Show simple item record

dc.contributor.authorAase, Knut K.
dc.date.accessioned2025-02-21T11:26:34Z
dc.date.available2025-02-21T11:26:34Z
dc.date.issued2025-02-21
dc.identifier.issn2387-3000
dc.identifier.urihttps://hdl.handle.net/11250/3179683
dc.description.abstractWe consider optimal risk sharing where agents have preferences represented by translation invariant recursive utility. The dynamics in continuous time is driven by diffusion processes and a random jump measure. The model has some appealing features compared to the scale invariant version. Economic effects of sudden events, like catastrophes or pandemics, can be interpreted and separated from ordinary shocks to the economy. Unlike the scale invariant version, this model allows for a treatment of heterogeneous preferences, and consequently optimal risk sharing at a general and basic level. A new endogenous variable, a traded security, enters via the preference structure, affecting the key relations between agents. We also implement a stock market in this setting, and derive a consumption based capital asset model. A catastrophe-insurance forward contract is analyzed as an application of our general model, where the jump part is priced and plays the essential role.en_US
dc.language.isoengen_US
dc.publisherFORen_US
dc.relation.ispartofseriesDiscussion paper;5/25
dc.subjectOptimal risk sharingen_US
dc.subjectrecursive utilityen_US
dc.subjecttranslation invarianceen_US
dc.subjectjump dynamicsen_US
dc.subjectCCAPMen_US
dc.subjectthe stochastic maximum principleen_US
dc.subjectthe mutuality principleen_US
dc.subjectcatastrophe forward contractsen_US
dc.titleOptimal risk sharing with translation invariant recursive utility for jump-diffusionsen_US
dc.typeWorking paperen_US
dc.source.pagenumber59en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record