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Abstract

Extensive research indicates the existence of a beta anomaly across international markets

and various asset classes. However, the mechanisms driving the anomaly and the feasibility

of profitably exploiting it have been heavily debated. This thesis provides compelling

evidence of the existence of a beta anomaly in the Nordic markets, with the results being

robust to controlling for the size, value and momentum factors. Furthermore, our findings

from implementing Frazzini and Pedersen’s (2014) Betting against beta strategy among

larger companies indicate that the anomaly can be profitably exploited.

By analyzing the relation between correlation and return, we investigate whether systematic

risk can be identified as a driver of the anomaly. However, we do not find any conclusive

evidence supporting this. While a strategy that bets against correlation yields positive

Fama-French three-factor alpha, these results are not robust to controlling for momentum.

This pattern persists across all versions of the strategies we implement in our study. In

summary, despite indications of an exploitable beta anomaly, conclusive evidence of a

systematic component behind it remains elusive.
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1 Introduction

The notion that investors should be compensated for taking on risk is one of the basic

building blocks in the field of finance. Therefore, the existence of a low-risk effect where

assets with lower risk achieve higher returns than assets with high risk presents a striking

puzzle. The empirical evidence of the low-risk effect can be dated back to Black, Jensen

and Scholes (1972), who found that the capital market line was "too flat" compared to

the predictions of CAPM. This lack of relation between market beta and return has later

been dubbed the "beta anomaly". Since this finding, the drivers of the anomaly and the

low-risk effect in general have been heavily debated in the literature.

One explanation, offered by Black et al. (1972) is the theory of leverage constraints. This

theory states that some investors are constrained in terms of the amount of leverage they

can apply. Therefore, investors with higher risk tolerance are forced to buy high-beta

assets instead of levering up low-beta assets to their desired level of risk. This theory

was extended by Frazzini and Pedersen (2014) in their seminal "Betting against beta"

(BAB) paper. In this paper, they present a trading strategy designed to exploit the beta

anomaly. The strategy’s spectacular performance has made "Betting against beta" one of

the most downloaded papers in the Journal of Financial Economics.

Since the publication of BAB, several explanations have been made for the drivers of

the strategy’s performance. Novy-Marx and Velikov (2022) have argued that it can be

explained by unconventional procedures applied when constructing the strategy. These

procedures lead to an overweighting of the smallest stocks in the market on both the long-

and short side. Hence, they claim the strategy is impossible to implement in practice.

Bali et al. (2011) argue that the anomaly can be explained by lottery demand, as investors

prefer to invest in assets with lottery-like payoffs. In order to tie the performance of

Betting Against Beta to the theory of leverage constraints, Asness et al. (2020) decompose

BAB into a betting against correlation (BAC) component and a betting against volatility

(BAV) component. The BAC strategy seeks to isolate the effect of systematic risk as

proxied by correlation as a driver of the beta anomaly. The strategy generates significant

and positive alpha across both US and international markets.
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Motivated by the ongoing debate, this thesis sets out to investigate the beta anomaly in

the Nordic markets from the perspective of a Norwegian investor. In doing so we wish to

answer three questions: 1) Is there a beta anomaly in the Nordic markets? 2) Can the

anomaly be attributed to systematic risk? 3) Are the answers to the previous questions

robust across firm size?

By analyzing systematic risk as a driver of the beta anomaly, we seek to add a perspective

on the underlying mechanisms behind it. Asness et al. (2020) argue that systematic risk

is more closely related to the theory of leverage constraints compared to non-systematic

risk. Hence, convincing evidence of systematic risk as a driver of the anomaly would point

toward the theory of leverage constraints as an underlying mechanism.

In our quest to answer our questions, we replicate the BAB, BAC and BAV strategies as

described by Frazzini and Pedersen (2014) and Asness et al. (2020). These strategies are

tested in both the original rank-weighted and value-weighted versions. Furthermore, we

comment on the holdings and turnover across quintiles sorted on firm size. We also test

the robustness of the strategies when restricted to the top two and bottom three quintiles

sorted on firm size. We conclude by running Fama-MacBeth regressions on our estimated

beta and correlation. By doing so, we analyze the pricing ability of beta and correlation

at the firm level in our sample.

BAB, BAC and BAV all generate positive and significant CAPM alphas of 1.1%, 0.7%

and 0.93%, respectively, when replicated in the full sample. When regressed on the

Carhart (1997) four-factor model, BAB and BAV are the only strategies still generating

significantly positive alphas, with monthly estimates of 0.41% and 0.42%, respectively.

When we examine the holdings across size-sorted quintiles in our set, all strategies tend

to overweight the smallest stocks in our sample on either the long- or short-side. In the

case of BAB, we observe a meaningful dependence on smaller stocks in both the long- and

short-leg. BAC and BAV exhibit a more skewed holding pattern. BAC tends to overweight

the smallest stocks in the long leg while shorting larger stocks. Conversely, BAV typically

overweights the smaller stocks in the short leg while going long the larger stocks. This

pattern is reflected in the turnover of the strategies, raising questions regarding their
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implementation in a real-world setting.

When tested in value-weighted versions, BAB, BAC and BAV generate positive and

significant CAPM alphas of 0.77%, 0.62% and 0.69%, respectively. However, when

tested against the Carhart (1997) four-factor model, BAV is the only strategy generating

significant alpha. The estimated alphas of both BAB and BAC are still positive, but

marginally insignificant.

The relationship between BAB, BAC and BAV and size is further examined when we

replicate the strategies across the two largest and three smallest quintiles sorted on market

capitalization in our set. BAB generates positive and significant alphas in both the large

and small brackets. The alpha of the large bracket is also robust to controlling for size,

value and momentum. BAC generates positive CAPM alphas in both the large and small

brackets. When including size, value and momentum as explanatory variables, however,

the alpha estimates become insignificant.

In our Fama-MacBeth (1973) regressions, we find a statistically significant negative

relation between estimated betas and excess returns. This holds when controlling for

B/M, market capitalization and prior 12-month return. In the case of correlation, we

find no relation when volatility is the only explanatory variable included. When adding

the three control variables, we do see contours of a positive relationship, albeit with an

insignificant coefficient.

Overall, our thesis provides convincing evidence of the existence of a beta anomaly in the

Nordic markets. This anomaly cannot be explained by the Carhart (1997) four-factor

model, and we argue that it should be possible to exploit in a real-world setting. Regarding

systematic risk as a driver of the anomaly, the evidence is less clear. While the BAC

strategy generates positive and significant CAPM and FF3 alphas across all tests, none of

these results are robust to controlling for momentum. Furthermore, in Fama-MacBeth

regressions, we do see signs of a positive relationship between correlation emerging when

adding B/M, market capitalization and prior 12-month return as explanatory variables.

Hence, we do not provide convincing evidence that systematic risk, and consequently the

theory of leverage constraints, is a driver of the anomaly in the Nordic markets.
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Our thesis proceeds in the following way. We start by presenting previous literature

relevant to our thesis. We then proceed to walk through the data and methodology

utilized for answering our research questions. In section 5, we present the results of our

analysis, before we conclude based on our findings.
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2 Literature Review

One of the more puzzling anomalies in finance is the low-risk effect. A basic premise in

the field is that investors should be compensated for taking on risk. Empirical evidence,

however, undermines this relationship, with riskier assets delivering lower returns than

predicted by theory. In this section, we will walk through the most important findings

from prior research on the low-risk effect. We split the research into two branches based

on the preferred measure of risk, systematic or non-systematic.

2.1 Systematic Risk

A basic building block in most courses taught on finance is the capital asset pricing model

(CAPM) as developed by Sharpe (1964), Lintner (1965) and Mossin (1966). CAPM

states that investors should be compensated for carrying non-diversifiable systematic risk

measured by an asset’s market beta. Contrary to this, Black, Jensen and Scholes (1972)

find empirically that the capital market line is "too flat", with high-beta assets delivering

little to no excess return compared to low-beta assets.

The theory of leverage constraints is introduced as an explanation of this "beta anomaly"

by Black (1972) and extended by Frazzini and Pedersen (2014). It is built on the premise

that a meaningful share of investors are leverage-constrained. This prohibits them from

obtaining their desired level of risk through the use of leverage. Instead they are forced

to buy high-beta assets, causing excessive demand for these assets compared to low-beta

assets. The excessive demand leads to an overpricing of these high-beta assets. Hence,

these assets should have lower expected returns than low-beta assets. In fact, the theory

predicts that an asset’s CAPM alpha should be inversely related to its market beta.

Having presented their theoretical framework, Frazzini and Pedersen (2014) propose a

trading strategy designed to exploit the resulting mispricing. The strategy is known as

Betting Against Beta (BAB). It is constructed as a self-financing strategy going long

(short) the stocks with a beta lower (higher) than the cross-sectional median each month.

Both the long- and short side are leveraged to a beta of one, giving the long-short strategy

an ex-ante beta of zero. The strategy delivers positive and significant alpha across US
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and international markets, as well as different asset classes. The results are robust when

controlling for size, value, momentum and liquidity, and across time periods (Frazzini &

Pedersen, 2014).

2.2 Non-Systematic Risk

The other branch of research on the low-risk effect is concerned with the relation between

non-systematic measures of risk and return. Ang et al. (2006, 2009) mark the beginning

of this branch as they find a negative relationship between an asset’s idiosyncratic risk and

return. Stambaugh et al. (2015) extend this finding by showing that the negative relation

between idiosyncratic risk and return is related to mispricing, and driven disproportionately

by overpriced stocks. Specifically, they find idiosyncratic risk to be positively related

to return among underpriced stocks, but negatively related to return among overpriced

stocks. They explain their findings by arbitrage risk, as high idiosyncratic volatility deters

arbitrageurs from shorting stocks, and thereby correct mispricing.

Related to the research on idiosyncratic risk are the findings of Bali et al. (2011). They

document a negative relation between lottery demand and return. Lottery demand is

measured by the maximum daily return of a stock during the last month (MAX). They

find MAX to be significantly negatively related to return at both the portfolio and firm

level.

2.3 Explanations of the Low-Risk Effect

In addition to differing estimates of risk, the two branches of low-risk research also differ

in their explanation of the underlying mechanisms behind the effect. While the theory of

leverage constraints resides within the rational camp, behavioral explanations have been

offered by Bali et al. (2011) for the low MAX effect, while Stambaugh et al. (2015) favors

limits to arbitrage-based explanations for the idiosyncratic volatility effect.

Efforts have also been made to tie the different estimates of risk together. Bali et al. (2017)

find that the beta anomaly disappears when controlling for MAX, and argues that this

can explain the beta anomaly. Furthermore, Liu et al. (2018) connects idiosyncratic risk

to the beta anomaly. As beta and idiosyncratic risk are positively correlated, they argue
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that the idiosyncratic risk effect is the main driver of the beta anomaly. As evidence to

support their thesis, they find the beta anomaly to be significant only among overpriced

stocks, and in periods where beta and idiosyncratic volatility are more strongly related.

A central problem when trying to uncover the mechanisms behind the low-risk effect in

general, and the beta anomaly in particular, is that the different measures of risk are

highly correlated. Furthermore, attempts at defining causes, such as that presented by

Stambaugh et al. (2015) are plagued by a circularity problem. If over- or underpricing can

explain the beta anomaly, this might just mean that leverage constraints are the cause of

both mispricing and the beta anomaly.

Asness et al. (2020) seeks to address these issues in their betting against correlation paper.

They argue that the best way to distinguish between different explanations of the beta

anomaly is to create a new strategy that is closely related to one explanation, while

unrelated to others. In pursuit of this goal they decompose BAB into two sub-components:

Betting against correlation (BAC) and Betting against volatility (BAV). Both strategies

are constructed in a way that isolates the effect of each variable by holding the other

variable constant.

As BAC is unrelated to both general volatility, MAX, and idiosyncratic volatility, they

argue that BAC effectively isolates the effect of betting against systematic risk. Both BAC

and BAV deliver positive and significant alphas in both US and international markets. The

alpha persists after controlling for the Fama and French (2015) five-factor model. Since

the systematic component of risk in itself should be unrelated to behavioral explanations

of the beta anomaly, Asness et al. (2020) argue that their results point towards the theory

of leverage constraints as an underlying driver of the anomaly,

2.4 Critique of the Low-Risk Research

Betting against beta has been criticized for employing non-standard methods to achieve

their extraordinary results. Among these methods are a non-standard beta estimation

and rank-weighting1 as opposed to the more standard value-weighting of portfolios. Beta

estimation is not a central topic in our thesis, but we note that it has limited effect on
1See section 4.2.1 for more details.
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returns generated by the strategy (Novy-Marx and Velikov, 2022). More meaningful for

returns is the rank-weighting scheme. Novy-Marx and Velikov argue that this method is a

backdoor to equal-weighting. They show that an equal-weighted long-short strategy going

long the third of the market with the lowest beta and short the third with the highest

beta performs almost identically to BAB.

The result of this weighting scheme is a large emphasis on the absolute smallest stocks in

the market in both the long- and short leg of BAB. When replicating BAB with a more

standard value-weighting methodology, Novy-Marx and Velikov (2022) find that while

BAB’s alpha is reduced, it remains positive and significant even after adjusting for the

Fama and French (2015) five-factor model. When computing returns net of transaction

costs, the value- and rank-weighted versions of the strategy generate similar positive but

insignificant FF5 alphas.

The interaction with firm size is also present in the betting against correlation paper,

albeit in a somehow different manner. While betting against beta loads heavily on small

stocks in both the long- and short leg, betting against correlation tends to be long smaller

stocks and short larger stocks on average. Asness et al. (2020) attribute this to smaller

stocks being less diversified.

Han and Pan (2021) add an additional perspective on this. They run Fama-MacBeth

(1973) regressions to estimate the relation between correlation and returns. While they

find no relationship when correlation is the only explanatory variable, the relationship

becomes significantly positive when controlling for size. When regressing returns on beta

and the same controls, they find no relationship. Based on these findings, they argue that

size acts as an omitted variable obscuring the positive relation between correlation and

returns (Han and Pan, 2021).

As we have seen, the relation with firm size raises questions regarding the possibility

of implementing BAB and BAC profitably. We seek to address these questions in our

thesis. By examining the holdings and turnover of each strategy within quintiles sorted

on market capitalization, we comment on transaction costs in addition to the feasibility

of implementing the strategies in practice. Furthermore, we construct value-weighted
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versions of each strategy and test the strategies across size universes in our set. We round

off by conducting Fama-MacBeth regressions on excess returns with beta and correlation

as explanatory variables. Our findings support the existence of a beta anomaly in the

Nordics, and we are optimistic regarding the feasible implementation of BAB in the

real world. Regarding correlation, we are not able to conclude that systematic risk, and

consequently the theory of leverage constraints is a driver of the beta anomaly in the

Nordic markets.
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3 Data

The sample used to conduct our analysis is retrieved from the Compustat Global database

of Wharton Research Data Services (WRDS). We collect annual fundamental data and

daily stock price data from Norway, Sweden, Denmark and Finland from January 1990

through July 2023. Data from before 1990 is excluded due to limited sample size and

poor data quality.

The scope of the thesis is to analyze the performance of selected low-risk strategies in

the Nordic market, from the perspective of a Norwegian investor. We therefore transform

all values to Norwegian Kroner (NOK) using historical data from Norges Bank for the

currency developments of USD, EUR, DKK and SEK. When handling Finnish stocks

traded in FIM before 1999 we translate the values to NOK via USD, using USD/FIM rates

obtained from the Federal Reserve. For stocks traded in FIM after the fixed FIM/EUR

rate was set, we exchange to NOK via this EUR rate.

To remove all duplicate observations of the same firm, we filter out all observations where

the value in the exchange column does not equal the issue’s primary exchange, as identified

by Compustat. Furthermore, we include only stocks traded on the major Nordic exchanges

in Oslo, Stockholm, Copenhagen or Helsinki. We also include only ordinary common

shares as defined by code 0 in the column tpci in Compustat. As an additional filter, we

remove all observations with a market cap below 25 million NOK, as these very small

stocks are more susceptible to data-quality issues.

Given the perspective of a Norwegian investor with NOK as the base currency, the relevant

risk-free rate for computing excess returns is the risk-free rate in NOK. As a proxy for

this risk-free rate, we obtain daily data on 1-month NIBOR rates from Macrobond. The

rates obtained are in annual percentages. These are translated to daily and monthly rates

using simple returns. To create the daily rate, we divide by 365, while we divide by 12 to

get the monthly rate.

We calculate daily and monthly returns in NOK adjusted for dividends and stock splits

for all stocks in our set. All returns are winsorized at the 0.1 and 99.9 percentiles to



11

minimize the impact of outliers and faulty return observations. The daily returns are

utilized when estimating betas, while monthly returns are used in regressions.

Compustat does not state any delisting returns for Nordic stocks, so we create these

manually based on the stated delisting reason. Delisting returns are set to 0% in the case

of mergers, acquisitions or leveraged buyouts and -100% in the case of bankruptcy or

liquidation. For delistings that occur for other reasons than the ones stated above, we

follow Asness et al. (2019) and assign a return of -30%.

For our market return, we create a value-weighted index comprising all stocks in our

dataset at a given time. The return of each stock contributes to the market return at

time t based on its share of the total market capitalization at time t− 1. We compute the

market return both on a daily (for beta estimation) and monthly basis.

A summary of the filtered daily sample is shown in Table 3.1.

Table 3.1: Descriptive statistics

This table provides descriptive statistics of our filtered daily dataset. Distinct companies is the number
of companies observed in our set each day. Market capitalization and daily return figures are reported
at both firm and market level. Returns are winsorized so that the maximum and minimum return
correspond to the 0.1 percentile values. This is done to reduce the impact of outliers in our sample.
Market capitalization numbers are in million NOK for both individual shares and the market. Returns
are reported in daily percentages.

Statistic Distinct
companies

Market
capitalization

Total market
capitalization

Daily stock
return

Daily market
return

Mean 732 8 767 8 630 282 0.05 0.05

Median 769 754 6 380 521 0.00 0.07

Max 1 408 3 204 115 23 151 559 88.43 8.00

Min 108 25 375 188 -50.23 -8.87
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4 Methodology

4.1 Beta Estimation

We adopt the methodology developed by Frazzini and Pedersen when estimating betas for

our analysis. Rolling standard deviations and market correlation are computed separately,

with horizons of one year (252 trading days) and five years (1260 trading days) respectively.

We demand at least 120 days of non-missing trading data for the standard deviations, and

750 days of non-missing trading data in the case of correlation, for computation. Stocks

that do not meet both of these filters at time t are not assigned a valid beta at time t.

They will then be excluded from our set until a valid beta can be computed. To control

for nonsynchronous trading, overlapping three-day log returns r3di,t =
2∑

k=0

ln(1 + rit+k) are

applied when estimating correlation (Frazzini & Pedersen, 2014).

A stock’s time-series beta is estimated on a daily basis β̂TS
i = ρ̂ σ̂i

σ̂m
, where σ̂i and σ̂m is

the volatility of the stock and the market, respectively, and ρ̂ is the correlation between

the two.

In accordance with Frazzini and Pedersen (2014), we shrink the estimated time series

beta towards its cross-sectional mean. This adjustment reduces the impact of outliers and

has previously been done by Vasicek (1973) and Elton et al. (2014):

β̂i = wiβ̂
TS
i + (1− wi)β̂

XS (4.1)

Just like Frazzini and Pedersen (2014) we apply w = 0.6 and βXS = 1 throughout our

data. As the shrinking is done uniformly across stocks, it does not affect the beta rankings

that lay the grounds for our portfolio formation. However, the leverage employed to scale

the portfolios to a beta of 1 will change as a consequence of the shrinking procedure.

Distributions of our final ex-ante estimates are shown in Table 4.1.
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Table 4.1: Distribution of key variable

This table displays the distribution of our ex-ante estimates of beta, correlation and standard deviation.
Panel A presents the mean, standard deviation and selected percentiles of the respective variables for the
full sample. Panel B reports the averages of the respective estimates within quintiles sorted on market
capitalisation. At the beginning of each month, all stocks are assigned to a quintile depending on the
relative size of the company, with the averages reflecting the distribution of observations within these
over time. For comparison, the time-series mean value-weighted beta estimate is 1.05 for our sample.

Panel A: Key statistics

Statistic Beta Correlation Standard deviation

Mean 0.94 0.36 0.028

Standard deviation 0.26 0.17 0.014

25th percentile 0.75 0.23 0.018

50th percentile 0.91 0.35 0.024

75th percentile 1.09 0.47 0.033

Panel B: Key statistics across size quintiles

Size quintile Beta Correlation Standard deviation

1 (Highest Mcap) 1.04 0.55 0.020

2 0.97 0.43 0.023

3 0.90 0.33 0.026

4 0.87 0.28 0.029

5 (Lowest Mcap) 0.90 0.23 0.041

4.2 Betting Against Beta

The construction of the betting against beta (BAB) factor starts by ranking stocks based

on their ex-ante betas at the beginning of each month. All securities are then assigned

to either a low-beta long portfolio or a high-beta short portfolio. Consequently, the long

(short) side includes all stocks with a beta below (above) the median at formation.

4.2.1 Rank-Weighting

The original methodology by Frazzini and Pedersen (2014) decides the weightings within

each portfolio in a rank-based manner. Specifically, stocks with lower (higher) beta are

assigned greater weights in the long (short) portfolio. Weightings are recalculated at the

beginning of each month.
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To calculate the weights we first determine the deviation of a stock’s beta rank, zi =

rank(βi,t), from the cross-sectional mean beta rank z̄ = 1
n

n∑
i=1

zi, where n is the number of

securities in the given month. The portfolio weights for the high and low portfolios are

then given by:

wH = k × (zi − z̄)+ wL = k × (zi − z̄)− (4.2)

k in this instance is a normalization constant that is calculated at the beginning of each

month, ensuring that the weights for both the high and low portfolio add up to one:

k =
2

n∑
i=1

|zi − z̄|
(4.3)

These weightings, when multiplied by an asset’s return for the month, determine the

asset’s weighted return contribution to its respective portfolio that month.

The BAB factor is computed by combining the two portfolios, going long the low portfolio

and shorting the high portfolio. We (de)leverage them so they both obtain a beta of one

at portfolio formation. Thus, we end up with a self-financing zero-beta portfolio (Frazzini

& Pedersen, 2014).

rBAB
t+1 =

1

β̂L
t

(rLt+1 − rf )− 1

β̂H
t

(rHt+1 − rf ) (4.4)

Where β̂L
t (β̂H

t ) represent the weighted beta of the unlevered low (high) portfolio at

formation
n∑

i=1

β̂i,twL (
n∑

i=1

β̂i,twH), serving as the respective portfolios’ (de)leverage factor.

While rLt+1 (rHt+1) represents the unlevered return of the respective portfolios
n∑

i=1

ri,t+1wL

(
n∑

i=1

ri,t+1wH).

4.2.2 Value-Weighting

To analyze the impact of the choice of rank-weighting by Frazzini and Pedersen (2014),

we also construct a value-weighted BAB factor. Stocks are still split into either the

high or low beta portfolio based on each stock’s beta ranking at the beginning of each
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month. The difference being that weightings in this case are decided by the relative

market capitalization (MC in equation 4.5) of the stocks compared to the entire market

capitalization of their respective portfolio at the time of formation. The weightings are

applied at the beginning of each month.

wL =
MCL

i

n(L)∑
i=1

MCL
i

wH =
MCH

i

n(H)∑
i=1

MCH
i

(4.5)

Where MCL
i (MCH

i ) represents a stock i within the low (high) portfolio and n(L) (n(H))

is the number of stocks within each of these for a given month. The unlevered return of

the two portfolios can once again be found using rLt+1 =
n∑

i=1

ri,t+1wL (rHt+1 =
n∑

i=1

ri,t+1wH).

Both the long- and short portfolio are scaled to an ex-ante beta of 1 following the same

approach as the rank-weighted version. See equation 4.4.

4.3 Betting Against Correlation and Betting Against

Volatility

For the betting against correlation (BAC) and betting against volatility (BAV) portfolios

the construction method resembles the one of BAB. We also utilize the same beta,

correlation and volatility estimates as those obtained in section 4.1 throughout the process

of constructing the BAV and BAC factors. Firstly, the stocks in the BAC (BAV) method

are divided into terciles2 based on their volatility (correlation) ranking. Thereafter stocks

within each tercile are split into a long- or short portfolio depending on whether their

correlation (volatility) is below or above the median within their respective tercile. Thus,

we each month have six portfolios, one long and one short per tercile.

Similar to what we saw in equation 4.2 stocks are weighted at the beginning of each

month. Rank-weightings are based on a stock’s deviation from the cross-sectional mean

correlation (volatility) rank and a normalization constant like the one in equation 4.3.

2The original paper by Asness et al. (2020) uses quintiles. Because of our sample size, we operate
with terciles instead. Using quintiles, we would run the risk of each sub-portfolio containing too few
stocks leading to a high standard deviation of returns. This problem is especially acute in the beginning
of our sample. Despite this, we keep the q superscript to avoid any confusion with the time variable t.
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Only in this case, these actions are done separately within each tercile.

wq
H = kq × (zqi − z̄q)+ wq

L = kq × (zqi − z̄q)− (4.6)

kq =
2

n(q)∑
i=1

|zqi − z̄q|
(4.7)

Where n(q) is the number of stocks within each volatility tercile for a given month. For

value-weighting the essence is the same. We perform the same operation as with BAB,

only within each portfolio of each tercile.

wq
H =

MCL,q
i

n(L,q)∑
i=1

MCL,q
i

wq
L =

MCH,q
i

n(H,q)∑
i=1

MCH,q
i

(4.8)

Where MCL,q
i (MCH,q

i ) represents the market capitalization of a stock i within a specific

tercile low (high) portfolio. n(L, q) (n(H, q)) is the number of stocks within the respective

portfolios that month.

With the weightings of the respective low and high portfolios within each tercile done,

each of these correlation (volatility) portfolios are (de)levered to a beta of 1 based on the

weighted portfolio beta. In this way we create three self-financing zero-beta BAC (BAV)

factors, one within each volatility (correlation) tercile. Thus, we end up with a return

computation per tercile that is similar to the one in equation 4.4:

r
BAC(q)
t+1 =

1

β̂L,q
t

(rL,qt+1 − rf )− 1

β̂H,q
t

(rH,q
t+1 − rf ). (4.9)

Where β̂L,q
t (β̂H,q

t ) is the weighted unlevered beta of a tercile’s low (high) portfolio and

(rL,qt+1 ((rH,q
t+1) is the unlevered return of the respective portfolios.

The overall BAC factor return can be obtained by calculating the simple average of

the individual BAC factors of the respective terciles, rBAC
t+1 = 1

3

3∑
q=1

r
BAC(q)
t+1 . The final

BAV factor is calculated using the same method, averaging the BAV factors of the three

correlation terciles.
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4.4 Explanatory Variables in Factor Regressions

As explanatory variables in our regressions, we use the Fama-French three-factor model,

augmented with the momentum (UMD) factor (Carhart, 1997). The three-factor model is

constructed following the methodology of Fama and French (1993), with some adjustments

to accommodate our dataset, as described below.

4.4.1 Size and Value

In June each year, all stocks in our sample are ranked based on size, as defined by market

capitalization. Fama and French use the NYSE median to split stocks in a large and small

bracket. As NYSE stocks tend to be larger than Nasdaq and Amex stocks, this results in

a disproportionate number of shares in the small bracket. Still, the small bracket accounts

for only 8% of the combined value of all stocks in their sample. We have no equivalent to

the NYSE median in our set and therefore need to pick another breakpoint. Following

Asness and Frazzini (2013), we choose the 80th percentile. As of June 2023, the stocks in

our small group make up 6.24% of the total market capitalization in our set.

Independent of the size sort, we also sort stocks into three book-to-market (B/M) portfolios

each June in year t. Book value is defined as the SEQ (Stockholders equity) variable in

Compustat. B/M is then calculated as the last reported book value in year t-1 divided by

the market capitalization at the end of year t-1. The book value utilized in the calculation

will therefore be at least 6 months old at the time of portfolio formation, minimizing the

risk of look-ahead bias. Both book value and market capitalization are converted to NOK

before calculation based on prevailing exchange rates at the time. Shares with missing or

negative book values are excluded.

We then form six portfolios based on the intersection between the size and B/M sorts.

Shares that are in both the small bracket based on size and the high B/M bracket are

sorted into the small-value portfolio. In the same way, shares in the large size bracket and

low B/M bracket are sorted into the large growth portfolio. The sorts are illustrated in

Table 4.2.
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Each portfolio is value-weighted, and rebalanced monthly. Furthermore, they are reformed

in June of year t+1 based on updated B/M values. After forming the portfolios, the size

(SMB) and value (HML) factors are constructed in the following way: SMB is the average

return of the three small portfolios minus the average return of the three large portfolios,

using simple averages. Similarly, HML is the average return of the two portfolios with

high B/M value minus the average return of the two portfolios with high book-to-market

value.

Table 4.2: Construction of the SMB and HML factors

When constructing the SMB and HML factors, companies are split into six different portfolios depending
on their book-to-market ratio and market capitalization. The SMB factor is created by taking the simple
average return of the three small portfolios minus that of the three big portfolios. Similarly, the HML is
the simple average of the returns from the two value portfolios minus those from the two growth portfolios.

B/M / Size Small Big

Low Small Growth Large Growth

Medium Small Neutral Large Neutral

High Small Value Large Value

4.4.2 Momentum

The momentum (UMD) factor is constructed in a similar way to HML, using six portfolios

sorted on size and past return. We split our sample into two size brackets based on the

80th percentile of market capitalization. Shares are then sorted into three brackets based

on the return over the past year, with breakpoints being the 30th and 70th percentile.

The return sorts are independent of the sorts on size. Specifically, return is calculated

as the total return from t-12 to t-1, skipping the most recent month. All returns are in

NOK, and size and return brackets are refreshed and rebalanced monthly. Six portfolios

are then formed based on the intersection of the size and return brackets. Portfolios

are value-weighted following the same methodology as for HML. The UMD factor is

constructed as the average return of the two high-return portfolios minus the average

return of the two low-return portfolios.
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4.5 Size Brackets

Looking into the drivers of our estimated factors, one can observe in Table 5.5 that both

BAB and BAC load quite heavily on stocks within the smaller market capitalization

quintiles. A smaller market capitalization normally indicates a larger degree of illiquidity.

Should this be the case, the strategies might be prone to implementation issues due to

availability, especially with respect to shorting.

We therefore apply size brackets to test the feasibility of the strategies when movement

across size is constrained. This is done by ranking all stocks by market capitalization at

the beginning of each month and then segregating them into the bottom 60% and top

40%. Subsequently, we construct the factors within each size bracket following the same

methodology described earlier in this section.

4.6 Fama-MacBeth Regressions

In order to study the properties of the low-risk effect in the cross-section, we conduct

Fama-MacBeth (1973) regressions. Each month, we regress each asset’s excess return on

our estimated ex-ante beta and correlation, controlled for volatility. We gradually enhance

the models by adding different company characteristics as control variables. Specifically,

the natural logarithm of market capitalization and book-to-market and prior 12-month

return. The coefficients reported are the time-series average of those obtained from each

cross-sectional regression. We compute Newey-West (1987) standard errors to account for

heteroskedasticity and autocorrelation.

More formally: Let ERit be the excess return of asset i at time t, β̂it the estimated FP

beta for asset i at time t, and ψ̂it be the estimated exposure towards each control variable

for asset i at time t. Each cross-sectional regression can then be described as:

ERit = αt + λtβ̂it + ϕtψ̂it + ϵit (4.10)

Where λt is the risk premium associated with the FP beta at time t, and ϕt is the risk

premium associated with factor ψ at time t. The estimated coefficients are then averaged
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over time:

1

n

n∑
t=1

λ̂t
1

n

n∑
t=1

ϕ̂t (4.11)

Where n represents the number of months in our set. The time-series average of the

coefficients represents the estimated risk premia associated with the factors across our

study. When running Fama MacBeth regressions on correlation, our estimated correlation

ρ̂it takes the place of β̂it in equation 4.10. We also add estimated volatility as a control.

Otherwise, the methodology is the same.

The explanatory variables in each cross-sectional regression are the ex-ante estimates of

beta and correlation, respectively, obtained earlier in the thesis (See section 4.1). Similarly,

volatilities are computed following the methodology described in the same section. Book-

to-market ratios and prior 12-month return are the same as those used in the construction

of our control variables. We apply the natural logarithm to both market capitalization

and book-to-market in the regressions for improved linearity.
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5 Analysis

In this section we present the results of our empirical analysis. The main scope of this

thesis is threefold: 1) Can we document a beta anomaly in the Nordic markets? 2)

Can the anomaly be explained by systematic risk as proxied by correlation 3) Are the

answers to the questions above robust across firm size? To answer these questions, we run

several tests. Firstly, Betting against beta (BAB), Betting against correlation (BAC) and

Betting against volatility (BAV) are replicated following the methodologies of Frazzini

and Pedersen (2014) and Asness et al. (2020). Our main focus will be on BAB and BAC.

BAB because it seeks to document a beta anomaly in our sample. BAC because it isolates

the part of this anomaly that is driven by systematic risk.

After replicating the factors in our set, we turn our attention to the relationship between

BAB, BAC, BAV and size. This is approached from multiple angles. We start by

commenting on the strategies’ holdings and turnover across size-sorted quintiles in our

set. Thereafter, we construct value-weighted versions of each strategy. We also construct

versions of each strategy across size-sorted universes in our set. Rounding off, we run

Fama-MacBeth regressions to check whether or not beta and correlation are priced at the

firm level.

5.1 Replication

5.1.1 Betting Against Beta

We commence our analysis by replicating Betting against Beta as described by Frazzini

and Pedersen (2014). We run univariate and multivariate regressions on both the long-

short strategy and five equal-weighted quintiles sorted on ex-ante beta. The explanatory

variable in the univariate regressions is the excess return of the market. In the multivariate

regressions, we add the Fama and French (1993) size and value factors, in addition to

momentum (Carhart, 1997). Our regressions can be expressed in the following way:

Rpt = αp + βp(Rmt −Rft) + ϵpt (5.1)
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Rpt = αp + βp(Rmt −Rft) + λpRSMB + ρpRHML + ϵpt (5.2)

Rpt = αp + βp(Rmt −Rft) + λpRSMB + ρpRHML + δpRUMD + ϵpt (5.3)

Where (Rmt −Rft) is the return of the market factor, SMB is the size factor, HML is the

value factor and UMD is the momentum factor.

The results are summarized in Table 5.1. The estimated betas succeed in capturing

differences in realized beta, which increases monotonically across the quintiles sorted on

ex-ante beta. There is however a clear tendency for our ex-ante betas to be overestimated

compared to the realized betas. We have seen the same tendency in Novy-Marx and Velikov

(2022), although to a lesser extent3. Turning to estimated CAPM alphas, these tend to

decrease as betas increase across the quintiles. The effect is particularly pronounced for

the highest-beta quintile which exhibits a negative alpha estimate albeit insignificant.

The long-short BAB strategy echoes the results of the beta-sorted quintiles. The strategy

generates an excess return of 0.93% together with a statistically significant monthly CAPM

alpha of 1.1% When adding FF3 and UMD as explanatory variables, the estimated alpha

decreases to 0.41% while still statistically significant at the 5% confidence level. For

comparison, Frazzini and Pedersen (2014) obtain CAPM and Carhart (1997) four-factor

alphas of 0.73% and 0.55%, respectively, in their US sample.

In their original study, Frazzini and Pedersen (2014) report separate estimates of excess

return and FF3 + UMD alpha on long-short BAB portfolios for each of the countries in

our study. Those figures are not directly comparable to our results as 1) Frazzini and

Pedersen calculate returns in USD while we use NOK. 2) There are differences in the

period and horizon of the samples. 3) Our betas are estimated against a value-weighted

Nordic index while Frazzini and Pedersen use separate country indexes. Nevertheless, we

conclude that our findings are similar to what was found in the original study in direction

and magnitude. The decreasing alpha estimates across beta-sorted quintiles, together

3An interesting observation is that our ex-ante betas seem to be overestimated across all beta quintiles.
We believe some of this effect is driven by a particular quirk in our sample. During the late 1990s to
early 2000s, Nokia and Ericsson become a dominant force in our value-weighted market index. At most,
the two companies combined constitute around 60% of our market. If we exclude Nokia and Ericsson
from our set, the overestimation is much less severe. Our main findings are robust to excluding these
companies. More details are provided in Appendix A.
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Table 5.1: BAB and beta-sorted portfolios

This table shows alphas, betas and excess return of beta-sorted portfolios as well as the BAB factor. The
five beta portfolios are quintiles sorted on ascending ex-ante betas. At the beginning of each month, stocks
are assigned to their designated portfolio. Once all stocks are placed within a given portfolio, returns
are equal-weighted, with monthly rebalancing. The BAB factor is constructed by assigning all stocks
into one of two portfolios, low and high, depending on whether the stocks’ beta is below or above the
cross-sectional median beta. Weightings are performed in a rank-based manner, meaning that securities
with a lower (higher) beta have larger weights in the low (high) portfolio. Both portfolios are (de)levered
to have a beta of 1 at portfolio formation. Portfolios are rebalanced and rescaled at the beginning of
each month. The BAB factor is a self-financing portfolio that is long the low portfolio and short the
high portfolio. The excess returns of the portfolios are regressed on the market excess return, the Fama
and French (1993) three-factor model and the Carhart (1997) four-factor model. Alphas are reported
in monthly percentages with corresponding t-stats in parenthesis beneath them. Ex-ante beta is the
time-series average beta estimate of the portfolios, while Realized Beta is the market beta obtained from
monthly CAPM regressions of portfolio excess return on market excess return.

1
(Low β) 2 3 4 5

(High β) BAB

Excess Return 0.82 0.99 0.87 0.96 0.72 0.93
(4.28) (3.68) (3.35) (3.13) (1.69) (4.42)

CAPM Alpha 0.47 0.48 0.27 0.23 −0.35 1.10
(2.51) (2.10) (1.25) (0.98) (−1.47) (5.44)

FF3 Alpha 0.22 0.21 0.02 −0.03 −0.56 0.84
(2.02) (1.50) (0.19) (−0.26) (−3.09) (4.69)

FF3 + MOM Alpha 0.25 0.25 0.19 0.23 0.03 0.41
(2.16) (1.68) (1.43) (1.85) (0.15) (2.32)

Ex-ante Beta 0.64 0.80 0.91 1.04 1.29 0

Realized Beta 0.40 0.59 0.70 0.85 1.25 −0.21

with a significant CAPM alpha of 1.1% for the long-short strategy underpins the existence

of a beta anomaly in our sample.

5.1.2 Betting Against Correlation and Betting Against Volatility

In our analysis of correlation and volatility, we start by creating nine equal-weighted

portfolios sorted on volatility and then conditionally on correlation. The results from

CAPM regressions on these portfolios are reported in Table 5.2. We find a clear relationship

with CAPM alpha for both correlation and volatility, as alphas tend to decrease as we

increase both volatility and correlation. The relation is most pronounced on the downside,

where the high correlation and volatility portfolio exhibits a significant and economically

meaningful monthly alpha of minus 0.84%.
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Table 5.2: Portfolios sorted on volatility and correlation

This table displays the properties of nine portfolios formed by sorting stocks on volatility and correlation.
At the beginning of each month, stocks are first divided into terciles based on their ex-ante volatility
estimates. Within each tercile, stocks are then sorted conditionally into terciles based on ex-ante correlation
estimates. The returns of stocks in each portfolio are equal-weighted, with monthly rebalancing. Panel A,
reports the alphas from time-series CAPM regressions on each portfolio, presented in monthly percentages
with corresponding t-stats in parenthesis beneath them. Panel B presents the market beta obtained from
the same CAPM regressions.

Panel A: CAPM Alphas

Conditional sort on correlation

P1 (low) P2 P3 (high)

Volatility Ranks:

P1 (low) 0.58 0.63 0.29
(3.82) (3.90) (1.97)

P2 0.37 0.60 0.08
(2.13) (3.33) (0.44)

P3 (high) 0.20 0.03 −0.84
(0.74) (0.10) (−3.44)

Panel B: CAPM Betas

Conditional sort on correlation

P1 (low) P2 P3 (high)

Volatility Ranks:

P1 (low) 0.45 0.56 0.74

P2 0.54 0.75 0.98

P3 (high) 0.69 0.91 1.24

We further construct the long-short strategies known as Betting Against Correlation

(BAC) and Betting Against Volatility (BAV), as outlined in Asness et al. (2020). For

BAC (BAV), stocks are first sorted into three brackets based on volatility (correlation).

Within each of these brackets, we construct a rank-weighted long-short strategy based

on stocks’ correlation (volatility) rank within its respective bracket. Each strategy is

levered to achieve an ex-ante beta of 1. The overall BAC (BAV) factor is computed as

the equal-weighted average of the returns from each sub-strategy. Regression results for

these are presented in Table 5.3.
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Table 5.3: BAC and BAV portfolios

This table shows alphas, betas and excess return of the BAC and BAV factors. For BAC (BAV), stocks are
divided into terciles based on the ranking of their volatility (correlation). Thereafter stocks within these
terciles are similarly split into a low and high portfolio determined by whether their estimated correlation
(volatility) is below or above the median within their tercile. These portfolios are then rank-weighted
meaning that securities with a lower (higher) correlation (volatility) have larger weights in the low (high)
portfolio. The tercile assignment and weightings are done at the beginning of every calendar month.
These six (three low and three high) portfolios are all (de)levered to a beta of one at formation. Within
each volatility (correlation) tercile, the BAC (BAV) factor is formed by calculating the return of the
self-financing BAC (BAV) portfolio, which is long the low-correlation (volatility) portfolio and short the
high-correlation (volatility) portfolio. The overall BAC (BAV) factor represents the simple average of the
returns from the BAC (BAV) factors within each tercile. Rescaling of the portfolios is done monthly. The
table displays alphas from regressions on the market, the Fama and French (1993) three-factor model and
the Carhart (1997) four-factor model. Alphas are reported in monthly percentages with corresponding
t-stats in parenthesis beneath them. Ex-ante beta is the time-series average beta estimate of the portfolios,
while Realized Beta is the market beta obtained in time-series CAPM regressions.

BAC BAV

Excess Return 0.59 0.77
(3.09) (3.75)

CAPM Alpha 0.71 0.93
(3.72) (4.64)

FF3 Alpha 0.49 0.81
(3.07) (4.48)

FF3 + MOM Alpha 0.30 0.42
(1.77) (2.31)

Ex ante Beta 0 0

Realized Beta −0.13 −0.19

BAC and BAV yield positive and significant alphas of 0.71% and 0.93%, respectively,

in univariate regressions. When adding FF3 and UMD as explanatory variables, the

estimated alphas are still positive for both strategies, but in the case of BAC it becomes

marginally insignificant. The interpretation of the multivariate alphas will be addressed in

the factor loadings section of our thesis. For now, we conclude that CAPM fails to explain

BAC and BAV, while the Carhart (1997) four-factor model might be able to explain BAC.

In Table 5.4, we report the results of regressing BAB on BAC and BAV. In doing so, we

check whether we have succeeded in decomposing BAB into its sub-components BAC and

BAV. As we can see, BAB loads heavily on both BAC and BAV with BAC being the most

important driver. Furthermore, the intercept is insignificant from zero. The adjusted R2

suggests that we are able to explain the majority of variation in BAB with our BAC and
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BAV factors. We therefore conclude that we have succeeded in decomposing BAB into its

two subcomponents.

Table 5.4: Decomposition of BAB

This table displays the decomposition of BAB into its sub-components, BAC and BAV. The excess return
of BAB is regressed on the excess returns of BAC and BAV. Coefficients are reported with corresponding
t-stats in parenthesis beneath them. Intercept is the monthly percentage of unexplained return.

Dependent variable:

BAB

BAC 0.84
(41.15)

BAV 0.53
(27.72)

Intercept 0.02
(0.28)

Adjusted R2 0.88

Our replication documents a beta anomaly in the Nordic markets. The theory of leverage

constraints states that CAPM alphas should decrease as a function of estimated beta.

This further implies that CAPM alphas should decrease as a function of correlation

(volatility) when holding volatility (correlation) constant (Asness et al., 2020). Our

findings provide evidence in support of this view. When examining portfolios sorted on

beta, CAPM alphas exhibit a clear decreasing tendency as beta increases. The same holds

for the portfolios sorted on volatility and correlation. As correlation (volatility) increases,

estimated CAPM alphas decrease. Furthermore, both the BAB, BAC and BAV strategies

deliver highly significant CAPM alphas in our sample. When adding SMB, HML and

UMD as explanatory variables, BAB and BAV still generate significant alphas, while the

estimate on BAC becomes marginally insignificant. Hence, while CAPM and the Fama

and French (1993) three-factor model are not able to explain the returns of any of the

strategies, the Carhart (1997) may be able to explain the returns associated with BAC.

5.2 Holdings Across Size Quintiles

Having observed the results of our replicated BAB, BAC and BAV strategies, a natural

question to consider next is whether or not the strategies can be implemented in a

real-world setting. Novy-Marx and Velikov (2022) have pointed out that BAB tends
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to concentrate among small stocks in both the long- and short leg. In this section, we

investigate whether this is true in our sample, and if BAC and BAV suffer from similar

issues.

Starting with BAB, we observe a similar pattern as Novy-Marx and Velikov (2022) in

Table 5.5. The long leg in particular puts a disproportionate share of its total investment

in the absolute smallest stocks. In fact, about half of the total stocks acquired are located

within the two smallest quintiles of our sample. To give the reader a perspective on how

small these stocks are, we show the market capitalization for the smallest stock in each

quintile as of July 2023. As we can see, the two smallest categories consist of stocks with

a market capitalization below 900m krone.

Table 5.5: Holdings across quintiles sorted on market capitalization

This table displays the time-series average holdings for the market and the long-short portfolios of
BAB, BAC and BAV across quintiles sorted on market capitalization. The figures reported are after
(de)leveraging. At the beginning of each month, stocks are allocated to one of five quintiles based on
their market capitalization. Within each quintile, portfolio weightings are aggregated monthly. The
table reports the time-series mean of these aggregated values. The rightmost column shows the market
capitalization of the smallest company in each quintile as of July 2023 in MNOK.

BAB BAC BAV

Quintile Market Long Short Long Short Long Short Smallest
Company

1 (Highest Mcap) 83.6 14.2 27.9 6.8 40.5 33.7 10.7 15 437

2 10.4 25.9 18.4 18.2 22.1 31.0 13.8 3 357

3 3.8 34.6 12.6 30.7 13.7 31.6 14.5 924

4 1.6 40.7 10.8 41.5 8.9 26.0 19.2 266

5 (Lowest Mcap) 0.6 33.2 16.0 42.8 6.2 11.1 36.3 26

Total 100 148.6 85.7 140.1 91.3 133.4 94.4

While not as extreme, the short leg also takes advantage of the smallest part of our sample.

On average, for every krone invested the strategy is short 26.8 øre of stocks from the two

smallest quintiles. While this might not sound excessive, remember that the short leg is

short only 85.7 øre in total. In other words, 31.4% of the total short exposure resides in

these two quintiles. In comparison, our market index’s exposure to these segments is only

2.2%.
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Table 5.5 also reports the weightings of BAC and BAV across the size quintiles. We

observe a clear pattern where the BAC strategy goes long the smallest stocks and short

the largest stocks in our sample. The relationship is resounding, as weightings decline

monotonically with increasing company size. In the long leg, 60.2% of the gross exposure

is towards stocks in the two smallest quintiles. The short leg, in comparison, allocates

only 16.5% of its gross investment in the same quintiles. BAV, on the other hand, exhibits

the opposite pattern. This strategy tends to be short the smallest stocks, with 38.5% of

its gross short exposure residing in the absolute smallest quintile.

The difference in weightings across the strategies is not surprising. We have observed that

correlation tends to increase with size, while volatility exhibits the opposite tendency.

This is consistent with the findings of Asness et al. (2020), where their BAC factor loads

heavily on the SMB factor. They note that smaller stocks tend to be less diversified and,

consequently, less correlated to the market.

The observed concentration in smaller stocks raises two primary questions: 1) Is it possible

to implement the strategies profitably in a real-world setting? 2) Can the observed CAPM

alphas of the strategies be attributed to a risk premium for holding smaller stocks? In

the next section, we will address the first question by examining the strategies’ turnover

across size deciles. The second question will be commented on in the subsection about

factor loadings.

5.3 Turnover and Transaction Costs

Table 5.6 illustrates the annual turnover associated with trading BAB, BAC and BAV.

Our replicated BAB strategy has a total annual turnover of 200.1%. Considering our

estimated annual Carhart (1997) four-factor alpha of 4.92% for the long-short strategy, the

turnover implies break-even transaction costs of 246bps. This is way above any reasonable

estimate of transaction costs for larger stocks. However, it is well known that smaller

stocks tend to have meaningfully higher transaction costs (See for example Novy-Marx

and Velikov (2022) or Frazzini et al (2018)). Given our estimated 94.5% turnover within

the two smallest size quintiles, transaction costs may be a cause for concern after all.
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Based on BABs turnover in their US sample, Novy Marx and Velikov estimate annual

transaction costs of 696bps (Novy-Marx & Velikov, 2022). Given that our turnover is

similar to what they obtain, this estimate may provide a ballpark estimate for our sample.

If their estimate of 696 bps is applied to our estimated annual Carhart (1997) four-factor

alpha of 4.92%, the estimated alpha would disappear entirely. The same is the case if we

apply a similar estimate of transaction costs to the BAC strategy.

Table 5.6: Annual turnover across quintiles sorted on market capitalization

This table reports the annual turnover of the BAB, BAC and BAV factors, split into long- and short-side
contributions, across market capitalization sorted quintiles after (de)leveraging. At the beginning of
each month, all stocks are assigned to a quintile based on their market capitalization. Monthly turnover
is the average of purchases and sales each month. We then compute the time-series average of the
monthly turnover within each quintile. Finally, average monthly turnovers are multiplied by twelve for
annualization.

BAB BAC BAV

Quintile Long Short Long Short Long Short

1 (Highest Mcap) 10.9 19.3 7.6 25.1 26.4 13.5

2 19.8 15.7 19.5 21.3 29.8 18.3

3 26.1 13.7 30.3 16.7 32.9 20.5

4 31.9 12.5 39.0 11.7 28.8 27.0

5 (Lowest Mcap) 31.1 19.0 43.2 8.9 15.3 41.8

Total 119.9 80.2 139.6 83.7 133.2 121.1

Novy-Marx and Velikov (2022) use an estimate of effective bid/ask spread to calculate

transaction costs. However, this method has been subject to criticism. Frazzini et al.

(2018) argue that the contribution to total transaction costs from bid/ask spreads in

reality is orders of magnitude lower than those typically estimated in the literature. Based

on their study, market impact plays a much larger role in total transaction costs. As

market-impact costs are dependent on the investor trading the strategy, it is impossible

to say anything general about this in our case. However, the perspective of Frazzini et al.

(2018) suggests that the transaction costs faced by the marginal investor trading BAB,

BAC and BAV in our sample might be lower than the estimates provided by Novy-Marx

and Velikov (2022).

Further complicating the feasibility of the BAB strategy is the short leg’s 31.6% turnover

in the two smallest quintiles. We doubt that there is a functioning lending market for all
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these stocks at all, let alone at a reasonable cost. This problem is even more acute for

BAV, as the short leg here turns over 68.9% annually among the two smallest quintiles. In

the case of BAC, this problem is less pronounced. While BAC also has a healthy turnover

of 102.7% within the two smallest quintiles, a vast majority of this turnover, 82.1%, occurs

in the long leg.

Based on the discussion above, we are sceptical as to whether any of the strategies we study

can be implemented profitably in their current form by any sizable investor. However,

this conclusion presupposes that the strategies are traded exactly as implemented in our

study. In reality, an investor could mitigate these transaction costs through a number of

measures. For example, one could reduce the rebalancing frequency, employ a different

weighting regime or restrict trading to the largest universe of stocks. Our thesis will

proceed by studying value-weighted implementations of BAB, BAC and BAV. We will

then move on to restricting the original rank-weighted strategies to specific size quintiles.

5.4 Value-Weighted Portfolios

The rank-weighting procedure employed by Frazzini and Pedersen (2014) has been identified

as an important driver of BAB’s extraordinary performance in the US (Novy-Marx and

Velikov, 2022). By constructing a value-weighted version of the strategy, we test if this is

the case in our sample as well. Furthermore, we create value-weighted BAC and BAV

portfolios to test the impact of rank-weighting on these strategies.

5.4.1 Regression results

The value-weighted portfolios are constructed in the same way as the rank-weighted ones,

except for the weightings within each long-short strategy. Instead of weighting based on

deviation from the mean rank, we now weight each stock based on the lagged share of

total market capitalization in the portfolio. The results of time series regressions on these

factors are reported in Table 5.7.

The value-weighted BAB strategy exhibits a positive monthly CAPM alpha of 0.77% in

our sample. While somewhat lower than the rank-weighted version, this still represents

a significant effect from both a statistical and economic point of view. However, the
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Table 5.7: Value-weighted portfolios

This table shows the alphas of value-weighted versions of BAB, BAC and BAV. The BAB factor is
constructed using the method of Frazzini and Pedersen (2014) for creating a low- and high-beta portfolio.
Instead of employing their rank-based weighting system, portfolios are now value-weighted. After splitting
into the low and high portfolios, stocks are weighted based on their share of total market capitalization
within their respective portfolio. Each portfolio is then (de)levered to a beta of one at formation, where
the BAB factor is a self-financing zero-beta short the low and long the high portfolio. BAC (BAV) are
first split into terciles based on estimated volatility (correlation) before they are sorted into low- and
high-correlation (volatility) portfolios within each tercile. Similarly to BAB, stocks are then weighted
each month based on their share of the total market capitalization within their respective portfolio. Each
portfolio is then (de)leveraged to a beta of one at formation, to create self-financing BAC (BAV) factors
within each tercile. The overall BAC (BAV) factor is constructed by taking the simple average of these
tercile BAC (BAV) factors. The table displays alphas from time-series CAPM, Fama and French (1993)
three-factor and Carhart (1997) four-factor regressions. Alphas are reported as monthly percentages with
corresponding t-stats in parenthesis beneath them. Ex-ante beta is the estimated beta of the different
strategies, while realized beta is the market beta estimated from CAPM regressions.

BAB BAC BAV

Excess Return 0.51 0.54 0.49
(2.18) (2.71) (2.42)

CAPM Alpha 0.77 0.62 0.69
(3.48) (3.12) (3.56)

FF3 Alpha 0.56 0.44 0.63
(2.66) (2.49) (3.37)

FF3 + MOM Alpha 0.34 0.34 0.51
(1.54) (1.85) (2.55)

Ex-ante Beta 0 0 0

Realized Beta −0.30 −0.10 −0.23

CAPM alpha is notably strengthened by the negative realized beta of 0.3. Examining

excess returns, the reduction in performance is more pronounced, falling from 0.93% in

the rank-weighted version to 0.51% in the value-weighted one. When including HML

and SMB as explanatory variables, the estimated alpha is reduced to 0.56% but still

statistically significant. Further adding UMD renders the alpha insignificant, although

the estimate remains positive.

Our findings point in the same direction as those of Novy-Marx and Velikov (2022), who

report excess returns of 0.56% for value-weighted BAB in the US.4 Hence, we find that

4Note that our results are not directly comparable to those of Novy-Marx and Velikov (2022). While
our value-weighted strategy goes long (short) the bottom (top) half of stocks sorted by ex-ante beta,
Novy-Marx and Velikov (2022) split their set in three when value-weighting. Specifically, the long (short)
portfolio goes long (short) the third of stocks with the lowest (highest) beta rank each month.
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value-weighting the strategy does reduce performance compared to rank-weighting in our

sample as well.

Turning to BAC, the rank-weighting procedure seems to be a less important driver of

overall performance than for BAB. While the estimated monthly CAPM alpha of 0.62%

is lower than the 0.7% estimate from the rank weighted portfolio, the difference is much

less pronounced. The same goes for excess returns which fall only marginally from 0.59%

in the rank-weighted version to 0.54% in the value-weighted version. When adding HML

and SMB to the regression, the alpha falls to 0.44% while still statistically significant. As

for BAB, adding UMD renders our results insignificant, but only marginally.

Finally, the value-weighted BAV strategy also delivers a statistically significant CAPM

alpha. We observe the same pattern as for BAC, with the reduction in alpha being smaller

than for the overall BAB strategy. Controlling for HML, SMB and UMD, BAV is the

only factor still generating statistically significant alpha at the 5% level.

The difference in performance between BAB and its components BAC and BAV is smaller

with value-weighted portfolios than what we observed with rank-weighted portfolios. This

is not surprising due to the way the factors are constructed. As we have seen in table

4.1, there is a close relation between volatility (correlation) and firm size. When we first

split stocks in terciles based on volatility (correlation) when constructing BAC (BAV),

we also sort indirectly on firm size. As a result, the overall BAC (BAV) strategy will be

composed of three long-short portfolios, each created within terciles of differing average

firm sizes. Consequently, the ability to take advantage of smaller stocks is less limited by

value-weighting in the case of BAC and BAV compared to BAB.

5.4.2 Factor loadings

Turning our attention to the factor loadings, these are reported in Table 5.8 for both the

rank- and value-weighted versions of the strategies. Before we discuss the impact of the

different factor loadings, we provide some context on the performance of the factors in

our sample. SMB and HML generate insignificant excess returns, with monthly estimates

of 0.01% and 0.1% respectively. UMD on the other hand generates significant excess

returns of 1.22% monthly across our sample. Hence, exposure towards the UMD factor is
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punished more heavily than SMB and HML.

Table 5.8: Factor loadings in FF3+UMD regressions

This table reports the estimated coefficients obtained from time-series regressions on the Carhart (1997)
four-factor model, for the rank- and value-weighted portfolios. The rank-weighted BAB factor is
constructed following the methodology of Frazzini and Pedersen (2014). At the beginning of each month,
stocks are ranked in ascending order based on their estimated beta. Stocks with a beta above the cross-
sectional median are sorted to the high-beta portfolio while stocks with a beta below the cross-sectional
median are sorted to the low-beta portfolio. Stocks are then weighted based on their deviation from the
mean beta rank in the sample, ensuring that stocks with lower (higher) betas receive larger weightings in
the low-beta (high-beta) portfolios. Both the high- and the low-beta portfolio are then (de)leveraged to a
beta of one at formation. The BAB factor is the return of the low-beta portfolio minus the return of the
high-beta portfolio. The rank-weighted BAC and BAV factors are created following Asness et al. (2020),
except we sort stocks into terciles instead of quintiles based on correlation and volatility. At the beginning
of each month, all stocks are sorted into terciles based on their estimated volatility in the case of BAC
and correlation in the case of BAV. Within each tercile, we create the BAC (BAV) factors in the exact
same way as for BAB, except we now rank on correlation (volatility) instead of beta. The overall BAC
(BAV) factor is then created by taking the simple average of the tercile BAC (BAV). The value-weighted
portfolios are created in the same way as the rank-weighted ones, except stocks are weighted based on
their share of total market capitalization within their respective portfolios. Both the rank-weighted and
value-weighted portfolios are (de)leveraged to a beta of one at formation. All coefficients are reported with
their corresponding t-stats in parenthesis beneath them. Alphas are reported in monthly percentages.

BAB BAC BAV

Weight type: Rank Value Rank Value Rank Value

MKT 0.09 −0.08 0.11 0.11 −0.06 −0.18
(2.31) (−1.75) (3.04) (2.69) (−1.52) (−4.37)

SMB 0.48 0.31 0.79 0.77 −0.46 −0.33
(6.50) (3.37) (11.33) (9.96) (−6.02) (−4.03)

HML 0.37 0.31 0.19 0.13 0.36 0.20
(9.18) (6.23) (5.06) (3.22) (8.74) (4.41)

MOM 0.30 0.15 0.14 0.06 0.27 0.09
(7.16) (2.96) (3.47) (1.47) (6.37) (1.88)

Alpha 0.41 0.34 0.30 0.34 0.42 0.51
(2.32) (1.54) (1.77) (1.85) (2.31) (2.55)

The BAB strategy loads positively on all factors in both rank- and value-weighted versions.

It is in fact the only factor that exhibits a statistically significant loading on UMD in the

value-weighted version. This helps illuminate why BAB is punished more severely than

the other strategies in the four-factor regressions.

BAC loads heavily on SMB in both the rank- and value-weighted versions. This is no

surprise as we have already seen that this strategy tends to go long the smallest stocks
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and short the largest stocks in our sample. Interestingly, the FF3 alpha for both the

rank- and value-weighted versions of BAC is statistically significant. Hence, we refer

to the discussion presented in section 5.2. If SMB represents exposure towards a risk

factor as argued by Fama and French (1993), the excess returns obtained by the BAC

strategy can not be explained by this exposure. When viewed in conjunction with UMD,

exposure towards the factors is however able to explain the returns of both the value- and

rank-weighted versions of BAC.

The difference between results obtained in three-factor and four-factor regressions presents

a question regarding which model is the "correct model" to use when testing the low-risk

effect. If the control variables in the model used are interpreted as risk factors, the four-

factor alpha is the relevant result. Asness et al. (2020), however, argue that the theory of

leverage constraints may be the underlying cause of some of the factors identified in the

previous literature.5 Hence, they argue that one might risk "throwing the baby out with

the bathwater" by controlling for factors whose underlying cause is leverage constraints.

Our thesis offers no useful results for determining the correct interpretation of factors

included in asset-pricing models. Hence, we follow the more conventional interpretation

of the factors as risk exposure. Accordingly, we put the most weight on the four-factor

results obtained.

Overall, value-weighting the strategies reduces performance across the board. Despite

this, neither the CAPM nor the FF3 model alone can explain the returns generated by

any of the strategies. However, when tested against Carhart’s four-factor model, BAV is

the only strategy that generates a significant alpha. Hence, in our value-weighted tests,

we have not obtained support for an exploitable beta anomaly in our sample. The same

applies to correlation as a driver of this anomaly.

While value-weighting the strategies makes them more feasible to implement, we also run

the risk of removing some of the signal. The way the factors are constructed, both the

value-and rank-weighted versions are forced to go long one half of our sample and short the

other half. While rank-weighting the strategies weight the more extreme beta observations

5The argument of Asness et al. (2020) is specifically directed at the Fama and French (2015) five-factor
model. The general point, however, extends to all factors correlated with excess returns that could be
caused by leverage constraints.
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on either side more heavily, this is not the case in the value-weighted versions. Hence, the

difference in beta between the largest positions on the long side and the largest position

on the short side might be quite minimal. Therefore, the estimated alphas may be deemed

insignificant due to a lack of signal rather than because of the increased implementability.

We seek to address this in the next section. Instead of value-weighting the strategies,

we split our stocks into a large and a small bracket based on firm size and implement

the rank-weighted strategies within these size brackets. Thereby, the large bracket will

contain more implementable versions of the strategies without the loss of signal that

value-weighting runs the risk of.

5.5 Size Split

We have seen that both the BAB, BAC and BAV strategies tend to concentrate among

the smallest stocks in the long (BAB and BAC) or short (BAB and BAV) leg. These

small stocks are typically more costly to trade than larger stocks. In light of this, we set

out to test how sensitive the strategies are to the inclusion of these small stocks in our

set. We once again turn to our size quintiles, assigning companies into these based on

their market capitalization at the beginning of each month. The rank-weighted versions of

BAB, BAC and BAV are then replicated within different combinations of these quintiles.

We split our sample in two, with the large pool containing the two largest quintiles and

the small pool containing the three smallest quintiles.

Table 5.9 reports the results from this exercise. Our estimated CAPM alpha for the BAB

strategy holds up well, with 1.17% within the small category and 1.11% within the large

category. This is similar to the results obtained in the overall sample. Interestingly, the

large bracket tends to be somewhat more robust when controlling for the FF3+UMD

factors than the small bracket, with a positive and significant alpha estimate of 0.47%.

Turning to BAC, the estimated CAPM alphas of 0.64% and 0.61% for the small and

large groups respectively are somewhat lower than the estimate of 0.71% obtained in

the full sample. Nevertheless, the effect is still significant from both a statistical and

economic point of view. When controlling for FF3 and UMD, the estimated alpha is still

positive, but insignificant. The strategy’s momentum tilt tends to be larger in both the
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Table 5.9: Rank-weighted strategies across size quintiles

This table reports the results of BAB, BAC and BAV when limited to the bottom three (small) and top
two (big) size quintiles respectively. At the beginning of each month, stocks are ranked into quintiles
based on market capitalization. Subsequently, each factor is constructed separately within both the small
and big size brackets. The BAB factor is constructed following the methodology of Frazzini and Pedersen
(2014). In the beginning of each month, stocks are ranked in ascending order based on their estimated
beta. Stocks with a beta above the cross-sectional median are sorted to the high-beta portfolio while
stocks with a beta below the cross-sectional median are sorted to the low-beta portfolio. Stocks are then
weighted based on their deviation from the mean beta rank in the sample, ensuring that stocks with
lower (higher) betas receive larger weightings in the low-beta (high-beta) portfolios. Both the high- and
low-beta portfolio are then (de)leveraged to a beta of one at formation. The BAB factor is the return
of the low-beta portfolio minus the return of the high-beta portfolio. The BAC and BAV factors are
created following Asness et al. (2020), except we sort stocks into terciles instead of quintiles based on
correlation and volatility. At the beginning of each month, all stocks are sorted into terciles based on
their estimated volatility in the case of BAC and correlation in the case of BAV. Within each tercile, we
create the BAC (BAV) factors in the exact same way as for BAB, except we now rank on correlation
(volatility) instead of beta. The overall BAC (BAV) factor is then created by taking the simple average of
the tercile BAC (BAV). Panel A displays excess returns and alphas obtained from CAPM, Fama and
French (1993) three-factor and Carhart (1997) four-factor regressions. Both alphas and excess returns are
reported in monthly percentages with corresponding t-stats in parenthesis beneath them. Realized Beta
is the MKT coefficient from CAPM regressions. In panel B loadings of the Fama French three-factor
model with the momentum are reported, with corresponding t-stats in parenthesis beneath them.

Panel A: Regression Alphas and CAPM Beta

BAB BAC BAV

Small Big Small Big Small Big

Excess Return 1.06 0.83 0.57 0.48 1.00 0.37
(4.43) (3.58) (2.83) (2.65) (4.16) (1.98)

CAPM Alpha 1.17 1.11 0.64 0.61 1.11 0.57
(4.91) (5.17) (3.13) (3.49) (4.57) (3.20)

FF3 Alpha 0.96 0.88 0.50 0.48 0.98 0.44
(4.22) (4.40) (2.51) (2.89) (4.24) (2.68)

FF3 + MOM Alpha 0.37 0.47 0.14 0.16 0.54 0.34
(1.64) (2.32) (0.70) (0.93) (2.28) (1.92)

CAPM Realized Beta −0.13 −0.32 −0.08 −0.16 −0.12 −0.23

Panel B: Factor Loadings in FF3 + Momentum

BAB BAC BAV

Small Big Small Big Small Big

MKT 0.13 −0.06 0.10 0.02 0.03 −0.13
(2.69) (−1.51) (2.32) (0.54) (0.61) (−3.39)

SMB 0.13 0.29 0.33 0.50 −0.35 −0.25
(1.38) (3.48) (3.86) (7.18) (−3.63) (−3.38)

HML 0.39 0.36 0.19 0.14 0.36 0.28
(7.81) (8.07) (4.11) (3.63) (6.84) (7.23)

UMD 0.42 0.29 0.25 0.22 0.31 0.08
(7.95) (6.04) (5.21) (5.67) (5.58) (1.82)
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large and small sample than what we observed in the full sample. As the UMD factor

generates strong excess returns in our sample, the estimated alpha takes a large hit from

this loading.

For the betting against volatility strategy, we observe a pronounced difference between

the small and large sample. The strategy performs meaningfully better among the smaller

stocks compared to the larger ones. Within the smallest three quintiles, the estimated

monthly CAPM alpha of 1.11% is larger than the 0.93% obtained in the full sample. On

the other hand, the estimated CAPM alpha within the large sample is considerably lower

at 0.57%. Based on these results, we can infer that BAV seems to be more reliant on

the smaller stocks to achieve its results, at least in our sample. Controlling for FF3 and

UMD reduces the alpha within the small sample to 0.54%. Turning to the factor loadings,

we observe a marked difference between the large and small BAV portfolios. While the

loading of the large portfolio is insignificant, the UMD loading of the small portfolio is

highly significant at 0.31.

In the case of BAB, both CAPM and Carhart four-factor alphas tend to be robust to the

size of the stocks studied. Despite showing a concentration among the smallest stocks in

the full sample, the availability of these stocks does not seem decisive for the strategy’s

overall viability. The two largest quintiles in our set consist of stocks with a market

capitalization of above 3.3 billion NOK as of July 2023. Focusing only on this part of the

universe should make the strategies more feasible to implement in the real world. Hence,

the results obtained in this section indicate that BAB generates alpha, also in versions

that could be implemented by sizable investors. BAV on the other hand seem to be driven

more by the smallest stocks in our set.

Turning to BAC, the evidence is less conclusive. While the strategy generates significant

CAPM alphas in both the large and small bracket, the four-factor model is able to

explain the returns of the strategy in both the large and small bracket. When viewed in

conjunction with the value-weighted version of the strategy, we are not able to conclude

on correlation as a driver of the beta anomaly as of yet.
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5.6 Cross-Sectional Regressions

The time-series tests conducted so far point towards the existence of a beta anomaly at

the portfolio level in the Nordic markets. The evidence of systematic risk as a driver

of this effect is less conclusive. In this section, we test the pricing ability of beta and

correlation the firm level through Fama-MacBeth regressions.

According to CAPM, there should be a positive relation between an asset’s market beta

and return. This can be seen clearly in the following equation:

ER = RF + β(ERM −RF ) (5.4)

The presence of a beta anomaly would therefore imply either a non-positive or negative

relationship between beta and return. When testing the CAPM in our sample we start

with the following null hypothesis:

1) Beta is not positively related to return

Turning to correlation as a driver of the beta anomaly, we can test the relationship between

correlation and excess returns when holding volatility constant. If we replace beta with

its components:

ERp = RF + ρpm × σp
σm

(ERM −RF ) (5.5)

As market volatility is the same for all assets at time t, we can remove this from the

equation. Further holding volatility constant results in the following relation:

ERp = RF + ρpm × (ERM −RF ) (5.6)

Consequently, correlation as a driver of the beta anomaly would imply a non-positive

relation between correlation and return when controlling for volatility. Hence, we can test

the following hypothesis:

2) Correlation is not positively related to return when controlling for standard deviation
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We follow Han and Pan (2021) in utilizing Fama-MacBeth (1973) regressions to test these

hypotheses. Specifically, we run cross-sectional regressions on monthly return for each

asset each month in our sample. As explanatory variables, we use beta and correlation as

estimated using the method of Frazzini and Pedersen (2014). For regressions on correlation,

volatility (also as per Frazzini and Pedersen) is included as a control variable. We also

control for firm size, book-to-market and momentum (prior twelve-month return). The

results reported are the time series average of the coefficients obtained.

Our results are reported in Table 5.10. Consistent with the presence of a beta anomaly,

we fail to reject the null hypothesis that beta is not positively related to return. In fact,

we obtain a significant negative estimate for the relation between beta and excess return.

These results hold when controlling for size, book-to-market and momentum. This is in

line with the findings of Han and Pan (2021), and support the existence of a beta anomaly

in the Nordic markets.

Turning to correlation, the picture is more nuanced. When including only correlation and

volatility as explanatory variables, we find no significant relationship between correlation

and excess return. Interestingly, controlling for firm size does not change the missing

relationship. In line with our findings in the time series, size does not seem to be a priced

factor in our cross-sectional study either. This is contrary to the findings of Han and Pan

(2021), who find a positive and significant relationship between correlation and return

when controlling for size. Conversely, our volatility estimate exhibits a clear negative

relationship with return across both univariate and multivariate regressions. Viewed in

isolation, this finding is more in line with overall volatility as a driver of the low-risk effect

than correlation.

When adding book-to-market and momentum as explanatory variables, the relationship is

still insignificant at the 5% confidence level. Nevertheless, there is a clear tendency that

a positive relationship between correlation and return is appearing when controlling for

additional variables. Therefore, while we fail to reject the null hypothesis of no relation,

we are hesitant to conclude regarding correlation as a driver of the low-risk effect.
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Table 5.10: Fama-MacBeth regressions

This table displays the results of a range of Fama-MacBeth regressions on the Nordic stock market. Panel
A shows results of Fama and MacBeth (1973) regressions on excess returns with beta as the explanatory
variable. We use the rolling beta estimates obtained following the methodology of Frazzini and Pedersen
(2014). Each month, we run cross-sectional regressions on excess returns, with beta and a range of controls
as explanatory variables. Panel B reports results of Fama and MacBeth (1973) regressions on excess
returns with correlation and a range of controls as explanatory variables. We apply the same methodology
as in Panel A. Correlation and volatility are rolling estimates computed following the methodology of
Frazzini and Pedersen (2014). In the case of both A and B, the reported results are the time-series
average of the coefficients obtained in cross-sectional regressions. All coefficients are shown with their
Newey-West robust standard errors beneath them.

Panel A: Beta

1 2 3 4

Constant 1.37 1.14 1.26 1.64
(6.70) (1.53) (1.66) (2.52)

Beta −0.67 −0.74 −0.48 −0.45
(−3.20) (−3.45) (−2.11) (−2.03)

ln Market Capitalization 0.01 0.00 −0.03
(0.41) (0.05) (−0.94)

ln Book to Market −0.00 0.03
(−0.07) (0.44)

Momentum 0.94
(5.26)

Panel B: Correlation and Standard Deviation

1 2 3 4

Constant 1.27 2.30 2.10 3.35
(5.57) (3.06) (2.82) (4.96)

Correlation −0.30 0.25 0.28 0.69
(−0.80) (0.74) (0.75) (1.56)

Standard Deviation −12.23 −12.82 −8.74 −14.22
(−2.35) (−2.36) (−1.42) (−2.36)

ln Market Capitalization −0.05 −0.05 −0.12
(−1.75) (−1.59) (−3.93)

ln Book to Market −0.02 −0.01
(−0.29) (−0.14)

Momentum 1.03
(5.31)
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Our cross-sectional results echo those obtained in time series analysis. Our results when

examining the relationship between beta and excess returns offer support for the existence

of a beta anomaly in our sample. Regarding correlation, our results are more sensitive to

the model used to explain the results. When studying correlation with volatility as the

only control, we find no evidence of a positive relation between correlation and return.

This is in line with the notion of correlation as a driver of the beta anomaly. When

controlling for size, B/M and momentum, we do see contours of such a relationship, albeit

with a marginally insignificant estimate. Hence, the cross-sectional evidence for correlation

as a driver of the beta anomaly is inconclusive.



42

6 Conclusion

In this thesis we investigate the beta anomaly in the Nordic markets by answering three

questions: 1) Is there a beta anomaly in the Nordic markets? 2) Can the anomaly be

explained by systematic risk as proxied by correlation? 3) Are the answers to the questions

above robust across firm size? To answer these questions, we replicate the Betting against

beta (BAB), Betting against correlation (BAC) and Betting against volatility (BAV),

as presented by Frazzini and Pedersen (2014) and Asness et al. (2020). We test these

strategies in both their original rank-weighted and value-weighted versions and within size

brackets. Furthermore, we conduct Fama-MacBeth regressions to test the pricing ability

of beta and correlation at the firm level.

We find strong evidence of the existence of a beta anomaly in the markets studied. The

betting against beta strategy generates positive and significant alpha in both univariate

and multivariate regressions when replicated in the full sample. When tested in a value-

weighted version, BAB generates positive and significant CAPM and FF3 alpha. When

adding UMD as an explanatory variable, the estimated alpha is still positive, although

marginally insignificant at the 5% level.

Interestingly, when testing BAB within the two largest size quintiles of our sample, we

obtain significantly positive alpha estimates across both univariate and multivariate

regressions. Hence, we argue that BAB should be possible to implement profitably in a

more scalable version than the original replication. The existence of a beta anomaly is

further supported by our Fama-MacBeth (1973) regressions. Our estimated betas exhibit

a significantly negative relation with excess returns in the cross-section. This result holds

when including size, B/M and momentum as explanatory variables.

The evidence of correlation as a driver of the beta anomaly is less conclusive. While

CAPM alone is unable to explain the returns of the BAC strategy, the Carhart (1997)

four-factor model is. This result holds in both rank- and value-weighted versions, as well

as in both the small and large size brackets in our sample. BAC’s CAPM alpha is also

more sensitive to being restricted to the two largest (or three smallest) size-sorted quintiles

in our set than what we observed for BAB and BAV.
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A similar pattern emerges when we test the cross-sectional pricing ability of correlation

in Fama-MacBeth regressions. When correlation and volatility are the only explanatory

variables, correlation shows no ability to predict return. When adding size, B/M and

UMD, a positive relationship emerges. When viewed in conjunction with our time-series

tests, we are not able to conclude that correlation is a driver of the beta anomaly in our

sample.

Our findings support the idea that the beta anomaly can be exploited within the Nordic

markets. We find it encouraging to observe that the Betting Against Beta strategy can

generate returns that are robust to controlling for the Carhart (1997) also when restricted

from exploiting small-cap stocks. This indicates a potential for feasible implementation of

the strategy. When it comes to drivers of the BAB factor’s apparent success in the Nordics,

more research is needed. We were not able to find compelling evidence of systematic risk,

and hence the theory of leverage constraints, as a driver of the anomaly in our thesis.
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Appendices

A Nokia and Ericsson

Figure A.1 illustrates market capitalization of Nokia and Ericsson as a proportion of total

market capitalization over time. As we can see, the companies represented a meaningful

share of our market during the late 1990s to early 2000s. At most, the two companies

combined constituted above 60% of our market index.

Figure A.1: Nokia and Ericsson’s share of total market capitalization

Fig A.1: This figure illustrates the combined share of total market capitalization over time for Nokia and
Ericsson combined. Market capitalization for all companies is calculated in NOK on a monthly basis.

We use a value-weighted market index for both beta estimation and regressions on monthly

returns. One could worry that the observed dominance of only two companies in our

market could lead to skewed results. We therefore report results of beta-sorted portfolios

and the BAB factor when we exclude Nokia and Ericsson from our set. The companies

are excluded from both the daily data used to estimate ex-ante betas and the monthly

set used in regressions. The companies are also excluded when constructing SMB, HML

and UMD. As we can see in Table A.1, our main findings are robust to excluding these

companies from our sample. The CAPM alpha of the BAB factor is reduced slightly

from 1.1% to 0.89%. However, the strategy still generates positive and significant alphas

both in CAPM, Fama and French (1993) three-factor, and Carhart (1997) four-factor

regressions. Furthermore, the overestimation of betas is less severe when excluding these
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companies. This can be seen both across the beta-sorted quintiles, and the BAB factor

where realized beta falls from -0.21 to -0.08.

Table A.1: BAB and beta-sorted portfolios, without Ericsson and Nokia

This table offers an analysis analogous to Table 5.1, but with Ericsson and Nokia omitted from the sample.
The five beta portfolios are quintiles sorted on ascending ex-ante betas. In the beginning of each month,
stocks are assigned to its designated portfolio. Once all stocks are placed within a given portfolio, returns
are equal-weighted, with monthly rebalancing. The BAB factor is constructed by assigning all stocks
into one of two portfolios, low and high, depending on whether the stocks’ beta is below or above the
cross-sectional median beta. Weightings are performed in a rank-based manner, meaning that securities
with a lower (higher) beta have larger weights in the low (high) portfolio. Both portfolios are (de)levered
to have a beta of 1 at portfolio formation. Portfolios are rebalanced and rescaled at the beginning of
each month. The BAB factor is a self-financing portfolio that is long the low portfolio and short the
high portfolio. The excess returns of the portfolios are regressed on the market excess return, the Fama
and French (1993) three-factor model and the Carhart (1997) four-factor model. Alphas are reported
in monthly percentages with corresponding t-stats in parenthesis beneath them. Ex-ante beta is the
time-series average beta estimate of the portfolios, while Realized Beta is the market beta obtained from
monthly CAPM regressions of portfolio excess return on market excess return.

1
(Low β) 2 3 4 5

(High β) BAB

Excess Return 0.81 1.00 0.87 0.88 0.76 0.83
(4.31) (3.75) (3.32) (2.85) (1.79) (4.66)

CAPM Alpha 0.34 0.34 0.09 −0.05 −0.49 0.89
(2.40) (1.98) (0.68) (−0.40) (−2.37) (4.98)

FF3 Alpha 0.19 0.21 −0.01 −0.15 −0.55 0.74
(2.18) (1.62) (−0.16) (−1.39) (−3.00) (4.48)

FF3 + MOM Alpha 0.17 0.18 0.09 0.05 −0.03 0.35
(1.78) (1.36) (0.82) (0.40) (−0.14) (2.16)

Ex-ante Beta 0.66 0.82 0.94 1.07 1.34 0

Realized Beta 0.56 0.78 0.92 1.10 1.48 −0.08
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