dc.contributor.author | Di Nunno, Giulia | |
dc.contributor.author | Vives, Josep | |
dc.date.accessioned | 2018-03-13T12:14:28Z | |
dc.date.available | 2018-03-13T12:14:28Z | |
dc.date.created | 2016-08-21T22:56:36Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Stochastics: An International Journal of Probability and Stochastic Processes. 2017, 89 (1), 142-170. | |
dc.identifier.issn | 1744-2508 | |
dc.identifier.uri | http://hdl.handle.net/11250/2490296 | |
dc.description.abstract | In this paper we develop a Malliavin–Skorohod type calculus for additive processes in the L1 and L1 settings, extending the probabilistic interpretation of the Malliavin–Skorohod operators to this context. We prove calculus rules and obtain a generalization of the Clark–Hausmann–Ocone formula for random variables in L1. Our theory is then applied to extend the stochastic integration with respect to volatility modulated Lévy-driven Volterra processes recently introduced in the literature. Our work yields to substantially weaker conditions that permit to cover integration with respect to e.g. Volterra processes driven by alfa-stable processes with alfa < 2. The presentation focuses on jump type processes. | |
dc.language.iso | eng | |
dc.title | A Malliavin-Skorohod calculus in L^0 and L^1 for additive and Volterra-type processes | |
dc.type | Peer reviewed | |
dc.type | Journal article | |
dc.description.version | acceptedVersion | |
dc.source.pagenumber | 142-170 | |
dc.source.volume | 89 | |
dc.source.journal | Stochastics: An International Journal of Probability and Stochastic Processes | |
dc.source.issue | 1 | |
dc.identifier.doi | 10.1080/17442508.2016.1140767 | |
dc.identifier.cristin | 1374429 | |
cristin.unitcode | 191,10,0,0 | |
cristin.unitname | Institutt for foretaksøkonomi | |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |