
 
 

Exploring The Possibilities of 
Investing in Artificial Intelligence 

A comprehensive analysis of NQROBO index performance 

Bjørnar Kaldheim & Marius Senderud 

Supervisor: Gernot Peter Doppelhofer 

Master thesis, Economics and Business Administration 

Major: Financial Economics 

NORWEGIAN SCHOOL OF ECONOMICS 
 

 

This thesis was written as a part of the Master of Science in Economics and Business 
Administration at NHH. Please note that neither the institution nor the examiners are 
responsible − through the approval of this thesis − for the theories and methods used, or results 
and conclusions drawn in this work. 

 

 

 

Norwegian School of Economics  

Bergen, Fall 2023 

 



  

Abstract 
This thesis investigates the potential of beating the market index for an investor by investing 

in Artificial Intelligence (AI). We have analysed the performance of Nasdaq CTA Artificial 

Intelligence & Robotics (NQROBO) from January 2018 to August 2023, comparing it to the 

Nasdaq Composite (NASDAQ) and S&P 500. We have simulated the behaviour of an open-

minded investor who uses simple prediction models to forecast returns. We have tried to make 

this simulation as realistic as possible using minimal hindsight. Our thesis is based on three 

analyses: a historical analysis evaluating NQROBO’s performance, a pseudo-out-of-sample 

forecasting performance analysis exploring how an investor in real time utilising a forecasting 

tool would perform, and lastly, an optimal relative weighting analysis of NQROBO, based on 

the pseudo-out-of-sample analysis. 

The historical analysis revealed that NQROBO outperformed the market from 2020 through 

2022. It also uncovered that the Alpha was primarily positive from 2020 to early 2022, before 

turning negative in 2022. The Beta was lower than the market until 2022 before increasing 

sharply and stabilising at 1,1. Regarding the Fama French Factors, we identified the market as 

a consistent driver for returns. HML, RMW and CMA fluctuating greatly, being mostly 

negative, suggesting that NQROBO performs best when the market favours growth-oriented 

firms with an aggressive investment strategy. Indicating that the index has the potential of 

outperforming the market over certain periods if the market conditions are favourable. 

Furthermore, the pseudo-out-of-sample forecasting performance analysis showed that 

portfolios utilising Sharpe Ratio, RMSE and Hybrid RMSE weighting could outperform the 

market, if rebalancing daily. Suggesting that potential gains of investing in NQROBO is short 

lived. Lastly, our optimal relative weighting analysis of NQROBO’s shows that a highly 

dynamic weight allocation that is rebalanced frequently is beneficial. Enabling the portfolio to 

capture short-term gains and beating the market index over the period. The findings suggest 

that investing in AI offer the potential of beating the market index if done flexibly. 
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1. Introduction  

As technology keeps developing, becoming more accessible across the world, it has been 

increasingly integrated into our daily lives. The third Industrial Revolution marked a crucial 

turning point with the introduction of computing power. This introduction challenged prior 

conceptions and limitations of what has been deemed impossible. Artificial Intelligence stands 

at the frontline of innovation in an era that can be characterized as being rapidly developing, 

continuously introducing new technological advancements. The technology displays an 

incredible capacity to mimic human-like cognitive thinking and perform complex tasks 

resulting in an increased adoption across industry sectors. This development is reflected in the 

remarkable growth in Artificial Intelligence funding, which has grown by over 7x since 2015, 

reaching $93,5 billion in 2021 (Duarte, 2023). With no signs of slowing down, the global AI 

market is projected to compound at an annual growth rate of 37,3% until 2030, resulting in an 

expected market value of $1847,58 billion (Grand View Research, 2023). 

As Artificial Intelligence continues its inevitable integration into the core of industries and 

economies, there is no denying that the technology is here to stay. However, as the road ahead 

is filled with uncertainties tied to regulations, ethical dilemmas, implementation, and future 

development, investors find themselves at a crossroads between opportunity and uncertainty. 

Stephen Hawking (2016) famously said: 

“It will either be the best thing that's ever happened to us, or it will be the worst thing. If we're 

not careful, it very well may be the last thing.”   

This perfectly highlights how captivating and exciting the potential of Artificial Intelligence 

is and how it can introduce new possibilities and generate excess returns. However, Hawking 

also warns about the danger of the technology. More recently, there has been a rising concern 

regarding the development of the technology as tech leaders has pleaded to have a pause in 

the development. Currently, it exists no global framework regulating the technology. The 

dilemma between upside and downside challenges a broad spectrum of stakeholders, from 

huge institutional asset managers to individual investors. 

The crossroad is a thrilling dilemma and has greatly inspired us when writing our master thesis.  
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1.1 Research Question  

This thesis aims to examine the possibility of generating excess returns through investing in 

Artificial Intelligence technology, ultimately beating the market index. In our analyses, we 

have regarded excess returns as returns relative to risk-free rate. We define the S&P 500 index 

as the market and “beating the market” as achieving a higher final wealth by investing in an 

alternative portfolio rather than investing in the market. This is achieved by examining the 

development of the Nasdaq CTA Artificial Intelligence & Robotics Index (NQROBO). The 

index tracks the performance of companies engaged in the AI and robotics segment of the 

technological, industrial, medical, and other economic sectors. In this thesis, we want to 

explore the approach for simulating an investor's behaviour in real time through forecasting 

models, using as little hindsight as possible. By as little hindsight we mean only utilizing 

historical information that is available for the investor in real time. The thesis aims to provide 

an answer to our research question: 

To what extent does investing in Artificial Intelligence technology, supported by a forecasting 

tool only using historical information, offer the potential of beating the market index for a 

risk-neutral investor with a short time horizon? 

To answer this question, we have constructed the thesis into three different parts, each part is 

constructed to enrich our understanding of the research question.  

1. Historical analysis of NQROBO: Evaluating the historical performance of the 

index in terms of excess returns, Alpha, Beta, and the Fama French Factors. 

2. Pseudo-out-of-sample forecasting performance analysis: Constructing and 

assessing the performance of synthetic portfolios 

3. Optimal relative weighting analysis: Analysing the optimal relative weightings in 

dynamic portfolios. 

To answer the first part of our thesis, we have conducted a historical analysis of the 

performance of NQROBO. Here, we examine the performance of the NQROBO, the Nasdaq 

Composite (NASDAQ) and the S&P 500. We divided our findings into three sub-samples to 

gain deeper insights into the development. We also assessed the index’s Alpha and Beta over 

time before analysing how the Fama French Factors affected NQROBO. 

To answer the second part of our thesis, we retrieved financial data for all three indices and 

constructed different forecasting models. All forecasting models was trained over one year 
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and subsequently, identifying and utilising the most accurate model for each of the three 

indices. After this, we constructed six synthetic portfolios, each weighted differently based on 

simple statistical weights, replicating real-world investment strategies (Pesaran & 

Timmermann, 1995). Ultimately, this leads to a ranking of all portfolios, providing a better 

understanding of how an investor could beat the market. 

Lastly, we wish to examine the optimal weighting within class of models considered of the 

NQROBO and the other indices. We find it interesting to evaluate the development of the 

weighting in our dynamic portfolios over time to better understand when it would be most 

beneficial to invest in NQROBO. This is done by computing all weights for the portfolios and 

illustrating the development.  

1.2 Thesis Structure 

The thesis is organised into different chapters. Chapter 2 presents the reader with the basics of 

Artificial Intelligence technology. The chapter explains essential critical concepts within the 

technology and presents, current, and possible future development. Chapter 3 introduces the 

reader to fundamental relevant financial theories and performance measurement on which our 

analyses are based on. Chapter 4 outlines the methodology of our research. Chapters 5 and 6 

present six synthetic portfolios and our data to the reader. In Chapter 7, we conduct a historical 

analysis of NQROBO’s performance and analyse Alpha, Beta, and the Fama French Factors. 

In chapter 8, we present our empirical portfolio performance results. Chapter 9 consists of a 

discussion of the results presented in the prior chapter, limitations, robustness analysis and 

proposals for further research. Chapter 10 summarises the main findings from our thesis before 

we conclude.  

 



 4 

2. Artificial Intelligence Technology  

This chapter gives a short introduction to the fundamental principles of Artificial Intelligence 

(AI) and its multiple applications. We provide context for a deeper understanding of AI 

technology by discussing historical developments and future opportunities.  

2.1 Nasdaq CTA Artificial Intelligence & Robotics 

The NQROBO index was introduced on 18 December 2017, and tracks the performance of 

companies engaged in the AI and robotics segment of the technological, industrial, medical, 

and other economic sectors. NQROBO utilises modified equal weighting, rebalances 

quarterly, and reconstitutes in March and September (semi-annually). The index categorises 

the constitutents within “Enabler”, “Engager”, and “Enhancer”, based on the perceived degree 

of AI and robotics sector involvement. Companies that develop the building block components 

for AI and robotics are viewed as Enablers. Examples of components are advanced machinery, 

self-driving vehicles, and databases for machine learning. The second category, Engager, 

consists of companies that design, create, integrate, or deliver robotics in the form of products, 

software, or systems. Companies that provide value-added services within the Artificial 

Intelligence and robotics ecosystem, which are not core to their products or services, are 

categorised as Enhancers. The weights between the three categories are 25% in Enablers, 60% 

in Engagers, and 15% in Enhancers (NASDAQ, 2022). The index consists of 109 companies, 

whereas well-known technology companies such as Alphabet, Apple, Microsoft, NVIDIA, 

and Tesla are represented. The index is weighted relatively evenly distributed between the 109 

companies with GENTEX holding the highest weight of 2,37%, and OMNICELL INC the 

lowest weight of 0,3%, per August 2023 (NASDAQ, 2023). 
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Figure 1: Cumulative excess returns of NQROBO, NASDAQ and S&P 500 over time 
Note: Returns relative to risk-free T-Bill rate 

 

Figure 1 shows that all three indices followed similar pattern from 2018 to 2020. Due to Covid-

19 pandemic, the graph had a clear downshift in early 2020, affecting all indices. From April 

2020 to 2021, NQROBO outperformed both S&P 500 and NASDAQ before the technology 

“sell-off” in early 2022. Based on the realized cumulative ex post returns, NQROBO only 

outperforms the NASDAQ index on one occasion, early 2021. However, it outperformed the 

S&P 500 for a year and a half from May 2020 to 2022. With this in mind, it will be interesting 

to observe how different investment strategies will perform in “real time”, which will later be 

analysed in Chapter 8. 

There are three main benefits of investing in AI funds. The first is the opportunity to tap into 

a high-growth market. The second is diversification, enabling your portfolio to be resilient to 

the potential disruption unleashed by AI. Lastly, there are close to no “pure play” publicly 

traded AI companies. However, there are also certain risks of investing in AI funds, such as 

the valuation of AI firms may being influenced by shifts in investors' sentiments, as 

demonstrated by the decline observed over the past 18 months. During the Covid-19 pandemic, 

when the interest rate was zero, investors had little to no choice but to invest in growth-related 

assets because bonds and cash weren’t providing any return. In the backlash of the pandemic 

and the sharply rising interest rates, the valuation of the firms was heavily affected. This results 

in investors having to differentiate between quality AI firms with long-term growth and firms 

that rode the AI wave of 2020-2022 (Schmidt & MarketBeat, 2023). 
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2.2 The Beginning and Evolution of Artificial Intelligence 

Throughout history, humanity has witnessed the emergence of three essential industrial 

revolutions. The first revolution commenced in Britain as early as 1784 with the introduction 

of the first steam engine. Subsequently, the second revolution unfolded in 1870 with the 

introduction of electricity, which changed the production methods in a significant way. The 

third revolution marked the onset of the IT era in 1969. We are currently finding ourselves 

amid the fourth revolution centered around Artificial Intelligence (Schwab, 2017). This 

revolution is often characterised by the proliferation of extensive automation, big data, and an 

interconnected world, all driven by AI technology. The Fourth Industrial Revolution and the 

development made using AI technology build further upon the foundation laid during the Third 

Industrial Revolution and can be said to be a fusion of advancements that connects the 

borderlines between physical, biological, and digital domains (Skilton & Hovsepian, 2017). 

Figure 2: The impact of the different Industrial Revolutions (Schultz-Bergin, 2021) 

 

Even though the fourth revolution and AI-based development began relatively recently, the 

idea of intelligent machines or automatons can be traced back to old Greece when Homer 

introduced the Automata of the Greek god Hephaestos in the sixth century BCE (McCorduck, 

2004). However, only recently have we been able to build and test such machines. The origins 

of the first newer development can be traced back to Alan Turning, a mathematician and code 

breaker during World War II, who grappled with whether “machines could exhibit thoughts”. 

Nevertheless, it was not until 1956 that the term “Artificial Intelligence” was officially coined 

by John McCarthy. The Oxford English Dictionary defines AI as follows (Lexology, 2017): 

“Artificial intelligence is the theory and development of computer systems that can perform 

tasks normally requiring human intelligence such as visual perceptions, speech recognition, 

decision-making, and translation between languages.” 
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It is important to note that there is no clear consensus on the definition of AI. The reasoning 

for this disagreement stems from the technical complexity of the concept but also because AI 

is intertwined with a broader philosophical debate regarding what it means to be human 

(Singer, 2009). This has led to a significant ethical debate regarding the definition of 

intelligence and the boundaries and applications of AI. 

In this thesis, our primary focus is on the application of AI within the organisational sectors. 

However, it is important to note that the majority of the early-stage AI development was not 

directed towards utilisation within the organizational sectors. Instead, most of the efforts were 

dedicated to Bayesian statistics, which makes up the foundation for the machine learning 

techniques we utilise today. A primary challenge during this period was the limited availability 

of data power and storage capacity. Despite substantial financial investments put into AI 

research, the outcome wasn’t particularly impressive. Consequently, the interest and funding 

for AI declined heavily in the 1970s, leading to what is now called the “AI winter”. 

Fortunately, the “AI winter” was short-lived as the field of AI experienced a resurgence, 

mainly due to advancements in computer technology and renewed financial support 

(Lutkevich, 2022). Notably, significant investments from Japan, the UK and the US played a 

pivotal role in the revival. As a result of the heavy investment made, a significant milestone 

occurred in 1982 when James Simons established the quantitative investment firm 

“Renaissance Technologies”. This marked the initial introduction of AI solutions into the 

financial sector. The firm later became famous for their innovative financial processing 

technologies, particularly in pattern recognition (Zuckerman, 2019). 

As AI developed through the 1980s, the technology gained traction within fraud detection in 

the 1990s. In 1993, the Financial Crimes Enforcement Network (FinCEN) was the first 

significant implementation of AI technology within this sector with a system to detect money 

laundering, FinCEN Artificial Intelligence System (FIAS). The system reviewed and 

monitored over 200 000 transactions weekly, and within two years of operating, the system 

detected 400 money laundering attempts worth 1 billion dollars (Senator et al., 1995). 

Due to the growth of computer processing power, more storage, and other technological 

developments, we have received new possibilities within deep learning, which has been a 

massive breakthrough in AI. Deep learning has allowed computational models with multiple 

processing to learn informational data with multiple abstractions. This has brought significant 

breakthroughs in processing images, videos, audio, and speech (LeCun et al., 2015). 
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AI is not a sudden, unforeseen technological innovation; instead, it is a continuously evolving 

technology that has constantly been improved and developed over the years. Nevertheless, no 

one could foresee ChatGPT's impact on the world. ChatGPT is an AI chatbot built on top of 

OpenAI’s foundational large language model (LLM). This chatbot has set a new benchmark 

in AI, demonstrating how these machines can comprehend and learn the complexities of 

human language and interaction. The journey began in June 2018, with the release of the first 

GPT-1 (Generative pre-trained transformer) model by OpenAI (Marr, 2023). This first 

iteration consisted of 117 million parameters and set the foundational architecture for 

ChatGPT we know today. GPT-1 displayed the power of unsupervised learning in language 

understanding using books as training data to predict words. In February 2019, OpenAI 

released their new and improved GPT-2, representing a significant upgrade with over 1,5 

billion parameters. The model showcased an essential upgrade in text generation capabilities 

and produced coherent multi-paragraph texts. However, perhaps the most significant 

milestone in AI language models was the introduction of GPT-3 in June 2020. This model was 

trained on 175 billion parameters and showcased advanced text-generating capabilities and 

human-level performance on language tasks. This led to use in various applications, such as 

writing articles, creating poetry, rephrasing text, and even drafting emails. OpenAI released 

an early demo of ChatGPT-3.5 on 30 November 2022, and the chatbot quickly went viral on 

numerous social media. Within five days, the chatbot had attracted over one million users. 

Figure 3: Number of days to reach one million users (Buchholz, 2023) 
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The newest iteration, ChatGPT-4, continues to improve the technology with several 

enhancements. Introducing the following improvements: better model alignment, reduced 

likelihood of generating offensive content, better factual accuracy, and real time internet 

connectivity, which enables real time information to be integrated. Each milestone brings us 

closer to a future where AI technology is seamlessly integrated into everyday routines, 

enhancing communication, productivity, and creativity. 

The evolution and journey of ChatGPT by OpenAI exemplifies the rapid progression and 

development of Artificial Intelligence. This groundbreaking model has not only introduced 

the mainstream public to their first real meeting with AI but also propelled the progress in AI 

development as one could build further onto already existing AI frameworks. However, the 

journey is far from over. As we look ahead, we can anticipate ChatGPT and similar AI-

powered devices to continue shaping our world. 

2.3 Market Size and Growth Opportunities of Artificial Intelligence 

The United States were the first country to invest heavily in AI. Between 2000 and 2016, the 

United States emerged as the leading country in AI technology, hosting and creating 3 033 

startups, which constituted 37% of all AI startups globally (Buchanan & Cao, 2018). This 

accounted for around 72% of the total AI funding worldwide. To put into perspective, from 

2012 to 2016, the UK and China invested $850 million and $2,6 billion, respectively, 

compared to the US, which invested $18,2 billion in this technology. However, in 2017, the 

US dropped their leading position to China, which began investing heavily in the technology. 

Below is an illustration showcasing which regions are predicted to capture the most from AI. 

Figure 4: Which region will capture the most GDP from the AI technology in 2030 (PwC, 2016) 
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As depicted in Figure 4, all regions of the global economy will reap benefits from 

implementing AI. It is also clear that China and North America is expected to benefit the most 

prominent economic gains with a GDP improvement of respectively $7 trillion and $3,7 

trillion, constituting 70% of the global economic impact (PwC, 2016). It is essential to note 

that North America is expected to experience the majority of AI faster than China. However, 

China could ultimately end up seeing a more significant impact on GDP in 2030, despite a 

slower initial uptake.   

In 2022, the global AI market was valued at $136,55 billion, and it is projected to expand at a 

compounded annual growth rate of 37,3% from 2023 to 2030. This would accumulate to 

$1847,58 billion by 2030 (Grand View Research, 2023). This growth is mainly due to 

continuous research and innovation efforts led by tech giants, which drive the adoption of 

advanced technologies in industry verticals. The AI market covers many industries, including 

supply chains, analysis, research, and product marketing. These are among some of the fields 

that will adopt Artificial Intelligence within their business. 

Figure 5: Forecasting Artificial Intelligence market size worldwide up to 2030 (PwC, 2016) 

 

As illustrated above, we can see that the market for AI will grow significantly by 2030. 

According to PwC, industries such as healthcare, financial services and transport & logistics 

have the biggest potential for positive impact of the integration of AI (PwC, 2016). Historically 

the adoption of new technology tends to grow exponentially before leveling off, following a 

logistic pattern (Kucharavy & De Guio, 2015).  

The market for AI technology is already quite substantial, however, what lies ahead in the 

future is a remarkable opportunity for further growth. The potential for expansion and 
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integration in AI is immense, promising several advancements across several industries, 

introducing more customisable, cost- and time-effective solutions. However, with the logistic 

pattern described earlier by Kucharavy & De Guio in mind, it will be important for an investor 

to monitor the development as the adoption rate of the technology may level off.  

2.4 Ethical Dilemmas and Possible Challenges With AI 

Although AI offers numerous advantages for businesses and consumers, it also creates 

challenges and dilemmas. Compared to traditional technological products, the ethical 

dilemmas posed by AI appear to require more urgent consideration due to rapid growth and 

expanding capabilities. As outlined in the Norwegian government’s “National Strategy for 

Artificial Intelligence”, AI technology should be developed with ethical principles, digital 

security, and data privacy in mind (Regjeringen, 2020). In March 2023, more than 1 000 

technology leaders and researchers, including Musk and Wozniak, urged to pause further 

development of AI systems more powerful than ChatGPT-4 in an open letter (Samuel, 2023). 

They addressed their concern and how AI systems can present a “profound risk to society and 

humanity”. The reasoning behind the pause is to address concerns such as; “Machines flood 

our information channels with propaganda”, “automate away all the jobs, including fulfilling 

ones”, and “develop nonhuman minds that eventually outnumber, outsmart, obsolete and 

replace us” (Future Of Life, 2023). 

Privacy Concerns 

Privacy regards the right to manage personal information (DesJardins, 2014). This right is 

violated if personal data is collected or used without consent or knowledge. There are 

numerous forms of which privacy can be violated, for example, information collection and 

distribution by third parties. From the consumer's perspective, ensuring that data owners are 

not misusing their personal information is difficult. From the data owners' perspective, 

preserving the information without violating any informational regulations is challenging. 

Regarding AI technology, privacy concerns arise due to AI's usage of Big Data (Kaplan & 

Haenlein, 2019). The utilisation of AI technology relies heavily on Big Data, increasing the 

amount of personal information collected. Big Data utilises factors such as financials, 

socioeconomics, demographics, age, gender, and other transactional data to increase the 

precision of AI. As AI technology advances, the volume of consumer data being collected, 
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utilised, and transmitted is growing at the same rate, presenting challenges for consumers' 

privacy protection. 

Ethical Dilemmas 

Multiple ethical dilemmas arise with the development of AI. The concern that most rapidly 

occurs is unemployment. As the automation of labour has gradually developed since the Third 

Industrial Revolution, the market forces have delegated and created more complex tasks, 

resulting in less physical labour and more strategic work-related tasks. However, with the 

introduction of AI, the workforce is concerned about further development. The question going 

forward is whether we must (1) regulate the development of AI, (2) let the market forces decide 

or (3) find other solutions. Another concern that must be addressed is how we will distribute 

the wealth created by machines amongst each other. This was first discussed at the World 

Economic Forum (Bossmann, 2016). The global economy currently operates on a 

compensation system, rewarding employees with wages for their contributions to the 

economy. With the introduction of AI, wealthy businesses can adopt AI and reduce the number 

of employees, which again will reduce wage costs and increase their overall profit. This results 

in a higher profit for fewer people increasing the economic inequality. 

AI bias 

With AI technology having superior autonomous capabilities and computing power, 

technology is increasingly utilised to mitigate individual decision-making. Therefore, 

consumer decisions such as insurance selection, loan application and even movie/series 

selection are often influenced by AI through recommendations. There is a common 

misconception that technology is more objective and, therefore, less prone to biases than 

humans. However, it has become evident that bias is a significant weakness of AI, impacting 

the quality of decision-making (Du & Xie, 2021). The reason for this bias is that AI-powered 

products often rely on machine learning, which utilises large training data sets. Biased and 

unbalanced dataset is the driver of AI bias, often stemming from imbalances related to 

variables such as education, geography, income, and gender (Du & Xie, 2021).  

With the abovementioned ethical dilemmas and challenges, it is crucial for an investor to 

monitor the development of the technology closely if contemplating whether to invest in AI 

or not. These are just some of the challenges the technology faces in the near future, which 

could impact the development, and subsequently, the possibility of generating returns. 
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2.5 How AI Can Add Organisational Value 

Organisations that advantageously implement AI are expected to attain added business value 

gains in the form of cost reduction, increased revenue, and business efficiency (Alsheibani et 

al., 2020). Up to 80% of organisations view AI as a strategic opportunity, and almost 85% of 

organisations see AI as a tool to achieve a competitive advantage (Ransbotham et al, 2017). 

Despite the growing organisational interest in AI, many firms fail to realise the true value of 

AI (Fountaine et al., 2019). The use of AI for corporate use can be categorised into automation 

and augmentation (Enholm et al., 2021). Automation refers to replacing human work, and 

augmentation refers to enhancing the human decision-making process by providing valuable 

insight. The implementation of AI is divided into two categories: first-order impact and 

second-order impact. First-order impact refers to how AI changes the process level of an 

organisation, while second-order impact refers to how AI affects the operations. In first-order 

effects, AI would typically enhance process efficiency, which is achieved by reducing human 

errors, improving productivity, and generating an overall greater precision. The second-order 

effects are when AI is used as a tool to improve human decision-making, this is achieved by 

allowing AI to access and analyse vast amounts of data.   

2.6 Related Literature  

When researching relevant literature for the thesis, we found that the existing literature 

exploring the AI sector as an investment strategy was relatively scarce. However, we identified 

two articles that were particularly relevant and significantly contributed to the foundation of 

our thesis. 

Zhang et al. (2023) explores how forecasting different AI-related indices is important for 

financial market stability. The article argues that NQROBO is superior, compared to other AI 

and robotics indices. NQROBO reflects the overall stock price change and associated 

development in the AI industry comprehensively. We have chosen to utilise NQROBO as our 

index to track the performance of companies engaged in AI & robotics. This is also consistent 

with other studies that have solved it similarly, for instance, Tiwari et al. (2021) and Huynh et 

al. (2020). Pesaran & Timmermann (1995) has primarily laid the foundation for our 

forecasting methodology. The article explores how an open-minded investor who believes that 

stock returns could be predicted to a great extent, but does not know which model is correct, 
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thus utilises multiple forecasting models that evolve. We will cover the forecasting 

methodology more comprehensively in Chapter 4.  
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3. Financial Theories and Performance Measurement 

This chapter introduces important and relevant financial theories that make the foundation for 

the analyses we will conduct later. Simultaneously, we introduce our chosen financial 

performance measurement, enabling us to evaluate an index’s performance.  

3.1 Important Financial Theories 

In the following section, we will introduce some fundamental financial theories essential for 

our analysis. This section may be viewed as redundant for experienced readers; however, we 

have chosen to include it as the theories presented are crucial for our upcoming analyses and 

discussions.  

3.1.1 Efficient Market Hypothesis (EMH) 

The Efficient Market Hypothesis (EMH) is an essential concept in financial economics. It 

states that markets are regarded as efficient when the price of an asset reflects all relevant 

information about said asset. “Efficiency”, in this context, implies that investors cannot earn 

above-average returns without undertaking above-average risk. Fama divided the EMH into 

three degrees based on the informational level present in the market: weak form, semi-strong 

form, and strong form (Fama, 1965). If the informational level present in the market is weak, 

today’s share price only reflects historical data and prices, making it impossible to receive any 

additional information about tomorrow’s price. A semi strong market is considered to imply 

that all publicly available information, both historical and current, is reflected in the price. 

Lastly, if the market is in strong form, the EMH argues that all information, both public and 

private, inside information, is fully reflected in the prices. For our discussion, we adopt the 

semi-strong form of the EMH. 

Because of this, investors cannot exploit mispricing to generate excess returns. Therefore, a 

investor who believes in the EMH would only hold the market portfolio as there is no excess 

return to make because all assets are correctly priced. Nevertheless, the EMH is often 

contested as opposing investors arguing that investors have consistently outperformed the 

market over a longer period, this would be impossible if EMH holds true.   
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3.1.2 The Capital Asset Pricing Model  

The Capital Asset Pricing Model (CAPM) is a widely used financial model that evaluates the 

expected return on an investment relative to risk and overall market return (Sharpe, 1964). The 

model was first introduced by Treynor (1961), Sharpe (1964), Lintner (1965) and Mossin 

(1966). There are three key components of CAPM: risk-free rate, market risk premium and 

Beta. Whereas the risk-free rate is the theoretical return an investor can earn without risk of 

financial loss, market risk premium represents the additional return expected for taking on 

higher risk and investing in the market. Beta is a measurement of an investment’s risk that 

cannot be eliminated through diversification. CAPM operates with the assumption that 

expected returns on all assets are linearly related to their systematic risk. Thus, the market only 

prices systematic risk. CAPM is expressed in the equation below: 
Equation 1 

𝐸[𝑟!] = 𝑟" + 𝛽!(𝑟# − 𝑟") 

Where, 𝐸[𝑟!] is the expected return for an investment 𝑖, 𝑟" is the risk-free rate, 𝛽! is the Beta 

for investment 𝑖 and ,𝑟# − 𝑟"- is the market risk premium. 

3.1.3 Beta 

As mentioned above, Beta is a metric expressing the systematic risk in CAPM. It assesses the 

relationship between the return of an investment and those of the market and measures the 

volatility of an investment in relation to the overall market. Beta as a measurement helps 

investors assess an asset's systematic risk, which cannot be computed away through 

diversification and provides insights into how an investment is likely to perform. Beta can be 

computed through several different methods. It can be computed by regression and historical 

data, amongst others. Finding Beta using regression analysis involves using statistical 

techniques to compute the slope of the best-fit line between the return of an investment and 

the market. Beta computed through historical data can be expressed through the equation 

below: 

Equation 2 

𝛽! =	
𝐶𝑜𝑣(𝑟! , 𝑟#)
𝜎$(𝑟#)

 

Where, 𝛽! 	is the Beta of investment 𝑖, 𝐶𝑜𝑣(𝑟! , 𝑟#)	is the covariance between the return of 

investment 𝑖	and the market return and 𝜎$ is the variance market return  
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3.1.4 Alpha 

Alpha is a financial metric used to describe an investment’s excess return generated relative 

to a set benchmark or market. It is important to note the difference between active return and 

Alpha. Alpha refers to the risk-adjusted contribution of active management, and it is 

represented as the intercept in a regression analysis comparing active return to benchmark or 

other risk factors (Chen, 2023). Meanwhile, active return represents the difference between 

return and benchmark measuring the contribution of active management. 

3.1.5 Fama French Factor Models 

As mentioned before, the Capital Asset Pricing Model (CAPM) is a widely utilised framework 

in asset pricing and only prices systematic risk and not idiosyncratic risk. To enhance the 

model, Fama & French (1993) introduced the Three-Factor model. The factor model builds 

further onto the time series regression approach of Black, Jensen and Scholes (1972) and aims 

to explain the variation of returns of stocks and portfolios. By including factors such as market 

risk, size, and value, Fama & French attempts to capture various systematic risk factors 

coherently in the market. Consequently, any Alpha, as indicated by the intercept, can be 

attributed to idiosyncratic risk not accounted for by the model, implying that the Alpha (𝛼) 

can be interpreted as index-specific risk. The regression of the Three-Factor model can be 

written as: 
Equation 3 

𝑅!" = 	𝛼 + 𝛽#$%𝑀𝐾𝑇& + 𝛽'#(𝑆𝑀𝐵& + 𝛽)#*𝐻𝑀𝐿& + 𝜀& 

The market return (MKT) factor represents the excess return of the entire stock market over 

the risk-free rate. Similar to the CAPM, it accounts for systematic market risk. 

The size factor (SMB), small minus big, reflects the difference between returns on a 

diversified portfolio of small firms compared to big firms. This is done because small firms 

with a low market capitalisation tend to outperform large firms with a high market 

capitalisation. 

The value factor (HML), high minus low, showcases the difference between a well-diversified 

portfolio of stocks with a high book-to-market ratio (value stocks) compared to a portfolio 

consisting of stocks with a low-book-to-market ratio (growth stocks). The results from the 

Fama & French study suggested that value stocks tend to outperform growth stocks. One of 
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the reasons behind this is that firms with a high book-to-market ratio are significantly more 

exposed to financial distress and require more compensation for taking on risk. 

Later Fama & French introduced two additional factors, profitability, and investment, in the 

Five-Factor model. One assumes that when applying the Five-Factor model, it captures the 

expected return of the factors. The regression for the Five-Factor model is denoted by Equation 

4. 
Equation 4  

𝑅!" = 	𝛼 + 𝛽#$%𝑀𝐾𝑇& + 𝛽'#(𝑆𝑀𝐵& + 𝛽)#*𝐻𝑀𝐿& + 𝛽+#,𝑅𝑀𝑊& + 𝛽-#.𝐶𝑀𝐴& + 𝜀& 

The profitability factor (RMW), robust minus weak, is found by taking the average return of 

a robust firm minus the average return of a weak firm. A robust firm is categorised as a firm 

with high profitability and a weak firm with low profitability.  

The investment factor (CMA), conservative minus aggressive, examines the historical excess 

return difference between firms with conservative investment practices (low asset growth) 

versus firms with aggressive investment practices (high asset growth). 

3.2 Financial Performance Measurement 

3.2.1 Sharpe Ratio 

Sharpe Ratio (SR) is a reward-to-volatility measurement. The ratio quantifies how much 

excess return an investment generates for each unit of risk. It is commonly used when 

evaluating the performance of an asset and exhibits the average risk-adjusted excess return 

compared to a risk-free rate (Sharpe, 1966). A higher SR is generally preferred as it indicates 

better risk-adjusted performance. SR can be found through the following equation: 
Equation 5 

𝑆ℎ𝑎𝑟𝑝𝑒	𝑅𝑎𝑡𝑖𝑜 =
𝐸[𝑟!] − 𝑟"

𝜎!
 

Where, 𝐸[𝑟!] is the expected return, 𝑟" is the risk-free rate and 𝜎! is the standard deviation of 

portfolio. 
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3.3 Transaction Cost  

Transaction cost refers to anything that results in a trade having an additional cost. The EMH’s 

assumptions overlook this cost, which is an unrealistic premise in the real world (Fama, 1965). 

In reality, we know that transaction costs exist in the market and vary among market 

participants. The cost would typically vary due to the market participant’s size, varying time 

factors, location, and different funds. A large investor, such as the Government Pension Fund 

Global (GPFG), would have a lower transaction cost than a small investor. These are market 

frictions one must consider when operating within the market. Transaction cost would 

influence the excess returns negatively as it “eats” of the profit. In our case, the fictional 

investor would have to pay transaction cost both when buying and selling indices. As the 

transaction costs vary between different funds (NQROBO, NASDAQ, and S&P 500), it is 

difficult to choose one rate that would be correct for all funds. Because of the difficulty of 

selecting one appropriate rate and given the increased complexity it would entail, we have 

decided to disregard transaction costs in our analysis. 

3.4 Portfolio Management  

In the following section, we discuss the key differences that distinguish passive and active 

management. The differences will be important when constructing our portfolios later in the 

thesis.  

3.4.1 Passive Management 

A passive investor would typically have a “Hands-off” approach and try to replicate the 

market. According to Sharpe (1991), a passive investor can be defined as someone who 

believes in the EMH and, therefore holds the same securities and weights them accordingly to 

replicate the market. If the markets are efficient, passive investors would hold the market. This 

is because all securities are priced correctly, making it impossible to outperform the market 

consistently. The goal of a passive investor is to achieve returns equal to the market, and 

passive investors are characterised by low transaction frequencies and, consequently, low 

transaction costs.  
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3.4.2 Active Management 

An active investor tries to outperform the market. This is achieved by trading based on 

information trying to buy undervalued securities and sell overvalued securities. Thus, an active 

investor does not believe that the market is 100% efficient in terms of EMH and therefore, 

tries to invest in securities that differ from the market (Sharpe, 1991). To outperform the 

market, an active investor believes in timing and tries to identify under- and overvalued 

securities. The goal of an active investor is, therefore, to outperform the market. Consequently, 

active investors tend to take on more risk and trade more frequently compared to passive 

investors implying a higher degree of transaction costs compared to a passive investor. 
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4. Forecasting Methodology 

This chapter serves to explain the statistical models and methods applied within the thesis to 

answer the research question. Initially, we present an autoregressive model before building 

further onto this model and introduce an ARIMA model. These models are used when 

forecasting future values of the various indices. We will also describe our pseudo-out-of-

sample forecasting and present a forecast performance measurement. Given the scope of this 

thesis, we exclude the analysis of stochastic volatility of returns, that a GARCH-type model 

could capture, as this would be beyond our work.  

4.1 Autoregressive Models 

An unvariate autoregressive model (AR) is a method utilised when forecasting future values 

of a chosen variable, and the predicted values are found by using the past values of the same 

variable (Hyndman & Athanasopoulos, 2018). As the term “autoregressive” indicates, the 

model regresses the dependent variable linearly on the lagged variables. The lagged variables 

are used as predictors, where the number of lags determines the model’s order. For instance, 

an autoregressive model with a single lag can be referred to as a first-order AR model, also 

called AR(1). While an AR model with two lags can be referred to as a second-order AR 

model. The AR model is a simple statistical model because it only relies on the past values to 

explain future values. Despite its basic structure, the model captures random fluctuations 

through its error term, also known as “white noise”. The white noise represents variations that 

the model’s past values cannot explain. 

The autoregressive process of order 𝑝 can be expressed as follows: 
Equation 6 

𝑦% = 𝑐 +	>𝜙!𝑦%&! + 𝜀%

'

!(!

 

Where, 𝑦% is the dependent variable, c is a constant, 𝜙 is the coefficient for lagged value i 

and 𝜀% is the error term.  

One of the most basic yet most insightful forecasting models is the process of AR(1). In the 

model, the dependent variable is exclusively regressed on itself one period ago. The AR(1) 

model is crucial when conducting our forecasting, thus making it crucial when trying to answer 
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our research question. The autoregressive process with a lag order of one can be expressed as 

follows, assuming  𝜙) < 1. 

Equation 7 

𝑦% = 𝑐 +	𝜙)𝑦%&) + 𝜀% 

4.2 Random Walk  

A random walk is a stochastic process where each data point or step is determined by adding 

a random error or noise term to the previous data point. The error term is often characterised 

as white noise. The key feature of a random walk is that future values are unpredictable, and 

each step is independent of the previous ones (Smith, 2023). Random walk is not stationary, 

this is because the mean of a random walk is constant, however, the variance is not. The 

random walk theory states that, given a time series random movement, future values would be 

today’s value plus the sum of residuals from now until future date T. Because future errors are 

not known today, the best predictor of future value is today’s value. The process of random 

walk can be denoted in the following equation: 
Equation 8 

𝑦% = 𝑦%&) + 𝜀% 

4.3 Autoregressive Integrated Moving Average  

Autoregressive Integrated Moving Average, known as ARIMA, models are often used in 

pseudo-out-of-sample forecasting to evaluate their ability to make accurate predictions on 

unseen data. It is a time series forecasting model that predicts future values based on past 

values and uses lagged moving averages to “smooth” the time series data. By conducting a 

pseudo-out-of-sample forecast, one can assess how well the ARIMA model performs when 

estimating beyond the estimation period. This helps to determine the model’s accuracy and 

predictive properties (Shumway & Stoffer, 2017). 

This model is a combination of autoregressive models and moving average models. In an 

autoregressive model, we forecast the variable using a linear combination of past values of the 

variable. On the other hand, a moving average model uses past forecast errors in a regression-

like model (Hyndman & Athanasopoulos, 2018).   
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The equation for a general ARIMA model can be denoted as: 

Equation 9 

𝑦&/ = ∆0𝑦& 

Equation 10 

𝑦%* = 𝑐 + 𝜙)𝑦%&)* +⋯+ 𝜙'𝑦%&'* + 𝜃)𝜀%&) +⋯+ 𝜃+𝜀%&+ + 𝜀% 

Where, 𝑦%* is the differenced time series with 𝑑 number of differentiations needed to ensure 

stationarity. The right-hand side of Equation 10 consists of both lagged values and lagged 

errors of 𝑦%. The model can be written as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞), where 𝑝 is the order of 

autoregressive parts, 𝑑 is the degree of first differencing involved needed to ensure 

stationarity, and 𝑞 is the order of the moving average part.  

In our forecasting, we have estimated the most appropriate ARIMA model for each estimation 

window, hereby called ARIMA best fit. This means that the order of p, d, and q is adjusted for 

the individual time series. To obtain the ARIMA best fit model, we have used the Box-Jenkins 

methodology. This approach is divided into three phases: (1) test for stationarity in time series 

and identification of the model, (2) estimation of chosen model, and (3) check for normality 

of residuals and further improvements.  

To support step 1 and 2 in our model selection procedure, we have used the auto.arima() 

function in the R package forecast. The function follows a systematic process to identify the 

most suitable combination of p, d, and q for each time series (Hyndman & Khandakar, 2008). 

The inclusion of this function limits the consequences of human error. For further details on 

the model selection and residuals results, see Appendix Chapter 4.  

4.4 Pseudo-Out-of-Sample Forecasting 

Pseudo-out-of-sample is a term commonly used within the field of financial modelling, it is 

often used when evaluating the performance of predictive models. Such predictive models are 

often utilse when forecasting financial markets and economic variables. The technique is often 

used as experience has demonstrated that forecasting a good-in-sample fit does not necessarily 

imply a good-out-of-sample performance. To mitigate this issue, the method often partitions 

the data into two parts: one is used for model estimation, also called training data, and the 

other is used for model evaluation.  
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4.4.1 Forecasting Description 

We have chosen to analyse three different forecasting horizons: one day-, one week- and one 

month-ahead. Our forecasting period begins on 2 January 2019, and continues to August 2023. 

The one day ahead forecasts end on 1 August 2023, the one week ahead forecasts end on 7 

August 2023, while the one month-ahead forecasts end on 29 August 2023. 

The forecasting of excess return is based on data of the past 250 observations (days). For 

example, is the predicted daily excess return on 2 January 2019 based on daily data from 2 

January 2018 to 31 December 2018. To forecast the weekly excess return, we forecast the 

excess returns five days ahead using dynamic forecasting. This means that we do not use 

information after 31 December 2018 to forecast the returns from 2 January 2019 to 8 January 

2019. We use the same method to forecast the monthly excess return for the indices. After 

forecasting the daily, weekly, and monthly excess return at time t, we move the estimation 

window one day ahead and repeat the procedure. In total, this procedure was repeated 1152 

times. An overview of the forecasting models used for the different indices in this thesis is 

given in Table 1.  

Table 1: The different forecasting models utilised for the indices 
Note: Nine different forecasting models were used to forecast NQROBO and NASDAQ and three 

different forecasting models were used to forecast S&P 500  

 
The three forecasting models that we have used for all indices was the Random Walk, AR(1) 

and ARIMA best fit. As mentioned in 4.3, we have estimated an individual ARIMA model for 

each estimation window. For the CAPM-model forecasting, we have used a linear regression 

model. The model takes the realized excess return of the relevant index as the dependent 

variable and the realized excess market return as the independent variable. As mentioned 

earlier, we consider the S&P 500 index as the market. We have included two versions of the 

CAPM model in our forecasting. The first model uses the Random Walk model to predict the 
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market return. The second model employs an ARIMA best fit model to forecast future market 

returns. 

We have adopted a similar methodology to the Fama French Three-Factor and Five-Factor 

model. To obtain the factors, we have downloaded them from their website, this is commented 

further in Chapter 6. The first Three-Factor and Five-Factor model utilize the market return 

and factor premiums from the previous period (t-1) as the input for forecasting. In our second 

Three-Factor and Five-Factor model, we have employed an ARIMA best fit model to predict 

the market return and used the same factor premiums as in the first model. 

4.5 Forecasting Evaluation 

To evaluate our forecasting models, we compute the root mean squared error (RMSE) for 

every forecast model and compare it to each other. 

The RMSE measures the average difference of the errors between forecasted and actual values. 

The formula for RMSE can be written as: 
Equation 11 

𝑅𝑀𝑆𝐸 = J
1
𝑛>

(𝑦! − 𝑦L!)$
,

!()
 

Where,	𝑦! is the actual value, and 𝑦-M  is the forecasted value. A lower RMSE indicates a better-

fitting model, as the forecasted values are closer to the actual values.  
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5. Construction of The Synthetic Portfolios 

This chapter introduces our constructed six portfolios, observing them over the chosen period. 

Each portfolio is constructed to replicate a possible real-life investment strategy. By this, we 

mean, to mimic an investor who wants to evaluate alternative investment strategies, not using 

future values. 

When constructing our synthetic portfolios, we have used six different weighting approaches. 

The portfolios based on Sharpe Ratio and RMSE measurements is dynamically weighted, we 

have defined these as “dynamic portfolios”. Each portfolio is weighted differently resulting in 

a comprehensive understanding of the performance of the different portfolios.  

Table 2: Overview of synthetic portfolios 

 
Portfolio 1 “Holding the market” showcases how a passive investor who has invested 100% 

into the market would perform. The other five portfolios are constructed as a combination of 

the three indices: NQROBO, NASDAQ and S&P 500. Our analysis spans from 2019 to August 

2023, with daily updates for our forecasting. For our fictional investor, we have chosen a start 

investment of $100 000. 

The investments are made daily, with holdings lasting for a day, a week, and a month before 

rebalancing. When an investor with a weekly perspective invests, will they invest an amount 

every trading day (Monday to Friday), and the holdings are maintained for a week before they 

rebalance and reinvest. When reinvesting, the weights invested into the three indices will differ 

amongst the six portfolios. When investing the first time, the amount will be divided equally 

on the 5 trading days.  Below is a visual illustration of the weekly investment strategy. 
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Table 3: Visual illustration of a weekly investment strategy 

 
Likewise, an investor with a monthly perspective will divide the $100 000 on the 21 first 

trading days. The investor will further invest for every available trading day, holding the 

investment for a month before reinvesting. The investment weights of each index are denoted 

by 𝜆 (lambda), and the approach used when calculating 𝜆 differs between all five portfolios. 

For the simplicity of our thesis, we have chosen to limit 𝜆 to be between 0% and 100%, not 

enabling any form for shorting.  

5.1 Portfolio 1 – Holding The Market  

Our first synthetic portfolio is constructed to showcase how a passive investor who only holds 

the market would perform over the chosen period. The investor would invest $100 000 into 

the S&P 500 on day one and hold this to the end of our period.  

𝜆.&'	122 = 1 

5.2 Portfolio 2 – Equally Weighted Portfolio 

The second synthetic portfolio is also constructed as a benchmark portfolio, displaying how 

an equally weighted portfolio would perform without any rebalancing. It represents a simple 

and common investment strategy an active investor may consider. The portfolio is weighted 

as follows: 

𝜆345676 =
1
3 

𝜆38.984 =
1
3 

𝜆.&'	122 =
1
3 

Portfolios 1 and 2 will serve as a baseline comparison between the different portfolios when 

evaluating the performance of other more complex portfolios and ultimately help determine 

whether the more advanced portfolios add value.  
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5.3 Portfolio 3 – Sharpe Ratio Performance-Based Portfolio 

The third portfolio is performance-based on the measurement of the Sharpe Ratio. The 

portfolio weight is determined through the predicted Sharpe Ratio of the respective indices. 

As addressed in the financial theory chapter, the Sharpe Ratio is a reward-to-volatility 

measurement where the ratio quantifies how much excess return an investment generates for 

each unit of risk. To calculate exact weights, we divide the relevant Sharpe Ratio on the sum 

of all Sharpe Ratios. Below is the equation used to calculate the weights.  
Equation 12 

𝜆:,;<=.5 =
𝑆𝑅:,;<=
∑𝑆𝑅  

If the Sharpe Ratio is negative for all three indices, Portfolio 3 would weight 100% in the 

market. However, in certain scenarios, two indices have a positive Sharpe Ratio, and the last 

generates a negative Sharpe Ratio. This is solved by only investing in the two indices with a 

positive Sharpe Ratio and ignoring the last negative index. When only one index generates a 

positive Sharpe Ratio, the optimal strategy is to invest 100% into the positive index. Despite 

the Sharpe Ratio being a financial measurement utilising historical data, we have used this 

measurement when deciding future weights. The thought process behind this is that historical 

data has a certain “stickiness” to it, and yesterday’s data impacts the data tomorrow. When 

simulating an investor making “real time” decisions using Sharpe Ratio to score alternative 

investments strategies they will allocate weights depending on SR at the time of investment 

up to the forecasting horizon and not beyond. If using future value, it will likely lead to 

overfitting and misleading scores. 

5.4 Portfolio 4 – RMSE Performance-Based Portfolio 

The fourth portfolio is a performance-based portfolio denoted by the RMSE. As presented in 

Chapter 4.5, RMSE is a forecasting evaluation measurement found by calculating the 

difference between the predicted value and the actual observed value. Consequently, this 

means that the lower values are preferred, indicating a better prediction. Because lower values 

indicate better fit, we utilise inverse RMSE when determining the weights of the different 

indices. Below is the equation for calculating the relevant weights if the expected return is 

positive. 
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Equation 13 

𝜆:,;<=5>.? =	
𝑅𝑀𝑆𝐸:,;<=&)

∑𝑅𝑀𝑆𝐸&)  

However, as RMSE is only a measurement displaying how accurate the forecasting is, this 

alone would not suffice to determine whether or not it is profitable to invest. We have solved 

this by only investing if the expected return is positive. If the expected return for all three 

indices is negative, the investor would hold the market, if two indices have a positive expected 

return and the last has a negative expected return, the investor would only invest in the two 

positive indices. This strategy may be conceived as conservative, however, in a typical bear 

market an investor would remain calm, holding the market rather than being eaten up by 

transaction costs (Pesaran & Timmermann, 1995). An alternative investment strategy could 

be shorting, however as we do not enable any form for shorting this will be disregarded. In 

Chapter 5 of the Appendix, Figure 18 illustrates the steps involved in the investment process 

of Portfolio 4. 

5.5 Portfolio 5 – Hybrid Portfolio of Equal Weights and Sharpe Ratio 
Performance 

Our fifth portfolio is a hybrid portfolio between the performance measurement Sharpe Ratio 

and equal weights. The hybrid portfolio is constructed so that 50% of the portfolio has fixed 

weights distributed equally to the three different indexes. As a result of these fixed weights, 

each asset class is guaranteed an investment weight of 16,67%. The remaining 50% is 

distributed through the Sharpe Ratio measurement method described in Equation 12. We have 

chosen to split the hybrid portfolio into 50/50 between equal and dynamic weighting as this is 

the most balanced. The formula for calculating weights is presented below. 
Equation 14 

𝜆:,;<=
.5	@ABC!; =

𝑆𝑅:,;<=
∑𝑆𝑅 ∗ 0,5 +

1
3 ∗ 0,5 

It would be interesting to see how the portfolio would perform with different weights, such 

as 30/70. We have done this as a part of our robustness analysis in Chapter 9. 
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5.6 Portfolio 6 – Hybrid Portfolio of Equal Weights and RMSE 
Performance 

Our last portfolio is similar to the fifth, a hybrid portfolio between equal weights and the 

performance of RMSE. The construction is also similar, with the only difference being that 

the performance measurement is the RMSE. This includes utilizing inverse RMSE as lower 

values are preferred. We operate with the same assumptions from 5.4, only investing if the 

expected return is positive. The equation for calculating exact weights is presented below and 

is constructed as an add-on from Equation 13, including 50% fixed weights distributed equally 

on the three indices. 
Equation 15 

𝜆:,;<=
5>.?	@ABC!; =	

𝑅𝑀𝑆𝐸:,;<=&)

∑𝑅𝑀𝑆𝐸&) ∗ 0,5 +
1
3 ∗ 0,5 
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6. Data 
We have downloaded daily return data of the NQROBO index. The return data consists of 

1423 daily observations from January 2018 to August 2023. Figure 6 presents the distribution 

of excess returns over the whole period.  

Figure 6: Excess returns NQROBO  
Note: Returns relative to risk-free T-Bill rate 

 
NASDAQ Composite Data 

We have chosen to utilise the Nasdaq Composite index as one of the indices we use to compare 

the performance of NQROBO. NASDAQ measures all domestic (US-based) and international 

common-type stocks listed on the Nasdaq stock market. NASDAQ consists of 3490 securities, 

including well-known firms such as Apple, Microsoft and Tesla. It is known for being heavily 

weighted towards the technology sector, with a 55% exposure to technological industries 

(NASDAQ, 2023).  

Figure 7: Excess returns NASDAQ COMP  
Note: Returns relative to risk-free T-Bill rate 

 
When retrieving the NASDAQ, we have chosen to regress NASDAQ on NQROBO in an 

attempt to “strip” away the AI part that is included in NASDAQ, resulting in “NASDAQ 
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Corrected”. We have done this to ensure that AI isn't weighted twice in our analyses. The 

movements are quite similar when observing the differences between the original NASDAQ 

and NASDAQ Corrected in Figure 7 and 8. However, NASDAQ Corrected has significantly 

lower volatility, with excess returns fluctuating between 4% and –4% compared to NASDAQ 

fluctuating between 10% and –10%.  

Figure 8: Excess returns NASDAQ Corrected 
Note: Returns relative to risk-free T-Bill rate 

 
S&P 500 Data 

As mentioned earlier, we have chosen the S&P 500 index as the market in our analysis. The 

data consists of daily observations from January 2018 to August 2023, displayed in Figure 9. 

The index measures the performance of 500 leading companies and is widely considered to be 

a proxy of the U.S. equity market, covering approximately 80% of available market 

capitalisation (S&P 500, 2023). The index utilises a float-adjusted market cap when weighting 

and is rebalancing quarterly. Unlike NASDAQ, the S&P 500 exhibits a more evenly spread 

exposure across various sectors. This is why we have chosen to utilise the S&P 500 as the 

market in our analyses.  
Figure 9: Excess returns S&P 500  

Note: Returns relative to risk-free T-Bill rate 
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The Fama French Factor Data 

For Fama & French’s Three-Factor model, we have downloaded daily factor returns from 

Kenneth R. French’s Data Library (Kenneth R. French, 2023). The risk-free rate factor is the 

simple daily rate that, over the number of trading days in the month, compounds to a 1-month 

T-Bill rate.  

Data Merging  

When calculating excess return, we merged the retrieved datasets containing NQROBO’s, 

NASDAQ’s and S&P 500’s daily returns. When the data was retrieved, it was first collected 

and sorted in Excel. Observing the datasets, we found discrepancies in the number of 

observations between the indices. To be able to evaluate the indices against each other, we had 

to match the observed returns. When there was a mismatch of observations, we excluded all 

observations for that particular day. NQROBO had 28 more observations than NASDAQ and 

S&P 500. There are several potential reasons for such a disparity, such as index rebalancing, 

data providers and calculation methodology.  

Specific Events 

With our observations beginning in 2018 and ending in August 2023, an important event has 

affected the economic landscape greatly and, consequently, our observation data. The Covid-

19 pandemic, which began in March 2020, greatly influenced customer demand, policy rates, 

and investment opportunities. As global policy rates approached the zero lower bound, there 

was a notable increase in demand and investments. Subsequently, in the backlash of the 

pandemic, policy rates have been increased historically fast in an attempt to slow down 

inflation. This has impacted the financial landscape significantly and resulted in a financial 

cooldown. In our analysis, we have not treated this event any differently. However, it is 

essential to recognise the importance of this event when interpreting the results.  
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7. An Evaluation of NQROBO: Index Performance 

In the following chapter, we will present a historical analysis of the NQROBO index, enabling 

us to answer the first part of the thesis. We utilise well-known financial performance 

measurements, such as excess return, standard deviation, and Sharpe Ratio, to gain valuable 

insights into the index's performance. The purpose of doing this is to better understand how 

the index has performed over the years. Enabling us to evaluate the index’s capacity to deliver 

risk-adjusted returns over a specific period. We have decided to do multiple regressions for 

four different sample periods to understand the market fluctuations. The four periods are 2018-

2020, 2020-2022, 2022-August 2023 and the whole period 2018-August 2023. 

7.1 Risk and Return Historical Performance   

This section aims to provide a comprehensive summary of the NQROBO index’s historical 

performance. We have computed weekly and monthly arithmetic excess return, standard 

deviation and Sharpe Ratio for NQROBO, NASDAQ Corrected and S&P 500. The table below 

presents the key performance measurements for the abovementioned factors.    
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Table 4: Weekly and monthly excess returns for NQROBO, Nasdaq Corrected and S&P 500 

over four different sample periods 

Note: Returns relative to risk-free T-Bill rate  

 
We have found that NQROBO has a weekly excess return of 0,13%, 0,53% and –0,26% and 

a monthly excess return of 0,73%, 2,21% and –1,16% for the respective three sub-periods. For 

the whole duration of the dataset, NQROBO has a weekly excess return of 0,16% and a 

monthly excess return of 0,70%. Compared to NASDAQ Corrected, which is NASDAQ 

“stripped” away of AI, NQROBO does outperform the index at Sample 1, 2 and 4 for both 

weekly and monthly excess returns. In Sample 3, we see that NQROBO has a greater negative 

excess return than NASDAQ Corrected. From the table above, we can observe that the S&P 

500 outperforms NQROBO in terms of excess return for all samples except Sample 2 weekly 

and monthly and Sample 1 monthly.  

Table 4 shows that NQROBO, NASDAQ Corrected, and the market performed best during 

Sample 2 (2020-2022), having high returns and a relatively low standard deviation. This is 

also reflected in the Sharpe Ratio being the highest during this sample. In Sample 3 (2022-

2023), we can see that all indices have negative weekly and monthly returns, resulting in a 

negative Sharpe Ratio.   
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In this section, we have provided an overview of the performance of NQROBO compared to 

NASDAQ Corrected and S&P 500. The results are in line with what we presented in Figure 

1, namely, a notable increase in weekly and monthly returns from 2020-2022 before the 

technology “sell-off" early 2022. It is also worth mentioning how NQROBO was 

outperformed by S&P 500 for both weekly and monthly returns and the Sharpe Ratio when 

looking at the whole period. 

7.2 Evaluating Active Returns 

This section further builds on the return and risk performance measurements presented in 

section 7.1. To better understand the importance of active returns and how these are affected 

by different risk factors. By active returns we mean, the difference between S&P 500 and the 

actual return of NQROBO. We first estimate and evaluate NQROBO’s Alpha before using the 

Fama French Three-Factor and Five-Factor model to identify and understand the impact of 

risk factors within the financial markets.  

7.2.1 Alpha and Beta Estimation  

We have calculated an estimation for Alpha and Beta by regressing the actual excess return of 

NQROBO on the market's actual excess return. The estimated intercept Alpha represents the 

average contribution of active returns after adjusting for risk. 

In Figure 10 and 11, we have illustrated the development of NQROBO’s Alpha and Beta over 

time. The purpose of the illustrations is to showcase better how the Alpha and Beta of 

NQROBO have developed over the chosen period. 

Figure 10: NQROBO’s Alpha over time 
Note: Regressed NQROBO’s excess return over market’s (S&P 500) excess return 
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When observing Alpha over time, it begins slightly below zero. The fluctuations in 2019, 

resulting in the Alpha being both negative and positive, suggest that NQROBO both over- and 

underperformed compared to the market. Between early 2020 and early 2021 active return was 

positive and peaked close to 0,0015, indicating significant outperformance relative to market. 

In 2022, the Alpha plummeted to an all-time low and was underperforming compared to the 

market. There could be multiple reasons for this development. However, this is most likely 

due to a combination of increasing interest rates, uncertainties due to the Ukraine invasion and 

the technology “sell-off” in 2022. However, the latest movements of 2023 suggest that the 

Alpha is recovering and moving towards being positive, indicating an outperformance relative 

to the market.  
Figure 11: NQROBO’s Beta over time 

Note: Regressed NQROBO’s excess return over market’s (S&P 500) excess return 

 
Observing NQROBO’s Beta over time, it fluctuates around 1, suggesting a volatility similar 

to the market. We see that it begins around 0,85 before an increase in early 2019. We can 

observe a sharp increase in early 2020 before a steep dip. Such sharp movements suggest that 

there are specific events that have affected the index’s volatility, in this case it is due to Covid-

19. After the dip Beta stables around 0,8, indicating that NQROBO was less volatile than the 

market between 2020 and 2021. This coincides with the period where NQROBO outperformed 

both NASDAQ Corrected and S&P 500 in terms of excess return. This period was greatly 

affected by interest rates close to 0%, which substantially increased the investment intensity 

in AI technology. This, combined with the forced increased usage of technology due to the 

pandemic, drove the development of the whole technological sector. From 2021 to mid-2022, 

the Beta increased to a level slightly above 1, indicating that NQROBO is more volatile than 

the market.    
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7.2.2 Fama French Three-Factor and Five-Factor Model Regression 

By including the Fama French Three-Factor (FF3) model and Five-Factor (FF5) model, we 

can be more confident in our results of the estimated Alpha, this is because FF3 and FF5 

capture structural trends affecting the market. When conducting a regression analysis 

including the different factors, we receive a more comprehensive historical assessment of the 

Alpha accounted for risk factors. Below is the graphical illustration of FF3 and FF5 regressions 

over time, providing a better understanding of the development. 

Figure 12: NQROBO’s FF3-coefficients 
Note: Regressed NQROBO’s excess return over the Three-Factor model (MKT, SMB, HML) 

 
Figure 13: NQROBO’s FF5-coefficients 

Note: Regressed NQROBO’s excess return over the Five-Factor model (MKT, SMB, HML, RMW, 
CMA) 

 
We can see that for both FF3 and FF5 models, the MKT coefficient is positive and relatively 

stable across the time horizon. This suggests that the broad market risk is a consistent driver 

of returns for NQROBO.  
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The SMB coefficient fluctuates for both models. However, the coefficient is smaller in 

magnitude compared to MKT. This suggests that the size coefficient does not consistently 

capture the returns of NQROBO. Given that firms engaged in AI technology tend to vary 

significantly in size, from large well-established firms to start-ups, the influence of the size 

factor may change based on market dynamics.  

The HML factor is primarily negative, however it seems to diminish over time, this is 

especially well illustrated in the FF5 model. When the coefficient is negative, this suggests 

that the NQROBO index may have an inverse relationship with the value factor, implying a 

growth stock orientation. This is unsurprising as tech firms tend to be growth-oriented rather 

than value-oriented.  

We see that both RMW and CMA fluctuate significantly, with both coefficients mainly being 

negative. A negative RMW coefficient suggests that NQROBO tend to perform poorly when 

firms with high profitability outperform those with low profitability, implying that NQROBO 

has a high composition of weak profitability firms. This is unsurprising as the index is heavily 

weighted towards tech companies with high growth potential but currently low profitability. 

Similarly, the CMA coefficient fluctuates greatly but is primarily negative with an exception 

between 2021 and 2022. A negative CMA coefficient suggests that NQROBO tend to perform 

better when the market favours companies with an aggressive investment strategy. This is also 

no surprise, given that the index consists of tech firms that are dependent on investments to 

drive technology development.  

Given the period of 2019-August 2023, the robotics and automation sector has seen significant 

developments. Due to the introduction of technological advancements, increased adoption 

across industries, and effects of external macroeconomic factors, such as the Covid-19 

pandemic (March 2020 to January 2022) and long-term interest developments affecting the 

sector. All these factors should be considered when interpreting these coefficients, as they 

have greatly affected the analysis. When interpreting the performance of NQROBO relative 

to these factors, we have provided insights into how the index is aligned or deviates from the 

general movements in the market.  
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7.3 Summary of Historical Analysis  

In this section, a comprehensive historical analysis has been conducted to provide deeper 

insights into the performance of the NQROBO index. In section 7.1, we provided a table 

displaying a detailed overview of NQROBO’s weekly and monthly performance in terms of 

risk and return compared to the market. The analysis spans three sample periods as well as the 

entire duration of the dataset. Notably, NQROBO has generated a monthly return of 0,70%, 

over the entire period and was outperformed in terms of excess return by the market for all 

sample periods except 2020-2022. 

When evaluating the active returns, we divided the section into two parts, the first part focuses 

on the development of Alpha and Beta over time, while the other part observes the Fama 

French Factors. When observing Alpha’s development over time, we found that NQROBO 

generally displays a positive Alpha, indicating significant outperformance relative to the 

market, except between 2022-2023. In terms of Beta, NQROBO initially had a Beta at 0,85 

before some spikes were identified, primarily due to the pandemic. After these spikes, the Beta 

continued to increase, ultimately ending close to 1,1. This suggests that NQROBO’s volatility 

relative to the market has increased and remains more volatile than the market.  

Furthermore, we conducted a regression including the FF3 and FF5 models based on the 

equations presented in section 3.1.5. The analysis revealed that the MKT coefficient is stable 

over time, suggesting that the broad market risk is a consistent driver of returns for the index. 

The SMB coefficient exhibited substantial fluctuations over time. This is not a surprise as tech 

firms typically vary in size, and therefore the size factor does not consistently contribute to 

returns for the index. The value factor, HML, is primarily negative, however, it seems to 

diminish over time, not making the value factor a driver of returns. This is aligned with our 

expectations as tech firms tend to be growth-oriented rather than value-oriented. Both CMA 

and RMW factors fluctuate greatly over time, mainly being negative, suggesting that 

NQROBO tend to do well when the market favours firms with an aggressive investment 

strategy and that NQROBO consists mainly of “weak” firms with high growth potential but 

low profitability. 
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8. Portfolio Performance Results 

In this section, we will provide some graphical displays of our main portfolio performance 

results. Firstly, we will present the forecasted excess return for our portfolios. Further, we 

summarise the forecasting results and analyse the forecasting model selection in Portfolio 4. 

Then we present the trading results and a visualization of weight variations for Portfolio 3 and 

4. We end this chapter by analyzing the portfolio performance over two different sub-periods.  

8.1 Excess Return of Our Portfolios 

Figure 14 shows the daily excess returns, return relative to risk-free rate, of our six portfolios 

over the forecasting period. Portfolio 1 appears to have the highest volatility, with returns from 

+10% to -10%. The other portfolios also show considerable volatility but are less extreme than 

Portfolio 1.  

 

The portfolios have similar patterns, and all show high volatility in March 2020. As mentioned 

earlier, this coincides with the Covid-19 pandemic and heightened uncertainty in the stock 

market. These findings also align with the one week and one month horizon, see Chapter 8 

Figure 24 and 27 in Appendix. 
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Figure 14: Daily excess return for our synthetic portfolios 

Note: Excess returns relative to risk-free T-Bill rate  
P1 Holding the market, 100% S&P 500 

P2 = Equal weights, 1/3 in all three indices 
P3 = SR, weightings based on SR  

P4 = RMSE, weightings based on RMSE 
P5 = SR Hybrid weightings based on SR and Equal weighting 

P6 = RMSE Hybrid = weightings based on RMSE and Equal weighting 
See chapter 5 for further information about portfolio construction 

 

 

8.2 Summary of The Forecasting Results  

In this section, we will summarise the forecasting results. We used nine forecasting models 

for the NQROBO index and the NASDAQ at each point in time, see Table 1. The S&P 500 

index was forecasted with three models at each point in time. For graphical displays, see 

Figures 19, 20, and 21 Chapter 8 in Appendix. 
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NQROBO and NASDAQ 

The actual excess returns of the NQROBO and NASDAQ index exhibit high volatility and no 

clear pattern, which is typical for financial returns. Compared to the actual returns of the 

degree of volatility is much smaller for the predictions. There is also a varying degree of 

smoothing of excess returns. Generally, the ARIMA best fit models provide smoother 

forecasts which minimize the impact of short-term volatility. This indicates that these could 

be less accurate to sudden market movements. Because of that, the CAPM model and Fama 

French models with Random Walk seems to capture more of the market risk factor than the 

corresponding forecasts with ARIMA best fit.  

S&P 500 

The actual returns for the S&P 500 also exhibit a high degree of volatility and the AR(1) and 

ARIMA best fit models predicts less volatile returns. The ARIMA best fit forecasting are 

close to zero in 2019 and after 2022. This means that the time series do not exhibit strong 

patterns or trends in this period that can be used for forecasting.  

8.3 RMSE Model Selection 

Table 5 presents the frequency of when a model has the lowest RMSE given a positive 

predicted excess return.  
Table 5: Utilization frequencies 

Note: Highlighted numbers indicating the highest frequency of utilization for each index at each time 
horizon 

 
For the NQROBO forecasting, CAPM with ARIMA best fit tends to be the most used model 

across all time horizons. The AR(1)-model has the second highest frequency and is highly 

used in the one month horizon.  
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When predicting the NASDAQ excess return, the AR(1) model has the highest frequency for 

all three horizons. FF3 with ARIMA best fit and CAPM with ARIMA best fit are the two 

models that are the second and third most used.   

The bottom panel of this table shows that the AR(1)-model is the most used in the RMSE 

selection for the S&P 500 weighting. 

8.4 Empirical Portfolio Results 

Table 6 displays the outcomes of our six synthetic portfolios. We have presented the mean 

excess return, standard deviation, Sharpe Ratio, and final wealth for each portfolio. These 

calculations assume that an investor initially invests $100 000 in January 2019.  

Table 6: Portfolio performance results 
Note: See Chapter 5 for further explanation of construction of portfolios 
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Daily Results 

We will first consider the results for a one day investment horizon. The mean excess daily 

return on the S&P 500 index is 0,053% from 2019 to 1 August 2023. This is higher than the 

mean excess return of the Portfolio 2 and 5. Portfolio 3 has a marginally higher mean excess 

return compared to holding the market. The portfolios based on the RMSE selection criteria 

have a significantly higher mean excess return than the other portfolios.  

These differences in mean excess return are reflected in the final wealth. Portfolio 4 pays 

almost $65 000 more than Portfolio 1. If we compare the RMSE portfolio with the Sharpe 

Ratio portfolio, RMSE performs better, generating approximately $56 000 more.   

We also discover that the standard deviation of the returns of the weighted portfolios lies in a 

range from 1,0% to 1,12%, which is substantially lower than holding the market (1,37%). 

Adding the lower standard deviation with the higher mean excess return for Portfolios 3, 4 and 

6 results in higher Sharpe Ratio values for these portfolios.  

Weekly and Monthly Results 

When we extend the investment horizon to one week or one month, we can see that holding 

the market gives us the highest mean excess return across all portfolios. Portfolio 1 also gives 

us the highest final wealth for these horizons. Furthermore, we observe that the standard 

deviations for Portfolio 2-6 are still lower than holding the market.  

8.5 Portfolio Weights 

This section introduces the variation in weighing for Portfolio 3 and 4. For each of the indices, 

Figure 15 displays the weights of the Sharpe Ratio selection portfolio over time.  
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Figure 15: Portfolio 3 weights in each index over time 
Note: P3 = SR, weightings based on SR measurements 

Red dotted lines visualize the average weights over the whole period 

  
By looking at the variations in weights, we see that in large parts of 2022 and 2023, the 

weights of NQROBO and NASDAQ Corrected are zero. This is because of a negative 

Sharpe Ratio for all the indices in this period and we therefore choose to weight the S&P 500 

index 100%. On average, the weights of the S&P 500 are 51%. For NQROBO and 

NASDAQ, the weights are on average 22% and 27%, respectively. Compared to the equal 

weighted portfolio, we can conclude that this portfolio overweighted the S&P 500 index and 

underweighted NQROBO and NASDAQ on average. 
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Figure 16: Portfolio 4 weights in each index over time 
Note: P4 = RMSE, weightings based on RMSE measurements 

Red dotted lines visualize the average weights over the whole period 
 

 
Figure 16 shows the weights for each index in the RMSE selection portfolio with a time 

horizon of one day. We can observe that this portfolio tends to do more frequent changes in 

the index weightings. In Portfolio 4, the average weight for NQROBO is 37%, 31% for 

NASDAQ Corrected, and 32% for S&P 500. This means that the portfolio is, on average, 

overweighted in NQROBO and underweighted in NASDAQ Corrected and S&P 500 

compared to the equal weighted portfolio.  

If we extend the horizon to weekly, the average weight in NQROBO decreases and NASDAQ  

Corrected and S&P 500 increase. For a monthly horizon, the weight on average in NQROBO 

is  35%, and 31% in NASDAQ. For graphical displays of weight variations for one week and 

one month, see the Appendix Figure 25 and 28.  

8.6 Sub-Periods 

We have also analysed the daily performance of the synthetic portfolios over two different 

sub-periods of our data sample. To better understand the development in performance, we 

have included cumulative return as a measurement. The first sub-period is from January 2019 

to December 2020, and the second is from January 2021 to August 2023. The reason for 
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choosing these two sub-periods is because we want to compare the portfolio performance 

under different market conditions.  

Table 7: Daily portfolio results for subperiods (2019-2020 and 2021-August 2023) 

 
As shown in Table 7, Portfolio 3 has the best performance during the first sub-period, with the 

highest final wealth after two years when rebalancing daily. However, in the second sub-period 

the performance of this portfolio has a sharp decline, and a lower cumulative return than 

holding the market. Further, we find that Portfolio 4 and 6 has a higher cumulative return and 

final wealth than Portfolio 1 in both sub-periods. We also observe that Portfolio 5 outperforms 

Portfolio 1 in the first sub-period, but significantly underperformed in the second sub-period 

compared to holding the market. The results are aligned with the results presented in Table 6, 

indicating that daily rebalancing and reinvesting perform best. This is possibly due to frequent 

rebalancing, being able to capture short term gains in the market that don’t persist over a week 

or month.  
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9. Discussion  

In this chapter, we will analyse and discuss our findings presented in Chapter 8 to answer our 

second and third part of our thesis. We want to examine to what extent investing in AI, 

supported by a forecasting tool using minimal hindsight, offers the potential of beating the 

market for a moderately risk-averse investor. Furthermore, we assess the optimal relative 

weighting of Portfolio 3 and 4.  

9.1 Discussion of Forecasting Results 

Our discussion of forecasting results is based on the findings represented in Table 6, section 

8.4.  

Daily  

From Table 6, we can observe the performance of our six synthetic portfolios. Our results have 

identified that Portfolio 3, 4 and 6, respectively using Sharpe Ratio, RMSE and Hybrid RMSE 

for weighting, have outperformed holding the market in terms of mean excess return. When 

observing the other financial measurements for all portfolios, we find that Portfolio 1 has the 

shared lowest Sharpe Ratio. This is due to Portfolio 1 having both high return and the highest 

standard deviation. When assessing all portfolios, we find that Portfolio 3, 4 and 6 are the only 

ones outperforming holding the market regarding final wealth. Looking at both hybrid 

portfolios, we see that their performance is between the equal weighted portfolio and those 

strictly computed using Sharpe Ratio and RMSE. This seems reasonable, given the 

construction of the portfolios.  

Weekly  

When observing the weekly financial measurements, certain changes need to be addressed. In 

terms of mean excess return and final wealth, Portfolio 1 now outperforms all portfolios. 

Several reasons could explain this development. One of the most likely reasons is that the 

market is generally efficient over longer periods. This is due to daily fluctuations and noise 

being “smoothed” away. We also see that holding the market has the highest standard 

deviation of all the portfolios. Therefore, it is not surprising that holding the market also has a 

relatively high mean excess return as investors demand high returns when taking on higher 

risks.  
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Monthly  

Observing monthly, we find that holding the market now also outperforms all other portfolios 

in terms of mean excess return, Sharpe Ratio and final wealth. One can interpret this as 

monthly rebalancing does not capture the short-term gains that daily rebalancing capture. 

Meaning that the potential gains of investing in AI must be captured quickly as profits are 

short-lived.  

Sub-Periods 

We chose to observe the synthetic portfolios under two sub-periods to see how they would 

perform under different market conditions. We found that the Portfolio 3 performed the best, 

having the highest cumulative return, during the first sub-period. However, the portfolio 

performed significantly worse in the second sub-period. This is surprising given that RMSE 

is performing relatively consistent across both periods. A potential reason for this decline 

could be the forecasting accuracy for SR being worse, resulting in bad investment decisions 

and economic loss during the second sub-period.  

9.2 Discussion of Portfolio Weights  

When analysing the portfolio weight, we look at the empirical results presented in section 8.5. 

The aim of analysing the weights is to observe and identify when and how much the portfolios 

over- and underweights the different indices compared to the equaled weighted portfolio. By 

conducting such an analysis, we hope to discover a pattern across all portfolios, identifying a 

period where potential gains by investing in NQROBO could be made.  

By comparing the weights of Portfolio 3 and 4, we observe that the weights of Portfolio 4 are 

more volatile than the weights of Portfolio 3. This implies a more active portfolio management 

approach with the attempt to capitalize on short-term movements. On average, Portfolio 3 

tends to overweight the S&P 500 index, while Portfolio 4 seems to overweight the NQROBO 

index compared to Portfolio 2. Considering the final wealth, we discover that a flexible 

weighting strategy with an average overweight in NQROBO delivers the highest return and 

wealth in this period.  
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9.3 Discussion of Risk Profile 

In our thesis, we have not chosen to take an explicit stance on the risk aversion of our fictional 

investor. However, we have constructed the synthetic portfolios utilising RMSE and SR. Both 

measurements could be rationalised to be connected to a loss function. We argue that RMSE 

is reconciled with quadratic utility, implying certainty equivalence, as our investor is more 

interested in the expected return rather than the magnitude of the return. Likewise, utilising 

SR when deciding the weights of Portfolio 3 and 5, implies that our fictional investor is using 

risk-adjusted excess returns. We define our fictional investor as risk-neutral, considering both 

risk and return closely.  

9.4 Limitations of The Analyses 

Several assumptions and simplifications were made when conducting our analyses. This 

section aims to address the main limitations that directly affect our research question.  

9.4.1 Quality of Data 

One of the most apparent identified limitations of our analysis is regarding the data quality. 

Firstly, the return data consists of 1423 daily observations from January 2018 to August 2023. 

This is a relatively short period, with data observed over only five and a half years. Secondly, 

the quality of the data is debatable as our data was retrieved in a period with a significant 

specific event being the Covid-19 pandemic and the backlash of this. There is no denying that 

the pandemic had great implications on macroeconomic factors, investment intensity and the 

increased usage of new technologies. Therefore, it is essential to discuss to what extent our 

findings are realistic and applicable when in a “normal situation”. Conducting a more 

extensive study sometime in the future, during a “normal situation”, would enable a more 

thorough exploration of our research question.  

We also have to address the missing observations. When retrieving our datasets containing 

daily returns from NQROBO, NASDAQ and S&P 500, we found discrepancies in the number 

of observations between the three indices. We solved this by disregarding all observations for 

that particular day for all three indices if an observation were missing. We found that this was 

the optimal solution, however, it is important to acknowledge the weaknesses it entails. In 

total, 28 trading days were disregarded because of deficient information.  
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9.4.2 Transaction Cost 

Our thesis and the conducted analyses rest on several assumptions and simplifications that 

must be addressed. One of these simplifications is that transaction cost is disregarded.  

In the real world, this assumption is unrealistic. However, the reasoning behind the choice is 

the difficulties in finding one appropriate rate for all three indices and the increased complexity 

it would entail. If transaction costs were accounted for, it would have a negative impact on the 

final wealth for all six synthetic portfolios, especially the last five portfolios with an active 

management. The higher trading frequency an investor has, the more they will incur 

transaction costs, consequently “eating” into their final wealth. So, while our approach 

simplifies things, it is important to recognise the importance of transaction cost and how this 

would significantly impact the actual outcome of investment strategies.  

9.4.3 Nasdaq CTA Artificial Intelligence & Robotics 

As mentioned in section 2.6, we have chosen to only use the NQROBO index to track the 

performance of companies engaged in Artificial Intelligence. By only using one index to track 

the whole development of AI, there are certain limitations that must be addressed. The main 

limitation regarding the use of only NQROBO is the limited representation. The index may 

not be able to capture the whole breadth of the AI landscape due to the fast-evolving nature of 

AI technology and the exclusion of non-public companies not being represented in the index. 

By not having a complete representation of the whole AI landscape due to the nature of the 

index, we do not possess the full information to evaluate the performance of AI-engaged firms 

entirely correct.  

9.5 Robustness Analysis 

In this section, we conduct a robustness analysis of our findings in Table 6. The purpose of 

this is to examine the validity of our findings. Our robustness analysis can be divided into two 

parts. The first part examines if our results hold true if the forecasting is now computed on a 

six-month window instead of the original twelve-month window. The second part will 

examine how different reference weights in our hybrid portfolios affect final wealth.   
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9.5.1 Forecasting Based on Six Months of Training Data 

The first part of our robustness test examines how our results differ if we change the duration 

of the training data before forecasting. Initially, we have chosen to base our training data on 

1-year observations for all three indices. In Table 8, we have displayed the portfolio 

performance based on a six-month estimation window.  

Table 8: Portfolio performance based six-months of training data 

 
We have identified some key differences between Table 6 (twelve-months) and Table 8 (six-

months). The most prominent difference is that when utilising six-months of training data, all 

portfolios do better, in terms of final wealth, when rebalancing and reinvesting monthly. One 

possible reason for this is that when the model is trained on twelve months of data, it may be 

too generalised and does not capture trends or adapt to changes in the market, compared to the 

model trained on a shorter period.  

The other key difference is that when rebalancing daily and weekly, Portfolio 4 and Portfolio 

6 perform better when trained on six months of data, while Portfolio 3 and 5 perform worse. 

This could be due to the nature of the portfolio constructions. RMSE-based portfolios may be 

more responsive to market volatility, better capturing the underlying market structure and 

seasonality trends.  

Another reason may be that the SR portfolios overfit the data, meaning that the model is too 

closely tailored to the characteristics in the training data. A possible reason for overfitting may 

be due to nature of the construction of the portfolios, relying too much on historical data. 
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To summarise, Portfolio 4 and 6, still outperforms holding the market. They still generate a 

higher excess return after changing the duration of the training data, leading to similar results 

as in Table 6. They key differences found is that when training the forecasting on a shorter 

period the RMSE based portfolios perform better when rebalancing daily and weekly, while 

the SR based portfolios perform better monthly. 

9.5.2 Changes in Reference Weights  

This part of the robustness test is largely motivated by the Government Pension Fund Global 

(GPFG), which is weighted 70% in stocks and 30% in bonds (NBIM, 2023). We want to 

examine if our findings hold true if changes in the reference weights in our hybrid portfolios 

(Portfolio 5 and 6) are made. With inspiration from the GPFG, we have changed the weights 

to be 70% dynamic weighted and 30% fixed weights. See Appendix Chapter 5, Equation 20 

and 21, to understand how the new weights of the portfolios are found. Table 9 presents a 

summary of the second part of our robustness analysis.  

Table 9: Changes in Portfolio 5 and 6 when the reference weights change 

 
Comparing the Table 6 and 9, we see some differences in the performance measurements due 

to changes in the reference weights.  

Looking at the Hybrid Sharpe Ratio we can see that the final wealth has increased for weekly 

and monthly rebalancing. However, it has decreased daily when the dynamic weighting has 

been increased to 70%. This suggests that dynamic weighting is more effective on longer 

rebalancing intervals. Observing the standard deviation, we see that it has increased for all 

rebalancing durations for both portfolios. All portfolios have equal or higher Sharpe Ratio 

when increasing the weights of dynamic allocation to 70%.  

The Hybrid RMSE has increased the final wealth for daily and monthly rebalancing durations 

when the dynamic allocation has increased to 70%. Suggesting that the RMSE weighting is 

particularly good at forecasting daily and monthly market changes. However, the model may 
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experience noise, resulting in the model reacting to false trends that do not persist weekly, 

resulting in a decrease in final wealth when the amount of dynamic allocation increases. 

To summarise, the results presented in Table 6 still holds true as we receive similar results in 

Table 9 when changing the reference weights. Portfolio 6 is still the only hybrid portfolio 

outperforming holding the market with daily rebalancing in terms of final wealth. The key 

difference to highlight is that a higher dynamic allocation is beneficial for the Hybrid RMSE 

when rebalancing daily, while it is beneficial for the Hybrid Sharpe Ratio when rebalancing 

weekly and monthly. 

9.6 Further Research  

This thesis examines to what extent investing in AI, supported by a forecasting tool, offers the 

potential of beating the market. When creating our portfolios, we have excluded the possibility 

of shorting the three indices based on the intricacies this would entail. Given the nature of the 

investment period, it would be interesting to see how the portfolios would perform if shorting 

were allowed. By shorting we mean, selling indices that we expect, based on our 

measurements, to generate negative returns. If allowing for shorting one also have to allow for 

analysis of negative Sharpe Ratios. The period is greatly influenced by significant fluctuations 

in returns and high volatility due to the pandemic, thus making the correct decision whether 

to invest or short highly lucrative. This would be especially lucrative for an investor in 2022 

when all indices had negative returns.  

Another area of interest for future research, could be the analysis of stochastic volatility. For 

example, estimating a GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 

model and examining the effects found. The primary purpose of conducting such a model is 

to forecast and examine future volatility. This is done given the idea behind GARCH is that 

past volatility has a lasting impact on present and future volatility, resulting in volatility 

clustering.  

Lastly, it would be interesting to examine the inclusion of transaction costs further and observe 

how this would affect the final wealth of the different portfolios.  
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10. Conclusion  

In this thesis, we have assessed the performance of the Nasdaq CTA Artificial Intelligence & 

Robotics index and explored the extent to which investing in AI offers the possibility of 

beating the market. We define “beating the market” as achieving a higher final wealth by 

investing in an alternative portfolio rather than investing in the market. Our thesis aims to 

address the following research question and is structured accordingly. 

To what extent does investing in Artificial Intelligence technology, supported by a forecasting 

tool only using historical information, offer the potential of beating the market index for a 

risk-neutral investor with a short time horizon? 

To answer this question, we divided the thesis into three parts, each part supported by an 

analysis. A historical analysis evaluating NQROBO’s performance, a pseudo-out-of-sample 

forecasting performance analysis exploring how an investor in real time utilising a forecasting 

tool would perform, and lastly, an optimal relative weighting analysis of NQROBO, based on 

the pseudo-out-of-sample analysis. 

The historical analysis identified that NQROBO outperformed the market between January 

2020 and December 2021, in terms of weekly and monthly returns. For the whole period, 

NQROBO was slightly outperformed by the market. Observing NQROBO’s Alpha and Beta 

over time, we discovered that the Alpha was primarily positive from 2020 to early 2022 before 

turning negative later in 2022. The Beta began slightly below 1, before decreasing to 0,8 in 

2020, then sharply rising in 2022, stabilising at 1,1. When looking at how the Fama French 

Factors affect NQROBO, we found that the market was a consistent driver for their return. 

SMB fluctuated greatly, being both negative and positive, suggesting that the size factor is not 

a consistent driver. The remaining factors, HML, RMW and CMA, all fluctuates, being mostly 

negative. This suggest that NQROBO is performing best when the market favours growth-

oriented companies with an aggressive investment strategy. To summarize, the index displays 

potential of outperforming the market for certain periods if the market conditions are 

favourable.  

To answer the second part of the thesis, we proposed an approach for simulating an investor's 

behaviour in real time using as little hindsight as possible. Assessing the pseudo-out-of-

sample forecasting performance analysis indicates an opportunity to generate a higher final 

wealth by investing in AI. Different forecasting models were trained over a year, utilising 
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dynamic portfolios, and only using optimal forecasting. We found that dynamic weighting 

based on Sharpe Ratio, RMSE and Hybrid RMSE outperform holding the market in terms of 

final wealth when rebalancing and reinvesting daily. At a weekly and monthly basis, holding 

the market outperformed all portfolios suggesting that potential gains present are short-term.  

To answer our third and last part of the thesis, we observe the NQROBO’s weighting over 

time in our optimal relative weighting analysis. Our analysis shows that the RMSE 

weighting portfolio, that is more volatile and dynamically weighted, outperforms the other 

portfolios. Implying that a portfolio with a high degree of dynamic weighing may be able to 

capture and capitalize on short-term movements in the market. These findings are also 

supported by the dynamic portfolios performing better when rebalancing and reinvesting daily, 

compared to weekly and monthly.  

This thesis concludes that investing in Artificial Intelligence exhibits a clear opportunity of 

beating the market for a risk-neutral investor. However, it is important for an investor to utilise 

dynamic weighting frequently to be able to capture short-term gains present in the market and 

the market conditions must be favourable.   
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Appendix 

The appendix follows the same structure as the thesis. 
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4. Forecasting Methodology  

The Box-Jenkins Approach for Model Selection 

We used the Box-Jenkins methodology to determine the most appropriate ARIMA model. 

This approach is a systematic iterative method for identifying, estimating, testing, and 

applying ARIMA (Box and Jenkins, 1994). As demonstrated in Figure 17, the method is 

separated into three phases.  

Figure 17: The Box-Jenkins Approach  

 
In the identification phase, we check for stationarity and select the parameters of an ARIMA 

model that best summarizes the time series most accurate. In the next phase, estimation, we 

use the data to train the parameters of the ARIMA model. The last step of the process is to 

evaluate the fitted model and check for improvements (Box and Jenkins, 1994).  

Phase 1: Identification 

Stationarity 

The first step is to test the time series for stationarity. By stationary data, we mean that the 

properties of the time series do not change across time. This means that time series with trends 

or with seasonality are not stationary. In other words, a stationary time series does not have 

any long-term predictable patterns (Hyndman & Athanasopoulos, 2018). Three conditions 

need to be fulfilled to consider a time series stationary; (1) constant mean over time, (2) 

constant variance over time, and (3) constant autocovariance. If the time series is not 
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stationary, it could lead to spurious forecasting results and it would be necessary to 

differentiate the data (Hyndman and Athanasopoulos, 2018). By removing changes in the level 

of a time series, differences can help stabilize the meaning of a time series, therefore 

eliminating seasonality and trend. When the time series is stationary, the component, d, will 

be equal to zero.  

Augmented Dickey-Fuller test 

The ADF test is a statistical test where one investigates for stationarity in the data, by checking 

for unit root (Wooldridge, 2015). The null hypothesis of the ADF test is that there is a unit 

root in the time series, which implies that the data is not stationary. The alternative hypothesis 

is that the data is stationary. If the p-value is lower than 0,05, we can reject the null hypothesis 

and conclude that the time series is stationary (Wooldridge, 2019).  

Autoregressive and moving average order 

The next step in the identification process is to identify the autoregressive order (p) and the 

moving average order (q). To find an appropriate value for these parameters, one could analyze 

the autocorrelation function and the partial autocorrelation function.  

The autocorrelation function is the correlation between the time series with a lagged version 

of itself. The second function that expresses information useful in determining the order of an 

ARIMA model is the partial autocorrelation function. This function calculates the partial 

correlation between the values of two time periods and adjusts out the influence of 

intermediate lags. The estimated value of 𝑝 is determined by the last lag with a large value of 

the appropriately differenced series. If the partial autocorrelation function does not have a cut-

off after a few lags, the alternative is to either have a moving average model (p=0) or an 

ARIMA model with 𝑝 > 0	and 𝑞 > 0.  The estimated value of q is determined by the last lag 

with a large value from the autocorrelation function. If the function does not have a cut-off 

after a few lags, the alternative is to either have an autoregressive model (q=0) or an ARIMA 

model with 𝑝 > 0	and 𝑞 > 0 (Hyndman and Athanasopoulos, 2018).  

Phase 2: Model estimation 

The Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are 

useful techniques to select the parameters of the ARIMA model. One obtains good models, by 

minimising AIC and BIC. The AIC offers a good balance between giving biased estimates 
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when the model’s order is too low, and there is a potential for increasing the variance when an 

excessive number of regressors are included.  

The AIC can be written as: 
Equation 16 

𝐴𝐼𝐶 = 	−2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) 

The BIC equation is outlined below: 
Equation 17 

𝐵𝐼𝐶 = 𝐴𝐼𝐶 + [log(𝑇) − 2](𝑝 + 𝑞 + 𝑘 + 1) 

The AIC tend to prefer larger models, with more p and q lags, compared to BIC which 

penalizes model complexity more. There is some ambiguity in the selection criteria between 

AIC and BIC, because there is no statistical test to compare these two estimators. This means 

that we have to do a subjective comparison of the two criteria.  

Auto-arima() 

As mentioned in Chapter 4, we have supported our identification and model estimation with 

auto.arima(), in order to remove possible human error. The auto.arima() function from the 

package forecast in R, uses a Hyndman-Khandakar algorithm to estimate the most suitable 

ARIMA model. This algorithm combines unit root tests and minimization of the AIC, BIC, 

and AICc (Hyndman & Athanasopoulos, 2008).  

The first step of the function is to determine whether the time series is stationary. This is done 

using a ADF test. If the time series is not stationary, auto.arima() determines the order of 

differencing (𝑑) required to achieve stationarity. The next step in the function, is to calculate 

the information criteria for each model combination. In this thesis, we have set the information 

criteria to AIC, BIC and AICc. The default information criterion in the function is AICc, which 

means that in cases with different criteria values, this criterion is deciding. The output of the 

auto.arima() is the best ARIMA model that describes the relevant data series, based on the 

information criterion.  

Phase 3: Model diagnostics 

The last phase of the Box-Jenkins approach is to ensure that the ARIMA model is a good fit 

for the data. Two useful methods of checking a model are overfitting and residual errors.  



 68 

By checking for overfitting, we check if the model is more complex than it needs to be and 

captures random noise. This is a problem because it impacts the ability of the model to 

generalize negatively, and leads to poor forecast performance (Box et al., 2015).  

From an ideal model, we should observe that the errors follow white noise and are normally 

distributed. We use the Ljung-Box test to test whether or not the errors are independent and 

identically distributed (IID) random variables. The null hypothesis of the test is that the model 

does not show a lack of fit. The alternative hypothesis is that the model does show a lack of 

fit (Box et al., 2015).  

To calculate the test statistics Q for the Ljung-Box test, the following equation is used: 

Equation 18 

𝑄(𝑚) = 𝑛(𝑛 + 2)>
𝑟D$

𝑛 − 𝑗

#

D()

, 

Where, 𝑟D is the accumulated sample autocorrelation and 𝑚	is the time lag. We reject the null 

hypothesis and conclude that the model shows a lack of fit if: 

Equation 19 

𝑄 >	𝜒)&E,G$  

Where, 𝜒)&E,G$  is the value in the chi-square distribution table for α significance level and ℎ 

degree of freedom.  

Our results from the Ljung-Box test shows that three ARIMA best fit models for NQROBO 

has a lower p-value than 0,05. There was zero ARIMA best fit models for NASDAQ and one 

ARIMA best fit model for S&P 500 with a p-value below 0,05. This means that we cannot 

reject the null hypothesis of the residuals being white noise for almost every ARIMA best fit 

model.  
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5. Construction of The Synthetic Portfolios 

Below you will find a visual representation of the investment process for the RMSE portfolio. 

We have included this example to help the reader to better understand the different steps 

involved when investing in the portfolio.  

Figure 18: The steps involved in the investment process for Portfolio 4 

 
 

Finding the weights of portfolio 5 with new reference weights – 70% and 30% 
Equation 20 

𝜆:,;<=
.5	@ABC!; =

𝑆𝑅:,;<=
∑𝑆𝑅 ∗ 0,7 +

1
3 ∗ 0,3 

 

Finding the weights of portfolio 6 with new reference weights – 70% and 30% 
Equation 21 

𝜆:,;<=
5>.?	@ABC!; =	

𝑅𝑀𝑆𝐸:,;<=&)

∑𝑅𝑀𝑆𝐸&) ∗ 0,7 +
1
3 ∗ 0,3 
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8. Forecasting Results 

NQROBO Forecasting 

Figure 19 presents the daily forecasting results for the NQROBO index. The actual daily 

excess returns of the NQROBO index over the forecast period are shown at the top left. 

Compared to the actual returns, the volatility of the predictions is much smaller.  
Figure 19: NQROBO forecasting of daily excess returns 

Note: Excess returns relative to risk-free T-Bill rate  
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The middle figures show the CAPM model with ARIMA best fit market forecasting for a one 

day horizon. We can see that because the market forecasts are almost always zero from the 

beginning to March 2020, and from 2022 and onwards, the estimations are only based on the 

Alpha in this part of the forecasting period.  

NASDAQ Forecasting 

The NASDAQ index's forecasting estimation and actual excess return is shown in Figure 20. 

The volatility of the returns was higher in 2020 and 2022, compared to 2019, 2021 and 2023. 
Figure 20: NASDAQ forecasting of daily excess returns 

Note: Excess returns relative to risk-free T-Bill rate  

 



 72 

It is interesting to compare the AR(1)-model forecasts for NASDAQ with the corresponding 

forecasts for the NQROBO. We can see that the volatility was similar for the first year, but 

after March 2020, the volatility was much higher for the NASDAQ predictions. This 

difference continues until the end of 2020 and then returns to being similar.  

If we look at the ARIMA best fit forecasts, it is the opposite. The volatility of NASDAQ 

predictions is lower than NQROBO predictions in 2019, 2021, 2022 and 2023. In 2020, the 

volatility is similar. The CAPM forecasts have similar patterns to the corresponding 

NQROBO forecasts, but the CAPM with Random Walk market forecasts tends to estimate 

higher NASDAQ returns. For CAPM with ARIMA best fit market forecast, the same 

problem with zero market estimations is present. There are some differences between the 

FF3/FF5 models with Random Walk predictions and FF3/FF5 models with ARIMA best fit 

predictions regarding trends and volatility.  

S&P 500 Forecasting 

The actual daily excess returns and the predicted returns of the S&P 500 are shown in Figure 

21.  
Figure 21: S&P 500 forecasting of the daily excess returns 

Note: Excess returns relative to risk-free T-Bill rate  

 
The volatility of the AR(1) forecasting and the ARIMA best fit forecasting of the S&P 500 

index has similar patterns. In 2019 and after 2022, the estimated excess return is close to 

zero and in 2020-2021 the volatility has a downward trend.  
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One Day Investment Horizon 

The weights of Portfolio 5 and 6 range from 17% to 67%. Figure 22 present the weighting 

variations in Portfolio 5 for all investment horizons. On average, the weight of NQROBO is 

28%, 30% in NASDAQ, and 42% in S&P 500.  

Figure 22: Portfolio 5 weighting in the indices over time, all horizons 
Note: P5 = Hybrid Sharpe Ratio  

Red dotted lines visualize the average weights over the whole period 

 
 

In the following figure, the weights of Portfolio 6 with one day investment horizon are shown. 

The average weight for the NQROBO index is 35%, 32% for the NASDAQ Corrected, and 

33% for the S&P 500.  
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Figure 23: Portfolio 6 weighting in the indices over time, 1-day 
Note: P6 = Hybrid RMSE 

Red dotted lines visualize the average weights over the whole period 
 

 
One Week Investment Horizon 

In this section we present the empirical results from our analysis with a one week investment 

horizon. Figure 24 shows the weekly returns of the dynamic portfolios. The fluctuations are 

greater compared to the daily returns.  
Figure 24: Weekly excess return for our dynamic portfolios 

Note: Returns relative to risk-free T-Bill rate  
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The weights for Portfolio 4 and Portfolio 6 are presented in Figure 25 and 26. For the 

NQROBO index and the S&P 500 index, the average weight in this period is 33% for both 

portfolios. The average weight in NASDAQ Corrected in both portfolios is slightly higher, 

34%. 
Figure 25: Portfolio 4 weighting in the indices over time, weekly 

Note: P4 = RMSE 
Red dotted lines visualize the average weights over the whole period 

 

 
Figure 26: Portfolio 6 weighting in the indices over time, weekly 

Note: P6 = Hybrid RMSE 
Red dotted lines visualize the average weights over the whole period 
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One Month Investment Horizon 

In this section we present the empirical results from our analysis with a one month 

investment horizon. Figure 27 shows the excess returns of the dynamic portfolios. We can 

observe a higher degree of volatility compared to the daily and weekly returns.  

Figure 27: Monthly excess return for our dynamic portfolios 

Note: Returns relative to risk-free T-Bill rate  

 
 

Figure 28 and 29 shows that the average weight of NQROBO in Portfolio 4 and 6 is 34%, 

while the average weight for NASDAQ Corrected and S&P 500 is 33%.  
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Figure 28: Portfolio 4 weighting in the indices over time, monthly 
Note: P4 = RMSE 

Red dotted lines visualize the average weights over the whole period 

 

Figure 29: Portfolio 6 weighting in the indices over time, monthly 
Note: P6 = RMSE Hybrid 

Red dotted lines visualize the average weights over the whole period 

 

 


