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Abstract

This thesis introduces an innovative pricing model for parametric insurance of zero-

generation events at offshore wind farms, mainly focusing on the Norwegian shelf. The

model employs a Hierarchical Bayesian approach to analyze the variability of these events,

leveraging historical data. The research uses Markov Chain Monte Carlo simulations

to estimate posterior Gumbel distributions for zero generation events on both monthly

and regional scales. A significant aspect of the study involves using copulas to model

co-dependency between wind farms within a portfolio, and employing Value-at-Risk and

Expected Shortfall metrics for risk assessment.

A crucial finding is the heightened risk in insuring portfolios of geographically proximate

wind farms due to co-dependency, evident in increased premiums and risk metrics.

Additionally, the thesis explores the impact of co-dependency on insurance premiums,

noting a trend reversal in premiums based on a trigger event threshold. The research

concludes that insurance companies can effectively utilize this pricing strategy for insuring

multiple wind farm locations, encouraging offshore wind sector investment by securing

operator revenue streams.

Keywords – Offshore Wind, Parametric Insurance, Hierarchical Bayesian Modelling,

Markov Chain Monte Carlo Simulation, Copula, Value-at-Risk, Expected Shortfall
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1 Introduction

1.1 Context & Background

In recent years, European nations have significantly advanced their offshore wind energy

initiatives, amassing 32 GW capacity by mid-2023 (O’Sullivan, 2023). In August 2023,

Equinor launched Hywind Tampen on the Norwegian shelf, serving as the world’s first

offshore wind farm dedicated to powering oil and gas fields (Equinor, 2023). With an 88

MW capacity, this project aims to reduce CO2 emissions by supplying renewable energy

to the Gullfaks and Snorre platforms. This initiative aligns with Norway’s environmental

strategy, as highlighted in the "Grønt Industriløft" report, which emphasizes the country’s

commitment to leading in renewable energy development (Regjeringen, 2022). Identifying

offshore wind as pivotal to realizing this vision, the Norwegian government unveiled a

strategy to allocate zones for up to 30 GW of offshore wind energy by 2040 (Statsministerens

kontor, 2022). As of 2023, Norway has announced competition for two offshore wind

project areas, Utsira Nord and Sørlige Nordsjø II, with a focus on generating renewable

energy to power not only offshore operations but also the mainland (Regjeringen, 2023).

Further expansion is planned, with three additional areas expected to open for competition

in 2025 (Olje-og energidepartementet, 2023). This strategic pivot towards sustainable

energy aligns with the global commitment set forth by the 2015 Paris Agreement, which

aims to limit global warming to below 2 degrees Celsius and, ideally, under 1.5 degrees

Celsius (FN, 2023).

Despite good conditions for wind production at the Norwegian shelf, wind speeds in

this area are highly variable (Solbrekke and Sorteberg, 2022b). This variability causes

a risk for owners and operators of the plants due to the inherent uncertainty related to

wind. Investments in offshore wind farms are expensive endeavors. Unpredictable wind

power generation will directly affect the return rate of investments. Thus, predictable

revenue streams are essential for maintaining operations and making offshore wind farms

a desirable investment area. Ensuring predictable revenue streams is especially important

if the ambitious 30 GW goal is deemed realistic. A way of creating revenue streams from

offshore wind farms that are more foreseeable is through parametric insurance, where

payouts are triggered by predefined events and the payout amount is predetermined. In
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this thesis, we propose a pricing model for a parametric insurance product that pays the

customer when there are halts in electricity production at offshore wind farms. Our model

is tailored towards future owners and operators of wind farms on the Norwegian shelf. It

can, however, be generalized to other areas if the need arises.

1.2 Review of Current Literature

Parametric insurance, a product offering predetermined payouts based on specific triggers,

is increasingly relevant in covering risks, notably in wind farms (Beate Drewing and

François Lanavère, 2021). This insurance model boasts operational efficiency, primarily

due to its streamlined claims process and reduced underwriting costs. Operational efficiency

in this insurance model arises from objective events triggering payouts. The need for

manual claim inspections and lessening adverse selection issues are therefore diminished

(Lin and Kwon, 2020). Furthermore, Lin and Kwon (2020) highlights the model’s inherent

’basis risks,’ categorized into positive and negative types. Positive basis risk occurs when

payouts exceed actual losses, potentially increasing the insurer’s insolvency risk. Negative

basis risk involves payouts that inadequately cover losses, risking customer dissatisfaction.

These risks necessitate careful calibration and ongoing adjustment of parametric triggers

to balance insurer and insured interests equitably.

Parametric insurance’s flexibility is demonstrated in its application to agriculture and

nature-related risks. For instance, Nyagadza et al. (2019) devise a parametric framework

for disaster risks in Zimbabwe, and Bhaumik (2008) develops a rainfall-based crop insurance

model in India. Additionally, earthquake risk management has seen parametric model

innovations, with Pai et al. (2022) employing Bayesian methods for a pricing model in

China and Radu and Alexandru (2022) proposing a similar model for Romania. These

diverse applications highlight parametric insurance’s adaptability across various contexts

and geographical areas.

This thesis employs a Bayesian approach to discern patterns in wind power generation,

leveraging statistical methods that systematically incorporate prior knowledge, weigh

experimental data, and model experimental error (Lu et al., 2002). Bayesian methodologies

are widely used to analyze variables with pre-existing knowledge (Shiffrin et al., 2008;

Ciucci and Chen, 2015; Palmer et al., 2017; Song et al., 2020; Xiao et al., 2021; Bozorgzadeh
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and Bathurst, 2022). Hierarchical Bayesian Models and their application in time series are

detailed in Good (1980) and Berliner (1996), respectively. Brooks (1998) review the Markov

Chain Monte Carlo (MCMC) method, contributing to the Handbook of Markov Chain

Monte Carlo (Brooks et al., 2011). Hamiltonian Monte Carlo is introduced conceptually

by Betancourt (2018), and the No U-Turn Sampler’s (NUTS) efficacy in genetic parameter

evaluation is examined by Nishio and Arakawa (2019). Software packages for HBMs in R

and Python, like brms and PyMC, facilitate intuitive modeling and hierarchy incorporation

(Bürkner, 2017, 2018; Patil et al., 2010). Wilkie and Galasso (2022) propose an HBM for

UK offshore wind farm capacity factors, providing inspiration for this research.

Understanding production halt risks in multiple wind farms at the time involves modeling

their co-dependence, for which copulas are employed. Coined by Sklar (1959), copulas

model variable co-dependencies based on marginal distributions, crucial in financial

risk management (Embrechts et al., 2003). Energy sector copula applications include

analyzing German wind farm spatial dependency (Grothe and Schnieders, 2011), vine

copula-based wind power output dependency analysis (Qiu et al., 2019), wind speed

correlation uncertainty modeling (Sun et al., 2016), and stochastic wind power correlations

using Monte Carlo techniques and pair-copulas (Wang et al., 2016). Relevant to this

study are master’s theses from the Norwegian School of Economics that explore copula

modeling of spatial dependence in offshore wind farms along the Norwegian shelf (Alfsvåg

and Sollie, 2023; Wallevik and Klock, 2022).

Research on insurance strategies to mitigate wind power uncertainty includes Monte Carlo

simulations for estimating insurance premiums (Yang et al., 2016) and creating insurance

products for power imbalance risks (D’Amico et al., 2017). Thakur et al. (2023) suggests

binary option contracts for short-term revenue risk hedging in wind farms. Han et al.

(2019) propose a weather-indexed pricing model using yearly contracts, leveraging wind

speed and generation data to form a wind-power index. Payouts are triggered when

this index surpasses a certain threshold, helping reduce economic losses for wind power

producers.
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1.3 Research Question

Despite existing research on indexed-based insurance models in wind power, parametric

insurance pricing models specifically addressing production halts in offshore wind farms

remain under-explored. Moreover, the co-dependence of production halts across different

wind farm locations has to the best of our knowledge not been studied. In light of

substantial investments in offshore wind production on the Norwegian shelf, this research

gap becomes significant. Our study aims to enhance the security and predictability of

operations and investments in this sector by developing a robust pricing model for a

parametric insurance product. Drawing inspiration from Wilkie and Galasso (2022), we

estimate the monthly percentage of zero generation events (ZG) at Norwegian offshore

wind farms using a Hierarchical Bayesian approach with Markov Chain Monte Carlo

simulations, specifically the No U-Turn Sampler algorithm. Additionally, the research will

assess how insuring portfolios of wind farms affects the insurer’s risk profile and pricing

strategies with the use of copulas.

How can pricing be optimally structured for parametric insurance that caters to individual

offshore wind farms, and what are the implications of elevated risks when managing

multiple wind farm operations? Furthermore, how does the trigger event threshold value

influence the overall insurance premium? These considerations form the foundation for

our central research question:

In what ways can insurers effectively price parametric insurance products for offshore

wind farms, considering the ZG co-dependency risks between wind farm locations?



5

2 Data

In this section, the data used for our analysis is showcased. The section also offers an

overview of the data through descriptive statistics and figures. The general inspections in

this section form the foundation of our Bayesian and Copula approaches.

2.1 NORA3-WP

The data analyzed is extracted from the source called NORA3-WP. This high-resolution

wind power and wind resource dataset covers the North Sea, the Baltic Sea and parts of

the Norwegian and Barents Sea (Solbrekke and Sorteberg, 2022a). The data is presented

on a monthly basis, and the variables are stored on a 3x3 km horizontal grid covering

the relevant areas. Data is collected from 1996 to 2019. Solbrekke and Sorteberg (2022a)

states that the data is created for "research and usage in the planning phase of new wind

farms", making it suitable for our thesis.
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The data in the analysis is limited by focusing on representative grid points from 20

distinct locations. These locations have been selected based on their suitability for

offshore wind projects on the Norwegian shelf, as recommended by the Norwegian Water

Resources and Energy Directorate (NVE, 2023). A visual representation of these sites

along the Norwegian coastline is presented in figure 2.1. For clarity, these sites have

been categorized into four primary regions: Nordavind, Nordvest, Vestavind, and Sørvest.

Location Sønnavind A is incorporated within the Sørvest region due to its geographical

proximity.

Wind power variables in the data are derived using three distinct wind turbines: Siemens’

SWT-6.0–154, and the reference turbines DTU-10.0-RWT and IEA-15–240-RWT. Each

of these turbines possesses different technical specifications. As illustrated in figure 2.2,

there are subtle variations in their cut-in values. However, the outcomes of the analysis

are anticipated to remain consistent regardless of the turbine selected. For the purpose of

this thesis, the focus will be exclusively on the IEA-15–240-RWT reference turbine.

Figure 2.2: Power curves (Solbrekke and Sorteberg, 2022a)

The primary variable under examination is termed zero_generation (ZG). This metric

denotes the monthly proportion of zero generation events at a specific grid point. ZG

occurs, either due to wind speeds that are too low, or excessively high. The cut-in value

represents the lower threshold, while the cut-off value signifies the upper limit. The power

curves for all turbines are depicted in figure 2.2. For the turbine central to our analysis,

the cut-in value stands at 3 m/s, and the cut-off value is set at 25 m/s. Wind speeds

outside this range result in ZG.
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2.2 Descriptive Statistics

ZG and how it occurs across different locations is central for this thesis. Figure 2.3 shows

the average number of times ZG at a specific location exceeds 10.08 % (75th percentile)

ZG annually. There are geographical differences by inspecting the return periods of ZG.

Locations in region Sørvest have lower return periods, while locations in regions Vestavind

and Nordvest have notably higher return periods.
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Figure 2.3: Return periods of ZG above 75th percentile

The average ZG across months for the locations is visualized in figure 2.4. The figure

displays seasonal patterns in the data. ZG occurs more often in the summer months than

in the winter months. Also, variations of ZG across the locations are seen. Sites within

the Sørvest region have lower values of ZG, while sites in the Vestavind region have higher

values of ZG, as suggested by studying figure 2.3.



8 2.2 Descriptive Statistics

6

9

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

Z
e

ro
 G

e
n

e
ra

tio
n

Region

Nordavind
Nordvest
Sorvest
Vestavind

Figure 2.4: Average zero generation by months.

The data for each location is limited. Spanning from 1996 to 2019, each specific month at a

given location comprises only 24 data points. However, data at the regional resolution will

result in more data observations. Figure 2.5a illustrates the correlations of ZG across all

locations. Upon examining this figure, it becomes evident that locations within a shared

region exhibit the strongest correlations. Exceptions to this observation are seen in specific

Vestavind locations, which appear to have a pronounced correlation with some sites in

Sørvest. The geographical proximity of these locations can explain this correlation. Figure

2.5b underscores the trend that closer locations generally manifest higher correlations.

The color gradations in this plot further emphasize that locations within the same region

tend to be the most correlated. These regional demarcations are further used for analysis

to ensure sufficient sample sizes.
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Figure 2.6 presents histograms illustrating the distribution of ZG across regions. The

number of data points in each region differs due to the varying number of locations within

the region. Despite this variation, the shape of the regional distributions resembles each

other across all regions. The data points range from a minimum of 0 to a peak slightly

above 30%. This maximum value is observed in the Vestavind region.
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Figure 2.6: Histograms of regions

A distinct feature of the data is its pronounced right tail. From an insurer’s perspective,

the frequency of payouts varies based on the likelihood of surpassing a threshold of ZG.

Underestimation of the right tail could expose the insurer to considerable financial risks,

as it may lead to a higher volume of claims than anticipated. Conversely, for the insured

party, a long tail signifies the presence of outlier values that could lead to substantial losses.

For a parametric insurance product to be viable and appealing, the total payouts must

cover a significant portion of the losses incurred. These considerations necessitate adopting

a model that effectively captures the tail behavior. Section 3.1.3 further elaborates and

discusses this topic



10

3 Methodology

This section introduces the necessary concepts and definitions for understanding the

methodology used in this thesis. It elaborates on the methods used to estimate marginal

probability distributions of ZG for wind farms. Secondly, it presents the estimation of

joint probability distributions of ZG in combinations of wind farms. Lastly, it elaborates

upon the practical use of these methods for creating a parametric insurance pricing model.

3.1 Model Definition

A Hierarchical Bayesian Model (HBM) utilizes statistical principles presented and

formulated by the Reverend Thomas Bayes. HBMs use prior knowledge to influence the

model’s beliefs about a specific event’s probability. The models are hierarchical, meaning

prior beliefs about explanatory factors influence our posterior probability distribution

hierarchically. Posterior probability distributions refer to the estimated probability

distribution that best fits our data after our prior probability distributions have influenced

our beliefs (Lee, 2023). A hierarchical approach is chosen to model regional variability in

ZG and combined regional-monthly variability in ZG. Section 3.1.1 explains this further.

3.1.1 Prior- & Posterior Definition

Our study models Xit, representing ZG for region i during month t. Posterior probability

distributions are estimated on the region level to account for sparse data on the location

level, as discussed in section 2.2. Estimated distributions for a given region i are thereby

assumed to represent the underlying distributions of ZG at a specific location within its

region. Figure 3.1 visually represents the HBM framework used in this study.
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Level 3
Hyper Prior

Level 2
For each 
region 'i'

Level 1
For each 
month 't'

Figure 3.1: Graphical representation of the HBM

Four posterior distributions of differing families are estimated using different likelihood

functions, as elaborated upon in section 3.1.3. ϕuit and ϕvit denotes the parameters

for the likelihood function. These adhere to Level 1 of the hierarchy and represent

the parameters of region-month-specific marginal posterior distributions. The index i

represents a given region out of I regions, and t represents a given month out of T

months. The region-month-specific parameters account for monthly variation influenced

by a common underlying factor specific to each region. Region-month-specific parameters

are drawn from Gamma priors in Level 2 of the hierarchy. The parameters at Level 2 are

region-specific and only contain information about the regional variability in Xit. Level

2 parameters represent the shape Φαi and rate Φβi parameters, of which region-month

specific parameters ϕvit and ϕuit are drawn. The hierarchy’s structure implies that Level

1 region-month-specific parameters share information about a region at Level 2. Thus,

if differences exist in the seasonal pattern of Xit between regions, the model’s ability to

estimate region-month-specific parameters allows it to discern and reflect these variations.

Level 2 parameters are drawn from Gamma distributions with parameters from Level 3

of the hierarchy. Level 3 comprises hyper-priors drawn from a Γ(2, 1) distribution. The

hyper-priors τ1 and τ2 represent shape and rate parameters for the distribution of the

region-specific parameters Φαi and Φβi.
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The choices of prior distributions account for three primary factors that defined our prior

beliefs about Xit. Firstly, the distribution of Xit is right-skewed and rarely observed as

strictly 0. Secondly, the region in question explains some of the variability of Xit due

to the geographical diversity between regions. Finally, the month in question explains

some of the variability of Xit due to the seasonal component visualized in figure 2.4. The

resulting joint posterior distribution of the parameters, given observed data, is defined by

the following expression:

p(ϕvit, ϕuit,Φαi,Φβi, τ1, τ2|Xit) ∝ p(τ1)p(τ2)
I∏

i=1

p(Φαi|τ1, τ2)p(Φβi|τ1, τ2)×

I∏
i=1

T∏
t=1

p(ϕvit|Φαi,Φβi)p(ϕuit|Φαi,Φβi)p(Xit|ϕvit, ϕuit)

(3.1)

The letter p represents probability distributions. All parameter estimations condition

on data corresponding to the given indexes. I.e, ϕvit for i = Nordvaind and t = 3 is

estimated given the data indexed with the same i and t. Each set of parameter estimates

is calculated twice because the HBM employs 2-parameter distribution families. For Level

1, there are 2× I × T parameter estimates, while Level 2 has 2× I parameter estimates.

Level 3 contributes two parameter estimates, reflecting the hyper-priors. Given that I = 4

and T = 12, this amounts to 106 parameter estimates for each posterior distribution.

The joint posterior distribution of the parameters in equation 3.1 is proportional to the

product of the prior distributions of the hyperparameters and the parameters and the

likelihood of the observed data. This proportional relationship is a fundamental tenet

of Bayesian inference, where the posterior distribution combines prior beliefs with the

likelihood of the observed data. The priors represent our initial understanding of the

parameter distributions, updated upon observing the data Xit. The likelihood term

p(Xit|ϕvit, ϕuit) incorporates the observed data into the inference process, ensuring that

the posterior distribution informs the data and the priors (Lee, 2023). The HBM is

formulated in Python code, and distributional parameters are estimated using the PyMC-

package (Patil et al., 2010). After estimating region-month specific parameters ϕvit and

ϕuit, marginal posterior distributions for Xit are defined as follows:

Xit ∼ f(Xit|ϕvit, ϕuit) ∀ i ∈ I, t ∈ T (3.2)
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3.1.2 Markov Chain Monte Carlo Simulation

Markov Chain Monte Carlo (MCMC) simulation is an essential tool for parameter

estimation within a HBM framework. MCMC integrates the independent sampling

power of Monte Carlo simulations with the convergence properties of Markov Chains. This

attribute is fundamental in Bayesian estimation due to the complex dependency structures

inherent in such models. Consequently, MCMC is a robust method for estimating both

prior and posterior parameters, ensuring that the Bayesian inferences drawn are reliable

and accurate (Lee, 2023).

"Monte Carlo simulation is the process of generating random values for uncertain inputs

in a model, computing the output variable of interest, and repeating this process for

many trials to obtain a distribution of the output" (Laguna and Marklund, 2019, p. 262).

Further, Ordinary Monte Carlo simulation is referred to as OMC. Markov chains are

defined as a sequence X1, X2, ... of random elements where the conditional distribution of

Xn+1 given X1, ..., Xn depends on Xn only. "A Markov Chain has stationary transition

probabilities if the conditional distribution of Xn+1 given Xn does not depend on n. This

Markov Chain is the one of interest in Markov Chain Monte Carlo" (Brooks et al., 2011,

p. 4). A Markov chain has converged if it reaches its stationary distribution.

Furthermore, "the theory of MCMC is just like the theory of OMC, except that stochastic

dependence in the Markov chain changes the standard error" (Brooks et al., 2011, p. 8). "

Hamiltonian Monte Carlo (HMC) is an increasingly popular alternative MCMC method.

HMC adopts Hamiltonian dynamics in physics to propose future states in the Markov

chain". This method, however, relies heavily on the choice of two hyperparameters. The No

U-Turn Sampler (NUTS) is an HMC. "NUTS uses a recursive algorithm to automatically

tune the HMC algorithm without requiring user intervention or costly tuning runs" (Nishio

and Arakawa, 2019, p. 2). NUTS is packaged into multiple sources of software like Stan,

the BGLIMM procedure in SAS, and the PyMC package for Python (Patil et al., 2010).

For this thesis, the PyMC-package (version 5.9.0) is used to perform MCMC estimations

of the marginal posterior probability distributions f̂(Xit) for all regions, i, and months, t.

The pymc.model -function and the pymc.sample-function are used to generate samples for

the HBM. The model runs with four independent chains, a decision that aids in assessing
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the convergence and reliability of the sampling process; convergence of all chains to a

similar distribution indicates correct sampling from the posterior. Convergence diagnostics

are further explained in section 3.1.4. The function draws a given amount of samples from

the posterior distribution, including a pre-determined amount of tuning iterations. The

tuning samples are discarded when computing summary statistics, as they do not represent

the desired distribution. Additionally, a target acceptance rate of 0.80 is specified for the

NUTS algorithm. This target acceptance rate reflects a balance between the step size of

the sampler and the rate at which proposed samples are accepted, enhancing the efficiency

of the sampling process.

3.1.3 Distributional Families

As stated in section 2.2, our data exhibits a degree of right-skew and long-tail behavior.

Given these considerations, the Beta, Inverse Gamma, Weibull, and Gumbel distributions

emerged as potential candidates for marginal posterior probability distributions. The

Gumbel distribution, unlike the other families, can yield negative values. Intuitively,

this may seem incongruous when estimating shares of ZG. However, for the thesis, this

characteristic is not detrimental. The primary focus is estimating probabilities that ZG

will exceed a specified positive threshold. Thus, the potential for negative values does

not impact the accuracy or relevance of the pricing model if it can effectively explain the

underlying data’s probability distribution. The Gumbel family is therefore included when

comparing distributional families in the next section (3.1.4).

We employed the PyMC library (Patil et al., 2010) to estimate the posterior distributions,

applying the definition outlined in equation 3.1. This process is repeated for each of

the four distributional families under consideration. We adapted the likelihood function

within our model for each family to correspond with the specific distributional family

evaluated.

3.1.4 Model Comparison

When estimating posterior probability distributions, it is crucial to explore different

candidates and compare their performance against each other. Watanabe–Akaike

Information Criterion (WAIC) (Watanabe and Opper, 2010), and Pareto Smoothed
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Importance Sampling Leave-One-Out Cross-Validation (PSIS-LOO) (Vehtari et al., 2017)

are two different measurements used for such purposes. These measurements aim to

balance goodness-of-fit to the data and complexity. Vehtari et al. (2017) uses a measure

of predictive accuracy, Expected Log Pointwise Predictive Density (ELPD), to maintain

comparability between the two measurements.

Four different HBMs with differing distributional families are estimated, as stated in

section 3.1.3. MCMC simulations are run for 1000 tuning iterations and 2000 sampling

iterations with 4 Markov chains. Comparison measurements, ELPD LOO and ELPD

WAIC, are calculated for each HBM and used for model comparison. The model with

the highest values of ELPD LOO and ELPD WAIC is chosen and estimated by MCMC

simulation with 2500 tuning iterations and 10000 sampling iterations to ensure proper

sample sizes and convergence of the Markov chains.

Convergence of Markov chains when executing MCMC is essential. Estimates from

any MC simulation are only valid if the Markov chains have converged. Markov chain

convergence is evaluated through visual inspection of a plot of the chain’s trace (also

called a traceplot). According to Peng (2022b), the theory claims that all Markov chains

run in an MCMC simulation should eventually converge to the stationary distribution.

Convergence can be visually confirmed when the traceplots are noisy and exempt from

clear patterns. Convergence is also evaluated by calculating the Gelman-Rubin diagnostic

(Peng, 2022a). If r̂ is approximately equal to 1, the chain has converged. Increasingly

high values of r̂ indicates divergence in the Markov chain of interest.

3.2 Pricing Model for a Single Wind-Farm

Calculating the premium of a pricing model with monthly-based contracts considers

the probability of a certain amount of ZG during a given month t, at a given region i,

exceeding a threshold denoted as k.

3.2.1 Monthly Contracts

Parametric insurance pays a pre-defined amount to the customer whenever a trigger event

occurs. This payout is referred to as L. The price of a monthly contract of parametric
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insurance for a single offshore wind farm in region i during month t is defined as follows:

premiumit = E(1{Xit>k}) · L = Pf̂it
(Xit > k) · L (3.3)

If Xit exceeds the threshold k with a probability defined by an estimated marginal posterior

distribution f̂it at a wind farm in the region i during a given month t, an amount equal to

L is paid out to the customer by the insurer.

3.2.2 Yearly Contracts

This thesis assumes independence between months for all types of yearly contracts. Thus,

the price of a yearly contract of parametric insurance for a single offshore wind farm in

the region i is defined as the monthly contract, summed over the next T months after

purchasing the insurance product. T = 12 for all calculations of yearly contracts:

premiumi =
T∑
t=1

E(1{Xit>k}) · L =
T∑
t=1

Pf̂it
(Xit > k) · L (3.4)

3.3 Pricing Model for a Portfolio of Wind-Farms

The positive correlation of ZG events across geographically similar wind farms, as illustrated

in figure 2.5a, underscores the necessity for modeling co-dependency between wind farm

locations within a portfolio. This approach is vital for accurately assessing and managing

the elevated risks associated with insurance policies for offshore wind farms. By modeling

co-dependency, insurers can more effectively evaluate potential losses due to simultaneous

ZG events in a portfolio of wind farms, leading to more robust and tailored risk management

strategies. The development of a pricing model for a portfolio of wind farms is motivated

by this, aiming to accurately reflect the interconnected risk factors and optimize insurance

premium strategies.

Until now, the variable Xit has represented the occurrence of ZG in a given region, denoted

by the index i, during month t. However, as we shift our focus towards the pricing model

for insurance policies covering portfolios of wind farms, the variable Xnt is introduced. The

index n represents an individual wind farm location within a portfolio of N wind farms.
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Xnt is assumed to follow the corresponding region-month-specific posterior distribution

defined in equation 3.2. f(Xnt) is defined as the marginal probability distribution of ZG

at location n and month t.

f(Xnt) = f(Xit|ϕvit, ϕuit) ∀ n ∈ i (3.5)

where n represents one of N wind-farm locations in a chosen portfolio located in region

i. The likelihood that the sum of ZG in the portfolio exceeds a specified threshold k

determines the pricing for a portfolio of wind farms. Again, independence between months

is assumed. Yearly contracts are calculated using models for each month in the same way

as the case for insurance of a single wind farm defined in section 3.2.2. For a given month

t, the sum of ZG in a portfolio is defined as:

Yt =
N∑

n=1

Xnt (3.6)

All examples of portfolios in this thesis contain N = 3 wind farms. This simplification is

done for comparison purposes. The pricing model can be used on any number of wind

farms in a portfolio.

3.3.1 Copula Distributions

Multivariate copulas are fit to capture the co-dependence between ZG at wind farms in a

portfolio effectively. Copulas are mathematical constructs that capture the dependence

structure between random variables, independent of their individual marginal distributions.

Essentially, they present the correlation or dependency patterns among several variables

without being tied to the specific form of their individual distributions. Copulas can

model the joint behavior of ZG, ensuring risk assessments factor in the nuances of mutual

interactions. According to Sklar (1959), a copula with continuous marginals exists for any

joint distribution. Hence, the copula representing the joint distribution for any pair of

months and location can be defined as follows:

F (X1t, ..., XNt) = C(F1(X1t), ..., FI(XNt)) (3.7)
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where F (Xnt) is the cumulative distribution function (CDF) for each combination of wind

farm location n and month t in the portfolio. The transformed observed values using the

CDF should be uniformly distributed on the interval [0, 1]. Copulas of different families

are estimated and compared using the copula-package in R. Specifically, the fitCopula-

and gofCopula-functions are used (Hofert et al., a,b).

3.3.2 Copula Family Comparison

The goodness-of-fit tests are based on the process of comparing the empirical copula with

a parametric estimate of the copula derived under the following null hypothesis:

H0 : C ∈ C0 (3.8)

The null hypothesis states that "the dependence structure of a multivariate distribution

is well represented by a specific parametric family of copulas" (Genest et al., 2009).

Cramér-von Mises test statistics (hereby referred to as CMT ) and p-values are calculated.

Large values of CMT reject the null hypothesis. Conversely, p-values under approximately

5% reject the null hypothesis.

3.3.3 Yearly Contracts for a Portfolio of Wind Farms

The distribution of a portfolio’s joint variability of ZG is estimated using OMC

simulation. The first step is to fit a copula for a portfolio with N locations in month

t: Ĉt(F1(X1t), ..., FN(XNt)). Copulas are fit using the marginal distribution for each

location in the portfolio, f(Xnt). Uniform values on the interval [0, 1] are obtained using

the corresponding cumulative distribution function, F (Xnt). These uniform values are

input for the fitCopula()-function, which utilizes Maximum Pseudo-Likelihood to estimate

multivariate distributions for a given portfolio (Hofert et al., a).

After fitting the copula, R samples are drawn from Ĉt. The sample draws are defined

as (X1tr, ..., XNtr), where the index r ∈ R denotes the iteration of the OMC simulation.

Drawn values are expressed as uniform values. The quantile function corresponding to

the distribution f(Xnt) is used to return the R ·N uniform values to their original scale.

This function is tailored to the unique marginal distribution of each location n in the

portfolio. This process results in R estimates of ZG for every location n in the portfolio
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during month t. The portfolio sum of each sample estimate is defined as follows:

Ytr =
N∑

n=1

Xntr ∀ r ∈ R, t ∈ T (3.9)

The probability of the portfolio exceeding k ZG in month t is then calculated by:

P̂ (Yt > k) ≈ 1

R

R∑
r=1

1{Ŷtr>k} ∀ t∈T (3.10)

P̂ (Yt > k) is the MC estimated probability that the portfolio-sum of ZG, Yt in month t

will exceed the threshold k. The price of the insurance contract for one year is therefore

defined as:

premium =
T∑
t=1

P̂ (Yt > k) · L (3.11)

3.3.4 Value-at-Risk & Expected Shortfall

The measures Value-at-Risk (VaR) and Expected shortfall (ES) are used to evaluate risks

of co-dependency within a portfolio of wind farms.

VaR was introduced by J.P.Morgan in the 1990s (J.P.Morgan, 1996). They define VaR as

"a measure of the maximum potential change in value of a portfolio of financial instruments

with a given probability over a pre-set horizon" (J.P.Morgan, 1996, p. 6). An x% value at

risk of Y means that there is an x% chance that losses will not exceed Y . However, VaR

does not estimate losses occurring for the specific scenarios that exceed the VaR threshold.

ES was introduced by Rockafellar and Uryasev (2000). This metric is linked to Value

at Risk (VaR), serving as an extension to measure potential losses. Essentially, ES

computes the average of all losses that surpass the designated VaR threshold. Calculating

ES necessitates an initial computation of VaR for a specified threshold. In essence, ES

provides an estimation of the expected loss on the occasions where the predefined VaR

threshold is exceeded.

Traditionally, VaR and ES are employed as metrics to quantify financial losses. This thesis
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adopts an approach whereby the VaR and ES are computed for the portfolio sum of ZG,

denoted as Yt. This approach is used because the analysis aims to evaluate the direct risk

associated with ZG when owning a portfolio of wind farms. Two example portfolios are

chosen in order to calculate and compare VaR and ES:

diverse portfolio ∈ {Sørvest A, Nordvest B, Nordavind C}

similar portfolio ∈ {Sørvest B, Sørvest C, Sørvest E}

The portfolios are similar and diverse when considering the correlation in ZG between

observations and geographical proximity. As seen in figure 2.5b, locations closer to each

other exhibit a larger correlation. These considerations motivates the choice of the two

example portfolios with varying correlation and degrees of geographical similarity. To

assess the added risk of insuring multiple wind farms due to co-dependency, values of ZG

are simulated with two separate approaches: Firstly, under the assumption of independent

marginal distributions f̂it, for each wind farm i, in the portfolio. Secondly, with the joint

distribution derived from fitting a Copula as described above. By calculating VaR & ES

for both instances, inferences about the risk of co-dependency are made. 95%-VaR is

calculated as the 95th percentile of the draws from the dependent and the independent

simulations for a given month t and for both example portfolios. 95%-VaR is equal to the

value y in equations 3.12 and 3.13:

P̂ (Yt > y) = 0.05 (3.12)

95% VaR = y (3.13)

ES is the mean of the draws above the 95th percentile for both portfolios and simulation

instances.

ES =
1

M

m∑
t=1

Yt (3.14)

where m ∈ M denotes the observations where Yt > 95% VaR. The implied risk associated

with insuring a portfolio of wind farms is then evaluated by considering the difference

between VaR & ES when modeling co-dependence and VaR & ES without co-dependence.
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VaR & ES are essential measures to the insurance company, as they assist in considering

the worst possible outcomes of ZG, which would trigger unforeseen and large payouts.

If the insurance company is unaware of the potentially elevated risks associated with

insuring a portfolio of wind farms, it may inadvertently underestimate the likelihood of

payouts. Such a miscalculation can lead to a higher frequency of payouts than initially

projected, resulting in financial losses for the insurance company.

3.3.5 Calculation of Monthly & Yearly Premiums for a Portfolio

We define four different scenarios: (1) A similar portfolio modelled with co-dependence,

(2) a similar portfolio modelled without co-dependence, (3) a diverse portfolio modelled

with co-dependence and (4) a diverse portfolio modelled without co-dependence. OMC

simulations, as described in sections 3.3.3 and 3.3.4, are run for all scenarios. The

predefined payouts from the insurer, L, are set to 1 NOK. A threshold of k = 0.3024 is

chosen. The threshold equals the 75th percentile of ZG (see section 2.2), multiplied by

the number of wind farms in our example portfolios, N = 3. Thus, monthly premiums for

all scenarios are calculated using equation 3.10. The difference in the monthly premiums

is calculated for scenarios 1 & 2 and for scenarios 3 & 4 to consider elevated risks of

co-dependency. Lastly, yearly premiums are calculated as a function of the threshold k,

using equation 3.11.
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4 Results & Discussion

4.1 Model comparison

The HBM defined in section 3.1 was run as explained in section 3.1.4. Results of PSIS-LOO

and WAIC are presented in table 4.1.

Model ELPD_WAIC ELPD_LOO P_LOO P_WAIC

Gumbel 11134.11 11133.80 84.22 83.91

Weibull 11062.28 11061.75 111.54 111.01

Beta 11058.43 11056.96 131.82 130.36

Inverse Gamma 8818.13 8814.49 205.59 201.95

Table 4.1: PSIS-LOO & WAIC metric

When assessing model fit, a higher ELPD estimate suggests a better performance. Among

the models we analyzed, the Gumbel-family posterior model stood out, performing best

based on both PSIS-LOO and WAIC evaluations. The terms P_LOO and P_WAIC refer

to the effective number of parameters in the models. While more parameters can make a

model detailed, it also increases the overfitting chance. The model with a Gumbel-family

posterior had the fewest effective parameters, indicating a balance between detail and risk

of overfitting.

To further review which models had the best fit, posterior predictive checks were done

to evaluate the goodness-of-fit of the models. Andrew Gelman and Jennifer Hill (2007)

defines posterior predictive checks as "simulating replicated data under the fitted model

and then comparing these to the observed data". The Kernel Density Estimate (KDE)

plot shown in figure 4.1 offers a visual representation between the true distribution of the

data and the distribution resulting from our simulated data using one of the family-specific

models. This plot shows how well the models with different distributional families mirror

the underlying structures and patterns of the observed data.
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Figure 4.1: Kernel Density Estimate vs. Posterior Predictive Densities & Mean

Examining figure 4.1, it is evident that both the Weibull and Beta models exhibit signs of

underfitting at the peak of the distribution. Conversely, in the tails of the distribution,

these models tend to overfit. The Inverse Gamma model does not seem to capture the

underlying data in any way. In contrast, the Gumbel model aligns more with the observed

data. The Gumbel distribution captures the underlying data both in the tails and the peak

of the distribution. Therefore, the model with the Gumbel-family posterior shows the best

fit for the data compared to the models using alternative distributional families. Given

the findings from both posterior predictive checks and our accuracy measurements, the

model with the Gumbel-family posterior marginals is chosen to represent the probability

of ZG.
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4.2 Convergence Diagnostics

An MCMC simulation, as described in section 3.1.4, was run with the Gumbel family

posterior. A traceplot for evaluating the convergence of Markov chains is visalized in figure

4.2. A selection of parameter estimations and their summary statistics is presented in

table 4.2. All other traceplots and tables of MCMC estimates of distributional parameters

are found in the appendix.

Figure 4.2: Traceplot of Markov Chains from the MCMC simulation with the Gumbel-
family posterior
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mean sd ess_bulk ess_tail r_hat

τ1 0.93 0.32 32422 27316 1

τ2 0.02 0.01 26943 24707 1

Φα,1 5.26 1.44 23638 25124 1

Φα,2 5.65 1.56 23239 23607 1

Φα,3 7.6 2.19 22396 23606 1

Φα,4 7.12 1.97 24314 23895 1

Φβ,1 118.71 34.2 23447 24998 1

Φβ,2 108.16 31.11 23126 23236 1

Φβ,3 217.19 64.75 22060 23326 1

Φβ,4 132.86 38.15 24189 23869 1

ϕv,1,1 0.04 0 45816 29098 1

ϕv,1,2 0.04 0 41639 28184 1

ϕv,1,3 0.05 0 36303 29514 1

ϕv,1,4 0.05 0 43085 28637 1

ϕv,1,5 0.07 0 41423 28348 1

ϕv,1,6 0.08 0 42357 28182 1

Table 4.2: Estimated Parameters and MCMC statistics of model with Gumbel family

The dense and noisy patterns in figure 4.2 indicate that there is little-to-no dependence

between observation Xn+1 and X1, ..., Xn of drawn ZG-values from the MCMC simulation.

Thus, the Markov chains are assumed to have converged. Probability density functions

for the prior distributions are displayed in the left-hand column of figure 4.2. The region-

specific and region-month-specific distributions are different from each other. Combined

with proper convergence, this indicates that variability in the region- and month-levels

are captured by the HBM.

Table 4.2 shows estimates of parameters drawn from the hyper-prior and region-specific

prior distributions in the first ten rows. The rest of the rows include estimates of

the parameters drawn from the region-month-specific prior distributions. The table

also displays a selection of corresponding MCMC statistics. The estimated parameters

represent our posterior probability distributions. Thus, we have estimated posteriors for

all combinations of regions i and months t. Furthermore, the standard deviation of the
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parameter estimates is close to zero when considering parameter estimates on the region-

month-level of the hierarchy. This result indicates that the model "borrows strength"

from the hierarchy to get accurate estimates of the posterior probability distributions.

The column r_hat shows calculations of the Gelman-Rubin diagnostic. All diagnostic

values equal 1, indicating convergence in all Markov chains of interest. The ess_bulk and

ess_tail show that the effective sample sizes of the estimated parameters in the bulk and

the tail of the simulated values are all at a reasonably high level.

4.3 Estimated Posterior Probability Distributions

In figure 4.3, we visualize the in-sample posterior predictive fit of the model. Data from

the wind farm Nordavind A is used as in-sample data.

Figure 4.3: Example of the In-Sample Posterior Predictive Fit of the Estimated Posterior
Distribution on data from Nordavind A

This chart shows the observed values and the median of the simulated data. The greyed-out

areas define the 50% and 90% credible intervals of the MCMC simulation. These intervals

represent the likelihood of the simulated values falling within a specific range. The figure

shows that the model effectively captures seasonal trends, hence the spiky visuals. Periods

of higher observed ZG often coincide with higher model estimates, while lower values of

ZG match up with the model’s lower estimates. Inspection of the chart highlights the

model’s ability to explain patterns in the data when assessing the risk of ZG.
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Figure 4.4: Probability Density Functions of estimated posterior probability distributions
from the Gumbel-family in the Sørvest-region

Plotted probability density functions of the month-specific distributions in the Sørvest-

region over histograms of observed data are presented in figure 4.4. The density of the

data during the winter is more centered towards lower values than during the spring

and summer. These observations coincide with the seasonal patterns in figure 2.4. The

estimated posteriors and their tails adequately capture the bell shape of the distribution.

4.4 Discussion of Thresholds

Determining an appropriate trigger value is essential in parametric insurance contracts,

playing a significant role for both the insurer and the insured party. Recall equation 3.4,

where premiums are calculated based on the probability of ZG exceeding a predetermined

trigger threshold k. Figure 4.5 shows probabilities for surpassing various thresholds specific

to the Vestavind F location. In this figure, the dashed line marks an exemplary trigger

value, corresponding to the 75th percentile of ZG at Vestavind F.
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Figure 4.5: Probabilities of exceeding 75th quantile ZG for Vestavind F

The model’s ability to distinguish between months is again evident, resulting in variation

in the probability of ZG exceeding a threshold across different months. Specifically, we

observed an increase in this probability during the summer months compared to the winter

months. The peak of this trend occurs in July at this particular location, where the

likelihood of surpassing the 75th quantile almost reaches 50%. Conversely, this probability

approaches 0% in certain winter months.

Examining figure 4.5, it becomes apparent that adjustments in the threshold value impact

the calculated premiums for the insurance contract. Specifically, opting for a higher

threshold value is associated with a decreased probability of exceeding ZG, which results

in more affordable premium rates for the insured. Conversely, reducing the threshold value

implies a heightened probability of exceeding the threshold, resulting in more expensive

premium rates. The significance of the chosen threshold for the pricing model is further

elaborated upon in section 4.5.4.

4.5 Portfolio of Wind Farms

In the following section, we analyzed the impact of portfolio composition on the sum of

ZG within a portfolio. We compare the diverse and similar portfolios that were defined in
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section 3.3.4. We use Copula modeling to model the dependencies between the wind farms

in each portfolio. CMT and p-values are calculated and compared for three different

copula-families. After choosing the best performing copula family, we evaluated the risk

of ZG in the portfolios using Value at Risk (VaR) and Expected Shortfall (ES).

4.5.1 Joint Probability Distributions

The method described in section 3.3.3 was used to transform data from the portfolio

into uniformly distributed values from 0 to 1. Figure 4.6 displays these uniform values

for a selected location, Sørvest B. An examination of the data reveals relatively uniform

distributions across most months. However, results are limited by the sparse data available

for specific location-month pairs. Given that only 24 data points exist for each of these

combinations, certain distributions appear less consistently uniform. We assume that the

transformed data follows uniform distributions.
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Figure 4.6: Uniform distributed values for Sørvest B
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4.5.2 Goodness-of-fit Tests on Copula Families

CMT for estimated copulas of the Normal-, Joe- and Gumbel-family for the similar

portfolio per month are shown in table 4.3a. P-values of the tests are shown in table 4.3b.

Month Normal Joe Gumbel
Jan 0.06 0.14 0.08
Feb 0.06 0.09 0.06
Mar 0.04 0.11 0.06
Apr 0.04 0.13 0.07
May 0.06 0.16 0.08
Jun 0.06 0.12 0.07
Jul 0.06 0.07 0.05
Aug 0.04 0.18 0.08
Sep 0.03 0.13 0.05
Oct 0.05 0.05 0.04
Nov 0.03 0.16 0.07
Dec 0.06 0.29 0.13

(a) CMT estimates

Month Normal Joe Gumbel
Jan 0.07 0.01 0.01
Feb 0.08 0.04 0.15
Mar 0.41 0.01 0.15
Apr 0.54 0.00 0.06
May 0.08 0.00 0.02
Jun 0.09 0.01 0.05
Jul 0.05 0.12 0.30
Aug 0.28 0.00 0.01
Sep 0.81 0.00 0.18
Oct 0.08 0.47 0.63
Nov 0.77 0.00 0.07
Dec 0.05 0.00 0.00

(b) P-values

Table 4.3: Cramér-von Mises statistics, and corresponding P-values, for estimated
Normal-, Joe- & Gumbel-copulas per month

The Normal copula consistently maintains the null hypothesis H0 across all months and

exhibits the lowest CMT estimates in most of them. This result indicates that, among the

copulas considered, the Normal copula most effectively captures the characteristics of the

multivariate distributions. Therefore, we proceeded with our analysis using the Normal

copula.

4.5.3 Evaluated Risk of Co-Dependency

After choosing the Normal-copula family, an OMC simulation was performed with R =

10000 iterations per month t for each portfolio. VaR and ES were calculated per month for

each portfolio, and the results are presented in figure 4.7. Values on the y-axis represent

the difference between 95%-VaR and ES when modeling ZG with or without co-dependence

between wind farms in the portfolio. No pronounced increase in these measurements are

observed when considering the diverse portfolio. The difference in risk seems to hover

around zero, implying little to no increased risk when considering co-dependence. A risk

increase is observed when considering the similar portfolio. ES and VaR of ZG increase
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for every month when modeling with co-dependence. This result indicates increased risks

due to co-dependence when insuring geographically close wind farms.
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Figure 4.7: Dependency Increase when insuring a Similar Portfolio vs. a Diverse Portfolio

4.5.4 Evaluation of Monthly & Yearly Portfolio Contracts

In the final phase of our evaluation, we focused on assessing the computed premiums

for the monthly and yearly portfolio contracts detailed in section 3.3.3. In Figure 4.8,

histograms compare the sums of ZG for all scenarios defined in section 3.3.5. Notably,

the similar portfolio, when modeled with dependence (1), exhibits more pronounced tail

behavior compared to its counterpart (2) under independence. This observation suggests a

more significant variability, as evidenced by a broader distribution. Additionally, a broader

distribution indicates that the dependence model potentially captures more extreme

values, reflecting a higher risk or more potential for variability in output within the similar

portfolio. When examining the diverse portfolio, it is observed that the distributions under

both dependent (3) and independent (4) scenarios are alike. This similarity indicates that

co-dependency between wind farm locations within a diverse portfolio does not contribute

to the overall risk profile.
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Figure 4.8: Histogram of the Sum of ZG for the Diverse & Similar portfolio, modelled
with dependence & independence between wind farm locations, for all months
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Figure 4.9: Monthly premium increase when modelling with dependence vs independence
for the Diverse & Similar portfolios

Figure 4.9 presents the difference in monthly premiums modeling with dependence and

and independence for the diverse and similar portfolios, given a payout of L = 1 NOK.

The chart reveals significant variations in premiums between the two portfolios. These

differences are further accentuated when considering the impact of dependence. Notably,

the similar portfolio exhibits substantial premium hikes, particularly from April to

September. This trend underscores the influence of portfolio composition on premium rates,

highlighting the heightened risk and cost implications associated with more homogeneous

portfolios.
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Figure 4.10: Premium as a function of trigger event threshold for all scenarios (ref.
section 3.3.5)

The annual premium was calculated as described in section 3.3.5. Figure 4.10 illustrates

the annual premium relative to the threshold k. As anticipated, the premium appears

consistent across the models with and without dependency for the diverse portfolio (3) (4).

Notably, the premiums for the similar portfolios exhibit a dependency-related discrepancy.

Incorporating dependency in the wind farm locations within the portfolio results in a

lower premium for smaller thresholds. In contrast, for thresholds at approximately 19%

or higher, the premium for the similar portfolio modelled with co-dependence (1) exceeds

that of the similar portfolio modelled without co-dependence (2).

Modeling geographically similar portfolios without co-dependence (2) leads to

overestimated premiums at low threshold values and underestimated premiums at higher

thresholds. Modeling with co-dependence (1) captures the tail behavior seen in figure 4.8.

This result is due to the model’s ability to estimate simultaneous high and simultaneous

low ZG events at wind farms close to one another. Thus, it is crucial to model the

insurance price based on joint distributions for the portfolio instead of independent

marginal distributions per wind farm.
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4.6 Limitations and Further Research

Our analysis focuses on regional and monthly resolution data, limiting our explanatory

factors for ZG variability to these two dimensions. This approach has limitations, as using

higher-resolution data could unveil more nuanced patterns. Another limitation of the

analysis is the assumption of independence in ZG between months.

Future research should mainly involve improvements in the modeling of ZG. Improvements

include using more explanatory variables for explaining ZG, increasing the resolution of

our data, and employing more advanced methods for estimating ZG. Another possibility

could be to research the added value of using more sophisticated weather forecasting

systems to model ZG.

Secondly, future research should examine the specific loss operators that offshore wind

farms experience due to ZG. This analysis would be valuable for calculating the insurance

coverage of the parametric insurance model.

Our parametric insurance product is activated by a trigger event encompassing two distinct

scenarios: the absence of electricity production due to either too low or excessively high

wind speeds. For the insurance company, distinguishing between these two scenarios

could be beneficial. This distinction represents a promising area for further research, as

understanding each scenario’s specific impacts and frequency could lead to more tailored

insurance strategies.
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5 Conclusion

In this thesis, we have proposed a pricing model for parametric insurance of zero generation

events at offshore wind farm locations on the Norwegian shelf. The approach uses historical

data. The research introduces a pricing strategy that would secure revenue streams for

operators, making investments in the offshore wind sector more attractive. We developed

two models: one for insuring a single wind farm location and another for insuring a

portfolio of multiple wind farms.

We used a Hierarchical Bayesian approach to analyze the monthly and regional variability in

zero generation events at offshore wind farms. Our approach utilized Markov Chain Monte

Carlo simulations to estimate posterior Gumbel distributions of zero generation events,

explaining monthly and regional patterns. Copulas were used to model co-dependency

between wind farms within the same portfolio. Value-at-Risk and Expected Shortfall were

utilized to evaluate the risk associated with insuring a portfolio of wind farms.

A fundamental discovery in our research is the heightened risk associated with insuring a

portfolio of geographically proximate wind farms due to co-dependency. This result is

evidenced by a pronounced increase in tail behavior and increases in Value-at-Risk and

Expected Shortfall when modeling with co-dependence. Conversely, we did not observe

increases in risk when comparing ZG for a geographically diverse portfolio modeling with

co-dependence versus modeling without co-dependence.

Additionally, our analysis of yearly premiums for portfolios of wind farms based on a

trigger event threshold revealed a notable trend. Specifically, in the scenario with a similar

portfolio modeled with co-dependence (1), premiums were lower than in the scenario with

a similar portfolio modeled without co-dependence (2) up to a certain threshold, beyond

which the trend reversed. This pattern coincides with the broader distribution observed in

co-dependency modeling, which accounts for extreme high or low zero generation events

occurring simultaneously in correlated portfolios.

Considering these findings, our research shows that insurance companies can effectively

price parametric insurance products for multiple wind farm locations using our proposed

pricing strategy.
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Appendix

A1 Traceplots

Figure A1.1: Traceplot of Markov Chains from the MCMC simulation with the Weibull-
family for the posterior
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Figure A1.2: Traceplot of Markov Chains from the MCMC simulation with the Beta-
family for the posterior
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Figure A1.3: Traceplot of Markov Chains from the MCMC simulation with the Inverse
Gamma-family for the posterior
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A2 MCMC Parameter Estimations

Final Model

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

τ1 0.93 0.32 0.36 1.53 0 0 32422 27316 1

τ2 0.02 0.01 0 0.03 0 0 26943 24707 1

Φα,1 5.26 1.44 2.73 7.99 0.01 0.01 23638 25124 1

Φα,2 5.65 1.56 2.92 8.61 0.01 0.01 23239 23607 1

Φα,3 7.6 2.19 3.83 11.78 0.01 0.01 22396 23606 1

Φα,4 7.12 1.97 3.63 10.86 0.01 0.01 24314 23895 1

Φβ,1 118.71 34.2 58.62 183.32 0.22 0.16 23447 24998 1

Φβ,2 108.16 31.11 53.82 167.36 0.2 0.14 23126 23236 1

Φβ,3 217.19 64.75 102.51 337.76 0.43 0.3 22060 23326 1

Φβ,4 132.86 38.15 63.9 203.22 0.24 0.17 24189 23869 1

ϕv,1,1 0.04 0 0.04 0.05 0 0 45816 29098 1

ϕv,1,2 0.04 0 0.04 0.05 0 0 41639 28184 1

ϕv,1,3 0.05 0 0.04 0.05 0 0 36303 29514 1

ϕv,1,4 0.05 0 0.05 0.06 0 0 43085 28637 1

ϕv,1,5 0.07 0 0.06 0.07 0 0 41423 28348 1

ϕv,1,6 0.08 0 0.07 0.09 0 0 42357 28182 1

ϕv,1,7 0.09 0 0.08 0.1 0 0 39961 28314 1

ϕv,1,8 0.08 0 0.08 0.09 0 0 45672 32477 1

ϕv,1,9 0.06 0 0.05 0.06 0 0 41712 29267 1

ϕv,1,10 0.05 0 0.05 0.06 0 0 46285 30425 1

ϕv,1,11 0.05 0 0.05 0.06 0 0 41733 27818 1

ϕv,1,12 0.04 0 0.04 0.05 0 0 38929 30428 1

ϕv,2,1 0.05 0 0.05 0.06 0 0 44452 29596 1

ϕv,2,2 0.05 0 0.04 0.05 0 0 40062 27474 1

ϕv,2,3 0.06 0 0.05 0.07 0 0 38355 27829 1

ϕv,2,4 0.07 0 0.06 0.08 0 0 44425 31553 1

ϕv,2,5 0.08 0 0.08 0.09 0 0 44237 29149 1

ϕv,2,6 0.09 0 0.08 0.1 0 0 39445 27138 1

ϕv,2,7 0.1 0.01 0.09 0.11 0 0 40804 29344 1

ϕv,2,8 0.09 0 0.08 0.1 0 0 39719 27734 1

ϕv,2,9 0.08 0 0.07 0.09 0 0 46802 27602 1

ϕv,2,10 0.06 0 0.05 0.06 0 0 39645 28452 1

ϕv,2,11 0.06 0 0.06 0.07 0 0 46646 28738 1

ϕv,2,12 0.06 0 0.05 0.06 0 0 44080 30174 1

ϕv,3,1 0.04 0 0.04 0.04 0 0 43157 29906 1

ϕv,3,2 0.03 0 0.03 0.04 0 0 42233 29729 1

ϕv,3,3 0.03 0 0.03 0.04 0 0 46232 29714 1

ϕv,3,4 0.05 0 0.04 0.05 0 0 39960 30788 1

ϕv,3,5 0.05 0 0.04 0.05 0 0 40753 30612 1

ϕv,3,6 0.06 0 0.05 0.06 0 0 42963 30487 1

ϕv,3,7 0.06 0 0.06 0.07 0 0 48652 30272 1

ϕv,3,8 0.06 0 0.05 0.06 0 0 43503 28748 1

ϕv,3,9 0.04 0 0.04 0.04 0 0 45123 28974 1



44 A2 MCMC Parameter Estimations

ϕv,3,10 0.03 0 0.03 0.04 0 0 38219 27750 1

ϕv,3,11 0.03 0 0.03 0.03 0 0 35055 27915 1

ϕv,3,12 0.04 0 0.04 0.05 0 0 43635 30458 1

ϕv,4,1 0.07 0 0.06 0.07 0 0 43745 30288 1

ϕv,4,2 0.06 0 0.05 0.06 0 0 43244 28651 1

ϕv,4,3 0.06 0 0.06 0.07 0 0 45463 29143 1

ϕv,4,4 0.07 0 0.07 0.08 0 0 45851 29198 1

ϕv,4,5 0.07 0 0.07 0.08 0 0 46631 30455 1

ϕv,4,6 0.09 0 0.08 0.09 0 0 42954 29010 1

ϕv,4,7 0.1 0 0.09 0.1 0 0 46730 31639 1

ϕv,4,8 0.09 0 0.08 0.09 0 0 40916 29422 1

ϕv,4,9 0.06 0 0.05 0.06 0 0 41231 29453 1

ϕv,4,10 0.05 0 0.05 0.06 0 0 44579 29037 1

ϕv,4,11 0.06 0 0.06 0.07 0 0 44367 30432 1

ϕv,4,12 0.06 0 0.06 0.07 0 0 40298 29126 1

ϕu,1,1 0.02 0 0.02 0.02 0 0 44406 30208 1

ϕu,1,2 0.03 0 0.02 0.03 0 0 46028 29929 1

ϕu,1,3 0.02 0 0.02 0.03 0 0 40765 28597 1

ϕu,1,4 0.03 0 0.02 0.03 0 0 45176 30327 1

ϕu,1,5 0.03 0 0.03 0.04 0 0 43497 29315 1

ϕu,1,6 0.04 0 0.03 0.04 0 0 44993 30988 1

ϕu,1,7 0.04 0 0.03 0.04 0 0 42311 29640 1

ϕu,1,8 0.03 0 0.03 0.04 0 0 45231 30382 1

ϕu,1,9 0.03 0 0.03 0.04 0 0 44667 29837 1

ϕu,1,10 0.02 0 0.02 0.03 0 0 41874 29133 1

ϕu,1,11 0.03 0 0.02 0.03 0 0 43627 28254 1

ϕu,1,12 0.02 0 0.02 0.03 0 0 37229 28970 1

ϕu,2,1 0.03 0 0.02 0.04 0 0 39394 30270 1

ϕu,2,2 0.03 0 0.02 0.03 0 0 41596 29907 1

ϕu,2,3 0.03 0 0.03 0.04 0 0 36412 29284 1

ϕu,2,4 0.04 0 0.03 0.04 0 0 41386 28598 1

ϕu,2,5 0.03 0 0.02 0.04 0 0 40211 29820 1

ϕu,2,6 0.03 0 0.03 0.04 0 0 44270 29852 1

ϕu,2,7 0.04 0 0.04 0.05 0 0 43580 29237 1

ϕu,2,8 0.04 0 0.03 0.05 0 0 43678 30072 1

ϕu,2,9 0.04 0 0.04 0.05 0 0 46242 29695 1

ϕu,2,10 0.03 0 0.03 0.04 0 0 46272 30885 1

ϕu,2,11 0.03 0 0.02 0.03 0 0 45440 29025 1

ϕu,2,12 0.03 0 0.02 0.03 0 0 45373 29772 1

ϕu,3,1 0.02 0 0.02 0.03 0 0 42446 29673 1

ϕu,3,2 0.02 0 0.02 0.02 0 0 47021 30322 1

ϕu,3,3 0.02 0 0.02 0.02 0 0 40665 29533 1

ϕu,3,4 0.03 0 0.02 0.03 0 0 44869 29968 1

ϕu,3,5 0.03 0 0.03 0.03 0 0 42386 31057 1

ϕu,3,6 0.03 0 0.02 0.03 0 0 41653 30156 1

ϕu,3,7 0.03 0 0.03 0.04 0 0 43076 29152 1

ϕu,3,8 0.03 0 0.03 0.03 0 0 46290 30596 1

ϕu,3,9 0.02 0 0.02 0.03 0 0 40616 30889 1

ϕu,3,10 0.02 0 0.02 0.02 0 0 41301 30802 1
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ϕu,3,11 0.02 0 0.02 0.02 0 0 38444 29495 1

ϕu,3,12 0.03 0 0.02 0.03 0 0 45240 30096 1

ϕu,4,1 0.03 0 0.03 0.03 0 0 43693 30385 1

ϕu,4,2 0.03 0 0.03 0.04 0 0 44730 30409 1

ϕu,4,3 0.04 0 0.03 0.04 0 0 46908 30907 1

ϕu,4,4 0.04 0 0.03 0.04 0 0 45262 30463 1

ϕu,4,5 0.04 0 0.03 0.04 0 0 44305 28464 1

ϕu,4,6 0.04 0 0.03 0.04 0 0 39470 30709 1

ϕu,4,7 0.04 0 0.03 0.04 0 0 44606 31071 1

ϕu,4,8 0.04 0 0.04 0.05 0 0 48635 31012 1

ϕu,4,9 0.03 0 0.03 0.04 0 0 48790 30512 1

ϕu,4,10 0.03 0 0.02 0.03 0 0 40087 28966 1

ϕu,4,11 0.04 0 0.03 0.04 0 0 42460 29707 1

ϕu,4,12 0.04 0 0.03 0.04 0 0 44559 30083 1



46 A2 MCMC Parameter Estimations

Weibull - Model Comparison

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

τ1 2.82 1.04 1.06 4.75 0.01 0.01 13088 6581 1

τ2 4.17 1.63 1.4 7.25 0.01 0.01 14564 5972 1

Φα,1 0.62 0.14 0.37 0.88 0 0 13277 6179 1

Φα,2 0.66 0.15 0.4 0.93 0 0 13036 6295 1

Φα,3 0.61 0.13 0.36 0.86 0 0 13525 6382 1

Φα,4 0.68 0.16 0.4 0.97 0 0 13778 6353 1

Φβ,1 0.54 0.16 0.23 0.84 0 0 13966 6197 1

Φβ,2 0.54 0.17 0.25 0.87 0 0 14132 5933 1

Φβ,3 0.66 0.2 0.31 1.06 0 0 12795 6362 1

Φβ,4 0.62 0.19 0.29 0.99 0 0 13750 6317 1

ϕv,1,1 2.16 0.16 1.85 2.45 0 0 15617 6734 1

ϕv,1,2 1.68 0.13 1.43 1.92 0 0 15094 6417 1

ϕv,1,3 2.14 0.16 1.84 2.44 0 0 16373 5489 1

ϕv,1,4 2.16 0.16 1.86 2.46 0 0 16276 6287 1

ϕv,1,5 2.34 0.18 2 2.67 0 0 16749 6047 1

ϕv,1,6 2.34 0.18 2 2.69 0 0 15040 6204 1

ϕv,1,7 2.84 0.23 2.42 3.26 0 0 14372 6081 1

ϕv,1,8 3.24 0.26 2.74 3.74 0 0 13873 6675 1

ϕv,1,9 2.23 0.18 1.9 2.56 0 0 13619 5241 1

ϕv,1,10 2.68 0.21 2.28 3.05 0 0 14489 5708 1

ϕv,1,11 2.2 0.17 1.88 2.52 0 0 15592 6046 1

ϕv,1,12 1.92 0.14 1.65 2.19 0 0 15321 6173 1

ϕv,2,1 1.97 0.18 1.64 2.29 0 0 15617 6566 1

ϕv,2,2 1.95 0.18 1.63 2.29 0 0 12843 6544 1

ϕv,2,3 2.3 0.21 1.9 2.7 0 0 14561 6145 1

ϕv,2,4 2.5 0.23 2.07 2.92 0 0 15076 6274 1

ϕv,2,5 2.79 0.25 2.35 3.27 0 0 14827 5637 1

ϕv,2,6 3.2 0.3 2.65 3.76 0 0 15551 6323 1

ϕv,2,7 2.95 0.28 2.41 3.46 0 0 15306 6154 1

ϕv,2,8 2.58 0.24 2.15 3.04 0 0 15211 6010 1

ϕv,2,9 2.2 0.21 1.82 2.59 0 0 14536 5909 1

ϕv,2,10 1.83 0.16 1.54 2.14 0 0 14715 5549 1

ϕv,2,11 2.31 0.2 1.93 2.66 0 0 14611 6279 1

ϕv,2,12 2.25 0.19 1.9 2.63 0 0 15262 6304 1

ϕv,3,1 1.73 0.11 1.51 1.94 0 0 15718 6398 1

ϕv,3,2 1.69 0.1 1.48 1.87 0 0 12264 6231 1

ϕv,3,3 1.65 0.1 1.47 1.85 0 0 14368 6007 1

ϕv,3,4 1.61 0.1 1.41 1.8 0 0 16306 5847 1

ϕv,3,5 1.84 0.11 1.63 2.05 0 0 16664 6447 1

ϕv,3,6 2.24 0.13 2 2.48 0 0 13590 6110 1

ϕv,3,7 2.04 0.12 1.82 2.27 0 0 16011 6005 1

ϕv,3,8 2.22 0.13 1.97 2.48 0 0 17778 5938 1

ϕv,3,9 1.72 0.11 1.52 1.93 0 0 14877 6392 1

ϕv,3,10 1.53 0.09 1.37 1.7 0 0 14943 6392 1

ϕv,3,11 1.64 0.1 1.46 1.84 0 0 14253 5718 1
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ϕv,3,12 1.75 0.12 1.54 1.97 0 0 15283 6039 1

ϕv,4,1 2.21 0.13 1.96 2.45 0 0 15179 6199 1

ϕv,4,2 1.85 0.12 1.63 2.06 0 0 14165 6812 1

ϕv,4,3 1.75 0.1 1.55 1.95 0 0 16170 5833 1

ϕv,4,4 2.4 0.16 2.11 2.7 0 0 17198 5687 1

ϕv,4,5 2.37 0.16 2.08 2.66 0 0 16470 6545 1

ϕv,4,6 2.55 0.16 2.25 2.86 0 0 14357 6128 1

ϕv,4,7 2.79 0.18 2.45 3.11 0 0 15375 6662 1

ϕv,4,8 2.23 0.15 1.95 2.5 0 0 13615 6093 1

ϕv,4,9 1.88 0.12 1.64 2.09 0 0 14243 5632 1

ϕv,4,10 1.76 0.1 1.56 1.94 0 0 14104 6408 1

ϕv,4,11 1.84 0.12 1.63 2.06 0 0 12682 6356 1

ϕv,4,12 1.99 0.12 1.76 2.22 0 0 13207 6072 1

ϕu,1,1 0.06 0 0.06 0.07 0 0 15289 5980 1

ϕu,1,2 0.06 0 0.06 0.07 0 0 12207 5913 1

ϕu,1,3 0.07 0 0.06 0.08 0 0 14906 6515 1

ϕu,1,4 0.08 0 0.07 0.08 0 0 14267 6319 1

ϕu,1,5 0.1 0 0.09 0.1 0 0 15223 6295 1

ϕu,1,6 0.12 0 0.11 0.13 0 0 14876 5450 1

ϕu,1,7 0.13 0 0.12 0.14 0 0 13968 5697 1

ϕu,1,8 0.12 0 0.11 0.12 0 0 13447 5822 1

ϕu,1,9 0.08 0 0.08 0.09 0 0 13549 6714 1

ϕu,1,10 0.08 0 0.07 0.08 0 0 16163 6695 1

ϕu,1,11 0.08 0 0.07 0.08 0 0 13364 6697 1

ϕu,1,12 0.06 0 0.06 0.07 0 0 12457 5950 1

ϕu,2,1 0.08 0 0.07 0.09 0 0 13712 5979 1

ϕu,2,2 0.07 0 0.06 0.08 0 0 15724 6303 1

ϕu,2,3 0.09 0 0.08 0.1 0 0 14760 6446 1

ϕu,2,4 0.1 0 0.1 0.12 0 0 14230 6656 1

ϕu,2,5 0.11 0 0.1 0.12 0 0 14396 6197 1

ϕu,2,6 0.12 0 0.11 0.13 0 0 15252 6432 1

ϕu,2,7 0.14 0.01 0.13 0.15 0 0 14918 5998 1

ϕu,2,8 0.13 0.01 0.12 0.14 0 0 14651 6064 1

ϕu,2,9 0.11 0.01 0.1 0.12 0 0 14230 6481 1

ϕu,2,10 0.08 0.01 0.07 0.1 0 0 14262 6465 1

ϕu,2,11 0.09 0 0.08 0.1 0 0 13328 6499 1

ϕu,2,12 0.08 0 0.07 0.09 0 0 16988 6465 1

ϕu,3,1 0.06 0 0.05 0.06 0 0 14850 6033 1

ϕu,3,2 0.05 0 0.05 0.06 0 0 14998 5819 1

ϕu,3,3 0.05 0 0.04 0.05 0 0 14063 6366 1

ϕu,3,4 0.07 0 0.06 0.07 0 0 15390 5782 1

ϕu,3,5 0.07 0 0.06 0.08 0 0 16490 6360 1

ϕu,3,6 0.08 0 0.08 0.09 0 0 14869 6398 1

ϕu,3,7 0.1 0 0.09 0.1 0 0 16920 6387 1

ϕu,3,8 0.08 0 0.08 0.09 0 0 14134 6545 1

ϕu,3,9 0.06 0 0.05 0.06 0 0 14468 6439 1

ϕu,3,10 0.05 0 0.05 0.06 0 0 16250 6528 1

ϕu,3,11 0.05 0 0.04 0.05 0 0 13779 6109 1

ϕu,3,12 0.06 0 0.06 0.07 0 0 15859 6437 1
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ϕu,4,1 0.1 0 0.09 0.1 0 0 16058 6114 1

ϕu,4,2 0.09 0 0.08 0.1 0 0 15557 5962 1

ϕu,4,3 0.1 0 0.09 0.11 0 0 14021 6355 1

ϕu,4,4 0.1 0 0.1 0.11 0 0 14772 6258 1

ϕu,4,5 0.11 0 0.1 0.11 0 0 14123 5974 1

ϕu,4,6 0.12 0 0.12 0.13 0 0 13794 6164 1

ϕu,4,7 0.13 0 0.12 0.14 0 0 13357 5699 1

ϕu,4,8 0.13 0 0.12 0.14 0 0 16120 6013 1

ϕu,4,9 0.09 0 0.08 0.1 0 0 15926 5657 1

ϕu,4,10 0.08 0 0.07 0.09 0 0 16067 6867 1

ϕu,4,11 0.1 0 0.09 0.11 0 0 14914 5858 1

ϕu,4,12 0.1 0 0.09 0.1 0 0 18378 6276 1
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Gumbel - Model Comparison

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

τ1 0.93 0.33 0.37 1.54 0 0 8762 5732 1

τ2 0.02 0.01 0 0.03 0 0 7825 5371 1

Φα,1 5.25 1.44 2.61 7.91 0.02 0.01 8247 5816 1

Φα,2 5.64 1.57 2.96 8.7 0.02 0.01 6694 4967 1

Φα,3 7.6 2.18 3.88 11.81 0.03 0.02 7129 5781 1

Φα,4 7.12 2.02 3.64 10.98 0.02 0.02 6986 5109 1

Φβ,1 118.42 34.15 57.65 182.16 0.38 0.28 8173 5692 1

Φβ,2 107.99 31.53 52.95 168.81 0.37 0.26 6911 5166 1

Φβ,3 216.6 64.81 105.57 342.35 0.76 0.55 7136 5781 1

Φβ,4 132.98 39.1 64.8 206.02 0.46 0.34 7165 5402 1

ϕv,1,1 0.04 0 0.04 0.05 0 0 10399 6318 1

ϕv,1,2 0.04 0 0.04 0.04 0 0 10261 5730 1

ϕv,1,3 0.05 0 0.04 0.05 0 0 10571 6116 1

ϕv,1,4 0.05 0 0.05 0.06 0 0 11632 6178 1

ϕv,1,5 0.07 0 0.06 0.07 0 0 10409 6133 1

ϕv,1,6 0.08 0 0.07 0.09 0 0 11137 6056 1

ϕv,1,7 0.09 0 0.08 0.1 0 0 11078 6094 1

ϕv,1,8 0.08 0 0.08 0.09 0 0 11347 6440 1

ϕv,1,9 0.06 0 0.05 0.06 0 0 9227 5673 1

ϕv,1,10 0.05 0 0.05 0.06 0 0 11354 5871 1

ϕv,1,11 0.05 0 0.05 0.06 0 0 9926 6247 1

ϕv,1,12 0.04 0 0.04 0.05 0 0 9674 6130 1

ϕv,2,1 0.05 0 0.05 0.06 0 0 9443 5821 1

ϕv,2,2 0.05 0 0.04 0.05 0 0 8650 5499 1

ϕv,2,3 0.06 0 0.05 0.07 0 0 10377 5749 1

ϕv,2,4 0.07 0 0.06 0.08 0 0 9631 6128 1

ϕv,2,5 0.08 0 0.08 0.09 0 0 8974 6032 1

ϕv,2,6 0.09 0 0.08 0.1 0 0 10342 5964 1

ϕv,2,7 0.1 0.01 0.09 0.11 0 0 10928 5578 1

ϕv,2,8 0.09 0 0.08 0.1 0 0 10009 5189 1

ϕv,2,9 0.08 0 0.07 0.09 0 0 9594 5477 1

ϕv,2,10 0.06 0 0.05 0.06 0 0 9929 6129 1

ϕv,2,11 0.06 0 0.06 0.07 0 0 10538 6178 1

ϕv,2,12 0.06 0 0.05 0.06 0 0 9896 5574 1

ϕv,3,1 0.04 0 0.04 0.04 0 0 11414 6439 1

ϕv,3,2 0.03 0 0.03 0.04 0 0 9798 5627 1

ϕv,3,3 0.03 0 0.03 0.04 0 0 10734 5987 1

ϕv,3,4 0.05 0 0.04 0.05 0 0 10673 5926 1

ϕv,3,5 0.05 0 0.04 0.05 0 0 9349 5958 1

ϕv,3,6 0.06 0 0.05 0.06 0 0 10754 5783 1

ϕv,3,7 0.06 0 0.06 0.07 0 0 10272 4657 1

ϕv,3,8 0.06 0 0.05 0.06 0 0 10641 6067 1

ϕv,3,9 0.04 0 0.04 0.04 0 0 10309 5975 1

ϕv,3,10 0.03 0 0.03 0.04 0 0 10744 6034 1

ϕv,3,11 0.03 0 0.03 0.03 0 0 9690 5983 1
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ϕv,3,12 0.04 0 0.04 0.05 0 0 11120 5698 1

ϕv,4,1 0.07 0 0.06 0.07 0 0 9652 5907 1

ϕv,4,2 0.06 0 0.05 0.06 0 0 10980 6462 1

ϕv,4,3 0.06 0 0.06 0.07 0 0 11349 6216 1

ϕv,4,4 0.07 0 0.07 0.08 0 0 10739 6220 1

ϕv,4,5 0.07 0 0.07 0.08 0 0 10310 5831 1

ϕv,4,6 0.09 0 0.08 0.09 0 0 10246 6416 1

ϕv,4,7 0.1 0 0.09 0.1 0 0 10728 6754 1

ϕv,4,8 0.09 0 0.08 0.09 0 0 9592 5772 1

ϕv,4,9 0.06 0 0.05 0.06 0 0 11622 6446 1

ϕv,4,10 0.05 0 0.05 0.06 0 0 11207 6443 1

ϕv,4,11 0.06 0 0.06 0.07 0 0 10755 6102 1

ϕv,4,12 0.06 0 0.06 0.07 0 0 10505 6285 1

ϕu,1,1 0.02 0 0.02 0.02 0 0 10922 5894 1

ϕu,1,2 0.03 0 0.02 0.03 0 0 11361 5584 1

ϕu,1,3 0.02 0 0.02 0.03 0 0 11427 6352 1

ϕu,1,4 0.03 0 0.02 0.03 0 0 11376 6210 1

ϕu,1,5 0.03 0 0.03 0.04 0 0 10965 6786 1

ϕu,1,6 0.04 0 0.03 0.04 0 0 11147 5889 1

ϕu,1,7 0.04 0 0.03 0.04 0 0 11198 6564 1

ϕu,1,8 0.03 0 0.03 0.04 0 0 10219 6359 1

ϕu,1,9 0.03 0 0.03 0.04 0 0 10272 5848 1

ϕu,1,10 0.02 0 0.02 0.03 0 0 10862 5240 1

ϕu,1,11 0.03 0 0.02 0.03 0 0 10723 6120 1

ϕu,1,12 0.02 0 0.02 0.03 0 0 10705 5603 1

ϕu,2,1 0.03 0 0.02 0.04 0 0 11406 6247 1

ϕu,2,2 0.03 0 0.02 0.03 0 0 10643 5851 1

ϕu,2,3 0.03 0 0.03 0.04 0 0 10270 6137 1

ϕu,2,4 0.04 0 0.03 0.04 0 0 10458 5709 1

ϕu,2,5 0.03 0 0.02 0.04 0 0 11914 6146 1

ϕu,2,6 0.03 0 0.03 0.04 0 0 10698 6240 1

ϕu,2,7 0.04 0 0.04 0.05 0 0 11308 5671 1

ϕu,2,8 0.04 0 0.03 0.05 0 0 11501 6088 1

ϕu,2,9 0.04 0 0.04 0.05 0 0 12251 6522 1

ϕu,2,10 0.03 0 0.03 0.04 0 0 10990 5889 1

ϕu,2,11 0.03 0 0.02 0.03 0 0 11299 6116 1

ϕu,2,12 0.03 0 0.02 0.03 0 0 11316 6256 1

ϕu,3,1 0.02 0 0.02 0.03 0 0 10612 5603 1

ϕu,3,2 0.02 0 0.02 0.02 0 0 10629 5784 1

ϕu,3,3 0.02 0 0.02 0.02 0 0 10350 5900 1

ϕu,3,4 0.03 0 0.02 0.03 0 0 11110 6203 1

ϕu,3,5 0.03 0 0.03 0.03 0 0 10779 6195 1

ϕu,3,6 0.03 0 0.02 0.03 0 0 10424 5639 1

ϕu,3,7 0.03 0 0.03 0.04 0 0 11023 6261 1

ϕu,3,8 0.03 0 0.03 0.03 0 0 10894 6681 1

ϕu,3,9 0.02 0 0.02 0.03 0 0 9898 6607 1

ϕu,3,10 0.02 0 0.02 0.02 0 0 11017 5809 1

ϕu,3,11 0.02 0 0.02 0.02 0 0 11048 6114 1

ϕu,3,12 0.03 0 0.02 0.03 0 0 11079 6540 1
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ϕu,4,1 0.03 0 0.03 0.03 0 0 9902 5825 1

ϕu,4,2 0.03 0 0.03 0.04 0 0 9889 6374 1

ϕu,4,3 0.04 0 0.03 0.04 0 0 11619 6060 1

ϕu,4,4 0.04 0 0.03 0.04 0 0 11167 6325 1

ϕu,4,5 0.04 0 0.03 0.04 0 0 10676 5979 1

ϕu,4,6 0.04 0 0.03 0.04 0 0 10994 5940 1

ϕu,4,7 0.04 0 0.03 0.04 0 0 11862 6116 1

ϕu,4,8 0.04 0 0.04 0.05 0 0 10466 5658 1

ϕu,4,9 0.03 0 0.03 0.04 0 0 11693 6000 1

ϕu,4,10 0.03 0 0.02 0.03 0 0 11520 6481 1

ϕu,4,11 0.04 0 0.03 0.04 0 0 11332 5724 1

ϕu,4,12 0.04 0 0.03 0.04 0 0 12189 7135 1
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Beta - Model Comparison

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

τ1 0.77 0.26 0.31 1.27 0 0 11001 5983 1

τ2 1.78 0.8 0.45 3.28 0.01 0.01 9672 5975 1

Φα,1 0.84 0.2 0.46 1.21 0 0 10062 6587 1

Φα,2 0.93 0.22 0.56 1.38 0 0 10378 6069 1

Φα,3 0.74 0.18 0.41 1.06 0 0 11336 6069 1

Φα,4 0.96 0.24 0.55 1.41 0 0 9793 6231 1

Φβ,1 0.03 0.01 0.01 0.05 0 0 9968 5615 1

Φβ,2 0.04 0.01 0.02 0.06 0 0 9471 6173 1

Φβ,3 0.04 0.01 0.02 0.06 0 0 10458 5888 1

Φβ,4 0.05 0.02 0.02 0.08 0 0 9258 5397 1

ϕv,1,1 4.04 0.55 3.04 5.1 0 0 10169 6061 1

ϕv,1,2 2.49 0.33 1.88 3.12 0 0 10226 5996 1

ϕv,1,3 4.18 0.57 3.12 5.24 0.01 0 9129 6320 1

ϕv,1,4 3.96 0.55 2.97 4.99 0.01 0 9281 6496 1

ϕv,1,5 4.5 0.63 3.33 5.65 0.01 0 10650 5455 1

ϕv,1,6 4.14 0.57 3.06 5.17 0.01 0 9596 5982 1

ϕv,1,7 5.64 0.78 4.17 7.1 0.01 0 11094 5858 1

ϕv,1,8 6.87 0.96 5.07 8.67 0.01 0.01 11117 5771 1

ϕv,1,9 3.5 0.48 2.62 4.38 0 0 10291 6226 1

ϕv,1,10 5.48 0.77 4.07 6.93 0.01 0.01 9448 6409 1

ϕv,1,11 3.34 0.46 2.49 4.21 0 0 9637 6113 1

ϕv,1,12 3.35 0.46 2.5 4.21 0 0 9734 6080 1

ϕv,2,1 3.08 0.48 2.17 3.95 0 0 8998 6245 1

ϕv,2,2 3 0.47 2.17 3.89 0 0 10376 6380 1

ϕv,2,3 3.68 0.57 2.67 4.78 0.01 0 10170 6303 1

ϕv,2,4 4.67 0.75 3.31 6.06 0.01 0 10556 5885 1

ϕv,2,5 6.69 1.06 4.83 8.8 0.01 0.01 9743 5878 1

ϕv,2,6 6.97 1.12 5.02 9.17 0.01 0.01 10010 6124 1

ϕv,2,7 5.38 0.86 3.83 7.05 0.01 0.01 12053 6041 1

ϕv,2,8 4.91 0.79 3.5 6.41 0.01 0 12225 6523 1

ϕv,2,9 3.54 0.56 2.53 4.58 0 0 10125 6391 1

ϕv,2,10 2.96 0.46 2.13 3.81 0 0 10174 5864 1

ϕv,2,11 4.74 0.74 3.35 6.07 0.01 0 12225 6132 1

ϕv,2,12 4.3 0.68 3.05 5.56 0.01 0 8497 6050 1

ϕv,3,1 1.68 0.17 1.37 1.99 0 0 10387 6262 1

ϕv,3,2 2.32 0.24 1.9 2.77 0 0 10702 5983 1

ϕv,3,3 2.14 0.22 1.73 2.55 0 0 8884 6198 1

ϕv,3,4 1.6 0.16 1.31 1.91 0 0 10205 5852 1

ϕv,3,5 2.65 0.27 2.15 3.15 0 0 9977 6535 1

ϕv,3,6 4.28 0.44 3.47 5.12 0 0 11908 6217 1

ϕv,3,7 3.53 0.38 2.84 4.25 0 0 11400 6054 1

ϕv,3,8 3.75 0.38 3.05 4.49 0 0 10406 6033 1

ϕv,3,9 1.93 0.19 1.59 2.31 0 0 11554 6044 1

ϕv,3,10 2.2 0.22 1.78 2.62 0 0 8877 6082 1

ϕv,3,11 2.08 0.21 1.7 2.48 0 0 9576 6235 1
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ϕv,3,12 1.67 0.17 1.36 1.99 0 0 12241 6344 1

ϕv,4,1 4.58 0.52 3.62 5.54 0 0 9278 6163 1

ϕv,4,2 2.87 0.31 2.27 3.44 0 0 12089 5988 1

ϕv,4,3 2.8 0.31 2.23 3.38 0 0 10961 5840 1

ϕv,4,4 4.12 0.47 3.2 4.97 0 0 10340 6068 1

ϕv,4,5 4.17 0.47 3.34 5.1 0 0 11365 5667 1

ϕv,4,6 4.92 0.54 3.93 5.98 0 0 10687 6025 1

ϕv,4,7 5.7 0.66 4.55 7 0.01 0 8552 5987 1

ϕv,4,8 3.56 0.4 2.85 4.32 0 0 10371 6068 1

ϕv,4,9 2.85 0.31 2.28 3.44 0 0 9830 5718 1

ϕv,4,10 3.07 0.34 2.44 3.71 0 0 8997 6321 1

ϕv,4,11 2.73 0.3 2.16 3.28 0 0 12069 5892 1

ϕv,4,12 3.2 0.35 2.54 3.86 0 0 10444 6181 1

ϕu,1,1 69.34 10.15 51 88.56 0.1 0.07 9964 6105 1

ϕu,1,2 42.21 6.22 31.17 54.31 0.06 0.04 10199 5821 1

ϕu,1,3 63.49 9.25 45.25 79.81 0.1 0.07 9088 6601 1

ϕu,1,4 54.54 7.97 39.94 69.52 0.08 0.06 9049 6127 1

ϕu,1,5 49.34 7.26 36.05 62.99 0.07 0.05 10671 5052 1

ϕu,1,6 36.43 5.31 26.34 46.03 0.05 0.04 9579 6475 1

ϕu,1,7 44.36 6.4 32.02 56.03 0.06 0.04 11144 5482 1

ϕu,1,8 60.01 8.71 44.22 76.62 0.08 0.06 11163 5770 1

ϕu,1,9 43.42 6.34 31.55 54.95 0.06 0.04 10274 6099 1

ϕu,1,10 75.75 11.18 56.14 97.69 0.11 0.08 9616 6403 1

ϕu,1,11 45.78 6.78 33.12 58.37 0.07 0.05 9810 5722 1

ϕu,1,12 55.44 8.16 40.76 71.08 0.08 0.06 10055 6362 1

ϕu,2,1 41.37 6.95 28.88 54.72 0.07 0.05 9373 6298 1

ϕu,2,2 44.72 7.58 31.15 59.49 0.07 0.05 10676 5874 1

ϕu,2,3 44 7.28 30.8 57.8 0.07 0.05 9867 6637 1

ϕu,2,4 45.43 7.62 31.6 59.64 0.07 0.05 10818 5540 1

ϕu,2,5 60.2 9.91 42.4 78.84 0.1 0.07 10023 6456 1

ϕu,2,6 58.19 9.62 41.25 76.98 0.1 0.07 10142 6253 1

ϕu,2,7 38.6 6.38 26.99 50.95 0.06 0.04 12490 6227 1

ϕu,2,8 38.1 6.39 26.67 50.2 0.06 0.04 12125 6195 1

ϕu,2,9 31.78 5.32 21.85 41.3 0.05 0.04 10393 6004 1

ϕu,2,10 36.47 6.11 25.91 48.87 0.06 0.04 10463 5864 1

ϕu,2,11 53.66 8.81 38.24 70.91 0.08 0.06 12026 6181 1

ϕu,2,12 54.71 9.1 37.91 71.41 0.1 0.07 8404 6396 1

ϕu,3,1 30.48 3.48 24.29 37.15 0.03 0.02 11025 6238 1

ϕu,3,2 47.36 5.33 37.18 57.16 0.05 0.04 10804 6085 1

ϕu,3,3 46.91 5.35 36.69 57 0.06 0.04 8392 5925 1

ϕu,3,4 24.39 2.8 19.23 29.72 0.03 0.02 10446 6256 1

ϕu,3,5 39.2 4.38 31.82 48.02 0.04 0.03 10266 6602 1

ϕu,3,6 52.63 5.71 42.4 63.68 0.05 0.04 11802 6219 1

ϕu,3,7 38.03 4.33 29.99 46.12 0.04 0.03 10909 5551 1

ϕu,3,8 46.19 5.01 36.82 55.75 0.05 0.03 10923 6436 1

ϕu,3,9 34.7 3.96 27.05 41.96 0.04 0.03 11620 6106 1

ϕu,3,10 45.15 5.14 35.52 54.68 0.06 0.04 8695 6196 1

ϕu,3,11 48.68 5.51 38.25 58.76 0.05 0.04 10270 6324 1

ϕu,3,12 28.18 3.25 22.11 34.46 0.03 0.02 11709 6338 1
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ϕu,4,1 48.31 5.69 38.1 59.24 0.06 0.04 8638 6506 1

ϕu,4,2 34.11 4.05 26.9 42.01 0.04 0.03 12160 6411 1

ϕu,4,3 28.96 3.47 22.55 35.5 0.03 0.02 11474 6027 1

ϕu,4,4 40.1 4.83 30.75 48.84 0.05 0.03 10423 6325 1

ϕu,4,5 40.42 4.81 31.2 49.18 0.04 0.03 11603 5945 1

ϕu,4,6 40.33 4.67 31.48 48.98 0.04 0.03 11093 6074 1

ϕu,4,7 42.58 5.07 32.99 52.03 0.05 0.04 8666 5310 1

ϕu,4,8 28.22 3.31 21.8 34.18 0.03 0.02 10575 5870 1

ϕu,4,9 33.98 4 26.36 41.41 0.04 0.03 9934 5623 1

ϕu,4,10 39.41 4.74 30.39 47.99 0.05 0.04 8835 5952 1

ϕu,4,11 28.4 3.36 22.3 34.85 0.03 0.02 11955 5848 1

ϕu,4,12 34.41 4.08 26.9 41.92 0.04 0.03 10080 5906 1
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Inverse Gamma - Model Comparison

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

τ1 2.01 0.73 0.76 3.35 0.01 0 8424 5672 1

τ2 3.86 1.55 1.25 6.8 0.02 0.01 9409 5791 1

Φα,1 0.66 0.15 0.38 0.94 0 0 11319 6629 1

Φα,2 0.71 0.16 0.41 1.01 0 0 10137 6416 1

Φα,3 0.22 0.05 0.14 0.31 0 0 14658 6109 1

Φα,4 0.74 0.17 0.43 1.06 0 0 11660 6620 1

Φβ,1 0.36 0.11 0.17 0.58 0 0 10709 6937 1

Φβ,2 0.34 0.11 0.16 0.55 0 0 9721 6682 1

Φβ,3 0.28 0.12 0.09 0.5 0 0 12410 5956 1

Φβ,4 0.39 0.12 0.18 0.62 0 0 10938 5411 1

ϕv,1,1 3.33 0.45 2.49 4.18 0 0 10350 5476 1

ϕv,1,2 2.16 0.29 1.63 2.71 0 0 10599 6426 1

ϕv,1,3 3.92 0.53 2.96 4.93 0.01 0 8723 6129 1

ϕv,1,4 3.35 0.46 2.52 4.21 0 0 10647 6054 1

ϕv,1,5 4.22 0.57 3.21 5.3 0.01 0 9247 6152 1

ϕv,1,6 3.58 0.49 2.67 4.5 0 0 9389 6178 1

ϕv,1,7 5.38 0.75 4.12 6.94 0.01 0.01 8964 6406 1

ϕv,1,8 5.04 0.7 3.76 6.38 0.01 0 9682 5852 1

ϕv,1,9 2.61 0.35 1.97 3.27 0 0 9476 6384 1

ϕv,1,10 5 0.7 3.66 6.29 0.01 0 9292 6296 1

ϕv,1,11 1.24 0.16 0.95 1.54 0 0 10638 5994 1

ϕv,1,12 3.4 0.46 2.53 4.25 0 0 9661 6616 1

ϕv,2,1 1.66 0.25 1.22 2.15 0 0 9593 6185 1

ϕv,2,2 2.51 0.39 1.81 3.25 0 0 9524 5987 1

ϕv,2,3 2.46 0.38 1.77 3.2 0 0 9805 6102 1

ϕv,2,4 4.59 0.75 3.26 6.03 0.01 0 9598 6105 1

ϕv,2,5 7.08 1.15 4.97 9.23 0.01 0.01 11226 5640 1

ϕv,2,6 6.32 1.03 4.39 8.22 0.01 0.01 8066 5995 1

ϕv,2,7 4.2 0.67 2.99 5.47 0.01 0 10068 6303 1

ϕv,2,8 4.66 0.74 3.28 6.05 0.01 0 10854 6148 1

ϕv,2,9 2.96 0.47 2.12 3.88 0 0 10560 5844 1

ϕv,2,10 3 0.46 2.17 3.9 0 0 12162 6496 1

ϕv,2,11 5.12 0.82 3.69 6.74 0.01 0.01 10147 5222 1

ϕv,2,12 4.23 0.67 3.03 5.51 0.01 0 11281 6172 1

ϕv,3,1 0.08 0.01 0.07 0.09 0 0 17370 5980 1

ϕv,3,2 1.94 0.2 1.57 2.29 0 0 11209 6255 1

ϕv,3,3 1.36 0.13 1.12 1.61 0 0 9779 6413 1

ϕv,3,4 0.08 0.01 0.06 0.09 0 0 16617 5739 1

ϕv,3,5 2.31 0.24 1.86 2.74 0 0 11023 5921 1

ϕv,3,6 4.37 0.46 3.53 5.25 0 0 10070 5909 1

ϕv,3,7 3.66 0.38 2.94 4.37 0 0 9877 5728 1

ϕv,3,8 3.49 0.37 2.8 4.17 0 0 9145 6360 1

ϕv,3,9 0.08 0.01 0.07 0.1 0 0 17557 5953 1

ϕv,3,10 2.26 0.23 1.83 2.7 0 0 11084 6168 1

ϕv,3,11 1.24 0.12 1.02 1.46 0 0 10352 5552 1
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ϕv,3,12 0.08 0.01 0.07 0.09 0 0 17299 5442 1

ϕv,4,1 5.36 0.61 4.26 6.51 0.01 0 10213 6115 1

ϕv,4,2 2.49 0.28 2.01 3.03 0 0 11223 6337 1

ϕv,4,3 2.92 0.32 2.31 3.51 0 0 10062 5889 1

ϕv,4,4 3.47 0.39 2.72 4.18 0 0 9586 5828 1

ϕv,4,5 3.93 0.45 3.08 4.79 0 0 10430 5150 1

ϕv,4,6 4.93 0.56 3.9 5.96 0 0 10902 5950 1

ϕv,4,7 5.92 0.68 4.74 7.26 0.01 0 9788 6239 1

ϕv,4,8 3.02 0.33 2.4 3.65 0 0 11499 6077 1

ϕv,4,9 2.46 0.27 1.98 2.99 0 0 10512 6461 1

ϕv,4,10 3.62 0.39 2.88 4.34 0 0 8662 5369 1

ϕv,4,11 2.37 0.26 1.86 2.87 0 0 9660 5951 1

ϕv,4,12 2.95 0.33 2.35 3.59 0 0 9215 5801 1

ϕu,1,1 0.14 0.02 0.1 0.18 0 0 10193 5466 1

ϕu,1,2 0.08 0.01 0.06 0.1 0 0 10040 5986 1

ϕu,1,3 0.19 0.03 0.14 0.24 0 0 8882 6029 1

ϕu,1,4 0.17 0.02 0.12 0.22 0 0 10725 6210 1

ϕu,1,5 0.28 0.04 0.21 0.36 0 0 9215 6301 1

ϕu,1,6 0.28 0.04 0.21 0.36 0 0 9458 5994 1

ϕu,1,7 0.51 0.08 0.37 0.65 0 0 9236 6625 1

ϕu,1,8 0.44 0.06 0.32 0.55 0 0 9531 5537 1

ϕu,1,9 0.14 0.02 0.1 0.18 0 0 9110 6388 1

ϕu,1,10 0.28 0.04 0.2 0.36 0 0 9073 5950 1

ϕu,1,11 0.05 0.01 0.03 0.06 0 0 10433 6066 1

ϕu,1,12 0.14 0.02 0.1 0.18 0 0 9797 6259 1

ϕu,2,1 0.07 0.01 0.05 0.09 0 0 9871 6315 1

ϕu,2,2 0.11 0.02 0.07 0.14 0 0 9189 6284 1

ϕu,2,3 0.14 0.02 0.09 0.18 0 0 10080 6200 1

ϕu,2,4 0.35 0.06 0.24 0.46 0 0 9764 6321 1

ϕu,2,5 0.62 0.1 0.43 0.81 0 0 11182 5930 1

ϕu,2,6 0.58 0.1 0.41 0.77 0 0 8122 5735 1

ϕu,2,7 0.42 0.07 0.29 0.56 0 0 9960 6430 1

ϕu,2,8 0.43 0.07 0.3 0.57 0 0 10770 5814 1

ϕu,2,9 0.22 0.04 0.15 0.29 0 0 10433 5834 1

ϕu,2,10 0.16 0.03 0.11 0.21 0 0 12050 6101 1

ϕu,2,11 0.34 0.06 0.24 0.45 0 0 10916 5323 1

ϕu,2,12 0.24 0.04 0.17 0.32 0 0 10917 6351 1

ϕu,3,1 0 0 0 0 0 0 18033 6000 1

ϕu,3,2 0.06 0.01 0.04 0.07 0 0 11350 6086 1

ϕu,3,3 0.03 0 0.02 0.04 0 0 9252 6712 1

ϕu,3,4 0 0 0 0 0 0 17308 6042 1

ϕu,3,5 0.1 0.01 0.08 0.12 0 0 11227 6363 1

ϕu,3,6 0.26 0.03 0.21 0.32 0 0 9953 5957 1

ϕu,3,7 0.24 0.03 0.19 0.29 0 0 9855 6087 1

ϕu,3,8 0.2 0.02 0.16 0.24 0 0 9089 6299 1

ϕu,3,9 0 0 0 0 0 0 16401 5753 1

ϕu,3,10 0.07 0.01 0.05 0.08 0 0 10524 6275 1

ϕu,3,11 0.02 0 0.02 0.03 0 0 10465 6066 1

ϕu,3,12 0 0 0 0 0 0 18802 5154 1
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ϕu,4,1 0.38 0.04 0.3 0.47 0 0 10127 5581 1

ϕu,4,2 0.13 0.02 0.1 0.16 0 0 11064 5472 1

ϕu,4,3 0.18 0.02 0.14 0.22 0 0 10891 5669 1

ϕu,4,4 0.25 0.03 0.19 0.31 0 0 9574 5739 1

ϕu,4,5 0.29 0.04 0.22 0.36 0 0 10594 5524 1

ϕu,4,6 0.44 0.05 0.34 0.53 0 0 10832 6017 1

ϕu,4,7 0.59 0.07 0.46 0.73 0 0 9981 6271 1

ϕu,4,8 0.25 0.03 0.19 0.31 0 0 11651 6454 1

ϕu,4,9 0.13 0.02 0.1 0.16 0 0 10669 6942 1

ϕu,4,10 0.19 0.02 0.15 0.24 0 0 8635 5609 1

ϕu,4,11 0.14 0.02 0.11 0.17 0 0 9196 5918 1

ϕu,4,12 0.18 0.02 0.14 0.22 0 0 9351 6159 1
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Figure A3.1: Probability Density Functions of estimated posterior probability
distributions from the Gumbel-family in the Nordavind-area
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Figure A3.2: Probability Density Functions of estimated posterior probability
distributions from the Gumbel-family in the Nordvest-area
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Figure A3.3: Probability Density Functions of estimated posterior probability
distributions from the Gumbel-family in the Vestavind-area
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