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Abstract  

The FIFA World Cup presents a complex logistical challenge, featuring an intricate 

tournament schedule that requires teams to frequently move between their base camps and 

match venues. In this thesis, we explore the potential of mathematical programming as a tool 

to devise an optimal tournament schedule that reduces extensive travel and ensures fair travel 

distribution. 

We create a FIFA World Cup scheduling framework consisting of mixed integer linear 

programming models. The framework consists of a series of individual optimization models, 

crafted from the guidelines of the World Cup of 2014 and 2018. All models yield significantly 

improved objectives relative to the historical benchmarks of 2014 and 2018. For the models 

minimizing total distance traveled throughout the group stage, the results range from a 

decrease of 25% to 48% in distance covered compared to historical distances. For the models 

minimizing the distance between the least and most traveling teams among all teams, the 

results range from a decrease of 81% to 96% for this inner range compared to historical 

differences. For the models minimizing the distance between the least and most traveling 

teams within each group, the results range from a decrease of 83% to 98% for the sum of the 

groupwise inner ranges compared to the sum of the historical groupwise inner ranges.  

We further combine the individual objectives into a multi-objective model using the 𝜖-

constraint method, thereby showcasing a Pareto front of candidate solutions that all yield 

results that surpass the historical benchmarks for both objectives simultaneously.  

Our findings strongly indicate that utilizing mathematical programming for the World Cup 

match scheduling process offers the potential to reduce the overall distances traveled while 

concurrently ensuring a more balanced distribution of travel burdens among the participants. 

We highlight the 2026 World Cup as an ideal prospect for implementing this approach. 
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1. Introduction and Scope of Research 

1.1 Introduction 

The FIFA World Cup stands unparalleled as the premier global sporting event captivating 

audiences with its broadcasting reach. Estimates indicate that more than three and a half billion 

people watched a least one minute of the coverage in the recent 2018 World Cup (Richter, 

2022), Given the multitude of stakeholders invested in the outcomes for each national team, 

crafting an optimal tournament schedule is undoubtedly an essential part of a successful World 

Cup. 

A critical component under the control of tournament organizers is the travel itinerary for each 

team during the group stage. As studies have shown that excessive travel, particularly through 

different time zones, can affect athletes' physical performance, FIFA runs the risk that a 

skewed match schedule may negatively impact team performance, potentially influencing the 

outcomes of the tournament. Furthermore, factors such as environmental impact and spectator 

travel plans are also significantly affected by the distances each team covers in the final 

schedule. With the expansion from 32 to 48 teams in the 2026 FIFA World Cup, ensuring a 

balanced schedule that reduces unnecessary travel is more crucial than ever.  

1.2 Scope of Research 

This thesis aims to develop a framework of optimization models for the FIFA World Cup 

group stage scheduling using mathematical programming. We base the construction of our 

foundational model on the schedules of the FIFA World Cup 2014 and 2018, striving for the 

closest replication achievable in terms of regulations and restrictions. In the foundational 

model, the objective is to minimize travel distances while adhering to significant factors for 

replication identified in these previous tournaments. We also address important fairness 

aspects of equitable distribution of travel burden for the participating teams in the subsequent 

development of the foundational model. Furthermore, we explore the possibilities of 

concurrently addressing both the minimization of travel distance and equitable distribution of 

travel burden using multi-objective modeling. These candidate models are finally discussed in 
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the context of how they could be adapted to the scheduling needs of the FIFA 2026 World 

Cup group stage.  

We concentrate our modeling efforts on the group stage of the World Cup, due to the 

significant pre-planning required and the array of potential outcomes, which allows for the 

selection of an optimal schedule from numerous other feasible options. The knock-out stage, 

on the other hand, operates with a pre-defined progression of teams, a modification simplifying 

the task of efficiently assigning matches to venues. Consequently, modeling this phase is 

ultimately a simplified adaptation of the group stage model, with reduced constraints and fixed 

pairings of teams. Achieving a robust model for the group stage directly implies that 

transitioning to a model for the knock-out rounds would be a straightforward and 

uncomplicated step – and therefore not problematized.  

In other words, we aim to design a framework that can assist decision-makers in the advanced 

planning of a World Cup, and we believe that the group stage offers the most significant 

opportunities for scheduling optimization. Therefore, our research will concentrate 

exclusively on this phase, with the final models having the possibility of easy adaptation for 

the knock-out stages as the tournament progresses.  

In the official bid book to host the 2026 FIFA World Cup, the bid committee briefly reported 

that they had developed software to generate a match schedule to minimize the travel distance 

for teams given some predefined criteria (United Bid Committee, 2018). This is not similar 

nor highly relevant to our work, as their algorithm only considered distances between venues 

without factoring in base camps, in addition to the underlying assumptions for the match 

schedule that have changed since that time. For instance, the change in size of groups from 

three to four. Besides other pre-determined criteria, further details of the software or methods 

it employs are not elaborated on. To the best of our knowledge, this software – or its findings 

– has not been particularly communicated or promoted at a later time, which may be an 

indication that the software was not ready to be used when the bid book was published back 

in 2018. Nevertheless, it does indicate that FIFA and the host organizers consider the matter 

of travel distances to be an important factor when developing the match schedule. 
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1.3 Related Work 

The problem at hand relates to the typical Traveling Tournament Problem (TTP) as a logistical 

timetabling problem. The objective of minimizing distance, in addition to some of the 

constraints, resembles the TTP. The TTP is a widely studied topic in the realm of sports 

scheduling literature, see for instance Easton et al. (2003), Frohner et al. (2023), and Ribeiro 

& Urrutia (2007). Typically, the context revolves around a double round-robin format, 

spanning an extended period, where teams compete against each other twice - once at home 

and once away. The primary goal of these models is to minimize the collective travel distance 

for all participating teams subject to constraints characteristic for tournaments – like no team 

plays the same opponent in two consecutive rounds. There have been various adaptations of 

this problem, each modified to fit their respective purpose in developing a framework for better 

decision-making in practical scenarios. For instance, integer programming was utilized for 

organizing the South American Qualifiers for the 2018 FIFA World Cup (Durán et al., 2017), 

demonstrating its application in significant real-world sporting events, and underlining the 

value of further exploring mathematical programming to enhance the World Cup tournament. 

Perceived fairness is a vital part of sports scheduling. Kendall et al. (2010) offer an extensive 

overview of the most widely recognized fairness standards used in organizing round-robin 

tournaments. These include reducing the number of breaks and rest differences, handling 

carryover effects, ensuring group balancing, as well as fair referee assigning. Van Bulck & 

Goossens (2020) illustrate further implementations of the optimization of metrics for fairness 

in tournament schedules by e.g. minimizing the games played difference index (Suksompong, 

2016). Although fairness is a widely recognized criterion in tournament scheduling, our 

research has revealed limited references to defining fairness in terms of the distribution of 

travel distances for teams in the earlier literature on sports scheduling. 

However, a recent study by Osicka & Guajardo (2023) has introduced cooperative game 

theory into the tournament scheduling framework and has employed various fair distribution 

metrics to achieve the dual objective of balancing the conventional minimization of travel 

distances while simultaneously ensuring a fair distribution of travel burdens among the teams. 

This multi-objective optimization approach is an important continuation of the traditional TTP 

and for sports scheduling in general. It holds high relevance to our research, as ensuring 
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equitable distribution of distances becomes crucial in a World Cup format where matches are 

scheduled within a short timeframe, allowing only a few days of rest between consecutive 

games. In this format, striving for equality in resting and traveling is considered an important 

part of creating a fair tournament. 

Although we do not face a typical TTP, as the case of the World Cup revolves around a group 

stage format and thereby turning it into a problem outside the TTP category, the described 

literature review and earlier findings are still highly relevant to our work. However, to the best 

of our knowledge, the group stage tournament format is not as widely covered in the existing 

literature, necessitating the construction of our models from the ground, guided by tournament 

guidelines used in 2014 and 2018. A more thorough description of the constraining elements 

is provided in later chapters. 

1.4 Structure 

This thesis is divided into 8 chapters. This chapter presents a short introduction and the scope 

of our work. The second chapter introduces relevant background in addition to our motivation 

for the research. The third chapter describes the underlying problem in more detail, while the 

fourth chapter outlines the methodological framework used for modeling and solving the 

problem. The fifth chapter introduces the optimization models and data. In the sixth chapter, 

we present the results which are then used to discuss the relevance of our models for the 

upcoming World Cup in chapter seven, in addition to the shortcomings of this thesis. The 

eighth and final chapter provides a summary of our work and concluding remarks.  



 

 

 

13 

2. Background 

2.1 Description of Format and Itinerary 

The initial phase of the FIFA World Cup is the group stage, where the participating teams are 

allocated into groups for a series of round-robin matches. During the group stage, every team 

gets the opportunity to play against the other teams in its group once. Teams earn 3 points for 

a victory, 1 point for a draw, and no points for a loss, meaning that if a match concludes in a 

tie after the regular 90 minutes, it is recorded as a draw, with no additional time or penalty 

shootouts to determine a winner. The teams’ positions in the group are finally determined by 

their total points. In instances where two or more teams accumulate the same number of points, 

additional criteria such as goal difference, the number of goals scored, and results from head-

to-head matches are employed to establish the group rankings. Conventionally, the two 

highest-ranking teams from each group progress to the knockout stage, transitioning the 

tournament into a single-elimination format.  

Historically, each participating team’s travel schedule has involved commuting between their 

selected base camp and the various match venues each round. Contrary to various football 

tournament structures such as the Champions League, FA Cup, and others, the World Cup 

group stage does not feature home and away matches. In former World Cups, teams have 

typically selected a specific base camp to reside in between their games. As a result, teams do 

not exclusively travel to away matches, nor do they adopt a continuous "on the road" travel 

pattern throughout the tournament. Rather, teams follow a back-and-forth schedule, moving 

between their base camps and a new match venue each round. 

In the past, the group stage of the FIFA World Cup has featured 32 teams, sorted into 8 groups 

of 4. This format is set to change in the 2026 World Cup, with an expansion that will see the 

inclusion of 48 teams. Originally, FIFA had contemplated a significant departure from 

tradition, proposing to organize the 48 teams into 16 groups of 3. This arrangement quickly 

came under scrutiny due to concerns about its level of fairness, including a heightened risk of 

match-fixing and an imbalance in the scheduling, as highlighted by Guyon (2022).  
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Prompted by these issues, FIFA reconsidered its approach and decided to divide the teams into 

12 groups of 4 instead. Beyond the question of how many teams should be in each group, the 

expansion to 48 teams introduces a range of additional complexities. Research on this topic 

has provided various alternative tournament formats to effectively accommodate the increased 

number of participating teams (Krumer & Guajardo, 2023). Upon further consideration of the 

new format, it becomes apparent that the scheduling of the group stage and the planning of 

travel logistics for each team in the 2026 FIFA World Cup will also be characterized by the 

ultimate tournament structure. When writing this thesis, the latest statement from FIFA reveals 

that the two best teams in each group, in addition to the eight best third places advance to the 

round of 32, indicating a classical knockout structure to the final (FIFA, 2023).  

2.2 Previous Scheduling Practices 

Our research into previous scheduling and planning practices for the World Cups reveals, as 

far as we know, a lack of focus on reducing travel distances. Limited information is available 

about FIFA's methodology for arranging match schedules, but considering the massive 

position, it can be reasonably conjectured that commercial considerations play a predominant 

role. For example, prioritizing the facilitation of fan attendance and simplifying broadcasting 

procedures. In the 2022 World Cup, due to the exceptionally compact nature in Qatar, FIFA 

stated that group-stage games were assigned to stadiums to accommodate the comfort of 

spectators, teams, and media (FIFA, 2022). For the 2014 and 2018 World Cups, which were 

spread over much larger geographical areas, we have not found similar statements. 

While recognizing the importance of these commercial elements and their understandable 

continued influence on future World Cups, we think it is essential to consider them in greater 

conjunction with the elements examined in this thesis, especially for tournaments spanning 

over great geographical areas, such as the 2026 World Cup which is hosted by Canada, the 

US, and Mexico together.   
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2.3 Motivation 

2.3.1 Traveling Affecting Athlete Performance 

As mentioned in the introductory part, a schedule that ensures fairness in travel distances is in 

part motivated by concerns over travel fatigue and its potential impact on the tightly packed 

schedule of tournaments like the World Cup. While studies vary regarding the extent of the 

impact, the article by Janse van Rensburg et al. (2021) provides a comprehensive analysis of 

the reasons behind travel fatigue and jet lag, as well as their effects. 

When discussing the burden of travel fatigue on athletes, the article lists performance 

influential factors, which include the total distance traveled, the time of travel, and frequency. 

There is varying evidence on the potential consequences of travel fatigue alone and the acute 

effects of air travel without crossing time zones are limited to negative influence on perceptual 

measures. However, after rapidly crossing 3 or more time zones the circadian system cannot 

immediately adjust to the light-dark cycle in the new time zone. As a rule of thumb, the 

duration of natural alignment is 0.5 days per time zone crossed in a westerly direction and 1 

day per time zone crossed in an easterly direction. Until the realignment between the circadian 

system and the new local time zone is complete, performance could be impacted.  

The assessment emphasizes the intricate nature and insufficient empirical studies on the 

evaluation and handling of travel fatigue and jet lag in athletes, limiting the ability to provide 

solid advice. It agrees that travel fatigue and jet lag can pose significant challenges to athletes 

in terms of their performance and increased susceptibility to sickness or injury, depending on 

the competition time.  

Another comparative study measuring the circadian advantage in Major League Baseball 

found results claiming that teams with a three-hour time zone advantage won 61% of their 

games, while those with one- and two-hour advantages had a 52% winning percentage (Winter 

et al., 2009). These findings are pertinent as the structure and demands of the World Cup are 

akin to the scenarios examined in the literature, indicating that such travel-related challenges 

are likely to be encountered by participants in future World Cups, including the 2026 World 

Cup spanning over 4 time zones across North America, thereby highlighting the need for a fair 

and considerate scheduling approach. 
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2.3.2 Environmental and Fan Implications of Travel Reduction 

Reducing the overall travel distance during the tournament undoubtedly yields numerous 

additional benefits. From an environmental standpoint, less travel translates to reduced 

emissions and a smaller carbon footprint. Furthermore, for fans wishing to support their 

national team, shorter travel distances mean a more accessible and budget-friendly 

tournament, fostering a more inclusive atmosphere for everyone interested. Elaborating on 

these perspectives and quantifying the positives are outside the scope of this thesis, but we 

consider it to be self-evident that reducing the overall travel distance during the tournament is 

a vital element in a more distance-efficient framework for organizing the World Cup schedule. 

2.3.3 Fairness Perspectives 

Concentrating exclusively on minimizing the total travel distance might however lead to a 

tournament schedule that falls short of being optimal when considered from an overall 

perspective. As discussed by Osicka and Guajardo, an important aspect of a successful 

tournament execution from a sporting perspective is the degree of perceived fairness among 

the participating teams. As stated in the paper:  

While minimizing all the traveling between games is efficient from the overall 

perspective, it overlooks the distribution of the travel among the teams. Consequently, 

some teams may end up better than others with respect to their individual goals, an 

imbalance which may affect teams’ often-limited resources or preparedness for the 

games (Osicka & Guajardo, 2023). 

This point is notably relevant to the World Cup, specifically the case of 2014 when some teams 

had a mere two days of rest in between consecutive matches. For instance, Nigeria and Bosnia-

Herzegovina both played on the 22nd of June and then again on the 25th of June, resting only 

on the 23rd and 24th. Likewise, Portugal and the United States both played on the 23rd and the 

26th, also resulting in only two full rest days in between matches. Research done by Scoppa 

(2013) shows that a difference in rest days between opponents can be an advantage when the 

rest time is equal to or less than three days. With the tight timeframe for debriefing, rest, and 

further strategic planning present in former World Cups, the duration spent in transit can 

profoundly impact a team’s preparedness for their upcoming game. If a team is subjected to a 

notably more demanding travel itinerary compared to its competitors, the eventual outcome of 

the match could be a direct consequence of the tournament’s pre-planned scheduling decisions.   
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This said, in the context of the World Cup, various dimensions of fairness are already integral 

to the process of scheduling and planning. For example, the seeding of teams into different 

groups considers their historical performance, as reflected in their FIFA rankings. Additional 

literature has introduced further suggestions for improvement of the fairness in the group 

draws in tournaments, for instance, Cea et al. (2020), Guyon (2014), and Csató (2023). 

Moreover, it is a common practice for tournament organizers to ensure a diverse representation 

of teams from different continents within each group (Organising Committee for FIFA 

Competitions, 2022). Efforts are also made to distribute match tickets equitably among the 

nations, aiming to mitigate any potential "home venue" advantage that might arise from a 

random allocation of tickets – and thus an overrepresentation of fans from one of the nations. 

Though these fairness perspectives are already factored in during the scheduling of the World 

Cup group stage, there seems to have been less focus on fairness in terms of the distribution 

of traveling burden. As shown in Figure 2.1 and Figure 2.2 for the 2014 World Cup, and 

Figure 2.3 and Figure 2.4 for the 2018 World Cup, our analysis reveals significant disparities 

in the travel demands placed on different teams in past World Cups. The graphs effectively 

depict the cumulative distance each team traveled back and forth between their respective base 

camps to match venues.  

The graphs are complemented by detailed representations of a pair of travel routes shown on 

maps, highlighting the most extreme cases of the longest and shortest journeys, thereby clearly 

demonstrating the unequal travel burdens borne by various teams. Considering the impact that 

total travel distance can have on team performance, the disparities observed in previous World 

Cups provide a compelling rationale for refining the balance in travel distances among the 

participating teams, ultimately contributing to an enhanced sense of fairness throughout the 

tournament. It can be noted that since the teams have picked their base camps themselves, they 

could probably have chosen base camps differently if the travel distance was their primary 

concern – e.g. the United States as shown in Figure 2.2. However, this would only help to 

some degree and is only applicable when the objective is to minimize the total distance 

traveled.    
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Figure 2.1: Total distance traveled by each team in WC 2014 during the 
group stage 

 

Figure 2.2: Base camp and venues for Belgium and the United States. 
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Figure 2.3: Total distance traveled by each team in WC 2018 during the 
group stage 

 

Figure 2.4: Base camp and venues for Colombia and Egypt. 
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3. Description of the Problem 

As established, the main goal of this thesis is to enhance the strategic planning framework for 

the World Cup, thereby aiding those in charge of crafting the event's schedule. Our hypothesis 

posits that previous World Cup events have undervalued the importance of reducing travel 

distances and maintaining fair travel distribution among the participants. In response to this, 

we focus on developing a mathematical programming model for enhanced tournament 

scheduling in terms of itinerary coordination. This model will not only highlight these past 

travel distance oversights by presenting improved retrospective schedules but will also serve 

as a suggested framework for devising more efficient and fair scheduling solutions for future 

World Cups. 

Consequently, the problem at hand entails not only creating a mathematical model designed 

to streamline the schedule by reducing the overall distance traveled but also involves the 

crucial step of translating principles of fairness into mathematical expressions for subsequent 

improvements to the model. This chapter is dedicated to exploring the ideas behind the 

mathematical formulations of the objectives, the selected fairness principles, and the 

tournament constraints, and addressing the complexities encountered throughout the modeling 

process. 

3.1 Minimization of Total Distance 

The challenge of minimizing the total distance traveled revolves around creating a model able 

to evaluate all feasible routes within the boundaries of tournament guidelines, and then, 

subsequently, selecting the combination of routes that yields the minimum cumulative 

distance. Therefore, the mathematical formulation of the objective function must allow for 

assessing every possible route while efficiently identifying those that are optimal for achieving 

the least total distance.  

A route is defined as the travel from a base camp to a venue. For the two initial rounds, the 

routes are duplicated in the final sum to factor in the return from the venue to the base camp. 

For the final round, the return route is not included in the objective function. This is because 

sports-related activities in the group stage conclude after the last match. However, if we 

prioritize factors other than sports performance, like reducing carbon footprints, as key 

benefits of minimized travel, it could be logical to count the return journey in our calculations. 



 

 

 

21 

This inclusion should not significantly impact the results, as the return route is identical to the 

initial journey to the venue. 

The solution to the problem is an objective function that computes the aggregate of all feasible 

distances, each multiplied by an assigned set of binary decision variables determined by the 

model. These variables represent a series of yes or no choices - essentially, a binary 

determination of whether a route is included in the summation of total distance. Every potential 

combination within the set of feasible solutions is considered by the model. When a team's 

potential route is identified as efficient for minimizing total distance, its corresponding binary 

variable is assigned a value of 1, signifying yes. This inclusion integrates the route into the 

total distance calculation by multiplying its distance by 1. Conversely, if a route is deemed 

sub-optimal, the binary variable is set to 0, denoting no. This setting effectively excludes the 

route from the final solution by multiplying its distance by zero, resulting in a contribution of 

zero to the overall distance sum. Though highly computationally demanding, the model should 

ultimately be able to find the single best solution of chosen routes among the range of possible 

solutions, thereby solving the problem at hand. 

3.2 Incorporating Fairness 

Another central focus of our research question is to investigate methods for embedding 

fairness within our optimization model for World Cup scheduling. Establishing the parameters 

for measuring this fairness is a vital consideration. In the literature on sports scheduling, 

several metrics for ensuring fairness in tournament schedules have been already explored, for 

instance, Van Bulck & Goossens (2020) focus on fairness within the fixture list and Osicka & 

Guajardo (2023) explore a game theory approach to distance distribution among the teams. 

We want to expand on this idea of incorporating fairness in terms of distance distribution in a 

mathematical model for tournament scheduling. 

We recognize that World Cup scheduling already incorporates various aspects of fairness 

criteria, discussed in section 2.3. Additionally, we bear in mind the predetermined tournament 

guidelines and time frames that result in a relatively inflexible fixture list of match dates. 

Consequently, our primary focus is on creating models that effectively and fairly distribute 
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travel distances among teams within the demanding constraints of a tight and strict match 

fixture, as well as the other established tournament regulations of a FIFA World Cup. 

Our chosen objective for enhancing fairness is minimizing the inner range between the 

maximum and minimum value of travel distance among the teams. The inner range is derived 

by subtracting the minimum distance from the maximum distance, guaranteeing that every 

team's travel routes fall within these boundaries. This method is designed to achieve a fairer 

allocation of travel distances across teams in the sense of equitable distribution. While the 

mathematical model - incorporating a range of possible distances combined with binary 

decision-making to identify optimal routes - remains constant, the objective has shifted. The 

selection of binary variables is now focused on minimizing the variation in total travel 

distances, aiming for the closest possible parity, rather than a sole focus on minimizing the 

sum of all distances.  

As far as we know, this is the first paper to address this metric for fair travel distance 

distribution in a mathematical programming model for tournament scheduling. Naturally, 

there are other allocation methods worth exploring in future research, each potentially offering 

unique insights and solutions to the challenge of ensuring fairness. This expansion of metrics 

is however beyond the scope of this thesis and case study. 

3.2.1 Fairness Metrics 

After determining our primary strategy to reduce the internal range of travel distances, further 

discussions are necessary within the context of the World Cup format. When we view the 

equitable distribution of travel distance through a hierarchical order, it becomes apparent that 

the perceived fairness can be categorized into at least two distinct metrics: 1) optimized 

equality between all teams in the tournament, and 2) optimized equality between all teams 

within each group. 

Metric 1: Total Inner Range 

This goal is centered around ensuring a comprehensive sense of fairness across all 

participating teams regarding the total distance traveled during the group stage. By striving to 

minimize the range between the maximum and minimum distance traveled among the set of 

all teams, the resulting schedule is deemed fair from a holistic viewpoint, as it ensures that all 

teams advancing to the knockout stage have experienced comparable travel demands in the 

preliminary rounds.  
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Metric 2: Groupwise Inner Ranges 

The goal of this objective is to establish equitable conditions for all teams within a particular 

group. As previously discussed, ensuring fairness at this stage is crucial for the overall success 

of the tournament, given that the outcomes of these group-stage matches determine which 

teams advance to the subsequent knockout rounds. By concentrating our efforts on each group, 

the model could find a better result in terms of equality within those specific groups, while 

staying within the bounds of what the model can feasibly accomplish. 

Comparative Analysis of Selected Fairness Metrics 

When considering the two distinct metrics of fairness, it becomes apparent that both present 

compelling cases for being favored. Ideally, both metrics would be satisfied to an acceptable 

degree by the model since, in theory, achieving one does not necessarily have to compromise 

the other. However, the problem arises when conflicts emerge during the resolution of a model 

that focuses exclusively on one of the objectives; the metric of fairness which is deemed most 

critical by the decision maker. To illustrate, we consider two hypothetical cases: 

Case 1: Minimization of Total Inner Range 

In this case, the objective is to minimize the total inner range of travel distances to ensure 

overall fairness. We have the minimization of the total inner range as the objective. We assume 

a situation where the final value of the total inner range is 10,000 km (ranging from a 

maximum of 20,000 to a minimum of 10,000). Further, we assume values of groupwise inner 

ranges for two groups, Group A and Group B, as shown in Table 3.1. 

Table 3.1: First hypothetical case for inner range 

 

Though the final objective value could be deemed satisfactory narrow, when examining the 

inner ranges on a group basis, there is however a notable variance in their inner ranges. Teams 

Max Min Inner Range

20 000 10 000 10 000

Group A 20 000 18 000 2 000

Group B 20 000 10 000 10 000

Total Inner Range

Groupwise Inner Ranges
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in Group A exhibit an inner range of 2,000 km (from 20,000 to 18,000), whereas the inner 

range for Group B is 10,000 km (from 2,000 to 10,000). Comparatively, the travel distance 

variation for Group B is fivefold that of Group A. Even though the final value of the total inner 

range could be satisfactory, there is still a marked difference in travel demands within the 

individual groups which could be considered undesirable. The team in Group B that travels 

five times further than the least-traveling team in the same group arguably has a greater 

disadvantage in proceeding to the knockout stage. For Group A, this variation is of far less 

significance. 

Case 2: Minimization of Groupwise Inner Ranges 

In this case, the objective is to minimize the sum of all groupwise inner ranges. In this 

hypothetical example, the difference between the maximum and minimum for both groups is 

2,000 km: (8,000 – 6,000) and (30,000 – 28,000) respectively, giving a final sum of 4,000. 

Conversely, the total inner range has expanded to 24,000 km. While there is an increased sense 

of fairness in terms of equitable travel distances within each group, this benefit is offset by an 

increase in the total travel range, thereby diminishing the perceived fairness across all teams 

in the tournament. 

Table 3.2: Second hypothetical case for inner range 

 

In practice, as in theory, it may be that minimizing the overall inner range does not conflict 

with reducing the inner range within groups. Yet, given the intricacies of a mathematical 

model suited for tournament scheduling, prioritizing one aspect of fairness could compromise 

another in the search for the optimal solution. Our initial analysis of these models has indeed 

demonstrated such trade-offs, and we find it crucial to address the matter. Ultimately, the 

selection of the appropriate fairness metric will rest with the decision-maker, but it is important 

to be aware of the pitfalls in the search for a fair schedule. 

Max Min Inner Range

30 000 6 000 24 000

Group A 8 000 6 000 2 000

Group B 30 000 28 000 2 000

Total Inner Range

Groupwise Inner Ranges
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Balancing Fairness and Total Distance   

Regardless of the perceived relative importance of the different fairness objectives discussed, 

aiming exclusively to minimize the inner range of travel distances - either in totality or within 

specific groups - may initially appear to be sufficient for a scheduling model. However, it 

quickly becomes evident that this method could unintentionally result in an increased total 

travel distance – with all the negative effects this could impose, discussed in section 2.3. To 

illustrate this point, again consider two hypothetical cases: in the first, the minimum and 

maximum values among all teams are 10,000 and 20,000 respectively, resulting in an inner 

range of 10,000 (20,000 – 10,000). In the second case, these values are 110,000 and 120,000 

respectively, also yielding an inner range of 10,000 (120,000 – 110,000). Despite the identical 

inner ranges, the total distance traveled in the second scenario is significantly higher, making 

the first scenario the preferable option.  

This modeling fallacy, where different optimal scenarios are incorrectly treated as equivalent, 

introduces the need for a multi-objective approach, where we introduce a trade-off between 

the traditional minimization of total distance and a sole focus on the chosen fairness criterion. 

Tournament Guidelines and Conventions as Model Constraints 

Another crucial aspect in the development of a World Cup scheduling framework is ensuring 

its broad applicability to various editions of the tournament, thereby requiring minimal 

customization. Thus, a thorough feature of all the models in this thesis is that they are adapted 

for both the 2018 and 2014 World Cup. Incorporating past World Cup tournament guidelines 

into the development of our model allows us to construct our framework such that it aligns 

with the fundamental standards and norms of a traditional World Cup format. Additionally, 

by applying the constructed framework to past tournaments, we can conduct a retrospective 

assessment to evaluate its improvements relative to historical benchmarks. 

However, in our research of former World Cup schedules, we find that there have been 

differences in tournament guidelines, which further calls for a need for individual 

customization of the hard constraints in a replicating mathematical model. Simply by 

examining the match schedule, it is challenging to discern what is guided by established 

principles, sport-specific factors, commercial considerations, or mere randomness. To 

illustrate, during the 2018 FIFA World Cup, there were no instances of more than four matches 
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scheduled on a single day in the group stage. However, in the 2014 World Cup, there was one 

occasion in the group stage where five matches were played on the same day. Another example 

from the 2018 World Cup is that Russia had their second match on the same day that the last 

playing teams in round 1 played their first match, but between the second and third rounds, 

the transitions between rounds were not within the same day.  

Consequently, the final mathematical model will face certain limitations in fully replicating 

the former schedules, and it is necessary to include some minor adjustments to create a more 

"universal" World Cup scheduling model. This makes it less tailored to the actual schedules 

than it potentially could be by creating one customized model per tournament edition. 

Nevertheless, most of the constraints - and arguably all the most important aspects as well - 

are mathematically formulated such that they stay in line with both former World Cups 

researched. The constraints that differentiate between the two former World Cups in terms of 

right-hand side values, such as the minimum number of rest days, are easily modified without 

changing the mathematical formulation of the constraint itself.  

Additionally, we differentiate between two types of approaches for each adaption of the single 

objective models: one that incorporates pre-allocated base camps, equal to the setup observed 

in the World Cups we aim to emulate, and another that utilizes the same set of base camps but 

allows the model itself to assign teams to a base camp based on optimal outcomes for the 

objective at hand. The second model represents a more relaxed problem, which is expected to 

produce superior results – though it might exactly align with the restricted approach. 

Nonetheless, this model-driven approach does not align as closely with the actual distances 

traveled from the nation’s self-chosen base camps in the former World Cups and is thus not 

as fit for ex-post match fixture evaluation. However, we include this approach in our analysis 

to facilitate a comparison between the two versions of the model, highlighting a potential 

future direction for World Cup schedules where team allocations to base camps are determined 

by a model rather than being selected by the nations themselves, as has been convention. The 

difference represents a minor adjustment in the mathematical formulation of the constraint and 

does not compromise the model's versatility. 
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4. Methodological Framework 

This chapter lays the foundation for the modeling process by introducing key methodological 

concepts. It offers a concise overview of critical mathematical programming techniques 

employed, including linear programming, (mixed) integer linear programming, and multi-

objective optimization. Understanding these concepts is vital for grasping the methodologies 

that underlie our analysis, as well as acknowledging the strengths and limitations of the 

mathematical methods used concerning real-world problems. 

4.1 Mathematical Programming 

Mathematical programming is a branch of operations research that involves finding the best 

solution to a practical problem. It encompasses various methods for solving mathematical 

problems that involve determining the values of decision variables to optimize a particular 

objective function, within a well-defined set of linear or nonlinear equations and inequalities 

representing constraints. The objective function, which is to be maximized or minimized, can 

be linear, nonlinear, or discrete. The area of mathematical programming consists of a broad 

range of techniques that are widely used in, and customized to, various fields such as 

economics, engineering, logistics, and finance for decision-making and problem-solving.  

4.1.1 Linear Programming 

Linear programming (LP) is a specific subset of mathematical programming that deals 

exclusively with linear equations and inequalities. It is designed to optimize a linear objective 

function, subject to a set of linear constraints. Formulating a problem as an LP is advantageous 

due to its simplicity, ensuring clarity in the relationships between variables. It guarantees 

solvability through efficient algorithms like the Simplex method, even for problems with 

numerous variables and constraints. The convex nature of these problems means any local 

optimum is a global optimum, offering certainty in the optimality of solutions.  

Integer Linear Programming (ILP) and Mixed Integer Linear Programming (MILP) refine the 

linear programming framework to handle problems where some or all decision variables are 

integers, crucial for scenarios demanding discrete decisions. MILP permits a combination of 

integer and continuous variables, enabling the modeling of complex real-world situations with 
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both divisible and indivisible resources. These methods also frequently incorporate binary 

variables - specific integers limited to values of 0 or 1 - to represent binary choices like yes-

or-no decisions. 

4.1.2 Multi-Objective Optimization 

In a multi-objective optimization problem, several objectives need to be optimized 

simultaneously. This contrasts with single-objective optimization, where the goal is to identify 

the optimal solution for a singular criterion. In mathematical terms, a multi-objective 

optimization problem is defined by a vector-valued objective function that aims to optimize 

two or more objectives simultaneously. For minimization, this can be formulated as: 

Minimize: {𝑓1(𝑥), 𝑓2(𝑥), … 𝑓𝑘(𝑥)} 

s.t: 𝑥 ∈ Ω 

Where 𝛺 is the feasible region of the problem, meaning that the decision variables of the 

individual objectives, 𝑥, are defined within what is feasible for the overall problem. 𝑓𝑖(𝑥) is 

the 𝑖-th objective function to be minimized or maximized, and 𝑘 is the total number of singular 

objectives.  

When optimizing a set of objective functions instead of a singular objective, these objectives 

are often in conflict with each other, meaning that improving one objective may lead to the 

deterioration of another (Chang, 2015). In other words, there may be no unique solution that 

optimizes all objectives simultaneously. The conflict of multiple objectives to be optimized 

introduces thus the use of a Pareto front (Bing, 2022), which contains all solutions that are 

Pareto optimal; meaning that no single objective in an optimized multi-objective solution may 

be enhanced without deteriorating another objective. In other words, a solution is Pareto 

optimal if there is no other solution that dominates it, where domination means being better in 

at least one objective and no worse in the others. The Pareto front thus provides a trade-off 

curve, illustrating the extent to which one objective can be improved at the expense of another.  

The challenge in multi-objective optimization lies not only in finding the Pareto front but also 

in selecting the most appropriate solution from a practical perspective. Mathematically, each 

Pareto-optimal solution in multi-objective optimization is considered equally valid, while in 

practical applications, only one solution is ultimately to be selected. This final selection 
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process requires the involvement of a decision-maker who possesses a deep understanding of 

the practical aspects of the problem and can reflect upon and express the relative importance 

of each objective. For a comprehensive numerical example, the reader is directed to the paper 

by Romanko et al. (2006). 

In conclusion, it is the process of delineating the Pareto front and the subsequent qualitative 

evaluation of candidate solutions by the decision maker that culminates in the selection of a 

final solution for the multi-objective optimization problem. 

𝜖-constraint method 

In the literature on multi-objective optimization, the 𝜖-constraint method is widely used due 

to its simplicity and effectiveness. See for instance Becerra & Coello (2006), Mavrotas (2009), 

and Romanko et al. (2006). The method is a scalarization method, which effectively turns a 

multi-objective optimization problem into a single-objective problem.  

The 𝜖-constraint method involves selecting one objective to optimize while converting the 

other objectives into constraints with specified bounds, referred to as 𝜖-levels. By 

systematically varying these 𝜖-levels within the possible range of the constrained objective 

values, a series of single-objective optimization problems are solved, each yielding a solution 

that reflects a different trade-off between the objectives. This method effectively traces out the 

Pareto front, showcasing the trade-offs inherent in the problem. The method is particularly 

useful for finding solutions on non-convex Pareto fronts, where traditional weighted sum 

approaches may fail to represent all the trade-offs between objectives.  

The method stands out for its intuitiveness in the decision-making process, catering to users 

of all levels of modeling expertise. If a hierarchy among the different objectives is 

predetermined, the process can intuitively be described as a method of saying “f1 is more 

important than f2 and we do not want to sacrifice more than 20% (or 30% or 50%) of the 

optimal value of f1 to improve f2.” (Romanko et al., 2006). Given this context, this method is 

about optimizing the secondary objective within the confines of a maximum allowable 

deterioration to the primary one. However, in the absence of an established hierarchy, the 

methodology remains consistent. The distinction lies in the inherent understanding of the 

frontier of solutions, which shifts to an evaluation of the relative trade-offs between the 

objectives rather than a focus on the sacrifice from the top priority objective. 
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Formulation 

Let 𝑓1 and 𝑓2  be two objectives to be optimized. Given a set of decision variables 𝑥 belonging 

to the feasible region Ω, the 𝜖-constraint method can be expressed as follows: 

For each 𝜖𝑖 in the set {𝜖 ∶ min 𝑓1(𝑥) ≤ 𝜖 ≤ max 𝑓1(𝑥)}, solve the following optimization 

problem: 

 Minimize: 𝑓2(𝑥) 

s.t: 𝑥 ∈ Ω,  𝑓1(𝑥) ≤ 𝜖𝑖 

For each iteration, the value of 𝑓1 and 𝑓2 are registered as a combined optimal solution given 

the current constraint. This process is repeated until the full range of epsilon values has been 

imposed as constraints, thus revealing the Pareto front for the trade-off between 𝑓1 and 𝑓2. 

Appropriate Epsilon Boundaries 

A limitation of the 𝜖-constraint method is the necessity for the modeler to preselect a spectrum 

of 𝜖-levels. In a multi-objective optimization problem, it is not certain that the solution space 

for a combined objective aligns with that of the individual objectives. A common misstep is 

selecting an epsilon that falls outside the feasible solution space of the combined objectives. 

In the literature on multi-objective optimization, the use of Utopia and Nadir bounding has 

proven to be the most effective in mitigating this issue (Romanko et al., 2006; see also Blank 

et al., 2019; Yeung & Zhang, 2023). The process involves an initial estimation of suitable 

bounds by identifying the extremities of the Pareto front prior to its complete delineation. This 

helps in establishing a range of epsilon values that are likely to yield feasible and relevant 

solutions (Chaudhuri et al.). In the search for the outer boundaries, two points are estimated; 

1) the Utopia point 𝑧𝑖
𝑈, and 2) the Nadir point 𝑧𝑖

𝑁.  

The Utopia point represents the ideal point where all objectives achieve their best possible 

values simultaneously within the feasible Pareto set. This point is, however, usually not 

attainable due to conflicting objectives, but works as an upper bound of the best theoretical 

solution possible and serves as a benchmark evaluating the performance of the Pareto-optimal 

solutions. The Utopia point of each objective is formulated as: 

𝑧𝑖
𝑈 = minimize  {𝑓𝑖(𝑥) ∶ 𝑥 ∈ Ω} 

And the combined Utopia point is a vector of the estimated ideal values: 
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𝑍𝑈  = (𝑧1
𝑈 , 𝑧2

𝑈 , … , 𝑧𝑘
𝑈) 

The Nadir point on the other hand is an estimation of a worst-case scenario, represented by 

the worst values of the objectives from the Pareto-optimal set. The Nadir point is however not 

as straightforward to find as the Utopia, as the definition yields that this should be the worst 

points within the Pareto-optimal set, and not the individually worst points available – meaning 

the individually maximized objective solution points are not the Nadir point, see Figure 4.1 

(Wang et al., 2017).  

Thus, the Pareto front, or at least the extreme points of the Pareto front, must be known in 

advance. Formally, the finding of the Nadir point can be stated as: 

𝑧𝑖
𝑁 = maximize  {𝑓𝑖(𝑥) ∶ 𝑥 ∈ P} 

Where P indicates the Pareto-optimal set of solutions for the decision variables. The combined 

Nadir point is a vector of the single Nadir point values: 

𝑍𝑁 = (𝑧1
𝑁, 𝑧2

𝑁, … , 𝑧𝑘
𝑁) 

Essentially, the distinction between calculating the Utopia and Nadir points is based on the 

domain in which the decision variables 𝑥 are specified: respectively Ω for Utopia and P for 

Nadir, where 𝑃 ⊆ Ω. For the Utopia point, 𝑥 is defined within the broader set Ω, because the 

optimal value of 𝑓𝑖(𝑥)  found in Ω will inherently be included in 𝑃 too – it is the best possible 

Figure 4.1: Illustration of a Pareto-optimal front 
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value and must thus lie as an extreme on the Pareto front. As Ω is known in advance, while 𝑃 

is not, it is easier to estimate the Utopia than the Nadir. Figure 4.1 illustrates this distinction. 

An adequate estimation of the Nadir point can be found by identifying the coordinate of the 𝑗-

th objective given that the 𝑖-th objective is at its ideal value (Audet et al., 2020). This is shown 

in Figure 4.1, where if you “constrain” 𝑓1 to be equal to its minimum in isolation, the Ideal 

single point, and “maximize” 𝑓2, you end up at the Extreme Point in the upper left corner of 

the Pareto front. At this point, 𝑓2 reaches a coordinate that can be considered an estimate of 

the Nadir point for the second objective, as it is the most unfavorable (highest) value for 𝑓2 

given that 𝑓1 is at its minimum, and thus the worst value of 𝑓2 within the set of Pareto optimal 

solutions. The same holds for the coordinates at the other extreme of the Pareto front. 

The awareness of the Nadir and Utopia objective values also helps the decision-maker to set 

realistic expectations by being aware of the entire range of possible outcomes for each 

objective (Chaudhuri et al.). Consequently, the set of solutions available on the Pareto front 

can be effectively compared with both the best-case (Utopia) and worst-case (Nadir) scenarios 

– helping the decision-maker in concluding a final solution with more information on the 

performance of each solution relative to these extremes. 

Having identified the appropriate boundaries, it follows that for each 𝜖𝑖 in the set {𝜖 ∶ 𝑧1
𝑈 ≤

𝜖 ≤ 𝑧1
𝑁}, the following optimization problem is solved: 

Minimize: 𝑓2(𝑥) 

s.t: 𝑥 ∈ Ω, 𝑓1(𝑥) ≤ 𝜖𝑖 

4.2 Solver and Software 

Within the field of mathematical programming, several solvers and algorithms have been 

developed to tackle different types of problems, and the last couple of decades have seen an 

impressive improvement in runtime. Problems deemed impossible to solve at the beginning of 

the decade are now solved within seconds (Koch et al., 2022). For a list of leading solvers and 

their specific areas of application, see the article from Mann (2022).  

A leading technique for solving complex optimization problems is the cut-and-branch method. 

The method is a sophisticated algorithm that combines cutting planes and branching strategies 
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to solve MILP problems. Initially, it generates cutting planes to tighten the linear relaxation 

of the MILP problem, effectively excluding non-integer solutions without eliminating any 

integer solutions. This step helps in finding a closer integer-feasible solution space by adding 

linear constraints. After applying a sufficient number of cutting planes, the method shifts to a 

branching phase, where it systematically splits the problem into subproblems by rounding 

continuous (relaxed) variables to integer values. These steps are repeated, solving sub-

problems of linear relaxations, adding cuts, and branching until the optimal integer solution is 

found (Mann, 2022).   

When selecting a solver for ILP/MILP problems, Gurobi Optimization's solver software 

emerges as an excellent option. The solver consistently achieves top performance in 

benchmarks, showing year-on-year improvements in solve times (AMPL, 2023) by taking 

advantage of modern technical architecture and multicore processors (MathWorks, 2023). 

This proven track record has led to Gourbi’s widespread adoption by over 2,500 companies in 

over 40 industries worldwide (Business Wire, 2023).  

Dealing with the complexities of large integer programming problems requires significant 

computational resources and solving time. To navigate this challenge, the Mixed Integer 

Programming (MIP) Gap acts as an effective measure for evaluating the quality of solutions 

found before the solvers' self-termination at a global optimum (Miltenberger, 2023). It 

measures the discrepancy between the best feasible solution found so far, called the Upper 

Bound, and the optimal solution of a relaxed version of the problem, where integer constraints 

are ignored. The solution to the relaxed problem provides a so-called Lower Bound since it is 

guaranteed to be equal to or better than the globally optimal solution to the integer-constrained 

problem. As the solver progresses and identifies improved integer-constrained solutions, the 

Upper Bound is updated accordingly. The MIP gap is thus a dynamic measure, reflecting the 

solver's progress towards global optimality. Formally, it is defined as: 

𝑀𝐼𝑃𝑔𝑎𝑝 =
|𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 − 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑|

|𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑|
 

For example, a reported MIP gap of 1% indicates that the current solution is within 1% of the 

theoretically optimal solution. While there might exist even better solutions that are closer to 

the Lower Bound, the present solution's deviation from the optimal is no more than 1%. 
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For modelers facing constraints on computing resources, the MIP gap can be employed in a 

couple of strategic ways. One approach is to impose a time cap on the solver's operation and 

use the MIP gap at the end of this period to assess the quality of the solution obtained. 

Alternatively, the MIP gap can serve as a stopping threshold itself - for instance, deciding in 

advance to accept solutions that fall within 1% of the Lower Bound. However, there is a 

possibility that the MIP gap of the globally optimal solution might exceed the decision-maker's 

preset threshold. This can lead to a scenario where the solver continues its search for a better 

solution even after the optimal value has been reached (Miltenberger, 2023). Nevertheless, it 

is important to keep a pragmatic attitude when solving complex integer programming 

problems. As stated by Matthias Miltenberger from Gurobi Optimization: 

For real-world applications, it is always sensible to set a positive MIP Gap tolerance 

to manage the tradeoff between having a feasible solution that is good enough for the 

use case and the computation time required to explore the branch-and-bound tree 

(many times it's prohibitive to exhaust that search) (Miltenberger, 2023) 

Beyond choosing a solver, it is necessary to use software that facilitates mathematical 

modeling and integrates the selected solver. For this thesis, the software AMPL is utilized to 

serve this function.   
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5. Optimization Model 

5.1 Introduction 

In pursuit of validating our hypothesis regarding the triviality of travel distance distribution in 

the scheduling of the 2018 and 2014 World Cups, we perform independent modeling of these 

specific tournament scheduling problems. The primary goal is to construct models that adhere 

to the essential tournament constraints, and subsequently, tailor the models to the specific 

requirements of the tournament we replicate and the objective to optimize. Consequently, we 

initiate the modeling process by establishing a foundational binary ILP model geared towards 

minimizing the cumulative travel distance of all teams combined, named the “Total Distance 

Model”. This base model is further refined to incorporate specific tournament constraints and 

the selected fairness considerations, resulting in the “Total Inner Range Model” and the 

“Groupwise Inner Range Model”. The similarities and differences are described in detail in 

the following sections.  

The results from the single objective models lead to the creation of a multi-objective 

optimization model: the 𝜖-constraint model. The core of our multi-objective optimization 

approach lies in the creation of a Pareto front, illustrating the range of compromises among 

the conflicting objectives from the single objective models. This approach is described in 

section 5.4. 

5.2 Data 

For this research, we require data detailing the actual distances between base camps and 

venues, alongside group stage information from previous World Cups. We describe below the 

methodology for data extraction and outline considerations of the chosen approach, including 

necessary compromises. 

5.2.1 Previous Tournament Schedules 

Data regarding both the group stage matches and venue and base camp locations of the World 

Cups is sourced from Wikipedia due to its accessibility and ease of download (2014 FIFA 
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World Cup venues, 2023; 2014 FIFA World Cup, 2023; 2018 FIFA World Cup, 2023). The 

data is further cross-checked with details from FIFA's official records to ensure accuracy and 

reliability. The final group tables and match-related data are imported into R where they 

undergo a thorough cleaning process. Subsequently, this refined dataset is integrated with the 

additional data on venue and base camp locations. The final dataset facilitates a 

straightforward extraction of overall, group-specific, and single-team travel itineraries and the 

corresponding distances. 

5.2.2 Distances 

We adopt a structured approach for calculating distances by leveraging geospatial data. 

Specifically, we utilize the Google Maps API in conjunction with the geocode function in R 

to extract geographical coordinates (longitude and latitude). Subsequently, these coordinates 

facilitate the construction of a distance matrix. This matrix interconnects base camp sites with 

venues, thereby enabling the computation of inter-site distances utilizing the distm function. 

These distances in matrix form are further implemented as a parameter in the mathematical 

programming software AMPL. 

It is however important to note that the distances derived in the distance matrix are transit 

approximations and do not reflect the precise travel paths undertaken by teams. This is because 

our model does not account for the mode of transportation - whether by bus, airplane, or a 

combination. Instead, our calculations are based on geodesic measurements, yielding a “highly 

accurate estimate of the shortest distance between two points on an ellipsoid” (distGeo: 

Distance on an ellipsoid (the geodesic), 2023) 

While acknowledging the limitations of geodesic distance as an exact measure of the transits, 

we posit that substantial reductions in geodesic distance will presumably correspond to 

decreased actual travel distance as well. Consequently, we rationalize that employing geodesic 

distance measurements represents a pragmatic balance between the extensive resource 

expenditure required to obtain exact travel data and the utility of geodesic distances as a 

reasonable proxy for actual distances. 

It is also important to note that the precision of these distances, with respect to base camp 

locations, is not absolute in terms of meter-level accuracy as we rely solely on city names for 

base camps. However, we employ an approximation method by considering the geographical 

area of the base camp cities and extracting the distances from the actual coordinates of the 
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venues. Given the scope of the distances involved, often spanning several thousand kilometers, 

this method of estimation is deemed sufficiently accurate. The relevance of meter-level 

precision naturally diminishes when considering the magnitude of the relevant distances. 

5.3 Single Objective Models 

In this chapter, we outline the mathematical formulation of the single objective models. 

5.3.1 Total Distance Model 

Sets 

The number of sets will be constant in each model, but the values must of course be modified 

to fit the exact tournament. There are 6 sets of data in the model: 

𝑉 = 𝑉𝑒𝑛𝑢𝑒𝑠  

𝐵 = 𝐵𝑎𝑠𝑒 𝑐𝑎𝑚𝑝𝑠  

𝐺 = 𝐺𝑟𝑜𝑢𝑝𝑠 

𝑇 = 𝑇𝑒𝑎𝑚𝑠  

𝑀 = 𝑀𝑎𝑡𝑐ℎ 𝑑𝑎𝑦𝑠 

𝑅 = 𝑅𝑜𝑢𝑛𝑑𝑠 

Parameters 

The number of parameters will be constant in each model, besides the last set of 𝑇𝑖
𝐵. This 

parameter will be in use for the models that have a pre-assigning of base camps. If the model 

is to allocate base camps in line with the best objective, then this parameter is dropped from 

the model. 

𝑇𝑖
𝐺 ∈ 𝐺, ∀ 𝑖 ∈ 𝑇: The group of team i 

𝐷𝑖𝑠𝑡𝑏,𝑣 , ∀ 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉: The distance from base camp b to venue v 

𝑀𝑚
𝑅 ∈ 𝑅, 𝑚 ∈ 𝑀: The round for match day m 
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𝑇𝑖
𝐵 ∈ 𝐵, 𝑖 ∈ 𝑇: The base camp for team i 

 

Decision Variables 

 

𝑋𝑖,𝑏,𝑣,𝑚 =  {
1 if team i travels from base camp b to venue v on matchday m
0 otherwise                                                                                               

 

 

𝐵𝑖,𝑏 =  {
1 if team i is assigned to base camp b
0 otherwise                                                

 

 

𝑍𝑚,𝑖,𝑣 = {
1 if team i is assigned to venue v on match day m
0 Otherwise                                                                      

 

 

𝑄𝑚,𝑣 =  {
1 if venue v is used on match day m
0 Otherwise                                             

 

 

𝑇𝑖,𝑗,𝑚,𝑣 = {
1 if team i is playing against team j on match day m at venue v
0 Otherwise                                                                                               

 

 

𝑌𝑔,𝑚 =  {
1 if the whole group g is playing on matchday m
0 Otherwise                                                                     

 

 

𝑃𝑚1,𝑚2,𝑔,𝑟 = {
1 if group g plays within the consecutive match days m1 and m2 in round r
0 Otherwise                                                                                                                        

 

 

Objective Function 

As the scope of research is limited to the group stage travel, the objective function of the model 

is a total aggregation of the distance traveled from the base camp area to venue 1 and back, 

then from the base camp area to venue 2 and back, and finally the distance from the base camp 

area to venue 3, for all teams. It is important to note that travel distances beyond the conclusion 
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of the final game were not included, as it no longer exerted any influence on performance 

during the group stage. This is factored in by subtracting the last term of the equation.  

Minimize total distance: 

2 ⋅  ∑ ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀𝑣 ∈ 𝑉𝑏 ∈ 𝐵𝑖 ∈ 𝑇

− ∑ ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀: 𝑀𝑚
𝑅  = 3𝑣 ∈ 𝑉𝑏 ∈ 𝐵𝑖 ∈ 𝑇

 

Constraints 

Base camps 

The following constraints are base camps specific. Constraint (1) is divided into two parts: 

Constraint (1.1) applies to the scenario where base camps are pre-assigned, and Constraint 

(1.2) addresses the situation where base camps have not been pre-allocated. Constraint (1.1) 

ensures that each team can only be assigned to one base camp during the whole group stage 

(pre-allocated, but we need the variable to be equal to 1 for the correct base camp) and (1.2) 

that each team can only be assigned to one base camp during the whole group stage. Constraint 

(2) ensures that if a team is assigned to base camp 𝑏, then it must always travel from the same 

base camp 𝑏 to any venue 𝑣 it plays at. It is divided into two parts: (2.1) applies to the case 

with pre-assigned base camps, where base camp 𝑏 is given by the 𝑇𝑖
𝐵 parameter and (2.2) 

applies to the case without pre-assigned base camps. Constraint (3) takes care of the fact that 

a team that plays at the venue must make the actual travel from base camp 𝑏.  

∑ Bi,b

b ∈ B: Ti
B=b

= 1, ∀  i ∈ T (1.1) 

∑ 𝐵𝑖,𝑏

𝑏 ∈ 𝐵

= 1 (1.2) 

∑ ∑ 𝑋𝑖,𝑏,𝑣,𝑚 = 3 ⋅ 𝐵𝑖,𝑏

𝑚 ∈ 𝑀

, ∀  𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵: 𝑇𝑖
𝐵 = 𝑏

𝑣 ∈ 𝑉

 (2.1) 

∑ ∑ 𝑋𝑖,𝑏,𝑣,𝑚 = 3 ⋅ 𝐵𝑖,𝑏

𝑚 ∈ 𝑀

, ∀  𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵

𝑣 ∈ 𝑉

 (2.2) 
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 ∑ 𝑋𝑖,𝑏,𝑣,𝑚

𝑏 ∈ 𝐵 

≤  𝑍𝑚,𝑖,𝑣 , ∀ 𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝑇 (3) 

 

Venues  

Constraint (4) ensures that each venue is assigned exactly four matches in total during the 

group stage, constraint (5) that each venue should be used a maximum of 2 times per round, 

and (6) that each venue should be used at least one time per round. Constraint (7) ensures that 

either 0 or 2 teams must be present at a venue during a match day to ensure that a team is not 

assigned to a match without an opponent. In addition, a venue cannot host more than one 

match per matchday. Constraint (8) ensures that a team is not to be assigned to the same venue 

more than once, and (9) decides the minimum n rest days for a venue in between hosting a 

match. For the 2014 World Cup in Brazil and the 2018 World Cup in Russia, the minimum 

number of rest days, n, is 1 and 2 respectively. Here, the number of rest days corresponds to 

the number of whole days between two matchdays, the period where the venue should not be 

in use.  

 

∑ 𝑄𝑚,𝑣

𝑚 ∈ 𝑀

= 4, ∀ 𝑣 ∈ 𝑉 (4) 

∑ 𝑄𝑚,𝑣

𝑚 ∈ 𝑀:𝑀𝑚
𝑅  = 𝑟

≤ 2, ∀ 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 (5) 

∑ 𝑄𝑚,𝑣

𝑚 ∈ 𝑀:𝑀𝑚
𝑅  = 𝑟

≥ 1, ∀ 𝑣 ∈ 𝑉, 𝑟 ∈ 𝑅 (6) 

∑ 0.5 ⋅ 𝑍𝑚,𝑖,𝑣

𝑖 ∈ 𝑇

= 𝑄𝑚,𝑣, ∀ 𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 (7) 

∑ 𝑍𝑚,𝑖,𝑣

𝑚 ∈ 𝑀

≤ 1, ∀ 𝑣 ∈ 𝑉, 𝑖 ∈ 𝑇 (8) 
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∑ ∑ 𝑍𝑚+𝑗,𝑖,𝑣

𝑛

𝑗=0𝑖∈𝑇

 ≤ 2, ∀ 𝑣 ∈ 𝑉, 𝑚 ∈ 𝑀 ∶ 𝑚 ≤ ∣ 𝑀 ∣ − 𝑛 
(9) 

 

Matches 

Constraint (10) ensures that a team can play a maximum of one match per day, in the sense of 

being assigned to a venue maximum one time per match day, and (11) that each team should 

play one game each round. Constraint (12) says that every team should play exactly three 

matches during the group stage and (13) that they must have at least n rest days between two 

consecutive matches. For the 2014 World Cup in Brazil and the 2018 World Cup in Russia, 

the minimum number of rest days for a team, 𝑛, is 2 and 3 respectively. The number of rest 

days corresponds to the number of whole days between two matchdays. Constraint (14) 

secures that the maximum number of games at any given matchday should be 4, implied by a 

maximum of 8 teams playing, and (15) that the total matches per matchday in round 3 should 

be exactly equal to 4, also implied by 8 teams playing. Further, constraint (16) ensures that the 

minimum number of games at any given matchday, except for the opening day, should be 2, 

indicating a minimum of 4 teams playing. On the opening day, the first match is the only 

match, as ensured by constraint (17), and constraint (18) ensures that the host nation is set to 

play in that match.  

∑ 𝑍𝑚,𝑖,𝑣

𝑣 ∈ 𝑉

≤ 1, ∀  𝑖 ∈ 𝑇, 𝑚 ∈ 𝑀 (10) 

∑ ∑ 𝑍𝑚,𝑖,𝑣

𝑚 ∈ 𝑀:𝑀𝑚
𝑅 = 𝑟

= 1, ∀  𝑟 ∈ 𝑅, 𝑖 ∈ 𝑇  

𝑣 ∈ 𝑉

 (11) 

∑ ∑ 𝑍𝑚,𝑖,𝑣

𝑣 ∈ 𝑉𝑚 ∈ 𝑀

= 3, ∀ 𝑖 ∈ 𝑇 (12) 

∑ ∑ 𝑍𝑚+𝑗,𝑖,𝑣

𝑛

𝑗=0𝑣∈𝑉

 ≤ 1, ∀ 𝑖 ∈ 𝑇, 𝑚 ∈ 𝑀 ∶ 𝑚 ≤ ∣ 𝑀 ∣ − 𝑛 
(13) 
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∑ ∑ 𝑍𝑚,𝑖,𝑣 ≤ 8

𝑖∈𝑇𝑣∈𝑉

, ∀  𝑚 ∈ 𝑀 (14) 

∑ ∑ 𝑍𝑚,𝑖,𝑣 = 8

𝑖∈𝑇𝑣∈𝑉

, ∀  𝑚 ∈ 𝑀: 𝑀𝑚
𝑅 = 3 (15) 

∑ ∑ 𝑍𝑚,𝑖,𝑣 ≥ 4

𝑖∈𝑇𝑣∈𝑉

, ∀  𝑚 ∈ 𝑀: 𝑚 ≠ 1 (16) 

∑ ∑ 𝑍𝑚,𝑖,𝑣

𝑖∈𝑇𝑣∈𝑉

= 2, ∀𝑚 ∈ 𝑀: 𝑚 = 1 (17) 

∑ 𝑍𝑚,𝑖,𝑣

𝑣 ∈ 𝑉

= 1, ∀ 𝑖 ∈ 𝑇, 𝑚 ∈ 𝑀: 𝑣 = 𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑣𝑒𝑛𝑢𝑒, 𝑖 = Host nation 𝑎𝑛𝑑 𝑚 = 1 (18) 

Specific Constraints for Round 1  

The three following constraints are specified for round 1. These constraints aim to stipulate 

that all teams within a group must play within two consecutive days in round 1. This introduces 

two different scenarios. Both matches can be held on the same day, or one match is held the 

day before the other in that group. To formulate this into the model, we have constructed 

constraint (19) which allows for the possibility that the two matches are scheduled over two 

days and constraint (20) which forces both matches to be held within a single day. Since only 

one of the two scenarios can be true, constraint (21) assures that only one of these sequences 

will occur.  

∑ ∑ ∑ 𝑍𝑚+𝑗,𝑖,𝑣

1

𝑗=0𝑣∈𝑉𝑖∈𝑇:𝑇𝑖
𝐺 =𝑔

≥ 4 ⋅ 𝑃𝑚,𝑚+1,𝑔,𝑟 , ∀ 𝑟 ∈ 𝑅, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 ∶ 𝑚 ∈ {1. .4} & 𝑟 = 1 
(19) 

∑ ∑ 𝑍𝑚𝑗,𝑖,𝑣

𝑣∈𝑉𝑖∈𝑇:𝑇𝑖
𝐺 =𝑔

≥ 4 ⋅ 𝑃𝑚,𝑚,𝑔,𝑟 , ∀ 𝑟 ∈ 𝑅, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 ∶ 𝑚 ∈ {1. .5} & 𝑟 =  1 (20) 

∑ ∑ 𝑃𝑚,𝑚+𝑗,𝑔,𝑟

1

𝑗=0𝑚∈{1..4}

+ 𝑃5,5,𝑔,𝑟 = 1, ∀ 𝑔 ∈ 𝐺, 𝑟 ∈ 𝑅 ∶  𝑟 = 1 
(21) 
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Specific Constraints for Round 2   

The three constraints implemented in Round 2 mirror those established in Round 1, reflecting 

the identical scheduling practices applied to both rounds. However, the constraints are divided 

to guarantee that every group completes their first matches by the end of Round 1, which is 

defined by a specific number of match days. Under the current mathematical logic, combining 

these constraints would unintentionally allow for a possibility where teams within a group 

play their first matches in Round 2. This situation is impractical and contradicts the intended 

scheduling design. Constraint (22) allows for the possibility that the two matches are 

scheduled within two consecutive days, and constraint (23) forces both matches to be held 

within a single day. Since only one of the two scenarios can be true, constraint (24) assures 

that only one of these sequences will occur.  

 

∑ ∑ ∑ 𝑍𝑚+𝑗,𝑖,𝑣

1

𝑗=0𝑣∈𝑉𝑖∈𝑇:𝑇𝑖
𝐺 =𝑔

≥ 4 ⋅ 𝑃𝑚,𝑚+1,𝑔,𝑟 , ∀ 𝑟 ∈ 𝑅, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 ∶ 𝑚 ∈ {6. .10} & 𝑟 =  2 
(22) 

∑ ∑ 𝑍𝑚𝑗,𝑖,𝑣

𝑣∈𝑉𝑖∈𝑇:𝑇𝑖
𝐺 =𝑔

≥ 4 ⋅ 𝑃𝑚,𝑚,𝑔,𝑟 , ∀ 𝑟 ∈ 𝑅, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 ∶ 𝑚 ∈ {6. .11} & 𝑟 =  2 (23) 

∑ ∑ 𝑃𝑚,𝑚+𝑗,𝑔,𝑟

1

𝑗=0𝑚∈{6..10}

+ 𝑃11,11,𝑔,𝑟 = 1, ∀ 𝑔 ∈ 𝐺, 𝑟 ∈ 𝑅 ∶  𝑟 = 2 
(24) 

 

Specific Constraints for Round 3   

The following constraints are only specified for round 3 and ensure that all teams within a 

group should play on the same matchday in round 3. The round-specific constraints for the 

third round are consequently different than for the other two rounds. Constraint (25) ensures 

that all four teams – or both matches – in a group 𝑔 must play on the same day, while constraint 

(26) guarantees that all groups are assigned to a single match day in round 3.  

∑ ∑ 𝑍𝑚,𝑖,𝑣 ≥ 4 ⋅ 𝑌𝑔,𝑚, ∀  𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀: 𝑀𝑚
𝑅  = 3  

𝑖∈𝑇:𝑇𝑖
𝐺 = 𝑔𝑣∈𝑉 

 (25) 
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∑ 𝑌𝑔,𝑚

𝑚∈𝑀: 𝑀𝑚
𝑅  = 3

= 1, ∀ 𝑔 ∈ 𝐺 (26) 

 

Logical Constraints  

Constraint (27) ensures that the teams compete exclusively with other teams in their group by 

prohibiting two teams belonging to different groups from being assigned to the same venue 

on the same day. Constraint (28) verifies that a situation in which team 𝑖 competes against 

team 𝑗 is equivalent to the situation where team 𝑗 faces team 𝑖, and constraint (29) guarantees 

that team 𝑖 plays against team 𝑗 only once during the group stage. Finally, constraint (30) links 

the 𝑍 variable and 𝑇 variable together. If team 𝑖 is allocated to venue 𝑣 on matchday 𝑚, their 

opponent - team 𝑗 – is assigned to the same venue on the same match day.  

𝑍𝑚,𝑖,𝑣 + 𝑍𝑚,𝑗,𝑣  ≤ 1, ∀ 𝑖 ∈  𝑇, 𝑗 ∈ 𝑇, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉: 𝑇𝑖
𝐺 = 𝑔 𝑎𝑛𝑑 𝑇𝑖

𝐺 ≠ 𝑔 (27) 

𝑇𝑖,𝑗,𝑚,𝑣 = 𝑇𝑗,𝑖,𝑚,𝑣, ∀ 𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇, 𝑔 ∈ 𝐺 ∶ 𝑖 ≠ 𝑗 (28) 

∑ 𝑇𝑖,𝑗,𝑚,𝑣

𝑚∈𝑀,𝑣∈𝑉

= 1, ∀ 𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇, 𝑔 ∈ 𝐺: 𝑖 ≠ 𝑗 (29) 

𝑍𝑚,𝑖,𝑣 =  ∑ 𝑇𝑖,𝑗,𝑚,𝑣

𝑗∈𝑇:𝑇𝑖
𝐺 =𝑔 𝑎𝑛𝑑 𝑖 ≠𝑗

, ∀ 𝑖 ∈ 𝑇, 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀, 𝑣 ∈ 𝑉 ∶  𝑇𝑖
𝐺  = 𝑔 (30) 

  

5.3.2 Total Inner Range Model 

In the new model for minimizing the total inner range, the sets, parameters, and constraints 

from the Total Distance Model are unchanged. We address the same problem but shift our 

focus to a different objective. In addition to the existing variables, we introduce a new decision 

variable 𝐷𝑖 to monitor and decide each team's cumulative distance traveled: 
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𝐷𝑖 = 2 ⋅ ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀𝑣 ∈ 𝑉𝑏 ∈ 𝐵

− ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀𝑣 ∈ 𝑉𝑏 ∈ 𝐵

, ∀ 𝑖 ∈ 𝑇 

This is similar to the objective function in the Total Distance Model, but instead of performing 

a sum over the distance of each team, the variable tracks this distance for each team instead.  

Moreover, we employ auxiliary variables 𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 to keep a record 

of the extreme values of 𝐷𝑖 across all teams. These variables are adjusted dynamically to 

reflect the new extremes as they occur. The new problem can be formulated as: 

Minimize total inner range: 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

s.t 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇   (31) 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇 

 

All other constraints (1) – (30) 

(32) 

5.3.3 Groupwise Inner Range Model 

In the model aimed at minimizing the inner range within groups, the sets, parameters, and 

constraints from the Total Distance Model are still retained, but with another shift in the 

objective. The decision variable 𝐷𝑖, which measures the distance each team travels, is 

consistent with the one used in the Total Inner Range Model. 

In this version, the auxiliary variables MaxDistance and 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 are used to track the 

longest and shortest distances traveled by the teams within their respective groups. These 

variables are regularly updated to the latest maximum or minimum values of 𝐷𝑖 within each 

group. The updated problem can be formulated as: 

Minimize the sum of the groupwise inner ranges: 
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∑ 𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔 − 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔

𝑔∈𝐺

 

s.t 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔 ≥ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇, 𝑔 ∈ 𝐺 ∶  𝑇𝑖
𝐺 = 𝑔    

 

(33) 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑔 ≤ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇, 𝑔 ∈ 𝐺 ∶  𝑇𝑖
𝐺 = 𝑔 (34) 

All other constraints (1) – (30) 

 

 

By focusing on reducing the aggregate of all inner ranges, we naturally encourage the 

minimization of the individual inner ranges within each group. 

5.4 Multi-Objective Model 

5.4.1 The 𝝐-Constraint Model 

We have chosen the minimization of the total distance to be the objective to be minimized, 

given a maximum limit constraint on the total inner range. This limit is adjusted within 

established Utopia and Nadir boundary points. The rationale behind having total distance as 

our objective lies in the ability to validate solution quality through the observable MIP Gap. 

Due to our limited computational resources, we cannot ascertain a single, optimal solution and 

must rely on approximations. In an ideal scenario, where solutions are optimally derived, the 

choice of which objective to minimize or constrain becomes irrelevant. However, under 

conditions of early termination, we are settling on sub-optimal solutions that might yield 

unanticipated outcomes and fail to accurately demonstrate the pattern of trade-offs involved. 

Therefore, having access to a significant MIP Gap is crucial for identifying such deviations. 

Reducing the total inner range to a satisfactorily low level should concurrently ensure that the 

groupwise inner range is maintained at an acceptable maximum. This indicates that for a multi-

objective model addressing all three conflicting objectives, it is sufficient to keep track of the 

value of the total inner range to ensure the solution stays within a chosen upper limit of 
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possible groupwise inner ranges. This simplifies the optimization process, as we deal with a 

dual-objective problem where one objective is to be optimized subject to an allowable 

deterioration of the other as a trade-off.  

Model Formulation 

The objective is to minimize total distance, with the upper limit on the total inner range being 

included as a constraint. The maximum allowable value of the total inner range is denoted 𝜖. 

Due to the total inner range now being a constraint and not an objective, we must introduce 

some new auxiliary variables to make sure the 𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 accurately 

take the value of the maximum and minimum distance traveled, while maintaining linearity. 

This is accomplished by a sophisticated application of the Big M method.  

We create two additional binary variables: 

𝑈𝑖 = {
1 if the MaxDistance is taking the value of Di                                
0 otherwise                                                                                               

 

𝐿𝑖 = {
1 if the MinDistance is taking the value of Di                                 
0 otherwise                                                                                               

 

To determine the range of epsilon values, we evenly divide the span between the Utopia point 

and the Nadir point into equal segments. Each segment represents an incremental from its 

preceding value resulting in a set of epsilons. Then, for each 𝜖𝑖 , we solve the optimization 

problem: 

Minimize total distance: 

2 ⋅ ∑ ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀𝑣 ∈ 𝑉𝑏 ∈ 𝐵𝑖 ∈ 𝑇

− ∑ ∑ ∑ ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑏,𝑣 ⋅ 𝑋𝑖,𝑏,𝑣,𝑚

𝑚 ∈ 𝑀: 𝑀𝑚
𝑅  = 3𝑣 ∈ 𝑉𝑏 ∈ 𝐵𝑖 ∈ 𝑇

 

s.t 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇   (35) 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝐷𝑖 + 𝑀 ⋅ (1 − 𝑈𝑖), ∀ 𝑖 ∈ 𝑇, 𝑀 = 60,000 𝑘𝑚 (36) 
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𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝐷𝑖 , ∀ 𝑖 ∈ 𝑇 (37) 

𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 𝐷𝑖 − 𝑀 ⋅ (1 − 𝐿𝑖), ∀ 𝑖 ∈ 𝑇, 𝑀 = 60,000 𝑘𝑚 (38) 

∑ 𝑈𝑖 = 1

𝑖∈𝑇

 

 

(39) 

∑ 𝐿𝑖 = 1

𝑖∈𝑇

 

 

(40) 

𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝜖 

 

 

(41) 

All other constraints (1) – (30)  

The Big M method ensures that the model selects 𝑀𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 as the greatest distance 

traveled, and 𝑀𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 as the minimum distance traveled, among all teams. The value of 

M is thus decided such that it does not restrict this selection, being larger than the absolute 

maximum of distances possible traveled by any team. Yet it remains within a reasonable range 

to prevent approximation issues during the solving process. The final set of solutions 

constitutes the Pareto front, offering a spectrum of possible non-dominated solutions for the 

decision-maker to choose from.  
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6. Results 

We will in this chapter present the results from the optimization models. Initially, we explore 

the outcomes derived from the single objective models. To facilitate an easy comparison of 

the objective values, the results are organized into detailed tables, accompanied by a discussion 

of the insights gathered. We divide the presentation of our findings into two tables, one for 

2014 and one for 2018. Each table is structured to present the historical record as a benchmark, 

with the corresponding optimization results for each model – covering the two different 

scenarios with pre-assigned and unassigned base camps. Additionally, we offer detailed 

graphical representations of each team's covered distances to enhance comparative analysis, 

alongside visualizations of selected teams' travel routes on maps. These graphics underscore 

the model's capability in not just obtaining a final objective value, but also in crafting detailed 

tournament schedules that are immediately actionable for the decision-makers of the World 

Cup.  

Secondly, we present the results from the multi-objective model. As we anticipated, the 

insights obtained from the single-objective models did necessitate the adoption of a multi-

objective approach. We showcase the Pareto front and provide an extensive discussion of our 

findings.  

Finally, we summarize the outcomes of the analysis of the past tournaments before we shift 

our attention toward a discussion regarding the significance of our findings for the planning 

of the World Cup 2026. 

Regarding the outcomes of the Single Objective Models, the comprehensive data on each 

team's travel distances across all model solutions is also available in a tabulated format in 

Appendix 10.1 and 10.2. For the Multi-Objective Model, an equivalent table is presented in 

Appendix 10.3. Moreover, each model inherently produces comprehensive match fixtures 

derived from the outcomes of the decision variables, outlining the round number, date, 

opposing teams, and venue for each match. Interested readers looking to review the alternative 

match fixtures, specific to each model, can find these in Appendix 10.5. 

To formulate the mathematical models, we have used the software AMPL and chosen Gurobi 

as our solver engine. The AMPL-files are attached in an external appendix and are briefly 
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explained in Appendix 10.4. While conducting the final runs of our models and obtaining the 

best possible results presented in this thesis, we take advantage of the NEOS Server, which is 

an internet-based service for solving numerical optimization problems. The server is hosted 

by the Wisconsin Institute for Discovery. For information about the solver, see Czyzyk et al., 

Dolan (2001), and Gropp & Moré (1997). The server has a limitation of 8 hours in run time, 

meaning that all our results are retrieved after the problem has been iterating for 8 hours. To 

be able to find a feasible solution within this time restriction, we modified the Gurobi solver 

to focus on finding feasible solutions quickly rather than focusing on proving optimality for 

the models. This has led to sub-optimal solutions at termination.  

Furthermore, when evaluating the MIP Gaps of the solutions presented, it is worth noting that 

for the models without pre-assigned base camps, the Lower Bound for the integer-relaxed 

problem is exceedingly low, making it considerably distant from the feasible solutions of the 

integer-constrained counterparts. This is due to the allowance for teams to be partially assigned 

across multiple base camps, which in turn affects the calculated distances. As a result, the MIP 

Gap is expected to be high for these models. However, once base camps are pre-assigned, the 

variables are constrained to integer values even in the relaxed problem, leading to a more 

accurate and potentially achievable Lower Bound for the optimal constrained solution.  

6.1 Results Single Objective Models 

6.1.1 Results and Discussion 2014 Models 

Table 6.1 presents a comprehensive comparison of each model's performance across various 

metrics. The models are listed on the left, and the three primary objectives of the models are 

found on the right side with their respective main objective outcomes emphasized in bold for 

clarity. We have included the full spectrum of objective values for every model to facilitate a 

thorough comparison.  

To ensure the reliability of our results, “Solution Limits” are incorporated in the table. Where 

applicable, the MIP Gap is reported. However, for models aimed at minimizing the inner 

range, the MIP Gap - calculated as the current solution value minus the Lower Bound, divided 

by the current solution value - consistently registers as 100% since the Lower Bound is zero, 

demonstrating a relaxed feasible solution where the Inner Range indeed is zero. To prevent 

any misinterpretation of the models' efficiency, we have marked “N/A” in the table where the 
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MIP Gap calculation does not yield meaningful insights into the solution's performance. We 

know that the solutions are sub-optimal, but an exact evaluation of the results at termination 

is challenging without a valid MIP Gap. Nonetheless, given the positive outcomes observed 

so far, having access to a longer runtime or tuning parameters only holds the potential for 

improvements. 

Table 6.1: Results for single objective models: 2014 World Cup 

 

Beginning with the pre-assigned base camps category, the performance of the Total Distance 

Model is evident. Its primary objective is to minimize the total distance traveled by all teams, 

and it achieves this prominently, reducing the overall distance by approximately 25%. This 

substantial reduction underscores the model's effectiveness in its core goal. Moreover, the 

model demonstrates a MIP Gap of only 0.07%, which is indicative of a highly reliable solution. 

When we turn our attention to the fairness metrics, the model continues to show improvements 

over historical benchmarks, despite these objectives not being explicitly targeted for 

minimization in the model's formulation. However, it is important to note that there are still 

noticeable variations both within individual groups and in the total range of distances traveled. 

These variations, while diminished, highlight areas for potential further refinement in 

balancing all objectives. 

Upon analyzing the remaining two models, the Total Inner Range Model and the Groupwise 

Inner Range Model, we observe a parallel trend. These models perform exceedingly well with 

respect to their primary goals, demonstrating notable improvements over historical 

benchmarks. Respectively, an improvement of approximately 81% for the total inner range 

and 89% for the total groupwise inner range objectives. Yet, when looking at the 

Historical 
Benchmark

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Objectives

Total Distance 195 909 146 964 208 731 200 665 114 282 253 437 232 720

Total Inner Range 10 524 7 708 1 973 7 075 6 223 468 4 750

Total Groupwise Inner Range 34 688 30 018 9 413 3 699 25 774 2 609 808

Solution Limits

MIP Gap - 0.07 % N/A N/A 40.40 % N/A N/A

Cutoff Time - 8h 8h 8h 8h 8h 8h

2014 Models

Pre-assigned Basecamps Unassigned Basecamps
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corresponding value of total distance, the outcomes are not as favorable, though the increases 

observed relative to the benchmark are not overly substantial. Nonetheless, the rise in total 

distance underscores an area for improvement, and balancing the dual objectives of 

minimizing distance and enhancing fairness remains a key focus for the further development 

of these models. 

Transitioning to the unassigned base camps category, a similar pattern emerges. In direct 

comparison to the historical benchmark, we find substantial performance when the main 

objectives of the models are evaluated independently of the other metrics. In numbers, the 

Total Distance Model achieves a 42% reduction, the Total Inner Range Model registers a 96% 

reduction, and the groupwise inner range exhibits an impressive 98% reduction. The models 

continue to exhibit significant enhancements over the benchmark in their respective 

objectives, albeit with a great necessity for improvement in terms of objective balancing.  

Another interesting output of this analysis is the relative difference between the unassigned 

and the pre-assigned base camps categories. The relaxation of the problem, where the model 

itself allocates the teams to a base camp according to the objective criteria, is showing notable 

results compared to the constrained approach that adheres to historical allocations. In 

sequential order, as displayed in the table, we observe improvements in objective values by 

22%, 76%, and 78% upon relaxing the base camp constraint. These results suggest that 

adopting a model-driven strategy for base camp allocation could be a strategic move for future 

World Cups worth serious consideration.  

Graphical Demonstration of Results 2014 

To visually illustrate our findings, we present each team's cumulative travel distance through 

graphical plots. These plots not only showcase the variation in travel distances among teams 

but also highlight the comparative differences between the pre-assigned base camp solutions 

and the more dynamic model-driven base camp allocation approach. Additionally, for the 

Total Distance Model and the Total Inner Range Model, we identify the teams with the shortest 

and longest routes and exhibit their complete itineraries on maps – the shortest route on the 

top and the longest route underneath. In the case of the Groupwise Inner Range Model, we 

rather focus on identifying the groups with the shortest and longest routes combined and 

collectively map these routes, aligning more with the model’s objective.  
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Total Distance Model 

Figure 6.1 displays the distribution of travel distances. Given pre-assigned base camps, we 

obtain a distribution ranging from Spain with 9,191 kilometers to Bosnia and Herzegovina 

with 1,483 kilometers. The distribution is highly uneven, however, the total distance covered 

by any team is reduced relative to the historical benchmark, where the United States covered 

over 12,000 kilometers, as depicted in section 2.3. Further, comparing the two base camp 

allocation approaches, the model-driven allocation excels both in total distance and relative 

distribution, having a range from Japan’s 7,429 kilometers to Honduras’s 1,206 kilometers. 

 

Figure 6.1: Distance traveled for all teams from the Total Distance Model 
2014  
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When illustrated on maps, the outcomes are not as clearly depicted. There are still major 

differences in the routes between the longest and shortest traveling teams. However, these 

maps should carefully be evaluated with the knowledge and insights from the tables and 

graphical plots in mind, knowing that the total distance covered by all teams combined is 

indeed an improvement relative to the historical benchmark. 

 

Figure 6.2: Travel routes from the Total Distance Model 2014  
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Total Inner Range Model 

Moving to the Total Inner Range Model, we observe a significantly more uniform distribution 

of travel distances. Every team's travel distance falls within the total inner range, resulting in 

a more balanced and, consequently, fairer distribution of the travel burden. 

 

Figure 6.3: Distance traveled from the Total Inner Range Model 2014 
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Upon examining the maps, the sense of fairness in the tournament schedule becomes even 

more apparent. The travel routes of the shortest (top map) and the longest (bottom map) 

traveling teams are remarkably similar when compared to both the historical benchmark and 

the Total Distance Model. 

 

 

Figure 6.4: Travel routes from the Total Inner Range Model 2014 
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Groupwise Inner Range Model 

Finally, the distribution of distances from the Groupwise Inner Range Models depicts a near 

uniform distribution of distances within each group, but with a high range between the longest 

traveling and the shortest traveling groups. There is a high level of fairness within each group, 

but a decrease in the perceived fairness from the more holistic perspective. 

 

 

Figure 6.5: Distance traveled from the Groupwise Inner Range model 2014 
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These observations are also reflected in the travel routes illustrated on the maps. We notice 

that teams with the shortest travel distances have their base camps and venues clustered within 

a tight radius, whereas teams in the longest traveling group traverse greater distances across 

Brazil. When these routes are plotted collectively, they reveal a fair distribution of travel 

burden within each group. However, this also highlights an increased disparity between the 

groups, making the collective difference in travel burden more pronounced. 

 

 

Figure 6.6: Travel routes from the Groupwise Inner Range Model 2014 

 

Insights on the Balancing of the Selected Fairness Metrics 

The combined quantitative and graphical analysis reveals a significant finding regarding the 

objective of balancing fairness criteria. It is demonstrated that by focusing on minimizing the 

total inner range, an adequately low groupwise inner range is inherently achieved. This is due 

to the nature of the total inner range encompassing the maximum possible variance within a 

group. Though evident in Table 6.1, the graphical depiction of the total inner range (Figure 

6.3) further clarifies this notion, as demonstrated by the moderate slope of the curve spanning 
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from its lowest to highest points, which is particularly noticeable in the unassigned model, but 

also apparent in the pre-assigned model.  

In Section 3.2, we explored a hypothetical situation in which an optimal total inner range of 

10,000 could lead to significant imbalance, especially since, in this hypothetical case, this 

range was concentrated within a single group. Therefore, the concern about the potential 

imbalance of fairness criteria in an optimal solution was indeed well-founded. However, upon 

implementing the proposed model, the total inner range was successfully reduced to values of 

1,972 in the pre-assigned model and 468 in the unassigned model. Such substantial decreases 

guarantee that the largest potential difference between any teams in a group is limited to these 

values – 1,972 and 468 respectively – which can be deemed sufficiently low to satisfy both 

fairness criteria under consideration.  

Consequently, this finding suggests that the allocation of resources towards specifically 

minimizing the groupwise inner range might be redundant, given that the total inner range has 

reached an acceptable threshold. Focusing solely on the total inner range not only simplifies 

the optimization procedure but also offers a more cost-effective method for ensuring equitable 

distribution among groups – given that the threshold is sufficiently low during the first model 

runs. Such conclusions will however be up to the decision maker, depending on the relative 

perceived importance of the different metrics of fairness. 

 

6.1.2 Results and Discussion 2018 Models 

Examining Table 6.2, we see the same patterns as for the 2014 results. Each model notably 

surpasses its primary objective, demonstrating significant enhancements over historical 

benchmarks. As we progress from left to right in the table, the pre-assigned base camp models 

show remarkable improvements, achieving respective gains of 33%, 82%, and 83%. 

Furthermore, as anticipated, the unassigned models perform even better than the pre-assigned 

models, yielding improvements over the historical benchmark of 48%, 93%, and 91%. Direct 

comparisons reveal that unassigned models exhibit improvements of 22%, 63%, and 87% over 

their pre-assigned counterparts. The improvements are illustrated graphically in the next sub-

section.  



 60 

Table 6.2: Results for single objective models: 2018 World Cup 

 

Despite the proven advancements over the historical benchmark with the use of our replicating 

model for the 2018 edition of the World Cup, there is still room for improvement of objective 

balancing in all versions of this single objective model. We therefore conclude that the insights 

gained from the 2018 models are fully in line with the results from the 2014 edition.  

 

Graphical Demonstration of Results 2018 

The graphical representation of the 2018 models, including both plots and mapped routes, 

closely mirrors the results from 2014. Given this similarity, an exhaustive explanation is 

considered unnecessary. However, we have included these graphical results to visually 

illustrate and substantiate the model's capabilities in creating improved tournament schedules 

and travel routes beyond just the satisfactory final objective values. 

 

  

Historical 
Benchmark

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Objectives

Total Distance 141 914 95 728 136 361 137 086 74 470 137 089 156 659

Total Inner Range 7 635 6 499 1 387 3 376 3 108 520 5 275

Total Groupwise Inner Range 31 576 24 774 8 315 5 326 11 270 3 182 699

Solution Limits

MIP Gap - 0.07 % N/A N/A 72.30 % N/A N/A

Cutoff Time - 8h 8h 8h 8h 8h 8h

2018 Models

Pre-assigned Basecamps Unassigned Basecamps
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Total Distance Model 

Figure 6.8: Travel routes from the Total Distance Model 2018 

Figure 6.7: Distance traveled from the Total Distance Model 2018 

 



 62 

Total Inner Range Model  

Figure 6.9: Distance traveled from the Total Inner Range Model 2018 

Figure 6.10: Travel routes from the Total Inner Range Model 2018 
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Groupwise Inner Range Model 

 
  

Figure 6.11: Distance traveled from the Groupwise Inner Range Model 2018 

Figure 6.12: Travel routes from the Groupwise Inner Range Model 2018 
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6.1.3 Conclusions from the Single Objective Model Analysis 

The analysis of our Single Objective Models indicates a significant improvement over 

historical benchmarks across all objectives. Notably, the Total Distance Model demonstrates 

advancements in all objectives, including those not explicitly targeted by its objective 

function, whether pre-assigned or unassigned, and for both the 2014 and 2018 data. This 

model serves as compelling evidence of our ability to enhance the existing framework for 

reducing travel distances in the World Cup group stage.  

Moreover, the models designed to enhance a fair and equitable distribution of travel burdens 

among teams have notably improved these metrics. However, this advancement is often 

accompanied by a trade-off of a rise in the overall travel distance, a rise that on several 

occasions has exceeded the historical benchmark. While these models excel in achieving their 

primary objective, there is a clear need for refinement in balancing multiple objectives. 

Summarized, the analysis suggests there exists a spectrum of desirable solutions for 

tournament schedules, each presenting a trade-off between minimizing total travel distance 

and enhancing perceived fairness among teams. In advancing the World Cup scheduling 

framework, exploring this trade-off curve seems a logical step. For decision-makers, the ideal 

solution might well lie at a midpoint between the extremes of these objectives.  

