• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Norges Handelshøyskole
  • Centre for Applied Research at NHH (SNF)
  • Working papers (SNF)
  • Vis innførsel
  •   Hjem
  • Norges Handelshøyskole
  • Centre for Applied Research at NHH (SNF)
  • Working papers (SNF)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A contraction approach to periodic optimization problems

Sandal, Leif K.; Kvamsdal, Sturla F.; Maroto, José M.; Morán, Manuel
Working paper
Thumbnail
Åpne
A14_17.pdf (819.1Kb)
Permanent lenke
http://hdl.handle.net/11250/2573862
Utgivelsesdato
2017-11
Metadata
Vis full innførsel
Samlinger
  • Working papers (SNF) [809]
Sammendrag
Consider an infinite horizon, multi-dimensional optimization problem with arbitrary but finite periodicity in discrete time. The problem can be posed as a set of coupled equations. We show that the problem is a special case of a more general class of problems, that the general class has a unique solution, and that the solution can be obtained with the help of a contraction operator. Special cases include the classical Bellman problem and stochastic problem formulations. Thus, we view our approach as an extension of the Bellman problem to the special case of non-autonomy that periodicity represents, and we thereby pave the way for consistent and rigorous treatment of, for example, seasonality in discrete, dynamic optimization. We demonstrate our method in a simple example with periodic variation in the objective function.
Utgiver
SNF

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit