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Abstract

In this thesis we conduct and exploratory analysis of the variability in the lifetime of

maritime thruster components. The main objectives for the thesis have been to determine

what causes the variability in the lifetime and to determine if weather variables can be

one of the factors that affect the variability in lifetime.

We have used a Random Forest classifier which is a method within machine learning. The

Random Forest classifier was used to establish which characteristics that are important

when determining if a component has sustained or failed. We also conducted a descriptive

analysis to visualise and present the characteristics of the breakdown data. For the

descriptive analysis have included data on seasonal weather patterns and locations for the

breakdown of the components. This is to determine the relationship between them.

We have concluded that the Random Forest classifier has a high probability of capturing

whether a component sustain or fail based on the variables we have used to build it. The

model reveal that a vessel’s physical characteristics are the best indicators of whether

a component will fail or sustain its expected lifetime. From the descriptive analysis we

have concluded that we do not have enough data or information to definitely establish

the relationship between weather and the breakdowns of components. At the same time

we don’t reject the possibility of a correlation between adverse weather and component

failure.

Keywords – Thruster Components, Machine Learning Model, Random Forest Classifier,

Failure, Adverse Weather, Lifetime Variability, Spare Part Management, Condition

Monitoring, Maritime Industry, Propulsion, Weather Seasonality
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1 Introduction

The maritime shipping industry is one of the largest industries globally and carries more

than 80% of the world’s trade volume. Consequently, the industry is highly volatile

during global crises, which also directly affect supply chains in the global trading market

(UNCTAD, 2022). In the 2023 Review of Maritime Transport, UNCTAD’s Secretary-

General Rebeca Grynspan emphasised the importance of balancing environmental

sustainability, regulatory compliance, and economic demands to create an equitable

and resilient future for maritime transport (UNCTAD, 2023).

Given its vast scale, the maritime industry offers a substantial customer base. The need for

reliable propulsion is a universal requirement for all vessels. Thruster components, which

are vital for the propulsion, have an expected lifetime and require regular replacement.

When manufacturing series of identical components, similar lifetimes are expected for

these components. However, due to various factors, there can be significant variations in

their actual lifetimes. Understanding why these variations occur presents an opportunity

for optimising spare part management. This optimisation can lead to better predictions

of spare part demand and further reduce vessel downtime because of unexpected repairs.

In the shipping literature, there is a vast amount of research that tries to quantify weather-

related impacts on maritime operations. Ship weather routing is an approach to finding

the optimal path and speed for a voyage while considering adverse weather conditions

such as wind and waves. The objectives of ship weather routing research have varied, but

typically relate to economic optimisation, like fuel consumption (Zis et al., 2020).

Despite extensive studies of how weather affect vessel operations, there remains an

unexplored area on weathers impact on component lifetime in the maritime shipping

industry. The existing literature has outlined that there is a relationship between rough

weather conditions and the load the vessel experience. This gives us reason to believe that

adverse weather can have an effect on the wear of components on the vessel, and thereby

also the variability in lifetime. This thesis aim to investigate the gap in the literature

where we will analyse weathers potential effect on thruster component breakdowns. We

will focus on thruster components, which are highly affected by resistance and load caused

by weather conditions.
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Based on existing theory, we hypothesise that there is a correlation between weather

conditions and the breakdown of vessel components. This hypothesis is founded on the

understanding that adverse weather conditions place a higher load on propulsion systems,

which leads to increased wear of components. This thesis will conduct exploratory research,

applying existing theories to address the research questions. Due to the broad nature

of our research design, we will divide the research questions into two parts for a more

in-depth analysis. The first part will try to answer the following research question:

What thruster and vessel characteristics can distinguish the components that sustain its

expected lifetime?

The objectives for this research question are threefold. First, we aim to identify

relevant characteristics for predicting the lifetime of a thruster component by making an

educated choice based on the literature review. This involves selecting influential vessel

characteristics. Second, we will develop a Machine Learning (ML) model using Random

Forest classification that incorporates our chosen variables. Finally, we will analyse and

present the model’s results, focusing on determining which variables most effectively

distinguish the sustained from the failed components. In the second part of the analysis

we will try to answer the second research question:

How does the weather affect the variability in the lifetime of thruster components?

The objectives for this research question are, firstly, to select weather variables that may

influence component failure, based on our literature review findings. Secondly, we aim to

conduct a comprehensive descriptive analysis of the collected data, related to weather and

component breakdowns. This includes examining the variability in component lifetimes,

comparing the locations from breakdown and the weather. Our main objective is to

identify patterns linking weather to component breakdowns.

By addressing these research questions, we discovered that the physical characteristics

of the vessels are important features to determine whether a component will sustain its

lifetime or fail prematurely. Additionally, we identified patterns linking breakdowns to

adverse weather in the form of wave height and wind speed, suggesting a relationship

between them.
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Our thesis is organised in the following manner: First, we present the theory and literature

review as a background for the research topic of our thesis. Here, we explain the theory

regarding vessel propulsion, ship weather routing, and spare parts management. Second,

we introduce the data we have used and analysed, which includes records related to the

breakdowns of components, vessel characteristics, weather data and location data. In this

section, we will also explain how we split and merge the data specifically for each of the two

research questions. Third, we present the methods used to analyse the data, transforming

the data into useful insights. Finally, we present the results from our ML model and

perform the descriptive analysis, before moving on to the discussion and conclusion of our

thesis.
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2 Theory & Literature Review

The following section provides a foundational understanding of various elements crucial

to maritime operations and thruster component analysis. It delves into the mechanics

of vessel propulsion, examining how principles of physics and engineering intersect to

enable vessel movement. This section also looks into ship weather routing, highlighting

the impact of weather conditions on maritime navigation and the methodologies used to

optimise routes. Furthermore, it delves into spare parts management, focusing on the

balance between inventory control and operational efficiency. The insights gained from

this literature review form the bedrock for understanding the complex interplay between

vessel operation, component durability, and external environmental factors.

2.1 Propulsion

In maritime vessel operations, understanding propulsion is key to how vessels move through

water. Propulsion is the mechanism that drives a vessel forward, and this subsection

delves into the basal principles of this process, going into the mechanical engineering of

the propulsion, Newton’s laws of motion, and fluid dynamics.

2.1.1 Propulsion Mechanism

A vessel’s propulsion is primarily achieved through its propeller (Carlton, 2018). The

principles of Newton’s laws of motion are applied in this context. Newtons first law

explains the law of inertia. In the context of a vessel it would imply that the vessel

remains stationary or maintains a constant speed unless acted upon by a force. The

second law, expressed as F = ma, highlights that the propeller’s force dictates the vessel’s

acceleration, linking the propeller’s exerted force directly to changes in the vessel’s speed.

Moreover, external factors like wind, waves, and currents also play a significant role in

influencing the vessel’s velocity (Lewis, 1988; Lloyd, 1998). The third law, each action has

an equal and opposite reaction, becomes evident in the propulsion process. The propeller

transforms the engine’s power into rotational energy, conveyed via the propeller shaft.

The propeller’s rotation creates a force that thrusts water in the opposite direction causing

the reaction that propels the vessel forward.
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In addition to Newton’s laws, fluid dynamics and hydrodynamics play a significant role

in propulsion. Bernoulli’s principle state that a rise in a fluid’s velocity leads to a drop

in its static pressure or potential energy and is essential for grasping the operation of

propellers. This principle is applied in the design of marine propeller blades to generate

thrust. As these blades spin through water, they are crafted to lower pressure at the front,

while elevating it at the rear. This design effectively drives water backwards, creating the

propulsion force necessary to move the vessel forward.

In propeller design, the blade pitch and the type of propeller are of utmost significance.

The blade pitch is defined as the theoretical distance a propeller would move through the

water in one revolution. This distance is determined by the angle of the propeller blades

relative to the propeller shaft. However, in actual operation, there is a difference between

the theoretical pitch and the actual forward movement in water, known as slip (AB

Marine, 2023; Wärtsilä, 2023). Propellers are designed as either Fixed Pitch Propellers

(FPP), which have a set blade angle, or Controllable Pitch Propellers (CPP), which

feature adjustable blade angles. This adjustability in CPPs allows for changes in vessel

speed without adjusting the engine rotations per minute (RPM), offering benefits in fuel

efficiency and maneuverability. However, they require a higher initial investment and

more complex maintenance (Marine Insight, 2023).

In summary, propulsion in maritime vessels is an intricate interplay of mechanical design,

application of fundamental physics laws, and fluid movement dynamics. A comprehensive

understanding of these aspects is essential to grasp how various external factors, including

weather and sea conditions, can influence a vessel’s performance and the reliability of its

components.

2.1.2 Propulsion Research

We have now established the forces that are set to motion during a vessel’s sea operation.

An extensive amount of research have been analysing these forces in practice and how

they affect the economical operation of the vessel. The literature have focused on diverse

methodological strategies to minimise operating expenses and fuel consumption given

both the oceans natural resistance due to its chemical matter and the added resistance

caused by weather. Added resistance, that lead to increased fuel consumption, is referred
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to as the weather margin or the sea margin in the literature.

Magnussen (2017) have done a review of a variety methods of calculating the weather

margin to make a new rational calculation of weather margin. The thesis support the

theory of added resistance due to weather in the context of calculating the weather

margin. Magnussen (2017) emphasises the importance of accurately calculating the sea

margin because it is crucial for estimating the required power for a vessel’s operation,

which affects fuel consumption and, consequently, operating costs. When calculating the

added resistance Magnussen’s thesis uses a method from the International Organisation

for Standardisation (ISO) 15016:2015. The selection of International Organization for

Standardization (2015) for Magnussen’s thesis is based on its status as a widely recognized

standard and its simplicity. The resistance is calculated as in Equation 2.1.

∆R = RAA +RAW +RAS (2.1)

In this equation, ∆R represents the total increase in resistance. RAA is equal to the

added resistance due to wind, RAW is added resistance due to waves, and RAS is added

resistance due to deviations in water temperature and density. Magnussen (2017) further

decompose each variable mathematically and explains in detail how they effect the total

added resistance. For the sake of our thesis we will explain it in simpler terms. Firstly,

the RAA is a function of the angle and density of air, the vessels speed over ground and

the transverse projected area of the vessel above the waterline. Secondly, the RAW is a

function of wave frequency, density and height relative to the size of the vessel. This

variable omits waves that are not head on the vessel. Lastly, the RAS is a function of water

density, temperature, and friction, which again is a function of the wetted surface area of

the vessel and its speed. The effects from calculating the RAS was found to make a small

difference in the overall result and was therefore omitted from the method. In addition to

using ISO 15016 to calculate the resistance, Magnussen (2017) also investigates the added

resistance due to deterioration in the form of hull roughness and fouling.

Nilsson and Nilsson (2021) wrote a thesis where they tried to capture the seasonality of

weather margin using ML models. They highlight the fact that vessel speed is the number

one predictor for fuel consumption, which is also agreed upon in the literature (Adland
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et al., 2020; Gkerekos et al., 2019; Wang et al., 2018). Nilsson and Nilsson (2021) use

a function by Meng et al. (2016) to explain how increased resistance also increase the

effective power needed to move the vessel thorough the water. The effective power, PE, is

denoted as

PE = RT × V (2.2)

where V is the vessel speed and RT is the total resistance. The total resistance is further

decomposed into

RT = RF +RR +RA (2.3)

where RF is the frictional force of the hull and the propeller, RR is the residual resistance

mainly caused by waves, and RA is the resistance caused by wind. This theory is an

explanation for the forces that drive fuel consumption, and increase weather margin.

To calculate the seasonal variability in weather margins, Nilsson and Nilsson (2021) did

a case study where they selected two vessels for two specific voyages in assistance with

Western Bulk. One was a Handysize vessel in the North Pacific Ocean, where Western

Bulk had noted highly variable fuel consumption, and the other was a Supramax vessel in

the North Atlantic Ocean. In their case study, they found a seasonal variance of 12.3%

and 6.4% for the Handysize and Supramax, respectively. There is a degree of uncertainty

in these results. Nonetheless, the study demonstrated that, despite the uncertainties,

their vast amounts of historical weather data could be utilised to estimate averages and

variances in seasonal weather margin (Nilsson & Nilsson, 2021).

The research of Magnussen (2017) and Nilsson and Nilsson (2021) summarises the impacts

of natural and weather-induced resistances on maritime operations. It emphasises the

importance of precise weather margin calculations and highlights how the vessel’s speed

and resistance influences the power required for movement.

2.2 Ship Weather Routing

In relation to increased resistance from weather, there has been developed methods to

finding the optimal travel path for a vessel, also known as ship weather routing. This
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method is a specific approach that aims to determine the most economical route between

ports and avoid unfavorable weather conditions. Ship weather routing is built on the

assumption that weather has an impact on the economical performance of a vessel. Various

methods, including path finding algorithms, ML, and artificial intelligence, have been

explored to optimise vessel operation variables such as fuel consumption, travel time, and

overall costs (Zis et al., 2020). We aim to summarise literature that can say anything about

how adverse weather, due to increased resistance, affect the lifetime of thruster components.

Specifically, how weather can affect the cost of maintenance due to breakdowns.

Staveland and Strømsnes (2022) investigated the extent to which climate risk is assessed

when calculating the Time Charter Equivalent (TCE) for a given route. The TCE is a

performance measure for a vessel, calculating the average daily revenue for a given voyage

(Hayes, 2021).

TCE =
Voyage Revenues − Voyage Costs

Roundtrip Voyage Duration in Days
(2.4)

Staveland and Strømsnes (2022) substantiate the argument that severe weather increases

the forces driving the vessel forward, which can lead to wear on thruster components. They

discovered that the most fuel-efficient routes are those encountering the lowest wave heights

and wind speeds. These factors significantly impact vessel resistance, thus influencing

the power required to propel the vessel. They also concluded that weather variations

should be considered in decision-making related to fuel consumption. Hence, their thesis

supports the theory that weather conditions significantly influence the resistance faced by

a vessel during operation.

Gershanik (2011) briefly address the topic of how weather conditions relate to the

breakdown of vessel components. The paper states that there are benefits of avoiding

rough weather to reduce vessel damages while it allows for better predictions of estimated

time of arrival (ETA) to ports. Better estimation of ETA increase the possibility to plan

port operations, maintenance and repairs at dock and reduce the demurrage1.

1Demurrage is a fee that the charterer pays daily to the vessel owner for not completing the loading or
unloading process within the allotted time specified in the charter party. This charge becomes applicable
when a vessel exceeds the agreed timeframe. The demurrage charges continue uninterrupted once they
begin, regardless of any standard non-working days that may occur during the period (Panayides, 2018).
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In a paper, presenting a new approach for ship weather routing, Chen (2002) notes

the scarcity of literature on vessel damage caused by the weather conditions. Chen

suggests a new approach to weather routing while questioning the effectiveness of current

weather routing strategies in preventing accidents and losses. The paper contributes to

the literature by introducing the Vessel Optimisation and Safety System (VOSS). It is a

software designed to predict a ship’s seakeeping and speedkeeping capabilities in any sea

state. Specifically, it has an advisory module that answer ’what if’-modules e.g., like how

changing speed and heading will affect the vessel’s roll2 and pitch3.

The VOSS software system is built using advanced technologies for accurate weather

forecasting using supercomputers, major organisations, and satellites. It predicts the

ship’s response to waves using naval architecture and hydrodynamics, in addition to sensor

technology to notify the ship’s crew of the motion and stress the hull is experiencing, even

in situations with poor visibility4.

The literature review conducted by Zis et al. (2020) implicitly makes it clear that there

is a gap in the literature, where there is limited focus on material damage caused by

weather. Among the papers mentioned in the review, we found only one instance that

focuses on material damage due to weather. This particular instance of material damage

was related to containers lost at sea, as recorded by the World Shipping Council, an

organisation working to enhance safety and reduce the number of containers lost at sea

(World Shipping Council, 2023).

In this section, we’ve explored how weather conditions affect maritime operations,

particularly focusing on vessel component breakdown and ship weather routing. The

literature review conducted by Zis et al. (2020) reveals a notable gap in understanding the

material damage caused by weather. Staveland and Strømsnes (2022) found that routes

with lower wave heights and wind speeds are more fuel-efficient, highlighting the influence

of weather on vessel resistance and fuel consumption. Gershanik (2011) discussed the

operational benefits of avoiding rough weather like reduced damages and improved ETA.

2Roll refers to the side-to-side or port-starboard tilting motion of a vessel, occurring around the ship’s
longitudinal axis.

3Pitch is the up-and-down movement of a vessel’s bow and stern, happening around the ship’s
transverse axis.

4A client’s internal study showed an 80% decrease in heavy weather-related delays, 73% reduction in
structural damage claims with a 29% decline in claim costs, and an 87% decrease in cargo damage claims.
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2.3 Spare Parts Management

This section will focus on the challenges related to planning for spare part departments,

laying the groundwork for analysing the consequences of unforeseen failures in vessel

components. The consequences can be seen in the light of the vessel-owners or the spare

part suppliers. We will try to have a holistic approach to the theory as spare parts

management can be a advantageous in both the supply and demand side of the equation.

For example, integrating a conditional monitoring system on vessels can aid in planning

component renewals for vessel-owners, while suppliers can offer integrated monitoring

solutions for their specific components.

The maritime industry is a capital intensive industry, characterised by high-value assets

with long expected lifetime. Inventory management is a crucial aspect of spare parts

management and involves avoiding both excess stock and stock-outs. For capital intensive

companies, the cost of ownership plays a significant role in the decision-making process.

Consequently, spare parts management departments must conduct a trade-off analysis

between stock levels and asset availability. In other words, they need to find the optimal

balance between inventory holding and inventory turnover (Durán et al., 2023). Excessively

high inventory levels are associated with costs such as storage, insurance, obsolescence,

and capital being tied up, which could be more effectively used elsewhere. Conversely,

excessively high inventory turnover may lead to a sudden inability to meet market demand,

resulting in lost sales and the potential damage of customer relationships (Muller, 2003;

Stevenson, 2018).

A well-informed choice about inventory size can be made by attempting to forecast demand.

Generally, the demand for spare parts exhibits a lumpy, erratic, or intermittent pattern

with large variations in the interval between two occurrences of demand, i.e. long series

of zero demand. This is due to spare parts characteristics, like having a longer lifetime

and the nature of the demand pattern (Mouschoutzi & Ponis, 2022; Pinçe et al., 2021).

In the maritime industry, the demand for spare parts is largely driven by maintenance

policies. These policies can be divided into corrective maintenance (CM) that take place

after the failure of a component, and preventive maintenance (PM) that is proactive,

aiming to maintain items in a specific condition and predict the remaining useful lifetime

(RUL). PM uses strategies and methods like periodic inspections and continuous condition
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monitoring to time their maintenance and plays a role in the deterministic (partially)

planned demand for spare parts. On the other hand you have the unplanned demand for

CM operations where you don’t know the timing nor quantity in advance. The demand

for spare parts in CM is therefore stochastic and hard to predict (Mouschoutzi & Ponis,

2022).

Based on the characteristics of spare part demand, various techniques have been employed

to predict and forecast spare part demand. One widely used approach is the analysis

of historical time series data (Pinçe et al., 2021; Van der Auweraer et al., 2019). The

advantage of this method lies in its simplicity, as it relies solely on historical consumption

data to forecast future demand (Mouschoutzi & Ponis, 2022). However, a significant

drawback of this approach is the maritime sector’s lack of sufficient failure-related data

(Xu et al., 2014).

2.3.1 Conditional monitoring

To address the substantial costs incurred from CM following component failure, we will

explore theories on the potential advantages of implementing condition monitoring as a

proactive maintenance approach. Condition monitoring is the process of continuously

collecting data on various parameters related to the health of a component (Ahmad &

Kamaruddin, 2012).

Knutsen et al. (2014) have published a position paper on behalf of DNV to explore

condition monitoring in the maritime industry. The motivation behind this paper stems

from the observation that a significant portion of component failures follows a random

distribution. Research conducted by United Airlines identified six failure patterns, as

illustrated in Figure 2.1, revealing that 89% of failures were not age-related (Nowlan &

Heap, 1978). In the shipping industry, the proportion of random (or non-age-related)

failures is found to be just over 70%. The most effective way to address these random

failures is to detect them before they occur, which can be achieved through condition

monitoring.

Knutsen et al. (2014) outlines specific methods for performing condition monitoring.

Relevant to this thesis is the data-driven approach, which utilises historical failure data

to identify failure patterns using techniques such as clustering and neural networks.
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However, this method has a drawback: it requires a substantial amount of detailed data

on past failures. Additionally, it assumes a consistent underlying stability in the system

or component being monitored.

Figure 2.1: Possible failure rate patterns by United Airlines (Knutsen et al., 2014).

Leppänen (2021) has written a master thesis with the focus on creating a digital twin

for predicting fatigue in bearings and shafts of thruster drivelines5. The thesis is written

in collaboration with Kongsberg Maritime (KM) and their digital twin project. A

digital twin is a representation of a physical asset in a digital environment, allowing for

detailed analysis. The thesis emphasises the potential of using digital twins in predictive

maintenance, allowing for more efficient planning and unexpected failures. Leppänen

(2021) also elucidates the bearing model and its expected lifetime where he outlines the

theoretical basis for bearing life calculations, referencing ISO standards. International
5A thruster driveline in vessels refers to the mechanical system that transmits power from the engine

to the thruster. This system typically includes components such as shafts, bearings, gears, and couplings,
and is crucial for efficient and controlled navigation, especially in challenging environments.
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Organization for Standardization (2004) divides the bearing failure into six modes: fatigue,

wear, corrosion, electrical erosion, plastic deformation, and fracture and cracking. This

specific component is relevant to our thesis, as roller bearings are included in the breakdown

data from KM that we will present and analyse.

Leppänen (2021) discusses the interconnected nature of failure modes in bearings,

illustrating how e.g. corrosion can lead to particle contamination in lubricants. This

contamination may subsequently cause wear not only in the bearing itself but also in

other components along the lubrication line, highlighting the complexity of bearing failure

mechanisms.

In summary, this section has outlined the challenges and strategies in spare parts

management for the maritime industry. It emphasises the importance of balancing

inventory levels with asset availability, especially in the context of high-value, long-lifetime

assets. We have discussed the impact of the maintenance policies on spare parts demand,

distinguishing between CM and PM, and addressed the challenges in predicting spare

part demand due to its intermittent nature. We have explored the potential of condition

monitoring as a proactive approach to maintenance. This section also highlights the

complexities of maintenance and the benefits of digital technologies, like digital twins, for

predictive maintenance.
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3 Data

The main dataset for our master’s thesis is data on thruster component breakdowns,

which was provided to us by KM. Additionally, we have collected weather data from the

Climate Data Store provided by Copernicus Climate Change Service (C3S). To compare

the weather with the component breakdowns, we needed to determine the vessel’s location.

This was achieved using data collected from the Automatic Identification System (AIS)

via the UN Global Platform.

3.1 Breakdown data

To analyse the potential relationship between the failure of thruster components due

to adverse weather, we will rely on component breakdown data received from KM.

KM has retrieved and merged this data from internal databases within their Customer

Relationship Management (CRM), Enterprise Resource Planning (ERP), and Product

Lifecycle Management (PLM) systems. The dataset is a time series and includes

information about the installation of propulsion components. The raw data comprises

214,394 rows with 1,992 unique International Maritime Organisation (IMO) numbers.

Each row in the data represents the installation of a thruster component for a specific

vessel. When a component is replaced, its replacement date is recorded, indicating that

the component is no longer in use. Additionally, the new component appears as a new

row in the data. For more details on the structure of the data, see Appendix A.

The column var_match in the data shows if the component has sustained its expected

lifetime or failed prematurely. All the components gets an initial classification of being

sustained when they are first installed. If the component is replaced before its expected

lifetime it will get marked as failed. Since the installed base are all categorised as sustained

even though they have not yet lived their expected lifetime, the ratio between number of

sustained and failed components are skewed. Figure 3.1 shows this distribution.

A weakness with the data is that there is no guarantee that the date of installation

perfectly correlate with the real date of component breakdown. The replacement date is

recorded by an Installed Product Data Base (IPDB) that monitors whether the unique

combination of components in the thrusters sytem has been altered. If it monitors any
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Figure 3.1: Distribution of sustained (S) and failed (F) components.

changes in the combination it records the "time of replacement" in the system. This means

that there can be variations in the failure of the component and the time of replacement

if the vessel do not have a spare part available at the time of failure. As we noted in

the literature by Stevenson (2018), there is a high cost of having excessive spare parts

in storage. Therefore we can assume that some spare parts has to be ordered by the

vessel-owners, and that it may take time from failure until replacement. Delivery and

replacement time may vary, but we can still assume a correlation between the replacement

date in the data and the moment of failure.

3.2 Vessel data

For information about the vessel we have gotten access to Lloyd’s List Intelligence (LLI).

This is used to establish the physical characteristics of the vessels we will analyse from

the break down data. The LLI enables access to the most recent vessel information by

utilising algorithms and AI tools. These tools interrogate and validate millions of data

points, thereby collecting rich and reliable maritime data (Lloyd’s List Intelligence, 2023).

From the vessels physical characteristics we have chosen to look closer at the variables as

shown in figure 3.1.
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Variable Description

IMO International Maritime Organisation number, a unique
reference for ships and vessels.

BUILT Year when the vessel was built.

DWT Deadweight tonnage, a measure of how much weight a
vessel can safely carry.

VESSEL_GEN_TYPE_CODE General type code for categorising the vessel, which
explain for which purpose the vessel has been built.

LOA Length Overall, the maximum length of the vessel.

Table 3.1: Description of variables in Lloyd’s List Intelligence.

The characteristics we have chosen are based on findings in the literature regarding

increased resistance. In accordance with Newton’s law and the effective power needed

to move a vessel through the water, we decided to use deadweight tonnage (DWT) as a

measure of the vessel’s mass. Furthermore, we wanted to use length overall (LOA) to

consider the increased resistance from waves and wind on the vessel’s surface area. We

also wanted to see if the type and age of the vessel had an effect on the durability of the

thruster.

3.3 Weather data

In order to assess the effect weather may have on thruster component breakdown, we rely

on third-party weather data from C3S. The dataset used in this thesis is the ERA5 hourly

data on single levels from 1940 to present (Hersbach et al., 2023). This dataset has an

hourly temporal resolution and contains a large range of weather variables.

For the purpose of our thesis we have made a selection of weather variables to investigate.

This selection was guided by insights from previous research. As highlighted in our

literature review, studies such as those by Lewis (1988) and Lloyd (1998) emphasise the

impact of external factors like wind and waves on a ship’s velocity. Additionally, the

master’s thesis by Staveland and Strømsnes (2022) provides further reasoning, stating

that routes with the lowest fuel consumption per day are those encountering the lowest

wave heights and wind speeds. In addition they claim that these weather variables are

known to contribute to vessel resistance and, consequently, increase fuel consumption.
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For our analysis of wind variables, we are primarily interested in the speed of the wind.

While the direction of the wind can also be relevant, its impact is more meaningful when

considered in conjunction with the vessel’s direction. Magnussen (2017) calculations of

added resistance due to wind, take into account the relative wind direction, resulting in

varying resistance depending on the wind’s orientation to the vessel. The ERA5 dataset

includes the 10-meter u and v wind components, denoted as u10 and v10. These represent

the wind speeds 10 meters above the surface, with u10 indicating the west-to-east and v10

the south-to-north wind components. Both are measured in meters per second. Analysing

these wind components separately in individual heatmaps might not yield significant

insights. However, by using the u10 and v10, we can calculate the average wind speed for

the different seasons, offering a more comprehensive understanding of wind conditions

and their potential impact on maritime operations. The wind speed is calculated by

Equation 3.1 and is the wind speed in knots from any given direction (European Centre

for Medium-Range Weather Forecasts, 2023).

Wind Speed =
√
u2 + v2 (3.1)

When considering the different wave variables, we aimed to capture the effect of adverse

weather, and therefore chose to focus on the maximum height of the waves, averaged over

the seasons. This variable is an estimate of the height of the expected highest individual

wave within a 20-minute time window. By averaging the maximum wave height across

each season, we can gain insights into the seasonal variations in wave conditions.

For the creation of heatmaps, we used the Climate Data Store API to download weather

data. We downloaded data for each of the selected weather variables at three-hour

intervals, covering every season of each year globally, from 2019 to 2023. We computed the

mean values across all the time points for each season. The means were then visualised as

heatmaps, providing us with an averaged representation of each season over the specified

years. The decision to download data at three-hour intervals, as opposed to hourly, was

necessitated by the sheer volume of data involved.

In addition to the API, we have used time series data on wave height in the North

Sea collected from the Climate Data Store Toolbox Editor (Copernicus Climate Change
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Service, 2023). The Toolbox processes the specified variables, in our instance the maximum

wave height, and computes the maximum value for each month, averaged over the chosen

location. Considering the significant seasonal variations worldwide, we have focused our

analysis on a smaller area. For the purpose of this insight, we have narrowed the area

down to the North Sea, with longitude from -4.8 to 11.04 and latitude from 50.99 to

61.06 (Appendix A). This results in a graph from January 2019 and onward, depicting

the monthly maximum wave height for the North Sea.

3.4 Location data

To be able to analyse the weather that has impacted the vessels, it was necessary to

retrieve data about their travel paths. The location dataset was sourced from the AIS

data provided by the United Nations Global Platform, UN-CEBD. By using the IMO

numbers from the breakdown datset, the vessels were filtered from a 12 TB AIS database

including 4 billion positions. Data processing was carried out in a Spark environment

within a big data cluster hosted on Amazon Web Services (AWS).

The extracted data is in EPSG:4326 format and includes approximately 9 million positions

distributed on 1804 vessels. The data spans from January 1st 2019 to October 30th 2023,

and is collected with three hour intervals. There are some missing values in the data

where locations are not collected at the 3 hour intervals for each vessel.

3.5 Data mining and pre-processing

This section include the choices we have made regarding merging and cleaning of the

data. Since the analysis is two folded and each part requires different data we will end

up with two different datasets; one for the ML model and another for the descriptive

analysis. In Table 3.2 the processing and reduction that is common for both the datasets

are presented.

3.5.1 Filtering and Selection

We start with the breakdown data, with 214,394 rows. Within this dataset, certain IMO

numbers appeared unusual, such as 1111111. Closer examination revealed that these
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Processing Step Data Length Reduction

Initial data length 214,394 -

Removing unusual IMOs 207,839 6,555

Keeping only FAMILY ’TT’ 206,597 1,242

Filling expected lifetime 206,597 0

’Installation_Year’ ≥ 2003 195,255 11,342

Dropping NaN ’Installation_Year’ 195,255 0

Dropping NaN ’Replaced_Year’ 49,223 146,032

’Days_Difference’ ≤ 7 47,534 1,690

Final data length 47,534 -

Table 3.2: Data processing steps and reduction count.

IMO numbers contained multiple vessels, deviating from the standard of representing a

single vessel. Given the critical role of the IMO number in merging and gathering of data,

we opted to exclude those entries. This exclusion resulted in the removal of three IMO

numbers, affecting 6,555 rows, which suggests that not all records in the dataset have

been registered with the correct IMO number.

Figure 3.2: Distribution of the FAMILY categories.
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In the breakdown data, we find information related to three types of thrusters: the classical

tunnel thruster (TT), the azipull thruster (AZP), and the swing-up azimuthing thruster

(TCNS). Figure 3.2 shows the distribution of components for each type of thruster. There

is an abundance of components related to the TT, which is also the standard thruster

used by KM. Our focus on the TT led to the exclusion of 1,242 rows from the data, with

the distribution of TCNSs and AZPs removed detailed in Appendix A. This filtering

where we only focus on TTs is based on several reasons. Firstly, the TT represents the

largest product class. Secondly, excluding the other thruster types reduces the dataset

by only a small margin, making the TT data more representative. Finally, the results

of our analysis are likely to be more consistent, as the data will be more homogeneous,

exhibiting similar characteristics. Moreover, this also enhances comparability.

To measure if the component has sustained the expected lifetime, we need to know what

the expected lifetime for all components. There are some missing values in the expected

lifetime column, as shown in the appendix, Table A.2. Components that share the same

product ID has identical expected lifetime. We can therefore reliably fill in the missing

values for these components by matching them with the expected lifetimes from the same

product ID.

count min 25% 50% 75% max

Installation 203,615 1937-01-01 2008-04-17 2011-04-05 2016-04-18 2023-09-19

Replaced 50,753 2007-05-31 2014-07-14 2018-01-12 2020-06-15 2023-09-19

Table 3.3: Summary statistics for installation and replaced years Before Filtering.

Table 3.3 shows that the registration of installations start in 1937, but 75% of the data

is registered from 2008 and onward. Figure 3.3 shows the distribution of installation

and replaced year. The figure shows that there is a low number of registration of

installation prior to around 2003. Post-2003, there is an increase in the number of

registered installations. Based on the lack of data prior to 2003, we will only consider

installations from 2003 and onward in our analysis. A consequence of this reduction is

that components with an expected lifetime of 30 years, that has sustained its expected

lifetime, are not represented in our dataset. By dropping installations prior to 2003, we

also removed the missing values in installation year.
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Figure 3.3: Distribution of installation and replaced dates after 1969.

Furthermore, we have excluded components that are currently onboard vessels, i.e. missing

values in replaced year. This exclusion is grounded in our research interest, which centers

on determining the durability of these components: whether they have endured their

expected lifetime or failed prematurely. By focusing on components with a complete life

cycle (from installation to failure or replacement), we aim to gain insights into the factors

contributing to their longevity or early failure, thereby excluding components still in use

that have yet to reach the end of their service life.

In the dataset, there are instances where the installation and replacement dates are

identical, resulting in a calculated lifetime of zero. Upon further examination, it became

evident that these entries are not representative but duplicate, as the correct values for

installation and replacement dates exist in other rows. After consulting with the data

owners, we concluded that components replaced within 7 days of installation are likely

wrongly recorded. Consequently, we decided to remove these rows from the dataset.

These steps reduce our dataset to 47,534 components, distributed on 1,566 vessels. We

will now look at the different merges and further cleaning we have done on the dataset for

the ML model and the descriptive analysis.
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3.5.2 Descriptive analysis dataset

Analysing weather data requires knowledge of what type of weather the vessel, and

subsequently the component, has been exposed to. We therefore pair the breakdown data

with the location of the vessels. We were only able to extract location data for a set of

vessels from January 2019, until October 2023. Consequently, we are only able to look at

the effect of weather in this time frame. Components that has been replaced before 2019

has therefore been excluded from the data due to lack of location data. In addition there

some vessels we were not able to get location data for, these will also be excluded. These

changes leaves us with 45,451 components distributed on 1,476 vessels.

3.5.3 Machine learning dataset

To adapt the data for the ML model, we merged the breakdown data with the LLI data,

which resulted in some missing values, as presented in Table 3.4. Considering the dataset’s

large size and the relatively small number of missing values, we opted to remove rows

with missing values. Imputing these values would have increased the uncertainty in our

predictions and necessitated extra caution in interpreting the results. By eliminating all

the missing values, we removed 237 components, leaving us with 47,306 components to

build our model.

Column Missing Count

BUILT 5

DWT 195

LOA 53

Table 3.4: Count of missing values for the ML model.
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4 Methodology

In this chapter we will move on to the method that we used to analyse the data. We

want to take a closer look into what may cause the variability in the actual lifetimes

of components. An indicator of this variability is whether a component has failed or

sustained its expected lifetime. We have selected two primary methods for our analysis.

First, we will develop a ML model, specifically a Random Forest model. Second, we will

present an descriptive analysis with an exploratory approach.

4.1 Machine Learning Models

The purpose of our ML model is to predict if a component will sustain or fail based

on vessel characteristics and thruster characteristics. This will tell us if some of the

variance in lifetime may be explained by the different types of vessels and the thruster

the components are installed on.

Within ML there are a lot of different models and areas of use. The common denominator

among all ML models is that you have data, then perform some algorithm on that data,

and finally you get an output. What type of output you get depends on how you build

your model. ML models can be distinguished based on their training approach, either

supervised or unsupervised learning. This distinction is based on whether the model learns

from a dataset with labeled outcomes or not. Since we have labeled breakdown data that

tells whether a component has failed or sustained we are using a supervised ML model.

4.1.1 Supervised Machine Learning

Supervised ML involves training algorithms using labeled datasets, where the model is

provided with input data and corresponding output labels during its training phase. The

main objective for the model is to to discern patterns or rules that link the input to

the output variables. This enables the model to make predictions on new, unseen data.

The effectiveness of the model heavily relies on the comprehensiveness and quality of

the training dataset as the data directly influences the models predicting capabilities.

Supervised learning is broadly categorised into two main types: classification and regression.

Since the response variable is failed or sustained we will be using a classification model.
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Classification models in supervised learning are designed to predict discrete outcomes

by categorising the input data into distinct classes. These models are useful when the

output is categorical, such as Yes or No, or fail or sustain in our particular case. This

output is also known as the response variable in a ML model. We have a variety of

classification models to choose from. When choosing the type of model one should

consider the purpose of the research, what kind of data you have and the importance of

accuracy vs interpretability.

4.1.2 Random Forest

To accurately predict whether a component will endure its expected lifetime or fail

prematurely, we have chosen to employ a supervised ML approach, specifically utilising a

Random Forest classifier. The Random Forest classifier is able to manage large datasets

and are less prone to overfitting. Additionally the model has good interpretability, and

has good accuracy even in unbalanced datasets.

4.1.2.1 Data Preparation for Random Forest Classification

Before applying a Random Forest classifier to our dataset, it is necessary to process

the data to ensure compatibility with the model. The dataset includes both categorical

and continuous variables. For the model to be able to handle the categorical variables,

we encode these variables using label encoding. Though label encoding is typically not

recommended for the predictors in regression models because of its potential to introduce

an arbitrary order, it has no effect in the classification model, and so it is a fitting approach

for our categorical variables.

As seen in Figure 4.1, the cleaned data is imbalanced, with the occurrences of failed being

almost three times as frequent as those of sustained. This imbalance can be effectively

managed in the Random Forest classifier by weighting the response value. By doing so,

the model will pay more attention to the class with higher weight during the construction

of the decision trees. Nonetheless, for our purposes, the skewed data helps decrease the

number of false negatives, which is beneficial since we aim to minimise this category.

False negatives occur when the model incorrectly predicts that a component will sustain

its lifetime, when in fact, it fails. This type of classification error is the most costly,
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Figure 4.1: Distribution of failed and sustained components for the ML model.

as it can lead shipowners to require unscheduled maintenance or docking, resulting in

lost operating time and income. Furthermore, it affects the management of spare parts,

leading to income loss due to stockouts caused by inaccurate prediction of spare parts

demand. Although the imbalanced dataset increase the number of false positives, this is

preferable to having a larger number of false negatives.

In the construction of the Random Forest model, the data was divided in two: a training

set, comprising 80% of the total data, was used to train the model; a test set, consisting

of the remaining 20%, was employed to evaluate the model’s predictive accuracy.

4.1.2.2 Selection of variables

Based on the data we received from KM and the LLI, we have selected variables that

reflects the characteristics of the vessels or thrusters. Table 4.1 lists the variables selected

for our ML model.

The Class variable is the response value. It takes one of two values: S, indicating that the

component has sustained its expected lifetime, or F, indicating that the component has

failed before reaching its expected lifetime. In the model these values are converted to 0

for failed and 1 for sustained.
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Name Original Name Explanation Type

Class var_match Response value Categorical

SUB Sub System Subsystem information Categorical

DESC ItemDesc Specific item name Categorical

CFG CONFIGURATION Thruster configuration Categorical

DSG DESIGNATION Thruster designation Categorical

GEN VESSEL_GEN_TYPE_CODE General vessel type Categorical

EXP Expected_LifeTime Expected lifetime Integer

BUILT BUILT Construction year Integer

DWT DWT Deadweight tonnage Float

LOA LOA Length overall Float

Table 4.1: List of variables for the ML model.

The variable DESC is the name of a component and SUB is the sub category the component

belongs to. CFG give insights into the operational conditions to which the thruster is

subjected. DSG determine whether the thruster is of a fixed pitch or a controlled pitch

type. The variables GEN, EXP, BUILT, DWT, and LOA are characteristics of the vessel

on which the component is installed, indicating, for example, whether it’s a supply vessel,

a cruise ship, or another type of vessel. We are particularly interested in these vessel

characteristics to determine if they can provide insights into the lifetime variability of the

different types of components.

4.1.2.3 Tuning

The Random Forest model consists of multiple decision trees. Each tree consists of nodes

and branches. The nodes splits the components based on a condition in one of the features

decided by the model. Based on the condition, the components are split onto one of two

branches, and taken to the next node. Each node measures the impurity of the split, also

called gini (Saini, 2021). A pure split means that the feature splits all the components

into the correct class. We therefore want to have a gini, or impurity, that is as small as

possible. To get a smaller gini and thereby enhance the model’s predictive accuracy, it is

possible to tune the model through Scikit-Learn functions. The functions finds the best

hyper parameters, such as number of trees, depth of the tree and more, for predicting the
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correct class. The tuning of the model is presented in Appendix B. Since the tuned model

required higher compute and only had a small increase in the accuracy, we have used the

default parameters in the original model for predicting the class of the components. The

default settings bootstraps 100 trees considering all features in every tree. It also has no

boundary for the depth of the tree (Pedregosa et al., 2011).

4.1.3 Performance Metrics

To evaluate the performance of our Random Forest, we will use performance metrics

designed for classification models. The performance metrics is based on calculations from

the numbers in a confusion matrix. Table 4.2 shows the confusion matrix specific for

our context, with the distribution between predicted values vs the actual values of a

classification model. For our model we will try to predict if a component on a thruster

will fail or sustain.

Actual Values

Predicted Values Sustain Fail

Sustain Correctly Predicted Sustain (TP) Missed Fail (FN)

Fail Incorrectly Predicted Fail (FP) Correctly Predicted Fail (TN)

Table 4.2: Confusion matrix for thruster component prediction.

The true positives (TP) counts how many times the model predicted a positive value

when the value actually was a positive value. The true negative (TN) counts how many

times a the model predicted a negative value and the value actually was a negative value.

The false positive (FP) is when the model predicts a positive value, but the actual value

was negative. Lastly you have the false negatives (FN), which is when the model predicts

a negative value, but the actual value was positive (Bhandari, 2023).

From the confusion matrix we can first calculate the accuracy (Equation 4.1). The

accuracy represents the proportion of correctly identified outcomes in relation to the

total number of predictions. A negative side with accuracy is in the case where you have

a dataset with an imbalanced number of sustained and failed. Here, the model could

potentially predict the whole data to the class with highest number, and it would result in

a high accuracy. This means that we can not measure how good the predictions are solely
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based on accuracy (Vidiyala, 2020). We will therefore also present other performance

metrics.

Accuracy =
TP + TN

TP + FP + TN + FN
(4.1)

Positive Predictive Value (PPV)(Equation 4.2), more commonly known as precision, is a

performance metric that tells us how many of all the positive identifications that where

correctly classified (Bhandari, 2023; Pennsylvania State University, 2023). In our case it

would be how many of the components we predict as sustained, is actually sustained.

Positive Predictive Value (PPV) =
TP

TP + FP
(4.2)

We are also interested in determining the accuracy of our predictions for components

labeled as failed. Specifically, we want to know how many components predicted as failed

actually are failed. This measure is known as the Negative Predictive Value (NPV). NPV,

along with the PPV, is influenced by the count of each response variable in the data, with

a higher likelihood of correctly predicting the variable that is most frequent in the dataset

(Pennsylvania State University, 2023). Equation 4.3 shows the calculation for NPV.

Negative Predictive Value (NPV) =
TP

TP + FN
(4.3)

Recall (Equation 4.4) is another performance metric, also known as the sensitivity or the

true positive rate (TPR) of the model. This number measures the proportion of actual

positives that were correctly identified by the model. In other words, it indicates how

many of the real sustained cases were captured by the model’s predictions.

True Positive Rate (TPR) =
TP

TP + FN
(4.4)

In our case it is costly to have a model that fails to predict the failure of components.

Therefore we will also look into the true negative rate (TNR), also known as specificity

(Equation 4.5)(Monaghan et al., 2021). For a high value of TNR it would mean that if

the model doesn’t predict failure it should be a very low likelihood that you get a failure.
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True Negative Rate (TNR) =
TN

TN + FP
(4.5)

4.2 Descriptive Analysis

The second part of our analysis will consist of a descriptive approach where we visually

present the data. Here we will visualise figures such as box plots, bar charts, graphs,

and maps that include location and weather data. These visualisations aim to facilitate

interpretation from the cleaned data. The purpose is to highlight specific findings

discovered during our analysis. The figures will help in understanding the distribution of

values within the data, and in identifying geographical and temporal trends. From these

figures, we will attempt to dissect and understand any relationships that exist between

the data and the causes of component failure.
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5 Analysis

In this section we will present an analysis of the data. We will stay consistent in using

the term failure about components that has not sustained their lifetime. A breakdown

and the occurrences of break down refer to both the failed and sustained components.

5.1 Result From the Random Forest Classifier

The Random Forest classifier returns a confusion matrix as presented in Figure 5.1. Our

model correctly predicts the component sustain 1,578 times and fail 6,354 times on the

test set. The matrix reveals that the number of false negatives is considerably lower

than that of false positives. In total, the model predicted that 2,190 components would

sustain and 7,272 would sail, compared to the actual values of the test set where 2,496

components sustained and 6,966 failed. From the confusion matrix, we will also calculate

the performance metrics, which are shown in Table 5.1.

Figure 5.1: Confusion matrix for sustained (1) and failed (0) predictions.
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Metric Calculation with Numbers Value

Accuracy 1578+6354
1578+6354+612+918

83.83%

PPV 1578
1578+612

72.05%

NPV 6354
6354+918

87.38%

TPR (Recall) 1578
1578+918

63.22%

TNR (Specificity) 6354
6354+612

91.21%

Table 5.1: Performance metrics for the Random Forest classifier.

The model has an overall accuracy of 83.83% which means that the model predicts the

label for the response variable correctly 83.83% of the time.

The PPV is 72.05%, while the NPV is 87.38%. This indicates that the model has a high

probability of correctly predicting instances labeled as sustained or failed. A higher NPV

compared to PPV is expected because our dataset contains a greater number of failed

components. Having a high NPV is advantageous, as it means we can predict with greater

confidence whether a component has failed.

Furthermore, we have calculated the TPR and TNR to be 63.22% and 91.21%, respectively.

This indicates that the model correctly identifies 63.22% of the actual sustained cases and

91.21% of the actual failed cases. The model is considered well-performing, and the high

TNR suggests that there is a low likelihood of a failure occurring if the model does not

predict one.

In our ML model we have not focused on environmental operational factors, like air

temperature, humidity, vibration, and others, that could potentially influence the lifetime

of a component. Including them would mean a further reduction of the size of our initial

data, since data on operational factors was not available for the vessels in this extensive

dataset. Although the inclusion of these indicators might enhance the predictions, the

model still performs well given the variables that we chose.
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Figure 5.2: The importance of features in the Random Forest model.

The most influential features for the model are illustrated in Figure 5.2, where the size

of the vessel seems to be important. Additionally, we observe that the age of the vessel

serves as a good indicator of the model’s predictions. What type of component we are

dealing with is also holds some importance in predicting whether a component fail or

sustain. This can be due to the variance in lifetime between component, that we will look

closer at in the descriptive analysis. The propeller designation, FPP or CPP, appears to

hold the least importance for the model’s performance.

Even though deadweight tonnage (DWT) appears as a highly important feature in the

Random Forest classifier, it’s important to note that this doesn’t necessarily imply a

direct positive or negative correlation between a vessel’s weight and the lifetime of its

components. Rather, the importance of DWT in the model indicates that it is effective

in differentiating between components that have sustained and those that have failed.

Essentially, DWT may serve as a key variable that contributes to the best splitting of

data in the model.



5.2 Descriptive Analysis 33

Figure 5.3: The top of the first decision tree in the Random Forest model.

Figure 5.3 shows the top of one of the 100 decision trees from our model and how it splits

the data. Our model employs the default setting for the tree depth, which means that

the model is allowed to expand the tree to whatever depth is necessary to accurately

predict the classifications. In our case, this approach has resulted in trees with a depth of

41. Based on the different splits in the tree each component ends up in a end-node that

predicts the label. The prediction that occurs most frequently for a component across all

the decision trees, decides which label to return as the prediction.

5.2 Descriptive Analysis

A thorough understanding of various factors that lead to vessel component breakdown is

important for improving the efficiency of maritime operations. This descriptive analysis

is dedicated to explore the link that may be found between weather condition and their

influence on component failure.

5.2.1 Component Lifetime Variance

Upon analysing the dataset of breakdowns we found a large degree of variations in the

lifetime of the components, even though they have similar expected lifetimes of 5, 10, 20

and 30 years. We will now look closer into these variations.
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Figure 5.4: Distribution of component lifetime.

Figure 5.4 shows the distribution of the actual lifetime of the components we are analysing.

From the figure we can see similarities to infant mortality and the bathtub distribution

presented in Figure 2.1 from the literature, by Knutsen et al. (2014). The model by

Knutsen et al. (2014) proclaims that the bathtub distribution of breakdown is age related

while infant mortality is random (or non-age related).

The infant mortality is characterised with having a high number of breakdowns early in

their lifetime. We can claim that the infant mortality pattern is present in the figure

because there is an high number of breakdowns that happen in the first years of the

lifetime. The distribution of lifetime for our components also show trends that support

the bathtub pattern. The bathtub has a breakdown distribution with a high number of

breakdowns in the beginning and end of the time period, in addition to a period with few

breakdowns in between the peaks. Specifically, we have a higher number of replacements

after 5 and 10 years lifetime, in addition to the early breakdowns.

The peaks in component lifetime of around 5 and 10 years could be explained by routine

docking schedules that also occur every 5 and 10 years. During the docking different

components are checked and replaced based on their last inspection or maintenance dates.

When analysing the distribution of lifetime for the components, We also noticed a large
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variance of the mean time before failure (MTBF) for the different component items. We

have chosen to present this finding using components with 10 years expected lifetime, but

the remaining components with similar patterns can be seen in Appendix C.

Figure 5.5: MTBF for components with 10 years expected lifetime.

The MTBF serves as a metric for measuring product reliability. Upon calculating the

MTBF for our cleaned data, we uncovered further evidence indicating that the components

are not meeting their expected lifetimes. In Figure 5.5 we generally see a considerable

negative deviation from expected lifetime, like for the different types of valves and switches,

suggesting that the components have a reliability below their expected lifetime. This lead

us to further analyse the variation of lifetime for each of the components, using box plots.
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Figure 5.6: Variance in lifetime for components with 5 years expected lifetime.

In Figure 5.6 we see that even though some of the components have a mean close to

expected lifetime, there is still a notable degree of variation for the real lifetime. Take

for instance the flexible coupling hub shown in Figure 5.6. Here, we note that the

actual lifetime spans from zero to nearly 18 years, despite an expected lifetime of five

years. This wide range in lifetime suggests that although components are nearly identical

post-production, there may be external variables impacting each component differently,

resulting in the observed variation in lifetimes.
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Figure 5.7: Variance in lifetime for components with 10 years expected lifetime.

This variance is found for all components regardless of what their expected lifetime

is set to be. In Figure 5.7 we see a box-plot that shows high variance between the

components as well. In the box-plot we see that most of the components have not met

their expected lifetime. A large portion of the items experience that approximately 75%

of the components fail before reaching their expected lifetime. It is also noteworthy that

no more than one of the items have a median that is above expected lifetime. As with the

5-year components we can see that the expected lifetime is not a reliable measurement of

a components lifetime. This finding is significant, as it corroborates the suspicions raised

earlier regarding the potential underestimation of expected lifetimes.

The box plots shown in Figure 5.6 and Figure 5.7 also support that the distribution of

lifetime has an infant mortality distribution since there are a high number of components

that are replaced prematurely in regards to their expected lifetime.
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5.2.2 Travel Paths and Breakdowns

Figure 5.8: Travel paths from January 2019 to October 2023.

Using the location data retrieved from AIS-data we have plotted all the available data

points for our selected vessels. Figure 5.8 shows the accumulated travel paths for 1,476

vessels that has components from KM on board from January 2019 to October 2023. It

indicates that maritime traffic is relatively evenly distributed across the world’s oceans,

with the exception of the regions near the polar areas. There are some visible outliers in

the AIS data from Figure 5.8. This tells us that there is a chance of inconsistencies in

the quality of data. These inconsistencies can be explained the by missing values in the

location data, or faulty registrations by the AIS.

The highlighted colors on the map reveal that certain travel routes are more frequented

than others. These appear to correspond to the shortest paths between two waypoints, as

shown in Figure 5.9, which aligns with the theory presented in the section on ship weather

routing. In that section, it is explained that most algorithms used to calculate the cost

of a journey favor the shortest path between two waypoints. At the same time, the real

travel path presented in Figure 5.8 show that our selection of vessels also travel outside
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the shortest path in a fairly large degree. This can be explained by the variety of vessel 

types and their various purposes, represented in our data. 
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Figure 5.9: Main maritime shipping routes (Port Economics, Management and Policy, 
2023). 

Further, we aim to examine where breakdowns occurred, distinguishing between 

components that failed and those that were sustained. To localise the instances of 

breakdowns, we took each instance of component replacement and found the corresponding 

vessel’s location on the day of replacement. We have assumed a correlation between the 

replacement day and the actual occurrence of a breakdown. Given that we might have up 

to eight locations for a vessel per day, we paired each vessel with its r s t  available location 

on the replacement date. Due to missing location data for some vessels, we identied 

breakdown locations for only 7,787 instances across 585 vessels. To compensate for the 

absence of position data on the replacement date, we adjusted our code to include locations 

from the previous day. This adjustment expanded our dataset to 9,861 breakdown points 

across 726 vessels. 



40 5.2 Descriptive Analysis

Figure 5.10: Locations for failed components.

The next step involved mapping where component failure occurred. In Figure 5.10 we see

the location for all the failed components. From the figure we see that some clustering of

failures are evident. A majority of them happen close to shore. An example of this is

the high density of recorded failures in the North Sea, extending towards the Norwegian

Sea and along the coast of Norway. This could be explained from the travel paths of our

vessels (Figure 5.8), because logically a breakdown will occur where the vessel operate

and spend most of its time.

There is also a notably high density of failures throughout the English Channel (between

England and France) and further down the coast of Africa. A number of hot-spots, with

higher number of failures, is also worth mentioning. There is one in the south-east coast

of Brazil, another one at the east coast of Mexico, and in the middle of the Persian Gulf

and the Gulf of Oman. There are also some notable gathering of failures near Singapore

and close to the coast of Taiwan, China, and Japan. These areas are therefore interesting

for further analysis to understand what goes on in these areas.
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Figure 5.11: Locations for Sustained components.

We can see the geographical distribution of the sustained components of the replacement

date in Figure 5.11. In this figure there is a lower number of total points because of the

skewed distribution of components that sustained and failed. It is harder to interpret

anything from a map of break downs on sustained components, since the components

have already lived past their expected lifetime. Intuitively, the sustained components are

due to be replaced and also have a higher chance of breaking down at any given moment,

compared to a component that has not yet lived their expected lifetime. Nonetheless,

a sudden occurrence of adverse weather can still be the decisive moment or a tipping

point for a break down regardless of RUL. Since we aim to analyse when a component

break down, either if it sustained or failed, we can still look for correlations with adverse

weather situations and breakdowns on sustained components.

In summary, there are similar geographical trends in where the sustained and failed

occurrences have gathered. As an additional note, if we compare Figure 5.11 and Figure

5.10 we see that there are a higher number of failed components compared to the sustained

components in the North Pacific Ocean. The same trend can be said to be found north in
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the Indian Ocean. Further than that, it is hard to identify any immediate difference from

the figures, partly due to the skewed occurrences of failed and sustained.

Upon examining Figure 5.8 for the travel paths, with Figure 5.10 and Figure 5.11,

discerning any clear interpretable pattern is also challenging. If the breakdown happened

randomly we could expect the breakdowns to be more distributed on the map. On the

contrary, the breakdowns do not appear to follow an equally distributed pattern.

Even though it is hard to confirm any pattern in the data, there are notable similarities

between the maritime shipping routes in Figure 5.9, and the locations of breakdowns on

both failed and sustained components. This similarity might be explained by the reported

date of replacement, which we use to determine the vessels’s location.

Figure 5.12: Kongsberg Maritime office locations in the world.

It’s possible that the replacement date actually represents the day the vessel reaches a

dock and undergoes component replacement. Therefore, it might be more insightful to

examine the vessel’s location prior to the actual breakdown. The absence of AIS data

on the replacement day, as previously stated, could be because the AIS could have been

deactivated when the vessel was not in operation, e.g. during docking for component
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replacement (Marine Traffic, 2023). The breakdown data comes from components sold by

KM, increasing the likelihood of vessels being near KM’s location due to physical component

sales and maintenance. Simultaneously, KM’s strategic geographical positioning of their

business in high-traffic areas is logical. To more accurately interpret this relationship, a

clearer understanding of what the replaced date truly represents in the data is needed.

5.2.3 Seasonal Variations

The gap in the literature on weathers impact on component breakdown is noteworthy and

makes weather an interesting factor to explore. The aim of our analysis is to investigate

whether weather should be considered as an explanatory variable for the variance in

component lifetime, suggesting the need for further analysis.

The weather could potentially affect components in two ways: an immediate effect, where

adverse weather conditions lead to abrupt breakdown, and a cumulative impact, where

exposure to adverse weather contributes to gradual wear over the component’s lifespan.

Additionally, these factors may interplay; a component with significant wear may be more

prone to sudden breakdown when subjected to harsh weather conditions.

Figure 5.13: Monthly distribution ratio of sustained and failed components.

To address the immediate effects of weather, we examine the correlations between weather

variations and the locations of component breakdowns. Analysing the ratio of failures
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from breakdowns for each month since January 2019, reveals a pattern suggestive of

seasonality in the failure rates, as illustrated in Figure 5.13. The seasons that exhibit a

higher ratio of component failures predominantly occur during the autumn and winter

months. However, while the ratio may indicate one trend, the actual count of breakdowns,

as depicted in Figure 5.14, is also critical to consider. In this figure, there is a noticeable

spike in sustained components in October 2019. Consequently, even though the number

of failures peaks during this month, the large number of sustained components skews

the failure ratio, making it appear relatively low when looking at the distribution in

percentage (Figure 5.13). Additionally, the variations observed in count (Figure 5.14),

may stem from weather-related factors or the scheduling of maintenance services.

Figure 5.14: Monthly distribution of sustained and failed components, count.

Figure 5.15: Monthly trends in component failure, from January 2019 to October 2023.

To further investigate the presence of a trend, we performed a trend decomposition on the
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failed components, as shown in Figure 5.15. From the decomposition, we observe a gentle

seasonal pattern with higher occurrences around the turn of the year. The figure reveals

seasonal trends in breakdowns, particularly when comparing data from 2019 to 2020.

While discerning clear trends for 2023 is challenging, given that our data only extends

up to October, the observations suggest that the failure rates for this year may follow a

similar pattern to those observed in 2022. However, there are considerable fluctuations in

the observed trend.

Figure 5.16: Location of breakdowns by season, sustained in green and failed in red.

To delve deeper into the seasonality, we have made a two-by-two plot displaying the

locations of the breakdowns for each season in Figure 5.16. To investigate if the weather

have affected the breakdowns we will present figures with heatmaps representing the

seasonal weather. Figure 5.17 show the average maximum wave heights, while Figure 5.18

show the wind speeds for each season. The seasonal plots on breakdowns and weather

parameters are aggregated from 2019 to 2023. By dividing the breakdowns by season we

can see the same trends as in the locations where the components have failed or sustained,

but some areas has more seasonal variations than other.
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Figure 5.17: Mean of the max wave height (m) by season.

Figure 5.18: Average wind speed (kn) by season.
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5.2.3.1 North Pacific Ocean

As mention before there are a higher number of failed components in the North Pacific

Ocean. When we look closer at the seasonal distribution of breakdowns (Figure 5.16) for

this area, we observe an increased frequency of failures during the winter and spring. This

observation aligns with the fact that the average maximum wave height in this region is

at its peak during the winter season, as seen in Figure 5.17. During the spring we do

not observe the same level of adverse weather as winter, but there may be correlations

between winter weather and proceeding spring breakdowns. Specifically, if the weather

was particularly harsh towards the end of winter and a breakdown occurs at the start

of spring, this could indicate a connection between the two. Even though the heatmaps

indicate less adverse weather in the spring for the Pacific Ocean, this does not rule out

the possibility that there have been days with adverse weather during the period that can

have affected the breakdowns.

5.2.3.2 North Indian Ocean

Observing the northern Indian Ocean during the summer, in Figure 5.18, there is a

noticeable increase in average wind speed compared to the rest of the seasons for this

region. A similar pattern is seen with wave height in Figure 5.17. However, when

analysing the distribution of breakdown locations, the highest proportion of failures for

this area occurs in the winter. It does not necessarily imply the absence of any weather-

related effects but rather that fewer vessels may have been influenced by these immediate

conditions. The heightened occurrence of failures during winter could be due to other

reasons than weather, but can also be attributed to adverse weather effects, as weather

can vary significantly within a season. Our mean representation of weather data may not

fully capture these fluctuations, therefore, further investigation is required to make more

concrete conclusions.
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5.2.3.3 North sea

Figure 5.19: Max wave height (m) and sustained and failed components by month in
the North Sea.

It is important to recognise that aggregating weather data over years and seasons can

obscure variations. For instance, particularly harsh winters in certain years might elevate

the mean value. To determine if the seasonality observed in weather from 2019 to 2023 is

representative, we delved into the monthly variations in maximum wave height for the

North Sea. Figure 5.19 illustrates both the distribution of breakdowns in the North Sea

and the maximum wave height for each month starting from January 2019. From Figure

5.17, showing wave heights in a heatmap, it is evident that winter months typically have

the highest wave heights in the North Sea. This trend is consistent in Figure 5.19, where

the highest waves are noted during December, January, and February, suggesting that

this is a seasonal pattern rather than an anomaly skewing the results.

Figure 5.19 also serves as a practical example to illustrate how challenging it can be to

interpret the immediate effect of weather on breakdowns. Even though we have narrowed

down the area to the North Sea, it is still a large area that can experience different weather

conditions in various locations simultaneously. Therefore, we cannot know with certainty

the specific weather conditions to which the vessel has been exposed. Nevertheless, we
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cannot deny the existence of a relationship, as we do not know for sure what weather

conditions the vessel might have experienced prior to the breakdown.

5.2.3.4 Additional Observations

By the east-coast of Mexico there are a fair amount of failures in every season, but

especially in the autumn and winter. From the heatmaps we do not see large seasonal

variations in mean wave height as we can see in other areas. The wind patterns, in Figure

5.18, are quite similar for each season but has some fluctuations, with the winter appearing

to be the season with the strongest winds.

By the west coast south in Africa (west to Gabon, Congo and Angola) has an increase in

failures during the winter time. The heatmaps of wave height do not reflect any seasonal

variations for this area. For the heatmaps of the wind speed, we can see a small increase

in the mean wind speed during the autumn.
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6 Discussion

In the upcoming section, we will aim to broaden our perspective from the analysis and

examine our findings within a larger context.

6.1 The Machine Learning Model

From our analysis of the ML model, we determined that DWT, LOA and the year of build

are the most effective variables for distinguishing between sustained and failed components.

These attributes, being fixed characteristics of the vessel, are not easily altered. From the

perspective of vessel owners, there is limited scope for enhancing a component’s lifetime

by altering the vessel’s size. Although directly influencing a component’s longevity is not

feasible, implementing price differentiation based on the vessel’s size is a viable option.

This approach would entail charging vessel owners in accordance with the expected lifetime

of the component, which is influenced by the vessel’s size, thereby ensuring they pay for

the actual value received.

6.2 Descriptive Analysis

In our descriptive analysis, we aimed to identify the immediate effects of weather on

component failure. The heatmaps reveal a seasonal connection between adverse weather

and component breakdowns, but the breakdowns don’t exclusively happen for the seasons

and areas with the most adverse weather. Because of large fluctuations in weather for

each season it is not certain that the vessel has been exposed to the weather we see in the

heatmaps, there can be two reasons for this.

The first reason can be the distance the vessel have travelled. The downside of aggregating

data on three-month seasons, is that it doesn’t capture the vessels mobility and that

they can traverse vast distances during this period. Consequently, the weather conditions

we analyse may not accurately reflect the specific conditions to which the vessels were

exposed to for the time leading up to a breakdown.

The other reason can be due to the voyage and navigation choices done by the vessel

operators. As Staveland and Strømsnes (2022) suggests the vessels should chose routes that
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avoid adverse weather. It is reasonable to assume that vessel operators do not intentionally

choose the travel routes with the most adverse weather because of the operational hazards

and increase in fuel consumption. This assumption is supported trough the literature

review of Zis et al. (2020) and the thesis of Staveland and Strømsnes (2022).

Despite the vessel operator’s efforts to avoid unfavorable weather conditions, it’s not

always feasible to do so. Weather patterns are inherently unpredictable, and even during

seasons typically known for milder conditions, unexpected adverse weather can still occur,

affecting the vessels.

The weathers inherent unpredictability is a challenge because standard weather forecasts

and seasonal predictions may not always capture the nuances and sudden fluctuations

within a season (Hasselmann, 1976). For instance, a season generally expected to be

calm in a specific ocean region could still experience sudden periods of adverse weather,

potentially causing immediate breakdowns.

Given the observable relationship between adverse weather conditions and breakdowns, it

is reasonable to hypothesise a link between the long-term effects of adverse weather and the

wear of thruster components. Frequent exposure to severe weather can lead to cumulative

stress and load on thruster components, potentially accelerating their degradation. The

gradual impact of adverse weather on the reliability of the components can therefore be a

reason for variety in component lifetime.

A natural extension of the ML model in our thesis would be to incorporate weather

variables. We believe that this addition could enhance the model’s predictive power,

based on insights from our descriptive analysis and the literature. For instance, in the

theses of Nilsson and Nilsson (2021) and Staveland and Strømsnes (2022), attempts

are made to capture the impact of weather using ML models. They propose that the

operational variability caused by weather seasonality should be integrated into decision-

making processes.

Another reason to incorporate weather variables into the ML model, which could enhance

its predictive power, relates to the interconnected nature of component failures, as indicated

by Leppänen (2021). Component failure is rarely due to a single cause. By increasing the

model’s complexity to include weather factors, we may better capture the influence of
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weather on component failure.

6.3 Condition Monitoring

Predicting the immediate impact of weather on vessel component breakdowns is challenging.

Instead, focusing on the accumulated weather effects over time is more practical. This

approach is feasible for components with known weather exposure histories. One of the

challenges this arises is the need for having high quality data. This data can be collected

through implementing condition monitoring on the vessel. In Knutsen et al. (2014) we have

already noted that there is a high percentage of failures that follow a random distribution

of failure. If condition monitoring was implemented, by developing digital twins for the

components, we could get an increased understanding of the underlying failure patterns. If

we can use the data to determine why there is failure in the components, we can possibly

recalculate the expected lifetime to take into account factors that cause breakdowns.

The implementation of condition monitoring could also be used to determine the weather

conditions a vessel has encountered. Continuously monitoring the environmental conditions

faced by vessels, in conjunction with the state of their components, allows for a deeper

understanding of how various weather conditions contribute to wear on the components.

When using condition monitoring you have more information regarding RUL, leading to

more efficient planning of maintenance and replacements. The monitoring system can

also be used by spare part management department to keep an overview of the conditions

of the components. This can further be used in the planning of inventory levels.

6.4 Variability in Component Lifetime

Variations in component lifetime can be linked to differences in maintenance practices,

as poorly maintained components may not last as long as those receiving adequate care.

Mouschoutzi and Ponis (2022) highlight the significant costs associated with both PM and

CM. While CM can be more costly due to interconnected failures and potential revenue

losses from delays, operators might prefer PM for its long-term cost-effectiveness. This

strategy, despite higher initial cost, could prevent expensive breakdowns and downtime.

Understanding this variance and quantifying the cost savings of PM over CM could

motivate operators to enhance their maintenance routines.
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The lifetime of thruster components varies greatly. Understanding the factors behind

this variability is crucial, as it enables the development of more durable spare parts and

a nuanced pricing strategy. Our analysis indicates that weather exposure and physical

vessel characteristics influence the component’s lifetime.
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7 Conclusion

In this section we will revisit our research question and draw a conclusion based on the

findings in this thesis. The research question we have explored are as follows:

What thruster and vessel characteristics can distinguish the components that sustain its

expected lifetime?

How does the weather affect the variability in the lifetime of thruster components?

7.1 Conclusion

To address the first research question we built a ML model on thruster and vessel

characteristics. Based on our ML model the best characteristics to differentiate components

that sustain their expected lifetime are based on physical vessel characteristics. These

vessel characteristics are DWT, LOA and the year of build. The explanatory power of

DWT and LOA is supported in the theory related to added resistance. We found a low

importance in the features related to the thruster components in the ML model. The

overall accuracy of the model was 83.83% with performance metrics that support that the

model performs well.

To determine how weather affects the variability of component lifetimes, we analysed

component breakdowns on maps and compared them to seasonal weather patterns. It was

challenging to identify a direct connection between breakdowns and weather conditions.

However, we observed some patterns suggesting that weather may impact the variability

in component lifetimes. We believe that a number of factors contribute to this variability.

To conclusively attribute breakdowns to weather, we need greater certainty that other

potential causes of breakdowns are not present in our data and analysis.

7.2 Robustness

We want to comment on the thesis reliability, validity and potential weaknesses to establish

the quality of our research. The breakdown data have been shared with us from KM, a

large company within the maritime industry. Nevertheless, the analysis done on the data

is performed without any restrictions from the company. The validity of the data may
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be influenced by the fact that it has gone through merging processes. Other threats to

validity stems from the temporal distribution of data that can threaten internal validity

due to instrumentation. That is if the way to measure data and collect has changed over

time (Saunders et al., 2019). Still, we have performed cleaning and filtering of the data

that aim to make the data representative and measurable for the purpose of our thesis.

7.3 Further Research

This research opens avenues for extended analysis. Future studies could focus on

quantifying the cumulative effect of weather on component durability, offering a more

definitive stance on its impact on component failure. Additionally, predicting component

lifetime in years by analysing the vessels and thrusters characteristics, alongside cumulative

weather effects could yield interesting insights. There’s also potential in enhancing lifetime

predictions of thruster components, balancing economic considerations for both suppliers

and buyers.

This thesis has already established that there is a variance in the lifetime of components.

To increase insight to what factors cause this variance could help companies to develop

precise estimations of expected lifetime. This also aids in accurately valuing components

for pricing strategies. We recommend starting this investigation with operational data for

the given components, such as temperature, load, and RPM.

Investigating vessel travel routes and breakdown hot-spots could aid in optimising logistics

for spare parts. For instance, analysing areas with high vessel traffic but limited service

presence could be beneficial for companies like KM in planning strategic service locations.

One example of a high traffic area is the hot-spot we found in Brazil during the analysis,

where KM is not yet located. This approach could significantly improve maintenance

efficiency and component sales in high-demand zones.
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Appendices

A Data and Cleaning

In this appendix you find supplementary figures and tables related to the cleaning of the

data.

Column Non-Null Count Dtype
Configuration 214394 non-null object
VesselDesc 214394 non-null object
IMONo 214394 non-null int64
Sub System 214394 non-null object
SubSystemItem 214394 non-null object
SubSystemItemDesc 214394 non-null object
Item 214394 non-null object
ItemDesc 214394 non-null object
Expected_LifeTime 214191 non-null float64
PRODUCT_ID 214394 non-null object
FAMILY 214394 non-null object
SIZE 214394 non-null int64
CONFIGURATION 213381 non-null object
DESIGNATION 214357 non-null object
Installation_Year 203615 non-null datetime64[ns]
Replaced_Year 50753 non-null datetime64[ns]
var_match 214394 non-null object
ServiceOrder 50906 non-null object
LineNumber 50906 non-null float64
Qty 214394 non-null int64

Table A.1: Dataframe structure.
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Figure A.1: Distribution of AZP & TCNS in the raw data.

Column Missing Count

Expected_LifeTime 203

CONFIGURATION 1013

DESIGNATION 37

Installation_Year 10779

Replaced_Year 163641

ServiceOrder 163488

LineNumber 163488

Days_Difference 163641

Year_Difference_float 163641

Table A.2: Columns with missing values for all TT.
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Figure A.2: Selected area in the North Sea and corresponding breakdowns.
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B Tuning of the Random Forest model

We applied Random Hyperparameter Tuning using the RandomizedSearchCV method

in Python. First we ran the random forest classifier from Scikit-Learn with the default

settings. The default settings bootstraps 100 trees considering all features in every tree.

It also has no boundary for the depth of the tree. To try to make the model better, we

tuned the parameters. First by using RandomizedSearchCV that takes a range of new

values for the parameters and chooses some at random to go through. This returns a

narrower range for each hyperparameter. In our case we fitted 3 folds for each of 100

candidates, totalling 300 fits. That gave us these parameters: n estimators: 1800, min

samples split: 10, min samples leaf: 1, max feature’: ’log2’, max depth: 30 and bootstrap:

False. Based on these values we made a new search, but now with GridSearchCV, this

runs through all the specified combinations (not selecting just selection at random). with

the GridSearchCV we fitted 3 folds for each of 270 candidates, totalling 810 fits. In return

we got these parameters: bootstrap: False, max depth: 20, max features: ’log2’, min

samples leaf: 1, min samples split: 10, n estimators: 1800. The results from using these

parameters is shown in the table below.

Table B.1: Classification report.

Precision Recall F1-score Support
0 0.87 0.92 0.89 6966
1 0.73 0.63 0.67 2496
Accuracy 0.84 9462
Macro avg 0.80 0.77 0.78 9462
Weighted avg 0.83 0.84 0.84 9462

Before tuning the model the accuracy of the model was 0.8383. After the tuning the

accuracy of the model was: 0.8394. The tuned model used a lot more compute than the

original model, and had only slight improvements. Therefore we used the original model

for our predictions.



63

C Descriptive Statistics and Analysis

C.1 Mean Time Before Failure

The MTBF is a common metric for measuring the reliability of components. In this

appendix we present the calculated MTBF for each of the thruster components in the

filtered breakdown data used in the analysis.

Figure C.1: MTBF for components with 5 years expected lifetime.
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Figure C.2: MTBF for components with 20 years expected lifetime.

Figure C.3: MTBF for components with 30 years expected lifetime.
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C.2 Variance expected lifetime

Below are the variance of the operational times for the expected lifetime of 20 and 30

years.

Figure C.4: Variance in lifetime for components with 20 years expected lifetime.
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Figure C.5: Variance in lifetime for components with 30 years expected lifetime.
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