects the need to account for mul-
tiple realisations of uncertainty. This further implies that problem-based representation
of uncertainty is tightly linked to the reason why uncertainty matters in decision-making.
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This is the topic of Paper I. Here, we elaborate a bit on the methodology to provide
an overview, but note that some technical details are omitted.

2.1 Sparsity in problem structure
Mathematically, we represent uncertainty through random variables. The value of random
variable Y (ω) represents the realisation of some quantity Y in an outcome ω, and the out-
come space ω ∈ Ω represents the set of possible realisations where P assigns probabilities
to outcomes. We use expectations

EP [Y ] =

∫
Ω

Y (ω)P (dω), (3)

with respect to probabilities P to summarise characteristics of random variables. To
account for decisions, we assign a random variable

Y x(ω) = F (x, ξ(ω)), (4)

to each decision x, where ξ(ω) denotes the stochastic parameters, and F (x, ξ) is a recourse
function. A set of feasible decisions X generates a collection

Y = {Y x(ω) : x ∈ X}, (5)

of corresponding random variables. To optimise x, we must find the most preferable
random variable Y x(ω) ∈ Y as evaluated by its expected value but, in practice, the
expected value can only be evaluated in terms of an alternative distribution R.

Fundamentally, we may think of Y (ω) ∈ Y as mappings from outcomes ω ∈ Ω to
objective values, which is constructive since probabilities are assigned to outcomes. The
stochastic parameters represented by ξ can be challenging to represent due to high di-
mensionality, and we argue that emphasising ξ leads to unneeded redundancy. Instead,
we emphasise Y directly for making an alternative distribution R.

To extract the key characteristics of Y, we want to represent it in terms of a sparse
basis.2 If we assume Y lies in a decomposable space, we may represent each of its elements
in terms of a basis {ui(ω)}i∈I such that

Y x(ω) =
∑
i∈I

ci(x)ui(ω), ∀Y x(ω) ∈ Y. (6)

Observe in particular that this decomposition decouples decisions x from random variables
(functions of ω). The next step is to pick a sparse basis {ui(ω)}i∈B where B ⊂ I and where
the size of B is much smaller than I. An additional detail here is that we prioritise better
decisions when choosing the sparse basis, and rely on evaluation in terms of candidate
decisions. The basis is used to enforce consistent expectations

ER [ui] = EP [ui] , ∀i ∈ B, (7)

where R represents a scenario set. Basic linear algebra shows that by enforcing consistent
expectations on a basis, this consistency is preserved across all of its linear combinations.

2Sparsity is the concept that seemingly much detail can be described using small representations
without sacrificing much on precision. This has received increasing attention, particularly within the
domains of statistics and machine learning where the aim is to find patterns in vast amounts of data
(Hastie et al., 2009).
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Furthermore, approximation errors can be quantified in terms of the projection distance
onto the linear sub-space generated by the basis.

Whether Y can be represented by a sparse basis is for all practical purposes an em-
pirical question. This is why we support the methodology by extensive numerical exper-
iments. The interpretation of sparsity is that there is strong structure to the problem,
meaning the random variables in Y share similarities. Formally, this can be analysed
through the stability of

x 7→ Y x, (8)

to quantify how sensitive the random variables Y x are to changes in decisions. However,
the mapping x 7→ Y x would also be very complicated, meaning empirical examination is
ultimately more practical.

3 Aquaculture Operations

Harvest planning in Norwegian salmon aquaculture faces a multitude of uncertain factors
and operational limitations, coupled with large downside risk due to large capital binding
in the fish stock and risk of mortality. Farmers manage a portfolio of highly heterogeneous
sites subject to company-wide limiting constraints which greatly increase the complexity
of the decision problem. The source of biological risk is the immediate environment of
the fish, and these are density-driven phenomena (parasites and disease) that develop
in both space and time. Combined, these considerations make the Aquaculture Harvest
Planning (AHP) problem well suited for application of quantitative decision support tools
that account for uncertainty. The major challenges can be summarised as:

• Parasitic salmon lice and associated treatment actions

• Large short- and medium-term price fluctuations

• Fish health and mortality

• Regulatory restrictions on production capacity

• Harvest operations and well-boat logistics

In essence, harvest planning consists of deciding when and where to harvest within a
portfolio of sites subject to a dynamic and stochastic environment. The decision problem
compares the current value of biomass against the alternative value of waiting, with
respect to stochastic risk and future operational flexibility. Due to portfolio effects, both
sequencing and timing are important considerations. We solve the decision problem using
multistage stochastic programming.

To hedge overall operational risk, it is essential to determine heterogeneity in risk
exposure among sites to determine the most effective harvesting sequence. The major
source of risk heterogeneity is salmon lice, whose development is strongly affected by
ocean currents (transporting lice between sites) and temperature (governing lice growth
and reproduction). Paper III addresses joint forecasting of salmon lice and treatment
interventions among all aquaculture sites along the Norwegian coastline where we combine
modelling of on-site lice dynamics with hydrodynamic simulation of stream patterns to
account for spatial dependence. Treatments are modelled as an exogenous stochastic
process which interacts with the stochastic process for lice development. This modelling
assumption avoids decision-dependent uncertainty, and we argue this is reasonable based
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on properties of the decision problem. The paper concludes there is large heterogeneity
among sites at very significant levels of risk exposure.

The decision model is introduced in Paper IV together with modelling assumptions,
techniques for representing uncertainty, and validation of solutions against the underlying
stochastic process. The decision model uses the forecasting model from Paper III together
with other (less extensive) forecasting models for the other risk factors. The formulation
is a large-scale mixed-integer multistage stochastic program. The main techniques that
enable solving this decision problem are precise modelling assumptions and parsimonious
representations of uncertainty. The paper concludes that the decision model prescribes
effective solutions to a large variety of situations within a complex environment. The
overall risk exposure is large, and we find effective hedging strategies that improve results
to a considerable degree.

References
Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming (2nd ed.). Springer

New York, NY. https://doi.org/10.1007/978-1-4614-0237-4
Dantzig, G. B. (1955). Linear Programming under Uncertainty. Management Science, 1 (3/4),

197–206. Retrieved May 10, 2023, from https://www.jstor.org/stable/2627159
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer

New York. https://doi.org/10.1007/978-0-387-84858-7
Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics

and biases. Cambridge University Press.
Kall, P., & Wallace, S. W. (1994). Stochastic Programming. John Wiley & Sons.
King, A. J., & Wallace, S. W. (2012, June). Modeling with Stochastic Programming. Springer

New York, NY. https://doi.org/10.1007/978-0-387-87817-1
Rockafellar, R. T., & Wets, R. J.-B. (1991). Scenarios and Policy Aggregation in Optimization

Under Uncertainty. Mathematics of Operations Research, 16 (1), 119–147. https://doi.
org/10.1287/moor.16.1.119

Shapiro, A., Dentcheva, D., & Ruszczyński, A. P. (2014). Lectures on stochastic programming:
Modeling and theory (Second edition). Society for Industrial and Applied Mathematics
: Mathematical Optimization Society. https://doi.org/10.1137/1.9781611973433

Smith, J. E., & Winkler, R. L. (2006). The Optimizer’s Curse: Skepticism and Postdecision
Surprise in Decision Analysis. Management Science, 52 (3), 311–322. https://doi.org/
10.1287/mnsc.1050.0451

Wallace, S. W. (2010). Stochastic programming and the option of doing it differently. Annals of
Operations Research, 177 (1), 3–8. https://doi.org/10.1007/s10479-009-0600-x

Wallace, S. W., & Ziemba, W. T. (Eds.). (2005). Applications of stochastic programming. Society
for Industrial and Applied Mathematics.

xiii

https://doi.org/10.1007/978-1-4614-0237-4
https://www.jstor.org/stable/2627159
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-87817-1
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1287/moor.16.1.119
https://doi.org/10.1137/1.9781611973433
https://doi.org/10.1287/mnsc.1050.0451
https://doi.org/10.1287/mnsc.1050.0451
https://doi.org/10.1007/s10479-009-0600-x


xiv



Papers

1





Paper I

Problem-based Scenario
Generation by Decomposing
Output Distributions

Benjamin S. Narum, Jamie F. Fairbrother and Stein W. Wallace

Abstract

Scenario generation is required for most applications of stochastic program-
ming to evaluate the expected effect of decisions made under uncertainty. We
propose a novel and effective problem-based scenario generation method for
two-stage stochastic programming that is agnostic to the specific stochastic
program and kind of distribution. Our contribution lies in studying how an
output distribution may change across decisions and exploit this for scenario
generation. From a collection of output distributions, we find a few compon-
ents that largely compose these, and such components are used directly for
scenario generation. Computationally, the procedure relies on evaluating the
recourse function over a large discrete distribution across a set of candidate de-
cisions, while the scenario set itself is found using standard and efficient linear
algebra algorithms that scale well. The method’s effectiveness is demonstrated
on four case study problems from typical applications of stochastic program-
ming to show it is more effective than its distribution-based alternatives. Due
to its generality, the method is especially well suited to address scenario gen-
eration for distributions that are particularly challenging.

1 Introduction

Stochastic programming is a useful tool for decision-making when there is uncertainty in
the effects of decisions. It allows us to explicitly account for this uncertainty by building
flexibility into decisions in such a way that the decision-maker is prepared for multiple
future outcomes. As opposed to deterministic approaches, it achieves this by accounting
for multiple outcomes simultaneously (Wallace, 2010). In particular, one models uncertain
parameters as random variables and optimises the expectation of some utility or cost
function (see Birge & Louveaux, 2011; Kall & Wallace, 1994; Shapiro et al., 2014).
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4 PAPER I. DECOMPOSING OUTPUT DISTRIBUTIONS

Applications of stochastic programming include logistics, finance and engineering
(King & Wallace, 2012; Wallace & Ziemba, 2005). A common characteristic of such prob-
lems is that quantifying the effect of a decision conditional on a future outcome involves
modelling and optimising future decisions that explicitly exploit the gain of additional in-
formation within the limitations set by the current decision. This means calculating the
expected future effect of decisions involves evaluating an integral over a function defined
by an optimisation problem, which is usually analytically intractable and for which stand-
ard numerical integration may also be impractical due to high dimensionality. Scenario
generation is the often used viable alternative. This consists of finding a discrete set of
scenarios that approximately represents the distribution, which is a requirement for find-
ing solutions to a majority of such models. A fundamental concern is getting the most
parsimonious scenario set possible while still obtaining good solution with respect to the
original formulation.

Stochastic programming problems are distribution optimisation problems (Wets, 1996).
For every possible decision, what we get is a distribution of the potential effects of that
decision. This perspective is fundamental to the current paper. Our contribution lies
in detecting the structure of how such distributions may change as the decision changes
and exploiting this for the purpose of scenario generation. For this to be effective there
must be degeneracy (i.e., sparsity) in a problem’s output distributions; namely, it must be
possible to explain large collections of output distributions by relatively few components.
Our problem-based scenario generation can be applied to very general forms of two-stage
stochastic programming problem for a wide variety of input distributions. We illustrate its
effectiveness on four case study problems and show these have a natural degeneracy well
suited for scenario generation. Furthermore, a minimum number of scenarios required
for a given level of accuracy is suggested by the method itself. The method requires,
as input, numerical evaluations of the recourse function for a set of candidate decisions
over a discrete distribution, while the scenario reduction program itself relies on standard
linear algebra and linear programming; hence, it scales well.

The paper is structured as follows: Section 2 gives more background and motivation
for scenario generation, and highlights our contributions relative to previous literature;
Section 3 presents our method alongside its mathematical underpinnings; Section 4 il-
lustrates the method’s effectiveness on four case study problems; Section 5 gives some
additional discussion; finally, we conclude the paper.

2 Background

Two-stage stochastic programs with recourse take the form

min
x∈X

E [f(x) +Q(x, ξ)]

where x is a (constrained) decision made under uncertainty, f(x) a deterministic cost,
and Q(x, ξ) the recourse function that determines the future effect of the decision. We
refer to the integrand (in the expectation) as the output distribution, whose expectation
is to be approximated using a scenario set, and the distribution of the random vector ξ
is referred to as the input distribution.

Stochastic programming models, by the nature of their applications, often have an
input distribution of high dimensionality and this dimensionality also often grows with the
level of detail or scope of such a model. Fundamentally, this means scenario generation
aims to approximate integrals over high dimensional distributions which, in principle,
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necessitates many scenarios to adequately represent the distribution. However, having few
scenarios is desirable since each scenario directly adds to the size of a stochastic program
by duplicating variables and constraints, which can greatly impair the tractability of
solving these within a reasonable time.

Generally, we cannot know a priori if a given scenario set is more appropriate than
others. Instead, we benchmark scenario sets by comparing the performance of their
corresponding optimal solutions within the original formulation. Kaut and Wallace (2007)
refers to this as out-of-sample evaluation. That is, scenario generation methods should be
assessed by the quality of candidate decisions they provide. Using this criterion, it turns
out relatively small scenario sets can be effective for very large problems.

Methods for scenario generation can be classed as either distribution-based or prob-
lem-based. Distribution-based methods aim to approximate the input distribution without
explicit consideration of the problem at hand, while problem-based methods explicitly ex-
ploit problem-specific knowledge to make the scenario set more compact. Problem-based
approaches are most useful for problems that have distributions that are especially diffi-
cult for scenario generation or where the stochastic program is especially computationally
demanding to solve.

2.1 Difficult distributions

Some problems have input distributions that are particularly challenging to address with
scenario generation. Typically, this occurs when the distribution has complicated pat-
terns, with potentially high but rare impact. These are especially relevant for problem-
based scenario generation since distribution-based alternatives may require a prohibitively
large number of scenarios to reach similar precision. Examples of difficult distributions
include binary (0/1 valued marginals), multi-modal, those having high-impact tails, and
distributions where the stochastic variables are qualitatively different. Importantly, the
ability to easily deal with complicated distributions widens the scope of what kinds of
problems can be explored in the context of decision-making under uncertainty, as em-
phasised by Vaagen and Wallace (2008).

The fundamental issue encapsulated by binary and multi-modal distributions is how to
pick which “peaks” in the distribution to incorporate into a scenario set while not knowing
each of their impacts. Omitting some peaks could result in large misrepresentations of the
objective. Binary distributions are particularly relevant since they can be used to encode
stochastic on-off behaviour in decision problems, which can correspondingly lead to large
differences in the objective value. High-impact tails are difficult in the sense that, with
many dimensions, there is an exponential number of tails and picking the relevant ones
without redundancy is hard.

Problems with qualitatively different sources of uncertainty are challenging for dis-
tribution-based scenario generation because the sensitivity to their respective outcomes
can be very different. Re-scaling need not help either since a problem’s sensitivity on a
stochastic parameter does not necessarily relate to the scale of its distribution. Examples
include problems characterised by having operational risk (drivers of costs) combined with
market risk (price, supply and demand), rates (in [0, 1]) combined with free variables (in
(−∞,∞)) or combinations of discrete (binary in particular) and continuous random vari-
ables (i.e. mixed). Especially difficult is the case where their combined impact may be
particularly large within certain ranges of the distribution support.

To illustrate the issue with difficult distributions, consider the extreme case where some
stochastic variables used during scenario generation do not actually affect the objective
in any way. They still compromise the quality of a distribution-based method, while an
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effective problem-based method would simply ignore them. Distribution-based scenario
generation is blind to the kinds of issues described by difficult distributions since it cannot
know where the objective is sensitive to its random parameters.

Applications having binary distributions include: stochastic customers (Bent & Van
Hentenryck, 2004), batch sizing (Lulli & Sen, 2004), link failure in networks (i.e. in
telecommunications and transportation) (Ball et al., 1995), vehicle routing with back-
hauls (Farahani et al., 2011), good-or-bad weather (Wang & Jacquillat, 2020), or their
use as a modelling tool to encode known qualitative aspects of the uncertainty (Ni et
al., 2017). Applications having mixture distributions include: hospital planning with
both stochastic occurrence and operating time (Caunhye & Nie, 2018), environmental
outcomes (Emmerling & Tavoni, 2018), and mixtures of heavy-tailed distributions and
normal distributions in wind power (Tewari et al., 2011). Applications using multi-modal
distributions include: fashion considering both the trend and demand (Vaagen & Wallace,
2008) and various case problems by Parpas et al. (2015).

2.2 Literature on problem-based scenario generation

It has been recognised that explicitly accounting for problem structure in scenario gen-
eration leads to more concise scenario sets than distribution-based approaches. Recent
examples include the works by Bertsimas and Mundru (2022), Fairbrother et al. (2022),
Guo et al. (2019), Hewitt et al. (2021), Keutchayan et al. (2023), Narum (2020) and
Prochazka and Wallace (2020).

The approach by Zhao and Wallace (2016) is a very clear-cut example of incorporating
problem knowledge into scenario generation; the scenarios were simply hand-picked based
on understanding the problem. The caveat with such an approach is that other problems
are much harder to understand well enough to pick good scenarios. Fairbrother et al.
(2022) showed that for some problems with tail risk measures, such as conditional value-
at-risk, the support of the input distribution has regions that cannot affect the objective
function, and are thus irrelevant to include in a scenario set. Similar aims were pursued
by Arpón et al. (2018), while Prochazka and Wallace (2018) gave an analogous result for
binary distributions. Prochazka and Wallace (2020) develop a heuristic that fits a scenario
set to minimise the difference between the in-sample and out-of-sample evaluations for
a set of candidate decisions. They obtained highly effective scenarios and, importantly,
observed similar tendencies in the scenario sets as implied analytically by Fairbrother
et al. (2022). However, a caveat of their approach is that the fitting heuristic must be
redesigned for each specific problem. Henrion and Römisch (2022) expanded the use of
the Fortet-Mourier metric as a theoretical bound on the stability of stochastic programs
for scenario generation that takes explicit account of the problem. Originally, this metric
motivated minimum transportation approaches to scenario generation by its bound on
approximation errors, but in such a way that all explicit information about the problem
is lost before scenario generation (Dupačová et al., 2003; Pflug, 2001). The tractability
of the approach by Henrion and Römisch (2022) on application-relevant problems is,
however, unclear.

Recently, three problem-based clustering approaches have appeared (Bertsimas &
Mundru, 2022; Hewitt et al., 2021; Keutchayan et al., 2023) that are also distribution and
problem agnostic. The methods in these papers require finding every single-scenario solu-
tion (found by solving the problem with a single scenario) and for each of these, evaluating
the objective over every outcome of the (discrete) input distribution. Scenario reduction
is then done by clustering the outcomes according to a metric based on these objective
evaluations. Independently, the authors of this paper proposed a similar approach using
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candidate decisions not required to be single-scenario solutions (Narum, 2020). The issue
with using single-scenario solutions is that they are often of low quality, and thus do not
represent well the structure of a problem. Indeed, Wallace (2010) discusses in detail how
stochastic programs solved using a single scenario leads to option-free decisions, meaning
that if the flexibility to effectively deal with a collection of potential outcomes comes at a
cost (which it often does) it will never be contained in a single-scenario optimal decision.
That is, single-scenario solutions are qualitatively different from the ones using multiple
scenarios. We advocate, in contrast to these other approaches, the use of finding candid-
ate solutions by solving problems with multiple scenarios (as was done by Narum (2020))
by the argument that these are closer to the optimal solution(s) and thus provides more
appropriate approximations (see Section 3.1). The computational experiments in this pa-
per also demonstrate that our method is effective using relatively few candidate decisions
and has low sensitivity on the number of such candidate decisions used (see Section 4.5).

Like with these problem-based clustering methods, the scenario reduction method
proposed in this paper relies on the evaluation of all outcomes over a set of candidate
solutions, but can be applied using significantly fewer (and more appropriate) candidate
solutions than those using only single scenario solutions. Instead of clustering, our scenario
reduction works with the vector space of output distributions and attempts to reduce
scenarios while preserving the expectation on this space in as efficient a manner as possible.
This explicitly ensures low overall bias between in-sample and out-of-sample objective
evaluations, which is not necessarily the case for clustering.

3 Method

We are interested in solving problems of the following form:

minimize
x

f(x) + Ep [Q(x, ξ)]

subject to x ∈ X
(I.1)

where x represents some decision constrained to the deterministic set X , and f : X → R
its deterministic cost. Uncertainty is represented by the random vector ξ. The recourse
function Q : X × Ξ→ R represents the effect of the decision given some outcome ξ, and
is assumed throughout to be finite for any x ∈ X and ξ ∈ Ξ. We assume the distribution
of ξ is discrete with outcomes Ξ = {ξs : s ∈ S} and corresponding vector of probabilities
p = (ps)s∈S where S = {1, . . . , S}. We use the subscript p on expectations Ep [·] to
emphasise its reliance on the probabilities of the mass points.

We refer to this discrete distribution as the observed distribution. This terminology
is used since there may be some underlying input distribution which truly represents
the uncertainty but which cannot be used with our method, for example, because it is
a continuous analytical distribution or because a full distribution is unavailable. In the
former case the observed distribution may be constructed by sampling from the analytical
distribution, and in the latter case we may use an empirical distribution based on historical
data. In either case, we assume that the observed distribution is large enough to accurately
evaluate the expectation of the recourse function.

Ideally, we would solve the problem (I.1) as stated with the observed distribution,
but this is often computationally intractable due to a large number of outcomes. The
purpose of scenario generation is to construct a discrete distribution with relatively few
outcomes with which to approximate Ep [Q(x, ξ)], and in such a way that still leads to
good decisions of the original optimisation problem. For this paper, we are particularly
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interested in constructing scenario sets whose outcomes are a subset of those of the ob-
served distribution, a distinction usually referred to as scenario reduction. This can be
viewed as finding a new vector of probabilities r = (rs)s∈S with few non-zero elements.

The methodology we propose works with output distributions, limited to the part
described by the recourse function. That is, for different decisions x we are interested in
the recourse vector which is defined as follows:

Qx = (Q(x, ξs))s∈S . (I.2)

For a given set of candidate decisions, the corresponding collection of recourse vectors
can be decomposed using singular value decomposition; consequently, the most important
components (as inferred by their singular values) may be used for scenario generation to
fulfil Er [Q(x, ξ)] ≈ Ep [Q(x, ξ)] parsimoniously within this candidate set.

If recourse vectors of other decisions are largely composed of the same components
used for scenario generation, this approximation will remain good and yield high-quality
solutions when used to solve (I.1). The required mathematical developments are presented
in Section 3.1 and the numerical implementation is explained in more detail in Section 3.2.

3.1 Mathematical developments
We formulate the scenario reduction problem within the framework of inner product
spaces weighted by probability. This enables us to analyse recourse vectors and to give
results about the errors of our approximations. Consider the inner product space W
defined on the vector space RS equipped with weighted inner product

⟨d, h⟩W =
∑
s∈S

psdshs, d, h ∈W, (I.3)

where p is the probability vector of the observed distribution. This induces the norm
∥d∥W = ⟨d, d⟩1/2W . By using an inner product weighted by probability vector p, we take
into account which outcomes contribute more to the calculation of the expectation. Note
in particular that the recourse vectors Qx defined above are elements in W .

The elements of W have the interpretation that they are finite discrete random vari-
ables with S outcomes. With this interpretation in mind, and a slight abuse of notation,
we can express their expectation with respect to p as

Ep [w] =
∑
s∈S

psws = ⟨1, w⟩W (I.4)

for any w ∈W where 1 = (1, . . . , 1).
We now consider the evaluation of expectations of elements in W using probability

vector r instead of p. The following result, which holds by the linearity of expectations,
says that preserving expectations on a subspace of W , by using Er in place of Ep, is
equivalent to preserving expectations of any basis on that subspace.

Lemma 1. Suppose {wi}i∈B where B := {0, . . . , B} is a collection of linearly independent
vectors in W , and let WB = span{w0, w1, . . . , wB}. Let also p and r be two probability
vectors. Then, Ep[w] = Er[w] for all w ∈WB if and only if Ep[w

i] = Er[w
i] for all i ∈ B.

Due to the linear independence, the probability vector r in this lemma requires at
most B + 1 non-zero elements to fulfil the condition of consistent expectations on WB.
That is, the reduced scenario set would contain B + 1 scenarios.
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Our aim for scenario generation is to find an appropriate subspace WB that effectively
approximates expectations of recourse vectors, given that we enforce consistent expecta-
tions between p and r on its basis. By a slight abuse of notation, let

WX = span{Qx : x ∈ X} ⊆W, (I.5)

denote the span of all recourse vectors defined by decisions x ∈ X . An interesting obser-
vation is that enforcing consistent expectations on the vector space spanned by recourse
vectors of feasible decisions WX is sufficient to get exact results to (I.1). This is primarily
interesting if WX has a smaller basis than W (to obtain a sparse r) and is easily obtain-
able. In some special cases WX may easily be found but, generally, we consider this to
be unavailable.

For a decision x ∈ X and alternative probability vector r we define the scenario
approximation error to be

Ep−r [Q
x] := Ep[Q

x]− Er[Q
x] =

∑
s∈S

(ps − rs)Q(x, ξs). (I.6)

To quantify the approximation error given a spaceWB on which we have consistent expect-
ations, let PB be the projection operator onto WB. Denoting by I the identity operator,
we then have that I−PB is the projection operator onto its orthogonal complement W⊥

B .
Any recourse vector Qx then has the decomposition

Qx = PBQ
x + (I − PB)Q

x. (I.7)

Theses operators allow us to bound the scenario approximation error as follows:

Theorem 1. Suppose WB ⊆ W is a subspace, and let r be an alternative probability
vector with consistent expectations on WB with respect to probability vector p. Then, for
any x ∈ X we have the following bound on the (absolute) scenario approximation error:∣∣Ep−r [Q

x]
∣∣ ≤ ∥(I − PB)Q

x∥W ϕ(p, r), (I.8)

where ϕ(p, r) =
(∑

s∈S(ps − rs)2p−1
s

)1/2 is the square root of the χ2-distance from p to
r.

Proof. Observe that∣∣Ep−r [Q
x]
∣∣ = ∣∣Ep−r [PBQ

x + (I − PB)Q
x]
∣∣ = ∣∣Ep−r [(I − PB)Q

x]
∣∣ (I.9a)

=

∣∣∣∣∣∑
s∈S

((I − PB)Q
x)sp

1/2
s p−1/2

s (ps − rs)

∣∣∣∣∣ (I.9b)

≤

(∑
s∈S

ps((I − PB)Q
x)2s

)1/2(∑
s∈S

(ps − rs)2p−1
s

)1/2

(I.9c)

= ∥(I − PB)Q
x)∥W ϕ(p, r) (I.9d)

where (I.9a) follows from consistent expectations on WB, (I.9b) is multiplication by 1 =

p
1/2
s p

−1/2
s , and (I.9c) follows by the Cauchy-Schwartz inequality.

Theorem 1 has an important interpretation. The factor ϕ(p, r) is the square root of the
χ2-distance (a ϕ-divergence (Bayraksan & Love, 2015)) from the observed distribution p to
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the scenario set defined by r. Very parsimonious scenario sets generally give higher values
of ϕ(p, r) and a worse bound on the approximation error; however, parsimonious scenario
sets are also good for tractably finding solutions to stochastic programs. The factor
∥(I − PB)Q

x∥W , on the other hand, is the projection distance onto WB which serves as a
problem-based measure of how effective WB is in approximating expectations of recourse
vectors for the given problem. An appropriate WB gives lower projection distance and
a tighter bound on the approximation error. This is an explicit statement of the notion
that more effective representation of problem structure allows more parsimonious scenario
sets.

The aim of our problem-based scenario generation procedure may be stated as

min
WB
∥(I − PB)Q

x∥2W , (I.10)

for a selection of decisions x relevant for approximation, where minimisation consists
of choosing the basis for WB. Passing from WB to a scenario set is done by enforcing
consistent expectations on its basis. We proceed to solve (I.10) heuristically by finding
candidate decisions whose associated recourse vectors are assumed to be representative
of other relevant recourse vectors and choosing their most important components.

Candidate Decision Sets for problem-based scenario generation

To generate problem-based scenario sets, we consider a finite set of candidate decisions
(with corresponding recourse vectors) of reasonably good quality. The motivation is that
these can provide relevant components of recourse vectors that may be used for scenario
generation. We justify the use of candidate decisions by a perturbation argument.

Denote the candidate decision set (CDS) as C = {x1, . . . , xK} ⊂ X , and the vector
space spanned by its recourse vectorsWC = span {Qx : x ∈ C} ⊆W . Based on Theorem 1,
showing that approximation errors are proportional to projection distance, we suggest
finding candidate decisions of high quality and use their associated recourse vectors to
make problem-based scenario sets. This builds on the assertion that a low perturbation
in the decision ∥x− x̃∥ gives a low correspondingly perturbation in the recourse vector∥∥Qx −Qx̃

∥∥
W

.
Consider that there exists a non-decreasing function ψ : R+ → R+ such that∥∥Qx −Qx̃

∥∥
W
≤ ψ(∥x− x̃∥), (I.11)

where ψ preferably takes as low values as possible (such a ψ always exists by the assump-
tion that Q(x, ξ) is finite). Let the expressions

dist(x,A) = min
x̃∈A
∥x− x̃∥ , X ∗ = argmin

x∈X

{
f(x) + Ep [Q(x, ξ)]

}
, (I.12)

denote the distance from a point to a set, and X ∗ the optimal solution set. We primarily
emphasise obtaining good approximations within some vicinity of the optimal solution
set, and denote the set of relevant decisions as X̃ ⊇ X ∗. Assuming expectations are
consistent on WC , we have that

|Ep−r [Q
x] | ≤ ψ(dist(x, C))ϕ(p, r), ∀x ∈ X̃ , (I.13)

by (I.11) and Theorem 1. Hence, the bound on the approximation error (I.8) for decisions
in X̃ is improved by having the candidate decisions C be close to it. A tighter bounding
function ψ naturally makes the approach using candidate decisions for scenario generation
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more effective. In particular, if Q(x, ξ) is a second-stage linear program under fixed and
complete recourse, ψ takes the form ψ(∥x− x̃∥) = A ∥x− x̃∥, while if we additionally have
integers and right-hand side uncertainty, it takes the form ψ(∥x− x̃∥) = A ∥x− x̃∥ + B
(Schultz, 2000, Propositions 2.2 and 2.4). Prochazka and Wallace (2020) inspired this
approach to problem-based scenario generation using candidate decisions.

The assumption that candidate recourse vectors are representative of new ones can
be validated after-the-fact for a new decision x∗ by evaluating

∥∥(I − PB)Q
x∗∥∥

W
. If this

projection distance is high, we may reconsider if the representation was good enough and
proceed to find a more relevant set of candidate decisions. In Section 3.2, we discuss in
more detail how candidate decisions can be found but assert for now that they should be
of reasonable quality and not too similar.

Decomposition over Candidate Recourse Vectors

We now address how the most important components of candidate recourse vectors can
be extracted based on an excessively large set of candidate decisions. The aim is to get
sparsity in the alternative probability vector r when enforcing expectations on these, while
still getting a low approximation error. The recourse vectors of the CDS give rise to a
data matrix M defined as

M =
[
Qx1

, . . . , QxK
]
∈ RS×K , {x1, . . . , xK} = C (I.14)

where Qxk

for xk ∈ C are referred to as candidate recourse vectors. Equivalently, Msk =
Q(xk, ξs). The data matrix M is input for the scenario reduction method and is found by
evaluating the recourse function over all scenarios of the observed distribution for each
candidate decision.

To find the most relevant components of candidate recourse vectors, we work on
linear combinations of these. Let RK be the space of possible weights used in linear
combinations, equipped with the dot product and associated norm ∥z∥ = ⟨z, z⟩1/2, where
M(z) denotes a linear combination of candidate recourse vectors using weights z. We let
zk ∈ RK be defined such that Qxk

=M(zk) for k = 1, . . . ,K, and note that {z1, . . . , zK}
forms an orthonormal basis on RK . In what follows, we consider the collection of norm-
alised linear combinations of recourse vectors

{M(z) : ∥z∥ ≤ 1}, (I.15)

which also contains Qxk

for every xk ∈ C. Geometrically, the set (I.15) forms an ellipse
in W whose size represents the variety of recourse vectors that arise from the candidate
decision set.

The most relevant components of candidate recourse vectors are found by decomposi-
tion. The singular value theorem (SVT) (Friedberg et al., 2002, Theorem 6.26) states that
there exist an orthonormal basis {v1, . . . , vK} of RK , orthonormal basis {u1, . . . , uS} of W
(with respect to inner product ⟨·, ·⟩W ), and unique singular values σ1 ≥ σ2 ≥ . . . ≥ σJ > 0
such that

M(vi) =

{
σiu

i if 1 ≤ i ≤ J
0 if i > J.

(I.16)

where J is the rank of M . The vectors {v1, . . . , vJ} and {u1, . . . , uJ} are referred to as
right- and left-singular vectors, and are unique up to the sign. This is referred to as the
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singular value decomposition (SVD) of M . Observe that this SVD of M is not the same
as the standard matrix SVD (which assumes the standard unweighted inner product).

In addition to preserving expectations for recourse vectors, we also ensure that the
elements of r sum to one. An elegant way of doing this is to fix the first basis component to
be 1 since the condition Er [1] = Ep [1] also implies

∑
s∈S rs = 1. To ensure the resulting

singular vectors from SVD are orthogonal to 1, we therefore subtract the expectation
with respect to p from the recourse vectors. Let M̂ denote the data matrix M whose
columns are orthogonalised in this way.

For our purposes, the singular values essentially tell us how important each component
ui is in reconstructing the candidate recourse vectors. This suggests an effective way of
preserving the expectation of these recourse vectors is to preserve the expectation of the
singular vectors ui corresponding to the largest singular values. Theorem 2 restates the
bound on the approximation error from Theorem 1, limited to decisions in the CDS, when
using left-singular vectors of M̂ to define the basis of WB.

Theorem 2. Let WB = span{1, u1, . . . , uB} where ui and σi are the left-singular vectors
and values of M̂ , and let r fulfil Er [w̃] = Ep [w̃] for all w̃ ∈WB. For any normalised linear
combination of candidate recourse vectors w ∈ {M(z) : ∥z∥ ≤ 1}, we then have that

|Ep−r[w]| ≤ σB+1ϕ(p, r). (I.17)

Proof. By Theorem 1, we have that

Ep−r [w] ≤ ∥(I − PB)w∥W ϕ(p, r),

and by (I.16), we see that (I − PB)w is spanned by a normalised linear combination of
{σB+1u

B+1, . . . , σJu
J} whose norm must be bounded by σB+1.

Adding consecutive left-singular vectors to WB of largest singular values implies σB+1

gets lower and this bound tighter. Note that ϕ(p, r) in (I.17) has conservative bound
(sups{p−1

s } − 1)1/2 < ∞, which is tight only if r takes value one at a single element
(where p is smallest) and zero otherwise. However, this does not account for the fact
that r must also fulfil the constraints Er

[
ui
]
= Ep

[
ui
]

for i ∈ B. By finding r first,
we may instead compute the bound (I.17) directly to obtain a less conservative value of
ϕ(p, r). Furthermore, consider that the step (I.9c) in the proof of Theorem 1 conservatively
decouples probabilities from the left singular vectors ui when these are actually available.
Proposition 1 utilises these instead to give an alternative bound on the approximation
error that may be tighter than (I.17).

Proposition 1. With the same assumptions as in Theorem 2, we also have bound

|Ep−r[w]| ≤

(
J∑

i=B+1

σ2
i E

p
[ [−] r]u

i2

)1/2

(I.18)

on the (absolute) approximation error for any normalised linear combination of recourse
vectors w ∈ {M(z) : ∥z∥ ≤ 1}.



3. METHOD 13

Proof. Observe that

|Ep−r[w]| =

∣∣∣∣∣
J∑

i=B+1

σiEp−r

[
ui
] 〈
vi, z

〉∣∣∣∣∣ (I.19a)

≤

(
J∑

i=B+1

σ2
i Ep−r

[
ui
]2)1/2( J∑

i=B+1

〈
vi, z

〉2)1/2

(I.19b)

≤

(
J∑

i=B+1

σ2
i Ep−r

[
ui
]2)1/2

(I.19c)

where (I.19a) again follows by decomposition and enforcement of expectations on WB,
(I.19b) by Cauchy-Schwartz, and (I.19c) by the condition that ∥z∥ ≤ 1.

Using bounds (I.17) and (I.18), one can find the minimal number of components B
required to limit the scenario approximation error to a specified level. As previously
mentioned, one would need B+1 scenarios in the reduced scenario set in order to enforce
consistent expectations for the basis {1, u1, . . . , uB}; hence, these bounds can give a
required number of scenarios to achieve a given level of accuracy within the CDS. The
scenario approximation error could of course be larger outside the CDS, so this required
number of scenarios is best interpreted as a minimum number of scenarios required to
solve the problem with a given accuracy.

3.2 Scenario reduction program
This section lays out the computational details of the proposed scenario reduction method.
Simply stated, it consists of computing the singular vectors of candidate recourse vectors
(represented by data matrix M) using a weighted version of singular value decomposition
on matrices, and finding a new probability vector r that preserves expectations of those
with the largest singular values. Preserving these expectations amounts to solving a set of
linear equations, with non-negativity on r, and this can be achieved by linear programming
techniques. Sparsity in r arises from the fact that the simplex algorithm will yield a basic
solution, and that number of non-zero basic variables rs will be small due to relatively
few constraints.

Choosing candidate decisions

Before we can calculate the data matrix, we need to generate a set of solutions for the CDS.
Following the discussion in Section 3.1, we propose to do this by solving the stochastic pro-
gram with small candidate scenario sets having more than one outcome to get candidate
decisions of reasonable quality.

The size of such candidate scenario sets is a trade-off since the more scenarios we
use, the better solutions we will have, but the more computational effort is required to
solve the problems. The number of candidate decisions to use is also a trade-off since
the more candidate decisions we use, the more likely we are to obtain components of
relevant recourse vectors, but the more computational effort is required to find all of
them. Another factor to bear in mind is that the maximum size of scenario set we can
generate using this method is limited by the number of decisions in the CDS. We should
therefore use at least as many candidate decisions as the maximum size of scenario sets
we want to find.
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We use sampled scenario sets for our numerical tests to generate candidate decisions
while, in principle, other kinds of candidate scenario sets could be used instead. Sampled
scenario sets have the property that their expected distance to the optimal solution set
(over many sampled sets) is monotonously decreasing in the size of the sampled set (Mak
et al., 1999). In our numerical tests, we find that solving problems with rather few (3 or
5) sampled scenarios to generate the candidate solutions is sufficient for our method to
work well.

Weighted SVD on matrices

We now consider the calculation of singular values and vectors of M with respect to a
weighted inner product. In the literature, this kind of extension is referred to as Gener-
alised SVD (Van Loan, 1976), with details relevant for our purpose explained by Jolliffe
(2002, Section 14.2.1). As implied by Theorem 2, before doing SVD, we subtract expecta-
tions column-wise from the data matrix M so that each column has zero expectation, and
denote this by M̂ . To compute the weighted SVD on matrix M̂ , define the weight-scaled
matrix

M̆ = Diag(p)
1
2 M̂ (I.20)

to account for weights in the inner product on W . Applying standard SVD to matrix M̆
yields left singular vectors ŭ1, · · · , ŭJ and singular values σ̆1, . . . , σ̆J . These are also the
singular values of M̂ with respect to weighted SVD, and its corresponding left-singular
vectors are given by ui = Diag(p)−

1
2 ŭi.

Formulation

After computing the singular vectors, the next step of the method is to construct a
new probability vector r which preserves the expectations of the first B of these (with
the largest singular values). Finding such r can be done by solving the following linear
program:

min
r

aT r (I.21a)

s.t.

S∑
s=1

uisrs =

S∑
s=1

uisps, ∀i : σi ≥ σB , (I.21b)

S∑
s=1

rs = 1, r ≥ 0, (I.21c)

where (I.21b) is the constraint to enforce expectations of basis components, and (I.21c)
makes the reduced probabilities sum to one and be non-negative. The objective (I.21a)
uses a randomly generated weight vector a of non-negative numbers between 0 and 1.
Although an objective isn’t really necessary as we only seek to find a vector satisfying
the constraints, having a random objective is useful as it allows us to generate multiple
different scenarios sets of the same size, which can be used for stability testing (Kaut &
Wallace, 2007) or for simply generating multiple solutions.

Using the simplex algorithm to solve this problem will yield a basic solution for r
which has at most B + 1 non-zero elements. The reduced scenario set then consist of
those outcomes with non-zero probabilities according to r. The value B should thus be
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chosen according to how large a scenario set one wants to generate, and the scenario
approximation error one is willing to tolerate. The overall scenario generation procedure
is summarised in Algorithm 1.

Algorithm 1: Recourse Decomposition
Data: Observed outcomes Ξ with probabilities p having S elements, number of

candidates K, candidate scenario set size S
′
, and truncation index B

U ← K sampled scenario sets of size S
′

from Ξ;
for k ← 1 to K do
C[k]← solution of stochastic program solved with scenario set U [k] ;
for s← 1 to S do

M [s, k]← objective value of second-stage program with decision C[k] and
observed outcome Ξ[s];

end
end
M̆ ← Diag(p)1/2(M − 1p⊤M) (mean subtracted and probability weighted matrix);
Ŭ , σ̆ ← matrix of left singular vectors and singular values of M̆ , ordered high to low
(from SVD);

U ← Diag(p)−1/2Ŭ (non-probability-weighted basis vectors);
r ← solve the scenario reduction problem (I.21) with the B first column vectors of U ;
Result: Scenario set using outcomes and weights {(Ξ[s], rs) : rs > 0}

Scalability

The main parameters of the overall procedure are: the size of the observed distribution
S, the number of candidate decisions K, the size of candidate scenario sets S′, and the
number of included components B. Generally, we want S to be quite large so that the
observed distribution accurately represents the underlying distribution, and that S′ is
small since we must be able to solve the problem K times using scenario sets of this
size. Generally, we assume K ≪ S is a sufficient number of candidate decisions due
to degeneracy in problem structure. It is required that B ≤ K since we cannot get
more components than candidates. Lastly, scenario generation is done in the hopes that
B ≪ S, meaning the size of the distribution can be greatly reduced to be able to solve
the problem. Obtaining the data matrix M requires solving K versions of the problem
with size S′ scenario sets, and evaluating them on the observed distribution with a total
of K × S evaluations of the recourse function. Weighted SVD must be done on a S ×K
matrix, and once the B components are chosen, a LP of S variables and B+1 constraints
is solved. Run-times for each of these steps were reported in Section 4.5. Realistically, the
LP can be solved with S in the millions, while SVD on matrices (to get singular values
and left-singular vectors of M̆) has run-time complexity in the order of O

(
S2K +K3

)
(Golub & Van Loan, 2013) and solves within reasonable time for relevant values of S and
K (see Table I.3).

4 Computational results

This section presents computational experiments related to our proposed scenario reduc-
tion method, which we refer to as Recourse Decomposition (RD). To test our method we
use four stochastic two-stage problems that represent relevant applications and different
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challenges in scenario generation. Results are reported in §4.5 but, first, the setup is
explained.

4.1 Case study problems

The four selected case study problems reflect various applications of stochastic program-
ming and have been selected to be unstable (see §4.3), to have difficult distributions, and
to represent computationally challenging problems. These problems are referred to as

• Telecommunications Network Planning (TNP), from Sen et al. (1994)

• Multidimensional News-vendor with Substitution (MNV), from Vaagen et al. (2011)

• Aircraft Operations and Scheduling (AOS), from Midler and Wollmer (1969)

• Storage Layout and Routing (SLR)

where all but MNV minimise the objective. Each problem has its own characteristics,
and a high-level overview is given in Table I.1. TNP has a high dimensional distribution
and is highly unstable (also confirmed by Linderoth et al., 2006), MNV has a multi-modal
distribution with complicated dependence patterns, AOS is chosen for instability while
SLR represents a very computationally complex integer program with a binary distribu-
tion. The SLR problem could only be solved by exact methods for very small instances,
while the others were reasonably tractable for the sake of conducting computational stud-
ies within a reasonable time. Further details about problem applications, mathematical
formulations, distributions and problem instance generation are provided in the Supple-
mental Material. The observed distribution was made from sampling S = 5000 outcomes
from a parametric distribution defined for each problem. For SLR, there are maximally
S = 256 outcomes (by full enumeration of its binary distribution) whose probabilities are
determined by 5000 samples.

Table I.1: Characteristics of case study problems.

Problem Marginals Dependence Distr. dimension Formulation

TNP Gamma Independence 82 LP
MNV Gaussian mixture Gaussian copula 10 MILP
AOS Gamma Gaussian copula 34 LP
SLR Bernoulli Gaussian copula 8 IP

4.2 Scenario generation benchmark methods

We compare Recourse Decomposition against Monte Carlo sampling and Minimum Trans-
portation Distance (MTD) methods since these are the most versatile distribution-based
methods to apply to various kinds of distributions. Our own Recourse Clustering (Narum,
2020) is also compared as an alternative problem-based method.

Monte Carlo sampling is the simplest implementation of scenario generation where
scenario sets are sampled from the observed distribution. Shapiro et al. (2014, Chapter
5) explain more detailed properties of this as an approach to scenario generation. Given
that we sample from a discrete distribution in our experiments, we draw samples with
replacements until we have a specified number of unique outcomes.
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Minimum Transportation Distance methods (Dupačová et al., 2003; Pflug, 2001) are
based on minimising the transportation distance between the observed distribution and
the scenario set based on some specified distance metric. This amounts to a partitioning
problem that can be solved by centroid-based clustering methods (Rujeerapaiboon et al.,
2022). We use k-medoids clustering (referred to as MTDMedoids) to get a scenario set
limited to the outcomes in the observed distribution, and k-means clustering (referred
to as MTDMeans) to get a scenario set not necessarily among the original outcomes.
MTDMeans is omitted in the SLR problem due to its discrete distribution support. We use
the squared Euclidean distance as a distance metric between outcomes. Multiple scenario
sets of each size are obtained from random initialisation in the clustering heuristics.

To obtain scenario sets with Recourse Decomposition, we must specify how candidate
decisions are found. This specification is determined by the number of candidate decisions
(K) in the CDS, and the scenario set size (S′) used to find each candidate as described
in Section 3.2. Generally, the larger the value of S′ the higher the quality of the resulting
candidate decisions. We refer to a CDS having fewer candidates or of lower quality
decisions (or both) as simpler, and to a CDS having more candidates or of higher quality
decisions (or both) as richer. For our experiments, candidates are found by solving the
problem with sampled scenario sets of size S′ = 3 or 5, repeated K = 100 or 200 times.
Each solution is then evaluated using the S = 5000 observed outcomes to obtain the
data matrix (of size 5000 × 100–200). The richer specification is used for the especially
unstable problem TNP.

Lastly, we compare to the method referred to as Recourse Clustering by Narum (2020).
This uses the same data matrix M but instead of decomposition, it does k-medoids
clustering on the rows ofM using the L1-norm as a distance metric. This method is similar
to other clustering-based methods that utilise problem-specific properties (described in
the literature review) but is simpler to implement for direct comparison.1

4.3 Empirical evaluation of scenario generation
To compare scenario generation methods, we use empirical evaluation metrics (see Kaut
& Wallace, 2007, for details). Stability of a scenario generation method refers to whether
we get similar results by applying the same scenario generation method multiple times
using the same specification. In our case, we get different results due to randomness in
the scenario generation methods themselves. Quality of a scenario generation method
refers to the quality of decisions it is able to provide when these are evaluated using the
underlying full distribution. Such evaluation often relies on large sampling estimates, and
we use the observed distribution directly for this purpose.

Empirical evaluation of scenario generation requires generating multiple scenario sets
by the same specification to derive measures of quality and stability. Let M denote a
scenario generation method and N the size of a generated scenario set. We repeatedly
generate L = 20 scenario sets of size N using method M and apply these to find a set
of solutions X (N | M, L) to the stochastic program. Any solution, x, can be evaluated
out-of-sample as

Fp(x) := f(x) + Ep [Q(x, ξ)] , (I.22)

where p denotes the observed distribution. Correspondingly, Fr(x) denotes in-sample
evaluation where r represents a scenario set (even if some scenario sets cannot be expressed

1The other mentioned contenders (Bertsimas & Mundru, 2022; Hewitt et al., 2021; Keutchayan et al.,
2023) require evaluation over all 5000 single scenario solutions, and either require unavailable custom
clustering heuristics or solve it exactly by MIPs which would not finish within reasonable time using
S = 5000 outcomes in the observed distribution.
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this way). As a measure of quality we use:

Quality(N | M, L) = Median
x∈X (N |M,L)

{Fp(x)} . (I.23)

Namely, we summarise quality of the solutions X (N | M, L) by the median out-of-sample
objective evaluation. Ideally, quality should be measured as the best out-of-sample ob-
jective evaluation but sampling inference on extrema quantities can be sensitive, thus, we
use the median. As a measure of stability we use:

Stability(N | M, L) =

√
Var

x∈X (N |M,L)
{Fp(x)}+ Avg

x∈X (N |M,L)

{
(Fp(x)− Fr(x))

2
}
. (I.24)

This stability measure combines the variance of out-of-sample evaluations and the average
of the discrepancy (bias) between in-sample and out-of-sample evaluations. A low value of
the former implies we get similar results each time, while a low value of the latter implies
the in-sample evaluation is also a good approximation to the out-of-sample evaluation.
By using the squared average bias, these two quantities are comparable. In practice, such
a stability measure is often used as a stopping criterion to choose the scenario set size N .

Given these performance measures, we may now infer a required number of scenarios
to fulfil a given level of performance. Assume we prefer low values of both measures
Quality(N | M, L) and Stability(N | M, L), and let ν denote a threshold for either
measure. Generally, the threshold ν is chosen according to what constitutes sufficient
performance for the given problem at hand. Then, the required number of scenarios
using method M, threshold ν, and performance measure µ ∈ {Quality,Stability}, is
found as

N∗
µ(M | ν) = min{N : µ(N | M, L) ≤ ν}, (I.25)

where smaller values of N∗
µ are preferable since stochastic programs using fewer scenarios

are usually computationally easier to solve.
Scenario generation methods are benchmarked against each other by comparing each of

their required number of scenarios when using the same performance threshold. Namely,
scenario generation method M1 is considered to be better than method M2 whenever

N∗
µ(M1 | ν) < N∗

µ(M2 | ν),

using either measures of quality or stability. To quantify the improvement of M1 over
M2, we may find the required number of scenarios from method M1 relative to what
would have been required from methodM2:

N∗
µ(M1 | ν)

N∗
µ(M2 | ν)

· 100%. (I.26)

Here, a value below 100% means methodM1 requires less scenarios than methodM2 to
reach the same performance threshold ν.

In practice, these benchmarks are performed on a pre-selected range N ∈ N and
the performance threshold is set according to the best performance of the worst method
within this range:

ν ← max

{
min
N∈N

µ(N | M1, L), min
N∈N

µ(N | M2, L)

}
, (I.27)

where µ denotes either performance measure. This ensures both methods M1 and M2

reach the threshold ν within the range N ∈ N so that they can be compared.
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4.4 Experimental setup

The case study problems have been implemented in the Julia programming language (Bez-
anson et al., 2017) using the JuMP (Dunning et al., 2017) modelling package. Their linear
programming (LP) and mixed-integer programming (MIP) formulations are solved using
Gurobi v9.0 (Gurobi Optimization, LLC, 2022) with default settings unless stated oth-
erwise. Computations are done on a computational cluster on nodes with 20 processing
cores (2 × Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz) and 96 GB of RAM. For clus-
tering heuristics, we use the Clustering.jl package in Julia.

4.5 Results

To illustrate the effectiveness of Recourse Decomposition, we first highlight its improved
quality and stability properties compared to the other methods. We then explore the
concept of degeneracy in problem structure by analysing singular values and projection
distances, and report run-times for each step of the proposed scenario generation proced-
ure. Lastly, we study the sensitivity of Recourse Decomposition on the specification of
the CDS.

Quality and stability

We compare the required number of scenarios to achieve similar quality and stability
across methods using the measures described in §4.3. Convergence of the quality and
stability measure for increasing scenario set size (N) is shown in Figures I.1 and I.2,
respectively, across methods and problems. Both figures show that all scenario generation
methods tend to improve with increasing scenario set size, as expected.

Furthermore, to more precisely quantify the improved convergence of Recourse De-
composition over other methods, we calculate whether smaller scenario sets can be used by
Recourse Decomposition to obtain the same level of performance (quality or stability) as
the other methods. Namely, in the notation of §4.3, we quantify the relative requirement
for scenarios,

N∗
µ(MRD | ν)
N∗

µ(M | ν)
· 100%, (I.28)

where M represents alternative methods and MRD represents Recourse Decomposition.
The performance threshold ν is determined by the best performance of the worst method
(by the formula in Eq. I.27). Table I.2 reports RD’s relative requirement for scenarios to
obtain the same level of quality or stability as each of the other methods.

We see from Figures I.1 and I.2 that Recourse Decomposition is consistently better
than, or on par with, the other methods both on quality and stability, with the exception
of SLR that we comment on below. While other methods sometimes start out better
than RD for very small sizes (see MNV and AOS), we observe in Table I.2 that as they
all eventually converge, RD consistently converges faster by reaching the same merits at
smaller scenario set sizes. Compared to the distribution-based methods, RD obtains the
same quality in the range of 20–90% as many scenarios and the same stability in the range
of 10–74% as many scenarios.

The other problem-based method, Recourse Clustering (RC), is mostly on par with
Recourse Decomposition. Interestingly, it seems RC performs a slightly better for low
ranges of scenario set sizes for AOS and MNV, but is overtaken by slower convergence.
In fact, RD achieves good quality results (Table I.2) using much fewer scenarios that Re-
course Clustering on these two problems. It is reasonable to assume these problem-based

https://github.com/JuliaStats/Clustering.jl
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Figure I.1: Quality measure of scenario generation methods as a function of scenario set size
(N), across problems. MNV (maximisation) has a flipped second axis for comparability. Observed
Distribution denotes the optimal solution to the full problem.

methods perform similarly since they use the same information about the problem, but we
conclude RD more consistently performs well based on these results. The additional great
advantage of RD is its accompanying analysis of singular values, error bounds, and de-
tection of degeneracy in problem structure that can inform the modeller about properties
of the specific problem at hand.

For the SLR problem, the MTD methods start out best and keeps being better until
surpassed by RD in both quality and stability for higher ranges of scenarios set sizes by
faster convergence (see Table I.2). Based on the nature of the specific problem (picking
scenarios based on which products to collect simultaneously in a warehouse) clustering
outcomes seems appropriate, but the problem instance is small (3×3 grid) and we suspect
this problem could be more unstable for larger instances and require many more scenarios.
Larger instances of this problem were intractable to solve within reasonable time using
exact methods. We also see that RD is ultimately much more stable than the MTD
methods (Table I.2 and Figure I.2), which is a great advantage when choosing scenario
set sizes in practice by the criterion of sufficient stability. We think further exploration
of problem-based scenario generation for this particular problem is an interesting avenue
for further research, also using larger and more realistic instance sizes that require better
solution procedures.

Degeneracy in problem structure

We now investigate degeneracy of problem structure by which we mean the extent to
which recourse vectors can be represented by few components. Singular values bound the
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Figure I.2: Stability measure (lower is better) of scenario generation methods as a function of
scenario set size (N), across problems. Note that the second axis has a logarithmic scale.

approximation error within the CDS (Theorem 2), while the projection distance bounds it
outside the CDS (Theorem 1). In practice, only the former is available; however, for this
paper we have performed more extensive experiments (on reasonably tractable problems)
for the sake of argument to compare projection distance to singular values, which infers
generalisability.

In Figure I.3 we illustrate the singular values derived from a given large CDS. We
also show the projection distance from an optimal recourse vector (found by solving the
full problem) onto the space spanned by the corresponding left-singular vectors up to the
same singular value. That is, if Qx∗

denotes the recourse vector of an optimal solution
x∗, we compare the projection distance∥∥∥(I − PB)Q

x∗
∥∥∥
W
, (I.29)

to the singular value σB for increasing values of B. According to Theorem 1, this pro-
jection distance is proportional to the approximation error when using the components
{1, u1, . . . , uB} to make a scenario set. For comparability, values are scaled by the order
of magnitude of the objective values of each problem so that values in Figure I.3 can be
interpreted as fractions of relevant objective values. The total number of candidates used
for each problem is given by the maximum value on the first axis of the corresponding
plot.

We see in Figure I.3 that the singular values decay rapidly in the beginning, which
means there is degeneracy in problem structure within the CDS. The corresponding quick
decay in the projection distance validates this degeneracy generalises to outside the CDS.
Ideally, the projection distance would remain lower than singular values in all components,
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Table I.2: Recourse Decomposition’s relative requirement for scenarios to reach the same level
of quality and stability as other methods. See the formula in (I.28). Values below 100% means
RD improves on the other method (highlighted in green). "—" means the method is not applied
to the problem.

Quality TNP MNV AOS SLR

MonteCarlo 50.0% 31.2% 26.3% 70.0%
MTDMedoids 55.3% 30.0% 23.5% 89.5%
MTDMeans 30.8% 60.0% 20.0% —
RecourseClust 100.0% 54.5% 35.0% 94.4%

Stability TNP MNV AOS SLR

MonteCarlo 47.5% 13.3% 10.5% 65.0%
MTDMedoids 51.3% 26.3% 10.5% 73.7%
MTDMeans 30.8% 25.0% 10.5% —
RecourseClust 100.0% 25.0% 100.0% 100.0%

meaning the approximation error on new decisions (usually unavailable ex ante) is lower
than the within-CDS error estimate (which is available). We see the projection distance
surpasses the singular values for some of the latter components in three of the problems,
which has the interpretation that candidate recourse vectors do not compose other relevant
recourse vector completely. It is fair to assume this would be the case, and this is a
potential weak-point of using candidate decisions for problem-based scenario generation.
The important take-away is that their majority part is still covered, meaning we can
obtain effective but not necessarily perfect approximations. Using more and higher-quality
candidate decisions may also improve these approximations.

What is especially interesting about analysing singular values to determine degeneracy
(and infer a minimum required number of scenarios) is that it only requires solving the
problem using small scenario sets (in order to generate the candidate decisions). This can
directly motivate the need to develop algorithms for a particular stochastic programming
formulation (like a decomposition procedure or a heuristic), to be able to solve particular
instances to sufficient precision. Validation of the final solution is always advised since
conclusions made from candidate decisions are mainly valid within the CDS or if the true
optimal decision(s) are very close to the CDS.

Computational run-times

We report run-times for the computational steps of Recourse Decomposition in Table I.3.
These steps consist of: (i) obtaining the data matrix M (solve to get candidate decisions,
and evaluate these over the observed distribution), (ii) weighted SVD on M , (iii) solving
the scenario reduction program (I.21), and (iv) solving the problem using the RD scenario
set. To be conservative, we let steps (iii–iv) use the largest scenario set size N (as reported
in Figure I.1) and report their average run-time over L = 20 runs. All run-times are found
using single-threading (for comparability), and the reported total run-time assumes steps
(i–iv) are done in sequence. We also report the time to solve the full problem using
the observed distribution instead of a scenario set. Lastly, we note that all comparing
scenario generation methods spent less than one second to generate a scenario set, which
is comparable to the scenario reduction program used for RD.

We observe from Table I.3 that Recourse Decomposition overall requires less computa-
tional time than the full problem. Consider also that step (i) where we obtain data matrix
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Figure I.3: Singular values and projection distance to the optimal recourse vector, considering
an incremental increase in the used components B. See the formula in (I.29). Values are scaled
by the order of magnitude of the respective case study problems (TNP: 30, MNV: 15, AOS: 7500,
SLR: 8) for comparability. Zero values are omitted where it applies.

M is highly relevant for parallelisation (composed of K +KS separate sub-tasks), which
is also where the majority time is spent for most of the problems. The larger run-time
comparison for SLR may be due to its lower number of observed outcomes (S = 256)
which makes the full problem smaller.

The primary advantage of generating parsimonious scenario sets comes from avoiding
above-linear scaling of solution-time in the size of the problem (whose size roughly scales
proportional to the number of scenarios), as well as memory limitations. We have in-
tentionally kept instances of the respective problems small enough that the full problem
could be solved, but with moderately larger instances for AOS and SLR, we quickly run
into memory issues or un-reasonable solve times (more than a week). Keep in mind that
larger such instances can still be solved using our proposed scenario generation method
to get effective solutions.

Sensitivity on candidate decision sets

We want to examine how sensitive the results of Recourse Decomposition are to the
specification of the candidate decision set (CDS) by benchmarking against itself when
using different specifications of the CDS. Namely, we construct many versions of the
CDS having incrementally richer specifications of S′ and K to make RD scenario sets.
Intuitively, these represent different methods MRD(S

′
,K) specified by the richness of

their CDS. These are then compared in terms of the quality measure (I.23), where the
simplest CDS is used as the baseline for comparison. In the notation of §4.3, we find the
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Table I.3: Computational run-times (in seconds) for Recourse Decomposition (RD) and the
full problem using single-threading. The total run-time for RD assumes all steps are done in
sequence, and the full problem use the observed distribution instead of a scenario set. The right-
most comparison reports the fraction of total run-time using RD compared to the full problem.

Candidate dec. Recourse eval. WSVD Scenario
reduction Solve Total Comp.

Avg. Tot. Avg. Tot. RD Full

TNP 0.0927 18.54 0.0006 599.73 0.0812 0.8029 202.96 8.22e+2 4.90e+4 1.68%
MNV 0.0111 1.11 0.0001 41.35 0.0327 0.3415 0.30 4.31e+1 7.50e+2 5.75%
AOS 0.0947 9.47 0.0099 4949.82 0.0348 0.3542 66.30 5.03e+3 5.13e+5 0.98%
SLR 0.1001 10.01 0.0007 17.10 0.0105 0.1906 204.86 2.32e+2 8.79e+2 26.40%

relative requirement for scenarios

N∗
Quality(MRD(K,S

′
) | ν)

N∗
Quality(MRD(Kmin, S

′
min) | ν)

· 100%, (I.30)

for each specification K and S′ of the CDS, where Kmin and S
′

min represent the simplest
baseline specification. The threshold ν is again specified by the formula (I.27). Table I.4
shows (I.30) for ranges of S

′
and K.

Table I.4: Relative requirement for scenarios using different specifications of the CDS when
compared to a baseline specification. See the formula in (I.30). Vertically, we have the sample
size of the scenario sets used to find candidate decisions (S

′
) and, horizontally, we have the

number of such candidates found (K). The simplest CDS (highlighted in blue) is the baseline
for comparison and gives no improvement on itself by definition. Values below 100% signify
improvement (highlighted in green) and values above 100% signify a worsening (highlighted in
red).

TNP K = 200 K = 250 K = 300 K = 350 K = 400

S
′
= 3 100.0 % 92.5 % 92.5 % 92.5 % 100.0 %

S
′
= 6 95.0 % 95.0 % 87.5 % 97.5 % 100.0 %

S
′
= 9 100.0 % 92.5 % 85.0 % 90.0 % 95.0 %

S
′
= 12 95.0 % 100.0 % 90.0 % 90.0 % 100.0 %

S
′
= 15 97.5 % 92.5 % 100.0 % 95.0 % 95.0 %

MNV K = 100 K = 125 K = 150 K = 175 K = 200

S
′
= 3 100.0 % 105.3 % 100.0 % 105.3 % 105.3 %

S
′
= 6 84.2 % 105.3 % 100.0 % 105.3 % 94.7 %

S
′
= 9 105.3 % 100.0 % 94.7 % 105.3 % 100.0 %

S
′
= 12 105.3 % 100.0 % 100.0 % 100.0 % 94.7 %

S
′
= 15 100.0 % 105.3 % 89.5 % 100.0 % 105.3 %

AOS K = 100 K = 125 K = 150 K = 175 K = 200

S
′
= 3 100.0 % 100.0 % 100.0 % 105.3 % 105.3 %

S
′
= 6 105.3 % 94.7 % 105.3 % 89.5 % 105.3 %

S
′
= 9 105.3 % 94.7 % 89.5 % 89.5 % 100.0 %

S
′
= 12 100.0 % 100.0 % 78.9 % 105.3 % 105.3 %

S
′
= 15 105.3 % 105.3 % 105.3 % 111.1 % 100.0 %

SLR K = 100 K = 125 K = 150 K = 175 K = 200

S
′
= 3 100.0 % 82.4 % 100.0 % 64.7 % 105.9 %

S
′
= 6 100.0 % 76.5 % 76.5 % 70.6 % 82.4 %

S
′
= 9 82.4 % 70.6 % 82.4 % 70.6 % 70.6 %

S
′
= 12 76.5 % 70.6 % 82.4 % 64.7 % 82.4 %

S
′
= 15 82.4 % 82.4 % 76.5 % 64.7 % 70.6 %

Primarily, we conclude from Table I.4 that sensitivity on the specification of the CDS
is low. One exception is the SLR problem where it seems candidate scenario sets larger
than S

′
= 6 gives better results, while sensitivity on the number of such candidates (K)

still seems to be low. Note that the number of candidate solutions K cannot be lower
than the largest possible scenario set size within the range of scenario set sizes N ∈ N
used in these tests.



5. DISCUSSION 25

5 Discussion
We have argued that the proposed problem-based scenario generation exploits degeneracy
in problem structure, and that a few components can be found that compose the majority
part of all attainable output distributions. For the purpose of scenario generation on any
kind of recourse function this, in practice, is an empirical claim. Degeneracy must be
validated on a given problem by analysing singular values on a candidate set of recourse
vectors. We also suspect some problems have this property especially pronounced; namely,
ones where the stochastic parameters interact in specific ways within the recourse program
such that we get an overall low-dimensional span of output-distributions across relevant
candidate decisions. In other words, problems with much structure. This is an observation
based on the kinds of models commonly used in application.

Our proposed scenario reduction method is a natural and very lightweight extension to
the typical way a modeller may approach a new stochastic programming problem. Once
a formulation has been made, it should be tested using some reasonably sized scenario
sets to check its computational tractability and stability, where solutions are evaluated
out-of-sample. If this reveals there is sufficient stability, we would be done. Otherwise,
further investigations are needed, and our problem-based scenario generation procedure
can very naturally be applied using the computations already performed. Thus, obtain-
ing more effective scenario sets from that point on requires almost negligible additional
computations.

Since the approach can be applied when probabilities in the observed distribution
are not equiprobable, we may also apply distribution-based scenario generation to obtain
the observed distribution itself. By using a smaller and better constructed observed
distribution, we may relieve some of the computations required to obtain the data matrix
while giving more reliable estimates of the expected recourse.

Conclusion
This paper provides a scaleable, effective and easily implementable approach to exploit
problem structure for the purpose of scenario generation. We do this by directly study-
ing the output distribution of the problem, which means the procedure is agnostic to
the problem and the kind of input distribution. We show it is possible to find a few
components that compose the majority part of a representative collection of output dis-
tributions, and that constructing a scenario set using such components gives better and
more reliable results when used to solve the stochastic program. The provided bounds
on the resulting approximation error can be used to approximately infer the required size
of the scenario set for a given precision and, importantly, this only relies on solving the
stochastic program using small scenario sets.
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Paper II

On the Safe Side of Stochastic
Programming: Bounds and
Approximations

Benjamin S. Narum, Francesca Maggioni and Stein W. Wallace

Abstract

There will always be stochastic programs that are too large or complex to be
solved in their basic form. In this article, we review, discuss, and compare
different ways such stochastic programs can be handled using bounds and
approximations, all based on manipulations of the random variables. We are
particularly interested in how methods based on different underlying ideas can
be combined or possibly are the same.

1 Introduction

Stochastic programming is an important tool for dealing with decision problems when
the outcome of a decision is stochastic. This is qualitatively different from deterministic
approaches and considers concepts such as options, hedging and risk that do not exist
in a deterministic world. Optimal decisions to stochastic programs consider different
future outcomes simultaneously and consequently allocate resources to obtain flexibility
in dealing with these futures effectively if they occur.

The advantage of stochastic programming, as opposed to other approaches to decision-
making under uncertainty, is its tight link to mathematical programming and its tools
to solve large-scale constrained optimisation problems that may include combinatorial
considerations by integers. The field of mathematical programming has seen immense
improvements in the ability to get precise solutions to optimisation problems; however,
stochastic programs also require approximation of the stochastics. As a result, the math-
ematical program solved may be very close to, or at times very far from, the underlying
problem with its stochastics. It all depends on the quality of the approximation.

Stochastic programming problems are formulated as optimising the expectation (or
some other risk measure) over stochastic variables that take the role of parameters in an
optimisation problem. Exact solutions to these are, in general, fundamentally intractable.
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This paper gives an overview of bounds and approximations with respect to the dis-
tributional aspects of stochastic programming. Our primary goal is to give an intuitive
overview to provide an understanding of the underlying ideas of these bounds. While
there are many associated technical details, we aim to simplify the exposition as much
as possible while still conveying the principal ideas, distinctions and connections between
different approaches. References are listed throughout for the interested reader to explore
in more detail.

We refer readers to the book by King and Wallace (2012) for the modelling aspects
of stochastic programming while Kall and Wallace (1994), Birge and Louveaux (2011)
and Shapiro et al. (2014) explain the mathematical background, solution procedures and
more detailed technical properties. This section discusses the uses of bounds and some of
their implications for modelling.

Motivation on bounds Models in stochastic programming aim to optimise a current
decision while additionally accounting for the limitations this puts on future decisions
determined once the outcomes of uncertain parameters are revealed. Future decisions
reflect reactive actions once more information is known and are usually determined by
an optimisation model with no closed-form solution. This means the objective function
of the current decision is to optimise the expectation of another optimisation problem.
Needless to say, evaluation of this expectation poses a great challenge (especially if the
distribution is continuous) and must be approximated in some way. Furthermore, we also
aim to optimise this expected value (whose evaluation is intractable) with respect to the
current decision. The literature on bounds aims to find tight interval estimates of these
quantities. In this paper, we explore bounds both on the evaluation of expected values
and on the optimised expected values. The distinction between these is important because
they elicit different kinds of argumentation.

In a mathematical and algorithmic sense, bounds are important to determine if an
error gap is sufficiently low so that the problem can be considered solved or that estimates
of certain quantities are sufficiently accurate. The former relies on some version of the
latter but has different conceptual purposes. Bounds on the evaluation of expectations
can be used to reveal the current performance of a given solution in terms of the original
(intractable) objective function but we are also interested in whether the solution could
have been better by comparing it to an interval estimate of the optimal objective value.
This distinction is especially interesting since finding a solution is subject to (an often
different) approximation, and the effectiveness of this approximation can be benchmarked
by first estimating its performance and then deciding if this is sufficiently close to being
optimal.

There is also an application side of bounds. In the context of minimisation (which we
use throughout), a lower bound is optimistic while an upper bound is conservative. This
means we are generally more interested in upper bounds since these are more informative
of our true exposure. Investment and pricing problems are especially interesting areas
to apply the evaluation bounds in Section 3 because such problems consist of deciding
whether to get exposed or not, and evaluating this exposure is essential. An overly
optimistic account of the objective value may lead to the phenomenon known as the
winner’s curse (Thaler, 1988), where the bidder having the worst value estimate wins
the bid. If we are already invested, the perspective changes, and we mostly care about
making good decisions. The bounds in Section 4 are then of particular interest since these
can be used to evaluate how close a solution is to the actual optimal objective value.

Generally, more uncertainty leads to a worse performance if we don’t plan for it.
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Ignoring uncertainty produces a decision whose real performance is an upper bound on
the best attainable performance and gets better with a better account of uncertainty. This
is worth remembering when deterministic models are applied in stochastic environments.
A naive approximation of the underlying distribution may also lead to bounds instead of
estimates, a surprisingly easily made mistake.

The structure of the paper is as follows: background and notation is described in
Section 2. In Section 3, we explore bounds on the evaluation of expected values, while
Section 4 emphasises bounds on the optimal value of such expected values. The argument-
ation of the approaches in these two sections is fundamentally different but has interesting
connections. In Section 5, we conclude the paper.

2 Background and notation
We present the notation used throughout the paper for minimisation of stochastic pro-
grams under uncertainty. Such formulations may be stated as two-stage or multistage
problems, but the same notation is used for both. Unless explicitly stated otherwise, we
refer to both kinds of formulations. Risk aversion is omitted, which is why these two
formulations are very similar in notation. We assume all relevant optimisation problems
in the paper have finite optimal solutions.

We consider a finite-horizon sequential decision-making problem under uncertainty
where decisions are made at discrete stages t ∈ {0, . . . , T} and T denotes the (finite)
planning horizon, while [t] := {0, . . . , t} denotes all stages up to t. The uncertain data
ξ := (ξ1, . . . , ξT ) is revealed gradually over time from stage t = 1, and our decisions should
be adapted to this process. The decision process takes the form

x0
decision

→ ξ1
observation

→ x1
decision

→ · · · → ξT
observation

→ xT
decision

,

where each ξt has support Ξt ∈ Rdt , and overall ξ has support Ξ := Ξ1 × . . . × ΞT . The
history up to stage t is denoted ξ[t] := (ξ1, . . . , ξt). For consistency, we let ξ0 represent
an initial deterministic state known in advance of the first decision. The decision process
begins with initial decision x0 at stage t = 0, called the first-stage or here-and-now
decision, followed by sequential decisions xt at stages t = 1, . . . , T . The history of the
decision process, at a given point in time t, is denoted by x[t] := (x0, x1, . . . , xt).

An important concept associated with uncertainty is the corresponding information
structure F := (F0, . . . ,FT ) which describes the availability of information at each stage.
We refer to outcomes by the underlying outcome space Ω, and information is encoded by
whether such outcomes can be distinguished at a given point in time. Here, Ft denotes
the available information at stage t, and we have the criterion that Ft ⊆ Ft+1 which
signifies that information is gained over time. Continuous outcome spaces require the
notion of nested σ-algebras over Ω to encode the revelation of information, while for
discrete outcome spaces, this can also be represented by a tree structure (see Fig. II.1).
Implicitly, ξt : Ω→ Rdt is here a mapping from outcomes ω to realisations of the uncertain
data ξt(ω), and similarly for the decision process xt : Ω→ Rnt . We generally also refer to
x(ω) = (x0, x1(ω), . . . , xT (ω)) as a decision policy, which is said to be feasible if it satisfies
the constraints x(ω) ∈ X (ω) := X0(ω)× . . .× XT (ω) where Xt(ω) ⊆ Rnt . Whenever the
specific value of the uncertain data process matters, we refer to it by ξ, while we generally
use ω as a generic referral to outcomes. Note that processes ξ(ω) and x(ω) must always
adhere to the information structure F , meaning they are defined with respect to it.
This also means the decision policy xt(ω) at stage t may only depend on information Ft

available up to stage t, also known as nonanticipativity.
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We let ft(x[t](ω), ξ[t](ω)) denote the cost incurred at stage t given the decisions x[t](ω)
and stochastic process ξ[t](ω) up to stage t, given by outcome ω. Let EP

t [·] := EP
Ft

[·]
denote the conditional expectation with respect to all information up to stage t using
distribution P , and let EP [·] denote the unconditional expectation.

A (T + 1)-stage stochastic programming problem can be formulated as

v(P ) := min
x0∈X0

f0(x0, ξ0) + EP
0

[
min

x1(ω)∈X1(ω)
f1(x[1], ξ[1]) + EP

1

[
· · ·

· · ·+ EP
T−1

[
min

xT (ω)∈XT (ω)
fT (x[T ], ξ[T ])

]]]
(II.1a)

= min
x(ω)∈X (ω)

EP

[
T∑

t=0

ft(x[t](ω), ξ[t](ω))

]
= min

x(ω)∈X (ω)
EP [f(x(ω), ξ(ω))] , (II.1b)

where v(P ) is the optimal objective value under distribution P and the shorthand notation
f(x(ω), ξ(ω)) in (II.1b) denotes the total incurred cost for the given process ξ and decision
x in outcome ω. Notice that the cost functions ft can possibly be non-linear.

For discrete outcome spaces Ω, it is useful to depict the principle of information
structure as a tree where each ω represents a path from the root to the leaves. This
is illustrated in Fig. II.1 with the associated notation. The tree has nodes organised in
levels corresponding to stages t ∈ {0, . . . , T}. At level t = 0, we have a single root node
associated with the known quantity ξ0 and the first-stage decision x0. At level t = 1, we
have multiple nodes representing different realisations of ξ1 and associated decisions x1
that depend on this realisation. Generally, nodes correspond to possible realisations of
uncertainty, and each node has an associated set of outcomes that describes which paths
pass through it. Information consists of knowing this set of outcomes but without the
ability to distinguish exactly which one occurs in the future. Hence, we must plan for all
of them simultaneously (weighted by probability).

f0(x0, ξ0)

f1(x[1](ω), ξ[1](ω))

f2(x[2](ω), ξ[2](ω)) f2(x[2](ω), ξ[2](ω))

f1(x[1](ω), ξ[1](ω))

f2(x[2](ω), ξ[2](ω)) f2(x[2](ω), ξ[2](ω))

ω ∈ {1, 2, 3, 4} = Ω

ω ∈ {1, 2} ω ∈ {3, 4}

ω ∈ {1} ω ∈ {2} ω ∈ {3} ω ∈ {4}

Figure II.1: A scenario tree representing the information structure and the objective value
associated with different nodes.

By the theory of duality in optimisation, we may dualise this optimisation problem
(II.1) with respect to its constraints X (ω), and obtain

v(P ) = min
x(ω)∈X (ω)

EP [f(x(ω), ξ(ω))] ≥ max
λ(ω)∈Λ(ω)

EP [f∗(λ(ω), ξ(ω))] = v∗(P ), (II.2)

by weak duality, where f∗(λ(ω), ξ(ω)) is the dual objective function, v∗(P ) its optimal
objective value, λ(ω) a dual policy, and Λ(ω) the dual constraints. All quantities in
the dual problem also adhere to the same information structure F and follow the same
notation conventions.
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2.1 Stochastic linear programs

Stochastic linear programs are the primary formulation used for applications of stochastic
programming and may also be extended by including integer variables. These take a
particular form with linear objective f(x(ω), ξ(ω)) = c(ω)⊤x(ω) and linear constraints
X (ω) = {x(ω) : A(ω)x(ω) ≥ b(ω)}. Properties of these are used as assumptions in
Section 3.4 and Section 4.3, while its parametric shape is important for the discussion in
Section 3.3. The stochastic linear program (SLP) has formulation

min
x(ω)

EP

[
c(ω)⊤x(ω)

]
s.t. A(ω)x(ω) ≥ b(ω), ∀ω ∈ Ω (SLP)

x(ω) ≥ 0

with dual

max
λ(ω)

EP

[
b(ω)⊤λ(ω)

]
A(ω)⊤λ(ω) ≤ c(ω), ∀ω ∈ Ω (D-SLP)
λ(ω) ≥ 0,

where ξ(ω) is represented by the random parameters c(ω), A(ω) and b(ω) while λ(ω)
denotes the dual multiplier of the constraints of (SLP). This general formulation of the
constraints has a time structure such that ξt(ω) denotes the parameters ct(ω), At(ω) :=
(Bt(ω),Wt(ω)) and bt(ω) specific to stage t. The constraint matrix A(ω) has a block
structure incorporating decisions at previous stages. In particular, the constraints in the
primal take the more specific form

A(ω)x(ω) ≥ b(ω) ⇐⇒



A0x0 ≥ b0,
B1(ω)x0 +W1(ω)x1(ω) ≥ b1(ω),
B2(ω)x[1](ω) +W2(ω)x2(ω) ≥ b1(ω),
...
BT (ω)x[T ](ω) +WT (ω)xT (ω) ≥ bT (ω),

where the first constraint is deterministic, and the consecutive ones are stochastic.
There are some specific shapes and properties of (SLP) to take into consideration:

• Right-hand side uncertainty : If only the right-hand side b(ω) is random, (SLP) is
convex and piecewise linear in the random parameters.

• Objective uncertainty : If only the objective coefficient c(ω) is uncertain, (SLP) is
concave and piecewise linear in the random parameters.

• Convex-concave saddle: If we have both right-hand side b(ω) and objective c(ω)
uncertainty, (SLP) is piecewise bi-linear in the random parameters and is also a
convex-concave saddle function.

• Fixed recourse: If Wt is deterministic, this is referred to as fixed recourse, while
otherwise this it is called random recourse. The shape of (SLP) in W is generally
non-convex.
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• Complete recourse: The assumption that (SLP) is always feasible, i.e., taking finite
values, is referred to as complete recourse. Relatively complete recourse means
feasibility in stage t is ensured for all previous feasible decisions X[t−1].

These shapes follow from the parametric shape of LPs (Bertsimas & Tsitsiklis, 1997).
Notice that bounds based on convexity are generally not applicable to mixed-integer
linear programs (MILPs).

Penalty formulations and soft-constraints

Penalty formulations of (SLP) using soft-constraints are especially useful to consider in
the context of bounds. These can be used to define finite growth conditions (Section 3.3),
to construct majorising functions (Section 3.4), and to have well-defined behaviour for
sub-optimal candidate policies (Section 4). Soft constraints are constructed by adding
non-negative auxiliary variables z(ω) to the constraints as

A(ω)x(ω) + z(ω) ≥ b(ω), (II.3)

that have associated penalties µ ≥ 0 in the objective. This special form of constraint
allows us to determine the solution of z easily as

z(ω) = (b(ω)−A(ω)x(ω))+ := max{0, b(ω)−A(ω)x(ω)}, (II.4)

whose form is similar to those of simple recourse problems (Birge & Louveaux, 2011,
§3.1d). Observe also that this reduces projection onto the feasible set to a trivial max
operation. The primal objective can then be restated as

c(ω)⊤x(ω) + µ⊤(b(ω)−A(ω)x(ω))+, (II.5)

while relaxing all constraints but the variable bounds on x(ω). A direct consequence of
soft constraints is that we have bounds 0 ≤ λ(ω) ≤ µ on the dual variables. Intuitively,
whenever the dual multiplier (the shadow price) reaches µ, the penalty takes over instead
by violating the constraint. Consequently, penalties should be chosen according to the
true marginal cost of violating these constraints. Analogously, soft constraints in the dual
formulation using penalties ν give bounds 0 ≤ x(ω) ≤ ν on the primal variable, and the
dual formulation is always feasible. The dual objective can then be restated as

b(ω)⊤λ(ω) + ν⊤
(
A(ω)⊤λ(ω)− c(ω)

)+
, (II.6)

while relaxing all constraints but the variable bounds on λ(ω).
The geometric interpretation of these penalty formulations is that the optimal object-

ive values of the primal and dual formulations, as functions of the stochastic parameters,
are enclosed in pointed cones whose growth rate is determined by the penalties µ and ν.
In the special case of simple recourse, the objective function is equal to this cone.

3 Bounds on the evaluation of expectations
When the underlying distribution P is known, for example, by an analytical expression
or by specific information about its moments, there exist methods to get guaranteed (as
opposed to statistical) bounds on the expected objective value without solving the intract-
able integral implied by the original problem formulation (II.1). An essential property of
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the bounds reviewed in this section is that they require evaluating the objective function
only on a finite set of outcomes, also when the underlying distribution is continuous.

In this section, we primarily address two-stage problems (i.e., T = 1) for a fixed first-
stage decision x0 and uncertainty in the form of a random vector ξ on support Ξ ⊆ Rd.
For ease of notation in this section (Section 3), we let ξi denote component i of the random
vector and omit the time index of ξ. The function to be approximated is then stated as

ϕ(ξ) := ξ 7→ min
x1∈X1(ω)

f1(x[1], ξ), x0 fixed, (II.7)

which represents the optimisation problem solved once the uncertainty ξ is revealed.
This can be time-consuming to evaluate, which motivates having few evaluation points
to determine bounds on its expectation EP [ϕ(ξ)]. Extension to multistage problems is
discussed in Section 3.3.

Guaranteed bounds are mainly based on the shape of ϕ. These bounds have two
closely linked interpretations, but many of the bounds we discuss have been developed
primarily with one perspective in mind. The two interpretations of guaranteed bounds
are:

1. Distribution approximation: Find an alternative distribution Q whose evalu-
ation of the expected objective function gives a bound.

2. Function approximation: Find a simpler function that is strictly equal or lar-
ger/smaller than ϕ and whose expectation is easily evaluated.

Distribution approximation can intuitively be understood as moving probability mass
to parts of the distribution support that combined has a larger/smaller objective value.
Function approximation is intuitively understood by the fact that a function that is larger
than another must also have a larger expectation.

The link between distribution approximation and function approximation and the
more general framework of generalised moment problems are discussed in Section 3.1.
An interesting generalising property of distributional bounds is discussed in Section 3.2.
Bounding approaches primarily motivated by distribution approximation are discussed
in Section 3.3 and those motivated by function approximations in Section 3.4. Lastly,
Monte Carlo integration is an often used alternative approach to evaluate expectations,
discussed in Section 3.5.

3.1 Guaranteed bounds as a Generalised Moment Problem
The generalised moment problem (GMP) has important implications for deriving bounds
on the expectation of a function when certain limited information about the distribution is
known. To some degree, this underlies all of the guaranteed bounds. The GMP is a semi-
infinite program whose formulation aims to optimise the expectation of a function over
an altered distribution that is subject to certain generalised moment constraints. While
its formulation is very general and solutions are not always easily given, certain setups of
the GMP give easily found or even analytical solutions. We primarily explore these easily
found solutions in this paper and leave out details about semi-infinite programs.

The link to bounds in stochastic programming started with Madansky (1959), who
used the moment problem to prove upper bounds on convex functions and was later tied
to optimisation of the distribution to get upper and lower bounds by Dupačová (1987),
Klein Haneveld (1986) and Kall (1988), originally pioneered by Dupačová (1966) with the
minimax formulation of stochastic programs. The optimal distribution of the GMP has
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also been referred to as an extreme measure which is particularly interesting because it
has been shown that these are discrete and finite, even if the original distribution P is
continuous (Karr, 1983; Kemperman, 1968). Duality further shows that the distribution
approximation by the GMP has dual formulation with the direct interpretation of function
approximation, which makes these two perspectives particularly tightly connected. The
GMP can be solved directly to obtain bounds but is based on an iterative procedure that
involves solving non-convex sub-problems (Birge & Wets, 1987), and we instead emphasise
simpler procedures.

We now state the mathematical framework of guaranteed bounds starting at the in-
terpretation of distribution approximation, function approximation and implications of
their link by strong duality. Lastly, we give an illustrative example in Section 3.1.

Distribution approximation Consider that we want to find an alternative distribu-
tion Q on support Ξ to evaluate the expectation EQ [ϕ(ξ)] such that it bounds the true
objective EP [ϕ(ξ)] from above or below. The first observation to make is that the expect-
ation is linear in the distribution (namely, in the probability assigned to each outcome)
irrespective of the functional shape of ϕ(ξ). This means we can pose the bounding prob-
lem as a (semi-infinite) linear program where the distribution Q is optimised with respect
to the expectation Q 7→ EQ[ϕ(ξ)], subject to constraints Q ∈ P where P is a specific class
of probability distributions. We may then intuitively maximise to get an upper bound
and minimise to get a lower bound. The formulation for obtaining a lower bound by
distribution alteration (thereof the abbreviation D) is

min
Q∈P

EQ [ϕ(ξ)] , (D-LB)

and
max
Q∈P

EQ [ϕ(ξ)] , (D-UB)

for the upper bound. An optimal solution to such formulations is denoted Q∗. In gen-
eral, we must assume the support Ξ is bounded for Q∗ to be well defined (extensions to
unbounded support are discussed in Section 3.3).

Conveniently, the optimisation problems (D-LB) and (D-UB) are optimal at discrete
distributions Q∗, even if P is continuous. This is given that we have a finite number of
constraints of the general form

EQ[gi(ξ)] = mi := EP [gi(ξ)], ∀i ∈ I (II.8)

where I is a finite index set of constraints (Kemperman, 1968, Theorem 1). The gen-
eralised moment functions gi(ξ) for i ∈ I can take various forms but should be linearly
independent. Common expressions for these are linear functions, moment functions, or
multi-linear functions. We also require that probabilities under Q sum to one, which can
be stated in the same form,

EQ[1] = Q(Ξ) = 1 = P (Ξ) = EP [1] .

The constraint set on Q is then summarised as

P :=

{
Q :

Q(Ξ) = 1,
EQ[gi(ξ)] = mi, ∀i ∈ I

}
. (II.9)

We assume that the prescribed values mi are easily found and that they are consistent
with each other.1 According to the definition of mi we always have that P ∈ P, which

1If freely specified, it is possible to choose mi so that P is empty.
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means P is always feasible to (D-LB) and (D-UB). Their respective optimal solutions
Q∗ must thus indeed provide bounds on EP [ϕ(ξ)] by optimising over the same set P.
Furthermore, the optimal approximating distribution Q∗ has at most |I| + 1 points in
its support (Kemperman, 1968). The contributions on different bounds in the literature
lie in choosing generalised moment functions gi(ξ) such that Q∗ is easily found, which is
treated in more detail in Section 3.3.

Function approximation We now turn to the perspective of function approximation.
Instead of looking for a new distribution Q to evaluate expectations over basis functions
gi(ξ), we now aim to find an affine combination of them

ϕ̃(ξ) := u0 +
∑
i∈I

uigi(ξ), (II.10)

that approximates ϕ well from either above or below, where u is a vector of |I|+1 elements
that must be chosen appropriately. Recall that the true expectations of gi(ξ) are known
to be mi, so

EP

[
ϕ̃(ξ)

]
= u0 +

∑
i∈I

uimi. (II.11)

In the case of a lower bound, we constrain u such that ϕ̃(ξ) approximates ϕ(ξ) from below,
while for the upper bound, u is constrained such that ϕ̃(ξ) approximates ϕ(ξ) from above.
The approximating problem from the perspective of function approximation (thereof the
abbreviations F) has the formulation

max
u

{
EP

[
ϕ̃(ξ)

]
= u0 +

∑
i∈I

uimi s.t. ϕ̃(ξ) ≤ ϕ(ξ), ∀ξ ∈ Ξ

}
, (F-LB)

for a lower bound and

min
u

{
EP

[
ϕ̃(ξ)

]
= u0 +

∑
i∈I

uimi s.t. ϕ̃(ξ) ≥ ϕ(ξ), ∀ξ ∈ Ξ

}
, (F-UB)

for an upper bound. An optimal solution to these formulations is denoted u∗.

Duality Distribution approximation and function approximation are really two sides of
the same coin: they are linked by strong duality. This means the distribution alteration
problem (D-LB) has dual formulation (F-LB), and these have respective solutions Q∗ and
u∗ whose objective values are equal. Correspondingly for (D-UB) and (F-UB). Strong
duality holds by the insightful property that the approximating function ϕ̃(ξ) is equal to
ϕ(ξ) at values of ξ where Q assigns probability mass. This follows from complementarity
slackness of the primal-dual pair, which states that

Q
(
ϕ̃(ξ) = ϕ(ξ)

)
= 1, (II.12)

namely, the probability under Q that the approximating function ϕ̃(ξ) is equal to ϕ(ξ) is
one. Intuitively, this means the optimal function approximation meets the true function
in the support of the optimal approximating distribution.
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Example: One dimensional bounded support

We present an example to illustrate these results on distribution alteration and function
approximation to obtain bounds (see Fig. II.2). Assume we have a one dimensional
uniform distribution P on support Ξ = [0, 1] with expectation 0.5. Given this distribution,
we want to solve (D-LB) and (D-UB) where

ϕ(ξ) = ξ4, gi(ξ) = ξi, ∀i ∈ {0, 1, 2},

are the objective and (generalised) moment functions, respectively, where i are the differ-
ent moments we want to be consistent in the approximating distribution Q. The lower
bounding problem is then formulated as

min
Q

{
EQ [ϕ(ξ)] s.t. EQ

[
ξi
]
= EP

[
ξi
]
, ∀i ∈ {0, 1, 2}

}
, (II.13)

and maximising gives an upper bound instead. Denoting with ui the dual variable of each
constraint, the corresponding approximating functions are

ϕ̃
L/U
M (ξ) =

M∑
i=0

uiξ
i.

where M +1 denotes the number of moments enforced, (L) refers to lower and (U) upper
bounding functions, respectively. When solving the problem, we incrementally add each
moment constraint to illustrate their differences. The lower-bounding approximating
functions have been found to have expressions

ϕ̃L0 (ξ) = 0, ϕ̃L1 (ξ) = −
3

16
+

1

2
ξ, ϕ̃L2 (ξ) = −

16

27
ξ +

4

3
ξ2

where the approximating distribution supports are {0}, {1/2}, {0, 2/3}, respectively. The
upper-bounding approximating functions have expressions

ϕ̃U0 (ξ) = 1, ϕ̃U1 (ξ) = ξ, ϕ̃U2 (ξ) =
3

16
− 19

16
ξ + 2ξ2,

where the approximating distribution supports are {1}, {0, 1}, {1/3, 1}, respectively. These
are plotted in Fig. II.2.

Observe (in Fig. II.2) that the zeroth moment approximation places all probability
mass on the lowest and highest points of ϕ(ξ) and the corresponding function approxim-
ation ϕ̃ is constant. This is an intuitive way of making conservative bounds but requires
knowledge of the curve’s lowest or highest point. When adding the first-moment basis
function, we see that the lower bound places all probability mass in the expectation of ξ
(not a coincidence) while the upper bound places all probability mass at the ends of the
interval support of ξ. These are recoveries of the Jensen lower bound and the Edmund-
Mandansky upper bound discussed in Section 3.3. We have also added the second-moment
basis function as an illustration that this generalises for further basis functions. However,
the support of the optimal Q∗ is generally not as easily found, and there are fewer practical
bounds based on this kind of information.

3.2 Generalisation to every decision and stochastic dominance
An important additional property of some of the bounds discussed in this section is that
the approximating distribution Q may allow to bound EP [f(x, ξ)] for any decision x.
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Figure II.2: Examples of lower (blue) and upper (red) approximations, with points at the
position of the discrete distribution Q support where the approximations meet ϕ(ξ).

When this is the case, we may solve the stochastic program in terms of the objective
EQ [f(x, ξ)] to obtain a tighter upper bound on the optimal value v(P ) than possible
when using only a single sub-optimal candidate solution.2 Formally, this requires finding
a Q such that

EP [f(x, ξ)] ≤ EQ [f(x, ξ)] , ∀x ∈ X , (II.14)

for an upper bound (or reversing the inequality for a lower bound). The relevance of
this is limited to situations where a specific property of ξ 7→ f(x, ξ) for all x ∈ X is
in itself sufficient to obtain the bounding distribution Q without explicit knowledge of
the function. The property (II.14) is referred to as stochastic dominance (a wide area of
research in itself), but for now, the most relevant property of ξ 7→ f(x, ξ) is convexity,
under which (II.14) is referred to as convex stochastic dominance. Under convexity, we
may establish to a great extent where the approximating distribution Q should reside in
its support Ξ without further information on the function itself. Finding Q then comes
down to properties of the support Ξ, multivariate dependence in P , and the choice of
generalised moment functions g(ξ). Overall, the property of convex stochastic dominance
greatly simplifies finding solutions to the bounding problems (D-UB) and (D-LB).

Majorising probability measures by ordering relations was explored first by Birge and
Wets (1986) and pointed out by Wets (1984). Edirisinghe and Ziemba (1992) used the
property of convex dominance to get optimised upper bounds, while Frauendorfer (1996),
Kuhn (2005) and Frauendorfer et al. (2011) apply this to convex-concave multistage
problems with linear time dependence. Maggioni and Pflug (2019) apply convex stochastic
dominance to bound multistage problems with more general stochastic processes and risk-
averse objective functions.

2More generally, the aim of minimising maxQ∈P EQ [f(x, ξ)] in terms of x is referred to as Distribution
Robust Optimisation in the literature.
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3.3 Distribution approximations
This section discusses approaches that are primarily motivated by distribution approx-
imation to find bounds, where some are also solutions to the GMP. The bounds in this
section make assumptions on the shape of ϕ, multivariate dependence in P , the kind of
support Ξ, and which generalised moment functions g(ξ) are used in the approximation.
Table II.1 gives an overview of different approaches.

There are four relevant shapes of ϕ to consider: (i) convex, (ii) concave, (iii) convex-
concave, and (iv) monotonous. Convexity serves as a base case for our analysis. If it is
instead concave, the analysis is the same, but lower and upper bounds must be switched.
If it is instead convex-concave, these must be dealt with in an opposing manner, but the
analysis is still largely the same (Section 3.3). Monotonous functions can be dealt with
(although less effectively) by finding the highest or lowest evaluations in the support and
may be considered a special case of the GMP using only zeroth-order conditions (see
Example 3.1).

Jensen, Edmund-Madansky and hyper-planes on simplicial support

Jensen (1906) proved the (now classic) result that, for a convex function ϕ of a random
variable ξ, its expectation EP [ϕ(ξ)] is bounded from below by the evaluation in the
expectation of the random variable:

ϕ(EP [ξ]) ≤ EP [ϕ(ξ)] . (II.15)

Furthermore, this only requires evaluation of ϕ in a single point, which is of great practical
importance when function evaluations can be time-consuming.

Edmundson (1957) showed how the expectation of a convex function of a one-dimen-
sional random variable with a bounded interval support could be upper bounded by a
linear function going through the end-points of the interval. Madansky (1959) posed
this in the form of moment problems and showed it could be applied repeatedly for mul-
tivariate distributions with independence on rectangular support. Frauendorfer (1988)
generalised these results to distributions with dependence by instead using multi-linear
(generalised) moment functions

gI(ξ) =
∏
i∈I

ξi, ∀I ⊆ {1, . . . , d}, (II.16)

where I are all combinations of each of the dependent random variables (i.e., in the power-
set of {1, . . . , d}). This gives an analytical expression for optimal probability mass to place
in the extreme points on the rectangular support, while Kall (1987) showed this solution
is unique. Furthermore, it was shown that the Edmund-Madansky result is a special case
of the same expression where independence simplifies the expression. A disadvantage
of the Edmund-Madansky (EM) type upper bound is that the number of evaluation
points for the altered distribution scales exponentially as 2d in the dimensionality d of Ξ.
Furthermore, it is often unrealistic to have accurate estimates of the expectations of the
multi-linear generalised moment functions (II.16) in real-world settings.

These limitations of the EM type upper bound were mitigated by Birge and Wets
(1986) and Gassmann and Ziemba (1986) who, effectively, used first-order moment func-
tions

gi(ξ) = ξi, ∀i ∈ {1, . . . , d}, (II.17)

assuming simplicial support Ξ and general dependence structure. Birge and Wets (1986,
Corollary 6.16) show that, under the assumption of convex ϕ(ξ) and polytopal support Ξ
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Figure II.3: Moving probability mass on convex functions to obtain bounds with respect to
linear approximating functions. Dashed lines illustrate the corresponding function approxima-
tions.

the bounding problem (D-UB) attains a solution on the extreme points of the polytope.
When the polytope is simplicial (defined to have d + 1 extreme points), the weights on
the extreme points are uniquely determined by the set of d equations EP [ξi] = EQ [ξi]
for all i ∈ {1, . . . , d}, as well as the conditions that probabilities sum to one. From the
perspective of function approximation, this corresponds to finding an affine hyper-plane
that meets ϕ(ξ) in the extreme points of Ξ. Although this makes finding the upper-
bounding distribution approximation much simpler, the EM type bound is still tighter
(Kall, 1987).

Consider also that a bounded interval [a, b] is a simplicial set in one dimension, which
means the EM bound is the one-dimensional counterpart of the hyper-plane approach.
Independence and rectangular support mean the probabilities can be determined in each
dimension separately, and the overall probability in each rectangular corner is determined
as the product of the probability in each dimension.

The bounds based on zeroth- and first-order moments can intuitively be understood by
directly applying the definition of convexity (see Fig. II.3). An affine line can be defined as
a convex combination of two points. Placing these points closer to the expectation gives
lower evaluations, and placing them further out gives higher evaluations. This observation
is generalised by the concept of barycentric approximation for upper bounds.

Barycentric approximation

More generally, we may state upper bounds as making convex combinations of the extreme
points of a polytopal support (that is not simplicial) since the probability mass from upper
bounding distribution approximations of convex functions always resides at the extreme
points of the support (Birge & Wets, 1986). This representation also goes under the name
of barycentric approximation, referring to the interpretation that a convex combination
of the weighted extreme points is a barycenter (centre of mass). These developments are
due to Birge and Wets (1986) and Frauendorfer (1992).

First, we express any point ξ within a polytopal set Ξ as a convex combination of its
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extreme points {ξ(1), . . . , ξ(K)} = ext(Ξ) with weights {ρk(ξ)}k=1,...,K , subject to

ξ =

K∑
k=1

ρk(ξ)ξ
(k),

K∑
k=1

ρk(ξ) = 1, ρk(ξ) ≥ 0. (II.18)

This is also called a barycentric coordinate representation of ξ. The approximating func-
tion is then expressed as

ϕ̃(ξ) =

K∑
k=1

ρk(ξ)ϕ(ξ
(k)), (II.19)

which means

ϕ(ξ) = ϕ

(
K∑

k=1

ρk(ξ)ξ
(k)

)
≤

K∑
k=1

ρk(ξ)ϕ(ξ
(k)) = ϕ̃(ξ), (II.20)

by the definition that ϕ is convex. Evaluating the expectation on both sides gives the
upper bound

EP [ϕ(ξ)] ≤
K∑

k=1

ρ̄kϕ(ξ
(k)), (II.21)

where ρ̄k = EP [ρk(ξ)] is the overall weight assigned to each extreme point given by its
weight function ρk(ξ). The possible caveat of barycentric approximation is obtaining ρ̄k
since this involves a high dimensional integral over general functions ρk(ξ). Preferably
these are stated in a simple fashion. In particular, if Ξ is simplicial, we have that ρk(ξ)
must be linear and ρ̄k are uniquely determined, which recovers the hyper-plane result in
the previous section. If the support is rectangular, we can recover the dependent EM
bound where ρk(ξ) are multi-linear and ρ̄k are again given by closed-form expressions.

Higher-order bounds

Edirisinghe and Ziemba (1994a) and Edirisinghe (1996) extends the previous develop-
ments by a method using minorising affine functions to obtain lower bounds on convex
functions. Originally, these were developed for convex-concave saddle functions (Sec-
tion 3.3) where linearization in the convex components complements a barycentric ap-
proximation in the concave components but also led to new results on second-order lower
bounds on convex functions. This lower bound is the first to improve on the Jensen bound
by incorporating additional moment information.

Assume we have a given barycentric approximation ρk(ξ) on polyhedral support Ξ,
potentially based on a special kind of support (simplicial or rectangular).3 Since ϕ is
convex, we may create a minorising linearization

ϕ(ξ) ≥ ϕ(ξ̂) +∇ξϕ(ξ̂)
⊤(ξ − ξ̂) (II.22)

where ∇ξϕ(ξ̂) is a sub-gradient of ϕ with respect to ξ at a point ξ̂ (where the inequality
is also tight). Consider that we may create such a linearization in certain points ξ̂(k)
associated with each function ρk(ξ). By the definition of barycentric coordinates we have
that 1 =

∑K
k=1 ρk(ξ), which gives

ϕ(ξ) =

K∑
k=1

ρk(ξ)ϕ(ξ) ≥
K∑

k=1

ρk(ξ)
[
ϕ(ξ̂(k)) +∇ξϕ(ξ̂

(k))⊤(ξ − ξ̂(k))
]
= ϕ̃(ξ), (II.23)

3If ρk(ξ) are degenerate (i.e., there exist multiple valid representations by the given moment informa-
tion), the issue of finding the lower bound can instead be formulated as a non-linear convex optimisation
problem (Edirisinghe & Ziemba, 1994a, 1996).
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ξ

ϕ(ξ)

ϕ̃(ξ)

0

ξ(a) ξ(b)ξ̂(a) ξ̂(b)

Figure II.4: Second-order lower bound by combined linearisation and barycentric approxima-
tion on an interval [ξ(a), ξ(b)]. The evaluation points of the approximating distribution are ξ̂(a)

and ξ̂(a), while ϕ̃ is the separable approximating function.

where the linearization is specific to each k. Higher-order and cross-moment terms may
be contained in the term ρk(ξ)ξ. By evaluating the expectation over (II.23), we find that

EP [ϕ(ξ)] ≥
K∑

k=1

ρ̄k

[
ϕ(ξ̂(k)) +∇ξϕ(ξ̂

(k))⊤
(
EP [ρk(ξ)ξ]

ρ̄k
− ξ̂(k)

)]
=

K∑
k=1

ρ̄kϕ(ξ̂
(k)),

(II.24)

where the last equality follows by letting ξ̂(k) = EP [ρk(ξ)ξ] /ρ̄k, the point at which the
k-specific linearization of ϕ is tight. Separability of ϕ̃ is important as this allows finding
each ξ̂(k) separately. The approximating distribution then has support {ξ̂(k)}k=1,...,K with
probabilities ρ̂k. An illustration for the one-dimensional case is given in Fig. II.4.

The points ξ̂(k) here have the interpretation of being the conditional expectation of ξ
under the probability assignment ρk(ξ)/ρ̄k, which tends towards ξ(k). It also holds that
ξ̂(k) ∈ Ξ as long as ρ̄k > 0 while, otherwise, ξ̂(k) is irrelevant since ρ̄k is its associated prob-
ability mass. If ρk(ξ)ξ only contain cross moments, the bound coincides with the solution
of (D-LB), while this is not the case for second-order bounds since the approximating dis-
tribution only preserves first-order and cross moments exactly. Fig. II.4 illustrates that
the bounding function ϕ̃(ξ) does not meet ϕ(ξ), which would be a requirement for this
to hold. Dokov and Morton (2005) also provide a tighter second-order lower bound than
(II.23), which requires more evaluation points, rectangular support, and independence,
where the Edirisinghe (1996) bound is a special case. Neither this bound solves (D-LB)
exactly.

Lastly, Dokov and Morton (2002) extend upper bounds on convex functions to arbit-
rary order using Bernstein polynomials, which gives a regular grid of evaluation points.
As a special case, this also recovers the EM kind of bounds, with and without dependence.

Convex-concave saddle functions

Convex-concave saddle functions, defined to be convex in some dimensions and concave in
others, can be dealt with by treating these in an opposing manner. The primary concern
for these is how to deal with dependence between the convex and concave components.
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This section follows the exact developments of Section 3.3 and Section 3.3, while sim-
plifying special cases are due to Frauendorfer (1992). From the perspective of function
approximation, these bounds give bi-linear or multi-linear approximating functions on the
convex-concave saddle function, as illustrated in Fig. II.5.

Figure II.5: Bi-linear upper (red) and lower (blue) bounds on a convex-concave function ϕ(ξ, ζ)
(green).

Let ϕ(ξ, ζ) be a convex-concave saddle function that is convex in ξ and concave in
ζ and let the polytopal distribution support be Ξ × Z where ξ ∈ Ξ and ζ ∈ Z. This
corresponds to appending ζ to the multivariate random variable in the previous setup.
Let ξ(k) denote the extreme points of Ξ and ζ(l) the extreme points of Z. Again, we use
barycentric approximations ρk(ξ) and ρl(ζ) determined by these extreme points. By the
saddle property of ϕ(ξ, ζ) and the barycentric approximation, we then have that

L∑
l=1

ρl(ζ)ϕ(ξ, ζ
(l)) ≤ ϕ(ξ, ζ) ≤

K∑
k=1

ρk(ξ)ϕ(ξ
(k), ζ), (II.25)

due to convexity in ξ and concavity in ζ. Evaluating the expectation of (II.25) gives
bounds on EP [ϕ(ξ, ζ)], however, this cannot necessarily be easily evaluated and depend-
ence between ξ and ζ must be cared for when doing this. Under independence between ξ
and ζ, we may apply the Jensen inequality directly to (II.25) to obtain the bounds

L∑
l=1

ρ̄lϕl(ξ̄, ζ
(l)) ≤ EP [ϕ(ξ, ζ)] ≤

L∑
k=1

ρ̄kϕ(ξ
(k), ζ̄), (II.26)

where ξ̄ = EP [ξ] and ζ̄ = EP [ζ]. Under dependence, however, we may proceed by
applying the linearization procedure from Section 3.3 to expression (II.25), and obtain∑

kl

ρ̄lϕl(ξ̂
(k), ζ(l)) ≤ EP [ϕ(ξ, ζ)] ≤

∑
kl

ρ̄kϕ(ξ
(k), ζ̂(l)), (II.27)
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instead, where ξ̂(k) and ζ̂(l) are determined by the procedures laid out in Section 3.3.
Note that the linearization with respect to ξ uses the barycentric approximation ρl(ζ) (as
well as the converse), meaning the approximating functions have terms ρk(ξ)ζ and ρl(ζ)ξ
expressed by first-order or cross moments only. As before, the bound using only first-order
and cross moments are tight on the corresponding generalised moment problems (D-LB)
and (D-UB). Under assumptions of simplicial or rectangular support, the barycentric
approximations are unique, and the solutions are easily found in closed form as well as
for the linearization points (Frauendorfer, 1992). Second-order moments can be added by
using a single barycentric approximation defined in terms of the extreme points of Ξ×Z
instead (Edirisinghe, 1996).

Subset refinement and unbounded support

The described bounds can be sharpened to arbitrary precision by refining the support
Ξ into smaller subsets {Ξk}k=1,...,K and computing the bounds on each of them. In
the perspective of distribution alteration, we now use conditional expectations instead of
total expectations while from the perspective of function approximation, we use piece-wise
approximations within each subset instead of on the whole support.

The observation that these bounds could be refined to subsets started with Ben-
Tal and Hochman (1972) who refined the Edmund-Madansky bound for positive linear
functions, i.e. (ξ)+ = max{0, ξ}, and the implications of their result was generalised by
Huang et al. (1977) to show that the bounds can be repeatedly applied to subsets of
the support to refine them to arbitrary precision. Ben-Tal and Hochman (1972) showed
that the bounds hold on intervals unbounded on one side if the convex function has a
finite growth rate, which was extended to conic polyhedral sets by Gassmann and Ziemba
(1986) and Birge and Wets (1986). Edirisinghe and Ziemba (1994b) extends the lower
bounds by linearization (Section 3.3) to conic polyhedral support.

The subsets Ξk of Ξ must generally be polytopal or polyhedral cones, described by
a finite number of extreme points and rays (see Fig. II.6a) and partition the support Ξ.
A polyhedral cone is a polyhedron where for every unbounded direction it contains, it is
bounded in the opposite direction. This avoids unbounded formulations of (D-LB) and
(D-UB). Once a bound B(Ξk) is made on a subset Ξk, the overall bound B(Ξ) is found
as B(Ξ) =

∑K
k=1 P (Ξk)B(Ξk), where P (Ξk) denotes the probability of each subset.

Unbounded support requires the use of rays in its description. The fundamental
requirement for unbounded support is that ϕ has limited growth along any ray r staring
at a point ξ ∈ Ξ. Namely,

lim
t→∞

|ϕ(ξ + tr)|
∥ξ + tr∥

≤ µr <∞, ξ + tr ∈ Ξ, (II.28)

where ∥·∥ is the Euclidean norm and t ∈ R+. In particular, (II.28) follows for linear re-
course programs with complete recourse, and this can always be ensured by using penalty
formulations (Section 2.1). For unbounded support, the optimal distribution approxim-
ation is situated on the extreme points of Ξ, possibly extended by the extreme rays (see
Fig. II.6b). By the condition to preserve the first-order moment condition, we cannot
extend along rays infinitely as long as the support is a polyhedral cone. The finite growth
coefficients µr determine the upper bound on the objective value with respect to the ray
extensions.

As an example, the unbounded space Rd can be described by conic polyhedral subsets
in the form of every orthant (giving 2d subsets), which are polyhedral cones. While there
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R2

(a) (b)

Figure II.6: (a) Partitioning a two-dimensional plane into polytopes and polyhedral cones. (b)
Polyhedral cone with corresponding distribution approximations for an upper bound (red) at
extreme points extended by rays and a lower bound (blue) in the interior.

are large differences in the number of evaluation points based on the kind of support for
the bounds discussed, there is also a complexity to consider with respect to how a high-
dimensional space Ξ is partitioned. This means there is a trade-off between the number
of evaluation points for a subset and the number of partitioning subsets of the space.

Multistage case

The main challenge with the multistage extension of distribution approximation is that
a discrete approximating distribution Q also defines a simplified information structure
F̂ (a discrete tree) which interferes with the conditional evaluation of expectations. The
fundamental question is whether we can apply the previously discussed bounds stage-wise:
given a discretisation for the current stage, generate a discretisation for the next stage
conditional on each discrete outcome. If possible, stage-wise discretisation significantly
simplifies the discretisation, but this does not always suffice. The violation may occur
when evaluating the conditional expectation of a stochastic quantity more than one stage
ahead since this relies on the discretisation in intermediate stages that did not explicitly
account for this. Under linear additive time-dependence with stage-wise independent
noise, stage-wise discretisation is sufficient, while, in general, the entire process must be
accounted for.

Distributional approximation on multistage stochastic programs has been explored
by Edirisinghe and Ziemba (1992), Frauendorfer (1994, 1996), Frauendorfer et al. (2011)
and Kuhn (2005). All of them use first-order and cross moment information, and assume
stage-wise independence or linear additive time-dependence. More recently, Maggioni
and Pflug (2019) have explored this for more general stochastic processes and show by
counter-example that the entire process across all stages must then be accounted for
during discretisation.
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3.4 Function approximations
Function approximations are largely based on specific assumptions about the function at
hand. The most general assumption is convexity which also holds for stochastic linear
programs under right-hand side uncertainty, but some also deal with specific properties
of these.

For function approximation to be useful, the expectation of the approximating func-
tion must also be easily evaluated. This is achieved by using simple function expressions
(linear, piecewise linear or quadratic) and by ensuring separability. Separability means
the approximating function over the high-dimensional random vector ξ can be expressed
as a sum of functions of fewer (or single) elements of ξ. This reduces one high-dimensional
integral to evaluating many low-dimensional integrals, which is a considerable simplifica-
tion. Independence in the distribution would also ensure multiplicative separability.

Figure II.7: A linear, separable and pointed cone (green), akin to a simple recourse function,
that majorises a convex function (grey).

For upper bounds, two kinds of function expressions have been considered to approx-
imate ϕ(ξ) whose expectation is easy to evaluate. The aim is to fit these as tightly as
possible within ϕ(ξ), whose procedures vary. First, there are separable piecewise linear
functions

ϕ̃(ξ) = u0 +

d∑
i=1

ui(ξi − ξ̂i)+ +

d∑
i=1

ud+i(ξi − ξ̂i)−, (II.29)

where ξ̂ is a predetermined value of ξ (the expectation, for example) that defines the
tip of the cone and u ∈ R2d+1 vector of coefficients. See Fig. II.7. This approximating
function primarily addresses growth conditions in the limits of ξ, and (II.29) may be
refined by inserting a piecewise linear function within bounded intervals [ξli, ξui ] and letting
the unbounded limit be determined by (II.29) outside of this interval (Birge & Wets, 1989).
Second, there are second-order expressions

ϕ̃(ξ) = u0 +

d∑
i=1

uiξi +

d∑
i=1

ud+iξ
2
i , (II.30)
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whose primary aim is to alleviate the requirement of finding conditional expectations
required by separable piecewise linear approximations. Consider, for example, that these
are estimated from empirical data and that the confidence on second-order statistical
estimates can be higher than for estimates of conditional expectations on many small
subsets of the support. In fact, a requirement to find (II.30) is a (not necessarily separable)
piecewise linear function which may be found using the procedures to find (II.29).

Lastly, there are penalty formulations of a two-stage stochastic linear program (SLP)
suggested by Morton and Wood (1999), which give an analogous shape to (II.29), ex-
pressed as

ϕ̃(ξ) = c1(ω)x̂1 + µ⊤(B1(ω)x0 +W1(ω)x̂1 − b1(ω))+ (II.31)

where x̂1 is a fixed decision inserted into the objective of a penalty formulation (Sec-
tion 2.1), where x̂1 itself can be chosen such that it minimises the bound. This may not
be separable to one-dimensional integrals (only lower-dimensional) but can be applied
more generally to (SLP) with random recourse. Observe that if only b1(ω) is stochastic,
(II.31) takes the same form as (II.29). Morton and Wood (1999) also showed that if
we have dual formulations of the optimisation problem that defines ϕ(ξ), we may apply
similar bounds on the dual objective function to obtain lower bounds by weak duality.
Such dual bounds are discussed in more detail in Section 4.3.

Piecewise linear approximating functions

The bound developed by Birge and Wallace (1988) (that generalises (Birge & Wets, 1989;
Wallace, 1987)) assume right-hand side uncertainty and bounded primal variables for two-
stage (SLP), and finds a linear conic upper bounding approximation of the form (II.29)
defined over unbounded support. See Fig. II.7. The coefficients that determine the growth
of this approximation are found by parametric evaluation of an altered formulation of the
problem that requires a number of evaluations proportional to the dimensionality d of the
support. It may not always be possible to find such finite slopes by the given procedure,
in which case the upper bound evaluates to +∞. Under penalty formulations of (SLP),
the slopes are upper bounded by the penalty µ of constraint violation and guaranteed to
give a finite upper bound. This also means this bound is tighter than (II.31) under the
assumption of right-hand side uncertainty.

Powell and Frantzeskakis (1994) uses a similar simplification as Wallace (1987) to get
simplified upper bounding recourse functions of network problems (and discuss different
strategies for doing so) but instead use these to optimise decisions. This allows for solving
larger problems while still capturing the essence of the recourse problem at hand.

Second-order approximating functions

Dulá (1992) and Dulá and Murthy (1992) derived a second-order upper bound (II.30) that
majorises a known piece-wise linear convex function ϕ. This known function is motivated
by the piece-wise linear form of two-stage SLPs having either right-hand side or objective
uncertainty. However, obtaining these explicitly requires extreme point enumeration of
the (deterministic) dual or primal feasible sets. Other majorising approximations of this
nature may also be used instead. Using total second-order information only (such that
coefficients of second-order terms in (II.30) are equal), Dulá (1992) find a closed form
expression to determine the coefficients. This has no assumptions on dependence or
boundedness of the support. Kall (1991) proposed an alternative perspective on this
problem that leads to a non-smooth optimisation problem. Dulá and Murthy (1992)
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extends this to marginal second-order moments, which tightens the bound under the
same assumptions. No closed-form solution is found, but the bound can be found by
minimising a non-linear convex function in d+ 1 variables with linear constraints.

Birge and Dulá (1991) use second-order information to bound a separable convex
function ϕ, whose approximation ϕ̃ is found by a line search. This directly extends the
approach of Birge and Wallace (1988) but can also be applied to more general separable
functions using its first-order derivatives.

3.5 Monte Carlo integration

The statistical counterpart to guaranteed integral bounds is to use Monte Carlo integra-
tion. That is, to sample an alternative distribution P̃ from the underlying distribution
P to get a finite statistical estimator E

P̃
[f(x̃, ξ)] of the true expectation EP [f(x̃, ξ)] for

a fixed candidate decision x̃. Confidence intervals on this estimator can then derive stat-
istical upper and lower bounds. This makes no assumption on the shape of ξ 7→ f(x̃, ξ),
but it must be evaluated in a potentially very large number of sampled outcomes. The
statistical properties rely on having a fixed decision, while optimisation with respect to
E
P̃
[f(x, ξ)] leads to bias in the estimator (see Section 4.2).

The average recourse value EP̃ [f(x̃, ξ)] is an estimator of the expected recourse value
EP [f(x̃, ξ)] which, by the central limit theorem, is asymptotically normally distributed,
i.e.

EP̃ [f(x̃, ξ)] ∼ N
(
EP [f(x̃, ξ)] ,VarP [f(x̃, ξ)] /

√
|P̃ |
)
, (II.32)

where |P̃ | is the number of samples in P̃ . Importantly, (II.32) holds for multistage prob-
lems where the samples are outcome paths (not necessarily trees) assuming the policy
x̃(ω) provides decisions for every possible outcome path (Shapiro et al., 2014, Section
5.8.1). We may also extend by sampling the points of P̃ by more elaborate schemes
to reduce variance in the estimator and get improved convergence rate, referred to as
Quasi-Monte Carlo methods (Shapiro et al., 2014, Chapter 5.4).

4 Bounds on optimal expected values

We now turn to bounds on the optimal objective value v(P ). These are solely based on
arguments from optimisation theory: primal-dual formulations, sub-optimality, relaxation
and feasibility. Such bounds are particularly interesting in the context of determining if
a given candidate decision is sufficiently close to the best obtainable decision. Given
stochastic programs are fundamentally intractable to solve in their basic form, these
are especially useful when pursuing approximation methods aimed at finding (close to)
optimal decisions, and the bounds are used for validation.

This section discusses three approaches to bounding optimal objective values. In Sec-
tion 4.1, we address candidate evaluation bounds based on sub-optimality, where the
important concept is how to insert approximations into the original intractable formu-
lation. In Section 4.2, we address how a relaxation of information structure can give
simplified problems that provide bounds. Lastly, Section 4.3 reviews decision rules and
aggregation bounds derived from these based on relaxation, tightening and sub-optimal-
ity. Using decision rules is also an alternative approximation approach to those based on
discretising distributions to obtain scenario trees.
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4.1 Bounds based on candidate policies

These bounds evaluate the objective function using candidate policies to get a bound on
the optimal objective value v(P ). Namely, if x̃(ω) is a candidate primal policy and λ̃(ω)
a candidate dual policy, we have that

EP [f(x̃(ω), ξ(ω))] ≥ v(P ) ≥ v∗(P ) ≥ EP
[
f∗(λ̃(ω), ξ(ω))

]
. (II.33)

Should x̃(ω) or λ̃(ω) be infeasible, we use the convention that this gives a primal or dual
objective value of ±∞, which means these still give bounds but not very interesting ones.
Infeasibility can be mitigated effectively by penalty formulations of stochastic programs
(see Section 2.1), or by defining candidate policies according to rules that redeem feasib-
ility. For the lower bound in (II.33) to be practical, the duality gap should be relatively
tight and may require strong duality. For example, this is not the case for MIPs, but the
upper bound still applies to these.

Obtaining candidate policies usually relies on some strategy of approximation. This is
either done by discretisation into a scenario tree represented by a simplified information
structure F̂ and alternative distribution Q, or by decision rules (Section 4.3). When using
scenario trees, we must define an extension rule that determines the candidate policy
for outcome paths ω not contained in the tree. These may consist of simpler or more
elaborate rules but must adhere to the underlying information structure F . Essentially,
the extension rule in a given stage can only use information known at that stage. The
concept of distances between trees is valuable in this context (Pflug & Pichler, 2012,
2014).

The simplest extension rule would be a nearest neighbour rule according to the distance
from the tree to any given path ξ̃[t] up to its realisation at stage t where the policy must
be determined. Regression procedures have been proposed by Keutchayan et al. (2017),
while Stochastic Dual Dynamic Programming (SDDP) can be applied to obtain piece-wise
linear policies for problems of a special kind (Pereira & Pinto, 1991). Alternatively, we
may incrementally optimise the decision in each stage, conditional on decisions determined
in past stages. This is mainly useful in the context of two-stage problems where the first-
stage decision is fixed, and the second-stage problem is easily evaluated without the need
for approximation of further stages. This is also the tightest possible candidate evaluation
bound for two-stage problems where only the first-stage decision is sub-optimal. For
multistage problems, however, the consecutive optimisation problems represent almost as
difficult problems as the full problem, and we often resolve to simpler and less optimal
extension rules, which means the quality of the extension procedure also interferes with
the evaluation. Xu and Sen (2023) also introduce the concept of compromise policies that
are determined by optimising a policy over an ensemble of value function approximations
derived from many scenario trees (with extension rules) to exploit the principle of multiple
replications instead of using larger scenario trees to obtain candidate policies.

The simplest scenario tree to construct a candidate policy from would be to use expec-
ted path, whose candidate evaluation bound is known as the Expectation of the Expected
Value (EEV) solution (Madansky, 1960). Maggioni and Wallace (2012) and Crainic et al.
(2018) also analyse how candidate decisions in two-stage problems can be obtained using
partial information from the expected value solution while the remaining variables are
optimised in the full problem (assuming finite number of outcomes).
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Out-of-sample evaluation bounds

Out-of-sample evaluation refers to the procedure of evaluating the performance of candid-
ate policies found by some approximation procedure, like scenario generation, and then
validating its performance in terms of the original objective by Monte Carlo integration
(Section 3.5) to ease its evaluation of the original objective value. This means we replace
P with a sample distribution P̃ assumed to be sufficiently large so that it represents P
well. In the context of two-stage stochastic programs, Kaut and Wallace (2007) proposed
this as an approach to determine if scenario generation is effective by comparing the
quality of candidate decisions obtained by different scenario generation methods. Out-
of-sample evaluation essentially gauges different scenario generation procedures against
each other by comparing which method can, by whichever means, produce the candidate
decision that has the best evaluation bound. This has been a tool for further development
of scenario generation methods. The concept of extension rules for out-of-sample evalu-
ation in multistage problems proposed by Keutchayan et al. (2017) serves as a multistage
counterpart. In principle, other evaluation bounds from Section 3 could also have been
used to compare candidate decisions.

Evaluation of both the primal and dual objectives by candidate policies determined
from scenario trees can gauge their representation of the underlying information struc-
ture in terms of the original objective function. While scenario set generation is mainly
concerned with finding discrete outcomes, scenario trees additionally rely on effective rep-
resentation of information structure. To our knowledge, this has not yet been explored in
the context of scenario tree generation, but Kuhn (2008) used such primal-dual evaluation
to gauge the effectiveness of decision rules (see Section 4.3). The advantage of primal-dual
evaluation is that we get gap estimates of sub-optimality, providing a stopping criterion for
sufficient approximation quality. In contrast, comparing upper bounds solely determines
if one approximation approach is better than the other. Effective discrete representation
of information structure tuned to the problem at hand is an interesting avenue of future
research that currently has received little attention in the research literature on scenario
tree generation.

4.2 Bounds on refinement of information structure

Refinement of information structure implies splitting a tree into smaller sub-trees and
optimising decisions on these instead. This provides a collection of simpler optimisation
problems whose solutions combine to provide a lower bound on the original problem. A
conceptual illustration is given in Fig. II.8. This section presents a general setup that
applies to various bounds in the literature derived from partitioning, group sub-problems,
and sampling. However, note that some of these approaches involve combinatorial aspects
not explained in detail. We also do not rely on the value of ξ to work out these bounds
and, hence, refer to ω instead.

Throughout this section, we assume a finite discrete distribution P̃ with support Ω̃
such that the optimal objective value and solution set of E

P̃
[f(x(ω), ξ(ω))] is sufficiently

close to those of EP [f(x(ω), ξ(ω))] (Shapiro et al., 2014, Section 7.2.5). We may, for
example, interpret P̃ as a sufficiently large sample from P . Sampling (in a stage-wise
manner) or using some other discretisation procedure to obtain P̃ is also the approach
used in practice for computing these bounds.

The refinement is constructed by finding a (countable) collection of alternative distri-
butions {Qk}k∈K on subsets {Ωk}k∈K of Ω̃ and a convex combination of positive weights
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Figure II.8: Example of refinement of information structure.

{γk}k∈K (where
∑

k∈K γk = 1) such that

P̃ (ω) =
∑
k∈K

γkQk(ω), (II.34)

where the alternative distributions compose the original distribution. Supports Ωk that
are strictly smaller than Ω̃ is most interesting since this implies problems EQk

[f(x, ξ)]

are easier to solve than the original formulation using P̃ . Probability assignment in terms
of {Qk}k∈K and subset selection in terms of {Ωk}k∈K are two alternative interpretations
of how the distribution P̃ is simplified, however, note that the relative assignment of
probabilities within Ωk is solely determined by Qk. By linearity of expectations in their
probability assignment, we have that

E
P̃
[f(x(ω), ξ(ω))] =

∑
k∈K

γkEQk
[f(x(ω), ξ(ω))] , (II.35)

where the latter expression represents a convex combination of sub-problem evaluations.
By minimising (II.35) with respect to decision x we obtain the lower bound

min
x(ω)∈X (ω)

{
E
P̃
[f(x(ω), ξ(ω))]

}
≥
∑
k∈K

γk min
x(ω)∈X (ω)

{
EQk

[f(x(ω), ξ(ω))]
}

(II.36)

by interchanging the order of optimisation and summation over K. This also has the
interpretation that the optimal value map P̃ 7→ v(P̃ ) is concave in P̃ (Maggioni & Pflug,
2016, Lemma 2.1). This is a simplification of the original formulation since we may solve
smaller batches k ∈ K of sub-problems instead of the full problem.

A consequence of solving the stochastic program in batches of sub-problems EQk
[f(x(ω), ξ(ω))]

is that this relaxes the underlying information structure, and leads to batch-specific
optimal decisions that cannot be implemented in the original formulation. The fact
that this leads to a lower bound can be illustrated conceptually (Fig. II.9) by consid-
ering how the evaluation of a convex combination of batch-specific objective functions
EQk

[f(x(ω), ξ(ω))] compares to an evaluation of each of them.

Bounds based on partitioning The first (and classic) example of refinement bounds
is the expectation over all wait-and-see solutions (decisions are determined after uncer-
tainty is revealed) by Madansky (1960). This follows from interchanging the order of
minimisation and integration

min
x(ω)∈X (ω)

{
E
P̃
[f(x(ω), ξ(ω))]

}
≥ E

P̃

[
min

x(ω)∈X (ω)
{f(x(ω), ξ(ω))}

]
, (II.37)
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x0

Figure II.9: Illustration of different objective functions EQk
[f(x(ω), ξ(ω))] in terms of first-

stage decision x0 under refinement of information structure. Re-enforcing non-anticipativity in
the first-stage decision corresponds to a convex combination of the refined objective functions.
Observe that each objective function’s minimiser (dots) changes according to the information
structure.

where the sub-groups are considered to be the atoms of Ω̃. Partitioning into larger subsets
of Ω̃ than the atoms strictly strengthens this bound (Maggioni & Pflug, 2016, Section 2).
We may also make a refinement chain of consecutive coarser partitions, where larger
alternative distributions Qk are convex combinations of smaller ones, to get a hierarchy
of bounds that get progressively stronger.

Bounds based on group sub-problems We may instead define sub-groups of Ω that
can also intersect each other. The associated alternative distributions Qk must still adhere
to (II.34). Birge (1982) derived the first such result referred to as the sum of pairs sub-
problems where a particular reference outcome ωr is paired with every other outcome such
that Ωk = {ωk, ωr} for all k ̸= r. The distributions Qk(ωr) are adjusted such that the
overall probability is consistently given as P̃ (ωr) =

∑
kQk(ωr). The reference outcome ωr

here represents a particularly important outcome that the decision-maker always wants
to account for. This grouping gives a lower bound on v(P ) but is also an upper bound
on the wait-and-see solution (II.37). The generalisation instead chooses {Ωn

k}k∈K to be
all subsets of Ω̃ of a given size n, referred to as the group sub-problems. These give a
lower bound for each size n that is monotonously non-decreasing in n, with edge cases
that coincide with the wait-and-see problems and the original problem. The formulation
such that the original problem is an edge case was derived by Sandıkçı et al. (2013) and
Maggioni et al. (2014, 2016) for two-stage and multistage problems.

Sampling based bounds Monte Carlo sampling is commonly used as a viable option
for solving intractable stochastic programs when the distribution is too large. Mak et al.
(1999) showed that a sampled distribution Qn

k of a given size n (which may represent his-
torical data itself) provides a lower-bounding optimal objective value v(Qn

k ) in expectation
over many samples of Qn

k . This implies that solving a stochastic program on historical
data gives, on average, a lower bounding objective value with respect to the underlying
distribution. Furthermore, Mak et al. (1999, Theorem 2) show the lower bound is mono-
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tonously increasing with the sample size n. In this setting, each alternative distribution
Qn

k represents a sampled empirical distribution of a given size, while the weighting γk rep-
resents the overall probability of obtaining this empirical distribution in particular. Over
many sampled distributions Qn

k , their expected relative occurrence is γk. Sample average
approximation is analogous to group sub-problems where the relative weights {γk}k∈K
have an additional sampling error, and potentially also that outcomes are defined to be
equiprobable in each Qn

k according to empirical distributions. There is much more to be
said about solving stochastic programs with respect to sampled distributions, for which
we refer to Bayraksan and Morton (2009) and Shapiro et al. (2014).

4.3 Bounds based on decision rules and aggregation

In their basic form, stochastic programs are infinite mathematical programs. Aggreg-
ation of variables and constraints were first introduced in finite (deterministic) linear
programming as a simplification to make them smaller and easier to solve. In stochastic
programming, however, aggregation turns an infinite linear program into a finite one by
integrating (aggregating) the stochastic argument out of the problem, which is a consider-
able improvement (to say the least). In this context, we first choose a decision rule defined
as a linear combination of basic rules that are predefined functions of the stochastic data
process ξ (or ω). Inserting the decision rule in place of a general policy in the stochastic
program allows evaluating expectations first and instead optimising over the finite number
of coefficients in the linear combination. In contrast, a general policy must be optimised
for all (infinite number of) outcomes.

Theory on aggregation bounds (that stem from deterministic linear programming)
allows deriving bounds on the original infinite formulation of the stochastic program in
terms of the solvable finite formulation. These bounds use arguments of how decision
rules lead to relaxation, tightening or sub-optimality with respect to the original formu-
lation. Primal-dual pairs give rise to upper and lower bounds according to weak duality.
Constraint aggregation in the primal corresponds to variable aggregation in the dual, and
conversely. Aggregation may also be done over stages in multistage formulations.

Aggregation bounds applied to stochastic programming started with Zipkin (1980a,
1980b) who analysed aggregation of variables and constraints for finite (deterministic)
linear programs. Birge (1985) extended these results in the setting of stochastic program-
ming by instead aggregating over uncertainty or stages assuming right-hand side uncer-
tainty. Wright (1994) generalised this in a measure-theoretic framework using Lagrangian
duality to general stochastic linear programs in the context of coarsened (simplified) in-
formation structures. More generally, this can be formulated by decision rules for which
similar results apply. Decision rules have been successfully applied in the context of ro-
bust optimisation and were, for this reason, re-introduced to stochastic programming by
Shapiro and Nemirovski (2005) as a means of tractable complexity reduction. Kuhn et al.
(2011) have shown how to find solutions to stochastic linear programs where either the
primal or the dual policy is replaced by decision rules (leading to semi-infinite programs),
and aggregation bounds provide the optimality gap of these decision rules with respect
to the original formulation.

Statement of decision rules

We state the formulation of decision rules and, for simplicity of exposition, we do this
in the context of stochastic linear programs (SLP). Decision rules can be applied to
replace the primal policy x(ω), the dual policy λ(ω), or both. Using decision rules in the
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dual policy also has the alternative interpretation of constraint aggregation in the primal
problem, and conversely.

Consider that we define decision rules x̂(ω) for primal decisions and λ̂(ω) for dual
decisions. These are composed of linear combinations of simpler fixed policies

x̂(ω) =

K∑
k=1

wx
kh

x
k(ω), λ̂(ω) =

L∑
l=1

wλ
l h

λ
l (ω), (II.38)

where hx(ω) := {hxk(ω)}k=1,...,K and hλ(ω) := {hλl (ω)}l=1,...,L are predefined functions of
ω, while wx and wλ are vectors of K and L elements, respectively, that define the linear
combinations. The functions hx(ω) and hλ(ω) must adhere to the same information
structure F and have the same dimensionality as the policies x and λ in the original
formulation. Simplification from general policy to a decision rule effectively limits its
flexibility since it is reduced to a linear combination of predefined functions. Furthermore,
as noted by Kuhn (2008), inserting a decision rule for constraint multipliers corresponds
to more flexibility in decisions.

To see how decision rules cause ω to be aggregated out of the problem, consider the
Lagrangian of (SLP)

L(x(ω), λ(ω)) = EP

[
c(ω)⊤x(ω)− λ(ω)⊤(A(ω)x(ω)− b(ω))

]
, (II.39)

where inserting the decision rules x̂(ω), λ̂(ω) in place of the general policies x(ω), λ(ω)
gives

L(x̂(ω), λ̂(ω)) = ĉ⊤wx − (wλ)⊤(Âwx − b̂), (II.40)

where

ĉk = EP

[
c(ω)⊤hxk(ω)

]
, Âlk = EP

[
hλl (ω)

⊤A(ω)hxk(ω)
]
, b̂l = EP

[
hλl (ω)

⊤b(ω)
]
,

are the aggregated parameters. In the usual sense of linear programming, there are then
finite primal and dual LPs associated with (II.40). Since the reliance on ω is limited
to predefined functions, evaluation of expectations can be performed immediately and
aggregates ω out of the problem. We may then proceed to optimise the decision rule
with respect to the aggregated parameters and linear coefficients instead. Using decision
rules either for variables or for constraint multipliers leads to aggregation bounds on the
optimal value v(P ) of the original formulation (see Section 4.3), which we illustrate in
Section 4.3.

There is also a strong link between decision rules and function approximation (Sec-
tion 3.4), where the only conceptual difference is a (sometimes trivial) evaluation of the
objective function in terms of the decision rule. Consequently, decision rules and aggreg-
ation bounds have close analogies to those in Section 3.4.

Example: Variable and constraint aggregation

Variable aggregation can be interpreted as replacing many variables with a single one.
Consider the primal constraint set of (SLP),

A(ω)x(ω) ≥ b(ω), ∀ω ∈ Ω,

where, for a single outcome, there is only a single constraint that the general policy x
must fulfil in that outcome. If we instead use a decision rule x̂(ω) = wxhx(ω) ≥ 0 and
insert it into the constraint, we have that

wxA(ω)hx(ω) ≥ b(ω), ∀ω ∈ Ω,
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and the single coefficient wx is subject to constraints for all ω ∈ Ω. Hence, the decision
rule led to tightened constraints compared to the general policy because the flexibility to
adjust to each outcome ω has been limited. The decision rule also relies on the function
hx(ω) that was chosen to decide how these constraints can be fulfilled.

Constraint aggregation can be interpreted as making a (weighted) sum of constraints.
If we have two valid inequality constraints and add them together (possibly by positive
weights), we obtain a new inequality constraint that must also be valid. If we only know
that the summed constraint is valid, however, we cannot say anything about the validity
of each constraint that composes it. This means the summation of constraints results
in relaxation. To see why constraints are summed, consider that we use a decision rule
λ̂(ω) = wλhλ(ω) ≥ 0 for the constraint multipliers in SLP. The restatement of SLP under
Lagrangian relaxation of its constraints is

min
x(ω)≥0

EP

[
c(ω)⊤x(ω)− λ(ω)⊤(A(ω)x(ω))− b(ω)

]
,

and inserting the decision rule λ̂(ω) instead gives

min
x(ω)≥0

EP

[
c(ω)⊤x(ω)

]
− wλEP

[
hλ(ω)⊤(A(ω)x(ω)− b(ω))

]
,

whose corresponding non-relaxed constraints are

EP

[
hλ(ω)⊤A(ω)x(ω)

]
≥ EP

[
hλ(ω)⊤b(ω)

]
,

with dual multiplier wλ, and where the function hλ(ω) acts as weighting in the summation
(integration) of constraints. This also means we replace many constraint multipliers with
a single one, in analogy to variable aggregation. The relaxation follows from the fact that
only the aggregated constraint must be fulfilled by x(ω), which gives it more flexibility.

Aggregation bounds

We now consider using decision rules to replace either primal or dual policies to obtain
bounds on the optimal objective value. Let P(x, λ) denote the primal problem (SLP) with
respect to the variables in the first argument and constraint multipliers in the second
argument. General policies are denoted by x(ω) and λ(ω) while decision rules (II.38)
inserted in their place are denoted by x̂(ω) and λ̂(ω). For ease of readability, we omit
their argument ω in this section. Variable aggregation in the primal corresponds to
constraint aggregation in the dual (as well as the converse), and so D(λ, x) denotes the
dual problem of P(x, λ) with respect to the same arguments. Furthermore,

inf
x∈X

P(x, λ) ≥ sup
λ∈Λ

D(λ, x), (II.41)

by weak duality. Let X = feas(P(x, λ)) and Λ = feas(D(λ, x)) denote the feasible region
of decisions in P(x, λ) and D(λ, x), respectively. Variable aggregation tightens the feasible
region, while constraint aggregation relaxes it. We then have the relations,

feas(P(x̂, λ)) ⊆ feas(P(x, λ))
feas(P(x̂, λ̂)) ⊆ feas(P(x, λ̂)), (II.42)

and

feas(D(λ, x̂)) ⊇ feas(D(λ, x))
feas(D(λ̂, x̂)) ⊇ feas(D(λ̂, x)). (II.43)
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Observe that inserting one kind of decision rule at a time gives simple relations between
feasible regions, but there is no simple relation between the original and the fully simplified
problems. We have the following relations between objective values

P(x̂, λ) ≥ inf P(x̂, λ) ≥ inf P(x, λ) ≥ supD(λ, x)
inf P(x̂, λ̂) ≥ supD(λ̂, x̂) ≥ supD(λ̂, x) ≥ D(λ̂, x), (II.44)

where P(x̂, λ) and D(λ̂, x) denote objective evaluation by a feasible decision policy.
The underlying formulations P(x, λ) and D(λ, x) are considered to be unsolvable, but

bounds on these can be derived using decision rules according to the inequalities (II.44).
Consider also that a low gap between these bounds means the predefined form of decision
rules (II.38) are effective for the original formulation. Indeed, there exist more or less
appropriate functions hx(ω) and hλ(ω) to obtain good results with low optimality gaps.

Tractable reformulations of inf P(x̂, λ) and supD(λ̂, x) into linear and semi-definite
programs of moderate sizes that can be solved directly have been laid out by Kuhn et al.
(2011). Alternatively, we may solve the finite formulations P(x̂, λ̂) and D(λ̂, x̂) to obtain
candidate primal x̃(ω) and dual policies λ̃(ω) and evaluate these within the objectives of
P(x̂, λ) and D(λ̂, x) to get bounds on v(P ). This procedure is also described in Section 4.1
regarding scenario trees and extension rules.

5 Discussion and conclusions

Stochastic programming is applied to make effective decisions for real-world problems
under uncertainty. While there is something fundamentally intractable in their formula-
tions, bounds can give valuable insights into how well a given solution performs within
the original formulation, or bounding distributions can be used as approximations in
themselves.

The insight that function approximation and distribution approximation are tightly
connected is a profound observation. This stems from the duality between functions and
probability distributions, a connection seen throughout the paper. These perspectives
were used for different approaches to evaluation bounds in Section 3, but also have close
analogies to different ways of finding approximate solutions to stochastic programs either
by scenario trees (distributions) or decision rules (functions) in Section 4.

The fundamental insight of evaluation bounds in Section 3 is that finite approximate
distributions can be used to obtain bounds, even if the underlying distribution is con-
tinuous. This is a consequence of the generalised moment problem, solved by discrete
distributions whose moments coincide with the underlying distribution. Furthermore, by
the assumption of convexity in terms of the stochastic argument ξ, we may find analytical
expressions for discrete distributions that provide guaranteed bounds. Bounds on optimal
objective values in Section 4 also complement the evaluation bounds in Section 3. This
is valuable both for applying and developing methods to solve such problems.

Discussion: Bounds and modelling

Counter-intuitive mistakes may occur when one aims to make an approximation of uncer-
tainty while actually getting bounds. These insights are especially relevant when applying
models to decision problems under uncertainty, even if one does not solve a stochastic
program.
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An intuitive way to make a deterministic approximation to uncertainty is to insert
the expected value of uncertain parameters. While the expectation of the stochastic phe-
nomenon (i.e. ξ) can be used as a best estimate for the phenomenon itself, stochastic
programming deals with a non-linear transformation of the stochastic variables through
the objective function, and what we really aim to find is the expected objective value.
Hence, caution is due. For objective functions that are convex in the stochastic para-
meters, using the expected outcome of the phenomenon instead gives a lower bound
(Section 3.3). Not only will this give a bound, but it will also be optimistic, the opposite
of what we might want. More worryingly, an objective function that is convex-concave
in uncertain parameters may lead to conservatism with respect to some parameters and
optimism with respect to others, implicitly making a priority.

Consider a two-stage production planning problem as an illustration. The objective
of the second-stage program may then be convex in its uncertain capacity and concave
in the uncertain cost of materials, while additional operational considerations also limit
flexibility in production. Using only the expected value means we overestimate the utility
of additional capacity, given that operational considerations may cause other bottlenecks.
We also underestimate how flexibility in production can counteract increased material
costs by scaling down the production of products that turn out unprofitable. This means
we are optimistic with respect to capacity and pessimistic with respect to the cost of
materials.

Another intuitive way of approximating uncertainty is to plan for a restricted small
set of outcomes instead of (approximately) every outcome, like sampling from the distri-
bution. As explored in Section 4.2, considering only a restricted subset of outcomes at
a time (but overall considering all of them) will, in combination, lead to a lower bound
on the optimal objective value. Again, this is optimistic. One interpretation of this is
that the optimal decision overestimates its availability of information and is less prepared
for outcomes that were not explicitly accounted for. The recommended counter-measure
in such situations is always to do candidate evaluation (Section 4.1) after a solution has
been found to get a conservative estimate of how well a given decision or policy really
performs in terms of the original formulation.

Scenario analysis (analysing decisions for one outcome at a time) is another case
of apparent approximation of uncertainty that does not really build consideration of
uncertainty into decisions. The issue is that considering a single outcome, we get the
impression of knowing the future perfectly when it is actually unknowable (by definition
of it being stochastic). Considering a single outcome at a time will not lead to decisions
that buy options and enable flexibility to deal with multiple potential outcomes of the
future, and are thus qualitatively different (Wallace, 2010). The gap to the wait-and-see
lower bound in Section 4.2 quantifies the error that results from scenario analysis.

Future research

A significant challenge for stochastic programming is how to solve multistage problems
in a tractable manner. Using bounds to validate solutions can be valuable for further
development in this domain. Approximations in the form of scenario trees or decision
rules can potentially provide reasonable solutions by parsimonious representations but do
not necessarily give indications of optimality or correct estimates of its optimal objective
value. This is why bounds can help support their development.

Evaluation bounds (Section 3) have received much attention in the past while, more
recently, the literature has shifted towards approximations in the form of scenario gener-
ation. Both are concerned with discretising distributions, but scenario generation has an
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added layer of complication since it primarily concerns the quality of solutions obtained
from solving a stochastic program with a given discrete distribution. The property of
convex stochastic dominance (Section 3.2) conserves bounds for all decisions, which is
an interesting link between these. Still, we believe there are synergies to be explored
between bounds and scenario generation that can provide valuable insights. The concept
of effective and ineffective scenarios developed in the setting of distributionally robust
optimisation (Rahimian et al., 2019, 2022) may also provide further such connections.

There has been much recent research on risk aversion and aversion to ambiguity in
the representation of uncertainty itself (not knowing the distribution). These are valuable
tools to build conservatism into decisions and are tightly linked to bounds in the sense that
they are often formulated to minimise an upper bound on the objective evaluation, subject
to ambiguity (more general than moment conditions). These problems are challenging to
solve (even more so for multistage problems), and quantifying interval estimates to their
optimal solution is valuable to improve these approaches further and to give valuable
insights for real applications. The literature is sparse in this domain but growing. Future
work could also include using bounds from Section 4 within solution algorithms.
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Table II.1: Distribution approximation bounds.

Name Bound type Multivariate
dependency

Generalised
Moment
Function

Support #supp(Q∗) Convex
Dominance

Contributor(s)

Jensen’s inequal-
ity

Lower Yes First-order Unbounded 1 Yes Jensen (1906)

Edmund-
Madansky

Upper No First-order Rectangular 2d Yes Edmundson (1957) and Madansky
(1959)

Edmund-
Madansky with
dependence

Upper Yes Multilinear Rectangular 2d Yes Frauendorfer (1988) and Kall
(1987)

Hyper-plane Upper Yes First-order Polytopal ≥ d+ 1 No Birge and Wets (1986)

Hyper-plane Upper Yes First-order Polyhedral cone ≥ d+ 1 No Gassmann and Ziemba (1986)

Hyper-plane Upper Yes First-order Simplicial d+ 1 Yes Birge and Wets (1986) and Gass-
mann and Ziemba (1986)

Barycentric ap-
proximation

Upper Yes Barycentric Polytopal ≥ d+ 1 Yes Birge and Wets (1986) and Frauen-
dorfer (1992)

Convex-concave
saddle

Upper/Lower No First- and
cross-order

Rectangular 2d Yes Frauendorfer (1989) and Frauen-
dorfer (1992)

Convex-concave
saddle

Upper/Lower Yes First- and
cross-order

Simplicial d+ 1 Yes Frauendorfer (1989) and Frauen-
dorfer (1992)

Convex-concave
saddle

Upper/Lower Yes First- and
cross-order

Polyhedral cone ≥ d+ 1 No Edirisinghe and Ziemba (1994a,
1994b, 1996)

Second-order
lower bound

Lower Yes Second-order Simplicial d+ 1 Yes Edirisinghe (1996)

Second-order
lower bound

Lower Yes Second-order Rectangular 2d Yes Edirisinghe (1996)

Second-order
lower bound

Lower No Second-order Rectangular ≥ 2d Yes Dokov and Morton (2005)

Higher-order
bound

Upper Yes nth-order Rectangular
(d+n

n

)
Yes Dokov and Morton (2002)



REFERENCES 61

References
Bayraksan, G., & Morton, D. P. (2009, September). Assessing Solution Quality in Stochastic

Programs via Sampling. In Decision Technologies and Applications (pp. 102–122). IN-
FORMS. https://doi.org/10.1287/educ.1090.0065

Ben-Tal, A., & Hochman, E. (1972). More Bounds on the Expectation of a Convex Function of
a Random Variable. Journal of Applied Probability, 9 (4), 803–812. https://doi.org/10.
2307/3212616

Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to Linear Programming. Athena Scientific.
Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with

fixed recourse. Mathematical Programming, 24 (1), 314–325. https://doi.org/10.1007/
BF01585113

Birge, J. R. (1985). Aggregation bounds in stochastic linear programming. Mathematical Pro-
gramming, 31 (1), 25–41. https://doi.org/10.1007/BF02591859

Birge, J. R., & Dulá, J. H. (1991). Bounding separable recourse functions with limited distribution
information. Annals of Operations Research, 30 (1), 277–298. https://doi.org/10.1007/
BF02204821

Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming (2nd ed.). Springer
New York, NY. https://doi.org/10.1007/978-1-4614-0237-4

Birge, J. R., & Wallace, S. W. (1988). A Separable Piecewise Linear Upper Bound for Stochastic
Linear Programs. SIAM Journal on Control and Optimization, 26 (3), 725–739. https:
//doi.org/10.1137/0326042

Birge, J. R., & Wets, R. J. .-. (1989). Sublinear upper bounds for stochastic programs with re-
course. Mathematical Programming, 43 (1), 131–149. https://doi.org/10.1007/BF01582286

Birge, J. R., & Wets, R. J.-B. (1986). Designing approximation schemes for stochastic optim-
ization problems, in particular for stochastic programs with recourse. In A. Prékopa
& R. J. B. Wets (Eds.), Stochastic Programming 84 Part I (pp. 54–102). Springer.
https://doi.org/10.1007/BFb0121114

Birge, J. R., & Wets, R. J.-B. (1987). Computing Bounds for Stochastic Programming Problems
by Means of a Generalized Moment Problem. Mathematics of Operations Research,
12 (1), 149–162. https://doi.org/10.1287/moor.12.1.149

Crainic, T. G., Maggioni, F., Perboli, G., & Rei, W. (2018). Reduced cost-based variable fixing
in two-stage stochastic programming. Annals of Operations Research. https://doi.org/
10.1007/s10479-018-2942-8

Dokov, S. P., & Morton, D. P. (2002, May). Higher-Order Upper Bounds on the Expectation of a
Convex Function. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II, Institut für Mathematik. https://doi.org/10.18452/8272
Accepted: 2017-06-16T19:47:45Z.

Dokov, S. P., & Morton, D. P. (2005). Second-Order Lower Bounds on the Expectation of a
Convex Function. Mathematics of Operations Research, 30 (3), 662–677. https://doi .
org/10.1287/moor.1040.0136

Dulá, J. H. (1992). An upper bound on the expectation of simplicial functions of multivariate
random variables. Mathematical Programming, 55 (1), 69–80. https://doi.org/10.1007/
BF01581191

Dulá, J. H., & Murthy, R. V. (1992). A Tchebysheff-Type Bound on the Expectation of Sublinear
Polyhedral Functions. Operations Research, 40 (5), 914–922. https://doi.org/10.1287/
opre.40.5.914

Dupačová, J. (1966). On minimax solutions of stochastic linear programming problems. Časopis
pro pěstování matematiky, 091 (4), 423–430. Retrieved November 7, 2022, from https:
//eudml.org/doc/20949

Dupačová, J. (1987). The minimax approach to stochastic programming and an illustrative ap-
plication. Stochastics, 20 (1), 73–88. https://doi.org/10.1080/17442508708833436

https://doi.org/10.1287/educ.1090.0065
https://doi.org/10.2307/3212616
https://doi.org/10.2307/3212616
https://doi.org/10.1007/BF01585113
https://doi.org/10.1007/BF01585113
https://doi.org/10.1007/BF02591859
https://doi.org/10.1007/BF02204821
https://doi.org/10.1007/BF02204821
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1137/0326042
https://doi.org/10.1137/0326042
https://doi.org/10.1007/BF01582286
https://doi.org/10.1007/BFb0121114
https://doi.org/10.1287/moor.12.1.149
https://doi.org/10.1007/s10479-018-2942-8
https://doi.org/10.1007/s10479-018-2942-8
https://doi.org/10.18452/8272
https://doi.org/10.1287/moor.1040.0136
https://doi.org/10.1287/moor.1040.0136
https://doi.org/10.1007/BF01581191
https://doi.org/10.1007/BF01581191
https://doi.org/10.1287/opre.40.5.914
https://doi.org/10.1287/opre.40.5.914
https://eudml.org/doc/20949
https://eudml.org/doc/20949
https://doi.org/10.1080/17442508708833436


62 PAPER II. BOUNDS AND APPROXIMATIONS

Edirisinghe, N. C. P. (1996). New Second-Order Bounds on the Expectation of Saddle Functions
with Applications to Stochastic Linear Programming. Operations Research, 44 (6), 909–
922. https://doi.org/10.1287/opre.44.6.909

Edirisinghe, N. C. P., & Ziemba, W. T. (1992). Tight Bounds for Stochastic Convex Programs.
Operations Research, 40 (4), 660–677. https://doi.org/10.1287/opre.40.4.660

Edirisinghe, N. C. P., & Ziemba, W. T. (1994a). Bounds for Two-Stage Stochastic Programs
with Fixed Recourse. Mathematics of Operations Research, 19 (2), 292–313. Retrieved
November 8, 2022, from https://www.jstor.org/stable/3690222

Edirisinghe, N. C. P., & Ziemba, W. T. (1994b). Bounding the Expectation of a Saddle Func-
tion with Application to Stochastic Programming. Mathematics of Operations Research,
19 (2), 314–340. https://doi.org/10.1287/moor.19.2.314

Edirisinghe, N. C. P., & Ziemba, W. T. (1996). Implementing bounds-based approximations in
convex-concave two-stage stochastic programming. Mathematical Programming, 75 (2),
295–325. https://doi.org/10.1007/BF02592157

Edmundson, H. P. (1957). Bounds on the expectation of a convex function of a random variable
(tech. rep.). RAND Corporation. Santa Monica, CA.

Frauendorfer, K. (1989). A simplicial approximation scheme for convex two-stage stochastic pro-
gramming problems (tech. rep.). University of Zürich. Zürich.

Frauendorfer, K. (1988). Solving SLP Recourse Problems with Arbitrary Multivariate Distri-
butions—The Dependent Case. Mathematics of Operations Research, 13 (3), 377–394.
https://doi.org/10.1287/moor.13.3.377

Frauendorfer, K. (1992). Barycentric Approximation. In K. Frauendorfer (Ed.), Stochastic Two-
Stage Programming (pp. 67–123). Springer. https://doi.org/10.1007/978-3-642-95696-
6\_4

Frauendorfer, K. (1994). Multistage stochastic programming: Error analysis for the convex case.
Zeitschrift für Operations Research, 39 (1), 93–122. https://doi.org/10.1007/BF01440737

Frauendorfer, K. (1996). Barycentric scenario trees in convex multistage stochastic programming.
Mathematical Programming, 75 (2), 277–293. https://doi.org/10.1007/BF02592156

Frauendorfer, K., Kuhn, D., & Schürle, M. (2011). Barycentric Bounds in Stochastic Program-
ming: Theory and Application. In G. Infanger (Ed.), Stochastic Programming: The State
of the Art In Honor of George B. Dantzig (pp. 67–96). Springer. https://doi.org/10.
1007/978-1-4419-1642-6\_5

Gassmann, H., & Ziemba, W. T. (1986). A tight upper bound for the expectation of a convex
function of a multivariate random variable. In A. Prékopa & R. J. B. Wets (Eds.),
Stochastic Programming 84 Part I (pp. 39–53). Springer. https ://doi .org/10.1007/
BFb0121113

Huang, C. C., Ziemba, W. T., & Ben-Tal, A. (1977). Bounds on the Expectation of a Convex
Function of a Random Variable: With Applications to Stochastic Programming. Opera-
tions Research, 25 (2), 315–325. Retrieved November 15, 2022, from https://www.jstor.
org/stable/169834

Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes.
Acta Mathematica, 30 (none), 175–193. https://doi.org/10.1007/BF02418571

Kall, P. (1987). Stochastic programs with recourse: An upper bound and the related moment
problem. Zeitschrift für Operations Research, 31 (3), A119–A141. https://doi.org/10.
1007/BF01259340

Kall, P. (1988). Stochastic programming with recourse: Upper bounds and moment problems -
a review. In Advances in Mathematical Optimization (pp. 86–103). De Gruyter.

Kall, P. (1991). An upper bound for SLP using first and total second moments. Annals of Oper-
ations Research, 30 (1), 267–276. https://doi.org/10.1007/BF02204820

Kall, P., & Wallace, S. W. (1994). Stochastic Programming. John Wiley & Sons.
Karr, A. F. (1983). Extreme Points of Certain Sets of Probability Measures, with Applications.

Mathematics of Operations Research, 8 (1), 74–85. Retrieved November 24, 2022, from
https://www.jstor.org/stable/3689412

https://doi.org/10.1287/opre.44.6.909
https://doi.org/10.1287/opre.40.4.660
https://www.jstor.org/stable/3690222
https://doi.org/10.1287/moor.19.2.314
https://doi.org/10.1007/BF02592157
https://doi.org/10.1287/moor.13.3.377
https://doi.org/10.1007/978-3-642-95696-6\_4
https://doi.org/10.1007/978-3-642-95696-6\_4
https://doi.org/10.1007/BF01440737
https://doi.org/10.1007/BF02592156
https://doi.org/10.1007/978-1-4419-1642-6\_5
https://doi.org/10.1007/978-1-4419-1642-6\_5
https://doi.org/10.1007/BFb0121113
https://doi.org/10.1007/BFb0121113
https://www.jstor.org/stable/169834
https://www.jstor.org/stable/169834
https://doi.org/10.1007/BF02418571
https://doi.org/10.1007/BF01259340
https://doi.org/10.1007/BF01259340
https://doi.org/10.1007/BF02204820
https://www.jstor.org/stable/3689412


REFERENCES 63

Kaut, M., & Wallace, S. W. (2007). Evaluation of scenario-generation methods for stochastic
programming. Pacific Journal of Optimization, 3 (2), 257–271.

