• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Norges Handelshøyskole
  • Thesis
  • Master Thesis
  • View Item
  •   Home
  • Norges Handelshøyskole
  • Thesis
  • Master Thesis
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating weather margin seasonality in shipping using machine learning

Nilsson, Joakim; Nilsson, Marcus
Master thesis
Thumbnail
View/Open
masterthesis.pdf (3.646Mb)
URI
https://hdl.handle.net/11250/2766488
Date
2021
Metadata
Show full item record
Collections
  • Master Thesis [4207]
Abstract
Accurate predictions of fuel consumption are an essential tool in the pricing of forward cargo contracts. This thesis develops a predictive model for fuel consumption using noon report data from Handysize and Supramax vessels. In the process, we employ a wide selection of machine learning algorithms, including decision trees, shrinkage models, and an artificial neural network. Furthermore, we replace all weather and oceanographic variables with third-party data. The replacement ensures the model is independent of noon report weather data and allows us to generate predictions using historical weather conditions from the last decades. The trained models are used to study the seasonal patterns of weather margins for two case routes. Estimated weather margins and fuel consumption may be used by chartering managers to improve cost predictions and facilitate more profitable contract selection.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit