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Abstract

This thesis investigates the use of the model-based and model-free implied volatility index

methodologies in Scandinavia from 2018 to 2023, leading to the creation of a composite

index for the region: SCANDI-VIX. It confirms a significant negative contemporaneouss

relationship between the Scandinavian implied volatility indices (NORVIX, DANVIX,

SWEVIX, SCANDI-VIX) and their underlying index returns, validating their role as

a "fear gauge." The study reveals an asymmetric response of these implied volatility

indices to market returns, aligning with the leverage effect theory. We investigate the

structural changes in the underlying market time-series as a consequence of the COVID-19

pandemic, and it’s implications for EGARCH forecasting. With a final key finding being

the increased forecasting quality observed when utilising implied volatility as an input

feature in the Extreme Gradient Boosting (XGBoost) machine learning model.

Keywords – VIX, Model-Free, Model-Based, Scandinavia, Forecasting, XGBoost
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1 Introduction

In 1993, the Chicago Board Options Exchange (CBOE) launched the VIX index which

was developed from the work done by Whaley (1993). It was launched to act as the

benchmark for estimating the expected volatility of the S&P100 index, earning it the

nickname “Investor Fear Gauge” (Whaley, 2000). Over the past 30 years, the VIX has

gained significant popularity for providing transparency in the derivatives market by

showing the amount of volatility that is incorporated in derivative prices. It functions like

a barometer of the broader market, rising in times of increased uncertainty. Moreover, it

is used for speculating or hedging strictly on volatility as there are listed tradable futures

and options on the VIX. Additionally, there have been ongoing discussions about the

predictive capability of implied volatility in relation to actual market volatility. Further,

Slim et al. (2020) has shown that implied volatility can be used as an input variable for a

Value-at-Risk calculation, helping investors manage risk better.

Global economies are currently facing the challenge of controlling inflation. The situation

arised partly due to increased public spending and generous policies during the recent

coronavirus pandemic. In response, central banks are raising interest rates, a move

that significantly raises the risk of triggering a widespread recession. These economic

conditions often remind investors of the potential for major stock market downturns. In

such uncertain times, having a reliable gauge on the uncertainty in asset returns would

be very beneficial. In asset pricing, the uncertainty of asset returns is termed risk and

is often measured by an asset’s volatility. As opposed to realised volatility, which is

backward-looking, the VIX is based on implied volatility and offers a forward-looking

perspective.

Since its launch, the VIX has been present during significant market downturns, including

the dot-com bubble, the 2008 financial crisis, and the recent COVID-19 pandemic, each

accompanied by notable spikes in the VIX index. This paper takes a closer look at the

years leading up to and following the COVID-19 pandemic, with a special focus on the

Scandinavian markets. While much of the existing research, as Fassas and Siriopoulos

(2020) notes, centres on US-based equities, our study aims to fill a gap in the literature

by focusing on implied volatility in Scandinavia.
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We construct and compare the implied volatility for Scandinavian benchmark indices: For

Norway, the NORVIX is derived from the OMXO20 index, for Sweden, the SWEVIX

from the OMXS30 index, and for Denmark, the DANVIX from the OMXC25 index. We

calculate each implied volatility index based on the VIX’s former model-based methodology

and the current model-free methodology. Then assess which approach is most suitable

to the conditions of the Scandinavian markets. Initially, our intention was to utilize the

Nasdaq index for the Nordic market (OMXN40). However, due to the lack of tradable

derivatives on OMXN40 and its primary role as a reference index, we opted to create a

weighted composite implied volatility index based on the semi-annual rebalancing of the

three Scandinavian indices. We have named this the SCANDI-VIX.

Our study delves into the empirical properties of the implied volatility indices, the

relationship between returns and volatility, and the informational content of implied

volatility regarding forward-realised volatility. Notably, we draw on Bugge et al. (2015)

who constructed a Norwegian implied volatility index, NOVIX, explored its empirical

properties, and assessed its forecasting abilities. Lastly, we base a lot of our empirical

properties on Fassas and Siriopoulos (2020) review, where they compare 68 implied

volatility indices.

We compare the SCANDI-VIX, with the OMXN40 to see if it can act as an implied

volatility proxy index. Our objective is twofold: Firstly, to analyse how well the underlying

assets of the SCANDI-VIX correlate with the OMXN40, and secondly, to investigate

whether the relationship between the SCANDI-VIX and its own underlying assets diverge

from its relationship with the OMXN40, as one comprising 40 constituents and the other

75. The outcome of this comparison will shed light on the potential of the SCANDI-VIX

as a predictive and descriptive tool for OMXN40 movements.

To concisely outline the hypotheses addressed in this paper:

H1: There exists a negative contemporaneous relationship between the Scandinavian implied

volatility indices returns and underlying indices returns, thus they will act as a fear gauge.

H2: The return-volatility relationship is asymmetric, meaning the Scandinavian implied

volatility indices react differently to negative and positive returns.

H3: Using implied volatility for forecasting surpasses GARCH models, especially when it’s

integrated into the machine learning algorithm XGBoost.
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H4: The composite proxy of the three Scandinavian implied volatility indices will absorb

information well enough for it to serve as a useful predictive and descriptive tool of the

OMXN40.

If the first hypothesis confirmed, it will demonstrate that our implied volatility indices act

in accordance with typical market behaviour. Where investors perceive more risk when

the market is performing poorly, and it can thus act as a fear gauge for the markets.

Our second hypothesis suggests non-uniformity in the Scandinavian implied volatility

indices’ reactions to their underlying indices’ returns. Also known as the “leverage effect”,

where markets tend to exhibit greater volatility during underlying index declines, than

during ascents. From a behavioural perspective, it can be argued that return asymmetry

reflects investor risk aversion. It is also crucial to investigate the asymmetry prior to

selecting forecasting models, as certain models might not handle the non-uniformity.

The third hypothesis explores the possibility that implied volatility in forecasting could

exceed the performance of conventional GARCH models. We delve deeper into the efficacy

of implied volatility by integrating it into an XGBoost machine learning framework. We

will train these models using data spanning from 2018 to 2022 and then conduct an

empirical evaluation on a monthly basis, from January 2023 through November 2023, to

determine the accuracy and reliability of their forecasts.

The final hypothesis lays the groundwork for applying proxy indices to various techniques

when trading similar underlying assets. This approach could potentially enable hedging

strategies against volatility in ETFs or other traded instruments tracking the OMXN40.

Our paper is organised to initially provide a background on the two common methods

used for calculating an implied volatility index. Followed by a literature review covering

topics relevant to our research. Subsequently, we detail the process of data collection

and modification, which involves acquiring bid and ask prices for options that serve as

input for our implied volatility indices. Onwards we outline the methodologies employed

for constructing the implied volatility indices and for conducting tests on these indices.

We present our findings and discussions, including any limitations identified. The paper

concludes with a summary of our results in relation to the initial hypothesis.
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2 Background

This chapter presents the CBOE VIX index, including the concepts and methodologies

behind the calculations. We begin by outlining the model-based and model-free

approaches to calculating the implied volatility indices, followed by a review of relevant

empirical literature. Finally we review relevant literature on the characteristics of the

implied volatility indices such as negative return relationships, asymmetry and volatility

forecasting.

2.1 The VIX Index

As of today, the CBOE VIX index estimates the 30-day expected volatility of the S&P500

index (SPX). The estimation is derived from the midpoint prices between bid and ask for

a broad set of SPX options, encompassing both puts and calls as outlined in the CBOE

white paper (Cboe Global Indices, LLC, 2023). The resulting index is then expressed in

percentage terms as an annualized move of return on the S&P500 index. For instance, a

VIX index value of 20 suggests that the market anticipates the SPX to fluctuate by 20%

annually, or 20/
√
12 = 5.77% monthly.

The creation of implied volatility indices typically follows one of two methodologies:

model-based or model-free. Carr and Wu (2005) provide a great comparison of these

approaches, but we will offer an overview.

2.1.1 The model-based VXO

Until 2003, the VIX index used the S&P100 as its underlying index. This VIX index would

later be known as VXO and was calculated using the Black-Scholes at-the-money implied

volatilities (Carr & Wu, 2005). This methodology is often referred to as a model-based

methodology because the Black-Scholes option pricing model is needed to compute the

implied volatility index (Gonzalez-Perez & Novales, 2011).

To find the implied volatility we can observe that the price of an option is a function of

five variables (Hull, 2022, p. 352): price=f(S,K,T,r,σ). The spot price (S ), strike price

(K ), time to maturity (T ), and risk-free rate (r) are all directly observable in the market
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or from specific option specifications, but this is not the case for the volatility of the

underlying asset (σ). Since option prices are observable in the market, we can numerically

solve for what the implied volatility per option would be.

The computation of a value for the VXO index relies on the implied volatility of eight

options (Carr & Wu, 2005). From each of the two nearest maturities four near-the-money

options are used. This would be the put-call pair for the two strikes on either side of

the spot price. The implied volatility for the put-call pair would then be averaged for

each strike price. According to the put-call parity, the implied volatility for the put

and call in each pair should theoretically be identical (Hull, 2022, p. 255). However, in

practice there might be a slight discrepancy due to market inefficiency. Averaging out

these differences might give a more holistic view than only using one of the options. Once

the implied volatilities for the put-call pairs at each strike price have been averaged, the

next step involves using linear interpolation to get the implied volatility at the spot price.

This interpolated figure represents the at-the-money implied volatility (ATMV) for the

maturity.

Instead of using the ATMV directly, the CBOE introduced a trading day conversion to

better represent the traded days (Carr & Wu, 2005). This adjustment is achieved by

multiplying the ATMV with a factor that considers the number of calendar days and

trading days until option maturity. We denote this adjusted measure as the trading day

implied volatility (TV), calculated as follows:

TV = ATMV ×
√
DCalendar

√
DTrading

(2.1)

Where DCalendar and DTrading represent the number of calendar days and trading days,

respectively, until the option’s maturity. To construct the VXO value, the CBOE then

interpolates between the at-the-money implied volatilities of two maturities to obtain a

22-trading day volatility:

V XO = TV1 ×
DTrading

2 − 22

DTrading
2 −DTrading

1

+ TV2 ×
22−DTrading

1

DTrading
2 −DTrading

1

(2.2)

In this formula, subscript 1 refers to the nearest maturity, while subscript 2 indicates the
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next closest maturity. Given that there are approximately 22 trading days in a month,

the VXO effectively represents a one-month at-the-money implied volatility.

However, the method of calculations has received criticism from academia and the industry

(Carr & Wu, 2005). As there are more calendar days than trading days in a month, this

method introduces an upward bias in the volatility estimation. Consequently, it is no

longer comparable to the annual realised volatilities computed from index returns on a

365-day calendar.

The CBOE sustained the VXO until it was discontinued during August 2021. This was

due to the index using a “legacy methodology to measure the implied volatility of an

underlying asset” as stated by the Cboe Global Markets (2021). Additionally, the absence

of a straightforward method to replicate the VXO’s returns for the purpose of creating

derivative products meant that no derivative products were ever developed based on this

index (Carr & Wu, 2005).

2.1.2 The model-free VIX

Currently, the CBOE employs a different methodology from the Black-Scholes framework

for calculating the VIX index. This newer approach of the VIX was introduced on

September 22, 2003, when the CBOE transitioned the VIX’s underlying index to the

S&P500, a more popular index. The calculation is now relying on the fair value of

variance swaps, a concept originating from the model-free implied variance as proposed

by Britten-Jones and Neuberger (2000).

(Demeterfi et al., 1999) demonstrated that variance swaps can be replicated by a hedged

portfolio of standard options with appropriate strikes. Under the assumption of no

arbitrage, the fair value of a variance swap equates to the cost of this replicated portfolio.

Consequently, the revised CBOE VIX methodology, detailed in the Cboe Global Indices,

LLC (2023), calculates variance directly from option prices for each strike. The general

formula for the variance for a single maturity date is defined as:

σ2 =
2

T

∑
i

∆Ki

K2
i

erTQ(Ki)−
1

T

(
F

K0

− 1

)2

(2.3)

T represents the time to expiration, r is the risk-free rate, Ki is the strike price of the i-th
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out-of-the-money (OTM) option, Q(Ki) is the midpoint price of the bid-ask spread for

the option at strike Ki, F stands for the put-call parity implied forward price where the

put and call prices are closest, K0 is the strike price immediately below the forward price.

∆Ki is the interval between strike prices and are defined as:

∆Ki =
Ki+1 −Ki−1

2
(2.4)

For the edge cases ∆Ki is the difference between Ki and the adjacent strike price. The

rationale behind the formula is that the price of each OTM option contributes to the

overall variance, with this contribution being weighted by the intervals between strike

prices. Essentially, options at various strike levels influence the variance calculation

to different extents, based on their relative positioning. 2/T represents the process of

annualizing the variance over the period from the present to the expiration (time T ).

Regarding the final term in the formula, it serves as an adjustment linked to the forward

rate used in the variance swap replication. The term corrects for the small discrepancy

when the forward price F is not exactly equal to the strike price immediately below it K0

(Hull, 2022, p. 629).

VIX calculation is based on two maturities, the “near-term” and “next-term”. These terms

refer to the option expiration dates that fall immediately before and after a fixed 30-day

period, known as the constant maturity term. To determine the variance at this constant

maturity date, the CBOE employs a linear interpolation between the near-term and

next-term variances. The formula for the implied volatility (IV) index value is as follows:

IV Index = 100×

√{
T1σ2

1

[
MT2 −MCM

MT2 −MT1

]
+ T2σ2

2

[
MCM −MT1

MT2 −MT1

]}
× M365

MCM

(2.5)

In this formula MT1 and MT2 denote the number of minutes until expiration of the near-

term and next-term options respectively. MCM are the number of minutes in the given

constant maturity term and M365 is the number of minutes in a 365-day year. Ti is defined

as MTi
/M365 The variance terms, σ2

1 and σ2
2, are the calculated variances for the near-term

and next-term maturities, respectively.
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Most implied volatility indices available today adopt a model-free method with a 30-day

constant maturity date (Fassas & Siriopoulos, 2020). Carr and Wu (2005) outline three

benefits of this model-free index. First, the VIX now represents the price of a portfolio of

options, providing it with a more tangible economic interpretation than the VXO, which

only represented a monotonic nonlinear transformation of the at-the-money option prices.

Second, this method avoids the upward bias associated with the VXO, as it is based on

a 365-day year. Third, the approach’s replicability has enabled the CBOE to efficiently

launch options and futures based on the VIX.

Jiang and Tian (2007) have highlighted certain issues with the current methodology used

in the index calculation, particularly focusing on truncation and discretization errors.

Truncation errors emerge from excluding strike prices outside the range of listed strikes,

while discretization errors result from the gaps between listed strike prices. Their findings

suggest that these errors can lead to underestimation or overestimation of the actual

volatility by as much as 198 and 79 index basis points, respectively. Considering that

each basis point is worth USD10 per VIX futures contract this can be substantial. To

mitigate these issues, Jiang and Tian propose a smoothing technique involving the use of

natural cubic spline interpolation to create an implied volatility function. Subsequently,

the Black-Scholes-Merton model is applied to determine the prices from these implied

volatilities, which are then used as input for the CBOE method. This approach effectively

reduces the error margin to approximately ±8 index basis points.

Although Jiang and Tian (2007) identified certain limitations with the CBOE’s

methodology, we will continue to employ it in our analysis. This comes from the fact that

most of the strike price intervals in our study fall below 1% of the strike price. In their

research, Jiang and Tian analysed scenarios with strike price intervals ranging from 1% to

2.5%, finding that discretization errors were significantly higher for intervals at the upper

end of this spectrum. Similarly, truncation errors are minimal if the edge strike prices of

the listed options are more than 10% away from the spot price. In our situation, this is

often the case. In addition, adopting the CBOE’s methodology provides a consistent and

comparative framework for evaluating our indices against an established benchmark, the

VIX.
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2.2 Literature

There is comprehensive research on implied volatility indices, we will provide some of the

literature relevant to our theses divided into sections on different topics.

2.2.1 On return relationships and asymmetry

Empirical literature on the contemporaneous relationship between implied volatility and

underlying asset returns suggests a negative relationship. According to Whaley (2000)

an implied volatility index can be seen as an investor fear gauge if changes in the index

maintain a significant and negative relationship with stock market returns. We anticipate

an asymmetric response in the return series, where negative return shocks increase volatility

more than positive returns decrease it. Black (1976) and Campbell and Hentschel (1992)

propose different explanations for return asymmetry, respectively: The leverage hypothesis

and the volatility feedback hypothesis.

The leverage hypothesis, as proposed by Black (1976) explains the asymmetry as a

relationship between companies’ leverage and volatility in equity returns. Companies

taking up debt-financing, are committing to fixed interest payments, which then hikes risk

during low earning periods for said company. This translates to an increased sensitivity

to negative equity returns. The leverage effect hypothesis remains inconclusive however,

as reported by Figlewski and Wang (2000), who found no link between volatility and

leverage changes due to change in debt or numbers of shares. They conclude that the

cause of implied volatility index changes to be solely based on the change in underlying

stock price.

Campbell and Hentschel (1992) proposed the volatility feedback hypothesis to explain the

asymmetry as a feedback loop between stock market volatility and stock returns. When

investors demand higher risk premia for holding stocks during high market volatility, the

present value of said stock lowers, leading to a decrease in prices. The negative returns

then contribute to volatility in the market, which constitutes the feedback loop.

Fassas and Siriopoulos (2020) contains a large overview of empirical contemporaneous

return relationships and asymmetry statistics from 68 implied volatility indices. They

linearly regressed log-returns of the implied volatility indices on the underlying index log-
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returns to assess the negative contemporaneous return relationship. The same regression

was used by Bugge et al. (2016). Both Fassas and Siriopoulos (2020) and Bugge et al.

(2016) find that the contemporaneous return relationship between the implied volatility

indices investigated and their underlying indices, is negative. Bugge et al. (2016) confirms

asymmetry in the returns by means of a multiple linear regression. Where they regress

implied volatility index log-returns on the positive return series and negative return series

of the underlying index. Fassas and Siriopoulos (2020) compliments this exercise with

an identical regression over each non-overlapping 10th percentile in the return series,

confirming asymmetry. They also describe the monotonically increasing effects in the

returns series for each quantile investigated. Meaning that negative underlying market

movements cause a greater positive reaction in the implied volatility index, dependent on

the magnitude of said market movement.

2.2.2 On stationarity and forecasting

Several of the papers mentioned already attempt to predict future realised volatility

by means of regressions or the ARCH models. Bugge et al. (2016) compares the

GARCH models with the HAR model, using both implied volatility and realised volatility.

Concluding that HAR models outperform GARCH models by introduction of implied

volatility. To assess predictive qualities of the implied volatility indices, Fassas and

Siriopoulos (2020) utilises a linear regression model, an autoregressive model, and a

multiple regression model with lagged variables. Teller et al. (2022), use the extreme

gradient boosting framework (XGBoost) to predict future realised volatility. Comparing it

with a HAR model and a long-term short-term memory (LSTM) deep-learning model, they

report that including implied volatility in their forecasting increases accuracy. XGBoost

is based on a decision tree model and was made open source by the creators Chen and

Guestrin (2016). Teller et al. (2022) utilises grid searching to their extreme gradient

boosting model’s hyperparameters. Grid searching is training the model for each possible

combination of hyperparameters and saving the best fit. Fassas and Siriopoulos (2020)

and Bugge et al. (2016) report the robustness of their forecasts by mean squared errors,

with Teller et al. (2022) including mean absolute errors in addition.

Due to the non-stationarity of index levels, it is widely accepted that it is better to use

log-returns for prediction. Non-stationarity in data, implies that the data’s statistical
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properties like mean, variance and autocorrelation are not constant. Levels exhibit

changing mean over time, something log-returns often avoids. Stationarity is critical in

volatility forecasting, particularly in GARCH models. GARCH models always assume

weak stationarity in the input data, that being a constant mean and variance. Should the

input data be non-stationary, it will lead to parameter instability and poor out of sample

predictions. To check whether our log-return series are stationary, we employ the ADF

test (Dickey & Fuller, 1979) and KPSS test (Shin & Schmidt, 1992). The ADF test’s

null hypothesis is the existence of a unit root. A unit roots existence in the series implies

non-stationarity. The KPSS test’s null hypothesis compliments this, being the existence

of stationarity around a mean or deterministic trend. By cross-referencing the tests’ null

hypotheses, we can identify inconclusive results if both tests’ null hypotheses are either

rejected or both holds.

2.2.3 On national volatility indices

Numerous studies have developed implied volatility indices for major benchmark indices

in various countries. Our primary interest lies in the research concerning Scandinavian

countries, supplemented by a comprehensive review by Fassas and Siriopoulos (2020).

"Implied volatility index for the Norwegian equity market" (Bugge et al., 2016) is the basis

of our thesis. They created the NOVIX for Norway based on the OBX index options where

they used daily close data on all available call and put options for the period January

3, 2000, to February 22, 2016. Due to low volumes in the early years, they adjusted the

start date of their data set from 2000 to January 3, 2006. The Norwegian Interbank rate

(NIBOR) was used as the risk-free rate proxy, and they employed the model-free method.

In a master’s thesis by Öström (2015), the SVIX for Sweden was developed using the

model-free method and based on the OMXS30 option. The index was constructed daily

from January 3, 2005, to June 11, 2015, The Stockholm Interbank Offered Rate (STIBOR)

was used as the risk-free rate proxy. He showcases non-normality, stationarity, and

autocorrelation in the SVIX return series. In the paper he assesses the forecast quality of

SVIX by means of linear and multiple regression, using exclusively realised volatility and

the returns on the SVIX.

To the best of our knowledge, there hasn’t been a dedicated implied volatility index
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developed for Denmark. However, a study on implied volatility was conducted by Hansen

(1999), regressing realised volatility on fitted implied volatility. Hansen’s study focused

on the implied volatility of options based on the Danish KFX index, the predecessor to

the OMXC25. In contrast to the model-free approaches used in the other Scandinavian

studies, Hansen employed a variation of Black-Scholes method to extract implied volatility.

Her data consisted of 33 observations monthly, from September 1995 to April 1998 and

used Copenhagen Interbank Offered Rate (CIBOR) for a risk-free rate proxy. The study

finds that the volatility implied by the KFX index options is an efficient predictor of

future realised return volatility, outperforming historical volatility measures.

The GVIX implied volatility index, introduced by Skiadopoulos (2004), is derives from

the options on FTSE/ASE-20. He analyses the impact of using either options’ bid-ask

or settlement prices for calculating this index. Throughout most of the observed period,

both pricing methods show similar trends in GVIX movements. However, Skiadopoulos

points out a stronger correlation between implied volatility calculated from settlement

prices and the underlying index. In addition, he argues that settlement prices are less

susceptible to manipulation. He further finds that the GVIX can be used as an investor

fear gauge and in volatility forecasting. He uses a time-series consisting of the period from

September 2000 to December 2002.

The Spanish volatility indices, VIBEX and VIBEX-NEW (Gonzalez-Perez & Novales,

2011), employ both the model-based and the model-free methodology. This approach

provides insight into the changes brought about by the model-free methodology as

compared to the traditional model-based methodology. The relative simplicity of the

model-free methodology is highlighted, allowing for the creation of implied volatility

indices in less liquid markets. The model-based methodology, requiring a minimum of

eight near-the-money options each day, proved inadequate in markets where days without

the required options are frequent. In the same study, the predictive strengths of these

implied volatility indices are explored. Gonzales-Perez and Novales report that these

indices produce forecasts with comparable strength to those generated by GARCH and

historical volatility models.
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2.3 Adding to the Literature

In this thesis we adapt the CBOE model-based and model-free methodology to the

Scandinavian countries, Norway, Sweden, and Denmark, and introduce a composite index

for the whole region. The research focuses on the dynamics of the implied volatility indices

during the COVID-19 pandemic. Building upon the groundwork laid by Bugge et al.

(2016)) in Norway, this investigation examines if a newly developed Norwegian implied

volatility index mirrors the behaviour of the previously established NOVIX. Notably, this

research pioneers the creation of the first Danish implied volatility index, offering insights

into the implied volatility characteristics of a market that has not been extensively studied

before. For Sweden, an implied volatility index is formulated using more contemporary

data. These newly constructed implied volatility indices are then benchmarked against

the VIX to determine if the typical attributes of an implied volatility index are consistent

within the Scandinavian context.

Moreover, the study delves into the predictive capabilities of these indices. By adapting

the XGBoost algorithm to Scandinavian data, the research evaluates its effectiveness

against the GARCH family of models in forecasting realised volatility. This approach also

tests the impact of incorporating implied volatility into predictive modelling, assessing

whether such integration markedly enhances the accuracy of future market risk forecasts.
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3 Data

Our data comes from various sources, with the majority originating from Nasdaq. In

this section, we’ll clarify the methods and locations of data collection, preparation, and

modification. Additionally, we will discuss the rationale behind our decisions.

3.1 Nasdaq data

3.1.1 Underlying indices options

As we make one implied volatility index for each of the Scandinavian countries, we use

options from three underlying indices. The OMXS30, OMXC25, and OMXO20 indices

represent the Swedish, Danish, and Norwegian stock markets respectively, featuring the

most traded shares on their respective exchanges (Nasdaq, 2023). OMXC25 and OMXO20

options have lifetimes of 3, 12 and 24 months at issue, with contract sizes of DKK 100

and NOK 100 respectively. OMXS30 options have 3, 18, and 60-month lifetimes at issue,

with a contract size of SEK 100. All are European style options expiring on the third

Friday of their expiration month. Additionally, OMXS30 offers weekly options expiring

each Friday, except on the third Friday of the month when monthly options expire.

We opted for the OMXO20 index from Nasdaq instead of the OBX index from Oslo Stock

Exchange (Euronext). Both indices share many of the same constituent companies,

although this varies over time. The OBX includes 25 companies compared to the

OMXO20’s 20. During our sample period, the OBX and OMXO20 prices had a very high

correlation of 0.996, assuring us that the implied volatility index based on the OMXO20

would closely resemble one based on the OBX. This choice streamlined data collection,

allowing us to source all information from Nasdaq.

3.1.2 Bid-ask and transaction prices

In deciding the input for constructing the implied volatility indices, we had the choice of

either using transaction prices or prices based on the bid-ask quotes of the options. The

CBOE prefers using the bid-ask midpoint, a method also endorsed by Fleming et al. (1995)

as being superior to actual transaction prices. They contend that reliance on transaction
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prices could lead to negative first-order autocorrelation in changes to implied volatility,

as option prices fluctuate between bid and ask levels. On the other hand, Skiadopoulos

(2004) discovered that indices built using settlement prices yield returns that are more

correlated with those of the underlying compared to those using the bid-ask prices. He

also notes that indices based on bid-ask quotes tend to be more susceptible to noise.

Given the relative illiquidity of the Scandinavian option market compared to options on

the S&P500, we realised that relying solely on transaction prices often resulted in too

few data points to calculate an index value. A minimum requirement for the model-free

methodology is having both a call and put price for the same strike, applicable to both

next- and near-term maturities. The model-based methodology requires even more. For

instance, while attempting to construct the DANVIX using transaction prices, we only

managed to compute five values over a period of almost six years. Additionally, the sparse

trading volume raises concerns about the relevance of transaction prices by day’s end.

Prices executed in the morning or mid-day might become outdated. This is because option

prices fluctuate alongside their underlying assets and should ideally reflect the closing

price of these assets. Consequently, we decided to use the midpoint price of the bid-ask

spread.

3.1.3 ITCH messages

These bid and ask prices were only accessible through ITCH messages. With help

from NASDAQ Stockholm and the NASDAQ European DataOps Team we got access

to historical ITCH messages covering the period January 1, 2018, until November 10,

2023, excluding weekends and holidays. These messages enabled us to construct order

books for the traded options, from which we could then extract the bid-ask prices. The

ITCH messages are high frequency (nanoseconds) messages recording every interaction

with Nordic Nasdaq stock exchange regarding options available on the exchange. The

messages detail all added, deleted, and modified orders by market participants, including

market makers. Following a system update by Nasdaq in March 2022, two different ITCH

formats were provided. For data prior to April 2022, a format now referred to as GITS

was used, while data from April 2022 onwards is in a format called NITCH. Summary

tables outlining key message types used are available in Appendix A. For more detailed

information on these specific ITCH formats, please refer to the Genium INET®ITCH
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Protocol Specification (2017) for GITS, and ITCH Specification for Nasdaq Derivatives

Markets: Nordic Equity Derivatives (2022) for NITCH.

The dataset we received included information on every underlying asset with derivatives

traded on the Nordic Nasdaq exchanges. To tailor it to our needs, we filtered the data

to include only messages related to derivatives with the underlying indices OMXO20,

OMXC25, and OMXS30. The combined size of the data came to be 1.2TB in compressed

material (.zip for GITS, .gz for NITCH) accumulating to 120,024,344,639 ITCH messages.

After filtering out the irrelevant messages we were left with 24,768,088,402 messages. This

refined subset represents approximately 21% of the initially retrieved data and constitutes

235.94 GB of compressed data.

After the data where downloaded it was necessary to process it to obtain relevant metrics

for calculating the implied volatility indices. Guided by Cboe Global Indices, LLC

(2023), we required the best ask and bid prices for each strike price per maturity. As

the data comprised daily traded messages, we created a historical representation of

each instrument’s orderbook, simulating its state at any point during the day. The

construction of the orderbook was done based on the specifications outlined in Appendix

A of Genium INET®ITCH Protocol Specification (2017) for GITS and Appendix A of

ITCH Specification for Nasdaq Derivatives Markets: Nordic Equity Derivatives (2022) for

NITCH.

The general way of constructing the orderbooks began by saving all instruments traded

for the day implied by the derivative directory message. We then formed separate lists for

ask orders and bid orders for each instrument, sorting the list by the rank of the orders.

As we iterate further through the messages, we built up the orderbooks. All incoming

orders includes a rank. Rank 1 will be the best bid/ask order and the order should be

sorted first in the respective list. When new orders are added, all other orders in the

bid/ask list with the same or worse rank have their rank increased (i.e., they move down

in the order of attractiveness). When orders are deleted, all orders placed after the deleted

order in the list has their rank decreased (up in the order of attractiveness).

At the beginning of each hour, from 9:00 AM to 4:00 PM, we captured the current best bid

and ask prices for each instrument and stored them in a CSV file dated for that day. This

method allowed us to develop indices with a frequency of up to one hour. The Python
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scripts used to construct the orderbook for NITCH messages are located in Appendix B.1.

The script for creating the orderbook for GITS messages is not provided, as it closely

resembles the one for NITCH but is specifically adapted for GITS messages.

Although there is an option to use hourly data, we have chosen to maintain a daily

frequency. Given the substantial volume of data spanning almost six years, high-frequency

data could potentially obscure the genuine signal with noise and anomalies. Lyócsa et al.

(2021) observed that for forecasts extending up to a month, the precision is statistically

comparable whether employing intraday frequencies or daily data as the basis for the

forecast. Considering our forecast horizon of 11 months, we have decided to exclude hourly

frequencies.

3.2 Eikon data

In addition to the option data, the underlying indices closing prices (levels), volume,

and logarithmic returns are gathered via Refinitiv Eikon’s Python API (Refinitiv, 2023).

The same goes for the market caps, though the procedure differs somewhat. The daily

closing prices and volume are fetched via the native functions of the API, however for the

market cap we needed to create a custom function, nesting two different data fetching

functions from Eikon. To summarize, the total market cap at the rebalancing dates of

each underlying, is calculated by taking the constituent companies of the indices at each

date, taking the sum to get the total market cap of the index, then we weight them across

one another for the total SCANDI-VIX cap. Occasionally there are holes in the desired

data due to limitations on our access or unavailability of the data. This was filled by

approximation. The script for fetching the data is given in Appendix B.4.

In detail, we extract the Refinitiv Identification Codes (RICs); .OBX, .OMXC25CAP and

.OMXS30, where the OBX is used to calculate our approximation of the OMXO20. This

a measure taken due to restrictions on our data subscription. When constructing the

weights, we make sure to convert the underlying constituent market capitalisation into

the common currency Euro. The SEK, NOK, and DKK exchange rates to Euros are also

fetched via the same script as is used to gather market capitalisations for the constituent

companies.

Obtaining the levels and trading volume enables us to compute our 30-day logarithmic
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return. We use 30-day log differences as they are equivalent to logarithmic returns, while

avoiding the potentiality of trend introduction, also known as non-stationarity. For the

benchmark indices, S&P500 and VIX, we simply fetched them via the Eikon API and

ensured the time horizon matches that of our own implied volatility indices.

3.3 Risk-free rates

The construction of an implied volatility index necessitates a risk-free rate. For the CBOE

VIX, this is achieved by employing the U.S. Treasury yield curve rates, to which a Cubic

Spline interpolation method is applied for estimating yields between the maturities. In

contrast, our European references, as indicated in Bugge et al. (2016), Hansen (1999),

Öström (2015), and Skiadopoulos (2004), utilize interbank offered rates. Following this

precedent, our methodology incorporates the closing interbank rates as the risk-free rate

proxy.

For NORVIX we were provided with NIBOR from Norske Finansielle Referanser AS. For

the SWEVIX we were provided with the STIBOR from Swedish Financial Benchmark

Facility. Lastly for the DANVIX we were provided with the CIBOR from Danish Financial

Benchmarks Facility. These rates were delivered with a daily frequency and spanned the

same period as the options data, covering from January 2018 to the end of November

2023. The rates acquired have maturity for 1-week, 1-month, 2-months, 3-months, and

6-months for NIBOR and STIBOR, while CIBOR got 1-week, 1-month, 3-month, 6-month

and 1-year rates.
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4 The Scandinavian Implied Volatility Indices

4.1 Building the implied volatility indices

When developing implied volatility indices, we create two versions for the same underlying,

the model-based and the model-free. Both methodologies consist of four stages to calculate

an index value. The first two stages are quite similar, and we’ll begin by discussing these

shared steps. From the third stage onwards, the methodologies diverge, and we will discuss

these stages separately.

Initially, the expiration date, option type (call or put) and strike prices are identified from

the instrument name, facilitating the organisation of the option specifications. The first

step of both methodologies is to determine the near-term and next-term maturity dates.

In the model-based approach, all options maturing within eight calendar days are excluded.

Of the remaining options, the closest maturity is designated as the near-term and the

next closest designated as the next-term maturity. For the model-free methodology, we

pick the maturities immediately before and after the 30-day constant maturity date. This

will be noted as the near-term and next-term maturity dates, respectively.

The next stage involves determining the risk-free interest rates for both term maturities.

As these maturities often don’t align precisely with the maturity dates of Interbank

Rates, we employ Natural Cubic Spline interpolation to fill in the gaps between days.

To do this, we utilise the CubicSpline module from SciPy (2023) and make sure that

the interpolation follows the boundary condition outlined in the white paper (Cboe

Global Indices, LLC, 2023). This is then transformed from an annual nominal rate to a

continuously compounded rate by:

r = ln(1 +R) (4.1)

At the third stage, the paths of the two methodologies diverge. For the model-based

method, this step involves calculating the implied volatilities for options at two near-the-

money strikes. Since there is no closed-form solution for implied volatility, we use iterative

search to find the correct volatility through the Black-Scholes pricing formula. These
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calculated implied volatilities are subsequently interpolated to identify the at-the-money

implied volatility for both the near- and next-term maturities. The fourth step involves

interpolating the implied volatility across these maturities. Ultimately, we adjust the

volatility value by multiplying it by 100 to present it as a percentage. The Python code

for implementing the model-based methodology is provided in Appendix B.2.

The model-free methodology involves a more complex process. In its third step, we

calculate the near- and next-term variances, which include some sub-steps. Initially, we

identify an at-the-money strike, defined as the strike price with the smallest difference

between the call and put price. Then we calculate the option implied forward rate F. By

using F we find the strike price that is immediately below F, which will be our K0.

With K0 established, the options are filtered to only contain OTM options. This means

selecting puts where the strike price is less than K0 and calls where the strike price is

more than K0 . Furthermore, all bids must be strictly positive for inclusion of a strike

price. To eliminate outliers, the process excludes all strikes where there are non-strictly

positive values for two consecutive instances. One in-the-money strike price, the K0, is

included. Here, the price of the option will be calculated as the average of the put and call

prices for this strike. Using these filtered options, we then calculate the variance for each

term. The fourth step is to determine the variance by using linear interpolation between

the two term dates, thereby establishing the 30-day variance. The final step is to take the

square root of this variance and multiply it by 100 to convert it into a percentage.

The Python code for implementing the model-free methodology is provided in

Appendix B.3. The calculation has been successfully tested by using the example data

provided in the "Sample Calculation for the VIX index" chapter in the white paper (Cboe

Global Indices, LLC, 2023).

4.2 Output of the implied volatility indices

The option observations used for calculating implied volatility indices occasionally

presented issues. In some situations, options were only available for one maturity. Other

instruments were not considered because their bid price was higher than the ask price.

In the case of model-based indices, there were times when there were too few options to

straddle the spot price. For the model-free indices, some options lacked both a traded call
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and put at the same strike price, which is crucial for determining the minimum difference.

There were also cases where no strike prices traded below the calculated forward price,

preventing us from getting an at-the-money strike.

Consequently, there were days when it was not feasible to calculate a value. Between

January 3, 2018, and November 10, 2023, the data recorded was as follows: For the

model-based methodology, NORVIX-MB had 1370 daily observations, DANVIX-MB had

1374, and SWEVIX-MB had 1456. In contrast, the model-free methodology recorded

1419 daily observations for NORVIX, 1422 for DANVIX, and 1466 for SWEVIX. Given

that there were around 1480 trading days during this period, the number of days when

observations are missing is relatively small. Evidently, there are more observations for the

model-free indices.

Figure 4.1 presents the time series for the implied volatility indices, where a clear correlation

is immediately noticeable between the model-based and model-free indices for each

underlying asset. The correlation coefficient for DANVIX and DANVIX-MB stands

at 0.880, while it’s 0.960 for NORVIX and NORVIX-MB, and 0.941 for SWEVIX and

SWEVIX-MB. Upon closer examination, it’s apparent that the model-based indices

generally show higher implied volatility compared to their model-free counterparts, a

tendency likely linked to the date conversion method previously discussed. This trend is

more evident when examining the mean and median values in Table 4.1. Furthermore,

the data on skewness and kurtosis in Table 4.1 indicate that, except for SWEVIX, the

model-based approach usually results in more pronounced outliers than the model-free

approach. A visual inspection of the SWEVIX-MB also suggests the presence of some

atypical outliers.

Gonzalez-Perez and Novales (2011)) argue that the sole use of out-of-the-money (OTM)

options in model-based indices more effectively reflects investor fear by capturing the

sentiment of hedgers (OTM put options) and market optimism (OTM call options).

Considering this, alongside the fewer observations and common occurrence of extreme

outliers in the model-based method, we have resolved to exclusively concentrate on the

model-free approach henceforth. This decision is also logical for forecasting purposes,

where the focus is on realised volatility, and as mentioned, the model-based approach

doesn’t align well with this given a 365-day calendar year.
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Figure 4.1: The Three Scandinavian Volatility Indices
Using both model-based and model-free methodologies.
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Table 4.1: Descriptive Statistics for the Scandinavian Implied Volatility Indices

Mean Median Std. Skew Ex. Kurtosis
NORVIX
Model-Free 19.32 18.20 4.48 2.04 7.29
Model-Based 21.72 19.97 5.62 2.28 9.51

DANVIX
Model-Free 17.91 16.63 4.54 0.91 0.34
Model-Based 21.66 20.27 5.68 1.76 6.19

SWEVIX
Model-Free 19.32 18.00 6.33 3.33 18.52
Model-Based 20.89 19.10 7.56 3.03 15.87

Looking at Figure 4.1, the indices exhibit a typical pattern of implied volatility indices,

with occasional spikes reflecting periods of market stress or uncertainty. This is especially

evident during March 2020 with the start of the COVID-19 pandemic. The mean values

of these indices are relatively close, with NORVIX and SWEVIX having a slightly higher

mean at 19.32, compared to DANVIX’s average of 17.91. This suggests a slightly higher

long-term volatility level for Norway and Sweden’s markets as captured by these indices.

The standard deviation for DANVIX and NORVIX is comparatively lower, suggesting

more stable volatility levels, whereas SWEVIX exhibits a higher standard deviation,

indicating more significant fluctuations in volatility. This pattern is clearly visible in

Figure 4.1, where the volatility spike during the COVID-19 period was noticeably more

pronounced for SWEVIX than for NORVIX and DANVIX.

4.3 The composite Scandinavian implied volatility

index: SCANDI-VIX

To measure the implied volatility in Scandinavia as a whole, we need an underlying asset

with traded options. As the OMXN40 has no options, we decided to create a weighted

index, following the semi-annual rebalancing of the three Scandinavian OMX indices. By

using the same weighting scheme, we can approximate a Scandinavian Composite Index

(SCI) to base our implied volatility index (IV) on.
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We first calculate the total Scandinavian market cap:

IDXComposite
mktcap =

N∑
n=1

M∑
m=1

cn,m (4.2)

Where N is the set of indices we wish to incorporate, M is the set of constituent companies

and cn,m a constituent company’s market capitalisation. We then determine the weights

of the country-specific indices based on their market capitalisation:

ωn =
IDXn

IDXComposite
mktcap

(4.3)

Where ωn is the weight parameter of the n-th index. Table 4.2 show the weights used in

our composite index. Finally, we calculate the SCI and SCANDI-VIX:

SCI =
N∑

n=1

ωnIDXn, SCANDI-VIX =
N∑

n=1

ωnIVn (4.4)

Table 4.2: Scandinavian Composite Weights Over Time

Date ωOMXO20 ωOMXC25 ωOMXS30

Jan 2018 0.183 0.329 0.488
Jun 2018 0.207 0.274 0.519
Jan 2019 0.210 0.278 0.512
Jun 2019 0.192 0.278 0.530
Jan 2020 0.165 0.286 0.545
Jun 2020 0.145 0.308 0.547
Jan 2021 0.147 0.334 0.520
Jun 2021 0.156 0.330 0.514
Jan 2022 0.148 0.342 0.510
Jun 2022 0.178 0.344 0.478
Jan 2023 0.155 0.359 0.486
Jun 2023 0.138 0.350 0.512
Mean 0.168 0.318 0.514

Given that all OMX indices undergo semi-annual rebalancing (Nasdaq, 2023), we have

chosen to align our rebalancing schedule with that of the indices. This weighting approach

aims to mirror the composition of the underlying indices. Rebalancing the SCANDI-

VIX more frequently could potentially offer a more precise reflection of dynamic market
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Figure 4.2: The Scandinavian Implied Volatility Index: SCANDI-VIX.
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conditions and short-term volatility trends. A potential downside of higher frequency is

the introduction of noise into the SCANDI-VIX. Moreover, increasing the frequency of

rebalancing is likely to have a minimal effect on long-term forecasting horizons. Therefore,

we view semi-annual rebalancing more as a practicality than a strict law.

Figure 4.2 displays the implied volatility indices for the Nordic countries, with each

country’s index stacked in the first pane and SCANDIVIX showcased separately in the

middle. To facilitate a direct comparison with the CBOE VIX, Table 4.3 includes VIX

statistics for the same time-frame.

Table 4.3: Summary Statistics Table

Mean(%) Std(%) Min(%) Max(%) Skew Ex. Kurtosis
Panel 1: Implied Volatility Index Log-Returns
NORVIX 0.13 20.48 -59.04 118.28 1.17 4.67
DANVIX 0.19 21.85 -51.61 104.40 1.48 3.89
SWEVIX 0.52 25.65 -105.16 149.42 1.18 6.07
SCANDI-VIX 0.37 21.04 -68.38 126.39 1.49 5.37
VIX 0.48 31.43 -90.15 156.09 1.31 4.62

Panel 2: Underlying Index Log-Returns
OMXO20 1.18 5.06 -32.71 19.22 -1.33 6.98
OMXC25 0.97 6.03 -29.72 22.44 -0.54 1.75
OMXS30 0.62 6.14 -36.31 18.60 -1.40 5.28
OMXN40 0.89 5.16 -35.22 21.75 -1.21 5.21
SCI 0.85 5.71 -30.35 20.64 -0.89 2.39
S&P500 0.92 6.27 -39.70 24.85 -1.61 6.57

Panel 3: Implied Volatility Index Levels
NORVIX 19.32 4.48 12.10 53.65 2.04 7.29
DANVIX 17.92 4.54 9.12 39.91 0.91 0.34
SWEVIX 19.31 6.33 11.27 72.67 3.33 18.52
SCANDI-VIX 18.76 4.67 12.26 52.17 1.84 5.81
VIX 20.86 7.97 10.85 82.69 2.59 12.02

Panel 4: Underlying Index Levels
OMXO20 926.53 153.35 591.03 1213.18 0.17 -1.46
OMXC25 1471.82 305.94 980.75 2020.69 -0.02 -1.49
OMXS30 1899.73 295.53 1292.27 2456.17 0.08 -1.41
OMXN40 1886.93 326.78 1261.57 2462.51 0.14 -1.50
SCI 1599.72 272.85 1090.38 2080.84 0.07 -1.49
S&P500 3581.51 678.14 2237.40 4796.56 0.01 -1.48



4.3 The composite Scandinavian implied volatility index: SCANDI-VIX 27

Figure 4.3: Implied Volatility Indices vs. Underlying Index
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In Figure 4.3, the implied volatility indices are overlaid on their respective underlying

assets, clearly showing each Nordic index’s reaction to the COVID-19 pandemic. Table 5.1

offers a detailed look at SCANDI-VIX’s performance relative to NORVIX, DANVIX, and

SWEVIX. SCANDI-VIX’s mean return mirrors the average volatilities of its components,

aligning with its weighted nature. Its standard deviation is similar to NORVIX and

DANVIX, indicating it reflects their volatility but is less volatile than SWEVIX, the

most volatile component. SCANDI-VIX also exhibits moderate skewness and kurtosis

compared to SWEVIX, suggesting a slightly more right-skewed and peakier distribution

than NORVIX and DANVIX, yet not as extreme as SWEVIX. Overall, SCANDI-VIX

offers a diversified view of the Nordic volatility landscape, presenting a balanced yet less

volatile option for investors and risk managers.

Comparing SCANDI-VIX and its constituents with the VIX reveals interesting points.

The average implied volatility levels suggest that in the Nordic markets, the SWEVIX

mirrors the US market’s volatility the most. Potentially due to Sweden’s market liquidity.

Figure 4.4 shows the 252-day rolling correlation between the underlying indices and their

returns. Throughout the period, DANVIX and NORVIX consistently display weaker

correlations, with SWEVIX slightly higher, yet still significantly lower than the VIX.

Intriguingly, the composite SCANDI-VIX shows a higher overall correlation with the

underlying indices than its individual components. Remarkably, the correlation over

the entire period is higher between SCANDI-VIX and OMXN40 (-0.795) than between

SCANDIVIX and SCI (-0.765), approaching the correlation level of -0.798 seen between

the S&P500 and VIX.
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Figure 4.4: 252-Day Rolling Return Correlation
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5 Contemporaneous Return Relationship and

Return Asymmetry

With the methods from empirical literature on the relationship between implied volatility

indices and underlying index returns, we can test the first two of our hypotheses.

H1: There exists a negative contemporaneous relationship between the Scandinavian implied

volatility indices returns and underlying indices returns, thus they will act as a fear gauge.

H2: The return-volatility relationship is asymmetric, meaning the Scandinavian implied

volatility indices react differently to negative and positive returns. We employ the following

empirical model to test the first hypothesis.

IV R
i = αi + βiIDXR

i,t + ei,t (5.1)

Where, IV R
i is the daily logarithmic return of the implied volatility index i. And IDXR

i,t

is the daily logarithmic return of the underlying indexi. The second hypothesis is tested

with the following models.

IV R
i,t = αi + βiIDX+

i,t + γiIDX−
i,t + ui,t (5.2)

Q(IV R
i,t) = αq

i + βq
i IDX+

i,t + γq
i IDX−

i,t + ui,t (5.3)

Where, IV R
i,t is the logarithmic returns on the implied volatility index. IDX+

i,t =

max(IDXR
i,t, 0) is the positive logarithmic return series. IDX−

i,t = min(IDXR
i,t, 0) is the

negative logarithmic return series. The intercept α and coefficients β and γ are assumed to

be independent. The third regression is over each quantile q ∈ Q, for Q = (0.1, 0.2, . . . , 1).

Without the quantile element of the regression, it is assumed that the effect of positive

and negative returns is static (5.2). In Fassas and Siriopoulos (2020) they report that past

the 0.5 quantile, the regular OLS under-estimates the effect of negative returns. While

overestimating the effect of positive underlying index returns on implied volatility index

returns. They note that for all the equity indices in their review, the absolute values of
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IDX−
i,t increases in the upper quantile. Whereas IDX+

i,t decreases in absolute values when

moving from a lower quantile to a higher quantile.

5.1 Negative return relationship

The results of Eq. (5.1), shown in Table 5.1, indicate a statistically significant negative

relationship between the returns on our implied volatility indices and the associated

underlying indices. This is indicated by the negative results in the IDXR
i,t column. The

adjusted R2 shows to what extent the daily movement in the implied volatility index return

can be explained by the underlying index return. We combine the Shapiro-Wilk (Shapiro

& Wilk, 1965) and Durbin-Watson (Durbin & Watson, 1971) tests to the regression

model results. Shapiro-Wilk tests have the null hypothesis that a sample x1, ..., xn comes

from a normally distributed population. Mota (2012) notes that though it is widely

assumed log-returns are normally distributed, in majority of cases this is rejected. The

Durbin-Watson test detects autocorrelations, with d = 2 meaning no autocorrelation. The

slight deviation from 2 in the test, suggests minor negative auto-correlation. This could

be an indication of serial dependence, where past returns impact future returns. We have

therefore confirmed our hypothesis of negatively contemporaneous related returns between

the implied volatility indices and the respective implied volatility index. The implication

of non-normality and autocorrelation in the data will however have implications for our

forecasting model choice.

Table 5.1: Emprical results Eq.(5.1), showing significant evidence for a negative
contemporaneous return relationship between the volatility indices and their underlying
indices.

Intercept IDXR
i,t Adj. R-sq F-Stat Durbin-Watson

NORVIX 0.0006 -2.49 0.21 363.17*** 2.61***
DANVOX 0.0003 -1.53 0.10 153.49*** 2.41***
SWEVIX 0.0005 -2.97 0.28 541.06*** 2.38***
ScVIX/N40 0.0008 -2.70 0.44 813.14*** 2.36***
ScVIX/SCI 0.0006 -2.64 0.36 694.79*** 2.44***
VIX 0.0012 -4.28 0.52 1578.88*** 2.25***

Where *** denotes p < 0.001, ** p < 0.01, and * p < 0.05
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5.2 Asymmetric return effect

The result of Eq.(5.2) is given in Table 5.2 as the OLS regression. It reveals an asymmetric

return relationship across the various implied volatility indices. The negative return

coefficients R− are uniformly negative and significantly different from zero across all

indices. This indicate that negative returns on the underlying indices are associated with

a significant increase in the corresponding implied volatility indices, under the assumption

that the effect of the return series are static. As shown by Fassas and Siriopoulos (2020),

this assumption does not necessarily hold. We therefore utilise the alternative quantile

regression framework Eq.(5.3), given in Table 5.2.

The findings from the quantile regression, aligns with the similar findings in Fassas and

Siriopoulos (2020). There is a clear difference in the magnitude of coefficients for positive

and negative return series. The table suggests that negative underlying market movements

illicit a stronger response from investors, as indicated by the larger coefficients for negative

returns. Showcasing investor aversion to loss, which may drive investors to react more

sharply to negative news. The non-monotonic curves observed in the positive return

series for the SCANDI-VIX relationships, hints at more nuanced interaction between the

positive return series and the volatility in the markets. It could be due to diversification,

as the SCANDI-VIX is a linear combination of the other Scandinavian implied volatility

indices. There might also be idiosyncratic risks in the underlying Scandinavian indices or

cross-market dynamics affecting the results. It could also be interpreted as diminishing

sensitivity to positive news as underlying index returns go up. Implying good news has

less incremental impact during bull markets. The monotonic increase in the negative

return series, on the other hand, is consistent with literature. It suggests that investors’

reactions and risk perceptions differ fundamentally in the face of gains versus losses. The

Eq.(5.2) results does over-estimate the effect of negative returns in the higher quantiles,

when compared to the results of Eq.(5.3). It also under-estimate the effect of positive

returns in the higher quantiles, which the opposite being true in the lower quantiles. The

same under-estimation occurs for negative returns in the lower quantiles, as shown in

Figure 5.1.
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Table 5.2: Return-Volatility Asymmetric Relationship

Quantile NORVIX DANVIX SWEVIX ScVIX/N40 ScVIX/SCI VIX

Panel 1: Positive Return Coefficient (R+
t )

0.1 -4.113*** -2.732*** -3.166*** -2.120*** -2.260*** -5.896***

0.2 -3.289*** -2.628*** -3.502*** -2.376*** -2.359*** -5.234***

0.3 -2.755*** -2.191*** -3.160*** -2.413*** -2.302*** -4.477***

0.4 -2.244*** -1.874*** -3.176*** -2.484*** -1.984*** -3.912***

0.5 -1.952*** -1.382*** -2.792*** -2.336*** -2.027*** -3.657***

0.6 -1.449*** -0.906*** -2.716*** -2.207*** -1.955*** -2.979***

0.7 -1.389*** -0.257 -2.259*** -1.992*** -1.594*** -3.012***

0.8 -1.117*** 0.210 -1.698*** -1.437*** -1.348*** -2.599***

0.9 -0.444 0.677** -1.186*** -1.198*** -0.771** -1.962***

OLS -2.166*** -0.997*** -2.614*** -2.072*** -1.778*** -3.332***

Panel 2: Negative Return Coefficient (R−
t )

0.1 -1.078*** 0.603* -2.257*** -1.936*** -1.810*** -3.168***

0.2 -1.346*** -0.161 -2.307*** -2.356*** -2.076*** -3.709***

0.3 -1.746*** -1.010*** -2.678*** -2.816*** -2.385*** -4.209***

0.4 -2.003*** -1.535*** -2.846*** -2.915*** -2.942*** -4.916***

0.5 -2.700*** -2.087*** -3.474*** -3.163*** -3.017*** -5.890***

0.6 -2.953*** -2.369*** -4.010*** -3.249*** -3.269*** -6.475***

0.7 -3.244*** -2.721*** -4.284*** -3.529*** -3.741*** -7.113***

0.8 -3.583*** -3.130*** -4.869*** -4.466*** -3.700*** -7.977***

0.9 -4.505*** -3.874*** -5.116*** -4.567*** -4.287*** -9.515***

OLS -2.765*** -2.028*** -3.271*** -3.298*** -3.161*** -5.077***

Where *** denotes p < 0.01, ** p < 0.05, and * p < 0.1
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Figure 5.1: Asymmetric Return Effect
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6 Stationarity and Forecasts

Drawing upon the existing body of literature on forecasting future realised volatility, we

attempt to evaluate the following hypotheses.

H3: Using implied volatility for forecasting surpasses GARCH models, especially when it’s

integrated into the machine learning algorithm XGBoost.

H4: The composite proxy of the three Scandinavian implied volatility indices will absorb

information well enough for it to serve as a useful predictive and descriptive tool of the

OMXN40.

To assess H3, our approach involves comparing the forecasting capabilities of lagged

implied volatility indices on their own. Additionally, we will predict realised volatility by

using two methods. GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

model and an XGBoost (Extreme Gradient Boosting) machine learning algorithm, thereby

determining the efficacy of utilising implied volatility in these models.

6.1 Cross-validation of stationarity

To validate the reliability of our out-of-sample forecasts of realized volatility, we assess

whether the input log-returns exhibit stationarity. Stationarity refers to a process whose

statistical properties, like mean and variance, are constant over time. This is crucial, as

non-stationary data can lead to misleading results in models like the GARCH model,

which assumes stationary inputs. XGBoost is meant to better handle non-stationarity,

though significant levels of non-stationarity might still affect the forecasts negatively.

We apply the Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) tests. The ADF test, focusing on a unit root presence, has a null hypothesis

of non-stationarity. While the KPSS test, examines trend stationarity, and assumes

stationarity under the null hypothesis. Their complementary nature provides a robust

cross-validation of stationarity in our log-returns series.

Our results, as detailed in Table 6.1, show both affirming and concerning trends. The

ADF test results for the returns of the implied volatility indices are as expected, rejecting

the null hypothesis of a unit root, suggesting no presence of non-stationarity. The KPSS

test compliments this, indicating stationarity in the IV returns with statistical significance.
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This cross-validation suggests that using implied volatility log-returns series for XGBoost

forecasting is appropriate. However, the results for the levels of the implied volatility

indices remain inconclusive. Most of the underlying index returns show signs of non-

stationarity, potentially undermining the reliability of our GARCH model’s forecasts.

This inconclusiveness, somewhat uncharacteristic compared to results in Bugge et al.

(2016), might be attributed to the COVID-19 pandemic. Which has potentially introduced

structural changes and mean-reversion trends post-volatility spikes. This could explain

the mixed results we observe compared to standard behaviors, as indicated in studies like

those by Bugge et al.

Table 6.1: ADF-KPSS Stationarity Cross-validation

Levels Returns
ADF KPSS ADF KPSS

NORVIX -4.54** 2.41** -6.88** 0.22
DANVIX -3.51** 5.93** -6.05** 0.17
SWEVIX -5.02** 2.69** -7.04** 0.22
SCANDI-VIX -4.24** 3.79** -6.04** 0.22
VIX -4.49** 2.53** -6.76** 0.21
OMXO20 -0.92 27.98** -6.1** 0.42*
OMXC25 -1.34 27.61** -5.52** 1.04**
OMXS30 -1.53 26.74** -5.39** 0.4*
OMXN40 -1.04 23.16** -7.2** 0.63**
SCI -1.39 25.19** -5.41** 0.55**
S&P500 -1.18 29.86** -5.54** 0.41*

Completed with lags equal to 4
√

12 n
100

(Bugge et al., 2016).
Where ** p < 0.05, and * p < 0.1

Considering these findings, the practical implications for our predictive modeling are

significant. Non-stationarity in data can lead to poor predictive performance and invalid

assumptions in GARCH models. Which will have negative consquences for our ability

to verify H3, as the GARCH model is unable to perform due to the data. While this

highlights a practical weakness of the GARCH family of models, it does not rule out the

models as effective forecasting tools. Utilising the lagged implied volatility as a lower

benchmark will thus be vital, to verify whether our GARCH model is uncalibrated due to

the non-stationarity of the underlying index returns.
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6.2 Forecasting models

In the subsequent forecasting tasks, we utilise log-returns of the underlying indices,

monthly realised volatility, and our set of implied volatility indices. The formula to

calculate realised volatility is as follows.

RVi,m =

√√√√365

nm

Nm∑
t=1

(Ri,t)2 (6.1)

Where Ri,t is the log-returns for the underlying index at time t, m is the months in our

dataset, and RVi,m is the realised volatilities for said months. For the forecasting exercises,

we have split the dataset into an in-sample and out-of-sample subset. Where the in-sample

is 69 monthly observations from 2018 to the end of 2022, and the out-of-sample set contain

observations from Jan. 2023 to Nov. 2023. We utilise three approaches to the forecasting,

the simple baseline of lagged implied volatility, a GARCH model and an XGBoost model.

Where the GARCH model is selected via hyperparameter grid-searching, and XGBoost

via hyperparameter Bayesian optimisation.

6.2.1 Lagged implied volatility

As the lower benchmark, we employ lagged implied volatility as a simple method to

forecast realised volatility. This technique assumes that the previous period’s implied

volatility is the most accurate predictor of the current period’s realised volatility. This

method is quite straightforward and serves as a benchmark for the other forecasting

models. The estimated future realised volatility as lagged implied volatility is given as

follows.

R̂V t = IVt−1 (6.2)
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6.2.2 GARCH models

The Generalized Autoregressive Conditional Heteroskedasticity model is given as follows.

σ2
t = α0 +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j (6.3)

Where σ2
t is the conditional variance of the historical index time-series,ϵt−i is the residual

term, α0 the constant term, αi and βj are the short-term ARCH component and long-term

GARCH component respectively. Lastly, p is the order of the ARCH term and q the

order of the GARCH term. The moving average is captured by
∑p

i=1 αiϵ
2
t−i and the

autoregressive component by
∑q

j=1 βjσ
2
t−j. Our analysis involved implementing a variety

of GARCH models through a grid-search algorithm, testing every possible combination

of GARCH volatility model, residual distribution, and mean structure. We then save

only the models with the smallest Akaike Information Criterion (Akaike, 1973). Which is

given by: AIC = 2k − 2 ln(L) where k is the number of parameters in the model and L

is the maximised value of the likelihood function for the estimated model. In short, it

describes the explanatory power of the model subject to a parameter count penalty. Upon

applying the grid-search algorithm to the log-return series of all underlying indices, only

the EGARCH (Exponential GARCH) model was selected for each index. These models

consistently featured a constant mean structure and a skew-t distribution of residuals – a

typical expectation for financial log-return time-series, which EGARCH is theorized to

handle more adeptly than the standard GARCH model. Each index’s model displayed

unique values for the short-term p and long-term q variance orders. The EGARCH model,

formulated as.

ln(σ2
t ) = α0 +

p∑
i=1

αig(ϵt−i) +

q∑
j=1

βj ln(σ
2
t−j) (6.4)

Where g(ϵ) = θϵ+ γ(|ϵ| − E[|ϵ|]) allows for differential responses to positive and negative

shocks. The terms θ and γ capture the asymmetric effects of these shocks. The finalized

model configurations for each index are detailed in Table 6.2, indicating the specific p and

q values for each underlying index.
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Table 6.2: Orders of ARCH and GARCH Terms

p q
OMXO20 3 2
OMXC25 8 8
OMXS30 3 5
OMXN40 6 1
SCI 10 3

6.2.3 Extreme gradient boosting regressor

In their research, Teller et al. (2022) introduced the application of the XGBoost machine

learning model for volatility forecasting, building on the foundational work of Chen and

Guestrin (2016). XGBoost is grounded in the Classification and Regression Trees (CART)

methodology, initially proposed by Breiman et al. (1984). CART divides input features

into tree nodes of a decision tree, with predictive variable space division forming the

branches. The predicted values of the algorithm are then used in its corresponding terminal

nodes. The algorithm then assigns predicted values to these terminal nodes through a

series of conditional statements, evaluating the input features against them. By defining

the predicted value ŷi of any input element xi are defined in the regression tree model,

dividing the predictive variable space into regions R1, . . . , RK .

ŷi =
K∑
k=1

ŵkI(xi ∈ Rk) (6.5)

Where, K denotes the number of terminal nodes, ŵk are estimated predictions or “leaf

weights”, and I is the indicator function. The estimated predictions are given as follows.

ŵk = argmin
wk

n∑
i=1

l(yi, wk)I(xi ∈ Rk) (6.6)

Where, l typically is a squared error loss function, ŵk acts as the mean response in its

region. CART incorporates recursive binary splitting alongside least squares, which checks

every potential input and variable value combination before creating a new tree branch.

Figure 6.1 depicts a complete tree structure, tracing from the terminal nodes at the

top, down through the branches, until reaching a final leaf node at the bottom. Unlike

non-boosting scenarios where a predefined model F (x) relates inputs to outputs, tree
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Figure 6.1: Example of a Decision Tree
Features Terminal Nodes, Branches and Leaf Weights. Input features are passed down the
branches in a route determined by conditional "if" statements, until reaching a leaf weight

(estimated prediction).

boosting considers every possible function F . The generalised optimisation problem can

be formally presented as such:

F = argmin
F

n∑
i=1

l(yi, F (x)) (6.7)

This process minimises an aggregated, twice-differentiable loss function l with F (xi).

Boosting involves sequential updates to the model estimates from tree learners fm(xi),

also known as estimators, leading to the predicted value after M iterations:

ŷi = Fm−1(xi) + ηfm(xi) =
M∑

m=1

ηfm(xi) (6.8)

Where η is a set learning rate of the model. The tree learners are then estimated in

a step-wise optimisation algorithm, which adds new tree learners to the decision tree

ensemble based on their short-term reduction of errors. The following objective function
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is minimised in every m iterations:

Om =
n∑

i=1

[l(yi, Fm−1(xi)) + ηfm(xi)] (6.9)

Chen and Guestrin (2016) introduces extreme gradient boosting by adding regularization

to Eq.(6.9) to penalize predicted values and total terminal nodes K in an attempt to avoid

overfitting, giving us the following equation:

Ω(fm) = γK +
1

2
λ

K∑
k=1

w2
k + α

K∑
k=1

|wk| (6.10)

Where, α is the L1 regularisation term that adds a penalty proportional to the absolute

value of the feature weights, reducing the number of features with non-zero weights. λ is

the L2 regularization term, shrinking the weights to avoid over-fitting. γ the parameter

that controls the complexity of the tree by penalizing the number of terminal nodes.

Giving us the final objective function:

Om =
n∑

i=1

[l(yi, Fm−1(xi)) + ηfm(xi)] + Ω(fm) (6.11)

Furthermore, they minimise the objective function via a second-order Taylor expansion

approximation, referred to as Newton Boosting. Extreme gradient boosting models also

have further regularization techniques such as maximum depth restrictions, sub-sampling,

minimum and max restriction on tree structures, depth of branches and iterations. Of the

parameters, we utilise a Bayesian optimisation to find the number of tree learners fm(xi)

we add together in each boosting round, the learning rate η as a multiplier of fm(xi)

when updating Fm−1(xi) to Fm(x), and a maximum depth of each tree fm(x). We also

apply the optimisation to Ω, to affect the regularisation terms regard the minimum loss

reduction required to make a split in a node γ and the penalty term with proportionality

to the square of the magnitude of weights λ. Bayesian optimisation is a black-box function.

However, it is intuitively a strategy to finding the minimum of a function that is expensive

to evaluate. Utilising a defined search space and prior probabilities, typically represented

by a probabilistic model, such as a Gaussian Process. Given an XGBoost model with

hyperparameters θ, we aim to find the optimal set of hyperparameters θ∗ that minimizes
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the function f(θ):

θ∗ = argmin
θ

f(θ) (6.12)

Where the procedure can be broken down into five steps, first you initialize the Gaussian

Process with a prior distribution, secondly you select a set of hyperparameters θ to evaluate

by optimising the acquisition function. Thirdly you evaluate the objective function f(θ)

with the selected hyperparameters. Then, the Gaussian Process is updated with the new

observations (θ, f(θ)). This process is repeated until a stopping criterion is met, be it

maximum number of iterations or after a set amount of time as been spent. The result is

a sequence of hyperparameter evaluations which has the aim of converging to the optimal

hyperparameters θ∗. We utilize a similar search-space as Teller et al. (2022): Total count

of fm(x) being M ∈ Z ∩ [1, 100], regularisation parameters α, γ, λ ∈ R ∩ [0, 1], learning

rate η ∈ R ∩ [0, 1] and maximum depth of trees Z ∩ [1, 20]. Despite the uncertainties of

Bayesian optimization, it’s preferred over grid-search due to the latter’s impracticality in

handling a large number of combinations and extended training times.

In our analysis, we focus on predicting the logarithmic returns of realised volatility to

maintain consistency in our forecasting approach. XGBoost, in contrast to the EGARCH

model, outputs predictions in the same data format as its input. This means when we

input logarithmic returns of the underlying index into XGBoost, it returns predictions in

the form of logarithmic returns. Log-returns of realised volatility is given as follows:

RV R
i,m = lnRVi,m − lnRVi,m (6.13)

Where RV R
i is the log-returns of realised volatility. We also calculate lagged realised

volatility returns, lagged implied volatility index returns and lagged underlying index

returns. Three XGBoost regression models are then constructed:

R̂V i,m = F (IDXR
i,m, IDXR

i,m−1, RV R
i,m−1) (6.14)

R̂V i,m = F (IDXR
i,m, IDXR

i,m−1, IV
R
i,m, IV

R
i,m−1) (6.15)

R̂V i,m = F (IDXR
i,m, IDXR

i,m−1, IV
R
i,m, IV

R
i,m−1, RV R

i,m−1) (6.16)

Where IDXR
i,m is the logarithmic return on the underlying index, and IV R

i,m is the log-
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returns on the corresponding implied volatility index. The purpose of the models is to

validate H3 and H4, as given at the beginning of the chapter. We will conclude this by

measuring the errors of the levels, akin to what EGARCH outputs. To do so, we will

calculate the levels by taking the last date levels for the realised volatility on the OMXs

and SCI in the training set. Then adjusting for the predicted and actual realised volatility

returns R̂V i,m in the test set.

V Lm = V L0 ×
m∏
i=1

eRV R
i (6.17)

Where V L0 is the initial realised volatility at the beginning of the testing period. We also

ensure that both our EGARCH and XGBoost outputs are annualized and comparable.

6.3 Results

Our study’s forecasting outcomes, detailed in Table 6.3, show noteworthy findings for

the prediction of 2023’s realised volatility. A key observation is the enhancement in

forecast accuracy when including implied volatility in the forecasts. We experimented

with several XGBoost configurations, selecting the best performers based on in-sample

testing. The decision to use implied volatility alone or alongside lagged realised volatility

in XGBoost showed different levels of effectiveness from market to market. Notably,

the OMXO20 model, struggled significantly with only implied volatility. In regard to

H3, our findings affirm that incorporating implied volatility, either in isolation or in

combination with lagged realised volatility, in the XGBoost framework does indeed

improve forecasting accuracy. However, assessing the performance of the EGARCH model

is more challenging due to the inconclusiveness of non-stationarity in the underlying index

time-series. Such non-stationarity adversely affect out-of-sample forecasts of GARCH

family models. Despite these challenges, the selected EGARCH model represents the best

option among various parameter combinations tested. We cannot therefore fully conclude

that utilising implied volatility in XGBoost is strictly better than the EGARCH. However,

it is apparent that the EGARCH is more susceptible to intricacies in the data, which

XGBoost is designed to handle. Regarding H4, our analysis reveals that the SCANDI-VIX

effectively predicts future realised volatility on the OMXN40 when utilized in XGBoost

regression analysis with implied volatility. This is inline with the observed higher rate
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of absorption of information, as underpinned by the high correlation between OMXN40

and the SCANDI-VIX when compared to SCI. This finding conclusively supports our

hypothesis, underscoring the significant utility of the SCANDI-VIX both as a descriptive

and predictive instrument for the Nasdaq reference index.

Table 6.3: Forecast Errors

OMXO20 OMXC25 OMXS30 OMXN40 SCI
Lagged Implied Volatility IVt−1

MAE 3.77 3.69 2.81 3.30 4.38
MSE 17.88 22.50 10.79 15.80 22.61
RMSE 4.23 4.74 3.28 3.98 4.76

EGARCH
MAE 2.85 5.06 3.36 5.63 3.73
MSE 10.69 32.53 18.90 56.58 17.95
RMSE 3.27 5.70 4.35 7.52 4.24

XGBoost F (IDXR
i,m, IDXR

i,m−1, RV R
i,m−1)

MAE 4.08 10.09 2.35 5.63 4.14
MSE 26.03 174.08 17.48 56.59 24.84
RMSE 5.10 13.19 4.18 7.52 3.28

XGBoost F (IDXR
i,m, IDXR

i,m−1, IV
R
i,m, IV

R
i,m−1)

MAE 13.69 1.76 1.92 2.94 3.86
MSE 244.33 4.84 8.73 13.01 18.60
RMSE 15.63 2.20 2.83 3.61 4.31

XGBoost F (IDXR
i,m, IDXR

i,m−1, IV
R
i,m, IV

R
i,m−1, RV R

i,m−1)
MAE 1.90 2.70 2.32 3.15 2.81
MSE 9.38 11.57 12.31 15.15 10.77
RMSE 3.06 3.40 3.50 3.89 3.28
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7 Limitations and further research questions

In the following section of our paper, we will briefly address some limitations of our thesis

and offer recommendations for future research.

7.1 Limitations

For our analysis we have used a time period ranging from January, 2018 to November

2023. Even if this is a period of six years, the VIX index has been present for 30 years.

Option trading on the OMXS30, OMXO20 and OMXC25 has also existed for much of that

period. It could be that this limited time window negatively affects our results. However,

since the window contains the recent COVID-19 stock market crash, we still believe it

holds valuable information.

The research period can also adversely impact GARCH modelling. If the period is too

short, it may not supply sufficient data points for the GARCH model to effectively capture

the volatility dynamics of the series. Leading to parameter instability, due to reduced

evidence of data stationarity. In addition, the hyperparameter space we chose to optimise

the XGBoost model on, is a smaller subset of the total parameter choice. Meaning there

might be possible configurations which provide better forecast quality.

Furthermore, we have continuously compared our results to other papers looking at

different indices over different time periods, the financial time-series might experience

structural changes or regime shifts that makes this a bad comparison. However, certain

characteristics of implied volatility indices persists, despite the changing underlying

dynamics. Leading us to believe, there might be interesting observations anyways.

7.2 Further research

There are multiple alternative hypotheses to test regarding our implied volatility indices,

such as the effect of higher frequency data, potentially larger scale composite indices and

more variations of machine learning algorithms. Whereas the SCANDI-VIX performed

well in relation to our SCI index and the OMXN40, it would be interesting to see how

larger regional or continental composite proxy indices would behave. It would also be
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interesting to see whether the framework could be applied to commodities. Such as a

composite implied volatility index for energy, consisting of gas, oil, electricity, etc.

In terms of predictive modelling, our research was limited to evaluating the forecast

quality of just three models. There may be other models better suited for this data,

representing an avenue for further research. Although we decided against using intraday

implied volatility indices for predicting future realised volatility, investigating the validity

of this decision could yield interesting insights.

We observed that the movements in all the implied volatility indices we constructed tend

to mirror each other, hinting at potential volatility spillover effects. It would be intriguing

to investigate the extent to which volatility spikes or trends in one Scandinavian country

influence the others. Furthermore, it would be equally interesting to explore whether the

volatility from the US market has a spillover effect on the Scandinavian markets.

Finally, the correlation observed between NORVIX and DANVIX and their respective

underlying markets was not as strong as the correlation between the S&P500 and VIX. It

would be worthwhile to explore if the return movements in indices like NORVIX could be

more comprehensively explained by factors such as fluctuations in oil prices.
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8 Conclusion

In this thesis we have replicated the model-based and model-free implied volatility index

methodology to Norway, Sweden and Denmark, for the period of 2018 to 2023. Then

constructed a composite implied volatility index for the Scandinavian region. Adding to

existing literature further evidence for the predictive power of the implied volatility indices

and the application of Extreme Gradient Boosting to predict future realised volatility. For

our four hypothesis, we conclude with the following results.

H1: There exists a negative contemporaneous relationship between the Scandinavian implied

volatility indices returns and underlying indices returns, thus they will act as a fear gauge.

In regards to the first hypothesis, all of the Scandinavian implied volatility indices holds.

We found significant evidence for the negative contemporaneous relationship between each

implied volatility index return and it’s associated underlying index returns This is the

same conclusion which Bugge et al. (2016) and Fassas and Siriopoulos (2020) arrived at.

H2: The return-volatility relationship is asymmetric, meaning the Scandinavian implied

volatility indices react differently to negative and positive returns. For our second hypothesis

our country-specific implied volatility indices, NORVIX, DANVIX and SWEVIX, holds.

We showcase both the asymmetry under the assumption of the asymmetric effect being

static across the log-return distribution, but also the different levels of assymetrics return

responses to the underlying returns in each of the 10th quantiles. We showcase the same

for the SCANDI-VIX with both OMXN40 and the SCI index as underlying, though the

SCANDI-VIX asymmetric return effect cannot be said to be monotonically increasing in

absolute values. The effects observed are consisten with the leverage effect theory, which

is what Bugge et al. (2016) and Fassas and Siriopoulos (2020) concluded with.

H3: Using implied volatility for forecasting surpasses GARCH models, especially when it’s

integrated into the machine learning algorithm XGBoost. Akin to the results in Teller et al.

(2022), we find that including implied volatility in our XGBoost regressor significantly

improves the forecasting quality. However, whether to utilise implied volatility in isolation

or as a compliment to lagged realised volatility, varies across the Scandinavian markets.

We conclude with this part of the hypothesis holding. However, our EGARCH model is

not a fair model to run XGBoost against in a "horse race". Due to the non-stationarity
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in the underlying index returns, the EGARCH model’s capabilities to do out-of-sample

forecasts becomes severely limited. This does highlight a weakness of the GARCH family

of models, the sensitivity of the data’s structure, which XGBoost avoids. We can in the

end conclude that including implied volatility in predictive models improves the forecasting

quality significantly. However, we cannot conclude that XGBoost outright out-competes

EGARCH in this application, due to issues with non-stationarity in the input data.

H4: The composite proxy of the three Scandinavian implied volatility indices will absorb

information well enough for it to serve as a useful predictive and descriptive tool of

the OMXN40. For our final hypothesis, we find that SCANDI-VIX has a high rate of

information absorption with the OMXN40, surpassing the weighted combination of the

underlying Scandinavian indices (SCI index). Additionally, we find that the SCANDI-VIX

has useful forecasting abilities for the OMXN40. We therefore conclude that H4 holds.
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Appendices

A ITCH message types

A.1 Key ITCH messages in the GITS format

Message
Type

Message Example Comment

S: System
Event
Message

S, 2021-02-26
T00:45:44.000000000
(1614300344000000000), O

The system event message type
is used to signal a market or data
feed handler event. This is usually
start and end of messages for the
day

R: Order
Book
Directory

R, 2021-02-26
T00:45:44.621179800
(1614300344621179800), 853268,
OMXO201Q955, , SE0015578356,
1, NOK, 2, 0, 0, 1, 0, 0

At the start of each trading day,
Order book directory messages
are disseminated for all active
securities

A: Add order
Events

A, 2021-02-26
T09:07:33.904618800
(1614330453904618800),
7395587891604886683,
OMXC251Q1590(37044257),
S, 1, 50, 5550, 0, 2

An Add Order Message indicates
that a new order has been
accepted by the Trading system
and was added to the displayable
book. The message includes an
Order ID that is unique per order
book and side used by the system
to track the order.

C: Order
Executed
Message

E, 2021-02-26
T09:07:34.512617500
(1614330454512617500),
7395587891604702620,
OMXS301C(208929722), S,
1, 73955630280361439:0, ,

This message is sent whenever an
order on the book is executed in
whole or in part. If the incoming
order causing the match cannot
be fully filled, the remainder will
be placed in the book after the
match has occurred.

D: Single
Delete

D, 2021-02-26
T09:07:33.912039800
(1614330453912039800),
7395587891604736430,
OMXS301X1800(69731258),
B

This message is sent whenever
an order on the book is being
deleted. There will be no
remaining quantity, so the order
should be removed from the book.

Table A.1: Key ITCH messages in the GITS format
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A.2 Key ITCH message in the NITCH format

Message Type Message Example Comment
S: System Event msgType=Stimestamp=9091018

225459trackingNumber=0eventC
ode=O(START_OF_MESSAG
ES)

The system event message type
is used to signal a market or data
feed handler event. This is usually
start and end of messages for the
day

R: Derivative
Directory

msgType=Rtimestamp=602682
5447966trackingNumber=0instr
umentId=6516underlyingSymbol
="OMXS30"underlyingId=188u
nderlyingType=02(INDEX)unde
rlyingIsin="SE0000337842"isin=
"SE0020162915"tickSizeTableId
=5expYear=18expMonth=06exp
Date=14expType=M(MONTHL
Y)strikePrice=170000000000opti
onType=C(CALL)productSymb
ol="OXS30"instrumentType=01
(OPTION)tradingCurrency="SE
K"mic="SEED"instrumentSym
bol="OMXS304F1700"settlemen
tMethod=C(CASH)exerciseStyle
=E(EUROPEAN)returnType=P
(PRICE_RETURN)contractSize
=100version=0flexible=N(NOT
_FLEXIBLE)traded=Y(TRADE
D)lastTradingYear=18lastTradi
ngMonth=06lastTradingDate=1
4referenceInstrumentId=0tarIndi
cator=N(NONE)reserved=""

Derviative Directory messages are
distributed at the beginning of the
day right after system starts and
lists all the tradeable instruments
for this day. Here it has been
noticed that the expiration dates
and last trading days are not
updated and we have solely used
the instrument symbol to defer
expiration dates according to the
specification given by Nasdaq

Table A.2: Key ITCH message in the NITCH format part1
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Message Type Message Example Comment
A: Add order msgType=Atimestamp=2220022

4952837trackingNumber=0instru
mentId=19689orderReference=2
mktSide=S(SELL)price=590000
0volume=1rank=1

Add Order Message indicates that
a new order has been accepted
by the system and added to
the displayable book. The
message includes a day-unique
Order Reference Number used to
track the order.

D: Order Delete
Message

msgType=Dtimestamp=2526009
3059307trackingNumber=0order
Reference=100

This message is sent whenever an
order on the book or a side of
a quote is being cancelled. All
remaining volume is no longer
accessible so the order should be
removed from the book.

U: Order
Replace Message

timestamp=27000056008550trac
kingNumber=1origOrderReferen
ce=234orderReference=236volu
me=6price=2131000000rank=1

This message is sent whenever
an order on the book or a
side of a quote has been cancel-
replaced. All remaining volume
from the original order is no longer
accessible and must be removed.
The new order details are provided
for the replacement, along with a
new order reference number which
will be used henceforth.

E: Order
Executed
Message

msgType=Etimestamp=2700006
0286634trackingNumber=0refere
nce=231volume=1comboId=0ma
tchId=1

This message is sent whenever an
order or quote on the book is
executed in whole or in part. It is
possible to receive several Order
Executed Messages for the same
order if that order is executed
in several parts. Multiple Order
Executed Messages on the same
order are cumulative.

P: Trade Non
Cross

msgType=Ptimestamp=2793190
4491684trackingNumber=1instru
mentId=32832volume=2comboI
d=0matchId=63price=21225000
00

A trade that is flagged to the
system that is done outside of
the normal bidding. Non cross
means that there are two (or
more) institutions doing the trade.
(Cross trades are ignored as
they are trades where the same
institution holds both sides.)

Table A.3: Key ITCH message in the NITCH format part2
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Message Type Message Example Comment
J: Add Quote msgType=Jtimestamp=2880584

5091036trackingNumber=0instru
mentId=31672bidReference=277
8askReference=2779bidPrice=20
42500000bidSize=1askPrice=204
6500000askSize=1bidRank=1ask
Rank=1

The Add Quote message contains
information for a quote. A quote
is typically double-sided, i.e., both
a BidReferenceNumber and an
AskReferenceNumber (with the
corresponding bid and ask fields)
are present. If the bid or ask
reference number is zero, the
quote message does not contain
any information for that side and
all corresponding bid or ask fields
are zero.

K: Replace
Quote

msgType=Ktimestamp=2880605
0091877trackingNumber=0instr
umentId=31672origBidReference
=2778bidReference=2796origAsk
Reference=2779askReference=27
97bidPrice=2042750000bidSize=
1askPrice=2046750000askSize=1
bidRank=1askRank=1

This message is sent whenever a
quote on the book is replaced.
The replaced quote has a new
reference number. The new
reference number replaces the
prior reference number on the
quote. Note: Original Reference
Number is “zero” for quote items
where a prior bid or ask quote
does not exist. If New Reference
Number is “zero,” the original
quote item is deleted.

Y: Quote Delete msgType=Ytimestamp=2880958
4311649trackingNumber=0bidRe
ference=3211askReference=3212

This message is sent whenever
an order on the book is being
cancelled. All remaining volume
is no longer accessible so the order
should be removed from the book.

Table A.4: Key ITCH message in the NITCH format part3
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B.1 Building orderbook

1 from datetime import datetime , timedelta

2 from sortedcontainers import SortedList

3 import pandas as pd

4

5 class Instrument:

6 """

7 A financial instrument , this would be a option.

8 """

9 def __init__(

10 self ,

11 instrumentId: int ,

12 isin: str ,

13 underlyingId: str ,

14 underlyingSymbol: str ,

15 strikePrice: str ,

16 optionType: str ,

17 currency: str ,

18 instrumentSymbol: str ,

19 ):

20 self.instrumentId = instrumentId

21 self.isin = isin

22 self.underlyingId = underlyingId

23 self.underlyingSymbol = underlyingSymbol

24 self.strikePrice = int(strikePrice)//10**8

25 self.optionType = optionType

26 self.currency = currency

27 self.instrumentSymbol = instrumentSymbol

28

29 self.failed = 0

30 self.failed_orders = []

31

32 self.last_exec = (None , None , None)

33 #Tuple of (rank , timestamp , price , size side)

34 self.best_bid = (None , None , None , None , None)

35 self.best_ask = (None , None , None , None , None)

36

37 self.orders = {} #Tracks the orders and the values

38 self.askList = SortedList () #List of asks

39 self.bidList = SortedList(key=lambda x: -x[0]) #List of bids

40

41

42 def print_details(self):

43 print(f"Instrument ID: {self.instrumentId}")

44 print(f"Instrument Symbol: {self.instrumentSymbol}")

45 print(f"Underlying Symbol: {self.underlyingSymbol}")

46 print(f"Strike Price: {self.strikePrice}")
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47 print(f"Option Type: {self.optionType}")

48 print(f"Currency: {self.currency}")

49

50 def save_order_book(self , date):

51 """ Save the order book to a df."""

52 df = None

53 self.find_best_ask ()

54 self.find_best_bid ()

55 if (self.best_bid != (None , None , None , None , None)) and (self.best_ask != (None

, None , None , None , None)):

56 df = pd.DataFrame ({

57 'Date': [date],

58 'Instrument ': [self.instrumentSymbol],

59 'Bid_Price ': [self.best_bid [1]/10**6] ,

60 'Bid_Volume ': [self.best_bid [2]],

61 'Bid_Time ': [ns_to_hours(self.best_bid [0])],

62 'Ask_Price ': [self.best_ask [1]/10**6] ,

63 'Ask_Volume ': [self.best_ask [2]],

64 'Ask_Time ': [ns_to_hours(self.best_ask [0])],

65 'Last_Price ': [None if self.last_exec [1] is None else self.last_exec [1] /

10**6] ,

66 'Last_Volume ': [self.last_exec [2]],

67 'Last_Time ': [ns_to_hours(self.last_exec [0])]

68 })

69

70 return df

71

72 def add_order(self , orderTuple):

73 """ Add an order to the order book."""

74 orderreference , timestamp , mktSide , price , volume , rank = orderTuple

75 if int(orderreference) == 0:

76 return

77 if volume <= 0: #If volume is 0 or less do not bother adding to order book

78 return

79 order = Order(orderreference , self.instrumentId , timestamp , mktSide , price ,

volume , rank)

80 self.orders[orderreference] = order

81 if mktSide == 'S' or mktSide == 'N': #If ask

82 asktuple = (rank , price , timestamp , volume , orderreference)

83 self.askList.add(asktuple) #Increasing order

84 #Change the rank of all other orders if rank is same as others

85 for i in range(len(self.askList)):

86 irank , iprice , itimestamp , ivolume , iorderref = self.askList[i]

87 #if rank is same or higher and not the new order

88 if irank >= rank and iorderref != orderreference:

89 self.askList.pop(i)

90 self.askList.add((irank+1, iprice , itimestamp , ivolume , iorderref))

91 self.orders[iorderref ]. rankup ()

92 elif mktSide == 'B' or mktSide == 'M': #If bid
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93 bidtuple = (-rank , price , timestamp , volume , orderreference)

94 self.bidList.add(bidtuple) #Decreasing order

95 #Change the rank of all other orders if rank is same as others

96 for i in range(len(self.bidList)):

97 irank , iprice , itimestamp , ivolume , iorderref = self.bidList[i]

98 irank = -irank

99 if irank >= rank and iorderref != orderreference:

100 self.bidList.pop(i)

101 self.bidList.add((-( irank +1), iprice , itimestamp , ivolume , iorderref

))

102 self.orders[iorderref ]. rankup ()

103

104 def execute_order(self , orderTuple):

105 """ Execute an order from the order book."""

106 orderreference , timestamp , price , volume = orderTuple

107 if orderreference in self.orders:

108 oldOrder = self.orders[orderreference]

109 n_price = oldOrder.price

110 if price is not None:

111 n_price = price

112 n_vol = oldOrder.vol - volume

113 newOrder = Order(orderreference , self.instrumentId , timestamp , oldOrder.side

, n_price , n_vol , oldOrder.rank)

114 self.last_exec = (ns_to_hours(timestamp), n_price , volume)

115 if n_vol <= 0:

116 self.delete_order(orderreference)

117 else:

118 self.orders[orderreference] = newOrder

119 if newOrder.side == 'S' or newOrder.side == 'N':

120 self.askList.remove (( oldOrder.rank , oldOrder.price , oldOrder.

timestamp , oldOrder.vol , orderreference))

121 self.askList.add(( newOrder.rank , newOrder.price , newOrder.timestamp ,

newOrder.vol , orderreference))

122 elif newOrder.side == 'B' or newOrder.side == 'M':

123 self.bidList.remove((-oldOrder.rank , oldOrder.price , oldOrder.

timestamp , oldOrder.vol , orderreference))

124 self.bidList.add((-newOrder.rank , newOrder.price , newOrder.timestamp

, newOrder.vol , orderreference))

125

126 def delete_order(self , reference):

127 """ Delete an order from the order book."""

128 order = self.orders.pop(reference , None)

129 #askside

130 if order.side == 'S' or order.side == 'N':

131 askTuple = (order.rank , order.price , order.timestamp , order.vol , reference)

132 pos = self.askList.index(askTuple)

133 self.askList.remove(askTuple)

134 #Change the rank of all other orders if rank is same or above as others

135 for i in range(pos , len(self.askList)):
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136 irank , iprice , itimestamp , ivolume , iorderref = self.askList.pop(i)

137 self.askList.add((irank -1, iprice , itimestamp , ivolume , iorderref))

138 self.orders[iorderref ]. rankdown ()

139 #bidside

140 elif order.side == 'B' or order.side == 'M':

141 bidTuple = (-order.rank , order.price , order.timestamp , order.vol , reference)

142 pos = self.bidList.index(bidTuple)

143 self.bidList.remove(bidTuple)

144 #change the rank of all other orders if rank is same or above as others

145 for i in range(pos , len(self.bidList)):

146 irank , iprice , itimestamp , ivolume , iorderref = self.bidList.pop(i)

147 irank = -irank

148 self.bidList.add((-(irank -1), iprice , itimestamp , ivolume , iorderref))

149 self.orders[iorderref ]. rankdown ()

150 else:

151 print('Error: Market side not recognized.')

152

153 def trade(self , timestamp , price , volume):

154 """ Register a trade """

155 self.last_exec = (ns_to_hours(timestamp), price , volume)

156

157 def flush(self , timestamp):

158 if self.last_exec != (None , None , None):

159 """ Flush the order book."""

160 self.orders = {}

161 self.askList = SortedList ()

162 self.bidList = SortedList(key=lambda x: -x[0])

163

164 def find_best_bid(self):

165 """ Print the best bid."""

166 bestorderref = self.bidList [0][ -1]

167 bestorder = self.orders[bestorderref]

168 self.best_bid = (bestorder.timestamp , bestorder.price , bestorder.vol ,

bestorderref)

169 return self.best_bid

170

171 def find_best_ask(self):

172 """ Print the best ask."""

173 bestorderref = self.askList [0][ -1]

174 bestorder = self.orders[bestorderref]

175 self.best_ask = (bestorder.timestamp , bestorder.price , bestorder.vol ,

bestorderref)

176 return self.best_ask

177

178 class Order:

179 def __init__(

180 self ,

181 orderId: str ,

182 instrumentId: str ,
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183 timestamp: int ,

184 side: str ,

185 price: int ,

186 vol: int ,

187 rank: int

188 ):

189 self.orderId = orderId

190 self.instrumentId = instrumentId

191 self.timestamp = timestamp

192 self.side = side

193 self.price = price

194 self.vol = vol

195 self.rank = rank

196

197 def print_details(self):

198 print(f'Order_{self.orderId} at {ns_to_hours(self.timestamp)}, {self.side} at {

self.price} for {self.vol} units.')

199

200 def rankup(self):

201 self.rank += 1

202

203 def rankdown(self):

204 self.rank -= 1

205

206 def ns_to_hours(ns):

207 """ Convert nanoseconds to hours."""

208 if ns is None:

209 return None

210 midnight = datetime (2013, 1, 1)

211 hour = midnight + timedelta(seconds=ns//1e9)

212 return hour.strftime('%H:%M:%S')

Listing 1: Classes used for building orderbook
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1 import gzip

2 from datetime import datetime , timedelta

3 from models import *

4 import os

5 import pandas as pd

6

7 #### Configurations ####

8 whitelist = ["OMXO20", "OMXS30", "OMXC25"]

9 input_path = 'ITCH/input/'

10 output_path = 'ITCH/output/'

11 output_path_unique = 'ITCH/unique_output/'

12

13 #List all files in the input path that are filtered

14 files = [f'{input_path }{f}' for f in os.listdir(input_path) if os.path.isfile(os.path.

join(input_path , f)) and 'NDX_Filt ' in f and f.endswith('.gz')]

15

16 #### Parsing Functions ####

17 def SystemEvent(line):

18 #Handles system event messages like start end

19 event_code = line[-2]

20 if event_code.startswith("eventCode=O"):

21 timestamp = line [2]

22 timestamp = timestamp.split('=')[1]

23 print(f'System started at {ns_to_hours(int(timestamp))}')

24 elif event_code.startswith("eventCode=C"):

25 timestamp = line [2]

26 timestamp = timestamp.split('=')[1]

27 print(f'System ended at {ns_to_hours(int(timestamp))}')

28

29

30 def DerivateDirectory(line , whitelist , instruments): #Handles derivative directory

messages

31 """

32 This function parse all the instruments available for trade and stores them in a

dictionary

33 The whitelist is a list of instruments that we want to keep track of

34 Derivative directory messages are the first messages sendt by the system

35 """

36 instrumentType = line [18]. split('=')[-1]

37 if instrumentType == '01( OPTION)': #Only care about options not futures

38 underlyingSymbol = line [5]. split('=')[-1]

39 underlyingSymbol = underlyingSymbol.strip('"')

40 if underlyingSymbol in whitelist:

41 instrumentId = int(line [4]. split('=')[-1])

42 underlyingId = line [6]. split('=')[-1]

43 isin = line [9]. split('=')[-1]. strip('"')

44 strikePrice = line [15]. split('=')[-1]

45 optionType = line [16]. split('=')[-1]

46 currency = line [19]. split('=')[-1]. strip('"')
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47 instrumentSymbol = line [21]. split('=')[-1]. strip('"')

48 instrument = Instrument(instrumentId , isin , underlyingId , underlyingSymbol ,

49 strikePrice , optionType , currency , instrumentSymbol)

#Create instrument object

50 instruments[instrumentId] = instrument #Add instrument to dictionary

51

52 def AddOrder(line , instruments , order_map): #Handles add order messages

53 """

54 This function parses all the add order messages and stores them in a dictionary

55 Orders will be added to a dictunary to keep track of the referencecode and the

values

56 We only care about orders that are for instruments that we are interested in

57 """

58 instrumentId = int(line [4]. split('=')[-1])

59 if instrumentId in instruments:

60 instrument = instruments[instrumentId]

61 orderreference = int(line [5]. split('=')[-1])

62 timestamp = int(line [2]. split('=')[-1])

63 mktSide = line [6]. split('=')[ -1][0]

64 price = int(line [7]. split('=')[-1])

65 volume = int(line [8]. split('=')[-1])

66 rank = int(line [9]. split('=')[-1])

67 orderTuple = (orderreference , timestamp , mktSide , price , volume , rank)

68 order_map[orderreference] = instrumentId

69 instrument.add_order(orderTuple)

70 return instrument

71 return None

72

73

74 def OrderExecuted(line , instruments , order_map , msgtype): #Handles order executed

messages

75 """

76 This function parses all the order executed messages and stores them in a list

77 """

78 orderreference = int(line [4]. split('=')[-1])

79 if orderreference in order_map:

80 instrumentId = order_map[orderreference]

81 instrument = instruments[instrumentId]

82 timestamp = int(line [2]. split('=')[-1])

83 volume = int(line [5]. split('=')[-1])

84 price = None

85 if msgtype == 'C':

86 price = int(line [8]. split('=')[-1])

87 execTuple = (orderreference , timestamp , price , volume)

88 instrument.execute_order(execTuple)

89 return instrument

90 return None

91

92 def DeleteOrder(line , instruments , order_map): #Handles delete order messages
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93 orderreference = int(line [4]. split('=')[-1])

94 if orderreference in order_map:

95 instrumentId = order_map[orderreference]

96 instrument = instruments[instrumentId]

97 instrument.delete_order(orderreference)

98 del order_map[orderreference]

99 return instrument

100 return None

101

102 def OrderBookFlush(line , instruments): #Handles order book flush messages

103 instrumentId = int(line [4]. split('=')[-1])

104 if instrumentId in instruments:

105 instrument = instruments[instrumentId]

106 timestamp = int(line [2]. split('=')[-1])

107 instrument.flush(timestamp)

108 return None

109

110 def OrderReplace(line , instruments , order_map , msg_type): #Handles order replace

messages

111 old_reference = int(line [4]. split('=')[-1])

112 if old_reference in order_map:

113 instrument_id = order_map[old_reference]

114 instrument = instruments[instrument_id]

115 timestamp = int(line [2]. split('=')[-1])

116 oldOrder = instrument.orders[old_reference]

117 if msg_type == 'G':

118 new_reference = old_reference

119 new_volume = int(line [6]. split('=')[-1])

120 new_price = int(line [5]. split('=')[-1])

121 new_rank = oldOrder.rank

122 elif msg_type == 'U':

123 new_reference = int(line [5]. split('=')[-1])

124 new_volume = int(line [6]. split('=')[-1])

125 new_price = int(line [7]. split('=')[-1])

126 new_rank = int(line [8]. split('=')[-1])

127 del order_map[old_reference]

128 order_map[new_reference] = instrument_id

129 newOrder = (new_reference , timestamp , oldOrder.side , new_price , new_volume ,

new_rank)

130 instrument.delete_order(old_reference)

131 instrument.add_order(newOrder)

132 return instrument

133 return None

134

135 def TradeMessage(line , instruments): #Handles trade messages

136 instrumentId = int(line [4]. split('=')[-1])

137 if instrumentId in instruments:

138 instrument = instruments[instrumentId]

139 timestamp = int(line [2]. split('=')[-1])
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140 price = int(line [8]. split('=')[-1])

141 volume = int(line [5]. split('=')[-1])

142 instrument.trade(timestamp , price , volume)

143

144 def AddQuote(line , instruments , order_map):

145 instrumentId = int(line [4]. split('=')[-1])

146 if instrumentId in instruments:

147 instrument = instruments[instrumentId]

148 timestamp = int(line [2]. split('=')[-1])

149 bidreference = int(line [5]. split('=')[-1])

150 bidPrice = int(line [7]. split('=')[-1])

151 bidVolume = int(line [8]. split('=')[-1])

152 bidRank = int(line [11]. split('=')[-1])

153 askreference = int(line [6]. split('=')[-1])

154 askPrice = int(line [9]. split('=')[-1])

155 askVolume = int(line [10]. split('=')[-1])

156 askRank = int(line [12]. split('=')[-1])

157 if bidreference != 0:

158 bidTuple = (bidreference , timestamp , 'B', bidPrice , bidVolume , bidRank)

159 instrument.add_order(bidTuple)

160 order_map[bidreference] = instrumentId

161 if askreference != 0:

162 askTuple = (askreference , timestamp , 'S', askPrice , askVolume , askRank)

163 instrument.add_order(askTuple)

164 order_map[askreference] = instrumentId

165 return instrument

166 return None

167

168 def ReplaceQuote(line , instruments , order_map):

169 instrumentId = int(line [4]. split('=')[-1])

170 if instrumentId in instruments:

171 instrument = instruments[instrumentId]

172 timestamp = int(line [2]. split('=')[-1])

173 oldBidReference = int(line [5]. split('=')[-1])

174 oldAskReference = int(line [7]. split('=')[-1])

175 if oldBidReference in order_map:

176 instrument.delete_order(oldBidReference)

177 del order_map[oldBidReference]

178 if oldAskReference in order_map:

179 instrument.delete_order(oldAskReference)

180 del order_map[oldAskReference]

181 newBidRef = int(line [6]. split('=')[-1])

182 bidPrice = int(line [9]. split('=')[-1])

183 bidVolume = int(line [10]. split('=')[-1])

184 bidRank = int(line [13]. split('=')[-1])

185 newAskRef = int(line [8]. split('=')[-1])

186 askPrice = int(line [11]. split('=')[-1])

187 askVolume = int(line [12]. split('=')[-1])

188 askRank = int(line [14]. split('=')[-1])



B.1 Building orderbook 65

189 if newBidRef != 0:

190 instrument.add_order ((newBidRef , timestamp , 'B', bidPrice , bidVolume ,

bidRank))

191 order_map[newBidRef] = instrumentId

192 if newAskRef != 0:

193 instrument.add_order ((newAskRef , timestamp , 'S', askPrice , askVolume ,

askRank))

194 order_map[newAskRef] = instrumentId

195 return instrument

196 return None

197

198 def DeleteQuote(line , instruments , order_map):

199 bidReference = int(line [4]. split('=')[-1])

200 askReference = int(line [5]. split('=')[-1])

201 if bidReference in order_map:

202 instrumentId = order_map[bidReference]

203 instrument = instruments[instrumentId]

204 instrument.delete_order(bidReference)

205 del order_map[bidReference]

206 return instrument

207 if askReference in order_map:

208 instrumentId = order_map[askReference]

209 instrument = instruments[instrumentId]

210 instrument.delete_order(askReference)

211 del order_map[askReference]

212 return instrument

213 return None

214

215 def ns_to_date(date , ns):

216 """

217 This function converts nanoseconds to a date

218 """

219 date = date + timedelta(seconds=ns/1e9)

220 return date

221

222 def time_interval(timestamp):

223 """

224 This function returns the time interval that the timestamp belongs to according to a

1-hour interval.

225 """

226 total_minutes = timestamp.hour * 60 + timestamp.minute

227 # Calculate how many minutes to subtract to get to the nearest 4-hour interval start

228 minutes_to_subtract = total_minutes % (1*60)

229 interval = timestamp - timedelta(minutes=minutes_to_subtract , seconds=timestamp.

second , microseconds=timestamp.microsecond)

230 return interval

231

232 ###### Main loop #####

233 #Main
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234 for filepath in files:

235 date = datetime.strptime(filepath.split('_')[-1]. split('.')[0], '%Y%m%d')

236 date_str = date.strftime('%Y%m%d')

237 instruments = {}

238 order_map = {}

239 dayframe = pd.DataFrame(columns =['Date', 'Instrument ', 'Bid_Price ', 'Bid_Volume ', '

Bid_Time ', 'Ask_Price ', 'Ask_Volume ', 'Ask_Time ', 'Last_Price ', 'Last_Volume ', '

Last_Time '])

240 current_interval = None

241 with gzip.open(filepath , 'rt') as file:

242 for linenumber , line in enumerate(file):

243 parts = line.split()

244 msg_type = parts [1][ -1]

245 inst = None

246

247 if msg_type == 'S':

248 SystemEvent(parts)

249

250 elif msg_type == 'R':

251 DerivateDirectory(parts , whitelist , instruments)

252

253 elif msg_type == 'A':

254 inst = AddOrder(parts , instruments , order_map)

255

256 elif msg_type == 'E' or msg_type == 'C':

257 inst = OrderExecuted(parts , instruments , order_map , msg_type)

258

259 elif msg_type == 'D':

260 inst = DeleteOrder(parts , instruments , order_map)

261

262 elif msg_type == 'y':

263 try:

264 inst = OrderBookFlush(parts , instruments , order_map)

265 except KeyError as e:

266 inst = None

267 print(e)

268 print(f'KeyError for line {line.strip()}')

269

270 elif msg_type == 'U' or msg_type == 'G':

271 inst = OrderReplace(parts , instruments , order_map , msg_type)

272

273 elif msg_type == 'P':

274 inst = TradeMessage(parts , instruments)

275

276 elif msg_type == 'J':

277 inst = AddQuote(parts , instruments , order_map)

278

279 elif msg_type == 'K':

280 inst = ReplaceQuote(parts , instruments , order_map)
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281

282 elif msg_type == 'Y':

283 inst = DeleteQuote(parts , instruments , order_map)

284

285 # Save to csv if we have a new hour interval

286 if inst is not None:

287 timestamp = ns_to_date(date , int(parts [2]. split('=')[-1]))

288 interval = time_interval(timestamp)

289 if interval != current_interval:

290 for ins in instruments.values ():

291 dataline = ins.save_order_book(interval)

292 dayframe = pd.concat ([dayframe , dataline], ignore_index=True)

293 current_interval = interval

294

295 # Remove instruments with bid >ask

296 dayframe = dayframe[dayframe['Bid_Price '] <= dayframe['Ask_Price ']]

297

298 dayframe.to_csv(output_path+date_str+'.csv', index=False)

299

300 dayframe = dayframe.drop_duplicates(subset =['Instrument '], keep='last')

301 dayframe.to_csv(output_path_unique+date_str+'_unique.csv', index=False)

302

303 print('Done!')

Listing 2: Building orderbook
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B.2 Model-based index code

1 import numpy as np

2 import pandas as pd

3 import datetime

4 import time

5 import warnings

6 import os

7 import math

8 from scipy.interpolate import CubicSpline

9 from scipy.stats import norm

10 from scipy.optimize import brentq

11

12 ##### Settings #####

13 #Paths

14 input_path = 'ITCH/unique_output/'

15 omxo20 = 'Data/VIX/Final/BSM_norvixV2.csv'

16 omxc25 = 'Data/VIX/Final/BSM_danvixV2.csv'

17 omxs30 = 'Data/VIX/Final/BSM_swevixV2.csv'

18

19 O20 = 'Data/VIX/Raw/OMXO20.csv'

20 C25 = 'Data/VIX/Raw/OMXC25.csv'

21 S30 = 'Data/VIX/Raw/OMXS30.csv'

22

23 #List all files in the input path

24 files = [f'{input_path }{f}' for f in os.listdir(input_path) if os.path.isfile(os.path.

join(input_path , f))]

25 names = ['OMXO20 ', 'OMXC25 ', 'OMXS30 ']

26

27 #List of paths to cleaned rate files

28 rate_paths = [

29 'Data/VIX/Processed/NIBOR_cleaned.csv',

30 'Data/VIX/Processed/CIBOR_cleaned.csv',

31 'Data/VIX/Processed/STIBOR_cleaned.csv'

32 ]

33

34 ###### Functions ######

35 def clean_file(df):

36 """ Extracts the relevant information from the

37 option name and returns a cleaned dataframe."""

38 def process_maturity(row):

39 CALLS = {

40 'A': 1, 'B': 2, 'C': 3, 'D': 4,

41 'E': 5, 'F': 6, 'G': 7, 'H': 8,

42 'I': 9, 'J': 10, 'K': 11, 'L': 12

43 }

44 PUTS = {

45 'M': 1, 'N': 2, 'O': 3, 'P': 4,
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46 'Q': 5, 'R': 6, 'S': 7, 'T': 8,

47 'U': 9, 'V': 10, 'W': 11, 'X': 12

48 }

49 mat = row['Maturity ']

50

51 #find year

52 y = int(mat [0])

53 if y > 5:

54 exp_year = 2010 + y

55 else:

56 exp_year = 2020 + y

57

58 #find month

59 m = mat [1]

60 if m in CALLS:

61 exp_month = CALLS[m]

62 exp_type = 'Call'

63 elif m in PUTS:

64 exp_month = PUTS[m]

65 exp_type = 'Put'

66 else:

67 raise ValueError(f'Unknown month {m} in {mat}')

68

69 #find day

70 if mat[-1] == 'Y':

71 exp_day = int(mat[-3:-1]) if mat[-2]. isdigit () else int(mat[-2])

72 else:

73 exp_day = third_friday(datetime.date(exp_year , exp_month , 1)).day

74 return pd.Series ([exp_year , exp_month , exp_day , exp_type ])

75

76 def third_friday(date):

77 # Find out what day of the week the first day of the month is

78 first_day = date.weekday ()

79 # Calculate how many days are needed to get to the first Friday

80 days_to_first_friday = (4 - first_day) % 7

81 # Return the third Friday

82 return date + pd.Timedelta(days=days_to_first_friday + 14)

83

84 # Regular Expression to extract the components

85 # \w{6} captures the first 6 characters for Underlying

86 # (.*?) captures everything in a non -greedy way up to the final digits for Maturity

87 # (\d+)$ captures the final digits for Strike Price

88 pattern = r'(\w{6}) (.*?)(\d+)$'

89

90 # Apply the regex pattern

91 df[['Underlying ', 'Maturity ', 'Strike ']] = df['Instrument '].str.extract(pattern)

92 df['Strike '] = df['Strike ']. astype(float)

93 df[['Exp year', 'Exp month', 'Exp day', 'Option Type']] = df.apply(process_maturity ,

axis=1, result_type='expand ')



70 B.2 Model-based index code

94 df['Exp date'] = pd.to_datetime(df['Exp year']. astype(str) +

95 df['Exp month']. astype(str).str.zfill (2) +

96 df['Exp day']. astype(str).str.zfill (2),

97 format='%Y%m%d', # Adjusting format to include time

98 errors='coerce ')

99 df.drop(columns =['Exp year', 'Exp month', 'Exp day', 'Maturity ', 'Bid_Time ', '

Ask_Time ', 'Last_Time '], inplace=True)

100 df['Date'] = pd.to_datetime(df['Date'])

101 return df

102

103 def pivot_df(df):

104 """ Pivots the dataframe such that the

105 call ans put options are in the same row."""

106 df.reset_index(drop=True)

107 #remove columns we don't

108 df.drop(columns =['Date'], inplace=True)

109

110 #Pivot table by strike and type

111 df = df.pivot_table(index=['Underlying ', 'Exp date', 'Strike '], columns='Option Type

', values =['Bid_Price ', 'Ask_Price ', 'Bid_Volume ', 'Ask_Volume '])

112 # Flatten the MultiIndex columns

113 df = df.reset_index ()

114

115 # Flatten and rename the columns

116 df.columns = ['_'.join(col).strip () if isinstance(col , tuple) else col for col in df

.columns.values]

117 df = df.rename(columns ={

118 'Ask_Price_Call ': 'Call_Ask ',

119 'Ask_Price_Put ': 'Put_Ask ',

120 'Bid_Price_Call ': 'Call_Bid ',

121 'Bid_Price_Put ': 'Put_Bid ',

122 'Bid_Volume_Call ': 'Call_Volume ',

123 'Bid_Volume_Put ': 'Put_Volume ',

124 'Strike_ ': 'Strike ',

125 'Exp date_': 'Exp date',

126 'Underlying_ ': 'Underlying '

127 })

128

129 df = df[['Underlying ', 'Exp date', 'Strike ', 'Call_Ask ', 'Call_Bid ', 'Put_Ask ', '

Put_Bid ', 'Call_Volume ', 'Put_Volume ']]

130

131 #Calculate mid price

132 df['Call'] = (df['Call_Ask '] + df['Call_Bid ']) / 2

133 df['Put'] = (df['Put_Ask '] + df['Put_Bid ']) / 2

134 df = df.drop(columns =['Call_Ask ', 'Call_Bid ', 'Put_Ask ', 'Put_Bid '])

135

136 df['Diff'] = (df['Call'] - df['Put']).abs()

137 df = df.sort_values(by=['Exp date', 'Strike '])

138
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139 return df

140

141 #Validatting bounds for interpolation

142 def validate_interpolation(interpolated_y , interpolated_x , x, y):

143 """ Validates the interpolation by forcing the interpolated curve

144 to be within the upper and lower bound of the original curve."""

145 def find_upperlower(x,y):

146 #finds upper and lower bound for the interpolated curve

147 #x and y are the interpolated curve

148 #returns mlower , mupper , blower , bupper

149 t1 = x[0]

150 CMT1 = y[0]

151 tx = math.inf

152 tz = math.inf

153 for i in range(len(y)):

154 if x[i] < tx and x[i] > t1 and y[i] >= CMT1:

155 tx = x[i]

156 CMTx = y[i]

157 if x[i] < tz and x[i] > t1 and y[i] <= CMT1:

158 tz = x[i]

159 CMTz = y[i]

160 if tx == math.inf:

161 mlower = 0

162 else:

163 mlower = (CMTx - CMT1)/(tx - t1)

164 if tz == math.inf:

165 mupper = 0

166 else:

167 mupper = (CMTz - CMT1)/(tz - t1)

168 blower = CMT1 - mlower*t1

169 bupper = CMT1 - mupper*t1

170 return mlower , mupper , blower , bupper

171

172 interpolated_y = np.array(interpolated_y)

173 interpolated_x = np.array(interpolated_x)

174 x = np.array(x)

175 y = np.array(y)

176 upper_bound = np.zeros(len(interpolated_x))

177 lower_bound = np.zeros(len(interpolated_x))

178 #find upper and lower bound for the extrapolated curve

179 if interpolated_x [0] < x[0]:

180 mlower , mupper , blower , bupper = find_upperlower(x,y)

181 upper_bound [:x[0]] = mupper*interpolated_x [:x[0]] + bupper

182 lower_bound [:x[0]] = mlower*interpolated_x [:x[0]] + blower

183 #find upper and lower bound for the interpolated curve

184 for i in range(len(x) -1):

185 minvalue=min(y[i], y[i+1])

186 maxvalue=max(y[i], y[i+1])

187 upper_bound[x[i]:x[i+1]] = maxvalue
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188 lower_bound[x[i]:x[i+1]] = minvalue

189

190 #force interpolation to be within upper and lower bound

191 interpolated_y = np.minimum(interpolated_y , upper_bound)

192 interpolated_y = np.maximum(interpolated_y , lower_bound)

193

194 return interpolated_y

195

196 # Maturity days mapping

197 maturity_days = {

198 '1 Day': 1,

199 '1 Wk': 7,

200 '2 Wk': 14,

201 '1 Mo': 30,

202 '2 Mo': 60,

203 '3 Mo': 91,

204 '6 Mo': 182,

205 '9 Mo': 273,

206 '1 Yr': 365,

207 '2 Yr': 730,

208 '3 Yr': 1095,

209 '5 Yr': 1825,

210 '7 Yr': 2555,

211 '10 Yr': 3650,

212 '20 Yr': 7300,

213 '30 Yr': 10950

214 }

215

216 def compute_rates(path , current_date , days_diffs):

217 """ Computes the rates for the terms """

218 yields = pd.read_csv(path)

219 yields['Date'] = pd.to_datetime(yields['Date'])

220 #Find the rates for the terms

221 c = current_date

222 rate = yields[yields['Date'] == c]

223 #check if rate is found , if not , find the closest date or skip

224 first_date = yields['Date'].iloc [0]. date()

225 while len(rate) == 0:

226 if c < first_date:

227 print(f'No rates found for this date {current_date}')

228 break

229 c = c - pd.Timedelta(days =1)

230 rate = yields[yields['Date'] == pd.Timestamp(c)]

231 if len(rate) == 0:

232 return None

233 #Extracting x (days to maturity) if in the yield column names

234 x = [maturity_days[key] for key in yields.columns if key in maturity_days.keys()]

235 interpolated_x = np.arange(0, max(x))

236 row = yields.loc[yields['Date'] == current_date.strftime('%Y-%m-%d')]
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237 row = rate

238 y = [row[key] for key in yields.columns if key in maturity_days.keys()]

239 ncs = CubicSpline(x, y, bc_type='natural ')

240 interpolated_y = ncs(interpolated_x , extrapolate=True)

241 interpolated_y = validate_interpolation(interpolated_y , interpolated_x , x, y)

242 interpolated_y = np.log(1 + interpolated_y) #From apy to r

243 r = [interpolated_y [0][d] for d in days_diffs] #get the interpolated rates for each

term date

244 return r

245

246 def findspot(name , current_date):

247 """ Finds the spot price for the index on the current date """

248 if name == 'OMXO20 ':

249 spot_df = pd.read_csv(O20)

250 elif name == 'OMXC25 ':

251 spot_df = pd.read_csv(C25)

252 elif name == 'OMXS30 ':

253 spot_df = pd.read_csv(S30)

254 spot_df['Date'] = pd.to_datetime(spot_df['Date'])

255 first_date = spot_df['Date'].iloc [0]. date()

256

257 #Find the spot price for the date or the former date

258 spot = spot_df[spot_df['Date'] == pd.Timestamp(current_date)]

259 c = current_date

260 while len(spot) == 0:

261 if c < first_date:

262 break

263 c = c - pd.Timedelta(days =1)

264 spot = spot_df[spot_df['Date'] == c]

265 if len(spot) == 0:

266 return None

267 else:

268 spot = spot['Price'].iloc [0]

269 return spot

270

271 def black_scholes_call(S, K, T, r, sigma):

272 """

273 Price of a European call option using Black -Scholes formula.

274 """

275 d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))

276 d2 = d1 - sigma * np.sqrt(T)

277 return S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)

278

279 def black_scholes_put(S, K, T, r, sigma):

280 """

281 Price of a European put option using Black -Scholes formula.

282 """

283 d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))

284 d2 = d1 - sigma * np.sqrt(T)
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285 return K * np.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)

286

287 def implied_volatility(option_price , S, K, T, r, option_type):

288 """ Calculate the implied volatility using

289 Black -Scholes formula and iterative searches """

290 def bs_price(sigma):

291 return (black_scholes_call(S, K, T, r, sigma) if option_type == 'call'

292 else black_scholes_put(S, K, T, r, sigma)) - option_price

293

294 return brentq(bs_price , 0.0001 , 5)

295

296 ###### Main ######

297

298 # Dataframes for the indices

299 norvix_df = pd.DataFrame(columns =['Date', 'Index'])

300 danvix_df = pd.DataFrame(columns =['Date', 'Index'])

301 swevix_df = pd.DataFrame(columns =['Date', 'Index'])

302

303 M365 = 365*1440 #Minutes in a year

304

305 #Start building the volatility index

306 for i, file in enumerate(files):

307 date = datetime.datetime.strptime(file.split('/')[-1]. split('_')[0], '%Y%m%d')

308

309 #Import option chain

310 total_df = pd.read_csv(file)

311 total_df = clean_file(total_df)

312

313 #Split into OMXO20 , OMXC25 and OMXS30

314 omxo20_df = total_df[total_df['Underlying '] == 'OMXO20 ']

315 omxc25_df = total_df[total_df['Underlying '] == 'OMXC25 ']

316 omxs30_df = total_df[total_df['Underlying '] == 'OMXS30 ']

317

318 df_list = [omxo20_df , omxc25_df , omxs30_df]

319

320 # iterate over the three indices

321 for j, df in enumerate(df_list):

322 name = names[j]

323 current_date = df['Date'].iloc [0]. date()

324 df = pivot_df(df)

325

326 exp_dates = df['Exp date'].dt.date.unique ()

327 exp_dates = np.sort(exp_dates)

328

329 #filter out dates that are inside a 8 day window

330 exp_dates = exp_dates[exp_dates > (current_date + datetime.timedelta(days =8))]

331 #Find near term and next term as the two first dates

332 near_term_date = exp_dates [0]

333 next_term_date = exp_dates [1]
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334 term_dates = [near_term_date , next_term_date]

335

336 #days between current date and term dates

337 days_diffs = [int((term - current_date).days) for term in term_dates]

338

339 #Compute rates

340 rates = compute_rates(rate_paths[j], current_date , days_diffs)

341

342 minutes = [( term_date - current_date).total_seconds () // 60 for term_date in

term_dates]

343 times = [round(min / M365 , 7) for min in minutes]

344

345 ### Calculate the variance for the terms

346 implied_volatilities = []

347 trading_days = []

348

349 for j, term_date in enumerate(term_dates):

350 term_df = df[df['Exp date'] == pd.Timestamp(term_date)]

351

352 ##ATM##

353 spotprice = findspot(name , current_date)

354

355 #stradle the spot price

356 term_df['Diff'] = (term_df['Strike '] - spotprice)

357 above = term_df[term_df['Diff'] > 0]. sort_values(by=['Diff'])

358 below = term_df[term_df['Diff'] <= 0]. sort_values(by=['Diff'], ascending=

False)

359 above = above.iloc [0]

360 below = below.iloc [0]

361

362 above = above.to_frame ().T

363 below = below.to_frame ().T

364

365 #Filter to only contain near the money options

366 atm = pd.concat ([above , below], axis =0)

367 atm = atm.sort_values(by=['Strike '])

368

369 #calculate the implied volatility for the call and put

370 atm['IV_Call '] = atm.apply(lambda row: implied_volatility(row['Call'],

spotprice , row['Strike '], times[j], rates[j], 'call'), axis =1)

371 atm['IV_Put '] = atm.apply(lambda row: implied_volatility(row['Put'],

spotprice , row['Strike '], times[j], rates[j], 'put'), axis =1)

372 atm['IV'] = (atm['IV_Call '] + atm['IV_Put ']) / 2

373

374 #Linear interpolation of the implied volatility

375 atm_iv = np.interp(spotprice , atm['Strike '], atm['IV'])

376

377 nc = days_diffs[j] #actual calenderdays

378 nt = nc - 2 * nc//7 #trading days
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379

380 trading_days.append(nt)

381 trading_IV = atm_iv * (np.sqrt(nc)/np.sqrt(nt)) #trading day implied

volatility

382

383 implied_volatilities.append(trading_IV)

384

385 ###### VXO ######

386 vxo = implied_volatilities [0]*(( trading_days [1] -22)/( trading_days [1]-

trading_days [0])) + implied_volatilities [1]*((22 - trading_days [0])/( trading_days [1]-

trading_days [0]))

387 vxo = round(vxo*100, 2)

388 if name == 'OMXO20 ':

389 print(f'{name} got an index of {vxo} for {current_date}')

390 norvix_df = pd.concat ([norvix_df , pd.DataFrame ([[ current_date , vxo]],

columns =['Date', 'Index'])])

391 elif name == 'OMXC25 ':

392 print(f'{name} got an index of {vxo} for {current_date}')

393 danvix_df = pd.concat ([danvix_df , pd.DataFrame ([[ current_date , vxo]],

columns =['Date', 'Index'])])

394 elif name == 'OMXS30 ':

395 print(f'{name} got an index of {vxo} for {current_date}')

396 swevix_df = pd.concat ([swevix_df , pd.DataFrame ([[ current_date , vxo]],

columns =['Date', 'Index'])])

397

398 #Save to csv

399 norvix_df.sort_values(by=['Date'], inplace=True)

400 danvix_df.sort_values(by=['Date'], inplace=True)

401 swevix_df.sort_values(by=['Date'], inplace=True)

402 norvix_df.to_csv(omxo20 , index=False)

403 danvix_df.to_csv(omxc25 , index=False)

404 swevix_df.to_csv(omxs30 , index=False)

Listing 3: Code for making the model-based volatility indices
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B.3 Model-free index code

1 import numpy as np

2 import pandas as pd

3 import datetime

4 import os

5 import math

6 from scipy.interpolate import CubicSpline

7

8

9 ##### Settings #####

10 #Paths

11 input_path = 'ITCH/unique_output/'

12 omxo20 = 'Data/VIX/Final/ITCH_norvix.csv'

13 omxc25 = 'Data/VIX/Final/ITCH_danvix.csv'

14 omxs30 = 'Data/VIX/Final/ITCH_swevix.csv'

15

16 #List all files in the input path

17 files = [f'{input_path }{f}' for f in os.listdir(input_path) if os.path.isfile(os.path.

join(input_path , f))]

18 names = ['OMXO20 ', 'OMXC25 ', 'OMXS30 ']

19

20 #List of paths to cleaned rate files

21 rate_paths = [

22 'Data/VIX/Processed/NIBOR_cleaned.csv',

23 'Data/VIX/Processed/CIBOR_cleaned.csv',

24 'Data/VIX/Processed/STIBOR_cleaned.csv'

25 ]

26

27 MCM = pd.Timedelta(days =30).total_seconds () / 60 #Minutes in the contant maturity period

28 M365 = 365*1440 #Minutes in a year

29

30 ###### Functions ######

31 def clean_file(df):

32 """ Extracts the relevant information from the

33 option name and returns a cleaned dataframe."""

34 def process_maturity(row):

35 # Function to process the maturity date

36 CALLS = {

37 'A': 1, 'B': 2, 'C': 3, 'D': 4,

38 'E': 5, 'F': 6, 'G': 7, 'H': 8,

39 'I': 9, 'J': 10, 'K': 11, 'L': 12

40 }

41 PUTS = {

42 'M': 1, 'N': 2, 'O': 3, 'P': 4,

43 'Q': 5, 'R': 6, 'S': 7, 'T': 8,

44 'U': 9, 'V': 10, 'W': 11, 'X': 12

45 }
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46 mat = row['Maturity ']

47

48 #find year

49 y = int(mat [0])

50 if y > 5:

51 exp_year = 2010 + y

52 else:

53 exp_year = 2020 + y

54

55 #find month

56 m = mat [1]

57 if m in CALLS:

58 exp_month = CALLS[m]

59 exp_type = 'Call'

60 elif m in PUTS:

61 exp_month = PUTS[m]

62 exp_type = 'Put'

63 else:

64 raise ValueError(f'Unknown month {m} in {mat}')

65

66 #find day

67 if mat[-1] == 'Y':

68 exp_day = int(mat[-3:-1]) if mat[-2]. isdigit () else int(mat[-2])

69 else:

70 exp_day = third_friday(datetime.date(exp_year , exp_month , 1)).day

71

72 return pd.Series ([exp_year , exp_month , exp_day , exp_type ])

73

74 def third_friday(date):

75 # Find out what day of the week the first day of the month is

76 first_day = date.weekday ()

77 # Calculate how many days are needed to get to the first Friday

78 days_to_first_friday = (4 - first_day) % 7

79 # Return the third Friday

80 return date + pd.Timedelta(days=days_to_first_friday + 14)

81

82 # Regular Expression to extract the components

83 # \w{6} captures the first 6 characters for Underlying

84 # (.*?) captures everything in a non -greedy way up to the final digits for Maturity

85 # (\d+)$ captures the final digits for Strike Price

86 pattern = r'(\w{6}) (.*?)(\d+)$'

87

88 # Apply the regex pattern

89 df[['Underlying ', 'Maturity ', 'Strike ']] = df['Instrument '].str.extract(pattern)

90

91 df['Strike '] = df['Strike ']. astype(float)

92 df[['Exp year', 'Exp month', 'Exp day', 'Option Type']] = df.apply(process_maturity ,

axis=1, result_type='expand ')

93 df['Exp date'] = pd.to_datetime(df['Exp year']. astype(str) +
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94 df['Exp month']. astype(str).str.zfill (2) +

95 df['Exp day']. astype(str).str.zfill (2),

96 format='%Y%m%d', # Adjusting format to include time

97 errors='coerce ')

98

99 # Remove the unnecessary columns

100 df.drop(columns =['Exp year', 'Exp month', 'Exp day', 'Maturity ', 'Bid_Time ', '

Ask_Time ', 'Last_Time '], inplace=True)

101 df['Date'] = pd.to_datetime(df['Date'])

102 return df

103

104 def pivot_df(df):

105 """ Pivots the dataframe such that the

106 call ans put options are in the same row."""

107 df.reset_index(drop=True)

108 df.drop(columns =['Date'], inplace=True)

109

110 #Pivot table by strike and type

111 df = df.pivot_table(index=['Underlying ', 'Exp date', 'Strike '], columns='Option Type

', values =['Bid_Price ', 'Ask_Price ', 'Bid_Volume ', 'Ask_Volume '])

112 df = df.reset_index ()

113

114 # Flatten and rename the columns

115 df.columns = ['_'.join(col).strip () if isinstance(col , tuple) else col for col in df

.columns.values]

116 df = df.rename(columns ={

117 'Ask_Price_Call ': 'Call_Ask ',

118 'Ask_Price_Put ': 'Put_Ask ',

119 'Bid_Price_Call ': 'Call_Bid ',

120 'Bid_Price_Put ': 'Put_Bid ',

121 'Bid_Volume_Call ': 'Call_Volume ',

122 'Bid_Volume_Put ': 'Put_Volume ',

123 'Strike_ ': 'Strike ',

124 'Exp date_': 'Exp date',

125 'Underlying_ ': 'Underlying '

126 })

127

128 #Only keep the columns we need

129 df = df[['Underlying ', 'Exp date', 'Strike ', 'Call_Ask ', 'Call_Bid ', 'Put_Ask ', '

Put_Bid ', 'Call_Volume ', 'Put_Volume ']]

130

131 #Calculate mid price

132 df['Call'] = (df['Call_Ask '] + df['Call_Bid ']) / 2

133 df['Put'] = (df['Put_Ask '] + df['Put_Bid ']) / 2

134 df = df.drop(columns =['Call_Ask ', 'Call_Bid ', 'Put_Ask ', 'Put_Bid '])

135

136 #Calculate diff

137 df['Diff'] = (df['Call'] - df['Put']).abs()

138 df = df.sort_values(by=['Exp date', 'Strike '])



80 B.3 Model-free index code

139 return df

140

141 def validate_interpolation(interpolated_y , interpolated_x , x, y):

142 """ Validates the interpolation by forcing

143 it to be within the upper and lower bound """

144 def find_upperlower(x,y):

145 #finds upper and lower bound for the interpolated curve

146 t1 = x[0]

147 CMT1 = y[0]

148 tx = math.inf

149 tz = math.inf

150 for i in range(len(y)):

151 if x[i] < tx and x[i] > t1 and y[i] >= CMT1:

152 tx = x[i]

153 CMTx = y[i]

154 if x[i] < tz and x[i] > t1 and y[i] <= CMT1:

155 tz = x[i]

156 CMTz = y[i]

157 if tx == math.inf:

158 mlower = 0

159 else:

160 mlower = (CMTx - CMT1)/(tx - t1)

161 if tz == math.inf:

162 mupper = 0

163 else:

164 mupper = (CMTz - CMT1)/(tz - t1)

165 blower = CMT1 - mlower*t1

166 bupper = CMT1 - mupper*t1

167 return mlower , mupper , blower , bupper

168

169 #convert all to np arrays

170 interpolated_y = np.array(interpolated_y)

171 interpolated_x = np.array(interpolated_x)

172 x = np.array(x)

173 y = np.array(y)

174 upper_bound = np.zeros(len(interpolated_x))

175 lower_bound = np.zeros(len(interpolated_x))

176

177 #find upper and lower bound for the extrapolated curve

178 if interpolated_x [0] < x[0]:

179 mlower , mupper , blower , bupper = find_upperlower(x,y)

180 upper_bound [:x[0]] = mupper*interpolated_x [:x[0]] + bupper

181 lower_bound [:x[0]] = mlower*interpolated_x [:x[0]] + blower

182

183 #find upper and lower bound for the interpolated curve

184 for i in range(len(x) -1):

185 minvalue=min(y[i], y[i+1])

186 maxvalue=max(y[i], y[i+1])

187 upper_bound[x[i]:x[i+1]] = maxvalue
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188 lower_bound[x[i]:x[i+1]] = minvalue

189

190 #Edit the interpolated curve to be within the bounds

191 interpolated_y = np.minimum(interpolated_y , upper_bound)

192 interpolated_y = np.maximum(interpolated_y , lower_bound)

193 return interpolated_y

194

195 # Maturity days mapping

196 maturity_days = {

197 '1 Day': 1,

198 '1 Wk': 7,

199 '2 Wk': 14,

200 '1 Mo': 30,

201 '2 Mo': 60,

202 '3 Mo': 91,

203 '6 Mo': 182,

204 '9 Mo': 273,

205 '1 Yr': 365,

206 '2 Yr': 730,

207 '3 Yr': 1095,

208 '5 Yr': 1825,

209 '7 Yr': 2555,

210 '10 Yr': 3650,

211 '20 Yr': 7300,

212 '30 Yr': 10950

213 }

214

215 def compute_rates(path , current_date , days_diffs):

216 """ Computes the riskless rates for the given terms."""

217 yields = pd.read_csv(path)

218 yields['Date'] = pd.to_datetime(yields['Date'])

219 c = current_date

220 rate = yields[yields['Date'] == c]

221 first_date = yields['Date'].iloc [0]. date()

222 while len(rate) == 0:

223 if c < first_date:

224 print(f'No rates found for this date {current_date}')

225 break

226 c = c - pd.Timedelta(days =1)

227 rate = yields[yields['Date'] == pd.Timestamp(c)]

228 if len(rate) == 0:

229 return None

230

231 #Extracting x (days to maturity) if in the yield column names

232 x = [maturity_days[key] for key in yields.columns if key in maturity_days.keys()]

233 interpolated_x = np.arange(0, max(x))

234

235 row = yields.loc[yields['Date'] == current_date.strftime('%Y-%m-%d')]

236 row = rate
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237

238 y = [row[key] for key in yields.columns if key in maturity_days.keys()]

239 ncs = CubicSpline(x, y, bc_type='natural ')

240 interpolated_y = ncs(interpolated_x , extrapolate=True)

241 interpolated_y = validate_interpolation(interpolated_y , interpolated_x , x, y)

242

243 #From apy to continuous compounding

244 interpolated_y = np.log(1 + interpolated_y)

245 #get the interpolated rates for each term date

246 r = [interpolated_y [0][d] for d in days_diffs]

247 return r

248

249

250 ###### Main ######

251 # Dataframes for the indices

252 norvix_df = pd.DataFrame(columns =['Date', 'Index'])

253 danvix_df = pd.DataFrame(columns =['Date', 'Index'])

254 swevix_df = pd.DataFrame(columns =['Date', 'Index'])

255

256 #Start building the volatility index

257 for i, file in enumerate(files):

258 date = datetime.datetime.strptime(file.split('/')[-1]. split('_')[0], '%Y%m%d')

259

260 #Import option chain

261 total_df = pd.read_csv(file)

262 total_df = clean_file(total_df)

263

264 #Split into OMXO20 , OMXC25 and OMXS30

265 omxo20_df = total_df[total_df['Underlying '] == 'OMXO20 ']

266 omxc25_df = total_df[total_df['Underlying '] == 'OMXC25 ']

267 omxs30_df = total_df[total_df['Underlying '] == 'OMXS30 ']

268

269 df_list = [omxo20_df , omxc25_df , omxs30_df]

270

271 for j, df in enumerate(df_list):

272 name = names[j]

273 current_date = df['Date'].iloc [0]. date()

274 df = pivot_df(df)

275

276 constant_maturity_date = current_date + pd.Timedelta(days =30)

277

278 exp_dates = df['Exp date'].dt.date.unique ()

279 exp_dates = np.sort(exp_dates)

280

281 #Find near term dates less than or equal constant maturity date

282 near_term_dates = exp_dates[exp_dates <= constant_maturity_date]

283 if len(near_term_dates) == 0:

284 #No near term expiry dates found , using closest date instead

285 near_term_date = exp_dates [0]
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286 else:

287 near_term_date = near_term_dates [-1]

288 #Find next term dates greater than constant maturity date

289 next_term_dates = exp_dates[exp_dates > near_term_date]

290 #find the first value greater than near term date

291 next_term_date = next_term_dates [0]

292

293 term_dates = [near_term_date , next_term_date]

294

295 #days between current date and term dates

296 days_diffs = [int((term - current_date).days) for term in term_dates]

297

298 #Compute rates

299 rates = compute_rates(rate_paths[j], current_date , days_diffs)

300

301 minutes = [( term_date - current_date).total_seconds () // 60 for term_date in

term_dates]

302 times = [round(min / M365 , 7) for min in minutes]

303

304 ### Calculate the variance for the terms

305 variance = []

306 for j, term_date in enumerate(term_dates):

307 term_df = df[df['Exp date'] == pd.Timestamp(term_date)]

308

309 atm = term_df[term_df['Diff'] == term_df['Diff'].min()]

310 atm = atm.sort_values(by=['Strike '])

311 atm = atm.iloc [0]

312

313 atm_strike = atm['Strike ']

314 atm_call = atm['Call']

315 atm_put = atm['Put']

316

317 #Calculate forward price

318 f = atm_strike + np.exp(rates[j]*times[j])*( atm_call - atm_put)

319

320 #find strike right below forward price

321 strikes = term_df['Strike ']. values

322 k = max([s for s in strikes if s <= f], default=None)

323

324 ####### Strike selection #######

325 #sort by strike price

326 term_df = term_df.sort_values(by=['Strike '])

327

328 #select puts

329 #start at K_0 and iterate to lower strikes for puts

330 put = term_df[term_df['Strike '] < k]

331 #sort descending such that we start at K_0 and move downwards in strikes

332 put.sort_values(by=['Strike '], inplace=True , ascending=False)

333
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334 #set all to true for inclution

335 put['Include '] = True

336

337 previous_include = True #used to check if we've encountered two rows with

Bid = 0

338 for l, row in put.iterrows (): #iterate over rows in put

339 if pd.isna(row['Put']) or pd.isna(row['Put_Volume ']): #if bid is 0, set

inclution to false

340 put.at[l, 'Include '] = False

341

342 # If we've encountered two rows with Bid = 0, break the loop

343 if not previous_include and not put.at[l, 'Include ']:

344 # all less than i are false

345 put.loc[l:, 'Include '] = False

346 break

347 previous_include = put.at[l, 'Include '] #set previous_include to current

include for next iteration

348

349 #select calls , as with puts

350 call = term_df[term_df['Strike '] > k]

351 call.sort_values(by=['Strike '], inplace=True) #sort ascending such that we

start at K_0 and move upwards in strikes

352

353 call['Include '] = True

354 previous_include = True

355 for l, row in call.iterrows ():

356 if pd.isna(row['Call']) or pd.isna(row['Call_Volume ']):

357 call.at[l, 'Include '] = False

358

359 # If we've encountered two rows with Bid = 0, break the loop

360 if not previous_include and not call.at[l, 'Include ']:

361 # all less than i are false , meaning all larger strikes are false

362 call.loc[l:, 'Include '] = False

363 #print(f'Breaking at {i}')

364 break

365 previous_include = call.at[l, 'Include ']

366

367 # Combine the two dataframes in a new one

368 put.sort_values(by=['Strike '], inplace=True) #sort ascending again for

concat

369 call = call[call['Include '] == True]

370 put = put[put['Include '] == True]

371

372 put['Option Type'] = 'Put'

373 call['Option Type'] = 'Call'

374 put = put.rename(columns ={'Put': 'Midpoint Price'})

375 call = call.rename(columns ={'Call': 'Midpoint Price'})

376

377 #Add mid where K_0 is , average of call and put
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378 mid_row = term_df[term_df['Strike '] == k]

379 mid_row['Option Type'] = 'Put/Call Average '

380 mid_row['Midpoint Price'] = term_df [['Call', 'Put']]. mean(axis =1)

381

382 #Combine the dataframes to a final term dataframe

383 term_df = pd.concat ([put , mid_row , call])

384 term_df.drop(columns =['Diff','Call_Volume ', 'Call', 'Put', 'Put_Volume ', '

Include '], inplace=True)

385

386 ######### Delta K #########

387 term_df['next'] = term_df['Strike '].shift (-1)

388 term_df['prev'] = term_df['Strike '].shift (1)

389 #delta_k = (K_i+1 - K_i -1) / 2

390 term_df['delta_k '] = (term_df['next'] - term_df['prev']) / 2

391

392 # Assign values for the first and last rows

393 term_df.iloc[0, term_df.columns.get_loc('delta_k ')] = term_df['next'].iloc

[0] - term_df['Strike '].iloc [0]

394 term_df.iloc[-1, term_df.columns.get_loc('delta_k ')] = term_df['Strike '].

iloc[-1] - term_df['prev'].iloc[-1]

395 term_df.drop(columns =['next', 'prev'], inplace=True)

396

397 ### Calculate variance by contribution ####

398 term_df['contribution '] = (term_df['delta_k '] / (term_df['Strike ']**2)) *

term_df['Midpoint Price'] * np.exp(rates[j] * times[j])

399 contribution_sum = term_df['contribution '].sum()

400

401 var = round(contribution_sum *(2/ times[j]), 10) - round ((1/ times[j]) * (f/k -

1)**2, 10)

402 variance.append(var)

403

404 ###### VIX ######

405 denominator = minutes [1]- minutes [0]

406 volatility_index = round (100 * np.sqrt((times [0]* variance [0]*(( minutes [1]-MCM)/(

denominator)) + times [1]* variance [1]*((MCM -minutes [0])/( denominator)))*(M365/MCM)),

2)

407

408 #Save to df

409 if name == 'OMXO20 ':

410 print(f'{name} got an index of {volatility_index} for {current_date}')

411 norvix_df = pd.concat ([norvix_df , pd.DataFrame ([[ current_date ,

volatility_index ]], columns =['Date', 'Index'])])

412 elif name == 'OMXC25 ':

413 print(f'{name} got an index of {volatility_index} for {current_date}')

414 danvix_df = pd.concat ([danvix_df , pd.DataFrame ([[ current_date ,

volatility_index ]], columns =['Date', 'Index'])])

415 elif name == 'OMXS30 ':

416 print(f'{name} got an index of {volatility_index} for {current_date}')

417 swevix_df = pd.concat ([swevix_df , pd.DataFrame ([[ current_date ,
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volatility_index ]], columns =['Date', 'Index'])])

418

419 #Save to csv

420 norvix_df.sort_values(by=['Date'], inplace=True)

421 danvix_df.sort_values(by=['Date'], inplace=True)

422 swevix_df.sort_values(by=['Date'], inplace=True)

423 norvix_df.to_csv(omxo20 , index=False)

424 danvix_df.to_csv(omxc25 , index=False)

425 swevix_df.to_csv(omxs30 , index=False)

Listing 4: Code for making the model-free volatility indices



B.4 EIKON data 87

B.4 EIKON data

1 # Importing necessary libraries

2 # installed via pip

3 import datetime as dt

4 import eikon as ek

5 import refinitiv.dataplatform as rdp

6 import pandas as pd

7 import time

8 import holidays

9

10 # Setting up Eikon API

11 # Eikon API keys are generated from

12 # the Eikon Desktop Application.

13 # Ensure that you have the Eikon Desktop

14 # App running before running this script.

15 your_data_folder = ".../ Data/"

16 key = '6d1xxxxxxxxxxxxxxxxxxxxxxxxxxfed '

17 ek.set_app_key(key)

18 rdp.open_desktop_session(key)

19

20 ##################

21 ### INDEX DATA ###

22 ##################

23 # Fetching index data from Eikon.

24 start_date = "2017 -01 -01"

25 end_date = "2023 -11 -11"

26 interval = "daily"

27

28 omxs30 = ek.get_timeseries ([".OMXS30"],

29 start_date=start_date ,

30 end_date=end_date ,

31 interval=interval)

32 omxc25 = ek.get_timeseries ([".OMXC25CAP"],

33 start_date=start_date ,

34 end_date=end_date ,

35 interval=interval)

36 omxo20 = ek.get_timeseries ([".OBX"],

37 start_date=start_date ,

38 end_date=end_date ,

39 interval=interval)

40 omxn40 = ek.get_timeseries ([".OMXN40"],

41 start_date=start_date ,

42 end_date=end_date ,

43 interval=interval)

44

45 # Save to CSV

46 omxs30.to_csv('OMXS30.csv')
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47 omxc25.to_csv('OMXC25.csv')

48 omxo20.to_csv('OMXO20.csv')

49

50 # Processing data to get correct dates.

51 # OMXS30 , OMXC25 and OMXO20 are rebalanced

52 # semi -annially.

53 dates = [dt.date(i, j, 1) for i in range (2018, 2024) for j in [1, 7]]

54

55 # Checking for weekends.

56 def is_weekend(date):

57 return date.weekday () > 4 # 5 and 6 correspond to Saturday and Sunday

58

59 # Checking for holidays.

60 def is_public_holiday(date , country_code):

61 if country_code not in ['SE', 'NO', 'DK']:

62 raise ValueError(f"Country code {country_code} is not supported.")

63 return date in holidays.CountryHoliday(country_code)

64

65 # Rolling forward to next trading day.

66 def next_trading_day(date , country_code =['SE', 'NO', 'DK']):

67 while is_weekend(date) or is_public_holiday(date , country_code):

68 date += dt.timedelta(days =1)

69 return date

70

71 # Adjusting to nearest trading day

72 adjusted_dates_se = [next_trading_day(date , 'SE') for date in dates]

73 adjusted_dates_no = [next_trading_day(date , 'NO') for date in dates]

74 adjusted_dates_dk = [next_trading_day(date , 'DK') for date in dates]

75 # Controlling that the dates are the same for all countries

76 adjusted_dates_se == adjusted_dates_no == adjusted_dates_dk # True

77 # Saving one of them to general variable 'dates'

78 dates = adjusted_dates_se

79

80 #####################

81 ## MARKET CAP DATA ##

82 #####################

83 # Function to constitute market cap for a given ric

84 # dates: list of dates

85 # ric: refinitiv idenitification code of the index

86 # (same you would use in Eikon)

87 def constituentMktCaps(dates , ric):

88 all_data = pd.DataFrame ()

89 for date in dates:

90 # Convert date to string

91 date_str = date.strftime("%Y-%m-%d")

92

93 # Get the constituents of the ric

94 # TR. = Time Series Request

95 df , err = ek.get_data(ric ,
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96 ['TR.IndexConstituentRIC ',

97 'TR.IndexConstituentName '],

98 {'SDate': date_str })

99

100 # Saving date to DataFrame

101 df['Date'] = date_str

102

103 # Check if df is not empty and 'Constituent RIC' column exists

104 if not df.empty and 'Constituent RIC' in df.columns:

105 # Fetch market cap for each company in 'Constituent RIC'

106 market_cap_df , err = ek.get_data(

107 instruments=df['Constituent RIC']. tolist (),

108 fields =['TR.CompanyMarketCap ',

109 'TR.CompanyMarketCap.Currency '],

110 parameters ={'SDate': date_str}

111 )

112

113 # Merge the market cap data with df

114 df = df.merge(market_cap_df ,

115 left_on='Constituent RIC',

116 right_on='Instrument ',

117 how='left')

118

119 # Append the results to the all_data DataFrame

120 all_data = pd.concat ([all_data , df],

121 ignore_index=True)

122

123 # Delay for 1 second to avoid time -outs

124 time.sleep (1)

125

126 # Final formatting

127 all_data = all_data [['Date',

128 'Instrument_x ',

129 'Constituent RIC',

130 'Constituent Name',

131 'Company Market Cap',

132 'Currency ']]

133 all_data.columns = [ 'Date', 'Index', 'RIC',

134 'Name', 'Market Cap', 'Currency ']

135

136 # Returning data

137 return all_data

138

139 # Utilising Function

140 # Fetching for Stockholm

141 dates = adjusted_dates_se

142 ric = '.OMXS30 '

143 swe = constituentMktCaps(dates , ric)

144 # Fetching for Oslo
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145 dates = adjusted_dates_no

146 ric = '.OBX'

147 nor = constituentMktCaps(dates , ric)

148 # Fetching for Copenhagen

149 dates = adjusted_dates_dk

150 ric = '.OMXC25CAP '

151 den = constituentMktCaps(dates , ric)

152

153 # save all three to csv

154 swe.to_csv('OMXS30mktcap.csv')

155 nor.to_csv('OMXO20mktcap.csv')

156 den.to_csv('OMXC25mktcap.csv')

157

158 ####################

159 ## EXCHANGE RATES ##

160 ####################

161 def quartRates(start_date , end_date , currency_pairs):

162

163 # Fetch the historical exchange rates

164 exchange_rates_ts = ek.get_timeseries(

165 currency_pairs ,

166 fields='CLOSE',

167 start_date=start_date ,

168 end_date=end_date ,

169 interval='quarterly '

170 )

171

172 # Reshape the DataFrame for easier processing

173 exchange_rates_ts = exchange_rates_ts.reset_index ()

174 exchange_rates_ts = exchange_rates_ts.melt(id_vars='Date',

175 var_name='Currency_Pair ',

176 value_name='Rate')

177 # rename columns

178 exchange_rates_ts.columns = ['Date', 'Currency ', 'Rate']

179 # inverse the Rates

180 exchange_rates_ts['Rate'] = 1 / exchange_rates_ts['Rate'] # NOK/DKK/SEK to EUR

181 # replace EURSEK= to SEKtoEUR , etc.

182 exchange_rates_ts['Currency '] = exchange_rates_ts['Currency '].str.replace('DKK', '-

DKK')

183 exchange_rates_ts['Currency '] = exchange_rates_ts['Currency '].str.replace('SEK', '-

SEK')

184 exchange_rates_ts['Currency '] = exchange_rates_ts['Currency '].str.replace('NOK', '-

NOK')

185 exchange_rates_ts['Currency '] = exchange_rates_ts['Currency '].str.replace('=', '')

186

187 # Return the DataFrame

188 return exchange_rates_ts

189

190 # Utilising Function
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191 currency_pairs = ['EURSEK=', 'EURNOK=', 'EURDKK=']

192 start_date = "2017 -06 -01"

193 end_date = "2023 -12 -31"

194 exchange_rates_ts = quartRates(start_date , end_date , currency_pairs)

195

196 # save to csv

197 exchange_rates_ts.to_csv('ExchangeRates.csv')

Listing 5: Fetching data from Eikon Refinitiv
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