Vis enkel innførsel

dc.contributor.authorDi Nunno, Giulia
dc.contributor.authorVives, Josep
dc.date.accessioned2018-03-13T12:14:28Z
dc.date.available2018-03-13T12:14:28Z
dc.date.created2016-08-21T22:56:36Z
dc.date.issued2017
dc.identifier.citationStochastics: An International Journal of Probability and Stochastic Processes. 2017, 89 (1), 142-170.
dc.identifier.issn1744-2508
dc.identifier.urihttp://hdl.handle.net/11250/2490296
dc.description.abstractIn this paper we develop a Malliavin–Skorohod type calculus for additive processes in the L1 and L1 settings, extending the probabilistic interpretation of the Malliavin–Skorohod operators to this context. We prove calculus rules and obtain a generalization of the Clark–Hausmann–Ocone formula for random variables in L1. Our theory is then applied to extend the stochastic integration with respect to volatility modulated Lévy-driven Volterra processes recently introduced in the literature. Our work yields to substantially weaker conditions that permit to cover integration with respect to e.g. Volterra processes driven by alfa-stable processes with alfa < 2. The presentation focuses on jump type processes.
dc.language.isoeng
dc.titleA Malliavin-Skorohod calculus in L^0 and L^1 for additive and Volterra-type processes
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionacceptedVersion
dc.source.pagenumber142-170
dc.source.volume89
dc.source.journalStochastics: An International Journal of Probability and Stochastic Processes
dc.source.issue1
dc.identifier.doi10.1080/17442508.2016.1140767
dc.identifier.cristin1374429
cristin.unitcode191,10,0,0
cristin.unitnameInstitutt for foretaksøkonomi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel