Show simple item record

dc.contributor.authorGriffith, Daniel
dc.contributor.authorBivand, Roger
dc.contributor.authorChun, Yongwan
dc.identifier.citationProcedia Environmental Sciences 2015, 26:120-123nb_NO
dc.description-Copyright © 2015 The Authors. Published by Elsevier B.V.nb_NO
dc.description.abstractGood approximations of eigenvalues exist for the regular square and hexagonal tessellations. To complement this situation, spatial scientists need good approximations of eigenvalues for irregular tessellations. Starting from known or approximated extreme eigenvalues, the remaining eigenvalues may be in turn approximated. One reason spatial scientists are interested in eigenvalues is because they are needed to calculate the Jacobian term in the autonormal probability model. If eigenvalues are not needed for model fitting, good approximations are needed to give the interval within which the spatial parameter will lie.nb_NO
dc.publisherElsevier B.Vnb_NO
dc.rightsNavngivelse-Ikkekommersiell-IngenBearbeidelse 3.0 Norge*
dc.subjectextreme eigenvaluesnb_NO
dc.subjectspatial regressionnb_NO
dc.subjectrayleigh quotientnb_NO
dc.titleImplementing Approximations to Extreme Eigenvalues and Eigenvalues of Irregular Surface Partitionings for use in SAR and CAR Modelsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.journalProcedia Environmental Sciencesnb_NO

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse-Ikkekommersiell-IngenBearbeidelse 3.0 Norge
Except where otherwise noted, this item's license is described as Navngivelse-Ikkekommersiell-IngenBearbeidelse 3.0 Norge