6.2 Results Multi-Objective Model 

Upon executing the multi-objective 𝝐-constraint Model, we have been faced with a resource 

shortfall of available runtime of the models. This limitation necessitates a downsizing of our 

analytical scope, requiring us to concentrate on a more selective assortment of models. The 

selection of this narrowed scope is outlined in the following. 

6.2.1 Narrowed Scope 

We have decided to focus exclusively on the models from the case of 2014, due to limited 

software resources preventing us from running the large number of models that an expanded 

analysis would require within a reasonable time frame. This choice is justified by an 

observation that the performance patterns for both years are virtually identical when compared 

to the benchmark and in their relative trade-off between the different objectives. Further, 

unassigned base camps yield the same pattern of relative objective values as pre-assigned base 
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camps, but with consistently superior numerical results in all versions. In addition, by focusing 

on reducing the total inner range within our historical models, we attain desirable results for 

both the primary objective and the related groupwise inner ranges.   

In summary, due to limited solving resources, we scope the analysis down to the 2014 assigned 

models. This is ultimately justified by the fact the primary objective of this thesis is to evaluate 

the effectiveness of the chosen methodology in enhancing World Cup planning in general, not 

to conduct in-depth retrospective analyses of the historical events.  

6.2.2 Results and Discussion  

To determine the range of epsilon values to use in the model formulation, we evenly divide 

the span between 7,753 (the Single Nadir Point) and 1,972 (the Single Utopia Point) into five 

equal segments. Each segment represents an incremental increase of  
7753−1972

5
= 1156 from 

its preceding value. This gives the set of epsilons: {𝜖 ∶ 𝜖𝑖 = 1972 + 1156 ⋅ 𝑖, 𝑖 ∈ {0 … 5},

1972 ≤ 𝜖 ≤ 7753}. Then, for each 𝜖𝑖 , we solve the optimization problem. Table 6.3 below 

summarizes the findings:  

Table 6.3: Results for the 𝜖-constraint model 

 

Figure 6.13 displays the graphical representation of the results. The total inner range is 

measured along the x-axis, while the y-axis measures the total distance traveled. At the 

extremes of the front, we find the solutions derived from the single-objective models, where 

the point with the lowest value along the x-axis represents the solution from the single-

objective model minimizing the total inner range, and the point with the lowest value along 

Single 

Utopia

Single 

Nadir

1 972 3 128 4 284 5 440 6 596 7 753

Objectives

Total Distance 208 967 159 734 150 360 147 441 147 062 146 957

Total Inner Range 1 972 3 070 4 251 5 339 6 377 7 753

Solution limit

MIP Gap - 8.17 % 2.66 % 0.64 % 0.37 % -

Cutoff Time - 8h 8h 8h 8h -

Epsilon levels - Maximum Total Inner Range
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the y-axis represents the single objective model minimizing total distance. The actual 2014 

schedule is included as well, marked as Historical Benchmark.   

Figure 6.13: Pareto front of results from the 𝜖-Constraint Model 

The figure serves as a good illustration of the trade-off between the two objectives and forms 

a Pareto front outlined by the 𝜖-constrained method. The figure also illustrates that the 

estimated Pareto front yields numerous solutions superior to the historical benchmark. An 

interesting finding is the possibility of reducing the total inner range significantly, almost 

without compromising the total distance traveled, as demonstrated by a reduction in the total 

inner range from 7,753 km to 5,339 km by increasing the total distance traveled from 146,957 

km to just 147,441 km. That is; by just increasing the total distance traveled by 0,3%, the inner 

range decreased by over 31%. Beyond this point, the trade-off between the two objectives 

demands more careful consideration, as the further reduction in total inner range comes at the 

cost of a proportionally higher increase in total distance. 

In mathematical terms, the proposed solutions are all equally optimal as they represent the 

non-dominated solutions within the given constraints. However, when a decision maker 

selects the final solution, it is important to weigh these trade-off points considering broader 

tournament considerations. For instance, reducing the total inner range from its Nadir point by 

60% (from 7,753 to 3,070) results in a concurrently modest increase of about 9% in the total 

distance. This balance might thus be seen as the optimal choice for the final solution, securing 

fairness at a relatively low cost of increasing total distance. The further reduction of the total 

inner range towards its absolute minimum, the Utopia point, might not offer significant 
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additional practical benefits, given that the tournament already exhibits a fair distribution at 

the preceding point. Moreover, this additional reduction would lead to a nearly 50,000-

kilometre increase in total distance. Such an increase would significantly add to the collective 

travel demands, amplify the environmental impact, and make the tournament less accessible 

to fans who travel. Furthermore, understanding the extremes of this front enables the decision 

maker to make more nuanced decisions, with a clear insight into the extent of possible trade-

offs. Understanding that the total inner range can at most be reduced to 1,972 may render the 

compromise point at 3,070 more appealing compared to a scenario where the minimum 

achievable inner range remains uncertain.  

While the graphical results demonstrate how this trade-off between objectives may look like 

when being presented to the decision-maker, there are a few things to keep in mind. Firstly, as 

was the case with the single objective models, these exact numerical results only represent the 

best achievable solutions within the constraints of our computational capacity for this thesis. 

Furthermore, because the extreme points selected as inputs, originating from the Single 

Objective Models, lack absolute optimality, the endpoints of the Pareto front consequently fail 

to represent the true extremities. These limitations therefore affect the shape of the presented 

Pareto front, resulting in an approximation rather than an exact representation of the true front.  

Nonetheless, the set of solutions that achieve true optimality would be delineated even more 

distinctly from the historical benchmark. Thus, despite these limitations, the presented Pareto 

front effectively demonstrates the interplay between the two objectives, fulfilling its purpose 

as an intuitive representation of candidate solutions. 

6.3 Summary of Analysis 

The findings reveal substantial opportunities for enhancement in previous World Cup 

schedules, aligned with the studied objectives. Both the 2014 and 2018 World Cups exhibit 

comparable results. A summary of the numerical improvements in objective values relative to 

the historical benchmark is given in the following. 

In the 2014 World Cup, the Total Inner Range model achieved a 25% reduction in total 

distance using pre-assigned base camps, while the model-driven assigning approach improved 

this measure by 42%. For the Total Inner Range model, the respective improvement 
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percentages are 81% and 96%. Meanwhile, for the Groupwise Inner Range model, these 

improvements are 89% and 98%, respectively. For the 2018 schedule, the improvements are 

33% and 48% for the Total Distance Models, 82% and 93% for the Total Inner Range Models, 

and 83% and 91% for the Groupwise Inner Range Models.  

The 𝜖-constrained model demonstrates a range of trade-offs between the objectives of the 

Total Inner Range Model and Total Distance Model, resulting in a variety of solutions that 

resemble a Pareto-optimal front. For instance, given the 𝜖3-interval, the model proposes a 

schedule that leads to an approximate 25% decrease in total distance while concurrently 

achieving a 31% reduction in total inner range. This dual improvement significantly surpasses 

the historical benchmarks for both objectives. 

In conclusion, our analysis underscores the substantial improvements achieved through the 

implementation of the optimization framework for the tournament schedules of the 2014 and 

2018 World Cups. This approach thereby has the potential to concurrently reduce both the 

total distance covered by all teams and the disparities in travel distances among them in future 

editions of the tournament. 
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7. Extensions and Discussion 

7.1 Heading Towards the FIFA 2026 World Cup  

In this section, we leverage the insights from our analysis to discuss the applicability of our 

methodology for the planning of the 2026 World Cup. As outlined in the introduction, this 

thesis aims to analyze the scheduling practices in past World Cups and explore how 

optimization techniques can enhance these processes. The goal is to leverage these insights to 

refine and contribute to the logistical planning framework for future World Cups. Until this 

point, we have introduced a range of readily applicable models for potential World Cup 

organizers, each crafted to provide detailed tournament schedules optimized for their 

respective objectives. Following the successful demonstration of these models' effectiveness 

on previous World Cup scheduling, we now turn our attention towards the next edition of the 

tournament. 

The upcoming tournament will span a broad region, extending from the west coast of Canada 

to the US east coast and into the central parts of Mexico. Unfortunately, details on the format 

of the 2026 World Cup are limited. Aside from the 16 designated host cities (FIFA, 2023), 

much remains undisclosed, including the locations of potential base camp cities. Given this 

lack of information, our approach is not to apply our models directly. Instead, we briefly 

discuss how a similar methodology could be effectively employed to structure the match 

schedule when more information becomes available. 

7.1.1 New Considerations and Constraints 

Considering the extensive geographical coverage of the 2026 World Cup, the findings and 

insights derived from the analysis of the 2014 and 2018 editions are particularly relevant as 

these tournaments similarly covered vast distances. Consequently, in terms of the match 

scheduling, both the objectives and many of the mathematical constraints derived from 

previous tournaments are likely to remain relevant. This said, since the upcoming World Cup 

will deviate from tradition in terms of the increased number of participants, in addition to 

matches taking place in three countries, there will be some distinct differences as well as 

potential new constraints unique to the 2026 edition.  
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As noted, the 2026 World Cup will utilize sixteen stadiums for the matches. With 48 teams 

and a total of 72 group-stage matches, it is impossible to allocate an equal number of matches 

to each stadium. Given that 72 divided by 16 equals 4.5, one could expect that each venue will 

host either 4 or 5 matches to make it as evenly distributed as possible. The bid book 

(Organising Committee for FIFA Competitions, 2022) states a maximum utilization of seven 

matches per stadium throughout the whole tournament. Consequently, the constraints designed 

for assigning 4 matches to each venue will need to be revised. We consider changes such as 

this a minor modification to the existing constraints. Other mathematically formulated 

constraints will presumably require some adjustments as well depending on the final 

guidelines for 2026. However, as it is too soon to conclude what these will entail, further 

discussion on this matter will not be elaborated on at this time. 

The sixteen host cities in the upcoming World Cup are spread across an area that covers four 

different time zones. We have already discussed the issue of traveling across time zones and 

how it can negatively affect the performance of athletes. Hence, it is considerable to prioritize 

the minimization of such travel. To address this, we suggest introducing a new constraint that 

takes this into consideration. The constraint can be modeled in different ways, such as 

prohibiting teams from traveling across more than two or three time zones, which would 

presumably curtail the longest travel routes. Although further details were not disclosed, in 

the earlier mentioned bid book for the 2026 World Cup it is stated that regional clusters for 

teams and groups are to be prioritized which makes it reasonable to expect some form of 

restriction on extensive traveling in an east-west direction (United Bid Committee, 2018). 

Figure 7.1 illustrates the clustering of venues based on time zones serving as a grouping 

criterion. 

To conclude, despite the limited availability of information, our brief review still emphasizes 

the necessity of making tournament-specific modifications to our mathematical models. These 

adaptations will be essential to ensure that our models can provide a detailed and actionable 

tournament schedule that meets the unique requirements of the 2026 edition. Upon receiving 

finalized tournament guidelines and potential base camp locations, as well as accessing 

additional resources for the further refinement of the models, we hold an optimistic outlook 

regarding our capability to employ our methodology and deliver an optimal tournament 

schedule for the 2026 World Cup, should the organizers express interest.  
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Figure 7.1: Possible regions for the 2026 World Cup 

 

7.2 Limitations and Pending Decisions   

7.2.1  Solving Limitations   

As mentioned throughout Chapter 6, we have used the external NEOS server for solving the 

final solutions. Although this has provided us with adequate computational capacities for 

finding workable solutions for our analysis, the problems are complex and demanding, and 

some of our solutions unfortunately exhibit a large MIP Gap. Gurobi offers numerous options 

for tuning parameters and solving methods that can help find better solutions. We have 

employed a few of these tools, albeit to a limited extent due to time shortage. Nevertheless, as 

established throughout the thesis, the exact optimality of the numerical results themselves is 

not pivotal to the analysis conducted, thereby diminishing the significance of this limitation. 
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7.2.2 Refinement of Model Formulations 

We remain confident in our model's ability to generate valid and comprehensive tournament 

schedules, as demonstrated in our results and the match fixtures presented in Appendix 10.5. 

However, we also acknowledge the potential for refining the mathematical formulation of the 

model, which could lead to reduced running times, more interpretable MIP Gaps, and simplify 

the process of identifying ultimate optimal solutions.  

7.2.3 Discussion on Allocation of Base Camps 

An additional question for the organizers is to address the pre-allocation of base camps. In 

earlier World Cups, the national teams and federations have decided their location for base 

camp themselves. On the other hand, models without pre-allocated base camps will in most 

instances yield better objective values. Both have their advantages and disadvantages, 

accompanied by differences in terms of practical implementation.  

Beginning with the pre-allocated models, the order of venue allocation and base camp 

assignment does not entirely align with historical practices. In previous World Cups, 

participating nations typically unveiled their chosen base camp locations after the fixtures 

were finalized. This allowed teams to make informed decisions regarding their choice of base 

camp considering the locations of their matches. Thus, the traditional approach involved 

formulating the fixture schedule independently of base camp considerations. This stands in 

contrast to our models, which optimize the schedule and venue allocation based on 

predetermined base camp assigning. Hence, our specific evaluation of the numerical 

enhancements provided by our models in comparison to the traditional scheduling process 

might be somewhat overstated, given that the base camp locations are an important aspect of 

the model. While this underscores a limitation in our analysis of these models' performance, 

they nonetheless provide valuable insights into the logistical aspects of the World Cup group 

stage travel. 

Conversely, the models employing model-driven base camp allocation do not seek to optimize 

while being constrained by predetermined base camp locations. Instead, the model deals with 

a defined set of possible base camp locations to allocate among the teams, which may be more 

in line with the convention of not restraining nations to base camps before the match fixturing 

and corresponding venue allocation. The outcome of this more flexible approach tends to yield 

superior objective values, as evidenced by the results we have presented, at least in most cases. 
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Nevertheless, a notable drawback of these models is that participating nations do not have a 

say in determining the location of their base camp, they are simply assigned the base camp 

that yields the optimal objective value. It is reasonable to presume that implementing such a 

rigid system would pose challenges, given the various other factors and considerations that 

come into play when nations decide on their preferred base camp locations.  

Therefore, a compromise can provide a beneficial solution, where the teams are allocated to a 

base camp by the model – using the unassigned models – but with the flexibility to switch to 

an alternative base camp within the same cluster or region as the model-assigned base camp. 

This enables the organizer to plan the group stage according to the chosen objective to 

optimize, utilizing the optimization model, while also providing teams with some mobility in 

selecting their preferred base camp location after the match fixtures are determined. Certainly, 

this will result in a departure from the proposed solution found by the model. However, the 

degree of this deviation relies on the extent of flexibility granted to teams for relocating from 

their assigned base camp locations, and maintaining some level of rigidity will help ensure it 

remains closely aligned with the optimal schedule. 

7.2.4 Discussion on the Allocation of Itineraries 

Ultimately, even for models that only focus on fair travel distributions, some teams will 

inevitably face longer travel routes than others. Achieving a perfect balance would demand a 

scenario in which all teams cover the same distance, but this is unattainable within the 

boundaries of the model's feasibility boundaries, dictated by other critical constraints. This 

concern holds less significance when teams choose their base camps with knowledge of the 

venue locations, but it becomes highly pronounced in the model-driven base camp allocation 

approach. When base camps are determined by the model, the team assigned the longest 

itinerary may perceive this as deeply unfair since they had no influence over the selection of 

their base camps; they have essentially ended up with the "least favorable" route by chance. 

This said, when the inner range decreases to a certain level, one could argue that the 

consequences and impact of this disparity would become practically indifferent, thus 

allocating who travels most and least negligible in practice. However, in the results we have 

presented earlier, there remains a significant divergence in several of the solutions. Therefore, 

especially in models without pre-allocated base camps, it is crucial to engage in a more in-
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depth discussion about how to determine which teams and groups should be granted the "best" 

allocation and who should be assigned the "least favorable" allocation. This is particularly 

pertinent since the model operates symmetrically, allowing teams and/or groups to swap 

itineraries without affecting the objective value.  

Addressing this additional fairness concern extends beyond the scope of this thesis. 

Nonetheless, it stands as an issue demanding attention in the event of potential 

implementation. Once again, the compromise of permitting base camp changes within a 

restricted distance radius after the venue allocation emerges as a relevant component of a 

possible final solution. 
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8. Conclusion 

In this thesis, we have developed a scheduling optimization framework for the FIFA World 

Cup using mathematical programming. Our ultimate objective was to refine the framework of 

tournament scheduling of the FIFA World Cup by creating travel itineraries that substantially 

reduce travel distances while ensuring a more balanced distribution of travel burdens among 

the participating teams. We constructed a series of Mixed Integer Linear Programming models 

with the respective objectives: (1) minimizing the total distance traveled, (2) minimizing the 

inner range between the most and least traveling teams, and (3) minimizing the inner range 

between the most and least traveling teams within groups. We also demonstrated a set of trade-

off solutions between the conflicting objectives using the 𝜖-constriant method for multi-

objective optimization. The models were implemented in AMPL and solved using the Gurobi 

Optimizer. 

Our findings emphasize that the application of the optimization framework significantly 

enhanced the tournament schedules of the researched World Cups of 2014 and 2018. Notably, 

there is substantial potential for reducing both the total distance covered by all 32 teams and 

the variations in travel distances among these teams. These improvements are apparent 

whether teams are pre-assigned to respective base camps, or the model is employed to allocate 

these base camps as well. While the degree of relative improvement varies depending on 

specific objectives and years examined, there is a consistent and noteworthy reduction in the 

objective values across all models when compared to historical benchmarks. Importantly, 

models without pre-assigned base camps consistently outperform those with pre-assigned 

base camps. 

As for the multi-objective 𝜖-constrained model, our research reveals a nuanced trade-off 

between minimizing the total distance and minimizing the total inner range. This model 

generates a spectrum of candidate schedules, each illustrating different levels of compromise 

between the objectives. Nevertheless, all solutions demonstrate enhancements by concurrently 

reducing the overall distance traveled and ensuring a fairer distribution of travel when 

compared with the scheduling approach used in the 2014 World Cup in Brazil. 

These results culminate in the main finding of this thesis; applying mathematical programming 

to the World Cup match scheduling process can significantly reduce the collective travel 
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burden while concurrently ensuring a fair and equitable distribution of travel distances among 

the participating teams. While crafting the overall tournament program is a multifaceted 

challenge, shaped by numerous considerations that extend beyond this study's focus, our 

insights strongly advocate for a reconsideration of conventional scheduling strategies in 

upcoming tournaments. These findings aim to inspire and guide the planning of future events, 

with the 2026 World Cup emerging as a particularly promising opportunity for leveraging 

these advancements. 
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10. Appendix 

10.1 Extended Table 2014 Models 

 

Historical 
Benchmark

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Objectives

Total Distance 195 909 146 964 208 731 200 665 114 282 253 437 232 720

Total Inner Range 10 524 7 708 1 973 7 075 6 223 468 4 750

Total Groupwise Inner Range 34 688 30 018 9 413 3 699 25 774 2 609 808

Distances of each team
Group A

Brazil 5 887 3 114 6 732 6 907 2 165 8 078 6 690
Cameroon 10 066 4 131 6 685 7 269 2 861 7 759 6 821

Croatia 8 826 2 151 6 269 6 767 2 708 8 124 6 681
Mexico 11 566 3 458 6 172 7 328 1 558 7 762 6 905

Group B
Australia 7 656 4 197 6 178 7 989 2 069 7 849 8 103

Chile 3 912 7 040 7 767 8 330 4 161 8 040 8 115
Netherlands 5 012 2 616 7 066 7 662 4 677 7 916 8 201

Spain 4 915 9 191 6 204 8 015 4 137 7 830 8 055
Group C

Colombia 4 082 6 603 6 531 5 370 2 836 7 769 7 919
Greece 4 474 3 199 6 136 5 704 2 061 8 157 7 937

Ivory Coast 7 801 7 248 6 360 5 804 7 140 7 978 7 940
Japan 10 176 4 425 7 212 5 678 7 429 7 989 7 941

Group D
Costa Rica 9 550 2 769 6 913 2 246 5 973 7 924 3 980

England 6 734 1 834 6 388 2 305 1 774 8 103 3 990
Italy 11 525 2 881 7 585 2 096 3 394 8 180 3 972

Uruguay 6 494 3 071 6 066 1 683 3 024 7 844 3 991
Group E

Ecuador 5 432 6 353 6 805 5 507 6 170 8 102 7 130
France 5 282 7 077 6 400 5 191 2 614 8 127 7 185

Honduras 5 088 5 481 7 284 5 270 1 206 7 712 7 071
Switzerland 5 401 4 603 6 435 5 143 6 008 7 961 7 169

Group F
Argentina 2 134 3 785 6 074 8 758 2 489 8 079 8 702

Bosnia and Herzegovina 4 908 1 483 6 117 8 551 5 115 7 740 8 676
Iran 3 103 5 363 5 843 8 712 3 694 7 834 8 644

Nigeria 4 114 4 444 6 884 8 704 2 748 7 950 8 722
Group G

Germany 4 512 7 839 7 131 5 676 3 247 8 045 7 282
Ghana 3 775 1 968 5 849 5 831 2 387 7 789 7 347

Portugal 8 842 8 228 5 878 5 658 1 386 7 861 7 301
United States 12 114 6 756 6 405 5 402 3 701 7 725 7 288

Group H
Algeria 3 005 3 185 5 794 8 055 4 033 7 952 8 254

Belgium 1 590 2 410 5 962 7 641 4 078 7 778 8 219
Russia 3 662 4 086 6 351 7 670 4 915 7 765 8 317

South Korea 4 273 5 973 7 256 7 741 2 524 7 715 8 178
Solution Limits

MIP Gap - 0.07 % N/A N/A 40.40 % N/A N/A

Cutoff Time - 8h 8h 8h 8h 8h 8h

2014 Models

Pre-assigned Basecamps Unassigned Basecamps
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10.2 Extended Table 2018 Models 

 

  

Historical 
Benchmark

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Total 
Distance 
Model

Total Inner 
Range Model

Groupwise 
Inner Range 

Model

Objectives

Total Distance 141 914 95 728 136 361 137 086 74 470 137 089 156 659

Total Inner Range 7 635 6 499 1 387 3 376 3 108 520 5 275

Total Groupwise Inner Range 31 576 24 774 8 315 5 326 11 270 3 182 699

Distances of each team
Group A

Egypt 8 537 5 364 4 501 3 298 2 258 4 364 4 060
Russia 2 164 2 640 4 305 3 924 3 539 4 056 4 085

Saudi Arabia 5 899 4 843 4 368 3 930 4 040 4 033 4 000
Uruguay 4 679 1 384 3 587 4 026 3 096 4 394 4 011

Group B
Iran 3 291 1 885 3 782 3 213 1 347 4 518 4 505

Morocco 4 374 2 441 4 204 3 015 1 671 4 514 4 612
Portugal 3 282 2 419 3 694 3 066 1 864 3 998 4 593

Spain 4 889 1 869 4 949 3 331 1 508 4 230 4 566
Group C

Australia 2 112 1 779 4 048 3 683 2 496 4 497 5 745
Denmark 6 207 6 938 4 973 3 263 3 266 4 196 5 804

France 4 226 2 409 3 988 3 695 3 020 4 438 5 875
Peru 5 265 439 4 811 3 632 2 655 4 152 5 808

Group D
Argentina 1 574 4 046 3 861 4 579 1 854 4 352 8 250

Croatia 5 130 4 115 4 540 4 631 1 651 4 070 8 319
Iceland 4 174 2 725 3 821 5 197 1 696 4 454 8 223
Nigeria 7 020 2 717 4 527 4 753 1 500 4 171 8 268

Group E
Brazil 6 033 4 637 4 311 4 138 2 877 4 448 3 057

Costa Rica 3 751 5 243 4 320 4 066 2 985 4 491 3 044
Serbia 5 090 5 524 4 899 4 109 1 296 4 352 3 074

Switzerland 6 194 2 017 3 644 3 842 1 160 4 053 3 086
Group F

Germany 3 516 1 965 4 893 5 103 1 795 4 028 4 478
Mexico 3 431 2 222 4 526 5 591 2 311 4 463 4 384

South Korea 6 073 2 298 4 961 5 653 4 062 4 270 4 329
Sweden 5 224 4 692 4 274 6 391 1 956 4 305 4 419

Group G
Belgium 3 879 2 006 3 635 4 265 1 958 4 072 5 184
England 5 850 2 742 3 898 3 982 3 301 4 341 5 163
Panama 3 022 818 4 899 4 119 954 4 472 5 196
Tunisia 2 424 2 241 3 614 5 173 1 779 4 011 5 172

Group H
Colombia 903 965 3 724 4 599 1 812 4 364 3 840

Japan 2 907 1 347 4 399 5 033 2 606 4 258 3 803
Poland 6 446 3 866 4 809 5 054 2 939 4 244 3 846

Senegal 4 348 5 132 3 596 4 732 3 219 4 480 3 861

Solution Limits

MIP Gap - 0.07 % N/A N/A 72.30 % N/A N/A

Cutoff Time - 8h 8h 8h 8h 8h 8h

2018 Models

Pre-assigned Basecamps Unassigned Basecamps
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10.3 Extended Table 𝜖-constraint Model 

 

  

Historical 
Benchmark

Single 

Utopia

Single 

Nadir

- 1 972 3 128 4 284 5 440 6 596 7 753

Objectives

Total Distance 195 909 208 967 159 734 150 360 147 441 147 062 146 957

Total Inner Range 10 524 1 972 3 070 4 251 5 339 6 377 7 753

Total Groupwise Inner Range 34 688 9 658 15 965 20 030 30 256 29 581 30 015

Distances of each team

Group A

Brazil 5 887 6 732 4 362 5 094 5 070 3 114 3 114
Cameroon 10 066 6 685 6 361 4 163 5 476 4 131 4 131

Croatia 8 826 6 269 4 175 3 823 2 301 2 151 2 151
Mexico 11 566 6 172 5 202 3 154 3 154 3 458 3 458

Group B
Australia 7 656 6 178 4 197 4 275 2 674 4 197 4 197

Chile 3 912 7 767 3 815 3 107 6 945 7 040 7 040
Netherlands 5 012 7 066 5 347 4 672 4 343 1 721 2 616

Spain 4 915 6 204 6 886 6 355 6 555 8 097 9 191
Group C

Colombia 4 082 6 531 4 956 4 705 6 603 6 603 6 603
Greece 4 474 6 136 5 068 6 740 3 199 3 199 3 199

Ivory Coast 7 801 6 360 5 312 6 515 7 248 7 248 7 248
Japan 10 176 7 212 4 086 6 718 4 425 4 425 4 425

Group D
Costa Rica 9 550 6 913 4 355 4 675 6 556 2 769 2 769

England 6 734 6 388 6 837 3 554 1 910 1 834 1 834
Italy 11 525 7 585 4 759 2 800 2 204 2 881 2 881

Uruguay 6 494 6 066 5 660 3 029 7 061 3 071 3 071
Group E

Ecuador 5 432 6 805 4 271 4 073 6 353 6 353 6 353
France 5 282 6 400 4 352 6 402 7 077 7 077 7 077

Honduras 5 088 7 529 4 804 5 883 5 472 5 472 5 472
Switzerland 5 401 6 435 3 919 4 603 4 603 4 603 4 603

Group F
Argentina 2 134 6 074 4 622 6 057 3 785 3 785 3 785

Bosnia and Herzegovina 4 908 6 117 4 709 6 503 1 972 3 043 1 483
Iran 3 103 5 843 6 255 4 782 5 363 7 077 5 363

Nigeria 4 114 6 884 6 524 3 787 4 979 4 444 4 444
Group G

Germany 4 512 7 131 3 855 4 149 3 418 7 839 7 839
Ghana 3 775 5 849 4 033 2 489 1 968 1 968 1 968

Portugal 8 842 5 878 5 634 5 588 5 872 7 693 8 228
United States 12 114 6 405 4 764 5 056 5 798 6 111 6 756

Group H
Algeria 3 005 5 794 4 653 3 185 3 521 3 185 3 185

Belgium 1 590 5 953 3 942 3 543 2 132 2 413 2 413
Russia 3 662 6 351 5 640 4 910 3 429 4 086 4 086

South Korea 4 273 7 256 6 376 5 973 5 973 5 973 5 973
Solution limit

MIP Gap - - 8.17 % 2.66 % 0.64 % 0.37 % -
Cutoff Time - - 8h 8h 8h 8h -

Epsilon levels - Maximum Total Inner Range

2014 Model - Pre-assigned Basecamps
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10.4 AMPL-files 

The AMPL-files are attached in an external zip-file. The zip-file contains four folders for: (1) 

Total Distance Model, (2) Total Inner Range Model, (3) Groupwise Inner Range Model, and 

(4) Epsilon-Constraint Model. Each folder contains specified mod-files and dat-files, in 

addition to one basic run-file that can be used to run the models located in the same folder.  

 
10.5 Match Fixtures 
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FIFA World Cup 2014 – Match Fixture Minimizing Total Distance (pre-assigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Arena Pernambuco 

1 B 2014-06-13 Chile - Australia Arena Fonte Nova 

1 C 2014-06-13 Colombia - Japan Arena da Baixada 

1 C 2014-06-13 Greece - Ivory Coast Estadio Castelao 

1 B 2014-06-14 Netherlands - Spain Estadio Beira-Rio 

1 D 2014-06-14 Italy - England Estadio do Maracana 

1 E 2014-06-14 France - Ecuador Arena Pantanal 

1 G 2014-06-14 Germany - Portugal Arena da Amazonia 

1 D 2014-06-15 Costa Rica - Uruguay Estadio Nacional 

1 E 2014-06-15 Switzerland - Honduras Arena Fonte Nova 

1 G 2014-06-15 United States - Ghana Arena das Dunas 

1 H 2014-06-15 Algeria - Russia Arena da Baixada 

1 F 2014-06-16 Argentina - Bosnia and Herzegovina Estadio Mineirao 

1 F 2014-06-16 Nigeria - Iran Arena Pantanal 

1 H 2014-06-16 Belgium - South Korea Estadio Beira-Rio 

2 A 2014-06-17 Brazil - Croatia Arena Fonte Nova 

2 C 2014-06-17 Colombia - Greece Arena das Dunas 

2 A 2014-06-18 Mexico - Cameroon Estadio Mineirao 

2 C 2014-06-18 Ivory Coast - Japan Estadio Nacional 

2 E 2014-06-18 France - Switzerland Estadio Castelao 

2 E 2014-06-18 Ecuador - Honduras Estadio Beira-Rio 

2 G 2014-06-19 Germany - Ghana Arena Pernambuco 

2 H 2014-06-19 Belgium - Russia Estadio do Maracana 

2 H 2014-06-19 Algeria - South Korea Arena Pantanal 

2 D 2014-06-20 Costa Rica - Italy Arena de Sao Paulo 

2 G 2014-06-20 United States - Portugal Arena da Baixada 

2 B 2014-06-21 Netherlands - Australia Estadio do Maracana 

2 B 2014-06-21 Chile - Spain Arena da Amazonia 

2 D 2014-06-21 Uruguay - England Estadio Mineirao 

2 F 2014-06-22 Argentina - Nigeria Estadio Nacional 

2 F 2014-06-22 Bosnia and Herzegovina - Iran Arena de Sao Paulo 

3 A 2014-06-23 Brazil - Cameroon Estadio do Maracana 

3 A 2014-06-23 Mexico - Croatia Arena das Dunas 

3 G 2014-06-23 Germany - United States Arena Fonte Nova 

3 G 2014-06-23 Portugal - Ghana Estadio Castelao 

3 C 2014-06-24 Colombia - Ivory Coast Arena Pantanal 

3 C 2014-06-24 Greece - Japan Arena Pernambuco 

3 H 2014-06-24 Belgium - Algeria Arena de Sao Paulo 

3 H 2014-06-24 Russia - South Korea Arena da Amazonia 

3 B 2014-06-25 Netherlands - Chile Estadio Mineirao 

3 B 2014-06-25 Spain - Australia Arena das Dunas 

3 D 2014-06-25 Costa Rica - England Estadio Beira-Rio 

3 D 2014-06-25 Uruguay - Italy Estadio Castelao 

3 E 2014-06-26 France - Honduras Estadio Nacional 

3 E 2014-06-26 Switzerland - Ecuador Arena Pernambuco 

3 F 2014-06-26 Argentina - Iran Arena da Amazonia 

3 F 2014-06-26 Nigeria - Bosnia and Herzegovina Arena da Baixada 
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FIFA World Cup 2014 – Match Fixture Minimizing Total Distance (unassigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Estadio Nacional 

1 D 2014-06-13 Italy - England Arena da Baixada 

1 F 2014-06-13 Argentina - Iran Arena das Dunas 

1 H 2014-06-13 Belgium - Algeria Arena Pernambuco 

1 B 2014-06-14 Netherlands - Spain Estadio Castelao 

1 D 2014-06-14 Costa Rica - Uruguay Arena Pantanal 

1 F 2014-06-14 Nigeria - Bosnia and Herzegovina Estadio Mineirao 

1 H 2014-06-14 Russia - South Korea Arena Fonte Nova 

1 B 2014-06-15 Chile - Australia Estadio do Maracana 

1 C 2014-06-15 Colombia - Ivory Coast Arena das Dunas 

1 E 2014-06-15 France - Honduras Arena de Sao Paulo 

1 G 2014-06-15 United States - Ghana Estadio Beira-Rio 

1 C 2014-06-16 Greece - Japan Arena Pernambuco 

1 E 2014-06-16 Switzerland - Ecuador Arena da Amazonia 

1 G 2014-06-16 Germany - Portugal Estadio Mineirao 

2 A 2014-06-17 Mexico - Cameroon Estadio do Maracana 

2 D 2014-06-17 Costa Rica - England Estadio Beira-Rio 

2 F 2014-06-17 Argentina - Bosnia and Herzegovina Estadio Castelao 

2 F 2014-06-17 Nigeria - Iran Arena Fonte Nova 

2 A 2014-06-18 Brazil - Croatia Arena da Baixada 

2 B 2014-06-18 Netherlands - Australia Estadio Mineirao 

2 B 2014-06-18 Chile - Spain Arena Pernambuco 

2 D 2014-06-18 Uruguay - Italy Arena de Sao Paulo 

2 C 2014-06-19 Ivory Coast - Japan Arena da Amazonia 

2 H 2014-06-19 Algeria - South Korea Arena das Dunas 

2 C 2014-06-20 Colombia - Greece Arena Fonte Nova 

2 H 2014-06-20 Belgium - Russia Estadio Nacional 

2 E 2014-06-21 Switzerland - Honduras Arena da Baixada 

2 G 2014-06-21 Germany - United States Arena Pantanal 

2 E 2014-06-22 France - Ecuador Estadio Nacional 

2 G 2014-06-22 Portugal - Ghana Estadio do Maracana 

3 A 2014-06-23 Brazil - Cameroon Arena Fonte Nova 

3 A 2014-06-23 Mexico - Croatia Estadio Beira-Rio 

3 F 2014-06-23 Argentina - Nigeria Arena Pernambuco 

3 F 2014-06-23 Bosnia and Herzegovina - Iran Arena Pantanal 

3 C 2014-06-24 Colombia - Japan Estadio Nacional 

3 C 2014-06-24 Greece - Ivory Coast Estadio Castelao 

3 D 2014-06-24 Costa Rica - Italy Arena da Amazonia 

3 D 2014-06-24 Uruguay - England Estadio do Maracana 

3 B 2014-06-25 Netherlands - Chile Arena das Dunas 

3 B 2014-06-25 Spain - Australia Arena Pantanal 

3 G 2014-06-25 Germany - Ghana Arena de Sao Paulo 

3 G 2014-06-25 United States - Portugal Arena da Baixada 

3 E 2014-06-26 France - Switzerland Estadio Beira-Rio 

3 E 2014-06-26 Ecuador - Honduras Estadio Mineirao 

3 H 2014-06-26 Belgium - South Korea Estadio Castelao 

3 H 2014-06-26 Algeria - Russia Arena da Amazonia 
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FIFA World Cup 2014 – Match Fixture Minimizing Total Inner Range (pre-assigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Cameroon Arena de Sao Paulo 

1 A 2014-06-13 Mexico - Croatia Estadio Mineirao 

1 G 2014-06-13 Germany - United States Arena da Amazonia 

1 G 2014-06-13 Portugal - Ghana Arena das Dunas 

1 H 2014-06-13 Belgium - South Korea Arena Fonte Nova 

1 D 2014-06-14 Uruguay - England Arena da Baixada 

1 F 2014-06-14 Argentina - Bosnia and Herzegovina Arena de Sao Paulo 

1 F 2014-06-14 Nigeria - Iran Estadio do Maracana 

1 H 2014-06-14 Algeria - Russia Arena Pernambuco 

1 B 2014-06-15 Netherlands - Spain Arena Fonte Nova 

1 B 2014-06-15 Chile - Australia Estadio Beira-Rio 

1 C 2014-06-15 Colombia - Ivory Coast Arena das Dunas 

1 D 2014-06-15 Costa Rica - Italy Estadio Nacional 

1 C 2014-06-16 Greece - Japan Estadio Castelao 

1 E 2014-06-16 France - Switzerland Arena Pantanal 

1 E 2014-06-16 Ecuador - Honduras Arena Pernambuco 

2 F 2014-06-17 Nigeria - Bosnia and Herzegovina Arena da Amazonia 

2 G 2014-06-17 Germany - Portugal Estadio Mineirao 

2 G 2014-06-17 United States - Ghana Arena da Baixada 

2 F 2014-06-18 Argentina - Iran Estadio Castelao 

2 H 2014-06-18 Belgium - Russia Estadio Nacional 

2 H 2014-06-18 Algeria - South Korea Arena de Sao Paulo 

2 A 2014-06-19 Brazil - Mexico Arena Pantanal 

2 E 2014-06-19 France - Ecuador Estadio Beira-Rio 

2 A 2014-06-20 Croatia - Cameroon Arena das Dunas 

2 E 2014-06-20 Switzerland - Honduras Estadio do Maracana 

2 B 2014-06-21 Netherlands - Chile Arena Pernambuco 

2 C 2014-06-21 Colombia - Greece Estadio Mineirao 

2 D 2014-06-21 Costa Rica - Uruguay Arena Fonte Nova 

2 D 2014-06-21 Italy - England Arena Pantanal 

2 B 2014-06-22 Spain - Australia Arena da Baixada 

2 C 2014-06-22 Ivory Coast - Japan Estadio Nacional 

3 F 2014-06-23 Argentina - Nigeria Estadio Beira-Rio 

3 F 2014-06-23 Bosnia and Herzegovina - Iran Estadio Mineirao 

3 H 2014-06-23 Belgium - Algeria Arena Pantanal 

3 H 2014-06-23 Russia - South Korea Estadio do Maracana 

3 D 2014-06-24 Costa Rica - England Arena Pernambuco 

3 D 2014-06-24 Uruguay - Italy Arena da Amazonia 

3 E 2014-06-24 France - Honduras Estadio Castelao 

3 E 2014-06-24 Switzerland - Ecuador Arena de Sao Paulo 

3 B 2014-06-25 Netherlands - Australia Estadio Nacional 

3 B 2014-06-25 Chile - Spain Arena das Dunas 

3 G 2014-06-25 Germany - Ghana Arena Fonte Nova 

3 G 2014-06-25 United States - Portugal Estadio do Maracana 

3 A 2014-06-26 Brazil - Croatia Arena da Amazonia 

3 A 2014-06-26 Mexico - Cameroon Estadio Castelao 

3 C 2014-06-26 Colombia - Japan Estadio Beira-Rio 

3 C 2014-06-26 Greece - Ivory Coast Arena da Baixada 
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FIFA World Cup 2014 – Match Fixture Minimizing Total Inner Range (unassigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Cameroon Arena de Sao Paulo 

1 A 2014-06-13 Mexico - Croatia Estadio Castelao 

1 F 2014-06-13 Bosnia and Herzegovina - Iran Estadio Nacional 

1 G 2014-06-13 United States - Ghana Arena da Baixada 

1 E 2014-06-14 France - Switzerland Estadio Mineirao 

1 F 2014-06-14 Argentina - Nigeria Arena da Amazonia 

1 G 2014-06-14 Germany - Portugal Arena Fonte Nova 

1 H 2014-06-14 Belgium - Algeria Arena das Dunas 

1 D 2014-06-15 Costa Rica - England Estadio do Maracana 

1 D 2014-06-15 Uruguay - Italy Arena Pernambuco 

1 E 2014-06-15 Ecuador - Honduras Arena Pantanal 

1 H 2014-06-15 Russia - South Korea Arena da Baixada 

1 B 2014-06-16 Netherlands - Chile Estadio Mineirao 

1 B 2014-06-16 Spain - Australia Estadio Beira-Rio 

1 C 2014-06-16 Colombia - Greece Arena Fonte Nova 

1 C 2014-06-16 Ivory Coast - Japan Arena de Sao Paulo 

2 F 2014-06-17 Argentina - Bosnia and Herzegovina Estadio do Maracana 

2 G 2014-06-17 Portugal - Ghana Estadio Castelao 

2 F 2014-06-18 Nigeria - Iran Arena Fonte Nova 

2 G 2014-06-18 Germany - United States Arena Pantanal 

2 D 2014-06-19 Costa Rica - Italy Arena das Dunas 

2 H 2014-06-19 Belgium - Russia Estadio Beira-Rio 

2 H 2014-06-19 Algeria - South Korea Arena da Amazonia 

2 D 2014-06-20 Uruguay - England Estadio Mineirao 

2 E 2014-06-20 France - Ecuador Estadio Castelao 

2 E 2014-06-20 Switzerland - Honduras Arena de Sao Paulo 

2 B 2014-06-21 Netherlands - Spain Estadio Nacional 

2 B 2014-06-21 Chile - Australia Estadio do Maracana 

2 C 2014-06-21 Greece - Japan Arena da Amazonia 

2 A 2014-06-22 Brazil - Croatia Arena Pantanal 

2 A 2014-06-22 Mexico - Cameroon Arena da Baixada 

2 C 2014-06-22 Colombia - Ivory Coast Arena Pernambuco 

3 F 2014-06-23 Argentina - Iran Estadio Beira-Rio 

3 F 2014-06-23 Nigeria - Bosnia and Herzegovina Estadio Mineirao 

3 G 2014-06-23 Germany - Ghana Arena das Dunas 

3 G 2014-06-23 United States - Portugal Arena de Sao Paulo 

3 B 2014-06-24 Netherlands - Australia Arena Pernambuco 

3 B 2014-06-24 Chile - Spain Arena da Amazonia 

3 H 2014-06-24 Belgium - South Korea Arena Fonte Nova 

3 H 2014-06-24 Algeria - Russia Estadio Nacional 

3 D 2014-06-25 Costa Rica - Uruguay Arena Pantanal 

3 D 2014-06-25 Italy - England Estadio Castelao 

3 E 2014-06-25 France - Honduras Arena das Dunas 

3 E 2014-06-25 Switzerland - Ecuador Arena da Baixada 

3 A 2014-06-26 Brazil - Mexico Arena Pernambuco 

3 A 2014-06-26 Croatia - Cameroon Estadio Nacional 

3 C 2014-06-26 Colombia - Japan Estadio do Maracana 

3 C 2014-06-26 Greece - Ivory Coast Estadio Beira-Rio 
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FIFA World Cup 2014 – Match Fixture Minimizing Groupwise Inner Ranges (pre-assigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Cameroon Arena de Sao Paulo 

1 A 2014-06-13 Mexico - Croatia Estadio do Maracana 

1 F 2014-06-13 Argentina - Nigeria Arena Fonte Nova 

1 G 2014-06-13 Germany - Ghana Estadio Nacional 

1 G 2014-06-13 United States - Portugal Arena da Baixada 

1 B 2014-06-14 Netherlands - Australia Arena Pernambuco 

1 B 2014-06-14 Chile - Spain Estadio Castelao 

1 C 2014-06-14 Colombia - Greece Estadio Mineirao 

1 F 2014-06-14 Bosnia and Herzegovina - Iran Estadio Beira-Rio 

1 C 2014-06-15 Ivory Coast - Japan Arena Pantanal 

1 D 2014-06-15 Costa Rica - Uruguay Arena de Sao Paulo 

1 D 2014-06-15 Italy - England Estadio do Maracana 

1 E 2014-06-16 France - Honduras Arena Pernambuco 

1 E 2014-06-16 Switzerland - Ecuador Estadio Mineirao 

1 H 2014-06-16 Belgium - Algeria Arena da Amazonia 

1 H 2014-06-16 Russia - South Korea Arena das Dunas 

2 G 2014-06-17 Germany - United States Estadio Castelao 

2 G 2014-06-17 Portugal - Ghana Arena Fonte Nova 

2 B 2014-06-18 Netherlands - Spain Estadio Nacional 

2 C 2014-06-18 Colombia - Japan Estadio Beira-Rio 

2 C 2014-06-18 Greece - Ivory Coast Estadio do Maracana 

2 F 2014-06-18 Argentina - Bosnia and Herzegovina Arena da Amazonia 

2 B 2014-06-19 Chile - Australia Arena Pantanal 

2 E 2014-06-19 France - Ecuador Arena de Sao Paulo 

2 F 2014-06-19 Nigeria - Iran Estadio Castelao 

2 A 2014-06-20 Brazil - Croatia Arena das Dunas 

2 E 2014-06-20 Switzerland - Honduras Arena da Baixada 

2 H 2014-06-20 Belgium - South Korea Estadio Beira-Rio 

2 A 2014-06-21 Mexico - Cameroon Arena Pernambuco 

2 H 2014-06-21 Algeria - Russia Arena Pantanal 

2 D 2014-06-22 Costa Rica - England Arena da Baixada 

2 D 2014-06-22 Uruguay - Italy Estadio Mineirao 

3 B 2014-06-23 Netherlands - Chile Arena das Dunas 

3 B 2014-06-23 Spain - Australia Estadio Beira-Rio 

3 E 2014-06-23 France - Switzerland Estadio Nacional 

3 E 2014-06-23 Ecuador - Honduras Estadio do Maracana 

3 C 2014-06-24 Colombia - Ivory Coast Arena da Amazonia 

3 C 2014-06-24 Greece - Japan Arena Fonte Nova 

3 G 2014-06-24 Germany - Portugal Arena Pernambuco 

3 G 2014-06-24 United States - Ghana Arena de Sao Paulo 

3 F 2014-06-25 Argentina - Iran Arena das Dunas 

3 F 2014-06-25 Nigeria - Bosnia and Herzegovina Arena Pantanal 

3 H 2014-06-25 Belgium - Russia Estadio Mineirao 

3 H 2014-06-25 Algeria - South Korea Arena da Baixada 

3 A 2014-06-26 Brazil - Mexico Estadio Castelao 

3 A 2014-06-26 Croatia - Cameroon Arena da Amazonia 

3 D 2014-06-26 Costa Rica - Italy Arena Fonte Nova 

3 D 2014-06-26 Uruguay - England Estadio Nacional 
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FIFA World Cup 2014 – Match Fixture Minimizing Groupwise Inner Ranges (unassigned base camps) 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Croatia Arena de Sao Paulo 

1 A 2014-06-13 Mexico - Cameroon Arena Pantanal 

1 F 2014-06-13 Bosnia and Herzegovina - Iran Estadio Castelao 

1 G 2014-06-13 Germany - United States Arena das Dunas 

1 F 2014-06-14 Argentina - Nigeria Estadio Mineirao 

1 G 2014-06-14 Portugal - Ghana Arena Fonte Nova 

1 H 2014-06-14 Belgium - Russia Arena da Amazonia 

1 H 2014-06-14 Algeria - South Korea Arena Pernambuco 

1 C 2014-06-15 Ivory Coast - Japan Arena das Dunas 

1 D 2014-06-15 Costa Rica - Uruguay Estadio do Maracana 

1 D 2014-06-15 Italy - England Arena de Sao Paulo 

1 E 2014-06-15 Ecuador - Honduras Arena da Baixada 

1 B 2014-06-16 Netherlands - Chile Estadio Nacional 

1 B 2014-06-16 Spain - Australia Estadio Mineirao 

1 C 2014-06-16 Colombia - Greece Estadio Beira-Rio 

1 E 2014-06-16 France - Switzerland Arena Fonte Nova 

2 G 2014-06-17 United States - Ghana Arena da Baixada 

2 H 2014-06-17 Belgium - South Korea Arena de Sao Paulo 

2 G 2014-06-18 Germany - Portugal Arena Pernambuco 

2 H 2014-06-18 Algeria - Russia Estadio Beira-Rio 

2 E 2014-06-19 Switzerland - Ecuador Estadio Nacional 

2 F 2014-06-19 Nigeria - Iran Arena da Amazonia 

2 D 2014-06-20 Uruguay - Italy Estadio Mineirao 

2 E 2014-06-20 France - Honduras Estadio Beira-Rio 

2 F 2014-06-20 Argentina - Bosnia and Herzegovina Arena das Dunas 

2 C 2014-06-21 Colombia - Ivory Coast Estadio Nacional 

2 C 2014-06-21 Greece - Japan Arena Pantanal 

2 D 2014-06-21 Costa Rica - England Arena Fonte Nova 

2 A 2014-06-22 Brazil - Mexico Estadio Castelao 

2 A 2014-06-22 Croatia - Cameroon Arena Pernambuco 

2 B 2014-06-22 Netherlands - Spain Arena da Baixada 

2 B 2014-06-22 Chile - Australia Estadio do Maracana 

3 F 2014-06-23 Argentina - Iran Arena Fonte Nova 

3 F 2014-06-23 Nigeria - Bosnia and Herzegovina Arena Pantanal 

3 G 2014-06-23 Germany - Ghana Arena da Amazonia 

3 G 2014-06-23 United States - Portugal Arena de Sao Paulo 

3 E 2014-06-24 France - Ecuador Estadio do Maracana 

3 E 2014-06-24 Switzerland - Honduras Estadio Castelao 

3 H 2014-06-24 Belgium - Algeria Arena das Dunas 

3 H 2014-06-24 Russia - South Korea Arena da Baixada 

3 C 2014-06-25 Colombia - Japan Estadio Mineirao 

3 C 2014-06-25 Greece - Ivory Coast Arena da Amazonia 

3 D 2014-06-25 Costa Rica - Italy Arena Pantanal 

3 D 2014-06-25 Uruguay - England Arena Pernambuco 

3 A 2014-06-26 Brazil - Cameroon Estadio do Maracana 

3 A 2014-06-26 Mexico - Croatia Estadio Nacional 

3 B 2014-06-26 Netherlands - Australia Estadio Castelao 

3 B 2014-06-26 Chile - Spain Estadio Beira-Rio 
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FIFA World Cup 2018 – Match Fixture Minimizing Total Distance (pre-assigned base camps) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Saudi Arabia Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Egypt Samara Stadium 

1 C 2018-06-15 Denmark - Peru Otkrytiye Arena Moscow 

1 D 2018-06-15 Argentina - Iceland Rostov-on-Don Stadium 

1 H 2018-06-15 Japan - Poland Mordovia Arena Saransk 

1 C 2018-06-16 France - Australia Kazan Arena 

1 D 2018-06-16 Croatia - Nigeria Volgograd Stadium 

1 E 2018-06-16 Switzerland - Costa Rica Ekaterinburg Stadium 

1 H 2018-06-16 Colombia - Senegal Nizhny Novgorod Stadium 

1 E 2018-06-17 Brazil - Serbia Fisht Stadium Sochi 

1 F 2018-06-17 Sweden - South Korea Kaliningrad Stadium 

1 F 2018-06-17 Mexico - Germany Luzhniki Stadium Moscow 

1 G 2018-06-17 Belgium - England Saint Petersburg Stadium 

1 B 2018-06-18 Spain - Morocco Rostov-on-Don Stadium 

1 B 2018-06-18 Portugal - Iran Otkrytiye Arena Moscow 

1 G 2018-06-18 Tunisia - Panama Mordovia Arena Saransk 

2 A 2018-06-19 Uruguay - Saudi Arabia Nizhny Novgorod Stadium 

2 A 2018-06-19 Russia - Egypt Volgograd Stadium 

2 D 2018-06-20 Croatia - Argentina Saint Petersburg Stadium 

2 D 2018-06-20 Nigeria - Iceland Fisht Stadium Sochi 

2 C 2018-06-21 Denmark - Australia Ekaterinburg Stadium 

2 E 2018-06-21 Brazil - Switzerland Samara Stadium 

2 E 2018-06-21 Serbia - Costa Rica Kaliningrad Stadium 

2 B 2018-06-22 Spain - Iran Volgograd Stadium 

2 B 2018-06-22 Portugal - Morocco Mordovia Arena Saransk 

2 C 2018-06-22 France - Peru Luzhniki Stadium Moscow 

2 H 2018-06-22 Colombia - Japan Kazan Arena 

2 F 2018-06-23 Sweden - Germany Rostov-on-Don Stadium 

2 F 2018-06-23 Mexico - South Korea Saint Petersburg Stadium 

2 H 2018-06-23 Senegal - Poland Fisht Stadium Sochi 

2 G 2018-06-24 Belgium - Tunisia Otkrytiye Arena Moscow 

2 G 2018-06-24 England - Panama Nizhny Novgorod Stadium 

3 A 2018-06-25 Uruguay - Russia Kazan Arena 

3 A 2018-06-25 Saudi Arabia - Egypt Ekaterinburg Stadium 

3 D 2018-06-25 Croatia - Iceland Kaliningrad Stadium 

3 D 2018-06-25 Argentina - Nigeria Samara Stadium 

3 B 2018-06-26 Spain - Portugal Fisht Stadium Sochi 

3 B 2018-06-26 Iran - Morocco Luzhniki Stadium Moscow 

3 E 2018-06-26 Brazil - Costa Rica Saint Petersburg Stadium 

3 E 2018-06-26 Switzerland - Serbia Mordovia Arena Saransk 

3 C 2018-06-27 France - Denmark Rostov-on-Don Stadium 

3 C 2018-06-27 Peru - Australia Nizhny Novgorod Stadium 

3 F 2018-06-27 Sweden - Mexico Volgograd Stadium 

3 F 2018-06-27 South Korea - Germany Otkrytiye Arena Moscow 

3 G 2018-06-28 Belgium - Panama Kazan Arena 

3 G 2018-06-28 England - Tunisia Kaliningrad Stadium 

3 H 2018-06-28 Colombia - Poland Samara Stadium 

3 H 2018-06-28 Japan - Senegal Ekaterinburg Stadium 
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FIFA World Cup 2018 – Match Fixture Minimizing Total Distance (unassigned base camps) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Egypt Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Saudi Arabia Kaliningrad Stadium 

1 D 2018-06-15 Croatia - Nigeria Mordovia Arena Saransk 

1 D 2018-06-15 Argentina - Iceland Nizhny Novgorod Stadium 

1 G 2018-06-15 Belgium - Panama Samara Stadium 

1 C 2018-06-16 France - Australia Otkrytiye Arena Moscow 

1 C 2018-06-16 Denmark - Peru Fisht Stadium Sochi 

1 F 2018-06-16 Mexico - Germany Saint Petersburg Stadium 

1 G 2018-06-16 England - Tunisia Ekaterinburg Stadium 

1 E 2018-06-17 Switzerland - Serbia Luzhniki Stadium Moscow 

1 F 2018-06-17 Sweden - South Korea Rostov-on-Don Stadium 

1 H 2018-06-17 Colombia - Poland Volgograd Stadium 

1 B 2018-06-18 Spain - Portugal Nizhny Novgorod Stadium 

1 B 2018-06-18 Iran - Morocco Mordovia Arena Saransk 

1 E 2018-06-18 Brazil - Costa Rica Kaliningrad Stadium 

1 H 2018-06-18 Japan - Senegal Kazan Arena 

2 A 2018-06-19 Russia - Saudi Arabia Fisht Stadium Sochi 

2 D 2018-06-19 Nigeria - Iceland Samara Stadium 

2 A 2018-06-20 Uruguay - Egypt Saint Petersburg Stadium 

2 C 2018-06-20 France - Peru Rostov-on-Don Stadium 

2 C 2018-06-20 Denmark - Australia Volgograd Stadium 

2 D 2018-06-20 Croatia - Argentina Luzhniki Stadium Moscow 

2 F 2018-06-21 Sweden - Germany Otkrytiye Arena Moscow 

2 G 2018-06-21 Belgium - Tunisia Kazan Arena 

2 F 2018-06-22 Mexico - South Korea Kaliningrad Stadium 

2 G 2018-06-22 England - Panama Mordovia Arena Saransk 

2 H 2018-06-22 Japan - Poland Ekaterinburg Stadium 

2 E 2018-06-23 Brazil - Serbia Saint Petersburg Stadium 

2 E 2018-06-23 Switzerland - Costa Rica Nizhny Novgorod Stadium 

2 H 2018-06-23 Colombia - Senegal Fisht Stadium Sochi 

2 B 2018-06-24 Spain - Iran Kazan Arena 

2 B 2018-06-24 Portugal - Morocco Otkrytiye Arena Moscow 

3 A 2018-06-25 Uruguay - Russia Samara Stadium 

3 A 2018-06-25 Saudi Arabia - Egypt Rostov-on-Don Stadium 

3 D 2018-06-25 Croatia - Iceland Volgograd Stadium 

3 D 2018-06-25 Argentina - Nigeria Ekaterinburg Stadium 

3 C 2018-06-26 France - Denmark Kaliningrad Stadium 

3 C 2018-06-26 Peru - Australia Saint Petersburg Stadium 

3 F 2018-06-26 Sweden - Mexico Luzhniki Stadium Moscow 

3 F 2018-06-26 South Korea - Germany Mordovia Arena Saransk 

3 E 2018-06-27 Brazil - Switzerland Kazan Arena 

3 E 2018-06-27 Serbia - Costa Rica Otkrytiye Arena Moscow 

3 G 2018-06-27 Belgium - England Fisht Stadium Sochi 

3 G 2018-06-27 Tunisia - Panama Nizhny Novgorod Stadium 

3 B 2018-06-28 Spain - Morocco Volgograd Stadium 

3 B 2018-06-28 Portugal - Iran Ekaterinburg Stadium 

3 H 2018-06-28 Colombia - Japan Rostov-on-Don Stadium 

3 H 2018-06-28 Senegal - Poland Samara Stadium 
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FIFA World Cup 2018 – Match Fixture Minimizing Total Inner Range (pre-assigned) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Saudi Arabia Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Egypt Kazan Arena 

1 F 2018-06-15 Sweden - Germany Fisht Stadium Sochi 

1 F 2018-06-15 Mexico - South Korea Rostov-on-Don Stadium 

1 G 2018-06-15 England - Tunisia Saint Petersburg Stadium 

1 B 2018-06-16 Portugal - Iran Mordovia Arena Saransk 

1 C 2018-06-16 France - Denmark Volgograd Stadium 

1 C 2018-06-16 Peru - Australia Ekaterinburg Stadium 

1 G 2018-06-16 Belgium - Panama Kaliningrad Stadium 

1 B 2018-06-17 Spain - Morocco Samara Stadium 

1 E 2018-06-17 Brazil - Costa Rica Otkrytiye Arena Moscow 

1 E 2018-06-17 Switzerland - Serbia Nizhny Novgorod Stadium 

1 D 2018-06-18 Croatia - Argentina Kazan Arena 

1 D 2018-06-18 Nigeria - Iceland Rostov-on-Don Stadium 

1 H 2018-06-18 Colombia - Senegal Saint Petersburg Stadium 

1 H 2018-06-18 Japan - Poland Fisht Stadium Sochi 

2 A 2018-06-19 Uruguay - Russia Ekaterinburg Stadium 

2 F 2018-06-19 Mexico - Germany Kaliningrad Stadium 

2 A 2018-06-20 Saudi Arabia - Egypt Volgograd Stadium 

2 F 2018-06-20 Sweden - South Korea Otkrytiye Arena Moscow 

2 G 2018-06-20 Belgium - Tunisia Mordovia Arena Saransk 

2 G 2018-06-20 England - Panama Samara Stadium 

2 B 2018-06-21 Spain - Portugal Rostov-on-Don Stadium 

2 B 2018-06-21 Iran - Morocco Saint Petersburg Stadium 

2 C 2018-06-21 Denmark - Australia Luzhniki Stadium Moscow 

2 C 2018-06-22 France - Peru Kazan Arena 

2 E 2018-06-22 Brazil - Switzerland Fisht Stadium Sochi 

2 H 2018-06-22 Colombia - Poland Nizhny Novgorod Stadium 

2 E 2018-06-23 Serbia - Costa Rica Kaliningrad Stadium 

2 H 2018-06-23 Japan - Senegal Mordovia Arena Saransk 

2 D 2018-06-24 Croatia - Iceland Otkrytiye Arena Moscow 

2 D 2018-06-24 Argentina - Nigeria Samara Stadium 

3 B 2018-06-25 Spain - Iran Ekaterinburg Stadium 

3 B 2018-06-25 Portugal - Morocco Volgograd Stadium 

3 F 2018-06-25 Sweden - Mexico Nizhny Novgorod Stadium 

3 F 2018-06-25 South Korea - Germany Luzhniki Stadium Moscow 

3 A 2018-06-26 Uruguay - Saudi Arabia Saint Petersburg Stadium 

3 A 2018-06-26 Russia - Egypt Fisht Stadium Sochi 

3 C 2018-06-26 France - Australia Rostov-on-Don Stadium 

3 C 2018-06-26 Denmark - Peru Mordovia Arena Saransk 

3 E 2018-06-27 Brazil - Serbia Kazan Arena 

3 E 2018-06-27 Switzerland - Costa Rica Samara Stadium 

3 H 2018-06-27 Colombia - Japan Otkrytiye Arena Moscow 

3 H 2018-06-27 Senegal - Poland Kaliningrad Stadium 

3 D 2018-06-28 Croatia - Nigeria Luzhniki Stadium Moscow 

3 D 2018-06-28 Argentina - Iceland Volgograd Stadium 

3 G 2018-06-28 Belgium - England Nizhny Novgorod Stadium 

3 G 2018-06-28 Tunisia - Panama Ekaterinburg Stadium 
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FIFA World Cup 2018 – Match Fixture Minimizing Total Inner Range (unassigned) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Egypt Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Saudi Arabia Samara Stadium 

1 G 2018-06-15 Belgium - Panama Kazan Arena 

1 G 2018-06-15 England - Tunisia Volgograd Stadium 

1 H 2018-06-15 Colombia - Poland Mordovia Arena Saransk 

1 D 2018-06-16 Croatia - Argentina Fisht Stadium Sochi 

1 D 2018-06-16 Nigeria - Iceland Ekaterinburg Stadium 

1 E 2018-06-16 Brazil - Costa Rica Otkrytiye Arena Moscow 

1 H 2018-06-16 Japan - Senegal Rostov-on-Don Stadium 

1 E 2018-06-17 Switzerland - Serbia Kaliningrad Stadium 

1 F 2018-06-17 Sweden - Germany Luzhniki Stadium Moscow 

1 F 2018-06-17 Mexico - South Korea Nizhny Novgorod Stadium 

1 B 2018-06-18 Spain - Portugal Samara Stadium 

1 B 2018-06-18 Iran - Morocco Volgograd Stadium 

1 C 2018-06-18 France - Australia Kazan Arena 

1 C 2018-06-18 Denmark - Peru Saint Petersburg Stadium 

2 A 2018-06-19 Uruguay - Russia Fisht Stadium Sochi 

2 A 2018-06-19 Saudi Arabia - Egypt Mordovia Arena Saransk 

2 G 2018-06-20 Belgium - Tunisia Rostov-on-Don Stadium 

2 G 2018-06-20 England - Panama Otkrytiye Arena Moscow 

2 H 2018-06-20 Colombia - Senegal Luzhniki Stadium Moscow 

2 E 2018-06-21 Brazil - Switzerland Nizhny Novgorod Stadium 

2 E 2018-06-21 Serbia - Costa Rica Volgograd Stadium 

2 F 2018-06-21 Sweden - South Korea Ekaterinburg Stadium 

2 H 2018-06-21 Japan - Poland Samara Stadium 

2 C 2018-06-22 France - Peru Fisht Stadium Sochi 

2 D 2018-06-22 Croatia - Nigeria Saint Petersburg Stadium 

2 F 2018-06-22 Mexico - Germany Kaliningrad Stadium 

2 C 2018-06-23 Denmark - Australia Rostov-on-Don Stadium 

2 D 2018-06-23 Argentina - Iceland Mordovia Arena Saransk 

2 B 2018-06-24 Spain - Iran Kazan Arena 

2 B 2018-06-24 Portugal - Morocco Otkrytiye Arena Moscow 

3 G 2018-06-25 Belgium - England Saint Petersburg Stadium 

3 G 2018-06-25 Tunisia - Panama Kaliningrad Stadium 

3 H 2018-06-25 Colombia - Japan Nizhny Novgorod Stadium 

3 H 2018-06-25 Senegal - Poland Ekaterinburg Stadium 

3 E 2018-06-26 Brazil - Serbia Samara Stadium 

3 E 2018-06-26 Switzerland - Costa Rica Rostov-on-Don Stadium 

3 F 2018-06-26 Sweden - Mexico Fisht Stadium Sochi 

3 F 2018-06-26 South Korea - Germany Mordovia Arena Saransk 

3 C 2018-06-27 France - Denmark Volgograd Stadium 

3 C 2018-06-27 Peru - Australia Otkrytiye Arena Moscow 

3 D 2018-06-27 Croatia - Iceland Luzhniki Stadium Moscow 

3 D 2018-06-27 Argentina - Nigeria Kazan Arena 

3 A 2018-06-28 Uruguay - Egypt Nizhny Novgorod Stadium 

3 A 2018-06-28 Russia - Saudi Arabia Kaliningrad Stadium 

3 B 2018-06-28 Spain - Morocco Saint Petersburg Stadium 

3 B 2018-06-28 Portugal - Iran Ekaterinburg Stadium 
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FIFA World Cup 2018 – Match Fixture Minimizing Groupwise Inner Ranges (pre-assigned) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Saudi Arabia Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Egypt Volgograd Stadium 

1 C 2018-06-15 France - Peru Kazan Arena 

1 G 2018-06-15 Belgium - England Saint Petersburg Stadium 

1 G 2018-06-15 Tunisia - Panama Ekaterinburg Stadium 

1 C 2018-06-16 Denmark - Australia Rostov-on-Don Stadium 

1 D 2018-06-16 Argentina - Nigeria Samara Stadium 

1 E 2018-06-16 Brazil - Switzerland Fisht Stadium Sochi 

1 E 2018-06-16 Serbia - Costa Rica Kaliningrad Stadium 

1 B 2018-06-17 Iran - Morocco Otkrytiye Arena Moscow 

1 D 2018-06-17 Croatia - Iceland Mordovia Arena Saransk 

1 H 2018-06-17 Senegal - Poland Nizhny Novgorod Stadium 

1 B 2018-06-18 Spain - Portugal Volgograd Stadium 

1 F 2018-06-18 Sweden - South Korea Luzhniki Stadium Moscow 

1 F 2018-06-18 Mexico - Germany Ekaterinburg Stadium 

1 H 2018-06-18 Colombia - Japan Saint Petersburg Stadium 

2 A 2018-06-19 Russia - Egypt Fisht Stadium Sochi 

2 G 2018-06-19 England - Tunisia Kazan Arena 

2 A 2018-06-20 Uruguay - Saudi Arabia Otkrytiye Arena Moscow 

2 C 2018-06-20 France - Denmark Mordovia Arena Saransk 

2 C 2018-06-20 Peru - Australia Nizhny Novgorod Stadium 

2 G 2018-06-20 Belgium - Panama Rostov-on-Don Stadium 

2 D 2018-06-21 Croatia - Argentina Kaliningrad Stadium 

2 D 2018-06-21 Nigeria - Iceland Volgograd Stadium 

2 F 2018-06-22 Sweden - Germany Saint Petersburg Stadium 

2 F 2018-06-22 Mexico - South Korea Samara Stadium 

2 H 2018-06-22 Colombia - Senegal Ekaterinburg Stadium 

2 B 2018-06-23 Spain - Iran Fisht Stadium Sochi 

2 B 2018-06-23 Portugal - Morocco Mordovia Arena Saransk 

2 H 2018-06-23 Japan - Poland Rostov-on-Don Stadium 

2 E 2018-06-24 Brazil - Serbia Luzhniki Stadium Moscow 

2 E 2018-06-24 Switzerland - Costa Rica Nizhny Novgorod Stadium 

3 D 2018-06-25 Croatia - Nigeria Otkrytiye Arena Moscow 

3 D 2018-06-25 Argentina - Iceland Kazan Arena 

3 G 2018-06-25 Belgium - Tunisia Kaliningrad Stadium 

3 G 2018-06-25 England - Panama Samara Stadium 

3 C 2018-06-26 France - Australia Ekaterinburg Stadium 

3 C 2018-06-26 Denmark - Peru Fisht Stadium Sochi 

3 F 2018-06-26 Sweden - Mexico Rostov-on-Don Stadium 

3 F 2018-06-26 South Korea - Germany Volgograd Stadium 

3 B 2018-06-27 Spain - Morocco Saint Petersburg Stadium 

3 B 2018-06-27 Portugal - Iran Nizhny Novgorod Stadium 

3 H 2018-06-27 Colombia - Poland Luzhniki Stadium Moscow 

3 H 2018-06-27 Japan - Senegal Mordovia Arena Saransk 

3 A 2018-06-28 Uruguay - Russia Kaliningrad Stadium 

3 A 2018-06-28 Saudi Arabia - Egypt Samara Stadium 

3 E 2018-06-28 Brazil - Costa Rica Otkrytiye Arena Moscow 

3 E 2018-06-28 Switzerland - Serbia Kazan Arena 
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FIFA World Cup 2018 – Match Fixture Minimizing Groupwise Inner Ranges (unassigned) 
Round Group Date Match Venue 

1 A 2018-06-14 Russia - Saudi Arabia Luzhniki Stadium Moscow 

1 A 2018-06-15 Uruguay - Egypt Kazan Arena 

1 B 2018-06-15 Spain - Morocco Otkrytiye Arena Moscow 

1 B 2018-06-15 Portugal - Iran Samara Stadium 

1 D 2018-06-15 Argentina - Iceland Volgograd Stadium 

1 D 2018-06-16 Croatia - Nigeria Saint Petersburg Stadium 

1 F 2018-06-16 Sweden - Germany Ekaterinburg Stadium 

1 F 2018-06-16 Mexico - South Korea Fisht Stadium Sochi 

1 C 2018-06-17 Peru - Australia Kaliningrad Stadium 

1 G 2018-06-17 Belgium - Panama Mordovia Arena Saransk 

1 H 2018-06-17 Colombia - Japan Rostov-on-Don Stadium 

1 H 2018-06-17 Senegal - Poland Nizhny Novgorod Stadium 

1 C 2018-06-18 France - Denmark Samara Stadium 

1 E 2018-06-18 Brazil - Costa Rica Volgograd Stadium 

1 E 2018-06-18 Switzerland - Serbia Luzhniki Stadium Moscow 

1 G 2018-06-18 England - Tunisia Otkrytiye Arena Moscow 

2 B 2018-06-19 Spain - Iran Saint Petersburg Stadium 

2 B 2018-06-19 Portugal - Morocco Kazan Arena 

2 A 2018-06-20 Saudi Arabia - Egypt Kaliningrad Stadium 

2 D 2018-06-20 Croatia - Iceland Nizhny Novgorod Stadium 

2 D 2018-06-20 Argentina - Nigeria Ekaterinburg Stadium 

2 F 2018-06-20 Sweden - Mexico Mordovia Arena Saransk 

2 A 2018-06-21 Uruguay - Russia Fisht Stadium Sochi 

2 F 2018-06-21 South Korea - Germany Rostov-on-Don Stadium 

2 C 2018-06-22 France - Australia Kazan Arena 

2 C 2018-06-22 Denmark - Peru Otkrytiye Arena Moscow 

2 H 2018-06-22 Japan - Senegal Luzhniki Stadium Moscow 

2 G 2018-06-23 Tunisia - Panama Saint Petersburg Stadium 

2 H 2018-06-23 Colombia - Poland Volgograd Stadium 

2 E 2018-06-24 Brazil - Switzerland Mordovia Arena Saransk 

2 E 2018-06-24 Serbia - Costa Rica Samara Stadium 

2 G 2018-06-24 Belgium - England Fisht Stadium Sochi 

3 A 2018-06-25 Uruguay - Saudi Arabia Rostov-on-Don Stadium 

3 A 2018-06-25 Russia - Egypt Nizhny Novgorod Stadium 

3 B 2018-06-25 Spain - Portugal Ekaterinburg Stadium 

3 B 2018-06-25 Iran - Morocco Kaliningrad Stadium 

3 C 2018-06-26 France - Peru Luzhniki Stadium Moscow 

3 C 2018-06-26 Denmark - Australia Volgograd Stadium 

3 F 2018-06-26 Sweden - South Korea Saint Petersburg Stadium 

3 F 2018-06-26 Mexico - Germany Kazan Arena 

3 D 2018-06-27 Croatia - Argentina Samara Stadium 

3 D 2018-06-27 Nigeria - Iceland Mordovia Arena Saransk 

3 H 2018-06-27 Colombia - Senegal Otkrytiye Arena Moscow 

3 H 2018-06-27 Japan - Poland Fisht Stadium Sochi 

3 E 2018-06-28 Brazil - Serbia Nizhny Novgorod Stadium 

3 E 2018-06-28 Switzerland - Costa Rica Rostov-on-Don Stadium 

3 G 2018-06-28 Belgium - Tunisia Ekaterinburg Stadium 

3 G 2018-06-28 England - Panama Kaliningrad Stadium 
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FIFA World Cup 2014:  𝝐-constraint model - epsilon-level: 1 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Arena das Dunas 

1 D 2014-06-13 Costa Rica - England Estadio do Maracana 

1 D 2014-06-13 Uruguay - Italy Estadio Mineirao 

1 H 2014-06-13 Belgium - South Korea Estadio Beira-Rio 

1 C 2014-06-14 Colombia - Japan Arena da Baixada 

1 G 2014-06-14 Germany - Portugal Arena Fonte Nova 

1 G 2014-06-14 United States - Ghana Arena Pernambuco 

1 H 2014-06-14 Algeria - Russia Estadio Nacional 

1 B 2014-06-15 Netherlands - Spain Arena Pantanal 

1 C 2014-06-15 Greece - Ivory Coast Estadio Castelao 

1 F 2014-06-15 Nigeria - Iran Arena da Amazonia 

1 B 2014-06-16 Chile - Australia Arena Fonte Nova 

1 E 2014-06-16 France - Switzerland Estadio Nacional 

1 E 2014-06-16 Ecuador - Honduras Arena da Baixada 

1 F 2014-06-16 Argentina - Bosnia and Herzegovina Arena Pernambuco 

2 G 2014-06-17 Germany - Ghana Arena das Dunas 

2 H 2014-06-17 Russia - South Korea Arena Pantanal 

2 A 2014-06-18 Brazil - Cameroon Estadio Nacional 

2 G 2014-06-18 United States - Portugal Arena de Sao Paulo 

2 H 2014-06-18 Belgium - Algeria Arena da Baixada 

2 A 2014-06-19 Mexico - Croatia Estadio Castelao 

2 B 2014-06-19 Chile - Spain Estadio Mineirao 

2 E 2014-06-19 France - Ecuador Estadio Beira-Rio 

2 B 2014-06-20 Netherlands - Australia Estadio do Maracana 

2 D 2014-06-20 Uruguay - England Arena da Amazonia 

2 E 2014-06-20 Switzerland - Honduras Arena Fonte Nova 

2 D 2014-06-21 Costa Rica - Italy Arena Pantanal 

2 F 2014-06-21 Argentina - Nigeria Estadio Mineirao 

2 F 2014-06-21 Bosnia and Herzegovina - Iran Arena de Sao Paulo 

2 C 2014-06-22 Colombia - Greece Arena Pernambuco 

2 C 2014-06-22 Ivory Coast - Japan Estadio do Maracana 

3 G 2014-06-23 Germany - United States Estadio Mineirao 

3 G 2014-06-23 Portugal - Ghana Arena da Amazonia 

3 H 2014-06-23 Belgium - Russia Arena Fonte Nova 

3 H 2014-06-23 Algeria - South Korea Estadio Castelao 

3 D 2014-06-24 Costa Rica - Uruguay Estadio Nacional 

3 D 2014-06-24 Italy - England Estadio Beira-Rio 

3 E 2014-06-24 France - Honduras Arena Pantanal 

3 E 2014-06-24 Switzerland - Ecuador Arena das Dunas 

3 A 2014-06-25 Brazil - Croatia Arena Pernambuco 

3 A 2014-06-25 Mexico - Cameroon Arena da Baixada 

3 C 2014-06-25 Colombia - Ivory Coast Arena de Sao Paulo 

3 C 2014-06-25 Greece - Japan Arena da Amazonia 

3 B 2014-06-26 Netherlands - Chile Estadio Castelao 

3 B 2014-06-26 Spain - Australia Arena das Dunas 

3 F 2014-06-26 Argentina - Iran Estadio Beira-Rio 

3 F 2014-06-26 Nigeria - Bosnia and Herzegovina Estadio do Maracana 
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FIFA World Cup 2014:  𝝐-constraint model - epsilon-level: 2 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Arena Pernambuco 

1 C 2014-06-13 Colombia - Ivory Coast Estadio Nacional 

1 E 2014-06-13 Ecuador - Honduras Estadio Beira-Rio 

1 F 2014-06-13 Bosnia and Herzegovina - Iran Estadio do Maracana 

1 C 2014-06-14 Greece - Japan Arena da Amazonia 

1 E 2014-06-14 France - Switzerland Estadio Castelao 

1 F 2014-06-14 Argentina - Nigeria Estadio Mineirao 

1 G 2014-06-14 Germany - Ghana Arena das Dunas 

1 D 2014-06-15 Italy - England Estadio do Maracana 

1 G 2014-06-15 United States - Portugal Arena de Sao Paulo 

1 H 2014-06-15 Belgium - South Korea Estadio Beira-Rio 

1 H 2014-06-15 Algeria - Russia Arena da Baixada 

1 B 2014-06-16 Netherlands - Australia Arena Fonte Nova 

1 B 2014-06-16 Chile - Spain Arena Pantanal 

1 D 2014-06-16 Costa Rica - Uruguay Estadio Nacional 

2 C 2014-06-17 Colombia - Japan Arena da Baixada 

2 C 2014-06-17 Greece - Ivory Coast Arena Pernambuco 

2 A 2014-06-18 Mexico - Cameroon Estadio do Maracana 

2 F 2014-06-18 Argentina - Bosnia and Herzegovina Arena da Amazonia 

2 F 2014-06-18 Nigeria - Iran Arena Pantanal 

2 A 2014-06-19 Brazil - Croatia Arena das Dunas 

2 D 2014-06-19 Uruguay - England Estadio Mineirao 

2 G 2014-06-19 Germany - United States Arena Fonte Nova 

2 B 2014-06-20 Netherlands - Spain Estadio Beira-Rio 

2 D 2014-06-20 Costa Rica - Italy Arena de Sao Paulo 

2 G 2014-06-20 Portugal - Ghana Estadio Castelao 

2 B 2014-06-21 Chile - Australia Estadio Mineirao 

2 E 2014-06-21 Switzerland - Honduras Arena Fonte Nova 

2 H 2014-06-21 Belgium - Russia Estadio Nacional 

2 E 2014-06-22 France - Ecuador Arena da Baixada 

2 H 2014-06-22 Algeria - South Korea Arena Pantanal 

3 D 2014-06-23 Costa Rica - England Arena da Amazonia 

3 D 2014-06-23 Uruguay - Italy Arena das Dunas 

3 G 2014-06-23 Germany - Portugal Estadio Nacional 

3 G 2014-06-23 United States - Ghana Arena Pernambuco 

3 A 2014-06-24 Brazil - Cameroon Estadio Mineirao 

3 A 2014-06-24 Mexico - Croatia Estadio Castelao 

3 F 2014-06-24 Argentina - Iran Arena Fonte Nova 

3 F 2014-06-24 Nigeria - Bosnia and Herzegovina Arena da Baixada 

3 E 2014-06-25 France - Honduras Arena Pantanal 

3 E 2014-06-25 Switzerland - Ecuador Arena Pernambuco 

3 H 2014-06-25 Belgium - Algeria Arena de Sao Paulo 

3 H 2014-06-25 Russia - South Korea Arena da Amazonia 

3 B 2014-06-26 Netherlands - Chile Estadio do Maracana 

3 B 2014-06-26 Spain - Australia Estadio Castelao 

3 C 2014-06-26 Colombia - Greece Arena das Dunas 

3 C 2014-06-26 Ivory Coast - Japan Estadio Beira-Rio 
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FIFA World Cup 2014:  𝝐-constraint model - epsilon-level: 3 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Arena Pernambuco 

1 B 2014-06-13 Chile - Spain Arena da Amazonia 

1 C 2014-06-13 Colombia - Japan Arena da Baixada 

1 G 2014-06-13 Germany - Portugal Arena Fonte Nova 

1 B 2014-06-14 Netherlands - Australia Estadio do Maracana 

1 C 2014-06-14 Greece - Ivory Coast Estadio Castelao 

1 D 2014-06-14 Uruguay - Italy Estadio Nacional 

1 G 2014-06-14 United States - Ghana Arena das Dunas 

1 D 2014-06-15 Costa Rica - England Estadio Mineirao 

1 E 2014-06-15 France - Ecuador Arena Pantanal 

1 E 2014-06-15 Switzerland - Honduras Arena Fonte Nova 

1 H 2014-06-15 Belgium - South Korea Estadio Beira-Rio 

1 F 2014-06-16 Argentina - Nigeria Estadio Nacional 

1 F 2014-06-16 Bosnia and Herzegovina - Iran Arena de Sao Paulo 

1 H 2014-06-16 Algeria - Russia Arena da Baixada 

2 A 2014-06-17 Brazil - Croatia Arena Fonte Nova 

2 B 2014-06-17 Netherlands - Spain Estadio Beira-Rio 

2 A 2014-06-18 Mexico - Cameroon Estadio do Maracana 

2 B 2014-06-18 Chile - Australia Estadio Mineirao 

2 C 2014-06-19 Ivory Coast - Japan Estadio Nacional 

2 E 2014-06-19 France - Switzerland Estadio Castelao 

2 E 2014-06-19 Ecuador - Honduras Estadio Beira-Rio 

2 C 2014-06-20 Colombia - Greece Arena das Dunas 

2 F 2014-06-20 Nigeria - Iran Arena Pantanal 

2 G 2014-06-20 Germany - Ghana Arena Pernambuco 

2 G 2014-06-20 United States - Portugal Arena da Baixada 

2 D 2014-06-21 Italy - England Estadio do Maracana 

2 F 2014-06-21 Argentina - Bosnia and Herzegovina Estadio Mineirao 

2 D 2014-06-22 Costa Rica - Uruguay Arena da Amazonia 

2 H 2014-06-22 Belgium - Russia Arena de Sao Paulo 

2 H 2014-06-22 Algeria - South Korea Arena Pantanal 

3 B 2014-06-23 Netherlands - Chile Arena das Dunas 

3 B 2014-06-23 Spain - Australia Arena da Baixada 

3 G 2014-06-23 Germany - United States Estadio Mineirao 

3 G 2014-06-23 Portugal - Ghana Estadio Castelao 

3 C 2014-06-24 Colombia - Ivory Coast Arena Pantanal 

3 C 2014-06-24 Greece - Japan Arena Pernambuco 

3 F 2014-06-24 Argentina - Iran Arena da Amazonia 

3 F 2014-06-24 Nigeria - Bosnia and Herzegovina Estadio Beira-Rio 

3 A 2014-06-25 Brazil - Cameroon Arena das Dunas 

3 A 2014-06-25 Mexico - Croatia Estadio Castelao 

3 D 2014-06-25 Costa Rica - Italy Arena de Sao Paulo 

3 D 2014-06-25 Uruguay - England Arena Fonte Nova 

3 E 2014-06-26 France - Honduras Estadio Nacional 

3 E 2014-06-26 Switzerland - Ecuador Arena Pernambuco 

3 H 2014-06-26 Belgium - Algeria Estadio do Maracana 

3 H 2014-06-26 Russia - South Korea Arena da Amazonia 
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FIFA World Cup 2014:  𝝐-constraint model - epsilon-level: 4 
Round Group Date Match Venue 

1 A 2014-06-12 Brazil - Mexico Arena de Sao Paulo 

1 A 2014-06-13 Croatia - Cameroon Arena Pernambuco 

1 B 2014-06-13 Netherlands - Spain Arena da Baixada 

1 B 2014-06-13 Chile - Australia Arena Fonte Nova 

1 H 2014-06-13 Belgium - Russia Estadio do Maracana 

1 C 2014-06-14 Greece - Ivory Coast Estadio Castelao 

1 D 2014-06-14 Costa Rica - Italy Arena de Sao Paulo 

1 D 2014-06-14 Uruguay - England Estadio Mineirao 

1 H 2014-06-14 Algeria - South Korea Arena Pantanal 

1 C 2014-06-15 Colombia - Japan Arena da Baixada 

1 F 2014-06-15 Argentina - Nigeria Estadio Nacional 

1 G 2014-06-15 Germany - Portugal Arena da Amazonia 

1 G 2014-06-15 United States - Ghana Arena das Dunas 

1 E 2014-06-16 France - Ecuador Arena Pantanal 

1 E 2014-06-16 Switzerland - Honduras Arena Fonte Nova 

1 F 2014-06-16 Bosnia and Herzegovina - Iran Estadio Beira-Rio 

2 A 2014-06-17 Mexico - Cameroon Estadio Mineirao 

2 D 2014-06-17 Costa Rica - Uruguay Estadio Nacional 

2 A 2014-06-18 Brazil - Croatia Arena Fonte Nova 

2 C 2014-06-18 Colombia - Greece Arena das Dunas 

2 D 2014-06-18 Italy - England Estadio do Maracana 

2 C 2014-06-19 Ivory Coast - Japan Estadio Nacional 

2 E 2014-06-19 Ecuador - Honduras Estadio Beira-Rio 

2 G 2014-06-19 Germany - Ghana Arena Pernambuco 

2 G 2014-06-19 United States - Portugal Arena de Sao Paulo 

2 B 2014-06-20 Netherlands - Australia Estadio do Maracana 

2 B 2014-06-20 Chile - Spain Arena da Amazonia 

2 E 2014-06-20 France - Switzerland Estadio Castelao 

2 H 2014-06-21 Belgium - South Korea Estadio Beira-Rio 

2 H 2014-06-21 Algeria - Russia Arena da Baixada 

2 F 2014-06-22 Argentina - Bosnia and Herzegovina Estadio Mineirao 

2 F 2014-06-22 Nigeria - Iran Arena Pantanal 

3 A 2014-06-23 Brazil - Cameroon Estadio do Maracana 

3 A 2014-06-23 Mexico - Croatia Arena das Dunas 

3 G 2014-06-23 Germany - United States Arena Fonte Nova 

3 G 2014-06-23 Portugal - Ghana Estadio Castelao 

3 C 2014-06-24 Colombia - Ivory Coast Arena Pantanal 

3 C 2014-06-24 Greece - Japan Arena Pernambuco 

3 H 2014-06-24 Belgium - Algeria Arena de Sao Paulo 

3 H 2014-06-24 Russia - South Korea Arena da Amazonia 

3 B 2014-06-25 Netherlands - Chile Estadio Mineirao 

3 B 2014-06-25 Spain - Australia Arena das Dunas 

3 D 2014-06-25 Costa Rica - England Estadio Beira-Rio 

3 D 2014-06-25 Uruguay - Italy Estadio Castelao 

3 E 2014-06-26 France - Honduras Estadio Nacional 

3 E 2014-06-26 Switzerland - Ecuador Arena Pernambuco 

3 F 2014-06-26 Argentina - Iran Arena da Amazonia 

3 F 2014-06-26 Nigeria - Bosnia and Herzegovina Arena da Baixada 

 