Kemperman, J. H. B. (1968). The General Moment Problem, A Geometric Approach. The Annals
of Mathematical Statistics, 39 (1), 93–122. Retrieved November 21, 2022, from https:
//www.jstor.org/stable/2238913

Keutchayan, J., Gendreau, M., & Saucier, A. (2017). Quality evaluation of scenario-tree genera-
tion methods for solving stochastic programming problems. Computational Management
Science, 14 (3), 333–365. https://doi.org/10.1007/s10287-017-0279-4

King, A. J., & Wallace, S. W. (2012, June). Modeling with Stochastic Programming. Springer
New York, NY. https://doi.org/10.1007/978-0-387-87817-1

Klein Haneveld, W. K. (1986). Some Linear Programs in Probabilities and Their Duals. In W. K.
Klein Haneveld (Ed.), Duality in Stochastic Linear and Dynamic Programming (pp. 49–
111). Springer. https://doi.org/10.1007/978-3-642-51697-9\_4

Kuhn, D. (2005). Barycentric Approximation Scheme. In D. Kuhn, M. Beckmann, H. P. Künzi,
G. Fandel, W. Trockel, A. Basile, A. Drexl, H. Dawid, K. Inderfurth, W. Kürsten & U.
Schittko (Eds.), Generalized Bounds for Convex Multistage Stochastic Programs (pp. 51–
81). Springer. https://doi.org/10.1007/3-540-26901-0\_4

Kuhn, D. (2008). Aggregation and discretization in multistage stochastic programming. Math-
ematical Programming, 113 (1), 61–94. https://doi.org/10.1007/s10107-006-0048-6

Kuhn, D., Wiesemann, W., & Georghiou, A. (2011). Primal and dual linear decision rules in
stochastic and robust optimization. Mathematical Programming, 130 (1), 177–209. https:
//doi.org/10.1007/s10107-009-0331-4

Madansky, A. (1959). Bounds on the Expectation of a Convex Function of a Multivariate Random
Variable. The Annals of Mathematical Statistics, 30 (3), 743–746. https://doi.org/10.
1214/aoms/1177706203

Madansky, A. (1960). Inequalities for Stochastic Linear Programming Problems. Management
Science, 6 (2), 197–204. https://doi.org/10.1287/mnsc.6.2.197

Maggioni, F., Allevi, E., & Bertocchi, M. (2014). Bounds in Multistage Linear Stochastic Pro-
gramming. Journal of Optimization Theory and Applications, 163 (1), 200–229. https:
//doi.org/10.1007/s10957-013-0450-1

Maggioni, F., Allevi, E., & Bertocchi, M. (2016). Monotonic bounds in multistage mixed-integer
stochastic programming. Computational Management Science, 13 (3), 423–457. https:
//doi.org/10.1007/s10287-016-0254-5

Maggioni, F., & Pflug, G. C. (2016). Bounds and Approximations for Multistage Stochastic
Programs. SIAM Journal on Optimization, 26 (1), 831–855. https://doi.org/10.1137/
140971889

Maggioni, F., & Pflug, G. C. (2019). Guaranteed Bounds for General Nondiscrete Multistage
Risk-Averse Stochastic Optimization Programs. SIAM Journal on Optimization, 29 (1),
454–483. https://doi.org/10.1137/17M1140601

Maggioni, F., & Wallace, S. W. (2012). Analyzing the quality of the expected value solution in
stochastic programming. Annals of Operations Research, 200 (1), 37–54. https://doi .
org/10.1007/s10479-010-0807-x

Mak, W.-K., Morton, D. P., & Wood, R. (1999). Monte Carlo bounding techniques for determin-
ing solution quality in stochastic programs. Operations Research Letters, 24 (1-2), 47–56.
https://doi.org/10.1016/S0167-6377(98)00054-6

Morton, D. P., & Wood, R. K. (1999). Restricted-Recourse Bounds for Stochastic Linear Pro-
gramming. Operations Research, 47 (6), 943–956. https://doi.org/10.1287/opre.47.6.943

Pereira, M. V. F., & Pinto, L. M. V. G. (1991). Multi-stage stochastic optimization applied to
energy planning. Mathematical Programming, 52 (1-3), 359–375. https ://doi .org/10.
1007/BF01582895

Pflug, G. C., & Pichler, A. (2012). A Distance For Multistage Stochastic Optimization Models.
SIAM Journal on Optimization, 22 (1), 1–23. https://doi.org/10.1137/110825054

Pflug, G. C., & Pichler, A. (2014). Multistage Stochastic Optimization. Springer International
Publishing. https://doi.org/10.1007/978-3-319-08843-3

https://www.jstor.org/stable/2238913
https://www.jstor.org/stable/2238913
https://doi.org/10.1007/s10287-017-0279-4
https://doi.org/10.1007/978-0-387-87817-1
https://doi.org/10.1007/978-3-642-51697-9\_4
https://doi.org/10.1007/3-540-26901-0\_4
https://doi.org/10.1007/s10107-006-0048-6
https://doi.org/10.1007/s10107-009-0331-4
https://doi.org/10.1007/s10107-009-0331-4
https://doi.org/10.1214/aoms/1177706203
https://doi.org/10.1214/aoms/1177706203
https://doi.org/10.1287/mnsc.6.2.197
https://doi.org/10.1007/s10957-013-0450-1
https://doi.org/10.1007/s10957-013-0450-1
https://doi.org/10.1007/s10287-016-0254-5
https://doi.org/10.1007/s10287-016-0254-5
https://doi.org/10.1137/140971889
https://doi.org/10.1137/140971889
https://doi.org/10.1137/17M1140601
https://doi.org/10.1007/s10479-010-0807-x
https://doi.org/10.1007/s10479-010-0807-x
https://doi.org/10.1016/S0167-6377(98)00054-6
https://doi.org/10.1287/opre.47.6.943
https://doi.org/10.1007/BF01582895
https://doi.org/10.1007/BF01582895
https://doi.org/10.1137/110825054
https://doi.org/10.1007/978-3-319-08843-3


64 PAPER II. BOUNDS AND APPROXIMATIONS

Powell, W. B., & Frantzeskakis, L. F. (1994). Restricted Recourse Strategies for Dynamic Net-
works with Random Arc Capacities. Transportation Science, 28 (1), 3–23. https://doi.
org/10.1287/trsc.28.1.3

Rahimian, H., Bayraksan, G., & De-Mello, T. H. (2022). Effective Scenarios in Multistage Dis-
tributionally Robust Optimization with a Focus on Total Variation Distance. SIAM
Journal on Optimization, 32 (3), 1698–1727. https://doi.org/10.1137/21M1446484

Rahimian, H., Bayraksan, G., & Homem-de-Mello, T. (2019). Identifying effective scenarios in
distributionally robust stochastic programs with total variation distance. Mathematical
Programming, 173 (1-2), 393–430. https://doi.org/10.1007/s10107-017-1224-6

Sandıkçı, B., Kong, N., & Schaefer, A. J. (2013). A hierarchy of bounds for stochastic mixed-
integer programs. Mathematical Programming, 138 (1-2), 253–272. https://doi.org/10.
1007/s10107-012-0526-y

Shapiro, A., Dentcheva, D., & Ruszczyński, A. P. (2014). Lectures on stochastic programming:
Modeling and theory (Second edition). Society for Industrial and Applied Mathematics
: Mathematical Optimization Society. https://doi.org/10.1137/1.9781611973433

Shapiro, A., & Nemirovski, A. (2005). On Complexity of Stochastic Programming Problems.
In V. Jeyakumar & A. Rubinov (Eds.), Continuous Optimization: Current Trends and
Modern Applications (pp. 111–146). Springer US. https://doi.org/10.1007/0-387-26771-
9_4

Thaler, R. H. (1988). Anomalies: The Winner’s Curse. Journal of Economic Perspectives, 2 (1),
191–202. https://doi.org/10.1257/jep.2.1.191

Wallace, S. W. (1987). A piecewise linear upper bound on the network recourse function. Math-
ematical Programming, 38 (2), 133–146. https://doi.org/10.1007/BF02604638

Wallace, S. W. (2010). Stochastic programming and the option of doing it differently. Annals of
Operations Research, 177 (1), 3–8. https://doi.org/10.1007/s10479-009-0600-x

Wets, R. J. .-. (1984). Modeling and solution strategies for unconstrained stochastic optimiza-
tion problems. Annals of Operations Research, 1 (1), 3–22. https://doi.org/10.1007/
BF01874449

Wright, S. E. (1994). Primal-Dual Aggregation and Disaggregation for Stochastic Linear Pro-
grams. Mathematics of Operations Research, 19 (4), 893–908. Retrieved December 10,
2022, from https://www.jstor.org/stable/3690318

Xu, J., & Sen, S. (2023). Compromise policy for multi-stage stochastic linear programming:
Variance and bias reduction. Computers & Operations Research, 153, 106132. https :
//doi.org/10.1016/j.cor.2022.106132

Zipkin, P. H. (1980a). Bounds for Row-Aggregation in Linear Programming. Operations Research,
28 (4), 903–916. Retrieved February 7, 2023, from https://www.jstor.org/stable/170330

Zipkin, P. H. (1980b). Bounds on the Effect of Aggregating Variables in Linear Programs. Oper-
ations Research, 28 (2), 403–418. https://doi.org/10.1287/opre.28.2.403

https://doi.org/10.1287/trsc.28.1.3
https://doi.org/10.1287/trsc.28.1.3
https://doi.org/10.1137/21M1446484
https://doi.org/10.1007/s10107-017-1224-6
https://doi.org/10.1007/s10107-012-0526-y
https://doi.org/10.1007/s10107-012-0526-y
https://doi.org/10.1137/1.9781611973433
https://doi.org/10.1007/0-387-26771-9_4
https://doi.org/10.1007/0-387-26771-9_4
https://doi.org/10.1257/jep.2.1.191
https://doi.org/10.1007/BF02604638
https://doi.org/10.1007/s10479-009-0600-x
https://doi.org/10.1007/BF01874449
https://doi.org/10.1007/BF01874449
https://www.jstor.org/stable/3690318
https://doi.org/10.1016/j.cor.2022.106132
https://doi.org/10.1016/j.cor.2022.106132
https://www.jstor.org/stable/170330
https://doi.org/10.1287/opre.28.2.403


Paper III

Joint Forecasting of Salmon Lice
and Treatment Interventions

Benjamin S. Narum and Geir D. Berentsen

Abstract
The need for joint forecasting of parasitic lice and associated preventative
treatments stems from large monetary losses associated with such treatments,
and the distribution of potential future treatments can be used in operational
planning to hedge their associated risk. We present a spatio-temporal forecast-
ing model that accounts for the joint dynamics between lice and treatments
where spatial interaction between sites is derived from hydrodynamic trans-
portation patterns. The model-derived forecasting distributions exhibit large
heterogeneity between sites at significant levels of exposure which suggests
the forecasting model can provide great value in assisting operational risk
management.

1 Introduction
The salmon louse is a parasite that lives off Salmonids (salmon and trout) and spreads
between hosts in the ocean waters. Salmonid aquaculture consists of breathing fish in pens
in the ocean, and the large expansion of the industry has increased the density of hosts
for the salmon louse. This, in turn, has resulted in higher levels of lice infection, causing
concern about the welfare of both farmed and wild Salmonids. As a mitigation strategy,
farmers apply removal treatments when they observe high levels of lice abundance, and
such treatments contribute significantly to increased fish mortality (Bang Jensen et al.,
2020; Kristoffersen et al., 2018; Walde et al., 2021). Conservative estimates suggest that
lice treatments result in costs equivalent to approximately 9% of annual revenues in the
Norwegian industry (Abolofia et al., 2017; Iversen et al., 2017), where the indirect costs of
increased mortality and loss of growth (Walde et al., 2022) are important contributions.
This paper addresses joint forecasting of lice development and associated treatment in-
terventions for the purpose of assisting operational harvest planning.

Knowing the exposure to future lice treatments is important for farmers to schedule
their harvest plans and manage the associated biological risks. While higher levels of lice
abundance is the reason for performing treatments, most of the costs and biological risks
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are directly associated to the treatments themselves. Since we aim to apply forecasts
to operational risk management, the target forecast quantity is the number of future
treatments. At the levels of lice abundance normally found at aquaculture sites, the
biological risk from the parasite itself is comparably low due to the high frequency of
treatments.

Motivated by the application, we model treatments as a stochastic process that in-
teracts with another stochastic process for lice abundance. While treatment is a decision
made by farmers, there are strong limitations in the flexibility of this decision since farm-
ers are obliged to treat (by regulation) based on measured levels of lice abundance. Thus,
we argue that the prospective frequency of future treatments (which infers risk to farm-
ers) is mainly driven by its interaction with lice abundance, and only moderately by the
specific timing that farmers decide. The time of treatment must lie within a short time-
range (±1 week) once higher levels of lice abundance have been observed. Keep in mind
that we aim to infer the long-term treatment count (in the order of 20 weeks ahead) and
not necessarily the next treatment. If farmers have short-term plans for treatment (1
week ahead), these may be inserted as explanatory variables before making longer-term
forecasts. Modelling treatments as a stochastic process is also motivated by multistage
stochastic optimisation models used for operational risk management (see King & Wal-
lace, 2012; Shapiro et al., 2014). These take a distributional forecast as input and aim
to find plans that hedge operational risks effectively. These optimisation problems are
potentially very computationally challenging to solve, and letting treatments be a de-
cision introduces decision-dependent uncertainty (where decisions affect the distribution)
(Hellemo et al., 2018; Jonsbråten et al., 1998). This makes them potentially intractable to
solve within reasonable time. A way to mitigate this complexity is to exogenise treatment
decisions by modelling these as a stochastic process instead.

Existing studies on the dynamics and spread of lice can broadly be divided into two
categories. In the first category are statistical models used to draw inference about the
dynamics of lice or to obtain site-specific forecasts (Aldrin et al., 2017, 2019; Aldrin et al.,
2013; Elghafghuf et al., 2018, 2020). Some of these models also incorporate spatial de-
pendence by considering seaway distance (along the ocean surface) between sites. In the
second category is a physical model that uses simulation of hydrodynamic stream patterns
combined with historical lice abundance data to infer a measure of "lice infestation pres-
sure" along the coastline (Myksvoll et al., 2018). The caveat of the latter model is that
it cannot forecast future lice counts since the link between infestation pressure and on-
site dynamics of lice abundance has not been accounted for. Our approach to modelling
lice abundance bridges the gap between these two approaches by introducing asymmetric
spatial effects derived from stream simulation data (as opposed to the symmetric seaway
distance) in a time-series model that links infestation pressure to the on-site dynamics of
lice abundance. Moreover, while existing approaches consider lice treatments as an exo-
genous explanatory variable, we consider lice abundance and treatments as two stochastic
processes that affect each other. To our knowledge, this paper is the first to incorporate
stream patterns into on-site lice dynamics as well as its interaction with future treatments.

The paper is structured as follows: Section 2 presents all data sources and explains
the basics of lice development; Section 3 presents the forecasting models for lice and
treatments, with details on joint forecasting and estimation; Section 4 presents results
and model validations; finally, Section 5 is a discussion with concluding remarks.
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2 Data
We limit sites to those in the Norwegian production area 3, situated on the western coast
of Norway, which is the largest and known for having the most activity of lice. Sites
outside of this area are incorporated only by their contribution to neighbour infection.
There are 137 sites in total that are active for 41572 site-weeks combined within the period
June 2012 to September 2021. An overview of these sites is illustrated in Figure III.1.

Figure III.1: Overview of aquaculture sites in production area 3.

Lice and treatment data
Biologically, lice develop through multiple stages (Hamre et al., 2013) that we simplify into
categories relevant to our model. See the illustration in Figure III.2. The development
cycle starts by hatching larvae (LR) from egg strings attached to adult female (AF) lice.
The larvae are then transported by ocean currents and may find a new host (a Salmonid).
During transportation the louse may attach to a new host, then referred to as a recruit
(R). If it cannot find a new host in time, it runs out of nutrition and dies. Note that
the recruit may also originate from the same site. The recruit develops through three
stages on the host: stationary (ST); pre-adult (PA), where it starts to move on the host;
and lastly, adult female/male (AF/AM), where the female develops egg strings to hatch
new larval lice (LR) that repeat the cycle. Keep in mind that this development cycle
is highly temperature dependent and that males develop slightly faster than female lice
(Hamre et al., 2019). Also note that pre-adult (PA) and adult male (AM) lice are visually
indistinguishable and are thus only identified as mobile lice (MB).

By regulation, all Norwegian farmers are obliged to count lice in the three identifiable
categories (ST, MB and AF) weekly on 10 or 20 fish (depending on the time of year
and location) in each production cage (Lovdata, 2012). Typically, a single cage has
approximately 200 000 fish in total and the lice count on each fish sample is averaged over
all cages at a site (1–12 cages per site). This average is referred to as the lice abundance
at a given site. These weekly reports are downloaded through Barentswatch1. Missing

1https://www.barentswatch.no/fiskehelse/

https://www.barentswatch.no/fiskehelse/
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Figure III.2: Different stages of the lice development cycle used for the present model. Trans-
portation happens in the two first stages (LR and R), and lice are counted in the latter three
(ST, MB = PA + AM and AF) while attached to the fish.

lice counts are replaced by interpolation between the nearest foregoing and upcoming
reports, reduced by 70% per week from the interpolation points (1597 interpolated points
in total).

Farmers are obliged to commence lice treatment on the entire site when lice abundance
is measured above 0.2 or 0.5 (depending on the time of year and location) (Lovdata, 2012).
The lower limit was changed from 0.1 to 0.2 in 2017 (Lovdata, 2017). The weekly lice
reports collected from Barentswatch also contain information on treatments, and these
mainly distinguish between medical, mechanical, and cleaner fish treatments. Cleaner
fish are other species of smaller fish that eat lice off Salmonids, which are deployed in
the cage. Partial treatment of the site is allowed only by particularly good reason; hence,
we do not distinguish between partial and complete treatments. Treatments are reported
weekly but may last for more than one week. For medical treatments, farmers first report
the start date and later report the end date of the treatment. We use the starting week
as the occurrence of medical treatments. Medical treatments with missing start dates are
placed at the week before the reported end of treatment. Treatments of the same kind
(medical or mechanical) reported multiple times in consecutive weeks are joined together
as a single treatment and placed on the first week of reporting. This prevents duplicates
of the same treatment taking place over several weeks. If there are more than a certain
number of treatments in consecutive weeks (3 for mechanical and 4 for medical), these
are split as separate treatment periods, with commencement at the first week of each
period. By visual inspection, we find that some sites have missing treatment reports.
These sites are removed when fitting the models (4 sites in total), but still contribute
to neighbour effects and are included in simulations. There are still a few minor active
time periods where we suspect treatment reports are missing, but these are still included.
Cleaner fish treatments are not necessarily reported after 2018 (Lovdata, 2018). For
this reason, the effect of cleaner fish is not included when forecasting treatments but is
included as a corrective term during model estimation. Figure III.3 illustrates the number
of treatments in production area 3 within the relevant time range, and we see a clear shift
from medical treatment to mechanical treatment. This is due to the development of
resistance to commonly used medical substances, which caused a transition to mechanical
treatments instead (Jensen et al., 2020). There are treatments in 8.4% of active weeks
(3499 in total).

Salmonid farming in Norway requires two months of fallowing (closing the site) at the
end of each production cycle as a preventive measure against lice, and there are no lice
reports during this time (Lovdata, 2008). While a site is active, farmers are obliged to
report lice every week, and we can know which sites are active based on the presence of
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Figure III.3: Treatments in production area 3.

reports. However, some reports are missing in the data. We must distinguish between
inactivity and missing reports since inactivity means lice abundance is zero while missing
reports do not. If there are more than six weeks of consecutively missing reports, we as-
sume the site is inactive, while otherwise, we assume reports are missing and interpolate
the missing data. This is conservative by letting some (shorter) inactive periods poten-
tially seem active instead, which prevents zeroing out the dynamics of lice abundance.
We assume there are no missing treatments in weeks of missing reports.

Several sources of uncertainty are related to the lice count and treatment data. An
extensive survey on this was conducted and summarized by Solberg et al. (2018) in 2017.
First, lice counts are known to have considerable measurement error, mainly attributed to
the small sample of fish collected to count lice. The small sample is motivated by negative
health implications from handling the fish when counting lice. Second, there is uncertainty
about whether the human counter can identify lice on the fish and correctly classify the
stage of the louse. In particular, lice in the stationary stage (ST) are especially small in
size and can be hard to observe (Thorvaldsen et al., 2019). Third, there are doubts as to
whether the sample of fish collected for counting is representative of all fish in a cage since
these are collected only from the sea surface. Fourth, the regulation allows counting lice
multiple times in each cage and reporting only the last counting, which enables selective
re-counting. Fifth, due to the high cost of treatments and the low treatment limit, farmers
have clear incentives to under-report lice abundance and avoid unnecessary treatments,
which can affect the quality of the data. The impact of such incentives on this dataset
was explored by Jeong et al. (2023). Lastly, regulation allows treatments to be dismissed
for the last three weeks before fallowing, which can explain some higher lice counts at the
end of production cycles. Recently, technology to count lice by camera technology has
been developed and is already in use at some sites. This means more reliable count data
will become available over time.
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Temperature and transportation by coastal currents

Temperature estimates at three-meter depth are collected from the NorKyst800 model
(Albretsen et al., 2011), which describes coastal conditions in the form of currents and
temperature on a 800m by 800m grid. This model has been validated to give high-
quality temperature estimates with a deviation of at most 1◦C (Asplin et al., 2020).
Occasional missing data within short time spans are filled by linear interpolation. We
assume temperature forecasts can be obtained from other models, for example, from the
European Centre for Medium-Range Weather Forecasts2, and consider it to be a given
explanatory variable for this paper.

Transportation of lice between site pairs is mainly governed by stream patterns. We
derive transportation patterns from a particle simulation model developed by the Norwe-
gian Institute of Marine Research (see Myksvoll et al., 2018, for details), which uses stream
patterns from the NorKyst800 model to simulate how particles drift. The particle simu-
lation model is currently used in a national monitoring system to regulate the industry
and has been validated against field experiment data to have high accuracy (Myksvoll
et al., 2018). In detail, the simulation runs as follows: For every hour, three particles
are released from every site and tracked as they follow stream patterns determined by
NorKyst800. Whenever a particle is in proximity to another site, it is registered as an
encounter with information about the source site, destination site, and age in hours.
Particles whose age in degree-days surpasses 200 are removed. The simulation runs for
nine months of stream data from February to October 2017. Sites that were not active
during this simulation window have been removed (17 sites). From these simulations, we
obtain a total transportation volume between pairs of sites, referred to as connectivity (in
number of particles), as well as an empirical distribution of transportation times. Both
connectivity and transportation times are asymmetric between site pairs, and Figure III.4
illustrates the relationship between connectivity and seaway distance used in previous lit-
erature (Aldrin et al., 2017, 2019; Jansen et al., 2012). Seaway distance is symmetric,
and its discrepancy with connectivity can be large.

3 Methodology

To develop a model that can forecast treatments, we consider lice abundance and treat-
ments as two processes that affect each other. Successful treatment should lead to lower
lice abundance, while higher lice abundance should lead to increased probability of treat-
ment. Furthermore, we assume the occurrence of treatment has a small delay so that
it may only depend on past lice abundance; meanwhile, lice abundance may also de-
pend on the occurrence of treatment within the same week. Figure III.5 illustrates this
lead-lag relationship. This delay assumption on treatments allows constructing a joint
forecasting model based on separate models for the conditional marginal distribution of
lice abundance and treatment. These models are described in Section 3.1 and Section 3.2,
respectively, while joint forecasting using both models is described in Section 3.3. The
estimation procedure is described in Section 3.4.

Each of the conditional models are designed in a two-level hierarchy having slightly
different interpretations. First, we derive a best-guess estimate that incorporates all ex-
planatory variables and domain knowledge about the respective phenomena. Second, we
correct any remaining time-structure using Generalised Auto-Regressive Moving-Average
(GARMA) models (Benjamin et al., 2003). For the lice model, the best-guess estimate

2www.ecmwf.int/

www.ecmwf.int/
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Figure III.4: Comparison of seaway distance (in meters) to connectivity (number of particle
encounters) among all site pairs.

Yt<1 Yt=1 Yt=2 Yt=3

Vt<1 Vt=1 Vt=2 Vt=3

Lice
model

Treatment
model

Figure III.5: Dynamics between lice (Y ) and treatments (V ) at different time steps.

ensures consistent long-term forecasting ability based on explicit knowledge about the
development-cycle of lice, while a moving-average component improves short-term pre-
dictions by correcting for more recent observations of actual lice abundance. For the
treatment model, the best-guess estimate acts as a current assessment of the probabil-
ity of treatment (mainly based on lice abundance) while an auto-regressive component
corrects for relations to past treatments.

3.1 Lice abundance model

Let nitY ⋆
it denote the observed lice count within stages ⋆ ∈ {ST,MB,AF} on nit fish at

site i ∈ {1, . . . , N} in week t. Correspondingly, Y ⋆
it denotes the observed lice abundance;

namely, the average number of lice per fish. We represent the occurrence of treatment by a
random variables V ⋄

it where ⋄ ∈ {mec,med, clf} denotes the different kinds of treatments:
mechanical, medical or cleaner fish. Cleaner fish V clf

it is a continuous rate, representing the
number of cleaner fish deployed scaled by the capacity of the site. The binary variables
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V ⋄
it for ⋄ ∈ {mec,med} take value one if treatment ⋄ is commenced at site i in week
t, and zero otherwise. We let Ft denote the information set generated by Y ⋆

is and V ⋄
is

for all sites i = 1, . . . , N , weeks s = 1, . . . , t, stages ⋆ ∈ {AF,MB, ST}, and treatment
kinds ⋄ ∈ {mec,med, clf}. For simplicity, we also let Vit =

(
V mec
it , V med

it , V clf
it

)
denote the

concatenation of all treatment kinds.
The response variables in the lice model are the lice counts nitY ⋆

it for all stages ⋆ which
we, conditional on Ft−1 and Vit, assume follow a negative binomial distribution

(nitY
⋆
it | Ft−1, Vit) ∼ NegBin (nitµ

⋆
it, nitν

⋆) , (III.1)

parameterised by its expectation nitµ⋆
it and dispersion nitν⋆. We assume a global disper-

sion parameter ν⋆ per stage, but scale by nit to account for increased certainty in the
abundance estimate when counting lice on more fish. The negative binomial distribution
has been validated experimentally to be well suited for lice counts on farmed salmon
(Jeong & Revie, 2020). For the response variable nitY ⋆

it , we have nit ∈ [10, 140] and Y ⋆
it

normally in the range [0, 1].
The dynamics of lice abundance is modelled via the expected abundance µ⋆

it. As
an baseline explanatory term, we use a best-guess of lice abundance µ̄⋆

it derived from
past recruits and their development into each stage ⋆. While the best-guess estimate
has strong physical motivation that improves long-term forecasting ability, we also have
regular observations of actual lice abundance in each stage that should correspond to µ̄⋆

it.
Any discrepancy between the anticipated lice abundance µ̄⋆

it and observed abundance
Y ⋆
it is corrected for by a Generalised Moving-Average (GMA) model for µ⋆

it to improve
short-term predictions. Specifically, we let

log(c+ µ⋆
it) = log(c+ µ̄⋆

it) +

20∑
l=1

Aitlθlζ
⋆
i,t−l, (III.2)

where
ζ⋆it = log(c+ Y ⋆

it)− log(c+ µ⋆
it), (III.3)

denotes the innovation of µ⋆
it with respect to the observation Y ⋆

it . The fitted parameter
c > 0 determines the zero-level of observations on the logarithmic scale to prevent values of
−∞ whenever Y ⋆

it , µ̄
⋆
it, µ

⋆
it = 0. By design, we then have that ζ⋆it = 0 whenever Y ⋆

it = µ⋆
it,

meaning we default to the best-guess estimate whenever this discrepancy is low. The
indicator Aitl takes value one if farm i is active from week t − l to week t and zero
otherwise; this terminates the memory of the process whenever the site has been closed.
Through model estimation, we find that the parameters θl have a (close to) exponential
decay in their values for increasing lags l; hence, we let

θl = θscale exp(θrate(l − 1)), (III.4)

and estimate only the two parameters θscale and θrate. We use the same parameters θscale
and θrate for this lag structure in all stages ⋆. The number of lags is determined by the
physical model for µ̄⋆.

The primary aim of the lice model is to give a precise account of the dynamics of lice
abundance while incorporating the effect of treatment, and the best-guess estimate of lice
abundance µ̄⋆ is motivated by the stage-structured development cycle of lice. For this
purpose, we also consider the unobserved abundances Y RN, Y RS and Y RU that decom-
poses all recruits (R) into their respective sources: neighbouring sites (RN), within-site
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(RS), or unexplained sources (RU). The best-guess estimate then takes expression

µ̄⋆
it = κit0

20∑
l=1

Aitlκitlr
⋆
itl

(
Ŷ RS
i,t−l + Ŷ RN

i,t−l + Ŷ RU
i,t−l

)
, (III.5)

which incorporates estimates of all relevant history of past recruits (Ŷ RS, Ŷ RN, Ŷ RU) while
accounting for survivability (κ) and temperature-dependent development times (r⋆). The
effect of treatment is accounted for by survivability which is explained in Section 3.1,
while the terms r⋆ that account for development time are described in Section 3.1. The
estimates Ŷ RN, Ŷ RS and Ŷ RU for unobserved abundances are based on hydrodynamic
simulations, biological relations, and past observations of adult female lice; and these are
described in Section 3.1. We use a maximum lag of 20 weeks since most contributions
beyond 20 weeks are small when accounting for both development time and mortality.

Mortality

We let the factor κits represent the survivability of lice. Specifically, the log-survivability
rate at site i between weeks t− s and t takes the expression

log(κits) = sρ+

s∑
l=0

(
V mec
i,t−l

l∑
k=0

δmec
k + V med

i,t−l

l∑
k=0

δmed
k + V clf

i,t−l

l∑
k=0

δclfk

)
, (III.6)

where the parameter ρ < 0 represents a baseline weekly mortality. The parameters
δ⋄k < 0 denote the additional log-effect of various treatments, k ∈ {0, 1, . . . } weeks after
they were initiated. The total effect of a single treatment initiated l weeks ago then equals
exp

(∑l
k=0 δ

⋄
k

)
. Hence, κits is the accumulated survival rate between weeks t − s and t

which incorporates all natural and treatment-induced mortality. Observe also that κit0
incorporates the effect of treatment in the current week but omits the baseline weekly
mortality ρ.

Development time

To account for development time, we derive auto-regressive coefficients to infer the abund-
ance of counted lice (ST, MB and AF) from the abundance of recruits (RS, RN and RU)
in the past. These auto-regressive coefficients are derived as an analytical expressions
of the (temperature-dependent) development time, and the advantage of this analytical
approach is that we may use existing knowledge about the dependence of development
times on temperature. This avoids the need for re-estimating these effects. Only the
potential variability in development time is estimated.

The development time going from a recruit into each consecutive development stage
was examined by Hamre et al. (2019), who found that the development time (in weeks)
between stages is independent of age but highly dependent on temperature as well as
gender. Let T denote temperature in general, and Tit the temperature at site i in week
t. The temperature-dependent development time for male and female lice, respectively,
take expressions

DM (T ) = exp
(
1.7216− 0.2472T + 0.0050T 2

)
, (III.7)

DF (T ) = exp
(
1.8033− 0.2172T + 0.0039T 2

)
, (III.8)
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which are estimated from the data in (Hamre et al., 2019). See details in the Supplemental
Material. Available data covers temperatures in the range 6–21◦C, and we extrapolate
outside of these. The development time from recruit into stationary, pre-adult and adult
lice are multiples 1, 3 and 5 of DM (T ) and DF (T ), as illustrated in Figure III.6. We also
assume lice die of old age after 10DM (T ) and 10DF (T ) weeks.

Figure III.6: Development time from recruit to the respective stages for both genders at
different temperatures.

We use the expressions (III.7) and (III.8) to provide estimates for the average develop-
ment time; however, to account for potential variability in development time, we assume
a distribution for development time. We assume development time from recruit into stage
⋆ is Weibull distributed, parameterised by its expectation ψ⋆ and shape parameter α > 0.
Its cumulative distribution function (CDF) is then expressed as

Fα(s | ψ⋆) = 1− exp

(
−
(
sΓ(1 + 1/α)

ψ⋆

)α)
, (III.9)

where Γ(·) is the gamma function, and the parameter α is subject to estimation. Using
this CDF, we may now express the share of recruits that have developed into stage ⋆
(with average development time ψ⋆ > 0) and not into the consecutive stage (with average
development time ψ⋆+1 ≥ ψ⋆) within s weeks as:

Fα(s | ψ⋆)− Fα(s | ψ⋆+1) ≥ 0. (III.10)

This quantity is non-negative since these distributions have the same shape parameter
α while one expectation is larger than the other. The difference (III.10) specifies the
contribution of recruits s weeks ago to each consecutive stage ⋆ in the current week, and
we may sum over all past weeks to find the total lice abundance. Due to asymmetries
in the contribution of each gender to different stages, we get the following temperature-



3. METHODOLOGY 75

dependent coefficients to represent development:

rAF
its = Fα(s | 5DF (Tit))− Fα(s | 10DF (Tit)), (III.11a)

rMB
its = Fα(s | 3DF (Tit))− Fα(s | 5DF (Tit)) + Fα(s | 3DM (Tit))− Fα(s | 10DM (Tit)),

(III.11b)

rST
its = Fα(s | 1DF (Tit))− Fα(s | 3DF (Tit)) + Fα(s | 1DM (Tit))− Fα(s | 3DM (Tit)).

(III.11c)

These have the interpretation that r⋆its is the number of recruits from week t − s that
contribute to lice abundance in stage ⋆ and week t. The sources contributing to AF are
only female lice in the adult stage, while the contribution to MB are pre-adult female lice
as well as pre-adult and adult male lice. The contribution to ST is from male and female
lice in the stationary stage. Lastly, we also consider mortality from old age for stages
MB and AF. The inferred lead-lag relationship between recruits and each stage ⋆ (while
ignoring the effect of mortality) is illustrated for different temperatures in Figure III.7.
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Figure III.7: Lead-lag relationship between recruits and the respective stages (ST, MB and
AF) that infer temperature-dependent development times.

Estimates of past recruits

Past recruits can be decomposed into different sources and estimated based on past abund-
ance of adult female lice, transportation patterns and successful attachment. In the fol-
lowing, we assume transportation ends when a louse has successfully attached to a new
host; then defined to be a recruit. The number of fish at location i, and thereby the total
number of lice inferred by lice abundance, are generally not available since it is considered
market-sensitive information. Instead, we use the capacity Cit of site i in week t (capa-
city will rarely change over time) as a proxy for fish count. The rate of egg production is
temperature-dependent, whose expression is given by

H(T ) = exp
(
−0.869324 + 0.15615T − 0.007699T 2

)
. (III.12)

This is estimated from data in (Samsing et al., 2016) and normalised to take values close
to one. See the Supplemental Material.

The estimate of recruits from neighbouring sites Y RN
it then takes expression

Ŷ RN
it =

ιRN

Cit

∑
j∈Ji

5∑
s=1

wjits

[
Cj,t−sH(Ti,t−s)Y

AF
j,t−s

]
, (III.13)
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where Cj,t−sH(Tj,t−s)Y
AF
j,t−s is a proxy for the number of emitted larvae from site j in

week t−s, and ιRN > 0 is a scaling parameter. The weights wjits represent the magnitude
of transported lice that originate from site j in week t− s that successfully attaches to a
new host at site i in week t. The set Ji contains all relevant neighbours of site i, limited
to those that are shown to successfully transport particles to site i in the hydrodynamic
simulation. The maximum number of transportation weeks is set to five (see point (iii)
below). The weights wijts are composed of four main factors: (i) total transportation rate
as well as the distribution of transportation time, (ii) daily mortality rate before reaching
a new host, (iii) time windows to find a new host, and (iv) attachment success rate once
reaching a new host. While additional details are provided in the Supplemental Material,
these are modelled as follows:

(i) Let Kji denote the connectivity from site j to i as number of particles successfully
transported in the simulation (in millions). We also derive an empirical probability
fjis of transporting particles from site j to i within s − 1 to s weeks based on
transportation times. Overall, Kjifjis is the number of particles transported from
site j to i within s− 1 to s weeks.

(ii) The weekly survival rate is set to ω = exp
(
7
4 log(0.5)

)
= 0.2973 based on (Myksvoll

et al., 2018; Stien et al., 2005), with the interpretation that the survival rate has a
half-life of four days.

(iii) There is a specific time window where a successful transmittance can take place.
The lower limit of the window comes from the fact that larvae must develop before
they attach to a new host. The upper limit comes from the fact that they run out of
nutrition and die within a certain number of weeks. This time window is illustrated
by the black lines in Figure III.8. Within the relevant temperature range, there is a
maximum transportation time of 5 weeks.

(iv) Infectivity is defined as the rate of successful infection once reaching a new host,
which is both age and temperature dependent (Skern-Mauritzen et al., 2020). We
have estimated a function I(A, T ) for infectivity based on data from (Samsing et al.,
2016; Skern-Mauritzen et al., 2020) (see the Supplemental Material), and use the
average infectivity during a week Īs(T ) to infer infestation success. The function
I(A, T ) is illustrated in Figure III.8.

Based on (i)–(iv), the weights that account for successful transportation and attachment
are given as:

wjits = AitAj,t−sĪs(Tit)Kjifjisω
s, s ∈ {1, . . . , 5}. (III.14)

The indicator Ait is equal to one if site i is active in week t and zero otherwise; hence,
AitAj,t−s takes value one if both the emitting site is active during emission and the
receiving site is active during arrival. In Figure III.9, we illustrate the (logarithm of the)
aggregated transferal and attachment rate between sites (i.e., log(

∑5
s=1 wijts) for all i

and j) for T = 9◦C and assuming all sites are active.
The estimate of within-site recruits Ŷ RS

it is derived from the same components as
before but excluding travel time. Its estimate takes expression

Ŷ RS
it = ιRSAit

5∑
s=1

Ai,t−sĪs(Tit)H(Ti,t−s)Y
AF
i,t−s, (III.15)
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Figure III.8: Infectivity I(A, T ) as a function of weeks since hatching (A) and temperature (T ).
The infection window is shown in black. In the model, we extrapolate beyond the data range of
temperatures from 5◦C to 20◦C (dashed lines) to temperatures from −1◦C to 24◦C (indicated
by the axis limits).

Figure III.9: Logarithm of the aggregated transferal and attachment rate between sites at
temperature T = 9◦C assuming all sites are active, in production area 3. Only rates above the
80th quantile are shown.

which accounts for the past abundance of adult female lice, hatch rate, infectivity, and
the active status of the site. The fitted parameter ιRS > 0 is a scaling.
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Lastly, the estimate of recruits from unexplained sources Ŷ RU mainly acts as an in-
tercept term, expressed as

Ŷ RU
it = ιRU exp(βT (Tit − 10)). (III.16)

This is limited to a temperature correction to reflect seasonality and scaling by the para-
meter ιRU > 0. By letting the intercept term contribute to recruits instead of µ̄⋆ directly,
we get a gradual build-up of lice abundance directly after a site has been re-opened and
the intercept will also be affected by treatments.

3.2 Treatment model
When forecasting treatments, we are mainly interested in the the potential need for future
treatments rather than the specific kind of treatment; thus, we model only whether a
treatment occurs or not. Cleaner fish are mainly used as a preventative measure and are
ignored for this purpose. Let Wit = V mec

it ∧ V mec
it denote the binary random variable for

whether a mechanical or medical treatment occurs at site i in week t. We then assume
the occurrence of treatment follows the conditional distribution

(Wit | Ft−1) ∼ Bernoulli(pit), (III.17)

where pit is the probability of treatment and Ft−1 is the information set up to time t− 1
as defined in Section 3.1. This probability is modelled as a Generalised Auto-Regressive
(GAR) model with explanatory variables using a logistic response function.

We express the probability of treatment through ηit = logit(pit) and let η̄it denote the
best-guess estimate of the log-odds for treatment based on explanatory variables. This
best-guess estimate is given as

η̄it = βp
0 + βp

LLit +
∑

⋆∈{MB,AF}

(γ⋆l + γI,⋆Wi,t−1)
(
Y ⋆
i,t−1

)π⋆

, (III.18)

where βp
0 is an intercept, and the indicator variable Lit takes value one if the treatment

limit is low (i.e., the limit is below 0.5) and zero otherwise. The last term represents
the effect of observed lice abundance in the previous week, as well as its interaction
with last week’s treatment. We find that no further lags on lice abundance are required
due to small and insignificant coefficient estimates. Using stationary lice (Y ST

it ) to infer
treatment has a negligible effect; hence, it is omitted. The parameters βp

0 , β
p
L, γ

⋆
l , γI,⋆

and π⋆ (non-linearity) for ⋆ ∈ {AF,MB} are subject to estimation.
We also correct this best-guess estimate (η̄) using auto-regressive relationships on

its past prediction errors to improve its forecasting ability. The corrected log-odds of
treatment (η) takes expression

ηit = η̄it +

20∑
l=1

Aitlϕlξi,t−1, (III.19)

where
ξit = tanh−1

(
Wit − logit−1(η̄it)

)
, (III.20)

denotes the innovation of η̄it with respect to the observation Wit. The indicator Aitl

terminates the memory of the process whenever the site has been closed between weeks
t − l and t. Since binary random variables give infinite values in the response space
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(logit(Vit) = ±∞), we make comparisons in the input-space [0, 1] using the transformation
logit−1(η̄it) first, and then transform differences back using tanh−1(·) which allows for
negative values. Observe also that whenever logit−1(η̄it) ≈Wit, we have that ξit ≈ 0 and
we default to the best-guess estimate; meanwhile, larger discrepancies between logit−1(η̄it)
and Wit give progressively larger values of ξit causing larger corrections. Through model
estimation, we find an exponential decay in the auto-regressive coefficients; hence, we let

ϕl = ϕscale exp
(
ϕrate(l − 1)

)
, (III.21)

and estimate only the two parameters ϕscale and ϕrate.

3.3 Joint forecasting
We now explain the steps and underlying assumptions used to derive joint forecasts using
both models for lice abundance and treatment. Let f(Y ⋆

i,t+1 | Ft, Vi,t+1) denote the
conditional distribution for lice abundance in stage ⋆ at site i and week t+ 1 (as defined
in Section 3.1) and let f(Wi,t+1 | Ft) denote the conditional distribution of the occurrence
of treatment (as defined in Section 3.2). For simplicity, we let Yit = (Y ST

it , Y MB
it , Y AF

it )
denote the concatenation of all stages of lice.

Assuming the realisation of lice abundance in each stage are independent of each other,
conditional on Ft and Vi,t+1, we determine their joint distribution as

f(Yi,t+1 | Ft, Vi,t+1) =
∏

⋆∈{ST,MB,AF}

f(Y ⋆
i,t+1 | Ft, Vi,t+1). (III.22)

The need for treatment Wit is resolved by assuming farmers only use mechanical treat-
ments since, lately, the majority of treatments are mechanical (see Figure III.3). Thus,
the distribution for treatment is determined as

f(Vi,t+1 | Ft) = f(Vi,t+1 |Wi,t+1)f(Wi,t+1 | Ft), (III.23)

where the (deterministic) distribution f(Vi,t+1 | Wi,t+1) translates Wi,t+1 to Vi,t+1. Lice
abundance dependens on treatment within the same week, and their joint distribution is
then determined as

f(Yi,t+1, Vi,t+1 | Ft) = f(Yi,t+1 | Ft, Vi,t+1)f(Vi,t+1 | Ft). (III.24)

Consequently, the realisation of treatment Vi,t+1 must always be determined before lice
abundance Yi,t+1. It follows that the one-week-ahead forecast distribution at each site is
a two component mixture consisting of two cases: with treatment or without treatment,
where the probability of treatment determines their respective weights.

Up to now, we have only addressed the forecast distribution at an individual site.
For simplicity, let Yt = {Yit}i=1,...,N and Vt = {Vit}i=1,...,N denote the lice abundances
and treatments across all sites. We assume that within a given week, the realisation of
treatment and lice abundance are independent across sites. Their joint distribution is
then expressed as

f(Yt+1,Vt+1 | Ft) =

N∏
i=1

f(Yi,t+1, Vi,t+1 | Ft). (III.25)

Recall that lice abundance and treatment at each site depend on the history of (almost)
all other sites since these are connected by currents that transport lice between them. To
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forecast one additional week at a single site, we must condition on the realisations of Yt+1

and Vt+1 in the previous week, whose distribution is determined as

f(Yi,t+2, Vi,t+2 | Ft) = f(Yi,t+2, Vi,t+2 | Ft,Yt+1,Vt+1)f(Yt+1,Vt+1 | Ft). (III.26)

While the one-week-ahead prediction has a simple analytical expression, we must resort
to joint simulation across all sites to forecast beyond a single week. By repeating the
above steps, we may also forecast multiple weeks ahead.

To summarise, the steps required to simulate the joint development of treatment and
lice abundance across all sites are:

1. For each site i:

(a) Predict treatment probability pi,t+1 conditional on information Ft

(b) Sample a treatment realisation Wi,t+1 using probability pi,t+1 and set V mec
i,t+1 =

Wi,t+1

(c) Predict the expected lice abundances µ⋆
i,t+1 for each stage ⋆, conditional on Ft

and the realisation of Vi,t+1

(d) Sample the outcome of each lice count ni,t+1Y
⋆
i,t+1 given its expectation ni,t+1µ

⋆
i,t+1

2. Update Ft+1 to include the sampled realisations of Yt+1 and Vt+1 across all sites

3. Repeat for t+ 2, t+ 3, . . . , t+ k

By repeating the simulation scheme above, we can derive an empirical k-week-ahead
forecast distribution f̂(Yt+k,Vt+k | Ft) conditional on all current information Ft up to
week t.

The reason for finding the joint forecast distribution is to infer different sites’ exposure
to future treatments. More importantly, we are also concerned with heterogeneity in their
risk exposure to guide where to harvest within a portfolio of sites. As a proxy for risk
exposure, we use the above simulation scheme to derive the empirical distribution of the
aggregated future treatment count at each site within a k-week horizon:

Rk
it =

k∑
s=1

Wi,t+s | Ft. (III.27)

Meanwhile, risk management models apply the distribution f̂(Yt+k,Vt+k | Ft) directly.
Information on future treatments can be incorporated into harvest plans by minimising
overall exposure among multiple sites. Since harvest plans are made collectively, these
must trade off which fish groups are to be exposed the longest, and such considerations
may also be combined with information about the health state of the fish. This is invest-
igated further in Section 4.3.

3.4 Estimation
The lice and treatment models were fitted separately by maximizing likelihood estima-
tion (MLE). The log-likelihoods were implemented with the assistance of Template Model
Builder (TMB), a free and open-source R package specifically designed for estimating com-
plex non-linear models (Kristensen et al., 2016). The various parameter constraints are
handled by maximizing a re-parameterised version of the log-likelihood, which varies over
a set of unconstrained parameters. For instance, the constraint ρ > 0 for baseline weekly
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mortality is parameterized as ρ = exp(u), where u is an unconstrained parameter. TMB
provides the gradient and Hessian computed using automatic differentiation (Fournier et
al., 2012) at machine precision, and this is used in the R-routine nlminb for optimization.
The C++ template functions have been made available online3. Standard deviations are
computed using the Delta-method from the gradient and Hessian evaluated at the optimal
parameter estimates.

Estimation is performed on data in the period 2018–2021 due to structural instabilities
that stabilise by 2018. This is mainly attributed to the decline in the efficacy of medical
treatments and changes in the counting dispersion of adult female lice. The transition
was found by performing rolling estimation on fixed-width, two-year time windows. The
Supplemental Material describes these observations in more detail.

4 Results and validation

We emphasize the forecasting ability of the joint model but also interpret the estimated
models (Section 4.1) and each of their forecasting abilities (Section 4.2). The joint model
is analysed in Section 4.3.

4.1 Model interpretation and in-sample analysis

Estimates of all parameters for both models are given in Table III.1 as well as their
standard deviation derived by the Delta-method. For the lice model, we find that:

• The dispersion parameters ν⋆ are incrementally increasing for ⋆ ∈ {ST,MB,AF},
which means counting precision gets incrementally better for later stages. This cor-
responds well with reported experiences that adult female lice are easier to identify
than those in the stationary stage (Thorvaldsen et al., 2019).

• The baseline weekly mortality rate is approximately 1 − exp(ρ) = 5.47% while
the total effect of treatments are 1 − exp(

∑
k δ

mec
k ) = 38.8% for mechanical and

1− exp(
∑

k δ
med
k ) = 31.7% for medical.

• We can infer that the memory from past innovations is sufficiently low at the last
included lag due to the coefficient value of θ20 = θscale exp(θrate · 19) = 0.006.

For the treatment model, we find that:

• Having a lower treatment limit (Lit) increases the odds of treatment by a multiplic-
ative factor exp(βL) = 2.16, which is to be expected.

• The effect of lice on the probability of treatment is significant for both γAF and
γMB. Meanwhile, the effect of stationary lice (Y ST

it ) on the probability of treatment
was insignificant and removed during model selection.

• The memory from past innovations is sufficiently low since the last lagged auto-
regressive coefficient has a value of ϕ20 = ϕscale exp(ϕrate · 19) = 0.037.

3[Note: link will be provided after review]
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Table III.1: Parameter estimates for both models. Standard deviations (SD) are derived by
the Delta-method.

Lice model

Parameter Estimate SD

νAF 0.0880 0.0019
νMB 0.0535 0.0008
νST 0.0253 0.0004
ιRU 0.0446 0.0028
ιRS 3.5767 0.1746
ιRN 1.0337 0.0945
βT 0.0584 0.0108
α 1.9760 0.0907
ρ -0.0563 0.0064
δmec
0 -0.4911 0.0137
δmed
0 -0.0000 0.0001
δmed
1 -0.0935 0.0355
δmed
2 -0.1187 0.0431
δmed
3 -0.0575 0.0486
δmed
4 -0.1113 0.0552∑
k δ

med
k -0.3810 0.0613

c 0.0065 0.0002
θscale 0.5709 0.0067
θrate -0.2387 0.0060

Treatment model

Parameter Estimate SD

β0 -6.5164 0.4789
βL 0.7705 0.1190
γAF 3.9822 0.2264
γMB 3.0541 0.5056
γI,AF -1.4766 0.8216
γI,MB -2.2604 0.4635
πAF 0.5774 0.0397
πMB 0.1734 0.0292
ϕscale 0.4733 0.0459
ϕrate -0.1336 0.0180

Sources of lice

Three sources contribute to lice recruits: neighbours (RN), within-site (RS), and unex-
plained sources (RU). When also accounting for development time and mortality rates,
we can decompose the sources of lice by analysing each of their contributions to µ̄⋆

it =

λ⋆,RS
it + λ⋆,RN

it + λ⋆,RU
it where

λ⋆,RS
it =

20∑
l=1

r⋆itlŶ
RS
i,t−l, λ⋆,RN

it =

20∑
l=1

r⋆itlŶ
RN
i,t−l, λ⋆,RU

it =

20∑
l=1

r⋆itlŶ
RU
i,t−l. (III.28)

We do an in-sample analysis of this decomposition by averaging each source over all active
sites in a given week to get a time-development of relative contributions: 1

N

∑N
i=1 λit.

These are illustrated in Figure III.10 in terms of average and normalised weekly quantities.
First, we see from Figure III.10 a clear seasonal pattern due to temperature variations.

Second, in late winter periods we observe that the explainable sources of lice reaches
almost zero. This may be explained by increased time until infection and increased
development time (due to low temperatures) such that the aggregated mortality rate
(over longer time periods) is higher. Infectivity is also lower at low temperatures (see
Figure III.8). Third, we observe that there seems to be an almost equal contribution to
lice abundance from neighbours and from hatching at the same site. Lastly, we observe
that the overall level of mobile lice is higher compared to the other stages; hence, the
model reflects that this stage includes adult male lice in addition to pre-adults from both
genders. This is also consistent with higher levels of mobile lice in the data.

Treatment patterns

While the auto-correlation function is a useful diagnostics tool for continuous ARMA
processes, the auto-persistence function (APF) is a valuable counterpart for binary time-
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Figure III.10: Sources that contribute to expected lice abundance at different stages, averaged
over sites.

series data (Startz, 2008). The APF is stated as the conditional probability of future
treatments:

APF0
k = P (Vi,t+k | Vit = 0) , APF1

k = P (Vi,t+k | Vit = 1) . (III.29)

Figure III.11 illustrates the empirical estimates of the APFs along with the corresponding
in-sample estimates from the treatment model; both in terms of explanatory variables (η̄)
and using the correction by auto-regression (η).

Figure III.11: Auto-persistence function (APF) illustrating the empirical probability of fu-
ture treatments conditional on treatment in the current week (APF-0 = No treatment, APF-1
= Treatment) in 20-week time windows of active weeks. Corresponding probabilities using in-
sample model estimates with explanatory variables (η̄) and with an added auto-regressive cor-
rection (η) are also shown. Ribbons give 95% confidence intervals.

From APF-1 in Figure III.11, we see that treatments in the week following a week
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with treatments are very unlikely; however, this is also enforced in the data processing
(see Section 2). APF-1 also shows a clear tendency that there is an increased probability
of treatments from the second consecutive week and on-wards, given there is treatment
in the current week. There are no notable characteristics in APF-0, neither in the data
nor in the model predictions.

We may interpret the model-inferred value for logit(η̄) (which uses only explanatory
variables) as the conditional probability of treatment, corrected for the effect of observed
lice abundance. We observe from APF-1 in Figure III.11 that this gives predictions that
are slightly better than the baseline unconditional probability of treatment, but under-
estimates the conditional probability of treatment as observed in the data. Meanwhile,
the full model (logit(η)) fits more closely to the empirical data and successfully corrects
for the discrepancy between logit(η̄) and the data. This suggests lice abundance cannot
predict treatments alone and that auto-regressive relations on previous treatments are
able to explain additional effects.

On average, the treatment model assigns a 28.2% probability of treatment in weeks of
treatment, while assigning a 9.0% probability of treatment in non-treatment weeks (from
model estimates at week zero in Figure III.11). A naïve model alternative would be an
unconditional Bernoulli distribution specified by the average probability of treatment,
which is 11%. Clearly, our model improves on this. Note that these numbers are derived
within the sub-selection of weeks that start off all 20 week time windows where a site is
active.

4.2 One-week-ahead forecasting ability

Risk management models use distributional forecasts as input directly; hence, we em-
phasize the forecast distributional fit of the current models. For this purpose, we use
the probability integral transform (PIT) as suggested by Dawid (1984). The idea is to
assess the percentile of the data within their forecast distribution: A correct diagnostic
should resemble a uniform distribution of percentiles with the interpretation that the data
resemble samples from their respective forecast distribution. For discrete distributions,
the PIT must be corrected to give a uniform distribution of percentiles (see Czado et al.,
2009). By estimation up to time t, we find the forecast distribution for time t+1 at each
site and evaluate the observed data within these (out-of-sample). The one-week-ahead
forecast distributions are given analytically by (III.1) and (III.17), where we use the ac-
tual one-week-ahead treatment outcome to infer the distribution for lice abundance. This
is repeated by rolling estimation, and evaluations are combined across all sites (totally 67
weeks and 5576 active site-weeks). The resulting PITs are illustrated in Figure III.12.

Figure III.12: Corrected Probability Integral Transforms for forecast distributions for lice
stages, and treatment probabilities at all sites.
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The forecast distribution of treatments and stationary (ST) lice give PITs that are very
close to uniformity. Still, the PITs for mobile (MB) and adult female (AF) lice indicate
that the corresponding forecast distributions are slightly biased (by being non-centred)
and over-dispersed (inverted U-shape), while some data points are more extreme than
expected (inflated probabilities at the ends).

The irregularities in the forecast distributions of mobile (MB) and adult female (AF)
lice have some possible explanations. First, the forecast distribution of adult female
(AF) lice has a tendency to predict too large levels of lice. It is known that there are
clear incentives for farmers to under-count adult female lice since this leads to costly
treatments (Jeong et al., 2023), which might explain this bias. Furthermore, we also see
a corresponding opposite bias in the predictions of mobile lice (MB); predicted lice levels
are too low. These opposite biases may be related since there is no individual scaling
between those quantities in the model, meaning the (incentive) bias in adult females may
be the cause of both: predictions for MB are scaled down to account for the bias in AF.
Various attempts to correct this bias typically lead to poor predictions of treatments in
the joint model; hence, we do not correct this explicitly. Second, some data points are
more extreme than expected, which is particularly pronounced for mobile lice (MB). This
suggests the model does not capture some very rapid increases in lice abundance. We
note there are occurrences of extreme lice abundance (above 5–10) in the data that are
outside the range of all other counts, which may also explain some of these outliers. The
GMA correction also adjusts the overall level of forecasts in consecutive time steps after
an outlier, and only an initial high lice abundance should cause large prediction errors.

We illustrate one-week-ahead out-of-sample predictions of the respective models in
Figure III.13 for an example site, along with actual data and prediction intervals of 50%
and 95% confidence. Additional sites are illustrated in the Supplemental Material. First,
we observe in Figure III.13 that the forecast distributions for lice abundance seem to
follow the data closely and replicate the dynamics well. For the treatment model, there is
a close correspondence between higher predicted treatment probability and weeks of actual
treatments; hence, it gives a meaningful distinction between weeks of lower and higher
probability of treatment. In this particular case, the predicted probabilities in weeks of
actual treatments are in the range of 20–40%, meaning there is still some ambiguity to the
specific week a treatment will take place. Lastly, we observe that the forecast distributions
for lice abundance show tendencies of over-dispersion since more data points are within
the 50% prediction intervals than expected. A single site is not sufficient to draw the
conclusion of over-dispersion, but this is further supported by the PITs in Figure III.12.

4.3 Long-term joint forecasting

The primary aim of the joint forecasting scheme is to predict the total number of treat-
ments within a k-week-ahead horizon, denoted Rk

it in (III.27), since this is a major driver
of costs and biological risk. The expected number of future treatments is an interesting
measure of risk, but variability is also important since that reflects exposure to sudden
large changes that may not be accounted for in existing production plans.

First, we validate the forecasting ability of Rk
it. Figure III.14 shows out-of-sample

prediction intervals of aggregated future treatments within a 20-week horizon (starting
April 2021) along with actual treatment counts during the same period. We see most
data points are between these 95% prediction intervals (specifically, 98.8% are within).
We also notice that these prediction intervals are relatively wide, meaning there is large
variability in the need for future treatments. Still, the joint forecasting model reflects this
variability well.
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Figure III.13: Out-of-sample one-week-ahead forecast distributions as prediction intervals and
probability of treatment for an example site.

Heterogeneity in risk exposure

For harvest planning and risk management, heterogeneity between sites is particularly
interesting to guide the decision of where to harvest first. Farmers want to minimise
overall risk exposure until a fish group is harvested subject to operational constraints that
require different groups to be harvested in sequence. We do a simplified quantification of
lice-induced losses to illustrate why heterogeneity in risk exposure matters. We account
both for the direct cost of treatment and the indirect cost from loss in growth and increased
fish mortality which is compared to having no treatments at all. Costs are then scaled by
the sales value of fish to get a relative measure of lice-induced loss. Detailed assumptions
are listed in the Supplemental Material. Figure III.15 illustrates the distribution of site-
specific losses within a 20-week horizon as kernel densities.

First, we observe from Figure III.15 that the majority of sites have an expected loss
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Figure III.14: Forecasted 50% and 95% prediction interval for treatment count within a 20-
week horizon. Sites on the first axis are sorted by average forecasted treatment counts and
non-active sites are removed. The centers of the prediction intervals are averages. Observations
that are outside the 50% prediction interval are colored orange, while those that are also outside
the 95% prediction interval are colored red.

Figure III.15: Site-specific risk exposure related to direct and indirect costs of lice treatments.
Based on a 20-week forecast of treatment frequency on active sites. Illustrated as kernel densities
for each site.

between 0% and 21%, with an overall average exposure of 7.60% loss. Already, this
constitutes very considerable amounts while the tail end of the worst loss distributions also
reaches up to 40%. This quantification of risk can be very valuable since such estimates of
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exposure to still unrealised losses can be anticipated in advance and acted on. The aim of
the forecasting tool developed in this paper is to plan for such risk exposure proactively
instead of only reacting to on-going developments. Second, we see that different sites
have widely different levels of exposure that constitute very considerable amounts. For
example, the probability of more-than 10% losses is significantly different among sites.
Farmers may act on this information by prioritising to harvest the more exposed fish
groups earlier than others.

5 Discussion and concluding remarks

Constructing a model for the given data has shown particularly challenging due to a
relatively low signal-to-noise ratio, and an important consideration to ensure long-term
forecasting ability has been to avoid over-fitting. The main strategy to prevent over-fitting
has been to incorporate as much existing knowledge about lice dynamics as possible while
also reducing the number of parameters. Model selection using in-sample criteria like
likelihood, AIC and BIC has mostly been unhelpful, while building the model based on
physical intuition has shown to be more effective. Still, the structure of the final model
acknowledges that not every aspect of lice dynamics can be explained by known causal
mechanisms since it also requires an observation-based correction to more recent data
(through GARMA models).

Incorporation of spatial effects is essential to determine heterogeneity in risk-exposure
among sites since we already know this to be of major importance. In fact, the only source
of heterogeneity in the joint model is stream patterns which, in turn, drive treatments at
each site. Explicit use of stream patterns to derive heterogeneity between sites facilitates
better trust that the model can performs well on future data and, due to its strong
physical motivation, there is also reason to believe it performs well in new situations if
sites are moved, removed or created. We emphasize trustworthiness since the model is to
be applied to risk management, and validation of the joint model shows a good fit to the
historical data of treatments that also replicates past heterogeneity between sites.

We model treatments as a stochastic process because the ambiguity is too high for
when treatment limits are truly surpassed, likely due to the high counting dispersion.
Simply determining treatments based on whether simulated lice counts are above the
limit does not work very well in the forecasting model. In Figure III.11, we show that
even a regression model on several explanatory variables that includes lice abundance is
insufficient to explain treatment patterns in the data. Only once auto-regressions on past
treatments are added do we replicate what is observed in the data. An interpretation
of why auto-regressive relations matter is that farmers attain more information than is
contained in the lice counts. For example, farmers may observe the fish visually without
taking them out for counting, or they may have experience with how fast lice abundance
develops at their site. Such cues are not reported and cannot be used in a model; how-
ever, auto-regressive relations on past treatments can capture similar relations to give an
effective prediction model. In other words, by modelling auto-regressive relations we as-
sume more information goes into treatment decisions than is contained in the lice counts
themselves.

Industry know-how suggests that the effectiveness of treatments is in the range of
90%; thus, our parameter estimates (approximately 30–40%) show less effectiveness than
expected. Aldrin et al. (2019) also found this effect to be in a similar range to ours. There
are two possible explanations to this large discrepancy. First, it may be due to a spurious
relation between treatments and lice abundance. Treatments co-occur with increased lice
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abundance but treatment is not the cause of more lice; rather, the opposite is true. Since
it is difficult to separate the causal effect of treatments on lice abundance from their co-
occurrence, the prediction power for lice abundance may improve by (counter-intuitively)
lowering the effect of treatment. This is also the reason we constrain the sign of all
parameters on the effect of treatment. Second, one may speculate whether lice can end
up in the water before (or during) treatments and then return to the host afterwards.
Even if the treatment itself has a 90% efficacy, the overall effect must be lower if the
louse later returns to its host. Our model estimates would only reflect the overall effect
of treatment, which should then also be lower than the expected 90% if lice later return
to their hosts.

In future research, it may be advantageous to incorporate higher resolution stream
patterns to account for known seasonal variations. This would require running longer
hydrodynamic simulations, which is outside the scope of the current paper. Furthermore,
future research may also validate the models using more precise machine vision counting
which is currently being deployed in the industry. In principle, these could be applied
directly without major alterations.
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Paper IV

Harvest Planning under
Uncertainty in Salmon
Aquaculture

Benjamin S. Narum, Julio C. Goez and Stein W. Wallace
Abstract

We address operational risk management in aquaculture using multistage
stochastic programming to address biological, operational and market risk.
The model is applied to Norwegian salmon aquaculture, and we find that de-
cision support tools provide valuable insights across a multitude of different
situations in a complex environment. Our results show there is considerable
value in actively incorporating consideration of uncertainty into harvest plan-
ning.

1 Introduction
Harvest planning in Norwegian salmon aquaculture faces considerable biological, opera-
tional and market uncertainty while being subject to regulatory constraints and opera-
tional limitations. Large capital investments in the stock also means the downside risk is
considerable. Each farming company has a large portfolio of heterogeneous sites which
adds to the complexity of planning. Combined, these factors make the Aquaculture Har-
vest Planning (AHP) problem well suited for application of quantitative decision support
models that incorporate uncertainty. The paper presents the modelling considerations
and solution procedures used to address the planning problem by multistage stochastic
programming, and aims to investigate whether decision support models can aid in man-
aging the complexity aquaculture farmers face. Our contribution lies is addressing an
existing and well established logistical problem by applying new techniques. Harvest
planning models to this level of detail is a novel contribution to the literature.

1.1 Background
Salmon aquaculture consists of rearing fish in ocean-submerged cages located at sites
along the coastline. Typically, each site contains 1–12 cages. Fish are hatched on land
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and transferred to the ocean at a weight of approximately 0.1–0.7 kg and grown for 12–18
months until harvested at 3–8 kg, not necessarily by harvesting the entire site at once.
The fish are directly exposed to the ocean and are affected especially by temperature,
parasitic lice and spread of disease, the latter two being the major biological sources
of uncertainty which spread between sites. Lice is a particular challenge, and during
increased levels of lice, farmers must conduct costly treatments that are also harsh on fish
health (Walde et al., 2021, 2022). This is a major concern for the industry and has an
estimated cost of around 9% of annual revenue (Abolofia et al., 2017; Iversen et al., 2017).
In an effort to mitigate the lice problem, farmers are subject to regulatory requirements to
perform delousing treatments, to filfil limitations on maximal total biomass (MTB), and
to close sites for eight weeks between production cycles (Lovdata, 2012). Spot prices for
salmon are highly volatile, making farmers vulnerable to a sudden requirements to harvest,
either due to health considerations or regulatory constraints. Most of companies’ capital
is bound up in the currently standing biomass, meaning they have large risk exposure
in case of large mortality events. Simultaneous occurrence of unforeseen disease and lice
treatments are known to be especially unfortunate. Historically, the mortality rate per
fish cohort is 14-17% on average (25% mortality at the 75th percentile, 40 % mortality
at the 97.5th percentile, and 60–80% mortality at the maxima) as investigated by Bang
Jensen et al. (2020). The current state of harvest planning in the industry is dominated by
domain expertise applied to manual setup of schedules supported by spreadsheet models.
Common rules-of-thumb include harvesting the largest fish first and simplifications to
optimise for total harvested biomass instead of profit (which we investigate in Section 4).

The AHP problem is an inherent sequential decision problem under uncertainty where
timing and sequencing are the essential considerations to be made. Harvest decisions
are irreversible (since fish cannot be de-slaughtered) meaning myopic approaches are
expected to be sub-optimal, and precise account of the future value of standing biomass
is required. We pose the harvest planning problem as a stochastic multistage program to
effectively deal with uncertainty, consideration of portfolio effects, operational details and
regulation. We chose this methodology to effectively deal with constraints, to encode the
logic of harvest operations using integer variables, for interpretability, and to account for
far-reaching temporal dependencies in the uncertain quantities. In general, strong and
relevant modelling assumptions are required to solve sequential decision problems under
uncertainty (Powell, 2019) and in their basic form, their complexity grows at rates that
can be considered computationally intractable to solve (Shapiro & Nemirovski, 2005).
Hence, we apply extensive out-of-sample validation techniques to ensure we obtain good
solutions with respect to the approximations required for computational tractability.

1.2 Literature

Forsberg and Guttormsen (2006) performed an early study that confirmed there is value
in information of future prices for harvest plans, but disregard operational limitations.
Oglend and Tveteras (2009) find that spatial proximity of sites has correlated risk exposure
and should be diversified; however, this is only actionable on the strategic level of site
acquisition. It is also known that companies have acquired smaller companies partly as a
risk mitigation strategy (Asche et al., 2013). Engehagen et al. (2021) analyse the risk of
algal blooms in aquaculture by real options posed as an optimal timing problem for when
to harvest. Pettersen et al. (2015) found that early harvest triggered by observed spread of
disease is economically beneficial but also that this is sensitive to other factors. Schütz and
Westgaard (2018) analyse risk-aversion by multistage stochastic programming considering
market risk, but simplify much of the operations. A series of master’s theses (Denstad
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et al., 2015; Hæreid, 2011; Hornsletten, 2017; Langan & Toftøy, 2011) address harvest
planning under uncertainty but face tractability issues which limit the scope of planning
considerably. Meanwhile, this paper addresses harvest planning up to the effective end-of-
horizon, which is needed to reflect site heterogeneity. Føsund and Strandkleiv (2021) solve
a deterministic problem of similar structure by decomposition and achieve significantly
improved solution times. This implies similar decomposition procedures can be effective
for the stochastic problem as well.

A fundamental difference between agriculture and aquaculture is that aquaculture
farmers are in less control of the surroundings of the livestock, which is a major source
of uncertainty. Models incorporating uncertainty have increasingly been applied to agri-
culture, and the review by Borodin et al. (2016) concludes that stochastic programming
problems are dominated by two-stage models with recourse or chance constraints with
very few real-world implementations of multistage models. Furthermore, those that exist
address only a single source of either market or production risk. Dowson et al. (2019)
provide a good example of multistage models in agriculture where they apply Stochastic
Dual Dynamic Programming (SDDP) to dairy production. We believe the modelling
techniques in this work are applicable to other operational planning problems, like in ag-
riculture. Characterising traits could then include: managing stock with some associated
biological risk, time developing capacity constraints, irreversible decisions to sell the stock
to market, and consideration of both sequencing and timing.

2 Problem statement and modelling considerations

The AHP problem represents a highly complex sequential decision-making problem under
uncertainty. The planning horizon is generally infinite since sites are re-stocked continu-
ously, and these have different startup dates to ensure consistent supply. Decisions are
discrete in nature since an important driver of costs comes from hiring well-boats to
transport the harvested fish. There is significant uncertainty in the biological state of
the fish, and the operational cost of handling biological challenges is also considerable.
Biological factors are based on statistical models of complicated non-linear relations with
long-term dependence on history (up to 20 weeks for lice development) which prevents ap-
proximation by assuming Markovian time-development. The industry is under regulatory
constraints to limit its total standing biomass, which means harvest decisions are mainly
triggered by limiting constraints rather than reaching optimal harvest weights based on
growth and feed costs. Since harvest decisions are driven by company-wide limiting con-
straints, all sites must be considered simultaneously to make a coherent harvest plan.
There is large heterogeneity between sites, both due to offsets in when fish are deployed
and in the exposure to biological risk, which means they all contribute their own indi-
vidual considerations to the overall planning. While biological risk affects planning on a
medium-term time horizon (3–10 weeks), we also have very high short-term price volatil-
ity (within 1–2 weeks) that affects the materialised profit, as well as biomass limitations
that are relevant for both short- and long-term planning (1–80 weeks). In this section, we
present the modelling considerations that allow solving of the problem numerically while
still capturing its essential characteristics.

2.1 Modelling considerations

A characteristic of major importance is that the model must capture how fish develop over
time, and must replicate how harvest decisions alter the state of the portfolio. We for-
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mulate this concisely by representing the state in terms of fish count y, where all aspects
such as growth, weight, health, mortality, and prices, are built into stochastic coefficients
multiplied by y to give linear expressions of y. A great advantage of this formulation is
that we can have arbitrarily complicated models to determine these coefficients, based
on domain knowledge and forecasting models of high complexity. Still, we have a linear
decision model that allows solving problems of large scale. Furthermore, we may encode
logic that alters the state y through constraints using binary variables. Since fish count
never increases (as opposed to weight), the initial fish count provides a tight big-M con-
stant. One caveat of having complicated relations in the stochastic coefficients is the
challenge of representing their dependence pattern within a scenario tree.

Hydrodynamics

Temperature

Lice

Mortality

Disease

Biomass

Weight

Market Price
Profit

Harvest

= Parameter

= Decision

= State

= Objective

= Randomness

Figure IV.1: Overview of uncertainty, and relationships as reflected by the model.

All sources of uncertainty can be summarised by four stochastic parameters within
the decision model: (i) weight, (ii) mortality, (iii) lice treatment, and (iv) market prices.
There are causal mechanisms driving these parameters, as well as unresolved random
components. Figure IV.1 illustrates an overview of the relations between all uncertain
factors. The main exogenous drivers are temperature and hydrodynamics, which determ-
ine development of lice and disease, as well as the growth rate of fish. Lice treatments
and disease are the most important drivers of biological risk since they affect mortality
rates. Lice treatments are forecasted but we simplify incorporation of disease by deriving
the mortality distribution conditional on lice treatment but unconditional on the effect
of disease. This means the upper tail of the mortality distribution is heavier due to the
effect of disease. The price model is based on first deriving a smoothed trend from histor-
ical data using a wide-spanning moving average; this simplification is used to represent
domain knowledge and expert forecasts that are hard to replicate but normally available
to farmers. The precision of these price trends may be slightly optimistic in assuming
better information than is truly the case. Surrounding this trend, we represent variability
in prices as an auto-regressive process of log-transformed prices having three weeks of
memory. Detailed descriptions of the statistical models are given in the Supplemental
Material.

Harvest planning is mainly a timing problem, but consideration of an entire portfolio
also makes it a sequencing problem of combinatorial nature. The decision to harvest is
a discrete decision due to its initiation cost and harvesting at one site can alleviate the
need to harvest at a different site by fulfilling total biomass limitations. We must avoid
decisions to harvest very small quantities each time since it is mainly the initiation that
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drives costs by ordering a well-boat. Still, we assume some operational flexibility once
the decision to harvest has been made through hourly pay and overtime work. Hence,
we let the number of boats used for harvests take values in {0} ∪ [1,∞), encoded by one
binary and one continuous variable instead of an integer variable. This reflects the lump
cost of initiating harvests, but alleviates the complicated combinatorics that arise from
determining integer boat counts for each harvest operation.

Time

Sites

Figure IV.2: Horizon with respect to currently active sites. The green segments represent the
relevant sites, while the orange segments represent re-opened sites which contribute to the total
biomass but have no decision variables. Sites are required to be closed for eight weeks between
production cycles, as indicated by the spacing between closing and re-opening dates.

A fundamental aspect of operational planning is to determine the alternative cost
of harvesting, given by the conditional expected value of the current fish stock. Value
estimates are sensitive to the length of the planning horizon, and large heterogeneity
between sites together with portfolio effects make end-of-horizon value approximations
difficult. The horizon of the problem is generally infinite, but very rarely is it profitable
to harvest small fish. As an approximation, we consider decision variables only up to
the stage where all currently active sites must be emptied (see Figure IV.2). Re-opened
sites cannot be ignored since they still contribute to biomass limitations; instead, these
are simplified using linear harvest schedules to reflect their biomass contribution. The
decision problem can then be solved as a finite horizon problem that explicitly considers
the future value of each site up to their effective end-of-horizon. This is deployed in a
rolling horizon environment that progressively adds more sites once they are relevant.

The planning problem is aggregated to consider entire sites instead of individual cages.
We base this on the fact that heterogeneity between fish populations is mainly a result
of spatial location and time of deployment. Cages within a site are usually re-stocked
simultaneously not to delay further startup dates.

Decision-dependent uncertainty (Jonsbråten et al., 1998) can cause challenges in solv-
ing stochastic programming models due to difficulties in representing this kind of uncer-
tainty in a concise manner (Apap & Grossmann, 2017; Hellemo et al., 2018). Technically,
the problem at hand must address when to treat for lice and such treatments affect growth,
mortality and lice development; thus, introducing decision-dependent uncertainty. To al-
leviate the computational challenges implied by decision-dependence, we instead model
treatments as an exogenous stochastic process. This simplification is based on the obser-
vation that while harvest plans may dependent on treatments (by harvesting in advance
of costly treatments), treatments do not depend as strongly on harvest decisions. Namely,
treatments are more strongly driven by lice since they are required by regulation once
the lice level surpasses a certain limit. By predicting future levels of lice, we may also
predict the need for treatment. Furthermore, the primary purpose for delaying a treat-
ment would be to harvest first, but since there is flexibility in harvest timing, the option
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to shift the relative timing of these two actions is still present. The forecasting model for
lice development and treatments is described in detail in a separate publication (Narum
& Berentsen, 2024).

3 Methodology and mathematical formulation

We present the mathematical formulation of the AHP problem and the methodology for
validating its performance in terms of a prescribed stochastic process. The formulation
is presented in Section 3.2, while Section 3.3 elaborates on the validation procedure. For
all practical purposes, we solve the optimisation problem on a discrete scenario tree to
approximate uncertainty. It is still valuable for validation purposes to think about the
optimisation problem in terms of any stochastic process, a discussion left for Section 3.3
after the formulation has been presented. Scenario tree generation is described in Sec-
tion 3.4. First, we explain the notation for stochastic processes and multistage stochastic
programs.

3.1 Notation on stochastic processes and multistage stochastic
programs

Stages are indexed by a finite number of discrete steps t ∈ T = {1, . . . , T} where T is the
last stage. We let ω denote an outcome path (commonly also referred to as a scenario)
and let Ω denote the collection of all possible outcome paths. One may think of ω as a
label (like 1, 2, . . .) used to refer to specific outcomes. Letting Y represent the stochastic
process of some uncertain quantity (like a number, vector or matrix), we index these by
stage t ∈ T and outcome path ω ∈ Ω using the notation Yt(ω). For simplicity, we may
omit reference to ω when it is understood from the context. The history of Y (ω) up to
stage t is denoted Y[t](ω) = (Y1(ω), . . . , Yt(ω)).

Outcome paths are subject to a causal information structure across all stages T which
is denoted F = (Ft)t∈T . The information structure describes whether outcome paths are
distinguishable; indeed, the ability to distinguish outcome paths from each other is in-
formation about what may or may not happen as we go forward in time. In terms of
a stochastic quantity Y , we have that Yt(ω) = Yt(ω

′) whenever ω and ω′ are indistin-
guishable in stage t. We assume all stochastic quantities must adhere to this information
structure and that all stage-specific quantities Yt can be known in stage t. As long as
we do optimisation, it is essential that uncertainty is represented in a way to reflect that
information in incrementally gained over time, and outcomes ω ∈ Ω are fundamentally
linked through the information structure. This is achieved using scenario trees to repres-
ent uncertainty. Probabilities are determined by the distribution P which is described by
statistical models of the respective uncertain phenomena. Let

Et
P [·] ,

denote the expectation using distribution P conditional on information in stage t. For
simplicity, we use the abbreviation Et [·] when the distribution is left implicit, and let
E [·] denote the unconditional expectation. Note that Et [·] (ω) is a random variable in
stage t that can also be specified by ω. The problem may be defined in terms of different
distributions as described by a scenario tree (R), the distribution (P ) or by sampling
paths (P̈ ) used for evaluation, which is why we leave the distribution implicit in the
formulation.
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Decisions are considered to be policies that may change according to information states
in F . We let ξ denote the stochastic process that contains all random parameters and x
the decision policy that contains all decision variables. The objective to be maximised in
each stage t is denoted ft(xt, ξt) and we let

F (x, ξ) =
∑
t∈T

ft(xt, ξt), (IV.1)

denote the overall objective. The overall optimisation problem can be expressed as

max
x∈X
{E [F (x, ξ)]} , (IV.2)

where X is the feasible set, which includes the requirement that the policy must adhere
to the given information structure (also known as non-anticipativity).

3.2 Mathematical formulation
The mathematical formulation aims to decide when and where to harvest in order to
maximise profits under stochastic state development. The validation procedure (described
in Section 3.3) requires relatively complete recourse, achieved using soft-constraints for
all constraints that contain stochastic parameters. An overview of affecting factors are
illustrated in Figure IV.1 and a summary of all variables, parameters and sets is given in
Table IV.1. The formulation is stated in a stage-wise fashion, using indices t to denote
stages and indices i to denote sites. For simplicity, we omit explicit reference to outcome
paths ω, and let constraints be defined to hold for all ω ∈ Ω (almost surely with respect
to the distribution). The information structure and the distribution is defined by the
scenario tree used to solve the formulation.

We use weekly resolution where each stage is indexed by t ∈ T and locations by i ∈ L
where L is the set of all sites. Let At ⊂ L denote the set of decision-relevant sites in stage
t, which can be partitioned into

Ct := At\At+1, Ot := At ∩ At+1, (IV.3)

to denote sites that must be closed by the end of stage t and those that may stay active
after stage t. These are inferred from pre-determined stocking decisions, while decision
variables ultimately determine when a site is closed. Sites that may stay active (Ot) can
also be closed sooner, but there always exists a stage where a given site must be closed
(as determined by Ct).

Stochastic parameters are either coefficients or right-hand side constants in constraints.
We let wit(ω) denote the average fish weight at the end of stage t within site i, and

∆wit(ω) := wit(ω)− wi,t−1(ω), (IV.4)

the corresponding change in weight during stage t. We also let σit(ω) denote the sur-
vivability going into stage t. Fish count can never increase, meaning we can infer the
maximal in-going fish count as

Mit(ω) := yi0

t∏
s=1

σis(ω), (IV.5)

where yi0 is the initial in-going fish count. Let ψit(ω) denote a binary stochastic variable
for whether a treatment is commenced in stage t. Lastly, let πit(ω) denote the sales price of
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Table IV.1: Overview of sets, variables and parameters. Indices i refer to sites, and t to stages.

Sets

T Set of stages
L Set of sites
At Set of decision-relevant sites in stage t
Ct Subset of sites that must be closed during stage t
Ot Subset of sites that remain active after stage t
Ãt Locations that have been re-opened during the planning horizon

Primal variables

yit Number of out-going fish
y⋄it Binary for whether there is out-going fish
hit Number of fish harvested
h⋄it Binary for whether to harvest
bit Number well-boats employed
zbflx
t Violation of boat availability up to additional flexibility
zblmt
t Violation of boat availability beyond additional flexibility
zcmp
t Violation of company-wide biomass limit

Stochastic parameters

σit Survival rate of in-going fish
wit Average weight at the end of week t
πit Revenue per kg harvested at weight wit

ψit Binary for whether delousing is performed

Parameters

yi0 Initial fish count
cfeed Cost of feed per weight increase
cslaughter Cost of slaughtering per weight
cboat Cost of well-boat
cdelouse Cost of delousing
cactive Cost of keeping a site active
rhog Head-over-gut ratio
Pboat Penalty for violating boat capacity
P cmp Penalty for violating the company biomass limit
P loc Penalty for violating the location biomass limit
Cboat Weight-capacity of well-boats
Nboat Number of available well-boats
Bcmp Biomass limitation of the company
Bloc

i Biomass limitation of location i
ỹit Fish count at re-opened sites
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fish where the weight wit(ω) determines its price class. Recall that ξ = (w,∆w, σ, ψ, π,M)
denotes the collection of these stochastic quantities. We summarise the distributions and
estimation procedures for all stochastic parameters in the Supplementary Material.

The state variable yit denotes out-going fish count at site i in stage t, while the
decision variables hit denote harvest count and bit denotes boat count. These decision
variables may alter the state yit through constraints. We have that σityi,t−1 denotes the
in-going fish count, and since the realisation of mortality is observed on in-going fish, we
cannot know the effect of mortality until after decisions in a given stage t− 1 have been
determined and the state yi,t−1 is being passed to the next stage. This pessimistically
assumes less knowledge about mortality than might be the case.

We use binary variables y⋄it to reflect whether there is out-going fish, and h⋄it to reflect
whether to initiate a harvest. To account for the lump cost of harvesting, we require
that boat count bit is contained in the set {0}∪ [1,∞), encoded using the binary variable
h⋄it. This prevents getting solutions that continuously harvest small quantities in every
stage while alleviating the combinatorial complexity that would result from having integer
valued boat counts.

To make soft-constraints, which ensure solutions are always feasible for any realisation
of uncertainty, we let zcmp

t be an auxiliary variable for violation of the company-wide
biomass limitation. Meanwhile, the location-wise biomass limitation is strictly enforced.
Furthermore, we let zbflx

it and zblmt
it be auxiliary variables for violation of boat availability

which has a progressive penalty.
The objective to be maximised in each stage t is stated as:

ft(xt, ξt) =
∑
i∈At

(πitr
hog − cslaughter)withit − cboatbit

− (cactive + cdelouseψit)y
⋄
it −

∑
i∈Ot

cfeed∆wityit

− (cboat/2)zbflx
t − P boatzblmt

t − P cmpzcmp
t .

(IV.6)

These terms incorporate: sales revenue, well-boat cost, variable cost of running an active
site, delousing cost and feed cost. Then there are the penalties associated with soft-
constraints for boat availability and for biomass restrictions. Feed cost incurs on out-
going biomass with the interpretation that the fish grow during the week, but not if they
are harvested. The same goes for delousing and the variable cost of running a site.

The constraints are formulated as follows:

• Fish count balance

yit + hit = σityi,t−1, (ϕit) ∀i ∈ Ot, (IV.7a)
hit = σityi,t−1, (ϕit) ∀i ∈ Ct. (IV.7b)

We use an equality constraint since fish must be harvested to be removed from
a site. This prevents discarding fish in situations where the cost of operations is
higher than the value of the fish. In the last stage before closing a site, all available
fish must be harvested.

• Logic of binary variables

yit ≤Mity
⋄
it, (νy

⋄

it ) ∀i ∈ Ot, (IV.8)

hit ≤Mith
⋄
it, (νh

⋄

it ) ∀i ∈ At, (IV.9)

where the maximal in-going fish count Mit is used as a big-M parameter.
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• Harvesting capacity

withit ≤ Cboatbit, (κCit) ∀i ∈ At, (IV.10)

h⋄it ≤ bit, (κh
⋄

it ) ∀i ∈ At, (IV.11)∑
i∈At

bit ≤ Nboat + zbflx
t , (κbflx

t ) (IV.12)

∑
i∈At

bit ≤ 2Nboat + zblmt
t (κblmt

t ) (IV.13)

Here, (IV.10) ensures the capacity of each well-boat is respected, while (IV.11)
encodes that at least one boat must be utilised once harvesting is initiated. Boat
availability is limited to Nboat but we assume there is some additional flexibility
that enables getting up to twice as many boats at a 50% price premium using the
auxiliary variable zbflx

it . Beyond this point, violation is more heavily penalised by
the parameter P blmt using auxiliary variable zblmt

it .

• Biomass restrictions∑
i∈Ot

wityit ≤ (Bcmp −
∑
i∈Ãt

witỹit) + zcmp
t , (βcmp

t ) (IV.14)

wityit ≤ Bloc
i , (βloc

it ) ∀i ∈ Ot. (IV.15)

For all practical purposes, biomass restrictions are strict, but we still need to resolve
(out-of-sample) infeasibility using soft-constraints. Constraint (IV.15) can always
be respected by requiring higher harvest count, while the company-wide constraint
(IV.14) is penalised by the parameter P cmp using auxiliary variable zcmp.

• Variable ranges

0 ≤ yit, ∀i ∈ Ot, (IV.16)
0 ≤ hit, bit, ∀i ∈ At, (IV.17)

0 ≤ zbflx
t , zblmt

t , zcmp
t . (IV.18)

• Integer restrictions

y⋄it, h
⋄
it ∈ {0, 1}, ∀i ∈ At. (IV.19)

We also add the tightening constraints

y⋄it ≤ y⋄i,t−1, (τy
⋄

it ) ∀i ∈ Ot, (IV.20)

h⋄it ≤ y⋄i,t−1, (τh
⋄

it ) ∀i ∈ At, (IV.21)

to relate binary variables across stages.

The penalties P blmt and P cmp associated with constraints (IV.13) and (IV.14) are set
as low as possible while still preventing infeasibility (with respect to soft-constraints) in
the optimisation problem. The reason to have these low is that out-of-sample evaluation
will almost certainly lead to infeasibility (with respect to soft-constraints) and if penalties
are too large, they will have a disproportionate effect on objective evaluations. Excessive
penalisation in soft-constraints do not necessarily represent operations since the model
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would likely be re-run in a rolling horizon environment that better reflects conditional
information; hence, we aim to set penalties low. The penalty P blmt is set according to
the maximal value a well-boat can carry within its capacity, so that violation of well-boat
availability will cancel out profits. The penalty P cmp is set to the highest possible value
gain from one stage to the next based on the highest conceivable growth rate and price
increase. This is derived from historical price volatility where truncation of the noise
process to a 99% prediction interval allows deriving an absolute bound. These penalties
ensure it is unprofitable to violate either soft-constraint. One exception is if the total stock
is too large to be harvested within the required closing date without violating biomass
constraints or well-boat availability, in which case any penalty below +∞ would be too
low; this is ignored, and we let losses be limited to a bit more than cancellation of positive
profit.

Shadow price of fish stock

In a broader sense, the AHP problem aims to find the alternative cost of harvesting today
by estimating the future value of fish stock with respect to time dynamics, uncertainty
and operational flexibility. Some interesting conclusions can be made in this regard by
analysing the dual formulation of the LP relaxation. Dual variables are listed as constraint
multipliers in the above primal formulation, and the complete dual formulation is provided
in the Supplementary Material as a reference. We refer to Rockafellar (1999) for a more
general discussion on the time structure of multistage stochastic programs and their duals
(particularly the conditional expectations found in dual constraints). We now address
some specific aspects of the dual.

Consider first that the dual variable ϕit(ω) associated to constraint (IV.7) can be
interpreted as the shadow price of in-going fish stock, which quantifies the marginal value
of inserting fish in the state described by site i, stage t and outcome ω. Furthermore,
ϕi,t=1 (which is deterministic) denotes the initial marginal value of fish stocks at each
site.

Through complementarity slackness, we can make qualitative observations of when a
given decision variable should be zero; if a dual constraint is non-binding, its associated
primal variable must be zero, while if the dual constraint is binding, its associated primal
variable can be non-zero (Bertsimas & Tsitsiklis, 1997). Specifically, we want to address
when to harvest (hit > 0) and whether to keep a site active (yit > 0). Among other terms,
the dual formulation aims to minimise the initial in-going value

∑
i∈At

yi0σi,t=1ϕi,t=1,
which means ϕ will generally be as low as possible.

The decision to harvest in any given state hit can be inferred from its associated dual
constraint,

ϕit ≥ (πitr
hog − cslaughter)wit − νh

⋄

it − witκ
C
it =: θit, (hit) ∀i ∈ At, (IV.22)

where ϕit is the state value of fish stock which must be larger or equal to its sales revenue
πitr

hogwit minus slaughtering costs cslaughterwit and the cost of well-boat operations νh
⋄

it +
witκ

C
it . We may only harvest (hit > 0) when (IV.22) is binding. We let θit denote the

right-hand side expression, interpreted as the current sales profit. The decision to hold
onto fish stock for longer (yit > 0) can be inferred by its dual constraint

ϕit ≥ Et [σi,t+1ϕi,t+1]− cfeed∆wit − νy
⋄

it − wit(β
cmp
t + βloc

it ), (yit) ∀i ∈ Ot, (IV.23)

where the current state value ϕit must be larger or equal to the conditional expected value
of future states Et [σi,t+1ϕi,t+1] (discounted by mortality) minus feed costs cfeed∆wit,
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the variable cost of keeping a site active νy
⋄

it (which includes lice treatments) and the
operational cost of biomass constraints wit(β

cmp
t + βloc

it ). Observe that we may only hold
onto fish stock (yit > 0) while (IV.23) is binding. Most of the time, (IV.23) will be binding
as long as there are future states that are more valuable than the current state, while at
these more valuable states, (IV.22) becomes binding to indicate that harvesting should be
initiated. Observe also that (IV.23) connects state values ϕit across stages, and that this
is the only dual constraint to do so. Based on this relation, we may think of dual states
as propagating backwards in time due to the conditional expectation of future dual states
(Rockafellar, 1999). On the contrary, primal states propagate forward by being inferred
by past states.

We can conclude from the above dual constraints that state values (ϕ) are determ-
ined by the highest future sales value (from (IV.22)), discounted by weekly costs going
backwards in time (from (IV.23)). Observe also that limitations on biomass and well-
boat availability contribute to this discounting; hence, we incorporate future operational
flexibility into value estimates. For the model to hold onto fish stocks, constraint (IV.23)
must be binding, and the current state value must correspond to the conditional expected
future value, minus weekly costs. If the estimate of future state values Et [σi,t+1ϕi,t+1] is
too low, we must have that yit = 0. For the model to decide to harvest, the current state
value ϕit must be binding on the sales profit θit. The only reason (IV.22) may be non-
binding (so that hit = 0) is if there exists more valuable future value states whose cost
discounting is lower than the value gain. These observations are examined numerically in
Section 4.4.

3.3 Out-of-sample validation

A fundamental challenge in multistage stochastic programming is knowing whether a
scenario tree represents a prescribed stochastic process to sufficient precision. To en-
sure good performance, we use an out-of-sample validation scheme based on extending
an optimal decision policy from a scenario tree, referred to as an extension policy. This
validation approach was explored by Casey and Sen (2005) and Keutchayan et al. (2017).
See also (Narum et al., 2023, Section 4) for a review. Furthermore, we parameterise scen-
ario tree generation and tweak its parameters through surrogate optimisation to improve
out-of-sample performance (described in Section 3.4).

The validation approach is based on providing a feasible policy that is defined for any
outcome path ω ∈ Ω, used to evaluate the objective value. If x̌ is a feasible primal policy
and x∗ is an optimal policy, we have that

E [F (x̌, ξ)] ≤ E [F (x∗, ξ)] . (IV.24)

Optimal policies are generally unavailable, but feasible policies can more easily be con-
structed. Once a feasible policy is defined, we can make a sampling estimate of its
expected objective value by sampling outcome paths from the prescribed stochastic pro-
cess to evaluate its performance (Shapiro, 2003); that is, optimisation requires a scenario
tree (to reflect information structure) while sampled paths are sufficient to evaluate the
objective of any given (fixed) policy.

Feasible policies are constructed by extending scenario tree policies to other outcome
paths by means of a nearest neighbour extrapolation. The nearest outcome path within
the scenario tree must be determined using the nested distance, equipped with a distance
metric dt(ω, ω̂), to preserve adherence to the original information structure. The nested
distance was introduced by Pflug and Pichler (2012) to incorporate causality in measures
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of distance between stochastic processes. This is achieved by letting distances in earlier
stages have complete priority over distances in later stages, based on the fact that future
realisations of the stochastic process cannot be known in advance. For our purposes, we
want to find the path within a scenario tree that is closest to any given outcome path
with respect to the nested distance. We achieve this by recursively (one stage at a time)
picking the branch within the scenario tree that is closest to the outcome path, where ties
are resolved by the order of child nodes within the scenario tree.

The distance metric dt(ω, ω̂) is constructed by converting the unit of each stochastic
parameter to its approximate corresponding profit. We assume each fish has approxim-
ately a final sales value of 50 NOK/kg, at weight 4 kg/fish, and that there are 100 000
fish per cage whose average treatment cost is then 2.5 NOK/fish. Using these estimates,
we translate distances between stochastic parameters to the unit NOK/fish and use the
squared Euclidean norm as a distance metric. The distance between outcomes ω and ω̂
in stage t is then expressed as

dt(ω, ω̂) = ∥2.5 · (ψt(ω)− ψt(ω̂))∥2 + ∥4 · (πt(ω)− πt(ω̂))∥2

+ ∥50 · (wt(ω)− wt(ω̂))∥2 + ∥200 · (σt(ω)− σt(ω̂))∥2 ,
(IV.25)

where ∥·∥2 denotes the squared Euclidean norm.

Extension policy

The aim of the extension rule is to provide feasible policies that also perform well. Keep
in mind that there are alternative ways of doing this, and that the quality of the extension
rule also affects the quality of the resulting evaluation. Let x̂ denote the solution on the
scenario tree defined for a restricted set of outcomes Ω̂, while the extension policy is
denoted x̌. Let also ω ∈ Ω denote any outcome path, and let ω̂ ∈ Ω̂ denote the path in
the scenario tree that is closest to ω in terms of the nested distance using distance metric
dt(ω, ω̂). This means ω̂ is contained in the scenario tree, while ω may not. The order
matters for the extension rule and is inferred chronologically for each stage t ∈ T . Within
a stage t, the extension rule is defined as follows:

1. Harvest count:

ȟit(ω)← max

{
ĥit(ω̂)

σit(ω̂)x̂i,t−1(ω̂)
σit(ω)x̌i,t−1(ω), σit(ω)x̌i,t−1(ω)−

Bloc
i

wit(ω)

}
. (IV.26)

The harvest quantity is extended as the relative harvest count, compared to the in-
going fish count. This ensures sites are emptied in the same stage for the extension
policy as for the tree policy, and prevents harvesting more than the in-going fish
count. Site-level biomass restrictions are fulfilled by forced harvest in the event that
the limit is surpassed.

2. Out-going fish count:

x̌it(ω)← σit(ω)x̌i,t−1(ω)− ȟit(ω). (IV.27)

3. Binary variables:

ȟ⋄it(ω)←
⌈
ȟit(ω)

Mit(ω)

⌉
, x̌⋄it(ω)←

⌈
x̌it(ω)

Mit(ω)

⌉
, (IV.28)

where ⌈·⌉ signifies rounding up to the nearest integer. Rounding is omitted for the
LP relaxation, meaning y̌⋄it(ω) and ȟ⋄it(ω) are set as low as possible.
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4. Boat count:

b̌it(ω)← max

{
ȟ⋄it(ω),

wit(ω)ȟit(ω)

Cboat

}
. (IV.29)

5. Violation of soft-constraints:

žbflx
it (ω)←

(∑
i∈At

bit −Nboat

)+

, (IV.30)

žblmt
it (ω)←

(∑
i∈At

bit − 2Nboat

)+

, (IV.31)

žcmp
t (ω)←

∑
i∈Ot

wit(ω)x̌it(ω) +
∑
i∈Ãt

witỹit −Bcmp

+

. (IV.32)

Observe that the extension policy is completely described by the extension (IV.26), while
all other quantities can inferred from ȟ as well as the outcome ω ∈ Ω. The interpretation
is clear: The policy for harvest count is the most essential part of the decision problem,
and all other quantities are there to reflect the consequences of this decision.

3.4 Scenario generation

Scenario tree generation for this problem is particularly challenging due to high dimen-
sions, different kinds of stochastic variables, complicated dependence patterns and a long
planning horizon. We now describe the procedure for generating scenario trees, which is
a combination of ideas from existing approaches in the literature (Galuzzi et al., 2020;
Kaut, 2014; Prochazka & Wallace, 2020). The procedure is later referred to as Quantile
Selection (QS).

The stochastic process ξt can be represented as a transformation

ξt = gt(ξ[t−1], ϵt), (IV.33)

which infers future realisations based on the history ξ[t−1] and a stochastic term ϵt ∼
U [0, 1]dt where dt is the dimensionality of randomness in stage t. The stochastic term
ϵt represents the percentile of each random variable in stage t, and dependence patterns
are expressed in terms of transformations of ϵt. Scenario generation aims to represent
the term ϵt as a discrete set of outcomes within each stage. This approach is inspired
by Kaut (2014). All random variables except for prices are assumed to be conditionally
independent within each stage, but are still strongly affected by the history ξ[t−1]. There
are nine highly dependent price classes, which are instead represented by six conditionally
independent latent factors.

Let Nt denote branching at stage t, meaning we have a total of
∏

t∈T Nt outcome
paths within the scenario tree, and let dt denote the number of random variables in
each stage. The dependence among random variables within each stage is generated
using conditional latin hypercube sampling: For each of the dt random variables, we first
partition the range of (cumulative) probabilities [0, 1) into Nt equally large sub-ranges
[as, bs) for s = 1, . . . , Nt. Then, the order of these sub-ranges are shuffled randomly
for each random variable i = 1, . . . , dt and, based on the resulting order, we assign a
sub-range from each random variable i to each of the Nt scenarios.
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Given a sub-range [a, b), we parameterise which quantile to use for each kind of ran-
dom variable (prices, mortality and treatment) as pki

∈ [0, 1] where ki denotes the kind
of random variable. Weight is inferred directly from temperature and from treatments
(which reduce growth). Then we use the quantile function Qi(·) of random variable i (i.e.,
the inverse CDF) to determine the value in each given scenario as

Qi((1− pki) · a+ pki · b). (IV.34)

The weights p specify whether to choose conservative or optimistic values within a per-
centile range. One exception is the binary random variable for treatment. Instead of
deterministically choosing a quantile for treatment, we use weighted sampling to determ-
ine a (cumulative) probability v ∈ [a, b), so that

Qtreat(v), v ∼ Triangular (a, b, c = (1− ptreat)a+ ptreatb) , (IV.35)

where Triangular(a, b, c) is a triangular distribution with support [a, b] whose mode lies
in c. This ensures more variability in the binary variable than if the same quantile was
chosen each time, and improves the performance of the scenario tree. The intuition for
why we choose weights p that are different from 0.5 is that planning for more optimistic
or pessimistic realisations of uncertainty can be constructive for the resulting policy to
perform well.

The branching structure of the scenario tree must also be specified. In the interest
of making parsimonious scenario trees, we cannot represent short-term developments
throughout since that requires an excessively large scenario tree. Instead, we prioritise
long-term developments accounted for by branching periodically throughout the horizon,
every 6 weeks. This results in up to 8128 leaf nodes within 78 stages. For reference, the
historical average time between lice treatments (which is the most important factor for
long-term considerations) is 7 weeks. Larger scenario trees beyond this leads to tractab-
ility issues.

We use surrogate optimisation to find the parameters p that achieve the best possible
out-of-sample objective value. The surrogate function then represents the computation-
ally demanding steps of: scenario tree generation using parameters p, solving the formula-
tion with respect to the scenario tree, extending the tree-based policy, and out-of-sample
evaluation. Furthermore, the LP relaxation is used during this procedure to decrease
computational time. To get more consistent results, the dependence pattern within each
stage produced by conditional latin hypercube sampling uses the same seed for each eval-
uation. We use radial basis functions (Hastie et al., 2009) as a surrogate representation
of the relation between p and the out-of-sample objective value.

This methodology is inspired by the problem-based approach to scenario generation by
Prochazka and Wallace (2020) who fit a scenario set (for two-stage problems) to approx-
imate out-of-sample evaluations well. Galuzzi et al. (2020) also explore whether Bayesian
Optimisation (whose surrogate representation is a Gaussian Process) can applied for a
similar purpose in multistage problems using the out-of-sample evaluation approach by
Keutchayan et al. (2017). A novelty in our approach is that we optimise the paramet-
erisation of scenario generation instead of the scenarios themselves; hence, it scales better
for large problems.

Out-of-sample evaluation paths are drawn randomly by latin hypercube sampling to
reduce variance, and to ensure we more effectively cover the support of a very high-
dimensional distribution. We do this by considering independence in the stochastic terms
ϵt for t ∈ T , and collect (ϵt)t∈T as a

∑
t∈T dt-dimensional random variable from which

we sample S outcomes. Within each percentile range [a, b), we draw a random value for
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the sample paths (i.e., instead of using weights p). Afterwards, we infer each sample path
using the transformation (IV.33). Note that this amounts to stratified sampling across all
stages and random variables, as opposed to the method used for Quantile Selection which
uses conditional latin hypercube sampling within each stage. A single common sample is
used per problem instance to compare the out-of-sample performance of different scenario
trees. Given that the parameters p are optimised for out-of-sample evaluations, there is
a risk of over-fitting scenario trees. To control for this, we have drawn two sets of sample
paths; a validation set used to tune parameters, and a testing set used to check whether
we get similar results. No statistically significant difference was found when comparing
these evaluations.

Alternative scenario generation methods

We compare the Quantile Selection (QS) method to two different scenario tree gener-
ation methods: (i) Conditional Latin Hypercube Sampling (CLHS), and (ii) Minimum
Transportation Distance (MTD). The CLHS method uses the same procedure as QS but
instead of choosing a specific quantile, we sample uniformly from each range [a, b) before
evaluating the quantile function Qi(·). The MTD method aims to minimise the (nested)
transportation distance from the scenario tree to the prescribed stochastic process. Pflug
and Pichler (2014) explain its underlying theory and methodology, motivated by the fact
that the minimum (nested) transportation distance between a scenario tree and the pre-
scribed stochastic process provides a bound on their discrepancy in optimal objective
values. In principle, lowering the former discrepancy also decreases the latter to provide
better solutions. We generate MTD scenario trees by a customised version of k-means
clustering (Lloyd, 1982) applied to a tree structure. This heuristic is described in the
Supplemental Material. All methods are specified by the same branching structure as
described above.

4 Case studies

In this section, we apply the model to a set of case study problems that represent a
variety of setups. The instances replicate insights from proprietary data and dialogues
with domain experts. We use public data as far as possible where the companies, capacities
and portfolio setups are real (but anonymised), while operational data is reconstructed.
Further details are provided in the Supplemental Material. We investigate seven instances
that represent small, medium and reasonably large companies. Their characteristics are
summarised in Table IV.2. Harvest plans are all initialised on April 26th, 2018, which is on
the brink of warmer months that have faster fish growth and higher activity of parasitic
lice. In Section 4.3, we validate solutions of the proposed model with respect to the
prescribed stochastic process and then we investigate managerial insights in Section 4.4.
First, we explain evaluation metrics (Section 4.1) and the experimental setup (Section 4.2).

4.1 Evaluation metrics

This section serves as a reference for the evaluation metrics used in the other sections.
Bounds on the optimal objective value gives indications on how well approximate solutions
perform and to quantify the effects of uncertainty, while empirical metrics on scenario
generation are valuable to assess the methodology.
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Table IV.2: Characteristics of case study problems.

Instances: I-7382 I-4292 I-5512 I-3082 I-8432 I-6721 I-2743

Planning horizon [weeks] 73 55 73 77 75 78 43
Number of sites 8 5 16 24 18 6 3
Number of cages 49 18 63 97 74 18 12
MTB [tonnes] 21240 8424 28968 44790 34284 8346 5616
Starting weights [kg] 0.4–3.7 1.4–5.7 0.0–6.2 0.0–6.3 0.0–5.7 0.4–7.0 2.2–6.0

Objective evaluation of a candidate decision

Let R denote the discrete distribution that represents a scenario tree, and P̈ the empirical
distribution found by sampling outcome paths from the distribution P . For any feasible
candidate policy x ∈ X , we refer to

ER [F (x, ξ)] , E
P̈
[F (x, ξ)] , (IV.36)

as in-sample and out-of-sample evaluations, respectively. The discrepancy between in-
sample and out-of-sample evaluations is evaluated as

Bias(x) = E
P̈
[F (x, ξ)]− ER [F (x, ξ)] , (IV.37)

which represents the approximation error of the scenario tree. We are primarily concerned
with the performance of out-of-sample evaluations since this reflects the real performance
of any given policy; still, the other quantities are useful to indicate whether we have
reasonable approximations.

Bounds and measures

To find the best estimate of the optimal objective value, we use out-of-sample evaluation
on a collection of K candidate extension policies X̌ = {x̌1, . . . , x̌K} found by solving the
problem on various scenario trees. Let

Primal LB = max
x̌∈X̌

E
P̈
[F (x̌, ξ)] , (IV.38)

denote the largest out-of-sample objective evaluation among these candidate policies.
This is a lower-bound since the objective evaluation of any feasible policy is less than or
equal to the optimal objective value. There may still exist better solutions but Primal LB
represents our best estimate.

Various measures are used to quantify the value of planning for uncertainty. We refer
to Birge and Louveaux (2011, Chapter 4) for a review on these measures which we adjust
to a multistage setting using out-of-sample evaluations (see also Narum et al., 2023). The
measures are expressed as:

EVPI = E
P̈

[
min
x∈X

F (x, ξ)

]
, EEV = E

P̈
[F (x̃, ξ)] . (IV.39)

where x̃ ∈ Ext
(
argminx∈X F (x, ξ̄)

)
, ξ̄ is the deterministic expected forecast, and Ext(·)

denotes extension of a tree policy. The expected value of perfect information (EVPI)
represents the best obtainable performance given that we know the future perfectly (which
is usually impossible); hence, EVPI is a loose upper-bound on the optimal objective value.
The expectation of the expected value solution (EEV) represents the performance of a naïve
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plan optimised for the deterministic expected future; hence, EEV is a loose lower-bound
on the optimal objective value. Observe that EEV is not necessarily unique if there are
multiple in-sample solutions that perform differently out-of-sample. We use whichever
solution is provided from the numerical solver. From these measures, we may derive the
quantities:

VSS =
Primal LB− EEV

Primal LB
· 100%, VPI =

EVPI− Primal LB
Primal LB

· 100%, (IV.40)

known as the value of the stochastic solution (VSS) and the value of perfect information
(VPI). VSS represents the value of planning for an uncertain future instead of a determ-
inistic forecast (also interpreted as the value of actively hedging), while VPI represents
the potential value of obtaining better information about the future if possible. Consider
also that the range from EEV to EVPI represents the span of objective values within
which the optimal objective value must reside. Relative to Primal LB, the size of this
range can be quantified as

EVPI− EEV
Primal LB

· 100% = VSS + VPI, (IV.41)

to represent the relative range of objective values in a stochastic environment. Its size is
indicative of the effect of uncertainty on planning, which decomposes into VSS and VPI.

Evaluation of scenario generation

Empirical evaluation of scenario generation is used to assess which method is likely to
give the best results and to assess their stability. We refer to Kaut and Wallace (2007) for
details, whose methodology we adjust to a multistage context. Let M denote a scenario
generation method and X̌ (M) = {x̌1, . . . , x̌L} a collection of L = 10 candidate policies
extended from the optimal policy on scenario trees found using method M. Scenario
trees are different due to randomness in the generation method. Based on this, we assess
the following quantities:

µ(M, P̈ ) = Average
x̌∈X̌ (M)

{
E
P̈
[F (x̌, ξ)]

}
, (IV.42a)

σ(M, P̈ ) = Std
x̌∈X̌ (M)

{
E
P̈
[F (x̌, ξ)]

}
, (IV.42b)

RMSB(M) =

√
Average
x̌∈X̌ (M)

{(
E
P̈
[F (x̌, ξ)]− ER [F (x̌, ξ)]

)2}
. (IV.42c)

For a given method M, these measures respectively signify quality in terms of the aver-
age performance (µ(M, ·)), stability in terms of consistency in solutions (σ(M, ·)), and
approximation error measured as the Root Mean Squared Bias (RMSB). The quality and
stability measures can be found using in-sample evaluations (R) as well as out-of-sample
evaluations (P̈ ).

4.2 Experimental setup
The model is implemented in the Julia programming language (Bezanson et al., 2017)
using the JuMP mathematical programming package (Dunning et al., 2017). Linear
programming and mixed-integer programming formulations are solved using the v11.0
Gurobi solver (Gurobi Optimization, LLC, 2022). We use the Dual Simplex method and
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set the MIP gap tolerance to 0.1% (1e-3). The optimality tolerance is set to (1e-9) due
to low probability weights in the objective function. Surrogate optimisation uses the
Surrogates.jl package. Computations are run on 20-core (40 threads) machines that
each have 96 GB of RAM, while the largest instances are solved using 396 GB of RAM.
LP relaxations typically solve within 20–60 seconds, while the larger MIP formulations
typically solve within 12–24 hours.

We sample S = 3000 outcome paths for the validation set. The standard errors of
out-of-sample estimates of expected objective values are in the order of 0.1%. In terms
of Monte Carlo Sampling, this implies that the size of a 95% confidence interval for
the expected objective value corresponds to ±0.2%. Given that we use latin hypercube
sampling to generate paths, and since all comparison are made using a common sample,
the margin of error in out-of-sample estimates is effectively lower than ±0.2%.

4.3 Validation

The aim of validation is to ensure the optimisation model provides good solutions to
the problem at hand, given that it approximates uncertainty through scenario trees. We
investigate this by evaluating bounds on the optimal objective value as well as common
measures on the effects of planning under uncertainty. Then, we investigate the reliab-
ility of the scenario generation method. Lastly, we investigate the effects of integers in
the optimisation model through MIP gaps. The measures used below are described in
Section 4.1.

Bounds and the value of information

Evaluating bounds on optimal objective values is valuable to assess how well an approxim-
ate model performs with respect to the prescribed stochastic process. Table IV.3 reports
bounds on the optimal objective value as well as metrics on the effect of uncertainty. Fig-
ure IV.3 illustrates the accumulated profit of an extension policy as well as the distribution
of total profit for some selected problem instances. Additionally, Figure IV.3 illustrates
profit distributions for extending a deterministic policy (derived from EEV) as well as
the perfect information policy (derived from EVPI). These also represent distributions
whose expectations bound the optimal objective value.

Table IV.3: Bounds on the out-of-sample performance of tree-based policies. With respect to
the optimal solutions, EEV is a lower-bound and EVPI is an upper-bound. VSS + VPI signifies
the span of objective values due to the impact of uncertainty.

Instance Primal LB EEV VSS (%) EVPI VPI (%) VSS + VPI

I-7382 897.23 849.15 5.36% 1000.05 11.46% 16.82%
I-4292 328.89 311.88 5.17% 415.94 26.47% 31.64%
I-5512 924.87 881.17 4.73% 1089.25 17.77% 22.50%
I-3082 1607.74 1542.74 4.04% 1931.80 20.16% 24.20%
I-8432 1003.89 988.12 1.57% 1164.35 15.98% 17.56%
I-6721 230.35 222.50 3.41% 309.82 34.50% 37.91%
I-2743 173.87 161.41 7.17% 214.09 23.14% 30.30%

We observe from Table IV.3 that the span of objective values due to uncertainty are
in the range of 17–38%, which is considerable. These numbers can be further decomposed
into the effect of planning for an uncertain future instead of a deterministic one (VSS),

https://github.com/SciML/Surrogates.jl
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and the value of perfect information (VPI). These are in the ranges 1.6–7.2% for VSS
and 11.5–34.5% for VPI.

The values of VSS imply that planning by explicit account of uncertainty can lead to
increased profit in the order of 5%. For operational problems which consist of many small
adjustments made consistently over time, we consider 5% to be a good improvement.
Some modelling assumptions also imply VSS could be larger; for example, we assume less
information about mortality rates than might be the case since these affect in-going fish
instead of out-going fish (Section 3.2). Furthermore, we have found the problem to be
sensitive to the ratio of income to expenses, since during years of lower sales prices VSS
can be in the range of 15–20% across instances. The reason is that when margins are
lower, the relative impact of acting on better information is larger.

The value of perfect information (VPI) is in the order of 20%, which implies there
is large value in acting on better information than the model currently incorporates.
Modelling health more precisely can be constructive in this respect, and incorporation of
disease forecasting models may also help to provide more informed conditional estimates
of mortality. Better scenario generation could also improve results further by collecting
a larger share of the value implied by the VPI. One aspect is that larger scenario trees,
for example enabled by decomposition methods, could provide better solutions.

Consider also that the range of values for VSS and VPI are quite large across problem
instances. This is a result of different portfolio setups as well as the initialisation state,
not from approximation of uncertainty (which is shown to be consistent in Section 4.3).
As mentioned, we also experience that initialising the problem at different dates leads
to similar variability within the same company. We interpret this as a characteristic of
the high complexity of the planning problem, where strategies and trade-offs differ based
on the portfolio initialisation and the characteristics of each company. This attests to
the utility of applying decision models to effectively and consistently navigate such high
complexity.

Generally, we observe from Figure IV.3 that the variability in profit is large. We also
find that the span of profits using the Perfect Information Policy is similar to that of the
Tree Policy Extension, meaning there is wide profit variability that necessarily cannot be
hedged effectively; namely, if having perfect information does not enable hedging risks,
nothing will. Still, the differences in expected profit are relatively large when comparing
the Deterministic Policy Extension to the Tree Policy Extension, meaning there still exist
effective hedging strategies that increase the overall expected profit, even if the variability
is large. These observations imply that aquaculture operations is subject to quite large
levels of operational risk. We investigate this further in Section 4.4.

Scenario generation

The aim of scenario generation is to provide solutions that perform as good as possible
with respect to the prescribed distribution. We evaluate the scenario generation method
proposed in Section 3.4 and compare to alternative methods in the literature. Table IV.4
compares different empirical metrics used to evaluate the different scenario generation
methods, while Table IV.5 reports the final parameters chosen in the Quantile Selection
method.

We observe from Table IV.4 that Quantile Selection (QS) consistently performs better
that the alternative methods in terms of out-of-sample objective values. Furthermore,
the stability of QS is much better than Conditional Latin Hypercube Sampling (CLHS).
The stability of Minimum Transportation Distance (MTD) seems to imply it consistently
provides similar results but at an overall lower quality than QS. Overall, bias is quite high



4. CASE STUDIES 113

Figure IV.3: Accumulated profit over time (left), and distributions of the total profit (right).
Vertical dashed lines (right) show the expected value of the distributions. The expected values of
the Deterministic Policy Extension and the Perfect Information Policy are bounds on the optimal
objective value.
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Table IV.4: Quality, stability and bias of scenario generation methods, measured in-sample
and out-of-sample. Quality and stability are reported as µ(M, ·) ± 2σ(M, ·) for in-sample (R)
and out-of-sample (P̈ ) evaluations. See also (IV.42).

Instance
Quantile Selection CLHS MTD

In-sample Out-of-s. RMSB In-sample Out-of-s. RMSB In-sample Out-of-s. RMSB

I-7382 945.76±10.90 894.86 ± 2.57 51.12 978.36±26.31 847.50±11.11 131.46 967.21 ± 0.78 878.04 ± 2.49 89.18
I-4292 375.42 ± 7.42 326.85 ± 2.57 48.75 397.48±25.35 290.52±24.51 107.82 388.37 ± 0.37 318.40 ± 1.56 69.97
I-5512 1046.96±14.17 921.04 ± 5.41 126.10 1072.74±30.11 858.65±14.24 214.52 1057.27 ± 1.10 893.01 ± 2.32 164.27
I-3082 1818.86±17.48 1605.06 ± 2.77 213.98 1870.45±46.86 1505.06±17.02 366.09 1840.65 ± 1.49 1576.46 ± 3.09 264.19
I-8432 1165.61±26.78 998.90 ± 4.90 167.20 1138.25±34.19 946.45±23.65 192.43 1115.89 ± 1.54 982.54 ± 1.88 133.36
I-6721 302.33 ± 8.28 229.28 ± 1.22 73.15 295.82±14.14 206.64 ± 7.18 89.43 288.96 ± 0.40 220.24 ± 1.65 68.72
I-2743 226.40 ± 8.52 173.62 ± 0.41 52.94 209.14±11.48 164.15 ± 3.59 45.38 203.02 ± 0.13 169.25 ± 0.43 33.77

for all methods and highest for CLHS. High bias implies the quality of scenario trees can
likely be improved further, but consistent out-of-sample evaluations (as we find here) is
of higher priority.

Table IV.5: Parameters in the best performing scenario trees for each instance using Quantile
Selection.

Instance Stages Leaves Nodes pprice pmortality ptreatment LP Objective

I-7382 77 8192 81909 0.42 0.17 0.68 901.30
I-4292 75 8192 65525 0.65 0.87 0.61 334.28
I-5512 74 8192 57333 0.46 0.58 0.87 930.43
I-3082 76 8192 73717 0.51 0.64 0.83 1628.20
I-8432 75 8192 65525 0.57 0.77 0.79 1011.81
I-6721 74 8192 57333 0.56 0.70 0.83 237.87
I-2743 74 8192 57333 0.64 0.87 0.44 177.77

From Table IV.5, we find no evident pattern in the parametrisation of QS; still, we have
found some important trade-offs in the specification of these. For example, we have found
that jointly letting (pprice, pmortality) or (pmortality, ptreat) be close to 0.5 simultaneously
gives worse performance. Furthermore, letting any of the parameters p be very large or
very low also seems disadvantageous. Generally, sensitivity on the parameters p is low
but there are some specifications that are clearly more effective than others.

Integrality

Table IV.6 compares optimal objective value of the MIP formulation to its LP relaxation,
as well as their out-of-sample extension policies. We see that the MIP gap is comparable
in-sample and out-of-sample, which seems to imply that tuning scenario trees with respect
to the LP relaxation can give reasonably effective results. While the MIP gap is relatively
small, simply rounding the solution from the LP relaxation leads to larger gaps, and going
from a solution to the LP relaxation to a MIP solution is not necessarily trivial. This is
also reflected by the longer solve-time of the MIP formulation.

4.4 Managerial insights

We give some managerial insights related to risk exposure in aquaculture, valuation of fish
stock, and harvest timing. Lastly, we benchmark a common rule-of-thumb to optimise
biomass instead of profit. Keep in mind that profit in the objective function refers to
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Table IV.6: MIP gaps for the best performing scenario tree in each instance. Tree policies
are solved using the MIP formulation and its LP relaxation, then extended for out-of-sample
evaluation. Only the MIP policy extension respects integrality.

Instance
In-sample Out-of-sample

MIP LP MIP gap (%) MIP LP MIP gap (%)

I-7382 947.05 955.10 0.85% 897.23 905.23 0.89%
I-4292 375.61 378.35 0.73% 328.89 330.65 0.53%
I-5512 1047.50 1052.39 0.47% 924.87 930.67 0.63%
I-3082 1826.56 1839.95 0.73% 1607.74 1626.16 1.15%
I-8432 1157.82 1162.01 0.36% 1003.89 1010.41 0.65%
I-6721 304.46 308.10 1.20% 230.35 235.28 2.14%
I-2743 227.78 229.94 0.95% 173.87 176.94 1.77%

variable operational profit only; that is, profit directly associated to harvest planning
without any fixed or other expenses (smolt, maintenance, administrative, etc.).

Volatility in profit

Large variability in profits as found in Figure IV.3 is indicative of large levels of opera-
tional risk. This is disadvantageous since volatile profit is a bad precondition for tactical
planning of long-term considerations, like re-stocking. Specifically, operational profits are
met by fixed costs, and when operational profit is volatile and fixed costs are high, this
can cause irreversible consequences from particularly large losses or bankruptcy.

We do a further analysis of the distributions illustrated in Figure IV.3 by computing
a variety of risk measures. These are listed in Table IV.7. Specifically, we examine the
expected profit and the standard deviation of the profit distribution. We also derive
volatility measure from the width of a 95% prediction interval, reported as a percentage
of the expected objective value. We also find the 5% Value at Risk (VaR5%); i.e., the
profit at the 5th percentile, and the 5% Conditional Value at Risk (CVaR5%); i.e., the
conditional expected value below VaR5%.

Table IV.7: Variability and risk measures of total profit for different problem instances. Volat-
ility refers to the width of a 95% prediction interval, relative to the expected profit. Value at
Risk (VaR5%) denotes the 5th percentile, while the Conditional Value at Risk (CVaR5%) is the
conditional expected profit below VaR5%.

Instance Expectation St. Dev. Volatility VaR5% CVaR5%

I-7382 902.69 62.46 27.12% 791.03 748.30
I-4292 333.20 41.34 48.63% 258.53 235.50
I-5512 929.65 74.32 31.34% 803.90 761.78
I-3082 1624.27 116.87 28.21% 1428.59 1370.21
I-8432 1009.71 70.16 27.24% 890.23 847.22
I-6721 234.82 43.62 72.82% 156.01 131.40
I-2743 176.59 34.21 75.95% 115.13 87.46

We observe in Table IV.7 that the volatility is in the very considerable range of 27–
76%. CVaR is also quite low, at almost half of the expected profit in some instances.
Based on the results from Section 4.3, it is particularly interesting that this variability
seems non-trivial to hedge in itself only by optimising the expected profit. A potential
extension of the current model is to additionally (or instead) optimise the CVaR of the
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total profit in an attempt to alleviate some of the observed down-side. Necessarily, this
results in an expected profit that is as good or worse.

Asche et al. (2013) have previously discussed that aquaculture companies have ac-
quired smaller companies as a strategic risk mitigation strategy. The results in Table IV.7
supports this conclusion since the volatility for large companies (of higher expected profit)
is much lower than for the small companies. Overall, these numbers imply significant levels
of risk across all companies.

Valuation of fish stock

In a broader sense, harvest planning must consider the alternative cost of harvesting today
by estimating the future value of fish stock with respect to time dynamics, uncertainty
and operational flexibility, as discussed in Section 3.2. For in-sample analysis, using the
LP relaxation, it is possible to extract duals directly from an optimal solution to obtain
the shadow price of fish stock (ϕ). This can be compared to current sales profit (θ) and,
when these coincide, the model implies that fish stock can be sold immediately at the same
profit implied by any other future value state (minus costs in between). In other words,
there is no reason to wait. By comparing these quantities, we get an indication of how
long we should wait until harvesting. See also the discussion in Section 3.2. Figure IV.4
illustrates the value estimates ϕ and θ of fish stock up to the last exhaustive harvest.

We observe from Figure IV.4 that the value estimate of fish stock (ϕ) exhibits relatively
large variability across outcomes of uncertainty (especially for site #1 and #3) which
correspondingly leads to a similar variability in the time of harvests. In conclusion,
actively acting on available information implies harvest schedules would change to some
meaningful degree.

We also observe that the gap between value states (ϕ) and sales value (θ) is larger early
on, but that they are very close for some time up to the last exhaustive harvest. For sites
where these are close for extended periods of time (site #6 and #8), we also see that the
times of harvest span very large ranges in the order of 15–20 weeks. In other words, there
is large ambiguity in when to harvest. Preferably, we would like to have clear cut and
obvious conclusions about when to harvest, while here we observe the opposite. Within
such sensitive regimes, consideration of uncertainty, portfolio effects and sequencing can
be especially important in ways that are not necessarily obvious when planning manually.

End-of-horizon valuation

We now want to investigate whether an end-of-horizon value approximation could serve as
an effective simplification for the proposed decision model. For this to be attainable, there
must exist a simple expression for the expected future value of fish stock as a function
of some known quantity, like fish weight. Already (in Section 4.4), we have seen that ϕ
quantifies the state value of fish stock. To filter out the implication of price deviations,
we further scale this by the sales profit θ. The relative value estimate ϕ/θ then serves as
a proxy for what an end-of-horizon value approximation should account for. For example,
the model accounts for operational flexibility, portfolio effects and heterogeneity in sites,
which are difficult to replicate by simpler expressions.

Figure IV.5 illustrates the relative value estimate ϕ/θ as a function of weight w across
all sites, stages and states of uncertainty. If only prices and weight matter for valuation
of fish stock (which we have argued is not the case), Figure IV.5 should provide a simple
relation between ϕ/θ and w. Instead, we observe quite high variability in relative value
estimates as a function of weight, and the interpretation is that there is more to valuation
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Figure IV.4: In-sample estimate of the state value of fish stock (ϕit) compared to its corres-
ponding sales profit. When state values and sales profit meet, harvesting is initiated in the model
(indicated by yellow points).
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of fish stock than weight and sales price. In particular, the ordering of relative value
estimates is important to determine the sequence of sites to harvest from, and such
an ordering is not immediately clear from the figure. Based on these observations, we
conclude that the more extensive decision model adds a level of detail that better reflects
the operational situation.

Figure IV.5: In-sample estimate of the state value of fish stock (ϕ) relative to its corresponding
sales profit (θ). When these meet (ϕ/θ = 1), harvesting should be initiated.

Benchmark on biomass optimisation

A common heuristic in the Aquaculture industry is to maximise total biomass, where
a largest-fish-first policy is a common rule-of-thumb to achieve this. This means that
whenever the farmer thinks it is wise to harvest, the largest fish are collected first. To
replicate this situation, we formulate a model that optimises biomass in terms of average
prices within each price class instead of varying prices, and refer to this as biomass
optimisation as opposed to profit optimisation. We use average prices to reflect that sold
biomass should also be traded off with costs. We then benchmark both strategies by out-
of-sample evaluation that accounts for variable prices. The profit optimising policy should
always perform better than biomass optimisation, simply because it optimises for the
evaluation objective. Thus, we are mainly interested in the magnitude of this difference.
Note that the extension rule can, in theory, still cause exceptions to this ordering of
objective values. Table IV.8 reports the in-sample and out-of-sample performance of
optimising either for biomass or profit.

We observe from Table IV.8 that profit optimisation improves profit in the range of
5–10%, and up to 43% in one instance. This shows there are considerable value to be
collected by incorporating price forecasts into harvest planning. The very large improve-
ment for one instance is due to a badly timed price trend which caused an especially low
profit for biomass optimisation, where profit optimisation prioritised delayed harvest.
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Table IV.8: Objective values when optimising for profit and for biomass. The last column
compares the out-of-sample performance of profit optimisation relative to that of biomass op-
timisation. The in-sample objective of biomass optimisation assumes static prices, while all other
evaluations assume variable prices.

Instance
Biomass optimisation Profit optimisation

Improvement
In-sample Out-of-sample In-sample Out-of-sample

I-7382 937.83 854.76 947.05 897.23 4.97%
I-4292 337.06 230.25 375.61 328.89 42.84%
I-5512 971.78 871.19 1047.50 924.87 6.16%
I-3082 1716.10 1528.81 1826.56 1607.74 5.16%
I-8432 973.64 937.22 1157.82 1003.89 7.11%
I-6721 295.93 210.27 304.46 230.35 9.55%

5 Discussion and conclusion
The overall goal of this work is explore whether decision models are able to handle the
high complexity of harvest planning in aquaculture. We find that we are able to solve the
problem effectively, using a combination of precise modelling assumptions and effective
scenario tree generation to approximate uncertainty. It should be appreciated that the
Aquaculture Harvest Planning problem exhibits high complexity, and that sensitivity on
the initial state and setup of portfolios is high. This emphasises the value of quantitative
decision support tools which farmers can apply in a variety of situations to consistently
make effective decisions over time. For operational models like this one, consistently
performing well is especially important since small contributions add up over time. With
this in mind, we believe the proposed model formulation can provide great value to the
industry.

We have formulated the decision model such that all uncertain factors enter as coeffi-
cients to state variables that represent fish count. An advantage of this formulation is that
it allows for large-scale mixed-integer linear programming formulations with very precise
account of growth, biology and prices, within a far-reaching planning horizon. Specific-
ally, all non-linearities from these factors are accounted for in the coefficients themselves.
Enabling large-scale formulations is especially important to reflect the large heterogeneity
observed in the value of fish stock across sites. While some biological aspects have been
simplified, the formulation of the decision model also allows input from highly complic-
ated statistical models since we make no assumptions on time structure (non-Markovian),
normality or linearity.

Future research
Stocking decisions of when to deploy new fish is a very relevant tactical consideration
that strongly affects operations, and we believe this is an interesting topic for future re-
search. The presented model is an important contribution to enable guiding such tactical
decisions from the operational level, while large computational requirements may be an
obstacle. However, there is potential to apply decomposition procedures to improve solu-
tion times, both by site-level planning (bound together by company-wide constraints) and
by scenarios (bound together by non-anticipativity).
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Supplement A

Problem-based Scenario
Generation by Decomposing
Output Distributions

This Supplemental Material gives a detailed description of all case study problems in
the paper. First, we give a high-level problem description, then details on instance gen-
eration and distributions, and lastly, mathematical formulations are provided. All for-
mulations are given by a table over variables, parameters and sets, and then the first-
and second-stage programs are given. The stochastic vector ξ is the concatenation of
all problem-specific stochastic parameters, and Q(x, ξ) is the recourse function. The
underlying distributions are assumed known by analytical expressions and all observed
distributions are generated by sampling 5000 outcomes from these. While the general
procedure to randomly generate instances is described, computational experiments in the
paper use one instance per problem, chosen for its lack of stability when solved with
sampled scenario sets of size three.

1 Telecommunication Network Planning

The Telecommunications Network Planning (TNP) problem consists of determining where
in a telecommunications network to allocate extra capacity, under uncertainty of demand
between point-to-point pairs of nodes. The problem is adapted from the paper by Sen
et al. (1994). In reality, routing of requests is done in real-time, but they approximated
this by predetermining all possible routes of maximally three links between each point-
to-point pair since routes are commonly not longer than two links. Sen et al. (1994)
validated this to be a good assumption for their problem instance through simulation.

Instance generation and distribution

The network topology from the original paper was used. The demand point-to-point
pairs were drawn randomly among all feasible pairs connected by maximally three or
fewer links, excluding the three centre nodes that are considered to be hubs without their
own demand. The existing capacity is set to 10 on all links, while the total expandable
capacity is set to 2.5 times the total average demand of the demand distribution. Key
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numbers on the problem instance are given in Table A.1 and the network topology is
illustrated in Figure A.1.

Table A.1: Telecommunication Network Planning key figures.

No. of nodes 31
No. of demand pairs 82
Links 89
No. of routes (median over pairs) 8.5

Figure A.1: Network topology for TNP.

From the description of the distribution by Sen et al. (1994) we chose a gamma dis-
tribution with a shape parameter of 5 and expectation of 25 for all demand pairs, and
assume independence.

Formulation

Table A.2 gives an overview of variables, sets and parameters. The first-stage program
has formulation

min
x

E[Q(x, d)] (A.1a)

s.t.∑
j

xj ≤ b, (A.1b)

x ≥ 0 (A.1c)
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Table A.2: Overview of problem variables, sets and parameters for TNP.

Sets

I set of point-to-point demand pairs
J set of links between nodes
R(i) set routes between point-to-point pair i

Deterministic parameters

ej existing capacity for link j
Airj indicator tensor whose elements are 1 if link j belongs to route r for point-to-

point demand pair i, and 0 otherwise
b total available capacity for expansion

Stochastic parameters

di Demand for point-to-point pair i

First stage decisions

xj Capacity expansion allocated at link j

Second stage decisions

si Unserved demand for point-to-point pair i
fir Flow for demand pair i through route r

where constraint (A.1b) is the maximum extra capacity to be allocated. The second-stage
program has the formulation

Q(x, ξ) = min
f, s

∑
i

si (A.2a)

s.t.∑
i

∑
r∈R(i)

Airjfir ≤ xj + ej ∀j ∈ J, (A.2b)

∑
r∈R(i)

fir + si = di ∀i ∈ I, (A.2c)

f, s ≥ 0 (A.2d)

where constraint (A.2b) is the total capacity constraint on link j given the total flow going
through that link, and constraint (A.2c) is the demand balance where the slack variable
s is used in the objective as a penalty for unmet demand.

2 Multidimensional News-vendor with Substitution
The Multidimensional Newsvendor with Substitution (MNV) is a production planning
problem where production must be determined beforehand, while demand is observed
later. Once demand is observed, the substitution sales must be determined. The model is
inspired from the work by Vaagen et al. (2011) (also discussed by King & Wallace, 2012,
Chapter 6). The distinction from the traditional news-vendor problem is the number of
products, and that they may substitute each other at a certain asymmetric rate αij . The
application by Vaagen et al. (2011) was fashion, where demand is known to be multi-modal
with strong dependence, and the substitution patterns can be determined qualitatively.
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Typically, total demand is well known, so the composition of products must be determined
under uncertainty. The advantage of modelling this problem as a stochastic program lies
in the ability to deal with a complicated distribution, thus, we use it to demonstrate our
scenario generation approach.

The formulation may be posed using (i) manufacturer-directed substitutions, where
the manufacturer decides which products to sell, or (ii) customer-directed substitutions,
where the customer decides what to buy. The difference lies in whether the stock of a
product must be sold out before substituting (consumer-directed), or if substitution sales
can be determined based on the current stock and substitution patterns (manufacturer-
directed). Consumer-directed substitution requires binary variables in the second stage
and is thus more computationally intensive to solve. The two formulations are equivalent
up to the relaxation of the binary ẑ, however, computational experiments are performed
on the relaxation.

Instance generation and distribution

The instance is determined by the number of products, possible trend states, and sub-
stitution patterns. The number of trend states determines the number of modes in the
multivariate distribution and represents how different styles, colours, or other properties
of the products become popular in a given year, where dependence is strong. Secondly,
substitution patterns are created only between products that have high demand simultan-
eously, assuming substitutability is associated with trend patterns. Vaagen et al. (2011)
discusses the details.

The distribution is a multivariate mixture distribution with binary stochastic variables
to determine the trend and two Normal distributions for the specific demand that are
either high or low conditional on the trend. The dependence structure is explained solely
by the binary stochastic variable for trend, while the Normals are independent. We
assume the probability for each product to hit the trend is 0.5. The distribution is
generated by first simulating the trend, and then drawing randomly from the high/low
demand distributions.

Figure A.2: Marginal demand distribution.

The marginal demand distribution is bimodal due to the high-low split, modelled by
two normal distributions N(µlow, σ

2
low), N(µhgh, σ

2
hgh). The variance of each is constructed

such that zero is at the 6th standard deviation away from the mean, and any (very
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unlikely) negative values are neglected. The low distribution has 50% of the expectation
of the overall distribution, and the high has 150% of the overall expectation. Figure A.2
illustrates the marginal demand distribution.

Table A.3: Overview of problem variables, sets and parameters for MNV.

Sets

I Set of products

Deterministic parameters

vi Sales price of item i
gi Salvage value of item i
ci Production cost
αij Substitution rate; average probability that item j can be replaced by item i
C Production capacity
P Number of products that can be produced

Stochastic parameters

di Demand for item i

First stage decisions

xi Production of item i
x̂i Binary whether to produce item i

Second stage decisions

yi Sales of item i
zij Substitution sale of item i, satisfying demand of item j
z̄i Total substitution sale of item i, satisfying demand from all items j
ẑj Binary whether to start substitution sales satisfying demand for item j
wi Salvage quantity of item i

Formulation

Table A.3 gives an overview of variables, sets and parameters. The first-stage program
has formulation

max
x, x̂

E[Q(x, ξ)]−
∑
i

cixi (A.3a)

s.t.∑
i

xi ≤ C, (A.3b)∑
i

x̂i ≤ P, (A.3c)

xi ≤Mx̂i, (A.3d)
x ≥ 0, x̂ ∈ {0, 1} (A.3e)

where x̂i are binaries to determine the total number of product variations that can be
produced. Constraint (A.3b) limits total production, constraint (A.3c) limits the number
of different products that can be produced, while (A.3d) links them to be consistent with
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each other. The second-stage program has formulation

Q(x, ξ) = max
y, z, z̄, w

∑
i

viyi + viz̄i + giwi (A.4a)

s.t.

yi +
∑
j:j ̸=i

zji ≤ di ∀i, (A.4b)

zij ≤ αij(dj − yj) ∀i, j, i ̸= j, (A.4c)

z̄i =
∑
j:j ̸=i

zij ∀i, (A.4d)

M(ẑj − 1) ≤ yj − xj ∀j, (A.4e)
zij ≤Mẑj ∀i, j, (A.4f)
wi = xi − (yi + z̄i) ∀i, (A.4g)

y, z, z̄, w ≥ 0, ẑ ∈ {0, 1} (A.4h)

where constraint (A.4b) signifies that sales (with substitutions) is less than demand,
constraint (A.4c) enforces the substitution rate, constraints (A.4e) and (A.4f) enforces
the logic of whether direct sales must exhaust the stock before substitutions (consumer-
directed substitution), and constraint (A.4g) is the salvage balance. All big-Ms M are set
equal to the total production capacity C.

3 Airlift Operations Scheduling

The Airlift Operations Scheduling (AOS) problem is a two-stage stochastic program. The
aim is to plan the allocation of different types of aircraft to different routes in the first
stage and then adjust the plan in the second stage with a penalty for doing so. There is
also a penalty for not using an already scheduled aircraft. The problem is due to Midler
and Wollmer (1969) and was found by its use by Ariyawansa and Felt (2002, 2004).

The scope of decisions in this problem may be seen as strategic in the first stage and
tactical in the second stage, with some approximating assumptions. The formulation
addresses the number of planes to be allocated to a route, and it is assumed that the
scheduling of flights is done outside the model once the decisions are set. With insufficient
capacity at a route, we may reschedule an aircraft to do parts (or all) of the flights on
that route, measured in hours. Rescheduling carries a premium, where we might imagine
the aircraft has to be moved between airports to go through with the flight and then
return to its remaining pre-scheduled flights, thus adding to the hours spent and the
cost. The number of available hours is what limits the capacity. The problem may be
formulated as a MILP by having the number of aircrafts be integer (Ariyawansa & Felt,
2004), however, computational experiments are performed on the relaxation since this is
how it was originally formulated.

Instance generation and distribution

Problem instances are derived from a randomly generated network of airports with routes
between them and some defined underlying parameters for costs given in Figure A.3.
Instances are created by first drawing a set of random nodes in the range [0, 1]2, and
then clustering is used to make a given number of hubs. All hubs are connected to each
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other by routes, but other nodes only have routes to hubs. Parameters are scaled to
be comparable to what is given by Ariyawansa and Felt (2004), while we create larger
instances. Flight time is assumed to be proportional to the distance of routes and the
costs have a fixed cost plus a variable cost proportional to hours spent on a flight. The
rescheduling premium amounts to adding the average distance between node pairs of two
routes, which replicates the deviation from the already set schedule. Each kind of aircraft
has an efficiency factor that scales the hours spent and capacity (more efficient means
fewer hours and more capacity). The specific values are given in Table A.4.

Table A.4: AOS problem instance parameters

Parameter Value

Fixed cost 2000
Variable cost 100
Carrying capacity 50
Penalty unmet demand 500
Penalty unused capacity 50
Flight time per distance 10
Efficiency factor [0.7, 1.3]

Figure A.3: AOS network illustration.

Demand on routes is assumed to be gamma distributed and with spacial dependence
between routes determined by a Matérn covariance matrix that defines a Gaussian copula
for the joint dependence. Distance between routes is determined by the lowest total
distance between pairs of their end points.
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Table A.5: Overview of problem variables, sets and parameters for AOS.

Sets

A set of aircraft types (indexed by i)
R set of routes (indexed by j, k)

Deterministic parameters

aij flying hours for aircraft type i to do route j
bij carrying capacity of aircraft i doing route j
cij cost for scheduling aircraft i to do route j
Fi maximum number of flying hours for aircrafts of type i
aijk flying hours for aircraft i to do route k given it was originally scheduled to do

route j
cijk cost for aircraft i to do route k given it was originally scheduled to do route j
c+j penalty for missed demand for route j
c−j penalty for unused capacity for route j

Stochastic parameters

dj Demand for route j

First stage decisions

xij number of aircraft of type i to assign to route j

Second stage decisions

yijk number of aircraft of type i to redirect from route j to k
u−ij number of aircraft of type i redirected from j

z+j excess demand for route j
z−j unused capacity for route j
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Formulation

Table A.5 gives an overview of variables, sets and parameters. The first-stage program
has the formulation

min
x

∑
i,j

cijxij + E[Q(x, d)] (A.5a)

s.t.∑
j

aijxij ≤ Fi ∀i ∈ A, (A.5b)

xij ≥ 0 ∀i ∈ A,∀j ∈ R (A.5c)

where constraint (A.5b) limits the total hours available for a given aircraft type. The
second-stage program has the formulation

Q(x, ξ) = min
y, z+, z−

∑
i,j,k ̸=j

(
cijk − cij

aijk
aij

)
yijk +

∑
j

c+j z
+
j +

∑
j

c−j z
−
j (A.6a)

s.t. ∑
k ̸=j

aijkyijk ≤ aijxij ∀i ∈ A,∀j ∈ R,

(A.6b)∑
i

bij

xij −∑
k ̸=j

aijk
aij

yijk +
∑
k ̸=j

yikj

+ z+j − z
−
j = dj ∀j ∈ R, (A.6c)

yijk ≥ 0 ∀i ∈ A,∀j, k ∈ R,
(A.6d)

z+j , z
−
j ≥ 0 (A.6e)

where constraint (A.6b) enforces that the originally planned available time for an aircraft
type cannot be exceeded and constraint (A.6c) is demand balance. Ariyawansa and Felt
(2002) explains additional details.

Rescheduling of aircraft i from route j to k, as encoded by variable yijk, reduced
the capacity at route j by aijk hours that would otherwise take aij hours to complete.
Considering that we neglect the exact scheduling, this leads to a loss in carrying capacity
of bij

aijk

aij
yijk on route j. The added capacity at route k is as if it was originally scheduled

at that route.

4 Storage Layout and Routing

This problem is constructed for this paper to address difficult scenario generation for
highly computationally complex problems. Positions of products in a storage facility
must be determined in the first stage, while in the second stage batches (subsets) of
products will be collected. The objective is to minimise the expected time to collect the
batches. Dependence between products to be in the same batch is what makes it relevant
to position products strategically. Note that a deterministic counterpart of this problem
does not exist.



134 SUPPLEMENT A. DECOMPOSING OUTPUT DISTRIBUTIONS

Instance generation and distribution

The topology of the storage facility is represented by a rectangular grid and the Cityblock
distance metric determines the distance between points on the grid. In principle, any
topology can be used since the problem is only specified by pairwise distances between
locations.

The distribution is represented by a random binary vector where each index represents
a product. An outcome of one means the product must be collected. We assume all
products have the same marginal probability of being in a batch, such that the expected
batch size is 5 across all instances (i.e. independent of grid size). The dependence structure
is what makes positioning products a challenge. We define the dependence structure by a
Gaussian copula with Bernoulli marginals. When sampling from the distribution we first
draw from the copula and translate those to the marginal outcomes.

The copula is determined by a covariance matrix first constructed manually and then
projected onto the semi-definite cone (Boyd & Vandenberghe, 2004) such that its eigen-
values are above 0.1. First, we set the covariance to one along the diagonal. Then between
each pair of products we assign a random number in the interval [0, 0.3]. For one-fifth of
product pairs, we then reset the dependence to be 0.5, and similarly to 0.8 for another
fifth of product pairs. This reflects how dependence between products may look.

Formulation

We use the convention that product 1 is the door and is placed at location 1. This will
always be in the set of products to collect so that the vehicle must start and end at
the door. Routes are represented as undirected graphs encoded by binary variables for
whether a link between each location is active or not.

Table A.6: Overview of problem variables, sets and parameters for SLR.

Sets

L Set of locations
E Set of location pairs
P Set of products

Deterministic parameters

C Maximum number of products at one location

Stochastic parameters

Ps Set of products to collect in scenario s

First stage decisions

wpk binary on if product p is at location k

Second stage decisions

zkl binary to make route between locations k and l

Table A.2 gives an overview of variables, sets and parameters. The first-stage program
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has formulation

min
x

E[Q(x, ξ)] (A.7a)

s.t.∑
p∈P

wpk ≤ C ∀k ∈ L, (A.7b)

∑
k∈L

wpk = 1 ∀p ∈ P, (A.7c)

w11 = 1, (A.7d)
wpk ∈ {0, 1} (A.7e)

where constraint (A.7b) limits the number of products placed at one location, con-
straint (A.7c) ensures each product is placed only once, and (A.7d) ensures the door
is placed at position 1. The second-stage program has formulation

Q(x, ξ) = min
z

∑
(k,l)∈E

dklzkl (A.8a)

s.t. ∑
{(k,l)∈L: m∈(k,l)}

zkl ≥ wpm ∀p ∈ Ps, ∀m ∈ L, (A.8b)

∑
(k,l)∈E

zkl =

{
1 if |Ps| = 2

|Ps| otherwise
, (A.8c)

∑
{(k,l)∈L: m∈(k,l)}

zkl ≤ 2
∑
p∈Ps

wpm ∀m ∈ L, (A.8d)

∑
{(k,l)∈E′}

zkl ≤ |E
′
| − 1 ∀E

′
: E

′
∈ P(E\{1}), |E

′
| > 1,

(A.8e)

zkl ∈ {0, 1} ∀(k, l) ∈ E (A.8f)

where constraints (A.8b), (A.8c) and (A.8d) enforce that the route to collect products
can only go by the locations where the relevant products are placed. Constraint (A.8e)
prevents cycles that does not go by the door where P(E\{1}) is the power-set of all
edges not going to the door. In practice, this constraint is relaxed and enforced by row
generation in the solution procedure. Notice that the second-stage formulation itself is
altered by the stochastic outcome, which means warm-starts cannot be used for out-of-
sample evaluation.
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Supplement B

Joint Forecasting of Salmon Lice
and Treatment Interventions

1 Biological relations

We use several relations based on the biology of lice that has been derived from empirical
laboratory experiments. Due to wider temperature ranges and a requirement to extrapol-
ate outside the temperature ranges in the experiments, we have re-estimated expressions
for these relations. The data has been extracted from plots in the original papers using
graphing software.

1.1 Development time between stages and hatch rate

Lice development time has been examined experimentally by Hamre et al. (2019) in the
temperature range 6◦C to 21◦C, and development in the larval (LR) phase by Samsing
et al. (2016) in the temperature range 5◦C to 20◦C. While they report low or almost
no development at 3◦C, there are also exist accounts of lice developing at temperatures
down to 2◦C. For forecasting lice, we have temperatures in the range −0.5◦C to 24◦C,
and require these expressions to extrapolate beyond the given temperatures, which is not
possible using the expressions estimated by Hamre et al. (2019) and Samsing et al. (2016)
since they give either negative or undefined development times. The data in (Hamre
et al., 2019; Samsing et al., 2016) both exhibit second-order tendencies in development
times and are required to be positive, hence, we choose an expression for development
times in the form:

exp(a+ bT + cT 2). (B.1)

The newly fitted expressions coincide reasonably close to the original estimated expres-
sions within their relevant temperature ranges. We use the same procedure to infer
temperature dependent hatch rates from data in (Samsing et al., 2016).

1.2 Time window and infectivity

The time window of infectivity is defined by the time it takes for larvae to develop and
be able to attach to a new host until it runs out of nutrition and dies. We use data from
Samsing et al. (2016) to estimate these functions using quantile regression at the 80th
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quantile to get a conservative estimate of the width of the time window. The time to
develop into the larval stage at the 80th quantile is estimated to

D80
L (T ) = exp

(
1.492041− 0.027941T − 0.001701T 2

)
, (B.2)

and the width of the infestation window at the 80th quantile is estimated to

W 80(T ) = exp
(
0.450114 + 0.090447T − 0.005636T 2

)
. (B.3)

The lower and upper limits of the time window is then expressed as

Wl(T ) = D80
L (T ), (B.4)

Wu(T ) = D80
L (T ) +W 80(T ), (B.5)

respectively.
Skern-Mauritzen et al. (2020) shown there are important interactions between age

and temperature to determine infestation success. The temperature effect was examined
experimentally by Samsing et al. (2016) in the temperature range 5◦C to 20◦C, while the
interaction effect between age and temperature was examined by Skern-Mauritzen et al.
(2020) in the temperature range 5◦ to 15◦C. The expression for infectivity estimated by
Skern-Mauritzen et al. (2020) is likely over-fitted since it deviates significantly from the
data by (Samsing et al., 2016) at 20◦C, and also gives unreasonable predictions at low tem-
peratures. Skern-Mauritzen et al. (2020) report concerns about over-fitting themselves.
Thus, we estimate a new expression for infectivity more well-suited for extrapolation.

We use the time window [Wl(T ),Wu(T )] as a starting point, and specify a uni-modal
function of age A within this range that has temperature dependent parameters. Infectiv-
ity then takes the expression:

I(A, T ) =

{
C(T ) [A]a(T )(1−[A])b(T )

B(a(T ),b(T )) if Wl(T ) ≤ A ≤Wu(T )

0 otherwise,
(B.6)

where A is age in weeks, [A] = A−Wl(T )
Wu(T )−Wl(T ) is the fractional age within the time window,

and B(·, ·) is the Beta function. This expression has been validated to adhere to the
data from (Samsing et al., 2016) and has reasonable properties for extrapolation outside
the given temperature range of the data. The temperature dependent parameters are
estimated to

C(T ) = exp
(
−3.068236 + 0.447180T − 0.012281T 2

)
, (B.7)

a(T ) = exp
(
4.465295− 0.619186T + 0.018293T 2

)
, (B.8)

b(T ) = exp
(
0.766574 + 0.133997T − 0.010022T 2

)
, (B.9)

and the function I(A, T ) is illustrated in the paper. For evaluation of infestation success
for ages between s− 1 and s weeks, we use the average infectivity

Īs(T ) =

∫ s

s−1

I(A, T )dA, (B.10)

during the week that leads up to week s.
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2 Structural instability
There is evidence of structural instability in the lice model for the given time-series data.
Namely, there is a systematic drift in parameter estimates over time, implying changes
in the data generation mechanism not captured by our model. To detect structural
instability, we perform rolling estimation within two year time windows, and compare their
respective parameter estimates. Rolling parameter estimates are illustrated in Figure B.1
for the lice model, and in Figure B.2 for the treatment model. Note that we fix the effect
of cleaner fish for time windows that contain data after 2018 since there is no new data
on cleaner fish after that point.

Foremost, we see systematic changes in the lice model generally occurring in the period
2016–2019, and some particular violations of structural stability include:

• There seems to be a decrease in dispersion of counts for adult female (AF) lice
(by higher values of νAF). This may, among other things, be explained by more
standardized counting practices (Solberg et al., 2018).

• We see an overall decrease in the effect of medical treatments up to the beginning of
2017. This is a known phenomenon caused by resistance towards the used substances
(Jensen et al., 2020).

• There is an increasing effect of mechanical treatments up to 2017. This may be
explained by accounts that better treatment practices learned in the industry during
2016–2018.

There are several regulatory changes during this period (Lovdata, 2016, 2017, 2018) that
may explain some of these effects. In previous work, Aldrin et al. (2019) concluded that
the treatment effect should be on the 1st lag, using data up to the end of 2016. Our
analysis shows a shift occurred later and we, in contrast, also use a 0-lagged effect of
treatment. It is mainly the introduction of mechanical treatments after 2017 that is the
cause of this shift. If we do not distinguishing medical and mechanical treatment, we get
severe structural instabilities in the timing of treatment effects.

For the treatment model, the main structural instability is in the effect of adult female
lice through the parameters γAF and πAF that seem to be increasing. This may be linked
to the dispersion in these lice counts that has become lower during the same time period,
meaning the counts of adult female lice provide better signals to infer treatments. There
also seems to be an increased effect of using past treatments to infer the probability of
treatment, through the parameter ϕAF.

3 Quantifying the cost of lice treatments
We make some rough assumptions to quantify the cost of treatment. First, we assume
we have a cage of fish at 2 kg and that we have a baseline daily growth rate of 0.5%
given a temperature of 10◦C (Skretting, 2012). Before a treatment, the fish are starved
for 3–5 days to reduce stress and, additionally, the treatment itself cause reduced growth
afterwards. Combined, these cause a approximate 32% decreased growth for 1–2 weeks
(Walde et al., 2022). Weekly mortality rate increase approximately 1.17 percentage points
as a result of mechanical treatments (Walde et al., 2021). The treatment operation in
itself costs approximately 250 000 NOK per cage, which we distribute evenly across 200 000
fish. We assume an approximate sales price of 65 NOK/kg. To estimate the cost of lice
treatments, we forecast growth and mortality for the next 20 weeks within two scenarios:



140 SUPPLEMENT B. JOINT FORECASTING

Figure B.1: Lice model: Rolling parameter estimates within three year time windows. Ribbons
give 95% confidence intervals derived by the Delta method.

(i) including the effect of treatments, or (ii) ignoring the effect of treatments. The cost
of lice is estimated as the difference in revenue between these two scenarios. The relative
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Figure B.2: Treatment model: Rolling parameter estimates within three year time windows.
Ribbons give 95% confidence intervals derived by the Delta method.

measure of lice-induced loss equals the cost of lice divided by the revenue that includes
treatments. More precise accounts of the operational cost of treatment are provided by
Abolofia et al. (2017) and Iversen et al. (2017).

4 Forecasts distributions for additional sites
One-week-ahead forecast distributions for three additional sites are shown in Figure B.3,
B.4 and B.5.
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Figure B.3: Out-of-sample one week ahead forecast distributions as prediction intervals and
probability of treatment.
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Figure B.4: Out-of-sample one week ahead forecast distributions as prediction intervals and
probability of treatment.
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Figure B.5: Out-of-sample one week ahead forecast distributions as prediction intervals and
probability of treatment.
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Supplement C

Harvest Planning under
Uncertainty in Salmon
Aquaculture

1 Statistical and biological models
We explain the statistical models used to represent uncertainty. For conclusions in the
main paper, these statistical models represent what we refer to as the prescribed distri-
bution which is denoted P .

1.1 Market prices
Forecasting prices is normally a complicated process that is outside the scope of this
paper. Farmers would normally rely on internal expertise or external analysts to provide
forecasts, and we have access to neither of these. Instead, we replicate a similar level of
insight based on known historical data.

First, an overall trend is derived by smoothing the historical data using centred moving
averages of 15 week time windows. This trend represents a price forecast that might have
been provided by other means, and the fact that future observations are included in the
moving average represents the insight that might go into forecasts.

Second, we represent uncertainty around this trend by an auto-regressive time series
model. There are nine price classes that are highly dependent, represented by the random
variable Xkt for price class k = 1, . . . , 9 and time t. Similarly, we let µkt represent the
trend. We express the price process as an AR(3) model on logarithmic scale, expressed
as

log(Xkt/µkt) =

3∑
l=1

ϕkl log(Xk,t−l/µk,t−l) + ηkt, ∀k (C.1)

where we assume the noise process ηt ∼ Normal(0,Σ) is independent and identically
distributed (iid) across time t. The parameters ϕ ∈ R9×3 are estimated on historical data
using the R-package stats.

The conditional dependence between price classes is contained in the covariance matrix
Σ. Due to strong dependence between price classes, we decompose Σ by Principal Com-
ponent Analysis (PCA) to represent 99.14% of the variance through six latent factors.
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Then,
ηt ≈ Tϵt, (C.2)

where we assume ϵt ∼ Normal(0, I6), I6 is the identity matrix of size six, and T ∈ R9×6

is the transformation matrix derived from PCA. The signs of the columns in T follow the
convention that positive values of each factor in ϵt leads to positive values of

∑9
k=1 ηkt.

Scenario generation acts on the latent variables ϵt which are transformed toXt afterwards.

Maximal price variation

We quantify the variability in the price process to derive bounds on maximal possible
value gain between stages. Let

X̃kt = log(Xkt/µkt), (C.3)

denote the log-transformed, mean-corrected version of the price process. We then have
that

Std(X̃kt) =

√
E
[
X̃ktX̃kt

]
= σk

√
γk(0), (C.4)

where γk(·) is the auto-covariance function of X̃k and σ2
k is the variance of ηkt (Brockwell

& Davis, 1991). To bound price variations, we truncate ηkt to its 99% prediction interval.
Thus,

Φ−1(0.995)σk
√
γk(0), (C.5)

forms a bound on X̃kt, where Φ−1 is the inverse CDF of a standard normal distribution.
This is used to derive the maximal deviation from the price trend µkt, where

Xkt ≤ µkt exp
(
Φ−1(0.995)σk

√
γk(0)

)
. (C.6)

From this bound, we can bound the value gain from one stage to the next where we also
account for maximal growth rate and transition to different price classes.

1.2 Lice and treatments

Development of parasitic lice and their counter-acting treatments is a complicated spatio-
temporal phenomenon. Specifically, there is strong interaction between sites due to trans-
portation of lice by ocean currents. The statistical model used to forecast this phenomenon
is addressed in a different publication by Narum and Berentsen (2024) and we provide a
short description here.

The dynamics of lice is modelled as a stochastic process Y . There is limited flexib-
ility in the decision to perform treatments; hence, we model this as a stochastic process
V , which also avoids decision-dependent uncertainty. There are interactions both ways
between lice and treatments; namely, more lice increases the probability of treatment,
while treatment decreases the level of lice. Spatial effects are accounted for by transport-
ation patterns derived from hydrodynamic simulation.

Let i denote a site, and t the week. The distribution for lice counts is then modelled
as

(nitYit | Vit,Ft−1) ∼ NegativeBinomial(nitµit, nitν), (C.7)

where nit is the number of fish collected to count lice, and we are interested in the average
lice count (Yit). Here, µit is an expression for the expected average lice count and ν is
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Figure C.1: Out-of-sample forecasts of lice and treatments.

a dispersion parameter. There is actually three different stages of lice that are counted,
which we ignore in this description. The distribution for treatments is modelled as

(Vit | Ft−1) ∼ Bernoulli(pit), (C.8)

where pit is an expression for the probability of treatment. Observe that lice depends
on treatments within the same week, while treatment relies only on lice in the previous
week. This allows estimating these models separately, but also means we must forecast
treatments in the next week before lice in the next week. Figure C.1 illustrates one-week-
ahead forecasting distributions of lice and treatments. Note that the expressions for µit

and pit are quite involved and rely on far-reaching historical values.

1.3 Mortality

Fish mortality is stochastic in the sense that farmers are sometimes surprised by realised
mortality rates. It is known that the mortality rate is linked to lice treatments and to
presence of disease. Simultaneous occurrence of disease and treatment can be especially
unfortunate. For this work, we emphasise forecasting of treatments and not disease, but
if a forecasting model for disease was provided we could easily incorporate it. We derive
the mortality distribution conditional on lice treatment, meaning the effect of disease is
incorporated unconditionally. We use summary statistics from the work by Walde et al.
(2021) and fit a parametric distribution to these.

Specifically, we fit the distribution to the following percentiles: 1st, 5th, 10th, P25th,
50th, 75th, 90th, 95th and 99th. We use the sinh-arcsinh (SHASH) distribution, which
is a flexible uni-modal distribution of four parameters which allows good control over
the first four moments (Jones & Pewsey, 2009). It is specified as a sinh and arcsinh
transformation of a normal distribution.

Let Z denote the mortality rate. The expression for the mortality distribution is then

logit(Z | V ) ∼ SHASH(µ, σ, η, δ), (C.9)
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Figure C.2: Mortality distributions, with and without treatment.

where different parameters (µ, σ, η, δ) are found for the two cases V = 0 and V = 1.
Parameters are fitted by minimising the summed squared error between the distribution
and the specified percentiles from the data, weighted by max{1 − p, p} to account for
less statistical significance in the more extreme percentiles. Figure C.2 illustrates the
conditional mortality distributions.

1.4 Growth

Growth rates as a function of temperature and weight are collected from Skretting’s
industry manual.1 Growth rates are also affected by lice treatments, and we use the
estimates by Walde et al. (2022) to reflect that the growth rate is reduced due to treatment.
For temperatures, we use historical values from the NorKyst800 model (Albretsen et al.,
2011).

2 Dual formulation under relaxation of integers

We present the dual formulation of the Aquaculture Harvest Planning (AHP) problem
under relaxation of integrality in the binary variables y⋄ and h⋄. Dual variables are
listed as multipliers to all constraints in the primal formulation in the paper. We refer to
Rockafellar (1999) for details on dualisation of multistage stochastic programs.

Upon relaxation of binary variables, we also insert the lower bounds

0 ≤ y⋄, h⋄, (C.10)

while tightening constraints and initial conditions ensure these are never larger than 1.

1Skretting (https://www.skretting.com/) is a feed production company for aquaculture.

https://www.skretting.com/
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The dual objective to be minimised in each stage t is stated as:

f⋆t (λt, ξt) = Nboat(κbflx
t + 2κblmt

t ) +

Bcmp −
∑
i∈Ãt

witỹit

βcmp
t +

∑
i∈Ot

Bloc
i βloc

it

+ I[t = 1]yi0

(∑
i∈At

(
σitϕit + τh

⋄

it

)
+
∑
i∈Ot

τy
⋄

it

) (C.11)

where I[t = 1] is an indicator for whether t = 1 and yi0 is the initial in-going fish count.
The first line represents operational costs, and the latter represents the value of the initial
in-going biomass. The dual constraints have formulations:

• Harvest quantity

ϕit ≥ (πitr
hog − cslaughter)wit − νh

⋄

it − witκ
C
it , (hit) ∀i ∈ At. (C.12)

• Out-going fish count

ϕit ≥ Et [σi,t+1ϕi,t+1]− cfeed∆wit − νy
⋄

it − wit(β
cmp
t + βloc

it ), (yit) ∀i ∈ Ot,
(C.13)

• Boat count

0 ≥ κh
⋄

it + CboatκCit − (κbflx
t + κblmt

t )− cboat, (bit) ∀i ∈ At. (C.14)

• Active status

τy
⋄

it ≥Mitν
y⋄

it − c
active − cdelouseψit + Et

[
τh

⋄

i,t+1

]
+ Et

[
τy

⋄

i,t+1

]
, (y⋄it) ∀i ∈ Ot+1,

(C.15a)

τy
⋄

it ≥Mitν
y⋄

it − c
active − cdelouseψit + Et

[
τh

⋄

i,t+1

]
, (y⋄it) ∀i ∈ Ct+1.

(C.15b)

• Harvest status

τh
⋄

it ≥Mitν
h⋄

it − κh
⋄

it , (h⋄it) ∀i ∈ At. (C.16)

• Dual variable bounds

0 ≤ κbflx
t ≤ cboat/2, (zbflx

t ) (C.17)

0 ≤ κblmt
t ≤ P boat, (zblmt

t ) (C.18)
0 ≤ βcmp

t ≤ P cmp, (zcmp
t ) (C.19)

0 ≤ νy
⋄

it , ν
h⋄

it , κ
C
it , κ

bflx
it , κblmt

it , κh
⋄

it , β
loc
it . (slack variables) (C.20)
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3 Problem instances
The case study data is obtained by a combination of public data, insights from proprietary
data, and simulation from statistical models fitted to real data. We derive synthetic
operational data so that we can insert our decision model at any point in time. We start
out with all real sites along the Norwegian coastline (those active in September 2021)
using their real temperatures within the years 2012—2022, and assume all sites are active
throughout this time span. These interact spatially by emission of parasitic lice between
sites. Production cycles are assumed to have a length of 78 weeks (18 months) with
fallowing (closing down) 8 weeks between cycles. By random initialisation times, this
infers all production cycles. The statistical lice and treatment models are initialised at
the first time step with zero lice and simulated in a single run to obtain synthetic historical
data. Weight is initialised at 0.3 kg at the start of each cycle and forwarded conditional on
temperature and loss in weight gain due to lice treatments. Each production cycle starts
with 200 000 fish, reduced by simulated mortality rates conditional on lice treatments.
Site capacity is set to their real number, and a cage is assumed to have a capacity of
790 tonnes; thus, the number of cages per site can be inferred. Biomass limits for sites
are set to their real numbers, while the company-wide biomass limit is set to 60% of the
combined site capacities. To construct a starting point for the stochastic optimisation
model, we must infer how much has already been harvested, but historical harvest plans
are proprietary data. We generate historical harvest actions by assuming farmer keeps
the fish until the biomass limit is reached, at which point they harvest the largest fish first
in chunks of size according to well-boat capacity. This rule-of-thumb for harvest planning
is common in the industry.

4 K-means clustering on trees
The minimum transportation distance approach to scenario reduction can, for random
variables, be solved heuristically through clustering (Rujeerapaiboon et al., 2022). How-
ever, for stochastic process we must also account for information structure; i.e., time-
development of information states represented through branching in a scenario tree. The
essence of the nested distance (Pflug & Pichler, 2012) is to incorporate causality in meas-
ures of distance between stochastic processes by prioritising distances in earlier stages
first. We customise the k-means algorithm (Lloyd, 1982) to account for time structure in
stochastic processes and for causality in distance metrics.

First, we relax the nested distance in part by using the distance metric

D(ω, ω′) =
∑
t∈T

dt(ω, ω
′)e−ρ(t−1), (C.21)

between outcomes ω and ω′, where the metric dt(ω, ω′) is defined in the paper. This still
prioritises distances in one stage over the next but only by a ratio of eρ instead of absolute
priority. For comparing distances, (C.21) corresponds to the nested distance when letting
ρ→∞. For our purposes, we let ρ = 1.

Assume that the branching structure of the scenario tree is provided and that the
values in each node are initially randomised. Let us then assume we have a large number of
sampled paths Ω̈, on which we may perform clustering using the distance metric D(ω, ω′).
Clustering provides a partitioning of Ω̈ where each partition is associated to a path in
the scenario tree. The next step in the k-means algorithm would be to insert the average
of each partition as the centre of each cluster. Instead, we insert the conditional average
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in each node of the scenario tree to account for its branching structure. This procedure
is repeated from the step of partitioning Ω̈ until the improvement is low. This converges
reasonably well, but is nonetheless a heuristic.
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