• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges Handelshøyskole
  • Department of Business and Management Science
  • Discussion papers (FOR)
  • Vis innførsel
  •   Hjem
  • Norges Handelshøyskole
  • Department of Business and Management Science
  • Discussion papers (FOR)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A convolution estimator for the density of nonlinear regression observations

Støve, Bård; Tjøstheim, Dag
Working paper
Thumbnail
Åpne
2507.pdf (282.7Kb)
Permanent lenke
http://hdl.handle.net/11250/163901
Utgivelsesdato
2007-11
Metadata
Vis full innførsel
Samlinger
  • Discussion papers (FOR) [593]
Sammendrag
The problem of estimating an unknown density function has been widely studied. In this paper we present a convolution estimator for the density of the responses in a nonlinear regression model. The rate of convergence for the variance of the convolution estimator is of order n-1. This is faster than the rate for the kernel density method. The intuition behind this result is that the convolution estimator uses model information, and thus an improvement can be expected. We also derive the bias of the new estimator and conduct simulation experiments to check the finite sample properties. The proposed estimator performs substantially better than the kernel density estimator for well-behaved noise densities.
Utgiver
Norwegian School of Economics and Business Administration. Department of Finance and Management Science
Serie
Discussion paper
2007:25

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit