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Abstract
This thesis investigates the dynamics of the Norwegian electricity market, focusing on

how hydro and wind generation affect average price levels and volatility. In addition, the

analysis investigates how the increased occurrences of changed weather patterns due to

climate change might affect these relationships. The research aims to explore the complex

interplay between weather-dependent electricity sources and market prices, offering insights

into how these elements interact within the different price areas in Norway.

Methodologically, this study employs a statistical ARMA-EGARCH modeling framework

to analyze the electricity market. The empirical findings indicate a statistically significant

impact of increased hydrological balance and wind generation on reducing average price

levels. However, the effects on price volatility present a contrast: an increased hydrological

balance is associated with greater stability, while wind generation, explained by its

intermittent nature, contributes to increased volatility. These results highlight the distinct

influences of different renewable energy sources on market dynamics.

The analysis reveals "inverse leverage effects" across all Norwegian price areas, underscoring

the market’s greater ability in adapting to negative market shocks. A comparative

analysis with a historical control period has highlighted a potentially increased influence

of hydrological balance and wind generation on market prices. Looking ahead, given the

projections on climatic and structural developments, this trend is anticipated to continue,

potentially escalating risks and consequently, could diminish incentives for investments in

production.

The object of this study is to contribute to a better understanding of the complexities

inherent in an electricity market dominated by renewable sources, and evolving climatic

and structural changes.

Keywords – Electricity Market, Price Areas, Norway, Renewable Electricity, ARMA-

EGARCH, Volatility, Hydropower, Wind Power, Climate Change
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1 Introduction

1.1 Relevance of the Research Topic

For over 150 years, Norway has played a leading role in developing the electricity sector,

establishing a competitive advantage by effectively utilizing its renewable electricity

resources (F. Lund et al., 2023). This has influenced Norway’s economic and social

development, resulting in a robust and reliant electricity market (Bye, 2003). However, in

recent years, there has been a reduction of new investments in the market, and the surplus

and stability of Norwegian electricity have faced increasing challenges. As a consequence,

the established competitive advantage is about to be lost (F. Lund et al., 2023).

Electricity, once taken for granted, is now subject to escalating prices and increased

market volatility, raising concern among households and industrial sectors. Research

shows households are adjusting their consumption habits, saving electricity by shifting

their usage to hours when prices are lower (Gran et al., 2023; Hovland, 2023). This

concern surpasses the worry caused by rising inflation and grocery expenses, placing

electricity prices as the main issues for the Norwegian households (Hovland, 2023). These

market conditions have additionally affected businesses, particularly electricity dominated

industries, resulting in reduced production or temporary closures during extreme-price

intervals (Gran et al., 2023, p. 97). Comprehending the underlying causes of these price

shifts and market instabilities is important, as their consequences extend to individual

consumers and the overall economic framework.

The recent "energy crisis" has highlighted the potential extreme fluctuations and electricity

prices can occur in the market (Hovland & Vartdal, 2023). The year 2019 is often referred

to as the last "normal" year before these dramatic changes. In 2020, the sharp decrease

in electricity prices was largely due to a surplus in supply, a result of favorable weather

conditions in Norway and Europe. However, in the subsequent years, the situation changed

drastically. High electricity prices followed, a direct consequence of dry weather and low

water reservoir levels.

The rising unpredictability of weather patterns has heightened uncertainty in the utilization

of renewable resources (DTN, 2019). With an increasing occurrence of power shortages in
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the Norwegian electricity market, there is a likelihood of increased market instability and

a diminished capacity to manage unforeseen events. Furthermore, the 2021 introduction

of interconnectors, NordLink and North Sea Link, linked Norway more closely with the

European electricity market, coincided with an increase in electricity prices (Gran et al.,

2023). This market dependence was particularly evident in 2022, in light of the geopolitical

Ukraine-Russia conflict. The conflict led to a drastic 40% reduction in total European

natural gas supply, a key component of the European energy portfolio, culminating in

record-high electricity prices in both Europe and Norway in August 2023 (Zeniewski et al.,

2023). Following a period of volatility, 2023 is appearing to be a comparatively “normal”

year with more stable electricity prices. However, these prices remain higher and more

volatile than those before the energy crisis, prompting analysts to view this as the new

market standard (Galimberti et al., 2023).

Norway holds a unique position in the global landscape, deriving almost 100% of its

electricity generation mix from renewable technologies (Samland, 2016). As the world

progresses towards a green transition, Norway’s increasing reliance on renewable sources

makes it more vulnerable to climatic variations. One of the global consequences of climate

change is steadily rising temperatures, expected to significantly affect climatic patterns

(Rommetveit et al., 2021). This trend is particularly critical for Norway, located near the

poles, where climate change is anticipated to have a more rapid impact (Rommetveit et al.,

2021). The Norwegian Meteorological Institute has observed a temperature increase of 1.9

degrees Celsius since 1960, noting that 18 of the past 20 years have recorded temperatures

above the normal average (Steiro, 2023).

In summary, these observations signal a trend of heightened uncertainty within the

Norwegian market, underscoring the relevance for an in-depth analysis of the dynamics

characterizing this evolving market landscape.

1.2 Research Question Development

The importance of comprehending the inherent risks in the electricity market has

grown, particularly in light of renewable resources’ dependence on climatic conditions.

Consequently, investigating the impact of climatic factors on electricity pricing and market

volatility becomes crucial (Gernaat et al., 2021). The aim of this study is therefore
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to analyze how climate variables influence Norwegian market price levels and volatility,

providing insights into the complex relationship between climate and the renewable

electricity market.

In light of Norway’s hydro-dominated electricity market, it becomes crucial to explore

the role of hydropower. Døskeland et al. (2022) underscore this importance, noting that

Norwegian electricity prices are significantly influenced by reservoir levels and precipitation.

Furthermore, the Norwegian market is increasingly emphasizing wind power, introducing

the interest of wind’s contribution in the Norwegian market. The reliance on intermittent

resources, such as wind, presents unique characteristics. Woo et al. (2011) highlight that

the intermittency of wind energy, along with electricity storage difficulties, amplifies the

frequency and extent of price fluctuations. This makes the examination of wind power’s

influence on the Norwegian market particularly interesting in light of the already increasing

market uncertainty. Considering hydropower’s central role, this thesis aims to dissect the

effects of both hydro and wind electricity generation on market dynamics, specifically

focusing on their impact on price levels and market stability.

In recent years, Norway has experienced notable regional disparities in electricity pricing.

Within the country there are diverse geographical and climatic characteristics between

the north and south, east and west. Possibly resulting in interesting differences within the

national market characteristics. During the electricity crisis, internal discrepancies reached

historic levels, with the most extreme cases showing electricity prices in the south being

278 times higher than the prices in the north (Ulvin, 2022). This highlights significant

inequalities across the country. Consequently, in this thesis, we will segment the market

into distinct price areas to assess the varying impacts across these diverse geographical

regions. This segmentation is interesting for identifying potential regional price variations

and for examining how risks and fluctuations in hydro and wind generation may differ.

Such characteristics are often observed in electricity markets that are divided into price

areas (Woo et al., 2011).

Recent research, including findings by Ketzler et al. (2021), indicates that climate change

has impacted weather patterns in Norway, especially over the past two decades. This

provides an interesting opportunity to examine how these climatic shifts may have

influenced electricity prices and market volatility. These climatic changes could suggest
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that the future market will become more vulnerable. Statnett has reported that the green

transition is accompanied by a lack of flexibility, likely leading to greater price variation

and volatility (Hovland, 2023). Therefore, the study will include a control period, allowing

for a comparison between current and historical relationships. This will contribute to an

interesting discussion about potential shifts in market dynamics.

This study is driven by the following research question:

What are the impacts of hydro and wind power generation on the price levels and volatility

within the Norwegian electricity market, and how might the occurrences of climate change

affect these relationships?

1.3 Structure

The thesis is structured into eight sections. In the initial section, the research question is

introduced, and provides contextual information to underscore the significance of the study.

Progressing to Chapter 2, the focus shifts to a review of international literature relevant

for the research question. Further, research on the Norwegian market and our contribution

to existing literature will be presented. An overview of the Norwegian electricity market,

particularly focusing on its price dynamics and structure, is presented in Chapter 3. Next,

in Chapter 4 the dataset is presented including a detaild exploration of the included

variables. Further, Chapter 5 reviews the statisitcal methodology applied in the thesis.

Moving forward Chapter 6 presents the data analysis. This chapter encompasses the

processing phase for constructing a robust time series model and determining the

appropriate model specifications. Subsequently, Chapter 7 will present and discuss

the empirical results. Finally, the thesis reaches the concluding section, Chapter 8 and

the key findings are summarized.
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2 Literature Review
This chapter examines the expanding literature on the effects of renewable technology on

electricity prices, focusing on both average price levels and volatility. In the global shift

towards sustainability and a greener transition, there has been found a notable increase in

research exploring these aspects in recent years. The chapter highlights key findings from

the literature, showcasing how renewable electricity influences market dynamics, pricing

structures and modeling approaches.

2.1 An Overview of Relevant Literature

Hydropower is characterized as a stabilizing force in electricity pricing, despite its

inherent seasonal fluctuations linked to water availability. Research in the Nord Pool

market, particularly by Huisman et al. (2013), underscores the significant role of hydro

capacity in shaping electricity prices. Their findings suggest that higher reservoir levels,

indicative of increased hydropower capacity, lead to a notable decrease in electricity prices,

highlighting the benefits of integrating low marginal cost renewable electricity into the

market. This relationship is further explored by Kilic and Trujillo-Baute (2014), who

emphasize hydropower’s capacity to reduce volatility in intraday markets. Extending this

understanding to the United States, Owolabi et al. (2022) observed a similar trend in

the New England states, where hydropower’s contribution to reducing both electricity

prices and volatility is evident, offering a stable alternative to fossil fuel-dependent energy

sources.

The dynamics of wind power, however, presents a contrasting scenario. The impact of wind

generation on electricity prices and volatility has been subject of thorough investigation in

various international markets. Studies by Kyritsis et al. (2017) in Germany and Woo et al.

(2011) in Texas highlight the dual nature of wind electricity’s impact: while contributing

to a reduction in average electricity prices, wind power simultaneously increases price

volatility. This phenomenon is attributed to the nature of wind electricity, challenging the

flexibility and predictability of the electricity market. This pattern of decreased average

prices but increased volatility with wind integration is highlighted in studies across Spain,

Germany, the UK, Netherlands, Greece, and Canada (Green & Vasilakos, 2010; Ketterer,
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2014; Maniatis & Milonas, 2022; Mulder & Scholtens, 2013; Pereira et al., 2017; Stringer

et al., 2023).

The intersection of hydro and wind power in the market have also been studied. Pereira

et al. (2017)’s study on the Spanish market illustrates how the intermittent nature of wind

power elevates price volatility, which can be effectively mitigated by the stabilizing influence

of dispatchable hydropower. Similarly, Wen et al. (2022) in New Zealand demonstrate

that while wind power reduces electricity market prices, it also increases price variability,

especially in dry seasons, suggesting that a balanced mix of wind and hydropower is

crucial for maintaining market stability. Overall, the literature is consistently indicating

that renewable electricity decreases market spot prices (Ketterer, 2014; Moreno et al.,

2012; Paraschiv et al., 2014).

Interestingly, regional differences in identified relationships is evident, as demonstrated

by Rintamäki et al. (2017), who noted increased intraday price volatility due to wind

power in Germany, whereas in Denmark, which is dominated by wind generation, the

effects observed were notably different: wind generation decreased price volatility. Further

highlighting the complexity of these impacts, Owolabi et al. (2022) present that the

influence of a technology on market dynamics can vary based on factors such as the

technology’s prevalence, the composition of the electricity portfolio, market and incentive

structures, and seasonal and temporal fluctuations in electricity demand. This underscores

the importance of considering specific regional characteristics when assessing the impact

of renewable energy sources on electricity markets.

The electricity market, recognized by sporadic, unforeseen price fluctuations and sudden

spikes (Geman & Roncoroni, 2006a). Escribano et al. (2011) complement these

characteristic observations by highlighting the seasonality, pronounced volatility, and

clustering tendencies in electricity prices. Ketterer (2014) also emphasized its distinct

characteristics, exhibits a pattern of mean-reverting electricity spot prices.

In addressing these complex characteristics of electricity prices, Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) models, particularly the General GARCH

and the Exponential GARCH (EGARCH) models, are frequently employed in the

litterature (Liu & Shi, 2013). GARCH models, frequently used in financial and commodity

markets, effectively capture volatility fluctuations and clustering, making them particularly
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suitable for explaining price dynamics in the notably volatile electricity markets (Higgs

& Worthington, 2008). These models, alongside autoregressive moving average (ARMA)

processes, are adept at illustrating how volatility shocks in electricity markets can cluster,

persist, and eventually revert to a normative level. This method has been utilized by

Ketterer (2014) and Kyritsis et al. (2017) in their investigations of the conditional mean

and volatility in spot electricity markets.

In equity markets, negative price movements typically lead to greater volatility, known as

the "leverage effect" (Nelson, 1991). This phenomenon describes how equity volatility

increases after a decline in equity prices as a consequence of increased leverage ratio

in the company, defined as debt relative to its equity value. To accurately represent

this asymmetry, the employment of EGARCH models is commonly adopted in financial

analysis (Choi & Richardson, 2016).

Interestingly, Knittel and Roberts (2005) identified that electricity prices may demonstrate

asymmetric volatility, characterized as an "inverse leverage effect." This study highlights

the efficacy of the EGARCH model in modeling electricity prices, notably for its superior

performance in out-of-sample forecasting. Bowden and Payne (2008) highlights that

positive price shocks, such as unexpected increase of demand, result in greater volatility,

and can be explained by the activation of generators with higher marginal costs with

increased demand. Liu and Shi (2013) further underscores the EGARCH model’s ability

to demonstrate the presence of an "inverse leverage effect." However, the phenomenon is

not uniform across all electricity markets (Erdogdu, 2016; Girish & Vijayalakshmi, 2018),

but in the electricity markets where the effects are identified, Erdogdu (2016) highlights

that the general GARCH model may not fully capture the nonlinear and asymmetric

properties inherent.

2.2 Contribution to Existing Literature

Within the scope of existing literature, a notable study by Koopman et al. (2007) researched

the influence of water reservoir levels and consumption on Norway’s pricing and market

dynamics. Utilizing a REG-ARFIMA-GARCH model, their findings demonstrated a

statistically significant decrease in electricity prices with an increasing reservoir level. This

findings aligns with findings by Bye (2003), who observed a similar relationship during the
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Nordic market’s shortage of precipitation inflow in 2002 and 2003. Further research was

expanded by Huisman et al. (2014) by illustrating how price dynamics and competitive

pressures within the Nordic market significantly differed between periods of high and low

reservoir levels, using a demand and supply model. Collectively, these studies indicate

a negative correlation between electricity prices and reservoir levels. Additionally, an

ARIMA-GARCH model analysis of the system price by Rudberg (2022) revealed that

while temperature and demand had minimal impact on price and volatility, supply and

rainfall played a more substantial role in explaining the system price’s level and volatility.

Mauritzen (2011) studied the relationship between hydro and wind power in the Norwegian

and Danish markets using simple econometric distributed lag models. The findings

indicated that while wind power influenced trade patterns between the countries, it had a

minimal effect on Norwegian spot prices and daily variance. Furthermore, previous master

thesises, has employed Ordinary Least Square (OLS) estimation and Two-Stage Least

Squares (2SLS) analysis to investigate the effect of increased wind power generation on

electricity price volatility in Norway (Gjerland & Gjerde, 2020). The findings revealed

no significant relationship between daily wind power production and intra-daily price

volatility.

Building upon existing research, the thesis aims to integrate the effects of both hydro

and wind generation on the pricing and volatility within Norwegian pricing areas, while

also include how the occurrences of climate change might affect these relationships. As

Mideksa and Kallbekken (2010) have identified that climate change influences electricity

markets through both demand and supply. The contribution to existing research lies in a

combined analysis on the Norwegian market, using a more recent dataset.
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3 Background

3.1 Nordic Electricity Market Characteristics

The Norwegian electricity market operates within the common Nordic wholesale market,

which is closely integrated with the broader European electricity market. The evolution of

this market has been characterized by significant deregulation and integration initiatives

that have fundamentally shaped its current configuration.

Norway was one of the first countries to initiate the deregulation of its electricity market

in 1991. This shift towards a liberalized market was crucial, influencing influencing the

other Nordic countries to transition from nationally controlled electricity markets to a

unified and competitive framework (Hope & Bye, 2007).

Post-deregulation, Nord Pool was established. Starting out for Norway, it transformed into

the first international power exchange by 1996, expanding to include Sweden, Denmark,

and Finland. The expansion continued and further integrated Estonia, Lithuania, and

Latvia (Norwegian Ministry of Petroleum and Energy, n.d.). Nord Pool’s evolution

represents a pivotal shift in the electricity sector, moving from nationally controlled

electricity markets to a market-driven system. For Norway, this transition has been

essential in fostering the development and efficient operation of its electricity market.

Nord Pool has evolved into a central hub for electricity trading, effectively connecting

producers and consumers. The platform ensures a transparent, efficient, and reliable

trading environment (NordPool, n.d.). By facilitating the free and efficient trade of

electricity among member countries, Nord Pool has been crucial in improving the security

of electricity supply. Furthermore, this integration plays a vital role in maximizing the

utilization of available power capacities across the Nordic and Baltic regions.

3.1.1 Electricity Price Dynamics

Electricity prices in the market are fundamentally determined by the equilibrium between

supply and demand. Various factors influence this delicate balance, leading to fluctuations

in electricity prices. The demand side of the electricity market reflects the cumulative

need for electricity from residential, industrial, and commercial sectors. It is characterized
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not only by the overall volume required but also by temporal and seasonal variability

(Førsund, 2015, pp. 9–13). Factors such as daily usage patterns, weather conditions, and

socio-economic parameters contribute to demand fluctuations. Peak hours and extreme

weather conditions can lead to surges in demand, impacting electricity prices. Additionally,

technological advancements and sustainability policies, including the adoption of electric

vehicles and heating systems, influence market demand. Ensuring a consistent supply to

meet this dynamic demand is a crucial aspect of market management.

The supply aspect of the electricity market is shaped by a variety of factors. Predominantly,

it is the generation capacity, coupled with the cost of production and accessibility of

input resources, that dictates the supply dynamics. Geopolitical events, natural disasters,

and market trends can cause fluctuations in electricity prices as they lead to changing

needs and increased uncertainty. The incorporation of renewable electricity sources adds

complexity to the supply side, as their availability is directly influenced by weather

conditions. Moreover, intermittent technologies such as wind, solar, and small-scale

hydro can only contribute to the supply side when specific weather conditions are met

(Førsund, 2015, p. 161). Infrastructure maintenance and upgrades are essential to ensure

consistent electricity delivery, while international connectors expose local markets to

global influences and crises. Technical outages and scheduled maintenance work may

limit supply, leading to price surges (EuropeanCommission, 2022). Regulatory policies,

technological advancements, and investments in the electricity sector significantly influence

the supply landscape, determining the prioritization and integration of electricity sources.

Environmental considerations, such as carbon pricing and emissions regulations, further

influence the shaping of supply dynamics (EuropeanCommission, 2022).

Navigating the interplay of demand and supply, the "Merit Order Effect" plays a pivotal

role in determining system prices in the Nordic market (Apunn, 2015). The mechanism

ranks the total Nordic supply of electricity sources based on their marginal costs, creating

a merit order from the lowest to the highest as illustrated in Figure 3.1.

Renewable electricity sources occupy the bottom of this order due to their near zero

marginal costs, as a consequence of the lack of fuel and minimal workforce. Conventional

power plants, with higher marginal costs, are arranged in ascending order. As total

demand fluctuates, different electricity sources are activated sequentially, starting from the
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lowest-cost source (Biggar & Hesamzadeh, 2014, p. 100). The system price is ultimately

determined by the marginal cost of the highest-cost technology required to meet total

demand. This pricing mechanism ensures that all participating generators receive the same

market price, creating a transparent, unified pricing structure. The demand for electricity

exhibits inelastic characteristics in the short-run, stemming from the constrained ability

to change consumption habits. Consequently, the demand curve in the electricity market

is characterized by its steepness (Hoel & Bye, 2009, p. 35).

Source: Rystad Energy research and analysis

Figure 3.1: Illustration of the Merit Order

This theoretical nature of the system price is based on the assumption of no congestion

within the Nordic transmission grid. The system price serves as a unified reference for

the entire Nordic market and plays a central role as a benchmark for price-setting within

the financial power market of the region (Norwegian Ministry of Petroleum and Energy,

n.d.). When grid limitations are incorporated, different area prices occur resulting from

transmission bottlenecks, balancing incoming purchase and sale bids across distinct price

areas within the Nordic region.
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3.1.2 The Day-Ahead Market

In the wholesale market, price formations and actors operate across three primary markets:

the day-ahead market, intraday market, and balancing market (Norwegian Ministry of

Petroleum and Energy, n.d.). In the wholesale market, price formation and participants

operate across three primary markets: the day-ahead market, intraday market, and

balancing market. Trading in the day-ahead and intraday markets takes place on the Nord

Pool exchange, while the balancing market is managed by the country’s Transmission

System Operator (TSO), Statnett, in Norway. The day-ahead market serves as the primary

platform for electric power trading, enabling real-time adjustments and refinements to

trading strategies. Any remaining imbalances are addressed in the balancing market to

maintain grid stability.

The day-ahead market facilitates a closed auction where buyers and sellers trade energy

for the upcoming 24-hour period (Nordpool, n.d.). Its primary objective is to establish

a credible market, determining individual area prices for the forthcoming 24-hour. The

operational process of this market involves several key steps. At 10:00 Central European

Time (CET), available capacities on interconnectors and within the grid are published.

Between 10:00 and 12:00 CET, buyers and sellers submit their final bids. These submitted

bids are then systematically matched, resulting in a singular price being determined

for each hour and price area. Hourly clearing prices are typically announced by 12:45

CET on the day before the trading period, and individual results are reported to each

participant. This culminates in Nord Pool nominating trades to the respective country’s

imbalance settlement process (Nordpool, n.d.). This operational framework, encompassing

the 12-hour advance notice for the following day and the 24-hour forecasting window,

effectively extends the planning horizon to a 36-hour interval. This extended period is

crucial for market participants to adapt their strategies and manage resources effectively

(Eikeland et al., 2022).

3.2 The Norwegian Electricity Market

Norway’s electricity market stands out within the traditional Nordic and European

markets, owing to its substantial dependence on renewable technologies and the country’s

significant reliance on electric power. Electricity plays an essential role in the functioning of
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Norwegian households, industries, and public infrastructure, demonstrating the thorough

integration of electric power into daily life and industrial activities. To illustrate, statistical

data from 2021 showed that Norway’s per capita electricity consumption surpassed the

European average by over threefold (Ulvin, 2022; WorldBank, 2023). This significant

consumption profile not only accentuates the critical role of electricity within Norway’s

socioeconomic landscape, but also underscores the market’s pronounced vulnerability to

fluctuations and uncertainties. Furthermore, projections indicate a substantial rise in

electricity consumption in Norway over the next decade, primarily driven by the process

of electrification. This increase is attributed to multiple factors, including the transition

towards electric transportation, the implementation of more eco-friendly practices in

industrial sectors, and the growth of electricity-intensive industries (Kirchner et al., 2022,

pp. 20–21).

3.2.1 Electricity Generation Mix

Norwegian electricity generation places a significant emphasis on hydropower. Over the

last five years, more than 90% of Norway’s total electricity output has been generated

from hydropower sources (Holstad, 2023). An overview of the generation technologies

with respective percentage contributions to the total volume, is presented in Table 3.1.

Table 3.1: Electricity Generation by Source

% of Total 2018 2019 2020 2021 2022 Sep.
2023

Fcst.
2040

Hydro 95% 93% 92% 91% 88% 90% 70%
Thermal 2% 2% 2% 1% 2% 2% 1%
Wind (onshore) 3% 4% 6% 7% 10% 8% 11%
Wind (offshore) - - - - - - 14%
Solar - - - - - - 14%

Total (TWh) 147 135 154 157 146 112 207

Source: Kirkerud et al. (2023) and SSB (2023)

The characteristics of hydropower, combined with the extensive availability of storage

solutions, enhances the flexibility of the market. Water reservoirs facilitate the storage of

water during periods of surplus, making it available for use in times of shortage. This

feature allows the electricity market to more effectively align generation with demand,

ensuring a stable and reliable electricity supply even amid regular seasonal variations.
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However, this reliance on hydropower also creates a significant vulnerability, especially

in the context of shifting rainfall patterns or prolonged droughts, which could present

substantial challenges to the market (Kirchner et al., 2022, pp. 20–21).

According to projections by Statkraft and the Norwegian Water Resources and Energy

Directorate (NVE), a moderate increase in hydropower generation is expected during

normal years (Gunnerød et al., 2023; Kirkerud et al., 2023). In contrast, wind power

generation in Norway has experienced a significant increase in recent years, a development

that is expected to persist over the coming decades. Further, NVE’s forecasts predict the

incorporation of offshore wind into Norway’s electricity mix by 2030, contributing to the

overall growth in wind power. Solar power is expected to become a larger part of the

electricity portfolio, growing steadily but likely remaining a small contributor to the total.

The exact magnitude and timeline of this expansion remain somewhat uncertain. However,

there is a consensus among the Norwegian electricity authorities that the proportion of

hydropower in Norway’s electricity mix will slowly decrease over the coming decades.

Projections suggest a more varied electricity portfolio, with hydropower’s share reducing

to around 70% by 2040, as detailed in Table 3.1.

3.2.2 Price Areas

The electricity landscape in Norway varies significantly across different geographical regions,

creating imbalances that exceed the compensatory capacity of the existing electrical grid

(Statnett, 2023). To address this challenge, Norway has implemented a system of distinct

price areas. Since 2010, the power grid has been divided into five areas: Østlandet (NO1),

Sørlandet (NO2), Midt-Norge (NO3), Nord-Norge (NO4), and Vestlandet (NO5), as

illustrated in Figure 3.2. This segmentation is crucial in enabling efficient allocation of

Norway’s power resources, providing precise market signals about areas of surplus and

scarcity, while also ensuring the security and stability of the power supply. Importantly,

this structuring enables refined control over the distribution of electricity, permitting areas

with excess electricity to export to those experiencing shortages (Statnett, 2023).
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Source: Statnett (2023)

Figure 3.2: Overview of Norwegian Price Areas

To demonstrate the variation in Norway’s electricity generation mix, Table 3.2 provides a

detailed overview in terawatt-hours (TWh) by price area, utilizing the generation data

from 2022. When capacity constraints limit the transfer of electricity through the grid,

distinct power prices emerge across different regions. This leads to the incentive of selling

electricity from areas with a surplus to lower prices, with higher price levels, ensuring

power availability where it is most required. These price differences play a crucial role

in the market. In the short term, they guide immediate adjustments in generation and

consumption. In the longer term, they signal priorities for infrastructural and operational

developments (Statnett, 2023).

Table 3.2: Electricity Generation by Area 2022

Generation TWh NO1 NO2 NO3 NO4 NO5

Hydro 15 38 22 26 27
Wind 1 5 6 3 -
Thermal 0 0 0 1 0

Total Generation 16 43 29 30 28

Source: Elhub
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4 Data
The dataset employed in the thesis is outlined in this section. Primary variables of interest

are electricity prices, acting as the dependent variable, hydrological balance and wind

generation, identified as external regressors. The incorporation of load as a control variable

allows for a more nuanced exploration of the dynamics between electricity prices and main

renewable electricity sources in Norway.

The dataset contains observations from January 1, 2018 to September 30, 2023, aggregated

to daily frequency, resulting in 2099 observations. The time series are divided into peak

and off-peak observations to reflect distinct market characteristics during the day. In

line with previous literature, it is stated that treating peak and off-peak hours separately

provides a insightful understanding of the complex electricity market (Ballester & Furió,

2015; Lucia & Schwartz, 2000; Pereira et al., 2017). Peak hours cover hours 09:00-20:00,

while off-peak hours cover hours 01:00-08:00 and 21:00-24:00, each spanning 12 hours.

In accordance with the day-ahead market dynamics, as detailed in Chapter 3, the inclusion

of forecasted variables in the dataset, instead of actual, is preferred due to consistency

(Kyritsis et al., 2017; Morales et al., 2011). However, when forecasted data are unavailable,

actual observations are used as a proxy of the day-ahead value, a methodology also

employed by Mauritzen (2011) in studying the Danish and Norwegian electricity market.

All variables included in the dataset have been meticulously sourced from reliable and

accessible sources, with an overview detailed in Table 4.1.

Table 4.1: Data Source Overview

Variable Unit Hourly Daily Weekly Source

Day-Ahead Prices NOK/MWh X Nord Pool
Hydrological Balance GWh X NVE
Day-Ahead Wind MWh X ENTSO-E
Actual Load MWh X Hafslund

4.1 Day-Ahead Electricity Prices

Day-ahead electricity prices for each individual price area have been collected from Nord

Pool’s FTP server. The price data are observed hourly and measured in Norwegian Krone

per megawatt-hours (NOK/MWh). The daily frequency for each area is calculated by
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average the hourly prices within the peak and off-peak intervals.

Peak and off-peak electricity prices for NO1, as depicted in Figure 4.1, illustrate a time

series with prices initially maintaining a low and stable level around 759 NOK/MWh,

potentially suggesting a mean-reverting characteristic until September 2021. Subsequently,

an increase in volatility is observed, pointing to significant external influences or shifts

affecting market dynamics. The steep price spike reaching 6617 NOK/MWh in August

2022 marks a notable surge in electricity prices. After this surge, a reversion towards

previous price levels is noticeable, yet prices continue to exhibit higher volatility than

seen in the pre-2021 period. Within the time series, instances of negative pricing are also

observed. The initial occurrence of prices descending below zero in the NO1 region was

recorded on July 6, 2020. However, the first instances of negative daily prices in NO1

occurred on July 2, 2023, for peak hours and August 8, 2023, for off-peak hours.

Figure 4.1: Electricity Prices NO1

The analysis of the price series plot in Figure 4.1 indicates that both peak and off-peak

intervals are characterized by occasional positive and negative price spikes, along with

significant volatility and volatility clustering, aligning with the findings of Geman and

Roncoroni (2006b). The volatility clustering is specifically visible through the sharp spikes

in 2021 and 2022 followed by less dramatic changes. The volatility is particularly apparent

during winter months, reflecting seasonal variations with prices typically escalating due

to increased demand. Complementing this, the histograms in Figure 4.2 reinforce these

observations. The distribution exhibits leptokurtic behavior, characterized by high kurtosis

(fat tails), within a right-skewed distribution. This leptokurtic nature is suggestive of
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the frequent occurrence of extreme price events. This indicates that substantial positive

prices occur more frequently than significant negative prices, suggesting the presence of

asymmetry and an "inverse leverage effect" in the market.

Figure 4.2: Histogram Electricity Prices NO1

4.2 Hydrological Balance

The weekly hydrological balance data are sourced from NVE, recorded every Monday

and expressed in gigawatt-hours (GWh). The hydrological balance, as defined by NVE,

is the cumulative sum of hydrological deviations measured against a 20-year historical

median. It encompasses the deviation from the historical average in reservoir levels and the

aggregated deviation from the historical average in snow reserves, soil, and groundwater

levels for the relevant week (“Hydrologiske data”, 2023). To convert the weekly data

into a daily frequency, linear interpolation is used. This approach assumes a constant

hydrological balance throughout each day, without accounting for potential variations

during peak and off-peak hours.

The inherent capability of hydropower to store energy and adjust generation strategically

in response to market demands introduces an endogenous relationship between hydro

generation and electricity prices. This characteristic distinguishes hydropower from other

technologies lacking storage capabilities. The opportunity to store water resources for

future use introduces an alternative cost for the producers (Bye, 2014, pp. 325–333). In

periods where water is not utilized, it can be stored for future generation. Producers

expecting higher future prices, assuming no reservoir limitations, can be better off storing
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water, leading to a temporary withholding in resources. Thus, producers often strategically

align their output with price development to maximize profit, and the direct inclusion of

hydro generation creates an endogenous relationship in market analyses.

Producers base their production decisions on both the current reservoir levels and their

projections about future market development and water inflow. The hydrological balance

provides a broader perspective of the market dynamics. This approach takes into

account deviations from long-term normal levels across: reservoir levels, snow, soil-

and groundwater. Such a broader hydrological definition is of interest in terms of informed

decision-making. In relation to the research question, which aims to assess the impact of

hydro generation on the market and the implications of potential climatic shifts, a focus

on deviations from historical norms is preferred. This approach extends beyond mere

considerations of precipitation and reservoir inflow, offering a broader understanding of

the factors influencing hydro generation.

- - - Balance deviation from zero ("normal")

Figure 4.3: Hydrological Balance NO

Furthermore, hydrological balance is assessed at a national level to capture its stabilizing

influence across the entire Norwegian electricity market. This approach is informed by the

unique storage capabilities of large hydropower systems and the interconnected nature

of the market, where areas with lower shortages can draw support from regions with

higher reservoir levels. The approach enables an exploration of how fluctuations in water

resources affect electricity price volatility and overall market stability. Figure 4.3 illustrates

the historical development in the national hydrological balance from 2018 to 2023.
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4.3 Day-Ahead Wind

Hourly day-ahead wind generation for each price area is sourced from the transparency

platform European Network of Transmission System Operators for Electricity (ENTSO-E).

These forecasts detail wind power generation in megawatt-hours (MWh) for each hour. To

effectively process this data, the day-ahead wind forecasts are aggregated into daily peak

and off-peak cumulative totals. This method involves summing all the day-ahead wind

forecasts within the time interval for each period, providing a comprehensive summary

that accurately reflects the wind electricity generation for each area.

The growing reliance on wind power in the Norwegian generation mix increasingly influences

electricity prices. This is due to the inherent dependency of wind electricity generation on

fluctuating wind conditions. High wind speeds enable wind turbines to generate electricity

at greater capacities, which can lead to an oversupply in the market and lower prices. In

contrast, during periods with low wind speeds, the diminished output from wind turbines

can reduce supply from wind generation. The unpredictable and variable nature of wind

further complicates electricity market forecasting. Unlike hydropower, which benefits from

the storage capabilities, wind power generation is subject to rapid and less predictable

changes, adding a layer of complexity to market dynamics.

While hydropower shows an endogenous relationship with market prices through its

storage capabilities, wind power is characterized by an exogenous relationship due to its

intermittent nature. The need for immediate consumption of wind-generated electricity,

along with transmission constraints and the intricacies of the market, highlights the

importance of examining each price area separately. This approach helps in understanding

the specific impact of wind on market volatility, emphasizing the distinct nature of wind

power in the electricity market landscape.

Figure 4.4 illustrates the daily variations in wind power generation characterized by

significant volatility. The graph reveals a subtle seasonal pattern, where wind generation

levels in the winter, and slightly lower output during the summer. This development

demonstrates the changing availability of wind resources across days and seasons.
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Figure 4.4: Day-Ahead Wind Generation NO

4.4 Actual Load

Hourly actual load data provided by Hafslund in MWh, is aggregated into peak and

off-peak series for analysis. Actual rather than forecasted data is included to maintain

analytical consistency with the control period1.

In the electricity market, demand is a key determinant of price formation, characterized

by both fluctuating and steadily increasing trends. This variability in demand is evident

in the daily, weekly, and seasonal patterns of electricity usage. Moreover, an overall

rise in demand is observed, driven by the gradual electrification across various sectors.

Particularly in Norway, a significant portion of electricity consumption within both the

service sector and households is related to heating and cooling, demonstrating a high

sensitivity to weather conditions (Sørgård et al., 2023).

In this market context, electricity demand is quantified by the total load. Therefore,

load serves as a crucial control variable, in the analysis. The profound effect of load

on electricity prices is undeniable, necessitating a detailed examination of the interplay

between day-ahead electricity prices and the supply-demand equilibrium.

1This study employs Hafslund’s load data available from 2010, instead of the ENTSO-E’s day-ahead
data starting from 2014. This selection extends the observation window and ensures a uniform data
foundation for both models.
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As illustrated in Figure 4.5, there is a marked seasonal pattern in electricity demand,

with notable peaks in winter and valleys in summer. Recognizing and integrating these

demand fluctuations into the market analysis is essential, as it offers a reliable perspective

on the dynamics influencing electricity market behavior.

Figure 4.5: Actual Load NO

Table 4.2 and 4.3 below provide a summary of the dataset’s descriptive statistics, separated

into peak and off-peak hours across price areas. The statistics include the minimum,

maximum and mean observations of the variables. The positive standard deviation (SD)

indicates that the observations are spread around the mean, and the positive skewness

shows asymmetric distributions. The positive values indicate a heavier upper tails.

Similarly, positive excess kurtosis suggests more extreme value fluctuations compared to

a normal distribution (Wooldridge, 2018, pp. 802–809). High values of the Jarque-Bera

(J-B) normality test reinforce the non-normal distributions (Jarque & Bera, 1980). Prices

are reported in NOK/MWh, hydrological balance in GWh (1,000 MWh), while wind and

load data are expressed in MWh.
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Table 4.2: Descriptive Statistics Peak Hours

Min Max Mean SD Skewness Excess Kurtosis J-B Normality

A. Price Statistics
NO1 -203.93 6616.89 758.61 840.16 2.66 12.34 10111.67
NO2 -176.23 6616.89 807.70 907.85 2.70 12.18 9924.25
NO3 -45.20 3940.19 382.92 364.77 4.45 34.29 92568.49
NO4 -45.20 3187.90 318.19 272.93 4.50 39.70 124908.22
NO5 -49.74 6616.89 754.25 836.87 2.68 12.50 10403.72

B. Hydro Statistics
NO -19848.00 35720.00 -2005.51 11537.05 1.20 4.37 664.36

C. Wind Statistics
NO1 0.00 4403.00 680.85 742.58 1.49 5.45 1301.73
NO2 45.00 51747.00 4492.32 3856.82 1.78 13.73 11180.55
NO3 31.00 31602.00 5171.74 5201.28 1.21 3.65 546.02
NO4 49.00 14516.00 2426.17 1963.08 1.43 5.34 1199.70
NO5 NA NA NA NA NA NA NA

D. Load Statistics
NO1 26527.00 91288.00 50727.78 15607.66 0.49 2.14 149.57
NO2 28136.00 77503.00 51184.31 8932.46 0.47 2.27 124.15
NO3 27501.00 54418.00 38206.65 5762.94 0.26 2.01 109.05
NO4 18016.00 36901.00 27181.67 4486.36 0.13 1.81 130.71
NO5 23169.66 34986.00 23169.66 4146.889 0.20 2.64 25.610

Table 4.3: Descriptive Statistics Off-Peak Hours

Min Max Mean SD Skewness Excess Kurtosis J-B Normality

A. Price Statistics
NO1 -57.84 6258.45 681.88 729.63 2.58 12.45 10135.14
NO2 -35.69 6258.45 748.32 824.01 2.67 12.30 10070.23
NO3 -44.48 3247.01 324.61 291.29 4.33 34.61 93924.65
NO4 -44.48 1828.68 274.57 186.14 1.66 12.03 8087.64
NO5 -57.84 6258.45 682.73 729.32 2.57 12.43 10087.74

B. Hydro Statistics
NO -19848.00 35720.00 -2005.51 11537.05 1.20 4.37 664.36

C. Wind Statistics
NO1 0.00 4124.00 811.95 764.09 1.19 4.59 716.16
NO2 33.00 31219.00 4467.36 3434.22 1.16 4.91 787.85
NO3 29.00 32713.00 5297.30 4948.95 1.11 3.54 451.95
NO4 23.00 14033.00 2427.63 1854.41 1.39 5.27 1124.51
NO5 NA NA NA NA NA NA NA

D. Load Statistics
NO1 22706.00 83563.00 44412.48 14301.26 0.40 2.08 130.42
NO2 30949.00 73046.00 47546.82 8124.61 0.39 2.22 107.65
NO3 24749.00 51018.00 35766.78 5330.97 0.21 2.03 97.70
NO4 16661.00 34843.00 25686.47 4180.26 0.08 1.86 115.03
NO5 1514.00 32065.00 21541.27 3733.89 0.08 2.65 19.98
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5 Methodology
This chapter presents the ARMA-GARCH and -EGARCH models, each comprising two

main equations: the conditional mean equation and the conditional variance equation.

Contrary to static, unconditional models, this framework permits the current mean and

variance to be shaped by historical data and explanatory variables, facilitating a more

dynamic analysis of time-dependent volatility (Koopman et al., 2007, p. 20). This aspect

is particularly significant in the context of financial time series, such as electricity prices.

The examination of the model’s structure and functionality in this chapter provides a

comprehensive understanding of its capabilities to model and interpret the level and

volatility dynamics of electricity market prices. Thus, this chapter contributes to a deeper

understanding of the model’s capacity and relevance for complex time series.

5.1 The ARMA(p,q) Model

The ARMA model, developed by Box and Jenkins (1976), is an integration of autoregressive

(AR) and moving average (MA) processes. The AR component is characterized by

regression on its own previous values, while the MA component incorporates the

relationship between observations and the stochastic error terms from previous periods,

commonly referred to as white noise.

Within the ARMA(p,q) framework, p is the number of lagged observations influencing

the current value, defining the depth of the model’s memory in the autoregressive part.

The moving average order, specified by q, integrates the number of past stochastic error

terms, capturing the immediate effects of random fluctuations or "shocks."

Mathematically, the model is specified in Equation 5.1, providing a linear representation

of the time series where past data points and past errors inform the current value.

yt = µ+
pX

i=1

�iyt�i +
qX

j=1

✓j"t�j + "t (5.1)

In this framework, yt is the conditional mean at time t, µ represents the intercept or

constant term in the model. The coefficients �i reflect the influence of the series’ own past
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values up to p lags on the current value. Meanwhile, the coefficients ✓j measure the part

of the error up to q lags relevant to explain the current value.

5.2 The General GARCH(p,q) Model

The general GARCH model is based on Engle (1982)’s ARCH model, which captures the

phenomenon of volatility clustering in time series data and assumes that current volatility

of a time series is related to the squared residual errors from pervious periods. Introduced

by Bollerslev (1986) the GARCH model further incorporates lagged conditional variances

reflecting the long-term variance. The extension to the GARCH model provides a more

flexible and efficient framework to handle the volatility clustering.

In a GARCH(p,q) configuration, p represents the number of lagged squared errors,

expressing the ARCH effect, and the q indicates the lagged conditional variances, the

GARCH effect. The GARCH(p,q) model’s conditional variance equation is given below.

"t = Zt

p
ht, Zt ⇠ iid N(0, 1) (5.2)

ht = ! +
pX

i=1

↵i"
2
t�i +

qX

j=1

�jht�j (5.3)

In Equation 5.2, the error term "t for the current period is presumed to be white noise,

implying no autocorrelation; it is essentially random and unpredictable. Within this term,

Zt is assumed to be independently and identically distributed following a standard normal

distribution. ht is the conditional variance at time t and ! provides a baseline level of

variance in Equation 5.3. The ↵j coefficients reflect the magnitude of the ARCH effect

measuring the impact of past shocks on current volatility, and �i is associated with the

GARCH effect measuring the degree to which past volatility influences current volatility.

The GARCH model is particularly effective at capturing the volatility clustering that is

a hallmark of electricity market data, where errors in variance show serial dependence.

Employing the framework can result in a more exact representation of the complex

volatility structures typical in electricity markets, improving upon the limitations of

homoskedastic models.
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5.3 The Exponential GARCH(p,q) Model

The Exponential GARCH (EGARCH) model, an extension of the general GARCH model,

was introduced by Nelson (1991). The model represents the log of the conditional variance

as a function of past observations. By this transformation, the EGARCH model ensures

positivity and introduce the ability to handle asymmetric responses to shocks. This enables

the model to explicitly address the "leverage effect," the financial concept introduced in

Chapter 2 and is referred to the asymmetric impact of shocks on market volatility.

The mathematical representation of the EGARCH model that extends from the general

GARCH model is as follows:

ln(ht) = ! +
pX

i=1

↵ig(Zt�i) +
qX

j=1

�j ln(ht�j) +
rX

k=1

�kg(Zt�k)⇥ Zt�k (5.4)

ln(ht) represents the natural logarithm of the conditional variance at time t. The term !

is the intercept, capturing the long-term average log-variance. The coefficients ↵i measure

the magnitude of the ARCH effect, where g(Zt�i) is a function of the standardized

residuals, which now capture the size and direction of the effect, and the �j coefficients

correspond to the GARCH terms. The "leverage effect" is modeled by the �k coefficients,

which multiply a function of the standardized residuals, capturing the different impacts

of positive and negative shocks on volatility. The natural logarithm on the left side of

Equation 5.4 ensures that the variance remains nonnegative, a direct consequence of the

exponential function’s strictly positive character. This aspect of the equation relaxes

the parameter constraints, effectively broadening the model’s ability to capture complex

volatility dynamics.

The EGARCH model allows for an analysis of volatility dynamics, accommodating both

the clustering of volatility and the asymmetric effects of market shocks. Within the

electricity market context, the EGARCH model is able to model the "inverse leverage

effect." Capturing this phenomenon becomes a valuable tool for precise volatility modeling

in electricity markets where the presence of the effects are identified (Knittel & Roberts,

2005).
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6 Data Analysis
The data analysis chapter includes the pre-processing phase essential for constructing

a robust time series model. It outlines the steps taken to ensure that the dataset

satisfies the prerequisites for time series analysis. This involves transforming variables

to eliminate seasonality, conducting stationarity tests, and laying the foundation for

selecting appropriate model specifications. Subsequently, the appropriate mean and

variance equations are specified. To enhance the readability of the data analysis, and

considering the homogeneity across the pricing areas, the presentation of the data analysis

in this chapter will primarily focus on NO1 peak hours 2.

6.1 Transforming Variables

The initial step in the transformation phase involves adjusting for outliers within the

dataset. Understanding that spikes could signify actual market disruptions, including

extreme weather events or sudden market shifts, they are not removed unsystematically.

To enhance model stability and focus on underlying development, outliers are identified

as extreme price values exceeding ten times the standard deviation of the original price

series. These outliers are adjusted to ten times the mean of the series. This threshold,

while higher than the commonly referenced three standard deviation (Gianfreda, 2010;

Ketterer, 2014), is chosen to balance between maintaining model integrity and capturing

as many observations as possible. A total of six outliers were adjusted, with three in the

peak prices and one in the off-peak prices, in addition to two in the peak prices of NO4,

as evidenced by Table 6.1.

Table 6.1: Statistical Summary of Price Outliers

Peak Mean SD # Off-Peak Mean SD #

NO1 758.61 840.16 0 NO1 681.88 729.63 0
NO2 807.69 907.85 0 NO2 748.32 824.01 0
NO3 384.74 384.89 3 NO3 324.70 292.23 1
NO4 318.79 280.67 2 NO4 274.57 186.14 0
NO5 754.25 836.87 0 NO5 682.73 729.32 0

2A complete appendix, including corresponding plots and tables for the remaining areas, is available
upon request from the authors.
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In the realm of electricity markets, demand and pricing patterns display clear seasonal

trends, shaped by the cyclical nature of climatic conditions, economic activities, and social

behavior. To accurately reflect the underlying market movements within the dataset,

seasonal adjustments are made. A deterministic approach to weekly seasonality involves

the implementation of daily dummies (Escribano et al., 2011). These variables distinguish

the characteristic consumption patterns that separate weekdays from weekends. The

Ordinary Least Square (OLS) regression with these dummies neutralizes weekly cyclicality,

thereby refining the dataset for subsequent analysis. Significant differences (at the 5%

level) between weekdays and weekends were found for both load and price, validating the

inclusion of these dummies.

Similarly, meteorological seasonal dummies for summer, fall, winter, and spring capture

broader, predictable fluctuations inherent in the electricity market. Echoing Lucia and

Schwartz (2000)’s findings in the Scandinavian market, these seasonal variations, including

increased demand and price spikes in winter, are crucial to electricity market behavior.

Incorporating seasonal dummies into variables, including wind and hydrological balance,

facilitates thorough seasonal adjustment. This approach acknowledges that variables

are influenced by meteorological conditions beyond the day of the week. Analysis of

the dummy variables revealed significant variations across all seasons for most variables.

However, for wind, the significant distinction was primarily between winter and summer.

Attempts to define data with monthly dummies yielded less significant results, thus

underscoring the efficacy of the chosen seasonal dummies.

The year 2022 stands out in the temporal dataset, marked by exceptional market

disturbances stemming from geopolitical events and electricity supply disruptions. Given

these extraordinary circumstances, a specific ’year dummy’ for 2022 is included. This

adjustment isolates the atypical impact of these market price events, which are external to

the natural market dynamics. For context, the NO1 peak price in 2022 averaged at 2034

NOK/MWh, a stark contrast to the average of 490 NOK/MWh for the other years in the

dataset. The influence of the 2022 dummy is especially noticeable in the southern price

areas, reflecting NO3 and NO4’s shielding from broader market shocks by transmission

bottlenecks. This differential impact underscores the need for region-specific analysis in

understanding the full scope of market behavior during this tumultuous period.
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Finally, unit root and stationarity tests are conducted to ensure compliance with the

fundamental assumption of stationarity in time series analysis. The results of these tests

for each series are thoroughly documented in Appendix A1. The Augmented Dickey-Fuller

(ADF) test and the Dickey-Fuller GLS (DF-GLS) test are employed to assess the series

under the null hypothesis of a unit root, suggesting non-stationarity (Dickey & Fuller,

1981; Elliot et al., 1996). The ADF test incorporates lags, selected based on the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC). In contrast, the

DF-GLS test, while also examining for unit roots, applies a generalized least squares (GLS)

detrending procedure before testing. Conversely, the Phillips-Perron (PP) test evaluates

the same null hypothesis, but is tailored to address serial correlation and heteroskedasticity

in the error terms, offering a nuanced view of the data’s temporal structure (Perron &

Phillips, 1988). On the other hand, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test

adopts a different perspective, testing the null hypothesis that the series is stationary

around a constant (Kwiatkowski et al., 1992). The use of these varied tests, each with its

distinct methodological focus and diagnostic capability, strengthens the reliability and

ensures a thorough evaluation of the stationarity of the time series data.

Table 6.2: Unit Root and Stationarity Tests Peak NO1

Adj. Variable ADF DF-GLS PP KPSS

Price -5.730* -6.884* -140.680* 2.006
Hydrological Balance -5.051* -4.414* -62.060* 1.637
Wind -8.950* -19.689* -1414.800* 11.985
Load -7.383* -5.568* -162.430* 2.097
* Stationary at the 5% level

The results presented in Table 6.2, addressing NO1 peak hours, suggest stationarity in the

series. This inference is corroborated by the majority of the tests, except for the KPSS

test, which points towards non-stationarity. Nonetheless, aligning with the perspectives

of Vijayalakshmi et al. (2017), the price series can be considered stationary, despite the

divergent suggestion of non-stationarity by the KPSS test.

In the analysis, the inclusion of negative electricity prices is essential for a true

understanding of market dynamics. Most notably, the absence of a clear trend in Figure

4.1 serves as a primary reason against the use of log transformations. This is particularly

relevant as log transformations are not applicable to negative values. Furthermore,

prevailing economic literature emphasizes the mean-reverting characteristic of electricity
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prices. This concept is supported by studies from Schwartz (1997) and Weron et al. (2004),

all of which suggest that electricity prices exhibit stationary behavior. Consequently, the

approach adopted involves maintaining the price series at its original levels, inclusive of

negative values, without implementing any modifications.

Additionally, an examination of the overall dataset, beyond unit root and stationarity

tests, considers the qualitative aspects of the series’ behavior over time. This broader

analysis, contemplating the historical fluctuations in the market, aligns with the statistical

findings to suggest that the variables operate at a level of integration that does not

necessitate further transformation. Preserving the series in their original levels allows for

the retention of the data’s intrinsic characteristics, which are essential for capturing the

genuine dynamics of the electricity market. This approach prevents the potential loss of

information that may arise from unnecessary transformations.

The coefficients are examined through an auxiliary regression and analyzed using a

correlation matrix, presented in Appendix A.2, to test for potential multicollinearity. When

two or more coefficients are highly correlated there is multicollinearity present (Nishimwe

& Reiter, 2021). Both methods indicate an absence of significant multicollinearity. In

summary, the dataset satisfies the necessary assumptions for further time series analysis.

6.2 Preliminary Model Specification

The specification of the ARMA model in this analysis follows the three-step Box-Jenkins

methodology as outlined by Brooks (2019, p. 358). This method provides a systematic

framework for model identification, estimation, and diagnostic checking.

The autocorrelation function (ACF) and partial autocorrelation function (PACF) are

important for understanding the ARMA model’s behavior, especially in identifying

stochastic seasonality – a seasonality that varies over time. The PACF assists in identifying

the number of AR terms p by revealing the level of correlation between a variable and its

lags that cannot be attributed to previous lags. Conversely, the ACF is used to determine

the number of MA terms q by displaying the correlation between the series and its lagged

values. Both the ACF and PACF are instrumental in observing the presence and impact

of stochastic elements. Through visual examination of ACF and PACF plots, it is possible

to make an initial determination of the values for p and q.
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Figure 6.1: Autocorrelation Peak NO1

In Figure 6.1, the ACF and PACF plots illustrate the autocorrelation patterns in the

seasonally adjusted day-ahead NO1 peak electricity prices. These plots uncover potential

autocorrelation within the dataset. Considering the inherent volatility of electricity

prices, influenced by the complex dynamics of demand and supply and often displaying

unpredictable fluctuations (Wang et al., 2022), analyzing the time-varying patterns within

the time series is crucial. To further validate, a Ljung-Box test was applied to the day-

ahead prices, affirming the presence of autocorrelation in the residuals. This confirmation

suggests that an ARMA model could offer a more accurate fit for the analyzed data.

Identifying the optimal model for the time series analysis involves a model fitting procedure

that utilizes the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC) as measures of model performance. The detailed results of this procedure,

focusing on various lag specifications for ARMA models, are presented in Table A.5. The

table presents a comparison of the criterias across an array of ARMA models, illustrating

their effectiveness in capturing the dynamics of peak electricity prices in NO1. Notably,

AIC and BIC values show relative similarity across different models, which suggests a

degree of robustness in the model�s ability to be effective in capturing underlying data

patterns. However, it is important to note that a slight improvement in information

criteria does not necessarily imply the most suitable model specification. Instead, the

choice should be based on a balance between complexity and goodness of fit.

In this scenario, the priority is to choose a model that effectively captures market dynamics.

Consequently, the selection of AR lags, particularly lags 2 and 7, is based on market analysis

and empirical reasoning, underscoring their relevance in reflecting market bahavior.
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Given the operational intricacies affecting the day-ahead price structure, the possibility

arises that the two-lag significance may align with the 36-hour operational cycle, as

discussed earlier. It is important to understand both the practical market aspect and the

statistical findings to fit the best model. Turning the attention to the comparative analysis

of information criteria, as demonstrated in Appendix A.4, it becomes evident that the

criteria values are relatively close. However, a more detailed examination of both ACF and

PACF plots for the residuals of the AR(2) model reveals persistent autocorrelation issues.

To address this concern, the Ljung-Box test was applied. A p-value of 0.000 confirms

the presence of autocorrelation in the residuals. These results indicate the necessity for

further investigation and refinement to improve the selected model’s fit.

Figure 6.2: Autocorrelation AR(7) Peak NO1

In light of the well-established weekly variations in electricity prices, reflecting the cyclical

nature across different days of the week, a lag of 7 days is introduced. This accounts for

the complex seasonality of electricity prices, which might be overlooked by a smaller lag

order. While the Ljung-Box test confirms the absence of autocorrelation in the residuals,

a closer examination of Figure 6.2 reveals persistent significant spikes. This suggests the

presence of autocorrelation in the residuals and underscores the need for adjustments

to enhance the model’s accuracy. While a Seasonal AutoRegressive Integrated Moving

Average (SARIMA) model could be considered a reasonable alternative for capturing the

seasonality in the dataset better (Wang et al., 2022), it falls beyond the scope of this

thesis. Instead a moving average with corresponding order of seven is introduced to more

accurately capture the complex dynamics in error terms.
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In the ARMA(7,7) model presented below, both the ACF and PACF plots indicate that the

autocorrelations predominantly fall within the confidence bounds for most lags, signifying

a good fit with minimal autocorrelation in residuals. This suggests that the ARMA(7,7)

model effectively captures both the autoregressive and moving average components of the

time series, surpassing the performance of the AR(7) model in isolation. The improved fit

offers a more precise insight into the underlying data. Despite the increased complexity of

the ARMA(7,7) model, the absence of significant autocorrelation in the residuals justifies

its many parameters. Furthermore, in Appendix A.4, the ARMA(7,7) model exhibits low

AIC and BIC values across all price series. Based on the analysis, the ARMA(7,7) model

can be justified within the scope and objectives of this thesis.

Figure 6.3: Autocorrelation ARMA(7,7) Peak NO1

The Ljung-Box test applied to the ARMA(7,7) is presented in Appendix A.7. The model

yields a p-value of 0.4422, indicating insufficient evidence to reject the null hypothesis,

suggesting an absence of autocorrelation in the residuals. This implies that the residuals

of the model can be considered as white noise, signifying the model’s effectiveness in

capturing the underlying data pattern. This assumption must be satisfied to proceed with

testing for ARCH effects.

Subsequently, the Lagrange Multiplier (LM) test, employed to assess heteroskedasticity in

the residuals, confirms the presence of conditional heteroskedasticity in the time series.

In Table 6.3 the presence of conditional heteroskedasticity is confirmed. Through tests

with various lags, the null hypothesis of no ARCH effects is rejected, as evidenced by the

p-values which are statistically significant at all conventional levels.
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Table 6.3: Heteroskedasticity ARCH Test (LM-Test) Peak NO1

Model Lags Chi-squared P-Value
ARMA(7,7) 4 197.25 0.0000

8 228.20 0.0000
16 301.34 0.0000
32 401.30 0.0000

Null hypothesis: No ARCH effects

Considering the time-varying nature of price variance, ACF plots for squared residuals are

presented in Figure 6.4, revealing volatility clustering through significant spikes at various

lags. Significant correlations among squared residuals at different lags suggest that large

variations tend to follow large variations, justifying the utilization of a GARCH model

to capture this time series characteristic. Additionally, an Engle-NG test was conducted,

confirming the presence of asymmetric behavior in volatility within the market. This

result highlights the suitability of the EGARCH model over the general GARCH model,

as it is better equipped to effectively model asymmetric shocks.

Figure 6.4: Autocorrelation Squared Residuals ARMA(7,7) Peak NO1

The selection of the appropriate EGARCH model specification is also guided by information

criteria. Established literature tends to favor models with small lag orders of p and q

to prevent overfitting, as the model is more likely to generalize effectively to new data.

Table 6.4 presents these small lag order EGARCH models with respective AIC. Notably,

the EGARCH(1,1) model emerges as the most adept at modeling the residuals within

the dataset. This finding aligns with academic research, exemplified by Erdogdu (2016),

which often demonstrates the superior performance of the EGARCH(1,1) framework in

capturing market volatility compared to its more complex counterparts.
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Table 6.4: AIC EGARCH Models Peak NO1

(1,0) (1,1) (1,2) (2,0) (2,1) (2,2)
Residuals 50.279 11.277 11.286 239.04 11.292 20.306

Considering conditional heteroskedasticity and the leptokurtic nature of electricity prices,

as evidenced in Figure 4.2, indicating a departure from normal distribution, it’s prudent

to explore alternative distributional options. Heavy-tailed distributions, as the Student-t

distribution may offer a better fit, in line with established literature recognizing the

limitations of the normal distribution for modeling data with significant kurtosis and

skewness (Koopman et al., 2007). Therefore, a Student-t distribution is chosen to improve

the ability to capture observed data patterns.

Figure 6.5: Autocorrelation Residuals ARMA(7,7)-EGARCH(1,1) Peak NO1

Minimal residual autocorrelation is required for an effective model fitting of the price series

(Bollerslev, 1986, p. 308). This is confirmed by the ACF plots in Figure 6.5, which exhibit

minimal autocorrelation, without any noticeable patterns associated with nonstationarity

or seasonality. The standardized residuals mostly suggest an absence of significant

autocorrelation indicating that the mean equation effectively captures the underlying data

patterns. Similarly, the squared residuals, reflecting the variance equation fit, exhibit

no significant autocorrelations. This is consistent with white noise characteristics and

indicating successful capture of volatility clustering in the time series. These observations

collectively imply the correct specification of the models.
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7 Empirical Results and Discussion
This chapter details empirical results from applying the ARMA(7,7)-EGARCH(1,1) model

to Norwegian daily electricity area prices, split into peak and off-peak hours. Using

Maximum Likelihood Estimation (MLE) for precision, the study captures market dynamics

(Pan & Fang, 2002) and discusses the implications, particularly concerning climate change.

The aim is to deepen insights into the Norwegian electricity market through the explored

relationships and effects.

7.1 Model Output

The conditional mean and variance equations for the specified ARMA(7,7)-EGARCH(1,1)

model on electricity prices, incorporating external regressors, are expressed as:

pt = µ+
7X

i=1

�ipt�i +
7X

j=1

✓j"t�j + �bbt + �wwt + �llt + "t (7.1)

ln(ht) = ! + ↵1g(Zt�1) + �1 ln(ht�1)

+ �1g(Zt�1)⇥ Zt�1 + ⇠bbt�1 + ⇠wwt�1 + ⇠llt�1 + "t�1

(7.2)

Here, bt represents the hydrological balance, wt denotes wind power generation, and lt

electricity load.

The empirical results derived from Equation 7.1 and 7.2, encompassing both peak and

off-peak price analyses, are outlined in Table 7.1 and 7.2. For a thorough presentation of

the model, including complete parameter estimates and diagnostic test results, please refer

to Appendix B. Overall, the model proficiently captures the weekly stochastic seasonality

in the data, as shown by significant autoregressive coefficients in the mean equation.

The Ljung-Box test results, detailed in Section C, Table 7.1 and 7.2, indicate minimal

autocorrelation. These results are consistent with the observations from the residual

plots in Figure 6.5 and underscores the model’s adequacy in representing both mean and

variance patterns.
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Table 7.1: EGARCH Model Fit Peak Hours (2018-2023)

NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

�1 -0.0008 0.0013 -0.0128 -0.0123 -0.0024

(0.0000) (0.0139) (0.0153) (0.0030) (0.0000)

...

�7 1.0016 1.0022 0.9647 0.9585 1.0052

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓1 0.8011 0.8196 0.8074 0.7333 0.8431

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

...

✓7 -0.1963 -0.1779 -0.2297 -0.2396 -0.1636

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -48.6953 -84.7086 -95.9825 -51.6897 -19.9572

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wt -5.5534 -4.9439 -14.0151 -7.1976

(0.0000) (0.0000) (0.0000) (0.0000)

lt 14.9124 9.5307 11.5453 14.0528 2.0377

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B. Conditional Variance Equation

↵1 0.0473 0.0818 0.0902 0.0397 0.0236

(0.0250) (0.0007) (0.0000) (0.0711) (0.3188)

�1 0.9913 0.9938 0.9696 0.9743 0.9976

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 0.3195 0.2798 0.5132 0.3160 0.3575

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -0.0109 -0.0099 -0.0121 -0.0091 -0.0089

(0.0078) (0.0099) (0.0665) (0.0566) (0.0228)

wt 0.0201 0.0340 0.0177 0.0234

(0.0020) (0.0000) (0.0973) (0.0028)

lt -0.0254 -0.0151 -0.0026 -0.0007 -0.0109

(0.0000) (0.0036) (0.7698) (0.9166) (0.0600)

C. Model Fit Statistics

AIC 11.297 11.356 10.902 10.390 11.187

LL -11830.5 -11891.7 -11416.14 -10878 -11716.89

Q(30) p-value 0.0001 0.1962 0.0518 0.4351 0.0886

Q(30)2 p-value 1.0000 1.0000 0.9794 1.0000 1.0000

When analyzing the external regressors during peak hours, as presented in Table 7.1,

the hydrological balance exhibits a negative and statistically significant impact on the

average price across all price areas. This finding indicates that a deviation above the

20-year average median hydrological balance signals a surplus of resources compared

to a normal year, while a negative deviation indicates scarcity. These results are
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consistent with the theoretical expectations and earlier studies on resource availability, as

demonstrated by Huisman et al. (2014) and Koopman et al. (2007). Additionally, in a

hydro-dominated market, the hydrological balance plays a pivotal role in stabilizing price

volatility (Rintamäki et al., 2017). As observed in the conditional variance equation, a

positive and statistically significant coefficient for the hydrological balance suggests that

an increase in hydrological balance is associated with reduced volatility. This relationship

suggests a correlation between a higher hydrological balance and a more stable, less

constrained market environment. Such a pattern is likely due to its ability to provide

a steady and manageable electricity supply, thereby playing a crucial role in mitigating

price volatility.

Wind power generation, conversely, plays a dual role: while it contributes to lower average

price levels, it simultaneously leads to increased price volatility. This observation contrasts

with earlier studies in the Norwegian market, which did not observe significant impacts of

wind on market dynamics (Gjerland & Gjerde, 2020; Mauritzen, 2011). Internationally, this

phenomenon has been attributed primarily to the inherent unpredictability of wind power.

The variability in wind power generation can cause significant short-term fluctuations in

supply, thereby affecting price levels. The integration of wind power, with its zero-marginal

cost, influences the electricity market’s merit order, leading to a significant reduction in

average prices in all areas. Therefore, the increased wind generation can contribute to a

higher electricity supply, which in turn lowers peak prices. The inherent challenge with

wind power lies in its reliance on wind availability and the inability to store electricity. This

necessitates real-time generation and consumption of wind electricity. Unlike hydropower

plants, which can regulate generation levels, wind power lacks such flexibility. As a result,

the unique nature of wind electricity introduces significant variability into the electricity

market. This variability, often occurring suddenly, can lead to unforeseen supply shifts,

subsequently resulting in unpredictable fluctuations in electricity prices.

Table 7.2: EGARCH Model Fit Off-Peak Hours (2018-2023)

NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

�1 1.6280 0.9344 1.4845 1.9323 1.6251

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

...

Continued on next page
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Table 7.2 – continued from previous page

NO1 NO2 NO3 NO4 NO5

�7 -0.5611 -0.0858 -0.2928 0.4921 -0.5751

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓1 -0.7263 -0.0364 -0.4799 -1.0048 -0.6743

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

...

✓7 0.0551 -0.0616 -0.1392 0.1096 0.0168

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

bt -64.1197 -85.4438 -67.9909 -49.2885 -68.9300

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wt -5.4258 -6.7368 -13.5122 -6.4163

(0.0000) (0.0000) (0.0000) (0.0000)

lt 12.3907 7.0253 10.3045 10.3933 7.6461

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B. Conditional Variance Equation

↵1 0.0023 -0.0290 0.0087 -0.0670 -0.0041

(0.9162) (0.3186) (0.7567) (0.0018) (0.8493)

�1 0.9786 0.9777 0.9678 0.9507 0.9857

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 0.4473 0.4100 0.5906 0.5894 0.4383

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -0.0145 -0.0136 -0.0142 -0.0201 -0.0093

(0.0285) (0.0113) (0.0435) (0.0200) (0.1304)

wt 0.0299 0.0680 0.0300 0.0232

(0.0007) (0.0000) (0.0047) (0.0505)

lt -0.0051 -0.0135 -0.0138 0.0051 0.0020

(0.5506) (0.0494) (0.1609) (0.6284) (0.8057)

C. Model Fit Statistics

AIC 10.273 10.545 9.9748 9.3986 10.256

LL -10755.18 -11040.59 -10442.52 -9837.793 -10739.85

Q(30) p-value 0.0001 0.0001 0.0549 0.5208 0.0001

Q(30)2 p-value 0.9988 1.0000 0.0001 0.9967 0.9993

In the analysis of off-peak hours, as detailed in Table 7.2, the effects of hydrological

balance and wind power closely mirror those observed during peak hours. Both in terms

of significance and the magnitude of their coefficients. This consistency underscores a

comparable influence of both hydrological balance and wind generation during off-peak

hours, akin to their impact during peak periods. However, despite this overall alignment,

there are noteworthy distinctions to consider. Notably, the influence of hydrological

balance in peak hours appears to be milder compared to off-peak hours, across all areas,

suggesting a reduced role during high-demand periods. In contrast, the impact of wind
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power on price variation is more pronounced in off-peak hours, as evidenced by its stronger

negative coefficients. This difference highlights distinct operational dynamics in the

electricity market at different times, suggesting that off-peak hours may be characterized

by lower demand elasticity, thereby amplifying the effect of wind generation on price

changes.

The observed similarities between peak and off-peak periods in the Norwegian electricity

market are intriguing and may be attributed to the unique structure of the Norwegian

electricity market. Norway’s reliance on hydropower with storage options provides

operational flexibility and stability. These factors could contribute to a more uniform

market behavior throughout the day, challenging the traditional understanding of peak and

off-peak differences. This deviation, resulting from the dampening effect of hydropower,

contrasts with the patterns observed in renewable markets and is also discussed in similar

terms in Ballester and Furió (2015) and Pereira et al. (2017) in the context of the Spanish

market. Markets that exhibit clear distinctions between peak and off-peak hours may be

influenced by constraints and challenges related to generation mixes and technologies not

present in the Norwegian market context. For instance, solar power generation displays

an inverse seasonal pattern compared to electricity demand, resulting in reduced peak

electricity prices and distinct characteristics between peak and off-peak hours (Kyritsis

et al., 2017). This underscores the significance of understanding how different market

structures can shape market dynamics.

Load consistently demonstrates statistical significance with positive coefficients across all

hours in the mean equation, aligning with economic theory, which suggests that higher

demand contributes to increased prices. The significant negative coefficients in the variance

equation during peak hours for southern areas (NO1, NO2, and NO5) might indicate a

stabilizing effect of high load on price volatility. During peak hours, demand patterns may

be more predictable, leading to less price fluctuation. In contrast, the significant negative

effect observed only in NO2 during off-peak hours suggests regional differences in how

load impacts price volatility during times of lower demand. Off-peak hours might exhibit

more elastic demand, leading to less predictable pricing patterns. The unique behavior in

NO2 could reflect local market or grid characteristics that differ from other regions.
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The model’s external variables generally exhibit similar directional impacts on electricity

prices, but a closer examination of the coefficients’ magnitudes yields intriguing insights.

In the analysis of wind’s impact on electricity prices, NO2 consistently displays the highest

coefficient in its variance equations throughout the day, both during peak and off-peak

hours. This heightened vulnerability to wind-related risks in NO2 may be attributed to its

geographical characteristics, particularly its exposure to frequent directional shifts in wind.

This leads to variability in wind patterns, introducing instability in wind movements and

consequently affecting wind generation (G. Lund, 2016). Additionally, NO2 is the pricing

area most interconnected with foreign markets, featuring cable connections to Germany,

the Netherlands, Denmark, and the United Kingdom, all hosting significant wind power

generation capacities. It is plausible that fluctuations in national wind patterns are

correlated with foreign wind patterns, and that the foreign power situation impacts the

price in NO2 through import and export. Consequently, the heightened sensitivity of

NO2 to wind fluctuations may be ascribed to its interconnections with foreign markets

influenced by wind-related factors.

NO3 exhibits the highest mean coefficient on wind generation throughout the day. This

observation can be attributed to NO3 having the highest wind generation both in absolute

MWh and as a percentage of total consumption, defined as wind penetration, for the

analyzed period. In 2022, wind electricity accounted for just over a quarter of total

consumption in this region. This aligns with the argument that higher generation and

wind penetration tend to lead to increased price impact. Additionally, during peak hours,

NO3 is most influenced by hydro in both the mean and variance equations. In recent

years, NO3 has experienced electricity shortages, making it plausible that a region with

an electricity deficit relies more on, and is more responsive to changes in hydropower with

storage capabilities. This is particularly relevant when the region’s electricity generation is

dependent on wind resources, which are inherently uncertain. Storage capabilities provide

predictability, and changes in this aspect can have a more substantial impact on regions

that cannot meet their own electricity demand. Consequently, this can explain the higher

influence of hydro on both NO3 average price and volatility during peak hours.

NO5 presents an intriguing observation as it exhibits the least negative mean coefficient

during peak hours and the least negative variance coefficient on hydro throughout the day,
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encompassing both peak and off-peak hours. This finding is noteworthy, considering that

NO5 relies exclusively on hydropower for electricity generation. One plausible explanation

for this observation is NO5’s geographical advantage, characterized by the highest rainfall

in Norway, with a consistent expectation of frequent precipitation, complemented by

mild temperatures. Consequently, deviations in the hydrological balance in NO5 may not

necessarily indicate scarcity or market pressure.

It is worth noting that NO5 has maintained the lowest average filling level compared to all

pricing areas since 2010. This suggests that the observed effect is likely not attributable

to a higher filling level in NO5. However, when considering that hydropower generation

in NO5 amounts to about 190% of total consumption in the pricing area based on 2022

data, refer to Table 7.5, it can be argued that NO5 is largely self-sufficient in hydropower

generation, with a 90% surplus. As a result, the region is less internally affected by

fluctuations in the hydrological balance - meaning deviations from a “normal year."

Conversely, in NO3, where hydropower generation only accounts for approximately 70%

of total consumption, the most significant hydro effect in both mean and variance during

peak prices is evident. Despite claims that filling levels and hydrological balances at the

area level are not as pivotal as at the national level, it is important to recognize that the

potential for bottlenecks in the transmission network should not be entirely overlooked.

Building on the insights into regional differences and their influence on market dynamics,

the ARCH and GARCH terms offer a quantified understanding of the market’s reaction to

shocks and the temporal variations in volatility. During peak hours, the ARCH terms (↵1)

are significant and positively correlated, underscoring the immediate increase in future

volatility following market shocks in high-demand periods. This effect is in contrast with

off-peak hours, where the significance of ↵1 coefficients is mixed, indicating a more variable

impact of volatility shocks during periods of lower demand. On the other hand, the

GARCH coefficients (�1) demonstrate notable consistency across both peak and off-peak

periods. Their significant values, frequently approaching unity, suggest persistent and

strong volatility over time. This indicates that volatility shocks, once they occur, are

likely to have a lasting impact, regardless of the demand level at the time. The sum of ↵1

and �1 close to unity further corroborates the interpretation of persistent market shocks,

highlighting their substantial influence on future market volatility (Ketterer, 2014).
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Moreover, the positive and significant �1 coefficients observed in all models confirm the

presence of an "inverse leverage effect" in the Norwegian electricity market, indicating that

volatility increases more with positive shocks than negative ones. This is especially

interesting in the context of the Norwegian market, where unexpected dry periods

impacting hydropower generation lead to substantial volatility due to immediate supply

effects. Although Norway’s storage capacity can buffer some fluctuations, it may not fully

mitigate extended or intense supply constraints. Conversely, negative shocks, such as

unexpected reduction in demand, do not result in comparable volatility. This is because

hydropower systems are flexible and can store excess water in the reservoirs, thereby

stabilizing the market.

However, the increasing integration of wind generation, being intermittent and lacking

strategic storage options, is less capable of responding to market imbalances. Consequently,

it is reasonable to assume that wind generation reacts similarly to both positive and

negative shocks. This characteristic could potentially diminish this effect observed as

the Norwegian market becomes less reliant on hydropower and more exposed to the

unpredictability of wind electricity. Therefore, the extent of an "inverse leverage effect"

may vary depending on the proportion of wind generation in the market, and its interplay

with hydrological conditions and market demand.

7.2 Historical Control Period

To examine potential shifts in market responses to external variables over time, a comparing

analysis using a historical control period will be conducted. While traditional literature

uses a 30-year benchmark to determine climatic variations, data limitations and market

structure changes constrain the start of the historical analysis to 20103. Recent findings

from the Norwegian Meteorological Institute, however, suggests that a 10-year window

may be sufficient, reflecting the accelerated rate of climate change in recent years (Steiro,

2023). Thus, the period from 2010 to 2014 has been chosen as the control period, balancing

data constraints and relevance. Deviations in the model’s outputs across the main and

control periods could reveal shifts in the market structure, potentially attributable to

climatic factors.

3Price area NO5, established in 2010, marks the earliest instance of the current price area structures.
Load data limited post-2010.
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The control period analysis employs a slightly simplified model relative to the main period

spanning 2018-2023, reflecting the market’s greater stability and lower impact of external

influences. In accordance with the methodology described in Chapter 6, the most fitting

model is determined to be ARMA(7,0)-EGARCH(1,1). A detailed model output of the

control period is presented in Appendix B.

In the context of climate change, it is crucial to remember that when examining the differing

outputs from the control and main periods, the potential impact of climatic phenomena

such as El Niño and La Niña should not be overlooked. These events are acknowledged

as triggers for natural, annual weather cycles (NOAA, 2023). An understanding of

these phenomena is important when analyzing the changes in weather patterns and their

impacts, especially because the identified trends might extend beyond or differ from those

explainable by natural variations alone. While these cycles indeed contribute to weather

condition variability, including temperature fluctuations, the persistent rise in global

temperatures suggests the influence of additional factors beyond these natural cycles

(NOAA, 2023). It is important to clarify that this thesis does not constitute a causal

study and does not test for statistical differences between coefficients. Such analysis falls

outside the scope of this thesis and are left for further research.

7.2.1 Model Comparison Hydrological Balance

In the conditional mean equation a comparison of the hydrological balance coefficients in

two periods demonstrate consistent and significant effects; increased hydrological balance

are associated with a decrease in average area prices. A notable observation in the

mean equation is the pronounced impact of hydrological balance in NO1. Where, the

coefficient is -75.45 during the control period, compared to -48.70 in the main period. The

introduction of wind generation into NO1’s portfolio in the main period might suggest

that diversifying the generation mix by incorporating wind, could result in lower price

sensitivity to changes in hydrological balance. In contrast, in areas such as NO2 and NO3,

where the generation mix has remained more consistent, there is a notable increase in

absolute terms of the coefficient for hydrological balance. This observation suggests that a

similar change in hydrological balance currently has a more substantial impact on average

prices than it did during the control period.



7.2 Historical Control Period 45

Table 7.3: Model Comparison Hydrological Balance Mean Equation

NO1 NO2 NO3 NO4 NO5

bt Peak Hours

Control -75.4538*** -42.6711*** -59.5142*** -45.1651*** -84.3075***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Main -48.6953*** -84.7086*** -95.9825*** -51.6897*** -19.9572***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt Off-Peak Hours

Control -17.5172** -29.4846*** -35.5999*** -33.7197*** -31.6523***
(0.0230) (0.0009) (0.0009) (0.0027) (0.0001)

Main -64.1197*** -85.4438*** -67.9909*** -49.2885*** -68.9300***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Statistical significance: *** 1% level, ** 5% level, and * 10% level

In the conditional variance equation, the hydrological balance consistently reduces price

volatility in both periods. However, the hydrological balance was not statistically significant

during the control period. The empirical results reveal that fluctuations in the hydrological

balance now exert a more pronounced influence on price volatility. This could suggest

an increase in the risk associated with hydrological levels, potentially a consequence of

evolving precipitation patterns, and more frequent and rapid changes in the hydrological

balance over the past decade. An example of this trend may be identified in NO1, where

a noticeable shift appears around 2017-18, as illustrated in Figure 7.2. These observations

support the argument that the market has been experiencing more rapid changes and

larger deviations from the "normal" levels in recent years.

Table 7.4: Model Comparison Hydrological Balance Variance Equation

NO1 NO2 NO3 NO4 NO5

bt Peak Hours

Control -0.0040 -0.0108 -0.0017 -0.0034 -0.0090
(0.7821) (0.4667) (0.8928) (0.8073) (0.4540)

Main -0.0109*** -0.0099*** -0.0121* -0.0091* -0.0089**
(0.0078) (0.0099) (0.0665) (0.0566) (0.0228)

bt Off-Peak Hours

Control 0.0066 0.0094 -0.0093 0.0015 0.0043
(0.6893) (0.5451) (0.6020) (0.9319) (0.7789)

Main -0.0145** -0.0136** -0.0142** -0.0201** -0.0093
(0.0285) (0.0113) (0.0435) (0.0200) (0.1304)

Statistical significance: *** 1% level, ** 5% level, and * 10% level
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- - - Balance deviation from zero ("normal")

Figure 7.1: Hydrological Balance NO1 2010-2023

The accelerated changes in Norway’s hydrological balance can be associated with changing

precipitation patterns and increasing temperatures. A warmer climate typically results

in more intense precipitation events, as warmer air holds more moisture. When this

releases, it results in substantial precipitation, causing precipitation patterns to become

more concentrated. This leads to extended periods of drought and increased instances of

heavy rainfall, as evidenced in climate studies(Hanssen-Bauer et al., 2017). This emerging

pattern, characterized by the climate becoming simultaneously drier and wetter, introduces

greater unpredictability and instability into the hydrological balance.

This pattern is particularly observed in the summer months, due to higher temperatures.

The summer of 2023 serves as an extreme example, starting with drought conditions and

ending with significant flooding by August, illustrating this emerging pattern of prolonged

droughts periods followed by heavy rainfall. These climatic changes carry profound

implications for the electricity sector. Increased flooding risk in reservoirs heightens the

potential for generation loss, as facilities may not fully utilize their resources due to

insufficient storage capacity. Additionally, the increased risk of drought and uncertain

precipitation patterns create a strong incentive to conserve resources during periods when

the hydrological balance falls below zero, particularly in case of long lasting dry period.

Such significant and unforeseen deviations from normal levels are likely to have a more

pronounced impact on average price levels and volatility.
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In the analysis comparing the coefficients of the main and control periods in the variance

equation, a notable pattern emerges. Although the control period coefficients were not

significant, a greater change in the coefficients is observed in NO1, NO3, and NO4 compared

to NO2 and NO5, where impacts remain relatively stable. The increased sensitivity to

hydrological imbalances in NO1, NO3, and NO4 points to a potential evolution in water

availability fluctuations in these areas. Such varying changes across different price areas

between the two periods underscore the heterogeneous nature of climate change impacts,

indicating that risk exposure is region specific. This aligns with observations from the NVE,

which states that the impacts of climate change are geographically diverse (Kirkerud et al.,

2023). Specifically, the region NO1 has experienced shifts in precipitation patterns while

maintaining consistent precipitation volumes. In contrast, NO5 has witnessed increased

rainfall but without significant changes in its patterns. This differential development is

mirrored in the results: NO1 shows a higher and significant coefficient in the main period,

while NO5 exhibits a significant yet consistent coefficient. The larger coefficient in NO1,

relative to NO5, may suggest an increased weather volatility in NO1.

7.2.2 Model Comparison Wind Generation

The coefficients for the main and control models are compared in the Table 7.5 and 7.6. In

the conditional mean equation, wind generation is associated with a decrease in average

prices, showing significant and consistent effects.

Table 7.5: Model Comparison Wind Generation Mean Equation

NO1 NO2 NO3 NO4 NO5

wt Peak Hours

Control -1.7478*** -2.1183*** -1.1198***
(0.0000) (0.0000) (0.0083)

Main -5.5534*** -4.9439*** -14.0151*** -7.1976***
(0.0000) (0.0000) (0.0000) (0.0000)

wt Off-Peak Hours

Control -0.2469* -0.4953* -0.9030***
(0.0729) (0.0667) (0.0001)

Main -5.4258*** -6.7368*** -13.5122*** -6.4163***
(0.0000) (0.0000) (0.0000) (0.0000)

Statistical significance: *** 1% level, ** 5% level, and * 10% level
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In areas with wind generation during the control period in 2010-2014 (NO2, NO3, and

NO4), the mean equation shows negative coefficients, indicating that wind generation

contributes to a reduction in average electricity prices. This is equivalent with findings

from the main period, reflecting the principle that increased supply leads to reduced

average price levels. However, a noteworthy observation is the higher wind coefficient in

the main period compared to the control period, indicating that changes in wind generation

in the main period exert a more substantial influence on average prices. Throughout

the combined analysis period, there has been a notable escalation in integration of wind

electricity, which could account for its expanding influence on the mean equation. As the

supply and dependence on wind electricity grow, this would correspondingly lead to a

more substantial influence on the overall price levels.

Table 7.6: Model Comparison Wind Generation Variance Equation

NO1 NO2 NO3 NO4 NO5

wt Peak Hours

Control -0.0272 -0.0859*** -0.0414**
(0.1470) (0.0001) (0.0423)

Main 0.0201*** 0.0340*** 0.0177* 0.0234**
(0.0020) (0.0000) (0.0973) (0.0028)

wt Off-Peak Hours

Control 0.0076 -0.0485* -0.0736***
(0.6572) (0.0623) (0.0051)

Main 0.0299*** 0.0680*** 0.0300*** 0.0232**
(0.0007) (0.0000) (0.0047) (0.0505)

Statistical significance: *** 1% level, ** 5% level, and * 10% level

Whereas, the effect in the variance equation notably changes from negative in the control

period to positive in the main period, with significant coefficients observed in the control

period for NO3 and NO4. This shift suggests that wind generation initially contributed

to price stabilization during the control period, but later in 2018 to 2023 increases price

volatility. This change might be interpreted as an initial diversification effect, where wind

added stability to the overall generation mix in the control period. However, increased

wind penetration seems to introduce more risk and volatility. This diversification, while

beneficial in theory due to more generation channels, can introduce complexity to the

market.
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The growing reliance on wind, an inherently unpredictable electricity source, seems to have

introduced a higher degree of uncertainty. The electricity market becomes more susceptible

to the unpredictability of wind availability, leading to greater uncertainty in day-ahead

market predictions. The heightened likelihood of supply and demand mismatches, arising

from the unpredictability of wind generation, amplifies market fluctuations, reflected in

the observed increase in price volatility in the main period.

To support the diversification argument, NO1’s performance in the main period should

correspond with this effect after introducing wind generation in 2019. However, this effect

is only found evident in the mean equation as previously discussed. A possible explanation

for this observation could be that the strengthening of interconnections among price areas

might diminish NO1’s ability to benefit from diversification through wind fluctuations.

This scenario suggests that the complex interactions between the areas could potentially

offset some of the region-specific risk exposures.

Higher wind penetration during the main period compared to the control period increases

the impact on electricity prices, reflecting the sensitivity to wind when it constitutes a larger

portion of the total electricity generation. The results indicate a more pronounced effect

of wind in the main period compared to the control period, through the larger presented

coefficients. The increased relative contribution of wind electricity makes the overall

electricity supply more susceptible to fluctuations in wind. High wind generation can

notably decrease electricity prices and vice versa. This phenomenon of wind penetration

affecting prices and volatility mirrors the observations made in studies of the German and

Spanish markets by Ketterer (2014) and Pereira et al. (2017), respectively.

Overall, the wind coefficients have exhibited different influence in the mean and variance

equations from the control to the main period. It has been argued that the higher wind

penetration alters market structures, thereby exerting a more pronounced influence in

the main period. Furthermore, the enhanced impact of wind on pricing, compared to the

control period, may be linked to more extreme weather conditions, which can be favorable

for wind electricity. Factors such as temperature shifts and changing precipitation patterns,

especially in recent years, have led to these extreme conditions, potentially contributing to

the rise in wind generation. Overall there has been identified a marginal increase in wind

speed in Norway during til last 50 years, but exhibit large annually and geographically
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variations (Hanssen-Bauer et al., 2017). However, the limited research on the historical

evolution of wind patterns and their market risk implications makes it challenging to

ascertain whether the observed increase in volatility and larger price impacts are due

to climate change or simply higher wind penetration. Nevertheless, this topic remains

interesting for future research. It is important to understand how shifts in wind patterns,

whether caused by natural variability or climate change, affect electricity price volatility,

as this reflects the changing dynamics of the electricity market.

7.3 Future Forecasts

Moving into the discussion about future forecasts in the light of climatic and structural

changes, the discussion proceeds under the assumption that the model is precise and the

differences identified between the control and main periods are reliable. While historical

development does not guarantee future development, they can provide valuable insights

into the relationship between the variables of interest. This exploration seeks to unravel

how the relationships, identified and discussed, might contribute to future development

and impacts in the context of an evolving electricity market.

The future impact of climate change will depend on global greenhouse gas emissions

(Jackson, 2023). With the current situation of increasing greenhouse gas emissions, there

is expected that Norway is facing rising temperatures year-round. Notably, the most

significant change for Norway in the future is anticipated to be in precipitation patterns.

Overall, precipitation is projected to rise, but will more often occur as intense rainfall

episodes. This will lead to larger and more frequent rain floods, while frequency and size

of snowmelt floods will decrease. Changes in snow patterns are also anticipated; in coastal

and low-lying areas, snowfall is expected to decrease, whereas in mountainous regions, it

may increase (Hanssen-Bauer et al., 2017).

Table 7.7 details the proportions of hydropower and wind power generation as a percentage

of the total load in the price areas for the years 2022 and 2040, as forecasted.
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Table 7.7: Percentage of Total Load

% of Load NO1 NO2 NO3 NO4 NO5
2022

Hydro 50% 132% 73% 125% 186%
Wind 4% 14% 26% 20% 0%
2040

Hydro 40% 82% 63% 81% 142%
Wind 9% 62% 39% 16% 12%
Calculations based on NVE (Kirkerud et al., 2023)

7.3.1 Hydrological Balance Forecasts

The expected continuing changes in climate patterns are, in line with previously discussion,

expected to increase the instability and occurrence of extreme values in the hydrological

balance. This development is consistent with meteorological and climate research, which

forecasts a rise in both the annual water inflow to reservoirs and the variability of this

inflow annually and within the year (Gran et al., 2023, p. 149). Additionally, the changes

in snow patterns will reduce snow volume and bring forward the timing of snowmelt.

This shift is projected to result in diminished spring floods, which have historically been

essential for refilling reservoirs and balancing the high electricity generation volumes

during the winter months.

According to NVE’s 2023 forecast, total hydropower generation in Norway is expected to

increase modestly by 12% by 2040 compared to 2022, but will only constitute 70% of the

national generation mix (Kirkerud et al., 2023). As shown in Table 7.7, the proportion

of hydro generation relative to the total load is predicted to decrease in all areas. From

the 2022 baseline, the share of hydropower in total load is anticipated to drop by 10

percentage points in NO1 and NO3, and nearly 50 percentage points in NO2, NO4, and

NO5.

The reduction in hydro’s share of the electricity mix leads to greater reliance on and

sensitivity to fluctuations in hydrological levels, as discussed in the main model. The

increased vulnerability arises because wind power, to a lesser extent, can offset hydropower.

Both technologies are needed to maximize generation output and to meet total demand.

Particularly, NO2 and NO4 are forecast to transition from having a hydro surplus to

being unable to meet their own demand solely through hydro generation. To illustrate,
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in NO2, hydro generation is expected to reduce from covering 132% to only 82% of the

total demand by 2040. This shift indicates a growing dependence on alternative electricity

sources, especially wind, to compensate for the diminishing hydro surplus. Consequently,

this could make these areas more internally affected by variations in the hydrological

balance, as they become more reliant on the total hydro generation.

In 2022, NO5 demonstrated significant self-sufficiency in hydropower generation, with

output reaching 190% of its total load. This surplus has led to suggestions that the area

is internally less affected by fluctuations in the hydrological balance. However, future

projections indicate that NO5’s hydropower generation will align more closely with its

internal load levels. This shift could expose NO5 to greater risks related to hydrological

fluctuations, potentially resulting in increased price sensitivity. On the other hand, the

Norwegian Meteorological Institute predicts that NO5 will experience an increase in

precipitation, though with consistent patterns, which might lessen the adverse effects

on the future electricity prices. In a contrasting scenario, NO1 is expected to encounter

increasingly volatile precipitation patterns, maintaining a steady volume (Steiro, 2023).

This increased precipitation volatility in NO1 can consequently lead to more uncertainty

in electricity prices.

7.3.2 Wind Generation Forecasts

The future impact of climate change on wind patterns remains uncertain. Nonetheless,

there is a direct relationship between wind speed and electricity generation, where higher

wind speeds yield increased electricity output. The efficiency of wind power depends on

the temperature differences between cold polar and warm tropical regions (Robbins, 2022).

The progressive impact of global warming, notably in Norway (Rommetveit et al., 2021),

is gradually reducing these temperature contrasts. This trend could pose a challenge to

wind electricity: as temperature differentials diminish, a potential decline in wind speeds

may become apparent. Consequently, the effectiveness of wind-based electricity generation

could diminish, and the variability of wind patterns may increase, leading to heightened

uncertainty in this electricity sector.

The hypothesis that climate change will alter wind patterns, especially given the increasing

frequency of extreme weather events, is plausible. However, the NVE has forecasted
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that wind patterns, including speed and frequency, are expected to remain stable in

the coming decades (Kirkerud et al., 2023). This projection is particularly noteworthy

as it contradicts the expectation of increased variability associated with rapid climate

changes. In light of these forecasts, market dynamics are likely to evolve more due to

structural changes and the associated uncertainties in demand fulfillment, rather than

direct climatic influences. However, climate change’s potential to alter wind patterns may

become increasingly relevant over an extended timeframe.

Wind power generation, encompassing both onshore and offshore technologies, is expected

to see a dramatic 250% increase according to NVE projections (Kirkerud et al., 2023).

This significant rise is poised to transform the current generation mix, moving from the

stabilizing effects of hydropower to a future marked by greater reliance on intermittent

resources. As wind technology becomes more integrated into the market, its impact on

electricity prices – affecting both average levels and volatility – is expected to increase.

By 2040, an expansion in wind penetration is forecasted across all Norwegian pricing

areas, with the exception of NO4. Historically, increased wind penetration has been linked

to heightened price volatility. Specifically, NO1 and NO3, which are already facing power

shortages, are likely to see more significant effects on pricing and volatility, especially

during peak hours. This underscores the importance of analyzing data for both peak

and off-peak periods (Kirchner et al., 2022, p. 5). While the combined wind and hydro

generation is expected to remain at the same level, the reliance will lean more towards

wind generation. Furthermore, NO4 is anticipated to experience a shortfall in meeting its

2040 demand with its current hydro and wind capacities, likely requiring the addition of

other electricity sources. The future scenario of power deficit across NO1, NO3, and NO4

points to increased sensitivity in prices and volatility.

Furthermore, heightened wind penetration, as Ketterer (2014) suggests, could eventually

decrease price volatility, if wind electricity becomes a substantial component of the

electricity mix. This effect was found evident in Denmark’s electricity market, which

heavily relies on wind power. However, in contrast to Denmark, Norway’s future electricity

landscape is expected to continue being predominantly hydro-based. Despite the rapid

growth of wind power, it is not projected to become the primary electricity source. This

scenario raises questions about whether the rise of wind electricity in Norway will be
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substantial enough to stabilize the market.

In Denmark, the wind penetration in the market reached 44% in 2021 (Fernández,

2023). Comparatively, forecasts for Norway suggest that NO2 and NO3 will attain wind

penetrations of 62% and 39%, respectively. Such levels are close to or surpass Denmark’s.

Consequently, in the Norwegian market, the combination of hydro and increasing wind

penetration could potentially contribute to reduced volatility. This indicates a scenario

where both hydro and wind generation may collectively foster a more stable electricity

pricing environment, especially where wind penetration will become notably high.

7.3.3 Extended Market Implications

The forecasted regional developments can indicate a growing divergence among Norwegian

areas, potentially leading to heightened market uncertainty. Interestingly, NVE’s Long-

Term Power Market Analysis predicts more uniform electricity prices between Northern

and Southern Norway by 2040, a notable shift from the significant price variations recently

observed. If future developments exhibit regional variations, this could further drive price

differences. However, NVE attributes this projected uniformity to enhanced transmission

networks with Northern and Southern Sweden, expected to mitigate bottlenecks (Kirkerud

et al., 2023). While these improvements could reduce price disparities, achieving complete

price alignment may be improbable due to the existing market structure. In this scenario,

network enhancements are expected to distribute risk more uniformly across different

price areas. However, the overall risk from climatic and structural changes will remain

pertinent, likely affecting future electricity prices.

In the Norwegian electricity market, increased generation is important to meet future

demand levels. On the other hand, the anticipated rise in market uncertainty poses

a potential challenge for future investments in the Norwegian electricity market. This

scenario, as supported by financial theory, suggests that heightened risk from market

instability could prompt investors to seek higher returns, further leading to lower

investment levels. This trend is particularly concerning, given Norway’s need to expand

its electricity generation capacity both to meet growing demands and to achieve climate

goals. Additionally, the electricity sector’s investments typically require a long horizon to

become profitable, adding to the investment challenge. This is particularly applicable to
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wind electricity, as the difficulty in adjusting generation to price fluctuating makes it a

less appealing option for investors (Gran et al., 2023, p. 163). Ketterer (2014) also argues

that low and volatile prices for renewable electricity can make investors hesitant to invest

in the market.

Understanding the implications of heightened market risk involves considering Norway’s

challenges in achieving its 2030 and 2050 climate targets. The Energy Transition Outlook

2023 report from DNV (2023) highlights Norway’s shortfall in achieving these climate

objectives. Projections show that at the current emissions reduction pace, Norway could

be three decades behind schedule in reaching its 2030 target, emphasizing the need

for increased investment in the electricity sector (Rommetveit et al., 2021). Reducing

greenhouse gas emissions are important to slow down future climate changes and increased

market risks (Hanssen-Bauer et al., 2017). Norway’s capability of achieving its climate

objectives and lower emissions are critically dependent on heightened investment levels.

This creates a paradox: investment can stabilize the market and slow down climate change,

but uncertainties might inhibit these investments. Overcoming this barrier is important

for Norway’s electricity market stability and progress towards climate targets.

7.4 Impact of International Dynamics

The scope of this thesis encompasses national variables within the Norwegian electricity

market. Nonetheless, it is imperative to highlight the broader implications of an

increasingly interconnected market on the Norwegian price levels and market volatility.

The traditional electricity market, previously defined by national supply and demand

dynamics, is undergoing a significant transformation. Interconnectors such as NordLink

and North Sea Link not only expand the market’s geographical scope, but they also

incorporate a new layer of complexity. The market is now integrated into the broader

European network.

Norway’s integration into a broader market allows for a more diversified electricity portfolio,

mitigating risks tied to dominated hydro generation. As a result of a broader dependence

on technologies and different weather-dependent renewable generation, varied market

reactions emerge across Europe. For example, a dry year in Norway might escalate

electricity prices due to reduced hydrological balance. For contrast, in Germany, these
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weather conditions can result in an abundance of solar and wind electricity, potentially

lowering German prices.

The heightened need for flexibility and stability in the power system, especially with

the shift towards intermittent renewable energy sources, elevates the significance of

international electrical cables (Kustani, n.d.). Constructing power networks between

Norway and European neighbors is important for enhancing the flexibility and balancing

the Norwegian electricity supply’s dependency on local weather variations and the often

mismatched geographical locations of demand and supply. The Norwegian electricity

market will at times have significant surplus capacity useful for export, while during other

periods the market may need to import electricity to fulfill national demand (Gran et al.,

2023). Resulting in reduction of volatility sourced from domestic fluctuations.

However, while these interconnected networks add flexibility to renewable electricity

markets, research indicates that increased reliance on cross-border electricity resources

could potentially lead to more than just elevated average electricity prices, but also

intensify market volatility (DNV, 2023). The integration introduces Norway to the

inherent volatility of the European electricity market, influenced by geopolitical factors,

supply chain issues, and the intermittent nature of renewable electricity sources.

Norway’s renewable-dominated landscape contrasts sharply with Europe’s varied electricity

mix, which includes a significant portion of gas, coal, and nuclear energy. This disparity

significantly alters the merit order. While renewable technology, with their negligible

marginal costs, typically lower the merit order, the inclusion of higher-cost non-renewables

in Europe introduce steeper merit order curves and thus higher price volatility. Ketterer

(2014) sheds light on this concept by illustrating the effects of Germany’s nuclear phase-out,

which leads to a flattening of the merit order curve and, subsequently, affects how increased

wind electricity influences prices.

As Europe continues its green transition, the merit order curve is likely to flatten

further, resulting from the phase-out of non-renewables. Conversely, unlike Norway,

with feasible storage capabilities to store renewable electricity, Europe’s lack of similar

storage capabilities on the supply side could perpetuate higher volatility, suggesting a

lasting impact on Norway due to high volatility in Europe.
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Despite Norway’s diversified risk profile due to international market integration, climate

change poses additional uncertainties. As the Norwegian market becomes more susceptible

to external factors, it faces increased exposure to climate risk. The heightened

interdependency on continental dynamics may exacerbate the market’s vulnerability

to global climate phenomena, leading to greater overall risk.

Looking ahead, the internationalization of the electricity market poses critical questions

about the adequacy of relying solely on national climate variables to capture the entire

effect of influential factors. Norway’s intensifying dependence on the European continent

might suggest that the actual impacts of climate conditions might extend beyond the

scope of national climate development alone. This scenario indicates that the Norwegian

electricity market could face even more significant and complex climate risks. These

aspects have not been fully addressed and fall outside the scope of the thesis.
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8 Conclusion
This thesis aimed to explore the effect of hydro and wind generation on both the

mean and volatility of electricity prices in the Norwegian electricity market, particularly

from a climate change perspective. This involved analyzing the risks associated with

weather-dependent hydro and wind generation, segmented into historical and future

developments. The study underscores distinct market dynamics and risk exposures across

various Norwegian price areas, influenced by their unique electricity generation mixes and

geographical traits. The interaction of wind and hydro resources, compounded by regional

dependencies and interconnections, offers an extensive insight into the electricity market’s

functioning and its financial implications.

The methodology employed was an ARMA(7,7)-EGARCH(1,1) model with hydrological

balance, wind generation, and total load as external regressors in both the mean and

variance equations. Key findings from Chapter 7.1 indicate that an increase in hydrological

balance and wind generation typically lowers the average price due to augmented supply.

An increase in hydrological balance is found to reduce volatility explained by its stabilizing

characteristics, whereas wind generation exacerbates volatility due to its intermittent

nature. Furthermore, market shocks is found to have a prolonged effect on prices, indicating

persistent volatility in the dataset.

Intrestingly, all price areas demonstrated "inverse leverage effects", where positive market

shocks have a more significant impact on volatility. Implying that the market dynamics

are more resilient in handling the negative shocks. The empirical findings demonstrate

the ARMA-EGARCH model’s robustness in accurately capturing the conditional mean

and variance of the price process, providing estimations that are easily interpretable and

align with economic reasoning.

Continuing discussions in Chapter 7.2 and 7.3 explore the potential impact of climate

change, climate risk, and international dynamics. The comparing analysis reveals that

hydrological balance and wind generation now exert a greater and more significant

influence on price levels and volatility, relative to the control periods. A coefficient

shift in the hydrological balance could be linked to more unstable precipitation patterns.

Conversely, the findings regarding wind generation present a complex picture; the growth
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and integration of wind electricity make it challenging to attribute changes exclusively

to climatic factors. Instead, the observed shifts might be explained by the rising wind

penetration in the Norwegian market. Projected market developments are expected to

result in heightened volatility in the Norwegian market, driven by factors such as rising

temperatures, changing precipitation patterns, increased wind penetration, and a growing

power deficit. These elements not only add to market uncertainty but also pose challenges

in meeting climate targets and reducing climate emissions.

The findings in this thesis can offer interesting insights into the influence of hydro and

wind generation and their consequential effects on the price dynamics and risk profile

within the Norwegian electricity market. A market that is notably susceptible to climatic

and structural shifts. In a broader context, these findings can contribute to an improved

understanding of the complex nature and evolving electricity markets.

A further extension of this thesis should include structural breaks analysis to better grasp

the impact of renewables on electricity prices. The increasing wind penetration over

the sample period and potential shifts in hydrological variability, may reveal structural

breaks in the model. To enhance the precision of capturing climate-related impacts on the

electricity market, an expanded model could incorporate a causal analysis and adopt an

international perspective, thereby offering insights into how international climate dynamics

affect market operations.

Further research could involve replicating this study with updated datasets to gain insights

into the ongoing evolution of the Norwegian electricity market. The inclusion of publicly

available data enhances the transparency and reproducibility of the study, facilitating

future investigations to build upon these findings and explore emerging developments in

the dynamic electricity landscape.
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Appendices

A Data Analysis

A.1 Unit Root and Stationarity

Table A.1: Unit Root and Stationarity Tests Peak Series

Variable ADF DF-GLS PP KPSS

Price
NO1 -5.7299* -6.8843* -140.68* 2.0064
NO2 -5.7148* -7.4751* -160.29* 2.6409
NO3 -6.2981* -10.6377* -226.67* 0.82795
NO4 -5.9403* -11.8983* -363.61* 1.0419
NO5 -5.7842* -6.8118* -134.93* 2.0302

Hydrological Balance
NO -5.0514* -4.4142* -62.06* 1.6371

Wind
NO1 -8.9500* -19.6886* -1414.8* 11.985
NO2 -11.895* -23.3819* -1474.3* 10.301
NO3 -8.6828* -19.2974* -1229.8* 13.472
NO4 -10.164* -18.8321* -1147.6* 13.974
NO5 NA NA NA NA

Load
NO1 -7.3832* -5.5677* -162.43* 2.097
NO2 -6.388* -5.9263* -152.44* 1.4208
NO3 -7.6684* -6.1772* -198.5* 1.1804
NO4 -6.7705* -5.6903* -163.66* 0.72797
NO5 -6.7705* -5.6903* -163.66* 0.72797

* Stationary at the 5% level
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Table A.2: Unit Root and Stationarity Tests Off-Peak Series

Variable ADF DF-GLS PP KPSS

Price
NO1 -5.14* -5.4748* -89.552* 2.0627
NO2 -4.963* -5.6114* -90.195* 2.8347
NO3 -6.5544* -9.998* -141.27* 0.76206
NO4 -5.4579* -8.6732* -128.76* 1.7758
NO5 -5.1845* -5.4323* -87.046* 2.1126

Hydrological Balance
NO -5.0514* -4.4142* -62.06* 1.6371

Wind
NO1 -8.6535* -19.2181* -855.2* 13.923
NO2 -11.001* -21.891 -990.94* 10.97
NO3 -8.7179* -18.2396* -760.56* 13.543
NO4 -9.9583* -18.8203* -695.35* 14.261
NO5 NA NA NA NA

Load
NO1 -7.291* -5.453* -139.80* 1.3128
NO2 -6.386* -5.7268 -131.72* 0.9079
NO3 -7.5152* -6.0089* -178.84* 1.6719
NO4 -6.5184* -5.8751* -142.58* 1.085
NO5 -6.5184* -5.8751* -142.58* 1.085

* Stationary at the 5% level
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A.2 Multicollinearity

Table A.3: Correlation Matrices for Independent Variables Peak

Peak NO1

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.065 0.017
Wind 0.065 1.00 0.038
Load 0.017 0.038 1.00

Peak NO2

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.074 0.043
Wind 0.074 1.00 0.152
Load 0.043 0.152 1.00

Peak NO3

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.047 0.019
Wind 0.047 1.00 0.318
Load 0.019 0.318 1.00

Peak NO4

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.059 0.007
Wind 0.059 1.00 0.285
Load 0.007 0.285 1.00

Peak NO5

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.007
Wind
Load 0.007 1.00
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Table A.4: Correlation Matrices for Independent Variables Off-Peak

Off-Peak NO1

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.066 0.025
Wind 0.066 1.00 0.005
Load 0.025 0.005 1.00

Off-Peak NO2

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.064 0.056
Wind 0.064 1.00 0.182
Load 0.056 0.182 1.00

Off-Peak NO3

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.050 0.021
Wind 0.050 1.00 0.307
Load 0.021 0.307 1.00

Off-Peak NO4

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.053 0.018
Wind 0.053 1.00 0.298
Load 0.018 0.298 1.00

Off-Peak NO5

Hydrological Balance Wind Load
Hydrological Balance 1.00 0.018
Wind
Load 0.018 1.00

A.3 Autocorrelation Price Series

Figure A.1: Autocorrelation Plots Off-Peak NO1
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A.4 Information Criteria ARMA Models

Table A.5: ARMA Model Results Peak NO1

Model LL AIC BIC
ARMA(0,0) -16383.94 32771.88 32783.18
ARMA(1,0) -14435.73 28877.45 28894.40
ARMA(2,0) -14430.74 28869.48 28892.08
ARMA(3,0) -14411.53 28833.07 28861.32
ARMA(4,0) -14400.80 28813.61 28847.50
ARMA(5,0) -14400.76 28815.52 28855.06
ARMA(6,0) -14380.18 28776.36 28821.55
ARMA(7,0) -14379.53 28777.06 28827.90
ARMA(0,1) -15493.51 30993.03 31009.97
ARMA(0,2) -15013.65 30035.31 30057.90
ARMA(0,3) -14892.27 29794.55 29822.79
ARMA(1,1) -14428.54 28865.07 28887.67
ARMA(2,2) -14399.70 28811.40 28845.30
ARMA(3,3) -14387.97 28791.94 28837.14
ARMA(4,4) -14381.56 28783.12 28839.62
ARMA(5,5) -14363.18 28750.37 28818.16
ARMA(6,6) -14339.74 28707.47 28786.56
ARMA(7,7) -14339.38 28710.76 28801.15
ARMA(2,5) -14387.84 28793.68 28844.53
ARMA(2,7) -14373.13 28768.26 28830.40
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Table A.6: ARMA Model Results Off-Peak NO1

Model LL AIC BIC
ARMA(0,0) -16045.29 32094.58 32105.88
ARMA(1,0) -13555.08 27116.15 27133.10
ARMA(2,0) -13550.78 27109.56 27132.16
ARMA(3,0) -13535.15 27080.30 27108.55
ARMA(4,0) -13523.88 27059.76 27093.66
ARMA(5,0) -13523.85 27061.71 27101.25
ARMA(6,0) -13523.36 27062.72 27107.91
ARMA(7,0) -13521.36 27060.72 27111.56
ARMA(0,1) -14967.73 29941.47 29958.42
ARMA(0,2) -14391.93 28791.85 28814.45
ARMA(0,3) -14107.71 28225.43 28253.67
ARMA(1,1) -13549.50 27107.00 27129.59
ARMA(2,2) -13530.18 27072.37 27106.26
ARMA(3,3) -13542.50 27101.00 27146.19
ARMA(4,4) -13510.49 27040.99 27097.48
ARMA(5,5) -13508.88 27041.76 27109.55
ARMA(6,6) -13509.29 27046.59 27125.68
ARMA(7,7) -13488.87 27009.74 27100.12
ARMA(2,5) -13517.21 27052.42 27103.26
ARMA(2,7) -13517.08 27056.15 27118.29
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A.5 Ljung-Box Test

Table A.7: Ljung-Box Test Q-Statistic

Model NO1 NO2 NO3 NO4 NO5
ARMA(0,0) 12269 12188 8875.4 7222 12346
ARMA(1,0) 117.16 226.34 107.21 133.49 116.53
ARMA(2,0) 116.79 229.64 97.05 109.58 117.39
ARMA(3,0) 83.99 144.45 92.878 89.341 83.715
ARMA(4,0) 67.864 136.87 94.642 86.814 70.384
ARMA(5,0) 68.164 135.16 80.077 86.028 70.087
ARMA(6,0) 18.665* 57.609 80.924 87.941 30.158
ARMA(7,0) 16.372* 41.913 66.733 79.169 26.921
ARMA(0,1) 7078.2 6850.1 4491.8 3207.8 7165.9
ARMA(0,2) 3318.9 3066.7 2341.8 1586.7 3422.4
ARMA(0,3) 2153.1 2058.9 1113.6 822.02 2186.8
ARMA(1,1) 115.93 228.95 95.992 102.04 117.42
ARMA(2,2) 57.817 112.94 76.338 70.912 59.437
ARMA(3,3) 43.244 90.313 75.708 68.887 50.452
ARMA(4,4) 26.042 57.074 46.072 58.623 28.883
ARMA(5,5) 21.623 30.4 32.066 55.622 30.423
ARMA(6,6) 8.9653* 46.863 30.596 31.399 9.2105*
ARMA(7,7) 9.9801* 17.916* 2.9672* 4.2884* 10.992*
ARMA(2,5) 35.457 99.989 57.257 68.111 51.292
ARMA(2,7) 1.3915* 8.1421* 45.408 32.237 1.6979*
* No autocorrelation at the 5% level. Df = 10

A.6 Autocorrelation AR(7)

Figure A.2: Autocorrelation AR(7) Off-Peak NO1
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A.7 Autocorrelation ARMA(7,7)

Figure A.3: Autocorrelation ARMA(7,7) Off-Peak NO1

A.8 Autocorrelation Squared Residuals ARMA

Figure A.4: Autocorrelation Squared Residuals ARMA(7,7) Off-Peak NO1
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A.9 ARCH Test Heteroskedasticity

Table A.8: ARCH Test Heteroskedasticity (LM-test) Peak

Model Lags NO1 NO2 NO3 NO4 NO5
ARMA(7,7) 4 207.16* 182.67* 477.04* 137.14* 197.25*

8 239.00* 238.86* 669.15* 248.56* 228.2*
16 308.11* 306.79* 685.63* 298.67* 301.34*
32 407.38* 368.86* 707.61* 308.60* 401.3*

*Significant at the 1% level

Table A.9: ARCH Test Heteroskedasticity (LM-test) Off-Peak

Model Lags NO1 NO2 NO3 NO4 NO5
ARMA(7,7) 4 310.28* 202.84* 222.31* 447.48* 316.94*

8 365.83* 270.10* 441.95* 561.66* 378.66*
16 524.82* 372.74* 475.66* 623.11* 529.39*
32 564.76* 433.66* 495.44* 676.63* 564.09*

*Significant at the 1% level

A.10 Autocorrelation Residuals ARMA-EGARCH

Figure A.5: Autocorrelation Residuals ARMA(7,7)-EGARCH(1,1) Off-Peak NO1
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B Results

B.1 Detailed Model Output 2018-2023

Table B.1: EGARCH Model Fit Peak Hours (2018-2023)

NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

µ 255.0869 255.3865 351.4498 318.0996 223.3969

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 -0.0008 0.0013 -0.0128 -0.0123 -0.0024

(0.0000) (0.0139) (0.0153) (0.0030) (0.0000)

�2 -0.0010 0.0023 0.0065 0.0137 0.0016

(0.0000) (0.0004) (0.0000) (0.0033) (0.0000)

�3 -0.0031 0.0009 0.0239 0.0198 -0.0016

(0.0000) (0.0483) (0.0000) (0.0050) (0.0000)

�4 -0.0009 0.0008 0.0254 0.0128 -0.0002

(0.0001) (0.0393) (0.0000) (0.0000) (0.4106)

�5 -0.0039 -0.0003 -0.0085 -0.0107 -0.0021

(0.0000) (0.1047) (0.0036) (0.0032) (0.0000)

�6 0.0007 0.0021 -0.0209 -0.0183 -0.0004

(0.0000) (0.0000) (0.0000) (0.0087) (0.1008)

�7 1.0016 1.0022 0.9647 0.9585 1.0052

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓1 0.8011 0.8196 0.8074 0.7333 0.8431

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓2 0.7864 0.7623 0.7323 0.6285 0.7920

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓3 0.7404 0.7352 0.5523 0.5394 0.7613

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓4 0.7199 0.7339 0.4382 0.5039 0.7402

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓5 0.7132 0.6938 0.4600 0.4917 0.7018

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓6 0.7398 0.7090 0.5943 0.5421 0.7178

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Continued on next page
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Table B.1 – continued from previous page

NO1 NO2 NO3 NO4 NO5

✓7 -0.1963 -0.1779 -0.2297 -0.2396 -0.1636

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -48.6953 -84.7086 -95.9825 -51.6897 -19.9572

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wt -5.5534 -4.9439 -14.0151 -7.1976

(0.0000) (0.0000) (0.0000) (0.0000)

lt 14.9124 9.5307 11.5453 14.0528 2.0377

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B. Conditional Variance Equation

! 0.0774 0.0569 0.2646 0.2057 0.0247

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

↵1 0.0473 0.0818 0.0902 0.0397 0.0236

(0.0250) (0.0007) (0.0000) (0.0711) (0.3188)

�1 0.9913 0.9938 0.9696 0.9743 0.9976

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 0.3195 0.2798 0.5132 0.3160 0.3575

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -0.0109 -0.0099 -0.0121 -0.0091 -0.0089

(0.0078) (0.0099) (0.0665) (0.0566) (0.0228)

wt 0.0201 0.0340 0.0177 0.0234 NA

(0.0020) (0.0000) (0.0973) (0.0028) NA

lt -0.0254 -0.0151 -0.0026 -0.0007 -0.0109

(0.0000) (0.0036) (0.7698) (0.9166) (0.0600)

⌫ 2.6232 2.6235 2.4899 2.5656 2.4931

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C. Model Fit Statistics

AIC 11.297 11.356 10.902 10.390 11.187

BIC 11.367 11.426 10.972 10.460 11.252

Shibata 11.297 11.355 10.902 10.389 11.187

Hannan-Quinn 11.323 11.381 10.928 10.415 11.211

Log Likelihood -11830.5 -11891.7 -11416.14 -10878 -11716.89

Q(30) p-value 0.0001 0.1962 0.0518 0.4351 0.0886

Q(30)2 p-value 1.0000 1.0000 0.9794 1.0000 1.0000
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Table B.2: EGARCH Model Fit Off-Peak Hours (2018-2023)

NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

µ 325.3454 317.0026 319.5105 306.9518 337.1040

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 1.6280 0.9344 1.4845 1.9323 1.6251

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�2 -1.3735 -0.6017 -1.3453 -0.3471 -1.3534

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�3 0.8466 0.1462 0.8133 -1.7791 0.8129

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�4 -0.1511 0.3328 -0.0248 1.1369 -0.1113

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�5 -0.5757 -0.7537 -0.6163 1.2750 -0.6144

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�6 1.1877 1.0181 0.9817 -1.7100 1.2167

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�7 -0.5611 -0.0858 -0.2928 0.4921 -0.5751

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓1 -0.7263 -0.0364 -0.4799 -1.0048 -0.6743

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓2 0.7126 0.5671 0.6633 -0.6618 0.6636

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓3 -0.1347 0.4011 0.0543 1.2971 -0.0973

(0.0000) (0.0000) (0.0006) (0.0000) (0.0000)

✓4 -0.0502 0.0328 -0.1073 0.0856 -0.0663

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓5 0.6387 0.8362 0.6057 -1.3357 0.6403

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓6 -0.6762 -0.2137 -0.3262 0.5088 -0.6515

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

✓7 0.0551 -0.0616 -0.1392 0.1096 0.0168

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

bt -64.1197 -85.4438 -67.9909 -49.2885 -68.9300

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wt -5.4258 -6.7368 -13.5122 -6.4163

Continued on next page
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Table B.2 – continued from previous page

NO1 NO2 NO3 NO4 NO5

(0.0000) (0.0000) (0.0000) (0.0000)

lt 12.3907 7.0253 10.3045 10.3933 7.6461

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

B. Conditional Variance Equation

! 0.1699 0.1957 0.2714 0.3544 0.1144

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

↵1 0.0023 -0.0290 0.0087 -0.0670 -0.0041

(0.9162) (0.3186) (0.7567) (0.0018) (0.8493)

�1 0.9786 0.9777 0.9678 0.9507 0.9857

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 0.4473 0.4100 0.5906 0.5894 0.4383

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt -0.0145 -0.0136 -0.0142 -0.0201 -0.0093

(0.0285) (0.0113) (0.0435) (0.0200) (0.1304)

wt 0.0299 0.0680 0.0300 0.0232

(0.0007) (0.0000) (0.0047) (0.0505)

lt -0.0051 -0.0135 -0.0138 0.0051 0.0020

(0.5506) (0.0494) (0.1609) (0.6284) (0.8057)

⌫ 3.0906 2.4740 2.3528 2.6645 3.0602

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C. Model Fit Statistics

AIC 10.273 10.545 9.9748 9.3986 10.256

BIC 10.343 10.615 10.0447 9.4685 10.321

Shibata 10.272 10.544 9.9745 9.3983 10.256

Hannan-Quinn 10.298 10.570 10.0004 9.4242 10.280

Log Likelihood -10755.18 -11040.59 -10442.52 -9837.793 -10739.85

Q(30) p-value 0.0001 0.0001 0.0549 0.5208 0.0001

Q(30)2 p-value 0.9988 1.0000 0.0001 0.9967 0.9993
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B.2 Detailed Model Output 2010-2014

Table B.3: EGARCH Model Fit Peak Hours (2010-2014)

Parameter NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

µ 143.0725 350.9030 302.3828 296.1962 319.7932

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 0.9233 0.9008 0.7678 0.7802 0.9134

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�2 -0.0701 -0.1042 -0.1663 -0.1472 0.0015

(0.0000) (0.0000) (0.0000) (0.0000) (0.8473)

�3 -0.0111 0.0765 0.0690 0.0659 -0.0694

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�4 -0.0085 -0.0024 0.0218 0.0366 0.0321

(0.0000) (0.5523) (0.0043) (0.4019) (0.1951)

�5 0.0275 -0.0317 -0.0411 -0.0662 0.0195

(0.0000) (0.0000) (0.0000) (0.0101) (0.0358)

�6 0.1111 0.1043 0.1696 0.1696 0.0716

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�7 0.0294 0.0521 0.1368 0.1244 0.0242

(0.0000) (0.0000) (0.0000) (0.0000) (0.1578)

bt -75.4538 -42.6711 -59.5142 -45.1651 -84.3075

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

wt NA -1.7478 -2.1183 -1.1198

NA (0.0000) (0.0000) (0.0083)

lt 19.2090 5.3352 5.5069 4.9270 8.8499

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

! 0.7561 0.5516 0.5941 0.6452 0.5619

(0.0000) (0.0000) (0.0000) (0.0000) (0.0049)

B. Conditional Variance Equation

↵ 0.1171 -0.1833 -0.0227 -0.0309 0.0767

(0.0005) (0.0000) (0.5008) (0.4125) (0.0154)

� 0.8779 0.9072 0.9147 0.9075 0.9048

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

� 0.5999 0.6699 0.5279 0.6196 0.5074

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Continued on next page
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Table B.3 continued from previous page

NO1 NO2 NO3 NO4 NO5

bt -0.0040 -0.0108 -0.0017 -0.0034 -0.0090

(0.7821) (0.4667) (0.8928) (0.8073) (0.4540)

wt NA -0.0272 -0.0859 -0.0414

NA (0.1470) (0.0001) (0.0423)

lt 0.0531 0.0341 0.0243 0.0071 -0.0002

(0.0177) (0.0280) (0.0950) (0.6454) (0.9910)

⌫ 2.9361 2.8447 3.1500 2.8910 3.1620

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C. Model Fit Statistics

AIC 8.6041 8.3413 9.5281 9.4137 8.4582

BIC 8.6554 8.3986 9.5855 9.4710 8.5095

Hannan-Quinn 8.6230 8.3624 9.5493 9.4348 8.4771

LL -7838.515 -7596.569 -8680.186 -8575.703 -7705.343

Shibata 8.6039 8.3410 9.5279 9.4135 8.4580

Q(30) p-value 1.221e-12 2.2e-16 < 2.2e-16 2.2e-16 6.001e-13

Q(30)2 p-value 0.9912 1.0000 0.9977 0.5871 0.3681

Table B.4: EGARCH Model Fit Off-Peak Hours (2010-2014)

NO1 NO2 NO3 NO4 NO5

A. Conditional Mean Equation

µ 257.2353 337.1102 328.4497 321.0539 325.7683

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�1 1.0171 1.0423 0.9260 0.9361 1.0450

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�2 -0.0942 -0.1145 -0.1531 -0.1601 -0.1149

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�3 0.0565 0.0384 0.0997 0.0967 0.0390

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�4 -0.0377 -0.0214 -0.0195 -0.0254 -0.0092

(0.0000) (0.0000) (0.0447) (0.0001) (0.0005)

�5 0.0184 0.0409 0.0437 0.0359 0.0224

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

�6 0.0336 0.0306 0.0610 0.0717 0.0276

Continued on next page
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Table B.4 continued from previous page

Parameter NO1 NO2 NO3 NO4 NO5

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

�7 0.0021 -0.0212 0.0316 0.0321 -0.0158

(0.0345) (0.0000) (0.0774) (0.0000) (0.0000)

bt -17.5172 -29.4846 -35.5999 -33.7197 -31.6523

(0.0230) (0.0009) (0.0009) (0.0027) (0.0001)

wt NA -0.2469 -0.4953 -0.9030

NA (0.0729) (0.0667) (0.0001)

lt 8.9837 4.6109 3.9946 2.6365 1.5079

(0.0000) (0.0000) (0.0000) (0.0002) (0.0001)

B. Conditional Variance Equation

! 0.8205 0.4723 0.9956 1.0009 0.6052

(0.0000) (0.0001) (0.0000) (0.0000) (0.0000)

↵ -0.2922 -0.1433 -0.1441 -0.1466 -0.1186

(0.0013) (0.0000) (0.0002) (0.0004) (0.0009)

� 0.8960 0.9103 0.8396 0.8377 0.8898

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

� 1.6357 0.5967 0.6865 0.6957 0.6832

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

bt 0.0066 0.0094 -0.0093 0.0015 0.0043

(0.6893) (0.5451) (0.6020) (0.9319) (0.7789)

wt NA 0.0076 -0.0485 -0.0736

NA (0.6572) (0.0623) (0.0051)

lt 0.0546 0.0016 -0.0198 -0.0364 -0.0040

(0.0147) (0.9049) (0.3235) (0.0827) (0.8162)

⌫ 2.1000 3.2705 2.8997 2.8491 3.0650

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

C. Model Fit Statistics

AIC 8.0807 7.8984 8.6926 8.6040 8.0104

BIC 8.1319 7.9557 8.7499 8.6613 8.0617

Shibata 8.0805 7.8982 8.6924 8.6038 8.0102

Hannan-Quinn 8.0996 7.9195 8.7137 8.6251 8.0293

Log Likelihood -7360.635 -7192.238 -7917.324 -7836.435 -7848.435

Q(30) p-value 2.2e-16 2.2e-16 2.2e-16 6.661e-16 2.2e-16

Q(30)2 p-value 0.0035 1.731e-05 1.0000 1.0000 8.616e-11
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