Vis enkel innførsel

dc.contributor.authorBacri, Timothee Raphael Ferdinand
dc.contributor.authorBerentsen, Geir Drage
dc.contributor.authorBulla, Jan
dc.contributor.authorStøve, Bård
dc.date.accessioned2024-10-10T12:58:38Z
dc.date.available2024-10-10T12:58:38Z
dc.date.created2023-09-04T09:53:54Z
dc.date.issued2023
dc.identifier.citationJournal of Statistical Computation and Simulation. 2023, 93 (18), 3421-3457.
dc.identifier.issn0094-9655
dc.identifier.urihttps://hdl.handle.net/11250/3157567
dc.description.abstractA popular way to estimate the parameters of a hidden Markov model (HMM) is direct numerical maximization (DNM) of the (log-)likelihood function. The advantages of employing the TMB [Kristensen K, Nielsen A, Berg C, et al. TMB: automatic differentiation and Laplace approximation. J Stat Softw Articles. 2016;70(5):1–21] framework in R for this purpose were illustrated recently [Bacri T, Berentsen GD, Bulla J, et al. A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using template model builder. Biom J. 2022 Oct;64(7):1260–1288]. In this paper, we present extensions of these results in two directions. First, we present a practical way to obtain uncertainty estimates in form of confidence intervals (CIs) for the so-called smoothing probabilities at moderate computational and programming effort via TMB. Our approach thus permits to avoid computer-intensive bootstrap methods. By means of several examples, we illustrate patterns present for the derived CIs. Secondly, we investigate the performance of popular optimizers available in R when estimating HMMs via DNM. Hereby, our focus lies on the potential benefits of employing TMB. Investigated criteria via a number of simulation studies are convergence speed, accuracy, and the impact of (poor) initial values. Our findings suggest that all optimizers considered benefit in terms of speed from using the gradient supplied by TMB. When supplying both gradient and Hessian from TMB, the number of iterations reduces, suggesting a more efficient convergence to the maximum of the log-likelihood. Last, we briefly point out potential advantages of a hybrid approach.
dc.description.abstractComputational issues in parameter estimation for hidden Markov models with template model builder
dc.language.isoeng
dc.titleComputational issues in parameter estimation for hidden Markov models with template model builder
dc.title.alternativeComputational issues in parameter estimation for hidden Markov models with template model builder
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.pagenumber3421-3457
dc.source.volume93
dc.source.journalJournal of Statistical Computation and Simulation
dc.source.issue18
dc.identifier.doi10.1080/00949655.2023.2226788
dc.identifier.cristin2171962
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel