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Abstract

This study showcases the benefits of expanding the dimensions of the variable input vector

with macroeconomic predictors when predicting monthly out-of-sample stock-level risk

premiums. Using 610 predictor variables, we achieve a prediction performance of 3.19%

R2
oos for our best model and for stocks with a large market value of equity, over a fourfold

increase in performance compared to previous research on this area. Furthermore, by using

Shapley values, we show the pricing importance of each group of variables, challenging

the view of neural networks as black boxes. The resulting Shapley values indicate that the

neural networks weight higher variables such as labor market, interest and exchange rates,

and prices, during recession, and stock characteristics during expansion periods.
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1 Introduction

The contributions of this paper are twofold. Firstly, we are looking to develop a neural

network model capable of achieving state-of-the-art performance for the fundamental

problem in empirical asset pricing research, measuring asset risk premiums. We do so

by expanding the number of predictor variables up to a total of 610. Then, we look into

these neural networks, often described as "black boxes", and observe which variables are

relevant to the aforementioned problem. Lastly, we make a distinction among expansion,

and recession economic periods, to understand the dynamics of pricing during different

phases of the economic cycle.

The first part of our study is based on the Empirical Asset Pricing via Machine Learning

paper by Gu et al., 2020. Regression-based methods have been a standard to finance

academia, but the aforementioned research paper shows that the use of non-linear

predicting methods, such as neural networks, can double the leading prediction performance

on regression strategies when forecasting risk premiums. The main advantage of neural

networks is their ability to use a large amount of predictors, and being able to find patterns

and connections between them, almost independently, through optimization algorithms.

Our theory, on which we base this first part of the paper, is that the capital markets act

as an aggregator of information. Collectively, news, rumors, speeches, and potentially

other millions of data points are considered and weighted to produce risk premiums for

each individual asset. Taking this into account, the idea of predicting returns with a

handful of factors seems relatively naive. However, until recently, the popularity and

research on machine learning models was rather scarce, and their applications to finance

and how to infer causality from its results was an obscure and alchemy-like process, leaving

regression-based strategies with a few predictor variables as the only choice for academics.

An explosion of research in deep learning has given place to the use of these techniques in

the finance field. Gu et al., 2020, use close to a hundred stock characteristics exclusively

as predictor variables to achieve their results using neural networks. Based on our theory,

we believe that with an even larger number of relevant predictors, one may achieve better

prediction performance. Therefore, we use six times as many variables as Gu et Al.

Furthermore, we believe that in order to paint a more holistic picture of the risk premiums
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as an aggregate of information, we need to take into account and include macroeconomic

variables, since they affect the return distribution of each asset individually. In addition,

we believe that the aforementioned is especially true in periods of economic recession.

Our results for the first part of the research seem to substantially support our theory, by

producing a monthly out-of-sample stock level prediction of 3.19% R2 for stocks with a

large market value of equity and 1.69% for stocks with a small market value. Compared

to 0.70% and 0.47% R2, respectively, achieved in Gu et al., 2020. The 4-times-as-high

prediction performance may be an indicator that the inclusion of more variables can be

relevant to a higher forecasting score.

As economists, we are especially interested in causality. In some areas of machine learning,

techniques such as principal component analysis, have been developed to understand how

the models work by pinpointing which variables are important to the model’s output.

Many such methods, are often much more complex, if not completely unavailable, to use

with deep learning. The challenges in inferring causality from neural networks have been

a catalyst of creativity, opening the door to methods from other disciplines to be used in

order to understand the intricacies of deep learning predictions.

One of these methods consists of using Shapley values, a technique loaned from game

theory research, in order to calculate how each variable influences the model outputs.

Then, when scaling these values, one may easily get the importance of a specific variable,

as a percentage of the total output. We demonstrate that these values give coherent

and consistent results across models. For each model, and for each economic period we

showcase the top 20 variables with the most importance to the model’s output, and then

group all 610 variables into 9 groups: outcome and income, labor market, consumption

and orders, orders and inventories, money and credit, interest and exchange rates, prices,

stock market, and stock characteristics; we show that the importance of each one of these

groups varies depending on the economic cycle. For expansions, the labor market is the

group with the largest importance, while in recessions interest and exchange rates stand

at the top. In addition, a striking result consists of the importance of individual stock

characteristics towards forecasting performance, which results in remarkably lower in

recession periods. This challenges the traditional focus on factor model pricing.

During the Hypothesis Development chapter, we discuss the background both in economic
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and in technical terms, touching on topics relevant to this research ranging from the

complex macroeconomic situation where we stand now, to the recent development of neural

networks. Moreover, we discuss and formally define our hypotheses for this research. Then,

in the Data chapter, we depict the retrieving, processing, splitting, and standardization of

the data. In the Methodology chapter we describe in depth each of the techniques used

in this paper, with the goal of making them understandable for any outsider without a

background in asset pricing or machine learning. We continue by showcasing our results

in the Analysis chapter and describing them. Finally, we ponder over the results and their

significance, both for academia and market participants.
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2 Hypothesis Development

In this second chapter, we explore the economic and technological background relevant

to this paper. Moreover, we analyze pertinent literature and conclude by developing our

hypotheses.

2.1 Background

2.1.1 Economic Background

Following an extraordinarily long period with a very low federal funds rate, it appears

that this phase has come to an end. Investors and institutions have faith in what has

been coined as a soft landing. The term, natural to the aviation field, which refers to

a pilot being able to land an aircraft in a controlled manner and without damaging it

or the payload, is an analogy to the chair of the Federal Reserve, Jerome Powell, being

able to cool down the economy without hurting it in the process. The pilot figure is clear,

however, what is slightly less obvious is what exactly is the Federal Reserve landing, or

what do we mean by the economy.

Despite it being a broad term, the Federal Reserve System (Fed) eyes the economy through

five different lenses: gross domestic product (GDP), unemployment, inflation, lending,

and asset prices (Blinder, 2023). All of these sides of the economy are interlinked in

some way, and depending on the occasion or goal, the Fed will monitor them more or less

closely. GDP refers to the measure of all final goods and services produced in a country

at a specific time, and usually, a growing GDP will be a good sign, that is, unless inflation

is a concern (Callen, 2008). Inflation is often measured by the consumer price index

(CPI), which tracks the percentage change in a basket of goods and services consumed by

households. Following the standard economic knowledge behind supply and demand, it is

then straightforward how an increase in consumption, as pictured by a growing GDP, may

be detrimental when prices are high (ongoing inflation). The primary instrument at the

disposal of the Federal Reserve Chair in combating the potentially hazardous economic

occurrence of inflation is the effective federal funds rate (EFFR). This rate denotes the

interest at which depository institutions, such as commercial banks and credit unions,
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lend reserve balances to other depository institutions overnight on an unsecured basis. As

aforementioned, the EFFR has been outstandingly low up until the reopening after the

pandemic. One of the effects of this monetary policy is its positive correlation with low

returns on safe financial assets, while at the same time favoring borrowers boosting the

prices of riskier asset classes (“Effective Federal Funds Rate”, 2023). Considering this, we

can see another connection between lending and asset prices, two of the pillars that the

Federal Reserve is in charge of looking after.

We have seen that low effective rates serve as polishing for the gears of the economic

machine, reducing friction by boosting lending, asset prices, and consumption. However,

not all that glitters is gold and most countries are now experiencing an overheated machine

making way for inflation in all parts of the economy. The Federal Reserve is planning to

make a soft landing and plans on doing so by raising the EFFR. High-interest rates have

the complete opposite effect on lending, making savings and safe assets more attractive,

while lowering consumption (Cœuré, 2013). Looking at Figure 2.1, it can be seen that

the EFFR is the highest it has been in the past 20 years. Faced with the above climate,

investors and institutions are left with an asset pricing puzzle.

Figure 2.1: Effective Federal Fund Rate (EFFR) across time

Asset pricing is a central topic in finance and consists of the pursuit of understanding

and being capable of measuring the source of aggregate risk that drives asset prices, as

described by Cochrane, 2009. Multiple models have emerged in the literature trying to

explain how assets are priced in the financial market. The quintessential model is the

Capital Asset Pricing Model (CAPM) by Sharpe, 1964 which calculates the expected

return of an asset by adding the risk-free rate to the risk premium multiplied by the beta

of the asset.
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E[ri] = rf + βi(rm − rf ) (2.1)

After this model countless factors models have emerged, shaping a phenomenon coined by

academics as the factor zoo. This so-called zoo, counts as of 2020 with over 500 factors,

each building a new risk factor to the equation based on empirical analysis or theory,

with different types ranging from common financial factors to individual microstructure

factors, all with the same goal of understanding the drivers of an asset’s returns (Harvey

& Liu, 2019). One of the issues with these factors is that the majority of them are based

on individual firm characteristics or common financial factors, however, macroeconomic

factors, which as seen in the previous paragraphs have become more and more important,

represent only about 14% of the factors census. One explanation for this may be that

academics have been overly focused on the idiosyncratic part of the risk premium, and

not so much on the systematic risk compensation, which we could argue is more closely

related to the macroeconomic environment.

Figure 2.2: Asset Pricing Factors by Type (Harvey & Liu, 2019)

The goal of the factor models is to predict equity risk premiums, and as a prediction

task the most used techniques until lately consist of linear methods, which work fine

with a small set of predictors, but begin encountering difficulties when one adds a larger

set of predictors. In recent years, there has been a significant and rapid advancement

in prediction technology, particularly in the realm of nonlinear predictive models. This

progress has ushered in promising opportunities and possibilities for the asset pricing field
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by allowing the use of as many factors as wanted in a single regression problem.

2.1.2 Technological Background

The advent of ChatGPT has been a transformative event for the machine learning

field. Even if the technology back this generative chatbot dates from 2017, when

the groundbreaking Attention Is All You Need (Vaswani et al., 2017) paper describing

transformers architecture was published, it is after OpenAI’s product was launched that

the general public rushed into the field. The shock has been so large that governments

across the world have begun planning for tight regulations for the field and have started

hearings discussing oversight with industry leaders. Furthermore, some of these leaders

have alerted society of the potential extinction risk from artificial intelligence through a

public statement, “Pause Giant AI Experiments: An Open Letter”, 2023, calling to halt the

development of AI models, especially, open-source models. Whether the aforementioned is

truly a legitimate concern, or rather an effort to exert selective control or authority over

access to large artificial intelligence models remains unclear.

However, not all is about generative artificial intelligence, machine learning has been used

extensively by all fields of academia for multiple years. A great example that appropriately

showcases the development of the field is the ImageNet Contest. The ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) was a contest for object detection and

image classification, which each year brought together researchers to compete against each

other with the goal of achieving the best predictor models (Russakovsky et al., 2015). As

seen in Figure 2.3, the change in classification error for the top teams between 2011 and

2012 was quite drastic. The difference in performance was based on the introduction of

artificial neural networks (ANN) to the competition. Soon after 2012, all participating

teams were using convolutional neural networks (a specific kind of ANN that works

particularly great for machine vision tasks) in the competition. After 2014, the algorithms

achieved performance that surpassed the human classification benchmark, and in 2017, it

was the last time that the contest was held since the ImageNet dataset became obsolete

for the models.
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Figure 2.3: ImageNet Contest Lowest Classification Error per Year (Fei-Fei & Deng,
2017)

In Chapter 4, we dive deeper into the technical explanation of what really is an artificial

neural network. However, to summarize it briefly, an artificial neural network is a system

that emulates that of biological neurons, both in its form and in the learning process.

Instead of somas, dendrites, and nuclei, an ANN contains, weights, and nodes with

activation functions (Ghedira & Bernier, 2004). As seen in the ImageNet example, deep

learning models have outpaced most other prediction models, and have become the

preferred choice for most forecasting tasks. These systems have shared characteristics

with the biological neural networks that differentiate them from the linear machine

learning models, such as massive parallelism, adaptability, fault tolerance, or distributed

computation (Sharma et al., 2012). The field of deep learning is not without detractors,

however, many deem these models as "black boxes", meaning that the reasoning behind

its predictions is opaque and unclear, and its interpretability is lacking. Another common

critique is the processing time and compute power correlation, in the sense that if one

plans to work with ANNs, there are significant barriers to entry on training and inference

time, if computer power is low, or exorbitant prices otherwise.

Looking back at the first critique, one field that has been especially skeptical of these

methods is economics. The field focuses on causality, meaning that we, economists, try

to answer the following question: does X cause Y? In order to answer such a question,

economists often use linear regressions, where the output is easily interpretable and can be

tested for significance. While, with neural networks, it is extremely complicated, or even

sometimes impossible to understand which predictors are important for the generated

output and to what extent. Given that all the calculations happen in a so-called hidden
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layer, making causal inference results in a Herculean task.

2.1.3 On Empirical Asset Pricing Via Machine Learning

In part, this paper is based on the Empirical Asset Pricing Via Machine Learning article

by Gu et al., 2020, where they look at forecasting excess returns by using multiple

machine learning methods, both linear and nonlinear. The authors in this article show

the promising performance of non-linear predicting methods on the empirical asset pricing

task. Gu et al., 2020 research focuses on showcasing that neural networks outperform any

other kind of time-series forecasting model by achieving the best monthly out-of-sample

prediction performance. Furthermore, they use a rich group of predictors containing 94

characteristics per stock and 8 common macroeconomic variables. Table 2.1 shows that

neural networks achieve a better-predicting performance for the firms in the top 1000

ordered by descending market value of equity (log).

Table 2.1: Results from Gu et al., 2020 (as percentage of out-of-sample R2)

NN1 NN2 NN3 NN4 NN5

Top 1000 0.49 0.62 0.70 0.67 0.64
Bottom 100 0.38 0.46 0.45 0.47 0.42

These results seem to support our idea that modeling a richer environment in terms of

the count of variables, is beneficial to prediction performance.

2.2 Theoretical Development

The fundamental theory behind this research is that asset prices essentially constitute an

aggregate representation of parameters, potentially adding to thousands or even millions.

These parameters may manifest in multiple forms, ranging from financial ratios, such as

earnings per share (EPS), to geopolitical news, social media posts, rumors, among many

other factors. The task of modeling all these parameters, discovering their interactions,

and determining their respective weights would essentially mean solving the entire financial

market—a rather implausible feat. Nevertheless, we can test this theory by employing a
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simplified approach in our model. Gu et al., 2020 show that by applying modern machine

learning to the asset pricing field, through empirical risk premium forecasting, they are

able to achieve outstanding results. Moreover, compared to traditional asset pricing

research, they use a significantly higher amount of parameters.

We argue that the incorporation of a greater number of predictive parameters into neural

networks will result in better-performing models for asset pricing. In line with our objective

to test this hypothesis, we will largely adhere to the methodology outlined in Gu et al.,

2020, with the main modification being the expansion of variables utilized to forecast the

monthly excess return for individual stocks. This approach establishes a ceteris paribus

condition, allowing us to observe the impact of our theory on the prediction performance.

While maintaining the core methodology, some minor adjustments may be necessary, as

Gu et al. designed and processed their data with a different focus, including the testing of

linear forecasting methods. However, we will refrain from exploring such methods, as their

findings indicated their limited efficacy when applied to large input vectors. The minor

variations will be elaborated upon in the forthcoming data and methodology section.

The theoretical parameters can take multiple forms, and adding any significant amount of

them, we believe, may increase the out-of-sample R2. However, due to the impracticality of

obtaining millions of parameters, the key question arises: which set of pertinent parameters

should be incorporated to broaden the input? The economic background section of this

chapter underscores a notable shift in the macroeconomic landscape, as the Federal

Reserve, the architect of the economy, envisions a departure from a low-interest-rate

paradigm toward a more intricate macroeconomic scenario. Therefore, we consider it

timely and relevant to expand the input vector using macroeconomic parameters up to a

total of 610 predictor variables, that is, close to six times the amount of inputs employed

in Gu et al., 2020.

Hence, our initial hypothesis is formulated as follows:

H1: The inclusion of a larger count of macroeconomic variables in addition to the stock

characteristics, produces a better prediction performance.

We assume that an expansion of the input vector dimensions is a sine qua non of better
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prediction results. However, we are also interested in understanding to what extent does

each one of these new variables affect the outputs from the model. In a way, one may

correctly describe our goal as looking inside the black boxes. We may do so by calculating

the marginal contribution of each feature across all possible scenarios. This approach

helps in expanding our understanding of asset pricing, potentially revealing unexpected

parameters that have not been thoroughly researched and challenging the significance of

others thought to be more pivotal. As of the resulting importance of our predictors, one

may be able to learn from them and when further expanding our theory make a more

educated choice on which new variables to include.

One important consideration for future research is the potential variability in the prediction

power of variables based on the timing of the prediction. Meaning that certain variables

perceived as highly significant may experience a notable reduction in prediction power

depending on whether the prediction is made during periods of recession or expansion,

and vice versa.

The aforementioned leads us to formulate the following hypothesis:

H2: Some variables may have a larger prediction power than others, these may vary in

periods of recession and expansion.

We hope that the outcomes of this hypothesis will not only contribute to academic

understanding but also offer practical guidance. By discerning the differential impact of

variables in different economic phases, investors and policymakers can make more informed

decisions. This strategic insight may help in monitoring key economic parameters and

formulating positive-sum strategies, fostering better outcomes in both financial markets

and macroeconomic policy development.
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3 Data

The following chapter depicts the data for which this research is based, and the methods

used to obtain them. Furthermore, we give insights into the sampling procedure and train

test split.

The data used in this paper and described below is open-sourced and freely available at

this Hugging Face repository.

3.1 Financial Data

The financial data consists of stock predictive characteristics based on extensive stock

returns literature, and excess returns. Since the hypothesis consists of benchmarking on

the existing research on machine learning applied to empirical asset pricing, we use the

exact same predictive characteristics used in Gu et al., 2020. A total of 98 characteristics

are used, including industry, market capitalization, and cash position, among many others

(a total overview of the predicting characteristics can be found in the Appendix A). The

majority of the characteristics are made available to the public after some delay. To

prevent forward-looking bias, the dataset is built under the assumption that monthly

attributes are delayed by a maximum of one month, quarterly attributes by at least four

months, and annual attributes by at least six months. Therefore, when predicting returns

for month t+1, we utilize the most recent monthly attributes available at the end of month

t, the most recent quarterly data up to the end of month t4, and the most recent annual

data up to the end of month t6. The returns are extracted from the CRSP database, and

the 3-month Treasury-bill rate is used as a proxy for the risk-free rate.

3.2 Macroeconomic Data

The main pillar of our paper consists of understanding the effect of macroeconomic

indicators on individual stock excess returns. In order to achieve the aforementioned,

we retrieve the 128 monthly updated variables described in the FRED-MD article by

McCracken and Ng, 2016 which can be grouped into the following groups: output and

income, labor market, consumption and orders, orders and inventories, money and credit,

https://huggingface.co/datasets/juanberasategui/Master_Thesis_Data/tree/main
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interest rate and exchange rates, prices, and stock market. For each variable in the

macroeconomic data, is either shown in nominal terms, log transformation, change, first

or second difference, or percentage change(an overview of all the indicators and the

transformations can be found in Appendix A).

Furthermore, we build three new variables for each one of the 128 base predictors, one for

the nominal change with a month lag, another for the nominal change with a quarter lag,

or 4 months, and lastly, a variable describing the yearly change, or 12 months. We do

this to add more information to the macroeconomic predictors since most of them grow

consistently from 1960 until 2021, but we believe that the magnitude of the change is

relevant to our goal of predicting excess returns.

∆i,1 = Xi,t −Xi,t−1 (3.1)

∆i,4 = Xi,t −Xi,t−4 (3.2)

∆i,12 = Xi,t −Xi,t−12 (3.3)

Moreover, adding the nominal change in each variable adds background to the model

without increasing its architecture’s complexity, since our feedforward neural network will

be able to access information from the past, although limited, which otherwise would have

only been possible by using bi-directional ANNs such as recurrent neural networks (RNN).

Consequently, the total macroeconomic set is composed of 512 macroeconomic variables.

Below we showcase an example of a variable, in this case, the Real Personal Income (RPI),

by its nominal value across all dates in our dataset, and the monthly, quarterly, and

yearly change. Figure 3.2 shows that by including the 1,4, and 12-month changes to each

variable we get an approximately Gaussian distribution positively skewed while maintaining

outliers. Achieving this distribution improves the learning results and significantly fastens

calculations (Sola & Sevilla, 1997). .
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Figure 3.1: Example of a macroeconomic variable with its monthly, quarterly, and yearly
change

Figure 3.2: Distribution of a macroeconomic variable with its monthly, quarterly, and
yearly change
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3.3 Data Split

Once the financial and macroeconomic data are merged together, the resulting dataset

consists of 4,078,827 observations and 610 columns. Afterwards, we build two data sets,

one for large market value stocks (Top 1000) and the other one for low market value stocks

(Bottom 1000). The procedure to build these datasets consists of sorting the stocks by

descending market capitalization on a monthly basis and taking the 1000 first stocks, for

the first dataset, and the bottom 1000 for the next ones. Each of the subgroups consists

of 720021 observations.

.

Figure 3.3: Chronological Data Split

In order to avoid look-ahead bias, we run a chronological train-test split for each dataset,

which consists of making two datasets, one with which we will train the model, and adjust

the model (the train set), and one with which we will "hide" from our model and will then

be used for evaluating the predicting capabilities of our model (the set). We choose a split

of 75/25 then we divide the train set into train and validation, so at the end, 50% of the

data will be used in the train set, and 25% for both the validation and test set. This split

is different from the one used by Gu et al., 2020, and was chosen deliberately in order to

include the 2007-2008 great recession in the test sample while maintaining a meaningful

size for all sets. Table 3.1 closely examines each one of the recessions appearing in our

sample, its duration, and its belonging in the data split.
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Table 3.1: Recessions included in our datasets. (Hall, 2003)

Peak Month (Start) Trough Month (End) Duration (Months) Set

April 1960 February 1961 10 Train
December 1969 November 1970 11 Train
November 1973 March 1975 16 Train
January 1980 July 1980 6 Train
July 1981 November 1982 16 Train
July 1990 March 1991 8 Train
March 2001 November 2001 8 Validation
December 2007 June 2009 18 Test
February 2020 April 2020 2 Test

3.4 Standardization

Data scaling is crucial to machine learning problems, and makes it easier for the models to

generalize on new data. It is even more important when the data at hand are time series

from a large range of years with highly fluctuating values. Furthermore, neural networks

tend to ignore small values if they come together with other values, therefore, making the

process of scaling essential to our dataset. For this task, we choose standardization as our

method for scaling the data which works by subtracting the mean of the variable column

µ to each value x and dividing by the standard deviation of the column σ. To implement

it, we use the function StandardScaler() from the Scikit-learn package. By standardizing

the data, each variable will have a mean of 0 and a standard deviation of 1.

z =
x− µ

σ
(3.4)

This stage of data standardization represents one of the previously mentioned deviations

from the methodology outlined in the Empirical Asset Pricing via Machine Learning

paper. Gu et Al. describe their scaling method as ranking their variables period-by-period

and mapping this rank to a [-1,1] interval. Our method of standardization, however, has

the benefit of maintaining consistency of scale, which is particularly important when

working with algorithms sensitive to the scale of variables, such as gradient descent Fei

et al., 2021. Consequently, we believe that when working with neural networks only,

as opposed to Gu et al., 2020, one may rather use z-score standardization. Moreover,
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our chosen method of standardization is particularly well-fitted to work with variables

measured in different units. Therefore, when working towards testing our theory of asset

prices as aggregates of millions of different parameters, one may acknowledge the benefits

of this method.
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4 Methodology

In this chapter, we explore the theory back the methods used in this paper. First, we look

at the economic methodology, in the sense of what is it that we are trying to answer, and

what it means from an economic perspective. Then, we cover the methodology behind

neural networks and their multiple parameters. Lastly, we look into how the theory is

applied to our problem.

4.1 Economic Methodology

4.1.1 Risk Premiums

The goal of this research piece is to expand the asset pricing knowledge of the asset pricing

field. This goal is inherently of an economic nature. Our plan is to achieve this by finding

a way to predict risk premiums. In finance, we have the central notion that risk goes hand

in hand with return, and investors must receive compensation when taking risks. Risk

premiums can also be understood as conditional expected returns in excess of the risk-free

rate. That is, in order to find the risk premium of an asset, we subtract the risk-free rate

from its expected return. The risk-free rate represents an investment without risk, United

States Treasury Bills are commonly used as a proxy for the risk-free rate, and depending

on the prediction period (in our case monthly), one may use bills with longer or shorter

bill maturities.

RPi = E(Ri)−Rf (4.1)

The risk premium is a conditional price on risk, it is conditional on millions, or potentially,

an infinite amount of factors F (or information). Some of these factors include, but are

not limited to, news, expectations, or social media posts. Each market participant may

have its own expectations or understanding of these factors, and most may not even take

into account a fraction of them (Damodaran, 1999). As previously described, the market

works as an aggregator of expectations to form the risk premium.
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RP = E(Ri,t+1|Ft) (4.2)

The field of economics tries to uncover causality, and therefore, asset pricing economic

models, try to understand which economic mechanisms or equilibria, cause the F parameter

in our equation. Consequently, when looking back at our hypothesis, we believe that

the inclusion of more macroeconomic variables will make a better approximation of the

market’s information aggregate.

4.1.2 Recessions

Recessions or contractions, form part of the business cycles, they start at the peaks and

end at the trough and can be described as a negative fluctuation in the aggregate economic

activity of a nation. Usually, the measure of two consecutive quarters with negative

GDP is used as to identify a recession period. However, since the time horizon for this

thesis lies on a monthly basis, the definition of recession coined by the National Bureau

of Economic Research (NBER) seems more relevant: a recession involves a significant

decline in economic activity that is spread across the economy and lasts more than a few

months (Hall, 2003).

As to what can be interpreted by economic activity, the NBER cites alll personal income

less transfers, non-farm payroll employment, employment as measured by the household

survey, real personal consumption expenditures, wholesale-retail sales adjusted for price

changes, and industrial production, all of which are included in our macroeconomic

predictor variables.

4.2 Technological Methodology

4.2.1 Neural Networks

As its name hints, a neural network (NN) is a mathematical representation of the structure

and communications of biological neurons (Pohl, 2023). The popularity of neural networks

has exploded in the last decade due to their outstanding performance in prediction

problems. NNs are said to be non-linear, meaning that the network is capable of accurately
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forecasting results that deviate from a linear or straightforward trajectory. Moreover, these

methods have been able to prove the practicality of the universal approximation theorem,

in part thanks to the recent advances in computing power (Higgins, 2021). This means

that neural networks, as universal function approximates, are capable of predicting any

non-linear existing function, including the risk premium function (4.2). Neural networks

are composed of three different types of layers which are: the input layer, hidden layers,

and output layer. Each one of these layers is formed by nodes or artificial neurons. A

neural network can be classified as deep or shallow depending on the number of hidden

layers in its architecture.

Every layer in a neural network is formed by nodes, and then every node is connected to

all other nodes of the following layer. A node works by taking a vector of inputs X, these

inputs are received directly from the data (in the case of the nodes in the input layers)

or are the output from all other connected nodes. Inside each node, we have a vector of

weights W, an activation function f, and a bias b (Pohl, 2023). Then, the node produces

an output y, by producing a sum of the product of each input with its corresponding

weight, and after that, the bias is added to the sum. Then, the final number is passed

through the activation number. Equation (4.4) shows this process. Finally, the output is

passed into the nodes of the following layer, and the process repeats, unless it is the final

node on the output layer, which will then be the final prediction.

X =


x1

x2

...

xn

 W =


w1

w2

...

wn

 (4.3)

y = f
(
b+XT ·W

)
(4.4)

The weights are parameters determined during the training process of the neural network

and represent the importance that the neural network assigns to each one of the inputs.

Consequently, the weights control how much influence each node has on the following
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ones. The bias parameter plays an important role in the node, it is a constant added to

the product of weights and inputs before being passed through the activation function,

and it represents the node’s propensity to activate by shifting the activation function

towards the left or right (negatively or positively, respectively). The activation function

consists of a mathematical function that can take multiple forms depending on the layer

and the type of prediction. whenever the node is not in the output layer, the activation

will usually be non-saturated,(e.g. rectified linear unit (ReLU)) which gives the network

the property of non-linearity and facilitates convergence (Xu et al., 2015). However, if it

is the last node (output layer), the activation function will depend on the prediction, for

example, if the target variable is a class, a sigmoid activation will be used, or in our case,

predicting floats, a linear activation, or no activation will be used.

Figure 4.1: Examples of Activation Functions (f )

The number of nodes in the input layer is dictated by the shape of the predictive variable,

equalling a node, or neuron, per variable, which will subsequently process the data and

pass it through to the hidden layers. Another important characteristic of the input layer

of an artificial neural network is connectivity, meaning that each node is fully connected

to each of the subsequent nodes in the hidden layer, Figure 4.2 shows this. Regarding the

activation function, which we will cover further in this chapter, it is relevant to specify

that in most cases, input layers do not have activation functions. Then, depending on the

number of hidden layers present in a model, there exist deep neural networks, for models

with more than one hidden layer, and shallow neural networks otherwise. The deeper

the network the better the capacity of extracting hierarchical features and relationships

from the data, although by adding more layers, one also increases the risk of overfitting

(Robles Herrera et al., 2022). Also, depending on the number of nodes per hidden layer,
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we can classify hidden layers into narrow or broad. The more neurons on a layer, the

higher the capacity of a network to learn details from the data, at the expense of a higher

computational complexity. Furthermore, by adjusting the weights, the hidden layers serve

as feature extractors and transformers, where most of the learning happens in the network.

Lastly, the output layer is where the information converges and a prediction is given. The

activation, here is dependent on what the prediction problem consists of.

Figure 4.2: Topology of a Neural Network

When considering all of the nodes in every layer of the neural network, a neural network

can be represented as one function of a vector of inputs X with a single output y.

y = F (X) (4.5)

where

F = {f1, f2, . . . , fn} (4.6)

Once the topology of the neural network and its width are specified, one follows up by

selecting the data relevant to the goal. Ideally, one splits the data set into three different

sets, train, validation, and test. The train set is the one on which the network learns, it is

also, usually, the largest set. Then another set, the validation set, is selected and used for

evaluating the trained models through each iteration. Lastly, the test set, should be held
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out from the process, until the very end when the model will not be further trained. This

test set is what is used to report model performance (Bai et al., 2021). Relevant to this

topic, the term overfitting was mentioned and is relevant to this split. The term itself is

used when a model is not able to generalize what it learns in the training set to data that

it has not yet seen, or the test set (Ying, 2019). Effectively, when training a model, one

would see that it overfits when the performance scores look great in the training set but

not so much in the out-of-sample data.

Regarding performance scores, The concept that showcases how the model learns is called

the loss function. The loss function L measures how bad a model is, or how far off is

each prediction F (X) from the real value y that is being predicted (Pohl, 2023). There

are multiple loss metrics to measure the learning ability of a model, some tailored to the

prediction problem and some more general. Some examples of loss functions and associated

use cases are, mean square error (MSE) and regression problems, or binary-crossentropy

for binary classification problems. The concept that showcases how the model learns is

called the loss function.

For an individual output, we have:

Lossy = L(y, F (X)) (4.7)

for a vector of target values Y

LossY = L(Y, F (X)) (4.8)

Since the loss is a measure of prediction error for a model, it creates an optimization

problem to minimize it. The most commonly used algorithm is gradient descent, which

works by iteratively adjusting the weights W and biases b in a way that minimizes the

function’s gradient (-∆f ), constituted of a vector of partial derivatives, representing the

direction and magnitude, in which one may update the parameters in order to decrease

the loss value.

−∇fi =

(
− ∂fi
∂x1

,− ∂fi
∂x2

, . . . ,− ∂fi
∂xn

)
(4.9)
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The process of gradient descent starts by selecting the learning rate hyperparameter

λ, which determines how big of a change to the weights and bias we make for each

minimizing step we take. The choice of this parameter has a large effect on training time,

or convergence time, and training stability (Liu et al., 2019). Therefore, the simplified

algorithm for gradient descent consist of firstly, choosing a random value for all parameters

θ, composed of weights and biases for each neuron. Then, choosing the learning rate, and

specifying the amount of iterations for calculating the gradients, or an objective, such as

the loss not decreasing.

θ = {W1, b1;W2, b2; . . . ;Wn, bn}

Gradient descent is a fundamental optimization technique to deep learning porblems.

However, it has some limitations, such as sensitivity to the choice of the learning rate

and slow convergence. To address these issues, more advanced optimization algorithms,

such as Adaptive Moment Estimation (Adam), have been developed. Adam works by

dynamically adjusting the learning rates for each parameter during training, effectively

accelerating convergence and increasing overall stability(Kingma & Ba, 2014).

Adam works by randomly initializing the model parameters θ. Then, it maintains two

moving averages, or moments, for each parameter, the first estimates mt, which captures

the mean of the gradients, and the second estimates vt, which represents the uncentered

variance of the gradients. For each iteration, Adam will calculate the gradient of the loss

∇θLoss(θ)Y, and update the moments. To prevent initialization bias, Adam uses two

hyperparameters β1 and β2. Using these bias-corrections techniques as scaling tools, then
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the optimization algorithm uses the bias-corrector parameters to scale the moments and

get bias-free moments estimates, m̂t and v̂t, that will ultimately be used for updating the

parameters (Kingma & Ba, 2014).

When running any of the algorithms above, the iterations are strictly dependent on two

hyperparameters, batch size and epoch. The prior refers to the amount of data the model

uses to calculate the gradient and update parameters θ, while the latter consists of the

number of times that the whole dataset is used in the training process. As hyperparameters,

the choice for the epochs and batch sizes is specific to the task and the computing resources

available at hand. The usual tradeoff between training time and convergence is relevant

to this choice (Brownlee, 2018).

iterations =
(

N

batch size

)
· epochs (4.10)

Where:

N : Size of the training dataset

While training the model, one has to monitor the loss in the validation test (the data that

the model does not use for gradient descent) for each epoch, in order to avoid overfitting,
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which usually shows the training loss decreasing consistently while the validation loss

increases. Moreover, one may also include the metric on which the model will then

be evaluated. This metric is dependent on the model and task (e.g. R2 for regression

problems, or accuracy for classification).

For this research, considering that predicting risk premiums is a regression problem, we use

the R2 metric to evaluate our models. R2 as a measure of goodness of fit, it calculates the

proportion of data in the outcome variable which is explained by the predictive variables

X (Miles, 2005). The coefficient of determination, or R2, is then calculated by subtracting

to 1 the result of the sum of squares of residuals over the total sum of squares. Where Yi

is the vector with the predicted output from the model, Ŷi is a vector with the actual

values, and ȳ the mean of the actual values.

R2 = 1−
∑n

i=1(Ŷi −Yi)
2∑n

i=1(Ŷi − ȳ)2
(4.11)

4.2.2 Regularization

In instances where overfitting arises during the training of a neural network, various

methods are available to address this issue and enhance generalization. These approaches,

collectively referred to as regularization methods, constitute a substantial area of ongoing

research in the field of deep learning. In this section, we will discuss a few methods

relevant to our research.

Firstly, there is L1 regularization, also known as the least absolute shrinkage and selection

operator (LASSO). The primary objective of this method is to penalize large values of

model weights, denoted as Wi, by incorporating the absolute values of these weights

into the loss function. The parameter γl1 value, acting as a scalar, governs the trade-off

between fitting the data (minimizing the original loss) and maintaining sparse or zero

model weights. A higher γ intensifies the regularization effect, driving weights towards zero

(Nusrat & Jang, 2018). Notably, when opting for a substantial γl1 value, L1 regularization

facilitates feature selection by setting numerous weights to zero. This may become a

problem if the l1 parameter is too high, which can then lead to a model that is overly

simplified. This is because a high regularization parameter intensifies the effect of driving
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the model weights towards zero. As a result, more coefficients are set to zero, leading to a

sparser model. If this happens, one may encounter an underfitting model, meaning that

the model is not capable of learning at all from the training data Mueller and Groble,

2023.

LossY = L(Y, F (X)) + γl1

n∑
i=1

|Wi| (4.12)

Furthermore, a similar regularization method is Ridge, or L2, regularization. The goal of

this method is similar to L1, in that both penalize large weight values by adding them to

the loss function. However, instead of encouraging sparsity or a value equal to zero for the

weights, l2 works by encouraging the weight to be small but not necessarily zero, resulting

in more complex models, in which all variables influence the output. Furthermore, Cortes

et al., 2012 research shows that Ridge regularization seems to work best for complex

regression problems with a rich environment of variables such as sentiment analysis since it

will be more likely to maintain the density, described by R. C. Moore and DeNero, 2011 as

the proportion of feature weights in a model that are nonzero, than LASSO regularization.

LossY = L(Y, F (X)) + λl2

n∑
i=1

W2 (4.13)

Finally, the last regularizer relevant to this research consists of batch normalization. This

technique is quite different from the aforementioned. L1 and L2 regularization focus

on modifying the loss function to control the magnitude of model weights, but batch

normalization operates at the layer level and has a different purpose (Nusrat & Jang,

2018). This method provides faster and more stable training in the neural network. Batch

normalization works by stabilizing the distributions of the layer inputs, by adding layers

that control the mean and variance of the distributions (Santurkar et al., 2018). Then,

after normalization, this method uses two learnable parameters, gamma γ, and beta β.

These parameters allow the model to learn the optimal scale and shift for the normalized

values, giving the network the freedom to undo the normalization if necessary.

For xi in X:
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x̂i =
xi − µi√
σ2
i + ε

(4.14)

BatchNorm(xi) = γix̂i + βi (4.15)

4.2.3 Ensemble Neural Networks

With a fundamental understanding of the theory behind neural networks, and some of the

many methods available to achieve great prediction performance, we have all we need to

jump into the last part. Here, we discuss ensemble neural networks, and more specifically,

averaging ensemble networks.

Ensemble neural networks refer to the technique of grouping different neural networks

trained on the same task to achieve more stable predictions (Zhang et al., 2020). Various

ensembling techniques exist, some of these techniques are stacking, voting, or weighted

ensembles. The main idea behind ensemble networks is that depending on the seed

used, a neural network will produce some results, as the seed is what dictates the initial

parameters θ. Given this, some neural networks will perform better than others, and some

may overfit while others do not, and all this on the same data and with the same topology.

An ensemble of multiple networks solves this by training multiple models and combining

its predictions, reducing the variance of the predictions and many times achieving better,

and more consistent results(Li et al., 2021).

An ensemble network method relevant to our research is the averaging ensemble. Despite

it being relatively simple, this ensemble method provides the aforementioned benefit of

reduced prediction variance. It does so, by summing the predictions Y from each one of

the models and then dividing the vector with the predictions with the total amount of

models in the ensemble n. Averaging ensemble networks have proven their effectiveness

having been used in multiple research fields and deep learning challenges such as the

Detection and Classification of Acoustic Scenes and Events (DCASE) by Huang et al.,

2019

Ŷensemble =
1

n

n∑
i=1

Yi (4.16)
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Beyond averaging ensembles, other ensemble strategies have been employed in the context

of neural networks, such as voting, weighted, and stacked ensembles. Voting ensembles

involve selecting the prediction from the network with the highest confidence score.

Weighted ensembles assign different weights to each network’s prediction based on their

performance. Stacked ensembles incorporate the outputs of multiple networks as input

features for a subsequent layer, further enriching the prediction process.

4.2.4 Shapley Values

Neural networks are commonly characterized as "black boxes" and this description

holds truth in many cases when looking at neural networks alone. In linear regression,

determining the significance of an independent variable can be relatively straightforward by

calculating its P-value. However, interpreting neural networks is a much more complex task

given the presence of hidden layers, which introduce a higher level of complexity, making

it challenging to understand the relationships among variables and their importance to

the outputs. Consequently, traditional methods like P-values may not be applicable in the

same straightforward manner for neural networks. This complexity becomes an obstacle

to our understanding of how individual variables influence the network’s predictions.

As economists, we are deeply interested in causality. Therefore, the need to find a method

to shed light on the black boxes. One such method is the use of Shapley values. The

concept of Shapley values originates from the field of game theory. We can imagine a

scenario where a group of players forms a coalition to achieve a common goal. However,

not all players contribute equally to this goal. The question then arises: how should

the rewards for achieving the goal be distributed among the players to ensure that the

cooperation continues? This is where Shapley values come into play. They provide a way

to fairly distribute the rewards based on each player’s contribution (Fadel, 2022). Drawing

parallels to the field of neural networks, we can think of the variables X as the players

forming a coalition to achieve the outcome y. Just like in the game theory scenario, not

all variables contribute equally to the outcome. The Shapley values, in this context, help

us understand the contribution of each variable towards the outcome. Consequently, they

help us quantify the importance of each variable in the prediction of the outcome.

Another way one may describe Shapley values of a variable, or reward for a player, in
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game theory terminology, consists of taking the average of the variable/player marginal

contributions over all possible orders of coalition formation. We may define the marginal

contribution of a player to a coalition as the value of the coalition with the player minus

the value of the coalition without the player. Another benefit of using Shapley values is

that it enables contrasting explanations, meaning that it provides the flexibility to contrast

a prediction with a more specific subset of data or even with an individual data point

(Molnar, 2023). This allows for a more targeted examination of the factors influencing

a specific prediction, which may be particularly useful when looking into the different

predictions in recessions and expansions.

Looking into how to calculate the Shapley value φ for variable xi in vector X, first one

calculates the marginal contribution of a player or feature, that is, how much does a model

F with a set of variables S, including variable xi, differs against a model with a set of

variables S, without the variable for which the Shapley value is being calculated. Then,

one may calculate the weight importance by calculating the factorial of the set |S| and

multiplying it by the factorial of the number of remaining variables in X after excluding

those in set, or coalition, S, and subtracting 1 for the variable xi and dividing over the

factorial of the total amount of variables |X|!. Lastly, we take the average summing over

all possible coalitions S that can be formed by taking subsets of the vector of variables

X excluding xi and then dividing over the total number of possible permutations(or

coalitions) N in which the variables X can cooperate (Fadel, 2022).

φxi
(X) =

1

N

∑
S⊆X\{xi}

|S|!(|X| − |S| − 1)!

|X|!
[F(S ∪ {xi})− F(S)] (4.17)

4.3 Research Methodology

This part of the chapter covers all the steps taken to achieve the results showcased in the

next chapter. It is meant to be a guide to replicate the results and understand all the

choices made. First, we introduce the software used in the project and then describe how

we achieved the results for each of the hypotheses.
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4.3.1 Software

This research can be characterized as a deep learning project applied to an economic

problem. As with any other deep learning project, where neural networks and large

datasets are central, the computation needed is quite large. To analyze and process the

data we use Python on Google Colab, In this step, a CPU with 51 Gigabytes of RAM

is used. On the same runtime, we build the neural networks and the calculation for the

Shapley Values. The ANN interface used in this paper is Keras, a high-level library, which

in turn acts as an interface for Google’s TensorFlow library (Pohl, 2023).

4.3.2 Answering Hypothesis 1

Regarding the first hypothesis in our research, the inclusion of a larger count of

macroeconomic variables in addition to the stock characteristics, produces a better prediction

performance, we are looking to benchmark our results with the ones by Gu et al., 2020

showcased in Table 2.1. To do so fairly, we plan to use a methodology as similar as

possible to the one described in their paper, with only some small changes, some of them

described in the previous sections.

Firstly, we have five different neural networks, each of them with a different amount of

hidden layers, ranging from 1 to 5. One difference between our research method and Gu

et al., 2020 is that we choose wider layers, with the first layer after the input layers always

having 256 neurons. The reason behind this choice is that our dataset is richer in terms

of predictors, resulting in more interactions and relationships among the variables that

the models will have to take into account. Consequently, a greater number of neurons

per layer is necessary. Each consecutive layer contains the amount of neurons from the

previous layer divided by two. Therefore, our 4-layered neural network, for example, will

consist of 256 neurons on its first hidden layer, 128 on its second, 64 on the third, and 32

on the last layer, altogether totaling 480 neurons.

The input layer has as many neurons as variables X in the dataset. We use a rectified

linear unit (ReLU) activation function for each one of the hidden layers. After each dense

hidden layer, we add a batch normalization layer, with as many inputs as neurons in the

prior hidden layer. Finally, for the output layer, we incorporate a single-neuron layer
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with L1 and L2 kernel regularization. Given that we are tackling a regression problem,

there is no activation function applied in this layer. The rate across all models for Lasso

regularization (L1) is 0.001 and 0.1 for Ridge regularization (L2). We keep L1 to a

minimum since we are looking to include as many variables as possible in predictions, and

a higher L1 would potentially set some weights to 0 effectively omitting some variables.

Since L1 is small we increase L2 to achieve the benefits of regularization.

Table 4.1: Depth and Size of Each Model

NN1 NN2 NN3 NN4 NN5

Hidden Layers 1 2 3 4 5
Parameters 157697 190977 199425 201601 202177

Then, for the loss function of the model we choose mean squared errors (MSE), which is

inversely correlated with R2, that is, when we train the model, we will be minimizing the

MSE and consequently, maximizing the coefficient of determination. We use the Adam

optimization algorithm, together with a learning rate of 0.01.

MSE =
1

N

n∑
i=1

(Ŷi −Yi)
2 (4.18)

Furthermore, when choosing the iterations, we use a relatively large batch size parameter

of the length of the train dataset over 50, and 200 epochs. Therefore, looking at Equation

(4.10), we have a total of 10000 iterations. The amount of iterations, together with the

learning rate, may seem slightly high, but this is adjusted for by two callbacks. A Keras

callback consists of an object that can perform actions at different stages of the training

process (Keras, 2023). They are a powerful form of customization. The first callback used

is learning rate shrinkage, which works by reducing the learning rate as the gradient gets

closer to 0, that is, whenever the optimization is nearing convergence. Then, regarding the

number of iterations, we use the early-stopping callback which functions by stopping the

training whenever the monitored metric stops improving. The metric chosen to monitor

is the validation loss, and then we choose patience, or the number of epochs without
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improving in the monitored metric equal to 5. Therefore, the total iterations may vary

from model to model, but it will rarely run through the 10000 maximum.

Regarding the ensemble networks, we use the same ensembling methods as in the Gu

et al., 2020 paper, by initializing the same model on different seeds, and then summing the

prediction vectors and dividing it by the amount of models in the ensemble, as showcased

in Equation (4.16). Since the number of models used in the paper is not specified, we

decided to use 30 models, per ensemble. When reporting the R2 results for each model,

we chose the monthly out-of-sample stock-level prediction performance (R2) equal to the

30-model ensemble value.

4.3.3 Answering Hypothesis 2

When looking to test our second hypothesis whether some variables may have a larger

prediction power than others and if these may vary in periods of recession and expansion,

it will involve looking inside the "black boxes". We will use the predictions from the models

above and divide those predictions into two groups, one with predictions during recessions

and another one with predictions during expansion periods. For each group, we will

select a sufficiently large representative sample of the data population by simple random

sampling, and calculate the absolute mean Shapley values for each input xi. Absolute,

because a large negative Shapley value is as important as a large positive one, and mean

because different dates and stocks will have different values.

To understand the importance of each variable as a percentage of the prediction output,

we will assign a scaled value to each variable based on the mean absolute Shapley value,

with all scaled values adding up to 1. A benefit of Shapley values is that they allow for

Moreover, we will look into the most important variables for model output for each group,

that is, the variables with the highest absolute mean Shapley value, and then look at how

the groups of variables rank against each other, to infer what variables are important in

recessions and which ones are important in expansions. Then, we will add the scaled values

for the predictor groups for the purpose of seeing how the asset pricing models weigh the

variables during recession and expansion periods. Lastly, we look at the distributions of

the mean absolute Shapley values to grasp how relevant on average is each variable, and

to what extent some of our variables are redundant.



34

5 Analysis

In this chapter, we look at the results of the conducted research. Our goal is to showcase

them in depth from a descriptive matter. Then, in the next chapter, we will discuss them,

and draw conclusions.

5.1 Results For Hypothesis 1

Looking back to our first hypothesis, we are looking to see if the inclusion of macroeconomic

variables, in addition to the stock characteristic variables used in Gu et al., 2020, have an

effect on predictive performance measured in monthly out-of-sample stock-level R2. If so,

we would expect the R2 from comparable models to be larger than the one reported in

the Gu et al. paper. In the figure below, we show the summarized results that seek to

shed light on our hypothesis.

Table 5.1: Monthly out-of-sample stock-level prediction performance (percentage R2
oos)

NN1 NN2 NN3 NN4 NN5
Top 1000 Gu et al 0.49 0.62 0.70 0.67 0.64
Bottom 1000 Gu et al 0.38 0.46 0.45 0.47 0.42
Top 1000 3.19 2.92 3.06 2.37 2.34
Bottom 1000 1.62 1.57 1.32 1.21 1.12
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There are a couple of insights from the results above. Firstly, the most visible is the

difference in prediction performance in the models from the Gu et al. study compared to

the ones developed here. When looking at firms with large market equity (Top 1000) and

using the same target variables, we achieve an R2
oos of 3.19% for our best model, while the

benchmark reports 0.70% as their best result, that is, we report an increase of 355% in

monthly out-of-sample stock-level prediction performance. Along the same lines as the

large market value firms, the monthly out-of-sample stock-level prediction performance

result of the best for the low market equity firms achieved in our study (1.62%) represents

a 245% increase in performance compared to the benchmark (0.47%).

Another interesting insight, and common to the Gu et al., 2020 paper, is the significant

difference in prediction performance between large (Top 1000) and small (Bottom 1000).

Consequently, the erratic behavior of small stocks, based on low liquidity, as described

in the benchmark paper, seems to be supported by our results. However, the inclusion

of macroeconomic variables attains a better prediction of the risk premium behavior,

highlighting its importance.

Moreover, when observing the neural network topology, our models show that a shallower

neural network tends to produce better results, both when considering large and small

stocks, while Gu et al., 2020 results indicate that narrow and deeper (up to 4 hidden

layers) seems to give them better results. In this case, it is slightly more complicated

to reach an interpretation further than what is previously described in the methodology

chapter as the benefit of wide hidden layers when working with predictor-rich datasets.

Lastly, in the following figures, we show the percentage R2
oos prediction performance

achieved for each individual model, and for each ensemble model per neural network

topology. The results display an interesting property common to all topologies, consisting

of decreased variance of prediction performance when using ensemble networks. This

property shows a nearly stable prediction in all the neural networks, for ensembles

composed of over 20 individual models. While some of these individual models may

achieve better predictive performances in unique cases, when looking at using the model

without the ability to test, as we have done now, individual models are not reliable and

one should clearly implement ensembles.
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Figure 5.1: Individual and Ensemble R2
oos prediction performance: NN1 Model

Figure 5.2: Individual and Ensemble R2
oos prediction performance: NN2 Model
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Figure 5.3: Individual and Ensemble R2
oos prediction performance: NN3 Model

Figure 5.4: Individual and Ensemble R2
oos prediction performance: NN4 Model
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Figure 5.5: Individual and Ensemble R2
oos prediction performance: NN5 Model

5.2 Results For Hypothesis 2

When looking to answer the second hypothesis, we will be looking at a couple of concepts

from two different perspectives, recession periods, and expansion periods. For each one of

these perspectives and for each one of the model architectures, we analyze which of the

variables are the most important, by selecting the top 20 variables, based on the absolute

mean Shapley value. Then, we look into the importance of the different predictor groups

(output and income, labor market, consumption and orders, orders and inventories, money

and credit, interest rate and exchange rate, prices, stock market, and stock characteristics),

and will finish by evaluating the absolute Shapley value distributions across predicting

variables in order to understand whether all variables are equally valuable to the model.

In the previous hypothesis, we look at a divide between large and small firms, based on

the market value of equity. Here, however, we are interested in the distinction between

expansion and recession periods and will look at the results from those two different

perspectives. Distinguishing between these two economic periods allows us to expand on

our main theory. We now know that adding more variables results in better forecasting

performance, and following this, we hope to uncover the distribution of importance among

those variables. Moreover, the results will expand our understanding of the relevance of
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each part of the economy, as represented by the aforementioned groups, in expansion and

recession periods.

In the Figure below we can observe the 20 most important variables for each model for

the expansion periods, the mean absolute Shapley value is depicted in brown while the

scaled values, adding altogether to 1, are colored in grey. Then we specify the 20 most

common variables across the 5 groups.

Figure 5.6: Variable Importance In Expansion Periods (measured in scaled Shapley
value )
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Looking at the figure above we see that most of the variables are common to all the

different networks. In addition, going from shallow to deep topology, the concentration of

importance is at its highest for the shallowest network (NN1) with the most important

variable making up 2.6% of the output prediction, and at its lowest for the deepest network

(NN5) with the most important variable representing 1.5% of the output prediction.

The 20 most common variables in the above graphs are: 1-month change in S&P’s

Common Stock Price Index: Industrials (S&P: indust_change_1), 1-month change

in S&P’s Common Stock Price Index: Composite (S&P 500_change_1), short-term

reversal (mom1m), 1-month change in S&P’s Composite Common Stock: Dividend Yield

(S&P div yield_change_1), 1-month change in S&P’s Composite Common Stock: Price-

Earnings Ratio (S&P PE ratio_change_1), 1-month change in New Orders for Nondefense

Capital Goods (ANDENOx_change_1), 1-month change in All Employees: Mining and

Logging: Mining (CES1021000001_change_1), Dollar Volume (dolvol), 1-month change

in PPI: Metals and metal products (PPICMM_change_1), Bid Ask Spread (baspread),

1-month change in Volatility Index (VXOCLSx_change_1), 1-month change in New

Private Housing Permits: South (PERMITS_change_1), 1-month change in Industrial

Production: Residential Utilities (IPB51222S_change_1), 1-month change in Initial

Claims (CLAIMS_change_1), 1-month change in Crude Oil, spliced WTI and Cushing

(OILPRICEx_change_1), 4-month change in New Private Housing Permits: North East

(PERMITNE_change_4), Momentum Change (chmom), 4-month change in Reserves Of

Depository Institutions (NONBORRES_change_4), 1-month change in 5-Year Treasury

Rate (GS5_change_1), and 1-month change in 10-Year Treasury Rate (GS10_change_1).

The rest of the full description of the other variables showcased above but not among the

20 most common variables can be consulted in Appendix.

We see that among the 20 most common important variables for models predicting risk

premia in expansion periods, only 4 are variables from the Gu et al., 2020 study.

In the Figure below we can observe the 20 most important variables for each model for

the recession periods, the mean absolute Shapley value is depicted in brown while the

scaled values, adding altogether to 1, are colored in grey. Then we specify the 20 most

common variables across the 5 groups and discuss the differences with the variables on

the expansion period.
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Figure 5.7: Variable Importance In Recession Periods (measured in scaled Shapley value
)

The first thing one may observe is that the variable importance concentration trend, as

we saw in the expansion periods, continues to be present in recession periods. This may

be interpreted as being a neural network property (the deeper a topology the lowest the

concentration of importance (as in contribution to output value) in a variable. In the

case of recession, however, we do see a more exaggerated concentration, with the highest
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importance value of 3.7% from the shallowest network to the highest importance value of

2.4% in the deepest model.

When looking at the 20 most common variables in the graphs above, we find an overlap

of 14 variables with those variables that are most important in expansion, those being:

S&Pdivyield_change_1, mom1m, S&P:indust_change_1, S&P500_change_1,

PPICMM_change_1, S&PPEratio_change_1, CES1021000001_change_1,

dolvol, baspread, GS5_change_1, GS10_change_1, OILPRICEx_change_1,

CLAIMS_change_1, VXOCLSx_change_1.

Then the remaining 6 highly-important variables present in the top 20 in for recession

prediction, but not for expansion prediction are: 1-month change in 3-Month Commercial

Paper Minus Effective Federal Funds Rate Spread(COMPAPFFx_change_1),1-month

change in 6-Month Treasury Bill (TB6MS_change_1), 1-month change in Industrial

Production: Nondurable Materials (IPNMAT_change_1), 1-month change in Total

Business: Inventories to Sales Ratio(ISRATIOx_change_1), 12-month change in Trade

Weighted U.S. Dollar Index: Major Currencies (TWEXMMTH_change_12), and 4-month

change in 3-Month AA Financial Commercial Paper Rate (CP3Mx_change_4).

One interesting result is that despite the fact that the stock characteristic variables from

Gu et al., 2020 represent just 10% of the top 20 most important variables for any of the

periods, those 4 variables that we find among the most relevant are also found to be

the most relevant on the Gu et al., 2020 paper, from which we can then corroborate the

results.

In the following page, we showcase the cumulative scaled importance value for each one of

the groups of variables and for each different neural network model.
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We can observe some clear differences between periods of expansion and periods of

recession. In the prior, we see that the labor market contributes the most to the output,

up to over 18% in neural networks with 3 hidden layers. The variables, used in the Gu

et al., 2020 study, seem quite relevant to the study since they represent between 16 to

14% of importance, which is close to the percentage they represent over the total number

of predictors. Then, the least important group of variables for predicting risk premiums

are orders and inventories, and money and credit, both of them ranging a contribution

from 7% to 8%.

In recession periods, the labor market group of variables remains a significantly important

group to outcome prediction contribution, as a matter of fact, the contribution is even

higher than on expansion cycles. However, the most important group of variables in

downturn periods is interest and exchange rates, and by a large margin. Variables in

this group represent 17% of the output at its lowest percentage in the most shallow

neural networks while representing over 22% of the outcome at its highest for networks

composed of 3 hidden layers. This time, consumption and orders, together with orders and

inventories, and money and credit, are the groups that contribute the least to the output

predictions. An interesting phenomenon visible in recession periods is the concentration of

importance, meaning that the most important groups represent a much larger percentage,

while the least important groups have an even lower importance.

This table uncovers some clear dynamics in the pricing of assets depending on the

economic period. One important takeaway is the importance of stock characteristics. As

we have discussed, the field of asset pricing has focused on researching individual stock

characteristics, under the form of factor models. We now see that all things equal, the

relevance of such research, in terms of forecasting power, is considerably lower in periods

of recessions. Furthermore, we described the Federal Reserve as the pilot of the economy,

implying that it has the power to steer it. This claim is supported by our results, there is

an ample difference in importance in the Interest & Exchange Rates, that is, the main

tool of the Federal Reserve. Intuitively, the relevance of the Prices groups is higher in

recession periods than in expansions.
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Furthermore, we explore the descriptive statistics from the scaled absolute mean Shapley

values. Firstly, as the values are scaled, the mean is equal across economic cycles and

models. Then, however, the standard deviation is higher for recessions than expansion

periods and higher for more shallow models. The standard deviation in this context can

understood as the spread of the values, meaning that when weighting the variables, the

models do so less harmonically in shallower networks and recession periods. This can

be further proved by looking at the maximum values for the models. One hidden layer

network, which is the one with the highest prediction power, has the highest maximum

values as priorly seen in the importance tables, from which we may infer that the reason

they perform as well as they do, is because they are able to discriminate among important

and less important variables, and weight them accordingly. Moreover, when looking at

the interquartile range, or the spread between the 25% and 75% quartiles, the shallow

networks have the largest spread, and following the trend, recessions do as well. This

can be interpreted as another proof revealing the greater variability in importance among

variables in the predictor set.

Lastly, we observe an interesting phenomenon, we see that the percentage of importance

represented by macroeconomic groups in expansions is equal to 85.21% on average. At the

same time, the same measure in recession periods is 90.48% representing a 6.2% increase.

Therefore, according to these results, one may say that macroeconomic variables are even

more important in periods of economic recession.
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6 Conclusion

The theory on which we based our first hypothesis, the inclusion of a larger count

of macroeconomic variables in addition to the stock characteristics, produces a better

prediction performance, consisted of the representation of the market and its participants,

as an information aggregator. Meaning that the collectivity is capable of weighting and

inferring risk premiums from thousands, or millions of parameters. Until recently, the

models used for asset pricing have focused on finding a few relevant factors to predict

risk premiums. Our results prove that there is a benefit in expanding the amount of

predictors. We discussed that the prior focus on factor model pricing may be a result of

the techniques available, as shown in Gu et al., 2020, it is not possible to run regressions

with high dimensional vectors of predictor variables.

The results for the first part of our study seem to support our hypothesis. The fact

that the technical part of the study was designed to be as similar as possible to the

benchmark from Gu et al., 2020, was done to discard the possibility of the predictions

being superior as a result of the technologies used. The inclusion of our variables resulted

in a 355% increase in monthly out-of-sample stock-level prediction performance, achieving

an R2
oos of 3.19% for our best model predicting large market value equity stocks. When

predicting stocks with a small market value of equity, the performance increase against

the benchmark was nearly as high, at R2
oos of 1.62%. These results support the pattern

described by Gu et al., showing that stocks with small market value of equity are harder

to predict. They attribute it to erratic behavior based on low liquidity, based on our

theory we may describe it as fewer participants aggregating the information, translating

into less smooth predictions. Although not necessarily related to our theory, we find an

additional insight relevant to the technical part of the paper, highlighting the importance

of ensemble neural networks. Showing that the higher the amount of networks used in an

averaging ensemble, the lower the variance of the resulting predictions.

The second hypothesis, Some variables may have a greater prediction power than others,

these may vary in periods of recession and expansion, consisted of expanding our theory,

and shedding light into our forecasting models. We used Shapley values to understand

whether our hypothesis was correct. The results, seem to support the hypothesis since we
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see that not only do the variables themselves have different degrees of importance, but we

see that the degrees also change depending on the economic cycle.

We see that labor market and stock characteristics seem to carry the most importance, as

they result in having the highest impact on model output during expansion periods. We

then observe that the most important groups in recession periods are not the same as in

expansions, and what is even more interesting is that the main three groups in recessions,

interests and exchange rates, labor market, and prices, are extremely correlated to what

the Federal Reserve monitors during recessions, labor market and prices, and the tools it

uses to alter them, interest and exchange rates. Moreover, the results in this second part

show that stock characteristics’ importance is considerably smaller in recession periods,

displaying a pricing dynamic depending on the economic cycle.

These results are fascinating, they support the idea of market aggregators following

closely the variables relevant to Federal Reserve decisions. They also show the benefits of

using neural networks for pricing, proving that these methods are capable of weighing

information logically and reasonably according to what we would expect. Furthermore,

the insights we describe, challenge the view of neural networks as "black boxes", hopefully

giving place to more generalized adoption in their use in the field of economics.

6.1 Going Forward

In this research, the expansion of the predictor input vector was crucial to achieve higher

prediction performance. Based on the main theory behind our paper, this performance

could be even higher with an even richer input vector. Up until now, we have taken

into account macroeconomics and particular stock characteristics. However, many more

parameters relevant to the market aggregate exist. Some of these parameters for which

data is relatively accessible, include but are not limited to, news, social media discussions,

or speeches. Other parameters, may yet to be discovered. We believe the inclusion of such

variables in predictive models will not only increase prediction performance but may also

expand our understanding of asset pricing and economics in general.

Moreover, classifying neural networks as completely inscrutable models may no longer

be correct. We showed that the use of Shapley values is capable of shedding light

on how important each variable is for a model. Furthermore, with the increase of
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regulatory scrutiny over generative artificial intelligence, new techniques, such as the

ones described in the Decomposing Language Models Into Understandable Components

article by Anthropic, 2023, are being developed at an outstanding pace to further our

understanding of mechanistic interpretability of neural network models. As a result of

this, economists should reconsider their stance on deep learning methodologies, which in

many cases, has proven to be superior to conventional methods, while allowing us to infer

causality from its results.
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Appendices

A Variable Description

A.1 Macroeconomic Data

The column tcode denotes the following data transformation for a series x : (1) no

transformation; (2) ∆xt; (3) ∆2xt; (4) log (xt); (5) ∆ log (xt); (6) ∆2 log (xt). (7)

∆(xt/xt−1 − 1.0). The FRED column gives mnemonics in FRED followed by a short

description. The comparable series in Global Insight is given in the column GSI (McCracken

& Ng, 2016).

Table A.1: Group 1: Outcome & Income

id tcode fred description gsi gsi:description
1 1 5 RPI Real Personal Income M14386177 PI
2 2 5 W875RX1 Real personal income ex transfer receipts M145256755 PI less transfers
3 6 5 INDPRO IP Index M116460980 IP: total
4 7 5 IPFPNSS IP: Final Products and Nonindustrial Supplies M116460981 IP: products
5 8 5 IPFINAL IP: Final Products (Market Group) M116461268 IP: final prod
6 9 5 IPCONGD IP: Consumer Goods M116460982 IP: cons gds
7 10 5 IPDCONGD IP: Durable Consumer Goods M116460983 IP: cons dble
8 11 5 IPNCONGD IP: Nondurable Consumer Goods M116460988 IP: cons nondble
9 12 5 IPBUSEQ IP: Business Equipment M116460995 IP: bus eqpt

10 13 5 IPMAT IP: Materials M116461002 IP: matls
11 14 5 IPDMAT IP: Durable Materials M116461004 IP: dble matls
12 15 5 IPNMAT IP: Nondurable Materials M116461008 IP: nondble matls
13 16 5 IPMANSICS IP: Manufacturing (SIC) M116461013 IP: mfg
14 17 5 IPB51222s IP: Residential Utilities M116461276 IP: res util
15 18 5 IPFUELS IP: Fuels M116461275 IP: fuels
16 19 2 CUMFNS Capacity Utilization: Manufacturing M116461602 Cap util
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Table A.2: Group 2: Labor Market

id tcode fred description gsi gsi:description
1 21 2 HWI Help-Wanted Index for United States Help wanted indx
2 22 2 HWIURATIO Ratio of Help Wanted/No. Unemployed M110156531 Help wanted/unemp
3 23 5 CLF16OV Civilian Labor Force M110156467 Emp CPS total
4 24 5 CE16OV Civilian Employment M110156498 Emp CPS nonag
5 25 2 UNRATE Civilian Unemployment Rate M110156541 U : all
6 26 2 UEMPMEAN Average Duration of Unemployment (Weeks) M110156528 U : mean duration
7 27 5 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks M110156527 U < 5wks
8 28 5 UEMP5TO14 Civilians Unemployed for 5 - 14 Weeks M110156523 U 5-14 wks
9 29 5 UEMP15OV Civilians Unemployed - 15 Weeks & Over M110156524 U 15+ wks

10 30 5 UEMP15T26 Civilians Unemployed for 15− 26 Weeks M110156525 U 15− 26 wks
11 31 5 UEMP27OV Civilians Unemployed for 27 Weeks and Over M110156526 U 27+ wks
12 32 5 CLAIMSx Initial Claims M15186204 UI claims
13 33 5 PAYEMS All Employees: Total nonfarm M123109146 Emp: total
14 34 5 USGOOD All Employees: Goods-Producing Industries M123109172 Emp: gds prod
15 35 5 CES1021000001 All Employees: Mining and Logging: Mining M123109244 Emp: mining
16 36 5 USCONS All Employees: Construction M123109331 Emp: const
17 37 5 MANEMP All Employees: Manufacturing M123109542 Emp: mfg
18 38 5 DMANEMP All Employees: Durable goods M123109573 Emp: dble gds
19 39 5 NDMANEMP All Employees: Nondurable goods M123110741 Emp: nondbles
20 40 5 SRVPRD All Employees: Service-Providing Industries M123109193 Emp: services
21 41 5 USTPU All Employees: Trade, Transportation & Utilities M123111543 Emp: TTU
22 42 5 USWTRADE All Employees: Wholesale Trade M123111563 Emp: wholesale
23 43 5 USTRADE All Employees: Retail Trade M123111867 Emp: retail
24 44 5 USFIRE All Employees: Financial Activities M123112777 Emp: FIRE
25 45 5 USGOVT All Employees: Government M123114411 Emp: Govt
26 46 1 CES0600000007 Avg Weekly Hours : Goods-Producing M140687274 Avg hrs
27 47 2 AWOTMAN Avg Weekly Overtime Hours : Manufacturing M123109554 Overtime: mfg
28 48 1 AWHMAN Avg Weekly Hours : Manufacturing M14386098 Avg hrs: mfg
29 127 6 CES0600000008 Avg Hourly Earnings : Goods-Producing M123109182 AHE: goods
30 128 6 CES2000000008 Avg Hourly Earnings : Construction M123109341 AHE: const
31 129 6 CES3000000008 Avg Hourly Earnings : Manufacturing M123109552 AHE: mfg

Table A.3: Group 3: Consumption & Orders

id tcode fred description gsi gsi:description
1 50 4 HOUST Housing Starts: Total New Privately Owned M110155536 Starts: nonfarm
2 51 4 HOUSTNE Housing Starts, Northeast M110155538 Starts: NE
3 52 4 HOUSTMW Housing Starts, Midwest M110155537 Starts: MW
4 53 4 HOUSTS Housing Starts, South M110155543 Starts: South
5 54 4 HOUSTW Housing Starts, West M110155544 Starts: West
6 55 4 PERMIT New Private Housing Permits (SAAR) M110155532 BP: total
7 56 4 PERMITNE New Private Housing Permits, Northeast (SAAR) M110155531 BP: NE
8 57 4 PERMITMW New Private Housing Permits, Midwest (SAAR) M110155530 BP: MW
9 58 4 PERMITS New Private Housing Permits, South (SAAR) M110155533 BP: South

10 59 4 PERMITW New Private Housing Permits, West (SAAR) M110155534 BP: West

Table A.4: Group 4: Orders and Inventories

id tcode fred description gsi gsi:description
1 3 5 DPCERA3M086SBEA Real personal consumption expenditures M123008274 Real Consumption
2 5 5 RETAILx Retail and Food Services Sales M130439509 Retail sales
3 64 5 ACOGNO New Orders for Consumer Goods M14385863 Orders: cons gds
4 65 5 AMDMNOx New Orders for Durable Goods M14386110 Orders: dble gds
5 66 5 ANDENOx New Orders for Nondefense Capital Goods M178554409 Orders: cap gds
6 67 5 AMDMUOx Unfilled Orders for Durable Goods M14385946 Unf orders: dble
7 68 5 BUSINVx Total Business Inventories M15192014 M&T invent
8 69 2 ISRATIOx Total Business: Inventories to Sales Ratio M15191529 M&T invent/sales
9 130 2 UMCSENTx Consumer Sentiment Index hhsntn Consumer expect
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Table A.5: Group 5: Money & Credit

id tcode fred description gsi gsi:description
1 70 6 M1SL M1 Money Stock M110154984 M1
2 71 6 M2SL M2 Money Stock M110154985 M2
3 72 5 M2REAL Real M2 Money Stock M110154985 M2 (real)
4 73 6 AMBSL St. Louis Adjusted Monetary Base M110154995 MB
5 74 6 TOTRESNS Total Reserves of Depository Institutions M110155011 Reserves tot
6 75 7 NONBORRES Reserves Of Depository Institutions M110155009 Reserves nonbor
7 76 6 BUSLOANS Commercial and Industrial Loans BUSLOANS C&I loan plus
8 77 6 REALLN Real Estate Loans at All Commercial Banks BUSLOANS DC&I loans
9 78 6 NONREVSL Total Nonrevolving Credit M110154564 Cons credit

10 79 2 CONSPI Nonrevolving consumer credit to Personal Income M110154569 Inst cred/PI
11 131 6 MZMSL MZM Money Stock N.A. N.A.
12 132 6 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding N.A. N.A.
13 133 6 DTCTHFNM Total Consumer Loans and Leases Outstanding N.A. N.A.
14 134 6 INVEST Securities in Bank Credit at All Commercial Banks N.A. N.A.

Table A.6: Group 6: Interest Rate & Exchange Rates

id tcode fred description gsi gsi:description
1 84 2 FEDFUNDS Effective Federal Funds Rate M110155157 Fed Funds
2 85∗ 2 CP3Mx 3-Month AA Financial Commercial Paper Rate CPF3M Comm paper
3 86 2 TB3MS 3-Month Treasury Bill: M110155165 3 mo T-bill
4 87 2 TB6MS 6-Month Treasury Bill: M110155166 6 mo T-bill
5 88 2 GS1 1-Year Treasury Rate M110155168 1yrT-bond
6 89 2 GS5 5-Year Treasury Rate M-110155174 5 yr T-bond
7 90 2 GS10 10-Year Treasury Rate M110155169 10yr T-bond
8 91 2 AAA Moody’s Seasoned Aaa Corporate Bond Yield Aaa bond
9 92 2 BAA Moody’s Seasoned Baa Corporate Bond Yield Baa bond

10 93 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS CP-FF spread
11 94 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 3 mo-FF spread
12 95 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 6 mo-FF spread
13 96 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1yr− FF spread
14 97 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS 5 yr-FF spread
15 98 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS 10yr− FF spread
16 99 1 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS Aaa-FF spread
17 100 1 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS Baa-FF spread
18 101 5 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies Ex rate: avg
19 102 5 EXSZUSx Switzerland / U.S. Foreign Exchange Rate M110154768 Ex rate: Switz
20 103 5 EXJPUSx Japan / U.S. Foreign Exchange Rate M110154755 Ex rate: Japan
21 104 5 EXUSUKx U.S. / U.K. Foreign Exchange Rate M-110154772 Ex rate: UK
22 105 5 EXCAUSx Canada / U.S. Foreign Exchange Rate M-110154744 EX rate: Canada
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Table A.7: Group 7: Prices

id tcode fred description gsi gsi:description
1 106 6 WPSFD49207 PPI: Finished Goods M110157517 PPI: fin gds
2 107 6 WPSFD49502 PPI: Finished Consumer Goods M110157508 PPI: cons gds
3 108 6 WPSID61 PPI: Intermediate Materials M110157527 PPI: int matls
4 109 6 WPSID62 PPI: Crude Materials M110157500 PPI: crude matls
5 110 6 OILPRICEx Crude Oil, spliced WTI and Cushing M110157273 Spot market price
6 111 6 PPICMM PPI: Metals and metal products: M110157335 PPI: nonferrous
7 112 1 NAPMPRI ISM Manufacturing: Prices Index M110157204 NAPM com price
8 113 6 CPIAUCSL CPI : All Items M110157323 CPI-U: all
9 114 6 CPIAPPSL CPI : Apparel M110157299 CPI-U: apparel

10 115 6 CPITRNSL CPI : Transportation M110157302 CPI-U: transp
11 116 6 CPIMEDSL CPI : Medical Care M110157304 CPI-U: medical
12 117 6 CUSR0000SAC CPI : Commodities M110157314 CPI-U: comm.
13 118 6 CUSR0000SAD CPI : Durables M110157315 CPI-U: dbles
14 119 6 CUSR0000SAS CPI : Services M110157325 CPI-U: services
15 120 6 CPIULFSL CPI : All Items Less Food M110157328 CPI-U: ex food
16 121 6 CUSR0000SA0L2 CPI : All items less shelter M110157329 CPI-U: ex shelter
17 122 6 CUSR0000SA0L5 CPI : All items less medical care M110157330 CPI-U: ex med
18 123 6 PCEPI Personal Cons. Expend: Chain Index gmdc PCE defl
19 124 6 DDURRG3M086SBEA Personal Cons. Exp: Durable goods gmdcd PCE defl: dlbes
20 125 6 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods gmdcn PCE defl: nondble
21 126 6 DSERRG3M086SBEA Personal Cons. Exp: Services gmdcs PCE defl: service

Table A.8: Group 8: Stock Market

id tcode fred description gsi gsi:description
1 80 5 S&P 500 S&P’s Common Stock Price Index: Composite M110155044 S&P 500
2 8 5 S&P: indust S&P’s Common Stock Price Index: Industrials M110155047 S&P: indust
3 82 2 S&P div yield S&P’s Composite Common Stock: Dividend Yield S&P div yield
4 83 5 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio S&P PE ratio
5 135 1 VXOCLSx VXO

A.2 Financial Data

Table A.9: Stock Characteristics (Gu et al., 2020)

No. Acronym Firm characteristic Paper’s author(s) Year, Journal Data Source Frequency
1 absacc Absolute accruals Bandyopadhyay, Huang & Wirjanto 2010, WP Compustat Annual
2 acc Working capital accruals Sloan 1996, TAR Compustat Annual
3 aeavol Abnormal earnings announcement volume Lerman, Livnat & Mendenhall 2007, WP Compustat+CRSP Quarterly
4 age # years since first Compustat coverage Jiang, Lee & Zhang 2005, RAS Compustat Annual
5 agr Asset growth Cooper, Gulen & Schill 2008, JF Compustat Annual
6 baspread Bid-ask spread Amihud & Mendelson 1989, JF CRSP Monthly
7 beta Beta Fama & MacBeth 1973, JPE CRSP Monthly
8 betasq Beta squared Fama & MacBeth 1973, JPE CRSP Monthly
9 bm Book-to-market Rosenberg, Reid & Lanstein 1985, JPM Compustat+CRSP Annual
10 bmia Industry-adjusted book to market Asness, Porter & Stevens 2000, WP Compustat+CRSP Annual
11 cash Cash holdings Palazzo 2012, JFE Compustat Quarterly
12 cashdebt Cash flow to debt Ou & Penman 1989, JAE Compustat Annual
13 cashpr Cash productivity Chandrashekar & Rao 2009, WP Compustat Annual
14 cfp Cash flow to price ratio Desai, Rajgopal & Venkatachalam 2004, TAR Compustat Annual
15 cfpia Industry-adjusted cash flow to price ratio Asness, Porter & Stevens 2000, WP Compustat Annual
16 chatoia Industry-adjusted change in asset turnover Soliman 2008, TAR Compustat Annual
17 chesho Change in shares outstanding Pontiff & Woodgate 2008, JF Compustat Annual
18 chempia Industry-adjusted change in employees Asness, Porter & Stevens 1994, WP Compustat Annual
19 chinv Change in inventory Thomas & Zhang 2002, RAS Compustat Annual
20 chmom Change in 6-month momentum Gettleman & Marks 2006, WP CRSP Monthly
21 chpmia Industry-adjusted change in profit margin Soliman 2008, TAR Compustat Annual
22 chtx Change in tax expense Thomas & Zhang 2011, JAR Compustat Quarterly
23 cinvest Corporate investment Titman, Wei & Xie 2004, JFQA Compustat Quarterly
24 convind Convertible debt indicator Valta 2016, JFQA Compustat Annual
25 currat Current ratio Ou & Penman 1989, JAE Compustat Annual
26 depr Depreciation / PP&E Holthausen & Larcker 1992, JAE Compustat Annual
27 divi Dividend initiation Michaely, Thaler & Womack 1995, JF Compustat Annual
28 divo Dividend omission Michaely, Thaler & Womack 1995, JF Compustat Annual
29 dolvol Dollar trading volume Chordia, Subrahmanyam & Anshuman 2001, JFE CRSP Monthly
30 dy Dividend to price Litzenberger & Ramaswamy 1982, JF Compustat Annual
31 ear Earnings announcement return Kishore, Brandt, Santa-Clara & Venkatachalam 2008, WP Compustat+CRSP Quarterly



58 A.2 Financial Data

Table A.10: Stock Characteristics continued (Gu et al., 2020)

No. Acronym Firm characteristic Paper’s author(s) Year, Journal Data Source Frequency
32 egr Growth in common shareholder equity Richardson, Sloan, Soliman 2005, JAE Compustat Annual
33 ep Earnings to price Basu 1977, JF Compustat Annual
34 gma Gross profitability Novy-Marx 2013, JFE Compustat Annual
35 grCAPX Growth in capital expenditures Anderson & Garcia-Feijoo 2006, JF Compustat Annual
36 grltnoa Growth in long-term net operating assets Fairfield, Whisenant & Yohn 2003, TAR Compustat Annual
37 herf Industry sales concentration Hou & Robinson 2006, JF Compustat Annual
38 hire Employee growth rate Bazdresch, Belo & Lin 2014, JPE Compustat Annual
39 idiovol Idiosyncratic return volatility Ali, Hwang & Trombley 2003, JFE CRSP Monthly
40 ill Illiquidity Amihud 2002, JFM CRSP Monthly
42 invest Capital expenditures and inventory Chen & Zhang 2010, JF Compustat Annual
43 lev Leverage Bhandari 1988, JF Compustat Annual
44 lgr Growth in long-term debt Richardson, Sloan, Soliman & Tuna 2005, JAE Compustat Annual
45 maxret Maximum daily return Bali, Cakici & Whitelaw 2011, JFE CRSP Monthly
46 mom12 m 12-month momentum Jegadeesh 1990, JF CRSP Monthly
47 momlm 1-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
48 mom36 m 36-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
49 mom6m 6-month momentum Jegadeesh & Titman 1993, JF CRSP Monthly
50 ms Financial statement score Mohanram 2005, RAS Compustat Quarterly
52 mveia Industry-adjusted size Asness, Porter & Stevens 2000, WP Compustat Annual
53 nincr Number of earnings increases Barth, Elliott & Finn 1999, JAR Compustat Quarterly
54 operprof Operating profitability Fama & French 2015, JFE Compustat Annual
55 orgcap Organizational capital Eisfeldt & Papanikolaou 2013, JF Compustat Annual
56 pchcapxia Industry-adjusted % change in capital expenditures Abarbanell & Bushee 1998, TAR Compustat Annual
57 pchcurrat % change in current ratio Ou & Penman 1989, JAE Compustat Annual
58 pchdepr % change in depreciation Holthausen & Larcker 1992, JAE Compustat Annual
59 pchgmpchsale % change in gross margin - % change in sales Abarbanell & Bushee 1998, TAR Compustat Annual
60 pchquick % change in quick ratio Ou & Penman 1989, JAE Compustat Annual
61 pchsalepchinvt % change in sales - % change in inventory Abarbanell & Bushee 1998, TAR Compustat Annual
62 pchsalepchrect % change in sales - % change in A/R Abarbanell & Bushee 1998, TAR Compustat Annual
63 pchsalepchxsga % change in sales - % change in SG&A Abarbanell & Bushee 1998, TAR Compustat Annual
64 pchsaleinv % change sales-to-inventory Ou & Penman 1989, JAE Compustat Annual
65 petace Percent accruals Hafzalla, Lundholm & Van Winkle 2011, TAR Compustat Annual
66 pricedelay Price delay Hou & Moskowitz 2005, RFS CRSP Monthly
67 ps Financial statements score Piotroski 2000, JAR Compustat Annual
68 quick Quick ratio Ou & Penman 1989, JAE Compustat Annual
69 rd R&D increase Eberhart, Maxwell & Siddique 2004, JF Compustat Annual
70 rdmve R&D to market capitalization Guo, Lev & Shi 2006, JBFA Compustat Annual
71 rdsale R&D to sales Guo, Lev & Shi 2006, JBFA Compustat Annual
72 realestate Real estate holdings Tuzel 2010, RFS Compustat Annual
73 retvol Return volatility Ang, Hodrick, Xing & Zhang 2006, JF CRSP Monthly
74 roaq Return on assets Balakrishnan, Bartov & Faurel 2010, JAE Compustat Quarterly
75 roavol Earnings volatility Francis, LaFond, Olsson & Schipper 2004, TAR Compustat Quarterly
76 roeq Return on equity Hou, Xue & Zhang 2015, RFS Compustat Quarterly
77 roic Return on invested capital Brown & Rowe 2007, WP Compustat Annual
78 rsup Revenue surprise Kama 2009, JBFA Compustat Quarterly
79 salecash Sales to cash Ou & Penman 1989, JAE Compustat Annual
80 saleinv Sales to inventory Ou & Penman 1989, JAE Compustat Annual
81 salerec Sales to receivables Ou & Penman 1989, JAE Compustat Annual
82 secured Secured debt Valta 2016, JFQA Compustat Annual
83 securedind Secured debt indicator Valta 2016, JFQA Compustat Annual
84 sgr Sales growth Lakonishok, Shleifer & Vishny 1994, JF Compustat Annual
85 sin Sin stocks Hong & Kacperczyk 2009, JFE Compustat Annual
86 sp Sales to price Barbee, Mukherji, & Raines 1996, FAJ Compustat Annual
87 stddolvol Volatility of liquidity (dollar trading volume) Chordia, Subrahmanyam & Anshuman 2001, JFE CRSP Monthly
88 stdturn Volatility of liquidity (share turnover) Chordia, Subrahmanyam & Anshuman 2001, JFE CRSP Monthly
89 stdace Accrual volatility Bandyopadhyay, Huang & Wirjanto 2010, WP Compustat Quarterly
90 stdef Cash flow volatility Huang 2009, JEF Compustat Quarterly
91 tang Debt capacity/firm tangibility Almeida & Campello 2007, RFS Compustat Annual
92 tb Tax income to book income Lev & Nissim 2004, TAR Compustat Annual
93 turn Share turnover Datar, Naik & Radcliffe 1998, JFM CRSP Monthly
94 zerotrade Zero trading days Liu 2006, JFE CRSP Monthly
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B Shapley Values Distributions and Variable

Importance

B.1 Expansions

Figure B.1: NN1 Model
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Figure B.2: NN2 Model

Figure B.3: NN3 Model
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Figure B.4: NN4 Model

Figure B.5: NN5 Model
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B.2 Recessions

Figure B.6: NN1 Model

Figure B.7: NN2 Model
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Figure B.8: NN3 Model

Figure B.9: NN4 Model
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Figure B.10: NN5 Model


	Introduction
	Hypothesis Development
	Background
	Economic Background
	Technological Background
	On Empirical Asset Pricing Via Machine Learning

	Theoretical Development

	Data
	Financial Data
	Macroeconomic Data
	Data Split
	Standardization

	Methodology
	Economic Methodology
	Risk Premiums
	Recessions

	Technological Methodology
	Neural Networks
	Regularization
	Ensemble Neural Networks
	Shapley Values

	Research Methodology
	Software
	Answering Hypothesis 1
	Answering Hypothesis 2


	Analysis
	Results For Hypothesis 1
	Results For Hypothesis 2

	Conclusion
	Going Forward

	References
	Variable Description
	Macroeconomic Data
	Financial Data

	Shapley Values Distributions and Variable Importance
	Expansions
	Recessions


